Note: This page contains sample records for the topic tabular ascii format from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Transferable Output ASCII Data (TOAD) File Format Description.  

National Technical Information Service (NTIS)

Described is a format for writing ASCII data on a file to facilitate its transfer from one computer system to another. The TOAD format conforms to all ANSI FORTRAN 77 standards. There are two advantages in using the TOAD format. First, TOAD files are of t...

B. Bingel D. Hammond

1987-01-01

2

Transferable Output ASCII Data (TOAD) Gateway: Version 1.0 User's Guide.  

National Technical Information Service (NTIS)

The Transferable Output ASCII Data (TOAD) Gateway, release 1.0 is described. This is a software tool for converting tabular data from one format into another via the TOAD format. This initial release of the Gateway allows free data interchange among the f...

B. D. Bingel

1991-01-01

3

A quantitative model of ground-water flow during formation of tabular sandstone uranium deposits  

USGS Publications Warehouse

Presents a quantitative simulation of regional groundwater flow during uranium deposition in the Westwater Canyon Member and Jackpile Sandstone Member of the Upper Jurassic Morrison Formation in the San Juan basin. Topographic slope, shoreline position, and density contrasts in the lake and pore fluids controlled the directions of flow and recharge-discharge areas. The most important results for uranium ore deposit formation are that regional groundwater discharged throughout the basin, regional discharge was concentrated along the shore line or playa margin, flow was dominantly gravity driven, and compaction dewatering was negligible. A strong association is found between the tabular sandstone uranium deposits and major inferred zones of mixed local and regional groundwater discharge. -from Author

Sanford, R. F.

1994-01-01

4

Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15  

PubMed Central

Distinct morphological characteristics of magnetite formed intracellularly by magnetic bacteria (magnetosome) are invoked as compelling evidence for biological activity on Earth and possibly on Mars. Crystals of magnetite produced extracellularly by a variety of bacteria including Geobacter metallireducens GS-15, thermophilic bacteria, and psychrotolerant bacteria are, however, traditionally not thought to have nearly as distinct morphologies. The size and shape of extracellular magnetite depend on the culture conditions and type of bacteria. Under typical CO2-rich culture conditions, GS-15 is known to produce superparamagnetic magnetite (crystal diameters of approximately <30 nm). In the current study, we were able to produce a unique form of tabular, single-domain magnetite under nontraditional (low-CO2) culture conditions. This magnetite has a distinct crystal habit and magnetic properties. This magnetite could be used as a biosignature to recognize ancient biological activities in terrestrial and extraterrestrial environments and also may be a major carrier of the magnetization in natural sediments.

Vali, Hojatollah; Weiss, Benjamin; Li, Yi-Liang; Sears, S. Kelly; Kim, Soon Sam; Kirschvink, Joseph L.; Zhang, Chuanlun L.

2004-01-01

5

Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15.  

PubMed

Distinct morphological characteristics of magnetite formed intracellularly by magnetic bacteria (magnetosome) are invoked as compelling evidence for biological activity on Earth and possibly on Mars. Crystals of magnetite produced extracellularly by a variety of bacteria including Geobacter metallireducens GS-15, thermophilic bacteria, and psychrotolerant bacteria are, however, traditionally not thought to have nearly as distinct morphologies. The size and shape of extracellular magnetite depend on the culture conditions and type of bacteria. Under typical CO(2)-rich culture conditions, GS-15 is known to produce superparamagnetic magnetite (crystal diameters of approximately <30 nm). In the current study, we were able to produce a unique form of tabular, single-domain magnetite under nontraditional (low-CO(2)) culture conditions. This magnetite has a distinct crystal habit and magnetic properties. This magnetite could be used as a biosignature to recognize ancient biological activities in terrestrial and extraterrestrial environments and also may be a major carrier of the magnetization in natural sediments. PMID:15525704

Vali, Hojatollah; Weiss, Benjamin; Li, Yi-Liang; Sears, S Kelly; Kim, Soon Sam; Kirschvink, Joseph L; Zhang, Chuanlun L

2004-11-03

6

Fast-Ice Formation in Presence of Tabular Icebergs in McMurdo Sound, Antarctica  

NASA Astrophysics Data System (ADS)

Icebergs calved from the Ross Ice Shelf during last five years (B15, C16 and C19) and currently adrift in the Ross Sea have had an impact on the formation and break-up of fast ice (sea ice that is immobile and attached to the shore) in the vicinity of McMurdo Sound. Between October 2004 and May 2005, a great wall of icebergs consisting of B15A, the Dragalski Ice Tongue, B15K and C16 fortuitously developed along the Victoria Land Coast and effectively isolated McMurdo Sound, from the effects of the open Ross Sea. During this time period, 40% to 90% of the seaward boundary of this area was blocked by these icebergs. The iceberg barrier occurred during the warmest summer months (December - March) when sea ice is normally cleared from the area; thus, as the 2005 austral winter progressed, land-fast multiyear sea ice has remained in the region, despite a subsequent break-down of the iceberg barrier (i.e., B15A drifting north). This barrier reduced the effect on the sea ice of southerly winds by presenting a mechanical buttress to nortward flow, and also blocked currents from the Ross Sea which normally contribute to the break up of fast ice in the austral summer. In addition, lateral melting of the icebergs resulted in the freshening of the ocean surface layer, enhancing stratification and sea-ice formation. This study shall Geographic Information System analysis of satellite imagery to quantify the length of the iceberg barrier, and to demonstrate the resultant impact on the development and total extent of fast ice. A simple numerical model of one-dimensional water-column/sea-ice interaction will be used to quantify the effects of fresh-water flux from iceberg melting and associated effects on sea-ice formation.

Sergienko, O.; Brunt, K.; Macayeal, D. R.

2005-12-01

7

SEGY to ASCII: Conversion and Plotting Program  

USGS Publications Warehouse

This report documents a computer program to convert standard 4 byte, IBM floating point SEGY files to ASCII xyz format. The program then optionally plots the seismic data using the GMT plotting package. The material for this publication is contained in a standard tar file (of99-126.tar) that is uncompressed and 726 K in size. It can be downloaded by any Unix machine. Move the tar file to the directory you wish to use it in, then type 'tar xvf of99-126.tar' The archive files (and diskette) contain a NOTE file, a README file, a version-history file, source code, a makefile for easy compilation, and an ASCII version of the documentation. The archive files (and diskette) also contain example test files, including a typical SEGY file along with the resulting ASCII xyz and postscript files. Requirements for compiling the source code into an executable are a C++ compiler. The program has been successfully compiled using Gnu's g++ version 2.8.1, and use of other compilers may require modifications to the existing source code. The g++ compiler is a free, high quality C++ compiler and may be downloaded from the ftp site: ftp://ftp.gnu.org/gnu Requirements for plotting the seismic data is the existence of the GMT plotting package. The GMT plotting package may be downloaded from the web site: http://www.soest.hawaii.edu/gmt/

Goldman, Mark R.

1999-01-01

8

Transferable Output ASCII Data (TOAD) Editor Version 1.0 User's Guide.  

National Technical Information Service (NTIS)

The Transferable Output ASCII Data (TOAD) editor is an interactive software tool for manipulating the contents of TOAD files. The TOAD editor is specifically designed to work with tabular data. Selected subsets of data may be displayed to the user's scree...

B. D. Bingel A. L. Shea A. S. Hofler

1991-01-01

9

A Microprocessor ASCII Character Buffering System.  

National Technical Information Service (NTIS)

A microprocessor buffering system (MBS) was developed at the Environmental Monitoring and Support Laboratory -Cincinnati (EMSL-CI) to provide an efficient transfer for serial ASCII information between intelligent instrument systema and a Data General NOVA...

J. M. Teuschler R. A. Jollis J. E. Kopke

1982-01-01

10

A new model for tabular-type uranium deposits  

USGS Publications Warehouse

Tabular-type uranium deposits occur as tabular, originally subhorizontal bodies entirely within reduced fluvial sandstones of Late Silurian age or younger. This paper proposes that belts of tabular-type uranium deposits formed in areas of mixed local and regional groundwater discharge shortly after deposition of the host sediments. The general characteristics of tabular-type uranium deposits indicate that their essential feature was the formation at a density-stratified ground-water interface in areas of local and regional ground-water discharge. Reconstruction of the paleohydrogeology is the key to understanding the formation of these deposits. Geologic ground-water controls that favor discharge, such as the pinch-out of major aquifers, are also favorable for uranium ore. The combination of topographic and geologic features that both cause discharge is most favorable for ore deposition. -from Author

Sanford, R. F.

1992-01-01

11

SEGY to ASCII Conversion and Plotting Program 2.0  

USGS Publications Warehouse

INTRODUCTION SEGY has long been a standard format for storing seismic data and header information. Almost every seismic processing package can read and write seismic data in SEGY format. In the data processing world, however, ASCII format is the 'universal' standard format. Very few general-purpose plotting or computation programs will accept data in SEGY format. The software presented in this report, referred to as SEGY to ASCII (SAC), converts seismic data written in SEGY format (Barry et al., 1975) to an ASCII data file, and then creates a postscript file of the seismic data using a general plotting package (GMT, Wessel and Smith, 1995). The resulting postscript file may be plotted by any standard postscript plotting program. There are two versions of SAC: one version for plotting a SEGY file that contains a single gather, such as a stacked CDP or migrated section, and a second version for plotting multiple gathers from a SEGY file containing more than one gather, such as a collection of shot gathers. Note that if a SEGY file has multiple gathers, then each gather must have the same number of traces per gather, and each trace must have the same sample interval and number of samples per trace. SAC will read several common standards of SEGY data, including SEGY files with sample values written in either IBM or IEEE floating-point format. In addition, utility programs are present to convert non-standard Seismic Unix (.sux) SEGY files and PASSCAL (.rsy) SEGY files to standard SEGY files. SAC allows complete user control over all plotting parameters including label size and font, tick mark intervals, trace scaling, and the inclusion of a title and descriptive text. SAC shell scripts create a postscript image of the seismic data in vector rather than bitmap format, using GMT's pswiggle command. Although this can produce a very large postscript file, the image quality is generally superior to that of a bitmap image, and commercial programs such as Adobe Illustrator? can manipulate the image more efficiently.

Goldman, Mark R.

2005-01-01

12

Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau  

USGS Publications Warehouse

Interstitial, epigenetic amorphous organic matter is intimately associated with uranium in the Grants uranium region and is considered essential to genetic models for these deposits. In contrast, uranium minerals are intimately associated with authigenic vanadium chlorite and vanadium oxides in amorphous organic matter-poor ores of the Slick Rock and Henry Mountains mining districts and therefore, in some genetic models amorphous organic matter is not considered crucial to the formation of these deposits. Differences in organic matter content can be explained by recognizing that amorphous organic matter-poor deposits have been subjected to more advanced stages of diagenesis than amorphous organic matter-rich deposits. Evidence that amorphous organic matter was involved in the genesis of organic matter-poor, as well as organic matter-rich, deposits is described. -from Authors

Hansley, P. L.; Spirakis, C. S.

1992-01-01

13

Bit-parallel ASCII code artificial numeric keypad  

Microsoft Academic Search

Seven integrated circuits and a voltage regulator are combined with twelve reed relays to allow the ASCII encoded numerals 0 through 9 and characters ''.'' and R or S to momentarily close switches to an applications device, simulating keypad switch closures. This invention may be used as a PARALLEL TLL (Transistor Transistor Logic) data acqusition interface to a standard Hewlett-Packard

Hale

1981-01-01

14

Bit-parallel ASCII code artificial numeric keypad  

SciTech Connect

Seven integrated circuits and a voltage regulator are combined with twelve reed relays to allow the ASCII encoded numerals 0 through 9 and characters ''.'' and R or S to momentarily close switches to an applications device, simulating keypad switch closures. This invention may be used as a PARALLEL TLL (Transistor Transistor Logic) data acqusition interface to a standard Hewlett-Packard HP-97 Calculator modified with a cable.

Hale, G.M.

1981-03-01

15

Modelling Tabular Data with an Ordered Outcome  

Microsoft Academic Search

A large amount of data that is considered within sociological studies consists of categorical variables that lend themselves to tabular analysis. In the sociological analysis of data regarding social class and educational attainment, for example, the variables of interest can often plausibly be considered as having a substantively interesting order. Standard log-linear models do not take ordinality into account, thereby

Vernon Gayle

1996-01-01

16

A Tabular Survey of Automated Table Processing  

Microsoft Academic Search

Tables are the only acceptable means of communicating certain types of structured data. A precise definition of “tabularity”\\u000a remains elusive because some bureaucratic forms, multicolumn text layouts, and schematic drawings share many characteristics\\u000a of tables. There are significant differences between typeset tables, electronic files designed for display of tables, and\\u000a tables in symbolic form intended for information retrieval. Although most

Daniel P. Lopresti; George Nagy

1999-01-01

17

Testing variants of minimum distance controlled tabular adjustment  

Microsoft Academic Search

Controlled tabular adjustment (CTA), and its minimum distance variants, is a recent methodology for the protection of tabular data. Given a table to be protected, the purpose of the method is to fi nd the closest one that guarantees the confi dentiality of the sensitive cells. This is achieved by adding slight adjustments to the remaining cells, preferably excluding total

Jordi Castro; Sarah Giessing

18

Ontology patterns for tabular representations of biomedical knowledge on neglected tropical diseases  

PubMed Central

Motivation: Ontology-like domain knowledge is frequently published in a tabular format embedded in scientific publications. We explore the re-use of such tabular content in the process of building NTDO, an ontology of neglected tropical diseases (NTDs), where the representation of the interdependencies between hosts, pathogens and vectors plays a crucial role. Results: As a proof of concept we analyzed a tabular compilation of knowledge about pathogens, vectors and geographic locations involved in the transmission of NTDs. After a thorough ontological analysis of the domain of interest, we formulated a comprehensive design pattern, rooted in the biomedical domain upper level ontology BioTop. This pattern was implemented in a VBA script which takes cell contents of an Excel spreadsheet and transforms them into OWL-DL. After minor manual post-processing, the correctness and completeness of the ontology was tested using pre-formulated competence questions as description logics (DL) queries. The expected results could be reproduced by the ontology. The proposed approach is recommended for optimizing the acquisition of ontological domain knowledge from tabular representations. Availability and implementation: Domain examples, source code and ontology are freely available on the web at http://www.cin.ufpe.br/~ntdo. Contact: fss3@cin.ufpe.br

Santana, Filipe; Schober, Daniel; Medeiros, Zulma; Freitas, Fred; Schulz, Stefan

2011-01-01

19

Geosites inventory of the northwestern Tabular Middle Atlas of Morocco  

Microsoft Academic Search

Across the northwestern Tabular Middle Atlas of Morocco there are many examples of landscapes, rocks and fossils that provide key evidence of a particular moment or period in Earth history. Such Earth heritage sites are important for educating the general public in environmental matters. They also serve as tools for demonstrating sustainable development and for illustrating methods of site conservation

Mohamed El Wartiti; Amina Malaki; Mohamed Zahraoui; Abdelilah El Ghannouchi; Felice di Gregorio

2008-01-01

20

The Functional Significance of Nectridean Tabular Horns (Amphibia: Lepospondyli)  

Microsoft Academic Search

The order Nectridea of the subclass Lepospondyli is of Palaeozoic age. Within this order, later members of the Keraterpetontidae developed hyper-extended tabular horns, so that in plan view the skull is boomerangshaped. Many unsuccessful attempts have been made to explain this shape in functional terms. The two genera that show the greatest development of these horns. Diplocaulus Cope and Diploceraspis

A. R. I. Cruickshank; B. W. Skews

1980-01-01

21

xml version="1.0" encoding="us-ascii"?>  

Center for Drug Evaluation (CDER)

ascii"?> Food ... More results from www.fda.gov/downloads/drugs/drugsafety</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">22</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40207321"> <span id="translatedtitle">Geosites inventory of the northwestern <span class="hlt">Tabular</span> Middle Atlas of Morocco</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Across the northwestern <span class="hlt">Tabular</span> Middle Atlas of Morocco there are many examples of landscapes, rocks and fossils that provide\\u000a key evidence of a particular moment or period in Earth history. Such Earth heritage sites are important for educating the\\u000a general public in environmental matters. They also serve as tools for demonstrating sustainable development and for illustrating\\u000a methods of site conservation</p> <div class="credits"> <p class="dwt_author">Mohamed El Wartiti; Amina Malaki; Mohamed Zahraoui; Abdelilah El Ghannouchi; Felice Di Gregorio</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">23</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24051785"> <span id="translatedtitle">Supporting Awareness through Collaborative Brushing and Linking of <span class="hlt">Tabular</span> Data.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Maintaining an awareness of collaborators' actions is critical during collaborative work, including during collaborative visualization activities. Particularly when collaborators are located at a distance, it is important to know what everyone is working on in order to avoid duplication of effort, share relevant results in a timely manner and build upon each other's results. Can a person's brushing actions provide an indication of their queries and interests in a data set? Can these actions be revealed to a collaborator without substantially disrupting their own independent work? We designed a study to answer these questions in the context of distributed collaborative visualization of <span class="hlt">tabular</span> data. Participants in our study worked independently to answer questions about a <span class="hlt">tabular</span> data set, while simultaneously viewing brushing actions of a fictitious collaborator, shown directly within a shared workspace. We compared three methods of presenting the collaborator's actions: brushing & linking (i.e. highlighting exactly what the collaborator would see), selection (i.e. showing only a selected item), and persistent selection (i.e. showing only selected items but having them persist for some time). Our results demonstrated that persistent selection enabled some awareness of the collaborator's activities while causing minimal interference with independent work. Other techniques were less effective at providing awareness, and brushing & linking caused substantial interference. These findings suggest promise for the idea of exploiting natural brushing actions to provide awareness in collaborative work. PMID:24051785</p> <div class="credits"> <p class="dwt_author">Hajizadeh, Amir Hossein; Tory, Melanie; Leung, Rock</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">24</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008EnGeo..55..415E"> <span id="translatedtitle">Geosites inventory of the northwestern <span class="hlt">Tabular</span> Middle Atlas of Morocco</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Across the northwestern <span class="hlt">Tabular</span> Middle Atlas of Morocco there are many examples of landscapes, rocks and fossils that provide key evidence of a particular moment or period in Earth history. Such Earth heritage sites are important for educating the general public in environmental matters. They also serve as tools for demonstrating sustainable development and for illustrating methods of site conservation as well as remembering that rocks, minerals, fossils, soils, landforms form an integral part of the natural world. The significance of certain sites for aesthetic or tourism reasons is obvious. There are numerous geosites, which could contribute to effective exploitation of geotourism, often in conjunction with ecotourism. The strategy employed to such sites involves close consultation with all communities in the vicinity of the respective geosite and is not only aimed at tourism and education, but also at sustainable improvement of the infrastructure of the people of this area. Geological heritage sites, properly managed, can generate employment and new economic activities, especially in regions in need of new or additional sources of income.</p> <div class="credits"> <p class="dwt_author">El Wartiti, Mohamed; Malaki, Amina; Zahraoui, Mohamed; El Ghannouchi, Abdelilah; di Gregorio, Felice</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">25</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/r702l5556281429x.pdf"> <span id="translatedtitle">The origin and significance of large, <span class="hlt">tabular</span> dunite bodies in the Trinity peridotite, northern California</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Kilometer-sized, <span class="hlt">tabular</span> dunite bodies are contained within harzburgite, lherzolite and plagioclase lherzolite host rocks in the Trinity peridotite, northern California. An igneous origin for the dunite by crystal fractionation of olivine from a melt is suggested by their <span class="hlt">tabular</span> shapes, clots of poikilitic clinopyroxene grains, chromite pods, and by analogy to dunite bodies in the Samail and Vourinos ophiolites (Hopson</p> <div class="credits"> <p class="dwt_author">James E. Quick</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">26</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.cas.mcmaster.ca/~lawford/papers/tables.pdf"> <span id="translatedtitle">Application of <span class="hlt">Tabular</span> Methods to the Speciflcation and Veriflcation of a Nuclear Reactor Shutdown System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper describes the use of <span class="hlt">tabular</span> methods at Ontario Power Generation Inc. (OPGI) 1 on the Darlington Nuclear Generating Station Shutdown System (SDS) Trip Computer Software Redesign Project. We flrst motivate the selection of <span class="hlt">tabular</span> methods and provide an overview of the Systematic Design Veriflcation (SDV) procedure. After reviewing some preliminary concepts, the paper describes how the Software Engineering</p> <div class="credits"> <p class="dwt_author">M. Lawford</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">27</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.usgs.gov/of/2009/1021/"> <span id="translatedtitle">Log <span class="hlt">ASCII</span> Standard (LAS) Files for Geophysical (Gamma Ray) Wireline Well Logs and Their Application to Geologic Cross Section C-C' Through the Central Appalachian Basin</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">U.S. Geological Survey (USGS) regional geologic cross section C-C' (Ryder and others, 2008) displays key stratigraphic intervals in the central Appalachian basin. For this cross section, strata were correlated by using descriptions of well cuttings and gamma ray well log traces. This report summarizes the procedures used to convert gamma ray curves on paper well logs to the digital Log <span class="hlt">ASCII</span> (American Standard Code for Information Interchange) Standard (LAS) <span class="hlt">format</span> using the third-party software application Neuralog. The procedures could be used with other geophysical wireline logs also. The creation of digital LAS files from paper well logs by using Neuralog is very helpful, especially when dealing with older logs with limited or nonexistent digital data. The LAS files from the gamma ray logs of 11 wells used to construct cross section C-C' are included in this report. They may be downloaded from the index page as a single ZIP file.</p> <div class="credits"> <p class="dwt_author">Trippi, Michael H.; Crangle, Robert D., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">28</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/89097"> <span id="translatedtitle">Models and Algorithms for Optimizing Cell Suppression in <span class="hlt">Tabular</span> Data with Linear Constraints</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Cell suppression is a widely used technique for protecting sensitive information in statistical data presented in <span class="hlt">tabular</span> form. Previous works on the subject mainly concentrate on two- and three-dimensional tables whose entries are subject to marginal totals. In this article we address the problem of protecting sensitive data in a statistical table whose entries are linked by a generic system</p> <div class="credits"> <p class="dwt_author">Matteo Fischetti; José Juan Salazar González</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">29</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://mres.gmu.edu/pmwiki/uploads/Main/MacKay1987.pdf"> <span id="translatedtitle">PERFORMANCE DIFFERENCES IN THE USE OF GRAPHIC AND <span class="hlt">TABULAR</span> DISPLAYS OF MULTIVARIATE DATA</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It has been suggested that gmphically displayed multivariate data help decision makers better understand information thy are called on to analyze This study compam judgments made from one recently suggested multivariate display technique with judgments made from traditional <span class="hlt">tabular</span> displays of financial figures Significant differcnces in task performance are found to be related both to differences in the stimulus sets</p> <div class="credits"> <p class="dwt_author">David B. MacKay; Angelina Villarreal</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">30</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/n1u661u8x2p02212.pdf"> <span id="translatedtitle">Transposition of Large <span class="hlt">Tabular</span> Data Structures with Applications to Physical Database Organization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Tabular</span> data structures of a relational database, placed in a paged virtual space or in some two-level storage, are discussed. To rearrange, or transpose, those data stored attributewise to those stored tuplewise, and vice versa, an algorithm is devised that causes a minimal amount of page fetches. The algorithm is near best possible, since it is a generalization of Floyd's</p> <div class="credits"> <p class="dwt_author">Takao Tsuda; Takashi Sato</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">31</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48256209"> <span id="translatedtitle">Geosites And Touristic Development Of The Northwestern <span class="hlt">Tabular</span> Middle Atlas Of Morocco</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Across the northwestern <span class="hlt">Tabular</span> Middle Atlas of Morocco there are many examples of landscapes, rocks and fossils providing\\u000a key evidence of a particular moment or period in Earth history. Such Earth heritage sites are important for educating the\\u000a general public in environmental matters. They also serve as tools for demonstrating sustainable development and for illustrating\\u000a methods of site conservation, as</p> <div class="credits"> <p class="dwt_author">Mohamed El Wartiti; Amina Malaki; Mohamed Zahraoui; Felice Gregorio; Jo Waele</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">32</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53571074"> <span id="translatedtitle">Significant Effects of Confinement and Catalysis in <span class="hlt">Formation</span> of <span class="hlt">Tabular</span> Structures from Peapod Structures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A large number of experimental and theoretical studies have been reported on buckyballs-containing nanotubes (a.k.a. peapod) structures since the discovery of these materials. It was observed that self- assembled buckyballs with nearly uniform centre-to-centre distances and resemble a nanoscopic peapod. The endofullerenes coalesce into longer capsules by either the electron irradiation or thermal annealing. We applied the recently developed Reactive</p> <div class="credits"> <p class="dwt_author">Haibin Su</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">33</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/3115158"> <span id="translatedtitle"><span class="hlt">Formation</span> of <span class="hlt">tabular</span> single-domain magnetite induced by Geobacter metallireducens GS15</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Distinct morphological characteristics of magnetite formed intracellularly by magnetic bacteria (magnetosome) are invoked as compelling evidence for biological activity on Earth and possibly on Mars. Crystals of magnetite produced extracellularly by a variety of bacteria including Geobacter metallireducens GS-15, thermophilic bacteria, and psychrotolerant bacteria are, however, traditionally not thought to have nearly as distinct morphologies. The size and shape of</p> <div class="credits"> <p class="dwt_author">Hojatollah Vali; Benjamin Weiss; Yi-Liang Li; S. Kelly Sears; Soon Sam Kim; Joseph L. Kirschvink; Chuanlun L. Zhang</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">34</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AIPC.1430.1889S"> <span id="translatedtitle">A portable ultrasonic phased array device for <span class="hlt">tabular</span> joint weld inspection of offshore platform structures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">To meet the inspection need for complex <span class="hlt">tabular</span> joints weld of offshore platform structures, a portable ultrasonic phased array inspection device is developed. The integrated device is small and portable. As designed, the device can implement different algorithm of the ultrasonic phased array inspection technology. With proposed inspection plan, the experiment of Y tubular joint model was performed in lab. Experiment results indicate that the possible ultrasonic phased array inspection device can detect and visualize the flaws on Y tubular joint weld, which are nearly consistent with the actual condition.</p> <div class="credits"> <p class="dwt_author">Shan, Baohua; Li, Jingan; Duan, Zhongdong; Ou, Jinping; Shen, Wei</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">35</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22IPA%22&pg=5&id=ED271958"> <span id="translatedtitle">Multibet 1.0: A Proposal for an <span class="hlt">ASCII</span> Translation and a Set of Names for Extended IPA Notation, and Unibet 1.0: A Proposal for a Single-Character Translation of IPA for English.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Two articles propose two systems for American Standard Code for Information Interchange (<span class="hlt">ASCII</span>) translations of the International Phonetic Alphabet (IPA): Multibet 1.0 and Unibet 1.0. Multibet 1.0 consists of a set of names and a set of <span class="hlt">ASCII</span> translations for the letters and diacritics of the 1979 version of the "Principles of the International…</p> <div class="credits"> <p class="dwt_author">MacWhinney, Brian; Marengo, Kathy</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">36</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.usgs.gov/dds/dds-069/dds-069-e/@displayLabelpdf@noteDOCUMENT#texthttp://pubs.usgs.gov/dds/dds-069/dds-069-e/REPORTS/69_E_CH_3.pdf"> <span id="translatedtitle">Chapter 3. <span class="hlt">Tabular</span> data and graphical images in support of the U.S. Geological Survey National Oil and Gas Assessment--East Texas basin and Louisiana-Mississippi salt basins provinces, Jurassic Smackover Interior salt basins total petroleum system (504902), Cotton Valley group.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">This chapter describes data used in support of the process being applied by the U.S. Geological Survey (USGS) National Oil and Gas Assessment (NOGA) project. Digital <span class="hlt">tabular</span> data used in this report and archival data that permit the user to perform further analyses are available elsewhere on the CD-ROM. Computers and software may import the data without transcription from the Portable Document <span class="hlt">Format</span> files (.pdf files) of the text by the reader. Because of the number and variety of platforms and software available, graphical images are provided as .pdf files and <span class="hlt">tabular</span> data are provided in a raw form as tab-delimited text files (.tab files).</p> <div class="credits"> <p class="dwt_author">Klett, T. R.; Le, P. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">37</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3223202"> <span id="translatedtitle">The Communicability of Graphical Alternatives to <span class="hlt">Tabular</span> Displays of Statistical Simulation Studies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than <span class="hlt">tabular</span> displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form.</p> <div class="credits"> <p class="dwt_author">Cook, Alex R.; Teo, Shanice W. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">38</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JSSCh.183.1545W"> <span id="translatedtitle">Calcium-doped ceria/titanate <span class="hlt">tabular</span> functional nanocomposite by layer-by-layer coating method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Ca-doped ceria (CDC)/<span class="hlt">tabular</span> titanate (K0.8Li0.27Ti1.73O4, TT) UV-shielding functional nanocomposite with fairly uniform CDC coating layers was prepared through a polyelectrolyte-associated layer-by-layer (LbL) coating method. TT with lepidocrocite-like layered structure was used as the substrate, poly (diallyldimethylammonium chloride) (PDDA) was used as a coupling agent, CDC nanoparticles were used as the main UV-shielding component. CDC/TT nanocomposites with various coating layers of CDC were obtained through a multistep coating process. The phases were studied by X-ray diffraction. The morphology and coating quality were studied by scanning electron microscopy and element mapping of energy dispersive X-ray analysis. The oxidation catalytic activity, UV-shielding ability and using comfort were characterized by Rancimat test, UV-vis spectra and dynamic friction test, respectively. CDC/TT nanocomposites with low oxidation catalytic activity, high UV-shielding ability and good using comfort were finally obtained.</p> <div class="credits"> <p class="dwt_author">W. Liu, Xiang; Devaraju, M. K.; Yin, Shu; Sato, Tsugio</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">39</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998PhDT.......306M"> <span id="translatedtitle">The development and preservation of <span class="hlt">tabular</span> massive ground ice in permafrost regions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An investigation of <span class="hlt">tabular</span> massive ground ice was conducted to ascertain if ground ice has distinctive characteristics that could be measured and used to determine the origin of the ice. Initial studies were conducted on Bylot Island in the eastern Canadian Arctic, where some glaciers are rapidly retreating, resulting in buried massive ground ice. The environments with the greatest potential for the burial and preservation of massive ice were first examined and the processes of burial identified. It was determined that glacier end and lateral moraines have the greatest potential for preserving massive ice. Ground penetrating radar (GPR) methodology was developed for imaging the subsurface geometry and structure of glaciers, icing, and ground ice bodies. GPR was shown to be effective for mapping icing and glacier geometry, hydrology and subbottom structure, and possibly thermal conditions. GPR also proved effective at delineating the size and thickness of massive ground ice bodies. This revealed that the ice core in lateral and end moraines around Stagnation Glacier are continuous and extensive. Physical property analyses indicated that some ice types could not be differentiated on their physical properties alone. A methodology was thus developed for extracting and analyzing the gaseous component of ice which would provide a differentiating technique. This method enabled the measurement of the chemical and isotopic composition of the ice and gases, and direct age determination of the ice by radiocarbon dating of the COsb2 in the bubbles. In testing the technique in the proglacial environment on Bylot Island, the environmental history of the site was linked to the more extensive ice core records from Greenland and Devon Island. Along with the other ice property analysis techniques, the gas analysis techniques were applied to three sites across the western Canadian Arctic (Peninsula Point, North Point, and Herschel Island). It was discovered that ground ice bodies in the Tuktoyaktuk Peninsula and on Herschel Island were considerably younger than had been reported previously. In a detailed study of the massive ground ice at Peninsula Point it was determined that the ice mass developed from the segregation of ice formed from a ground water source. The ground water probably originated as glacial meltwater, with several different sources, each with different isotopic signatures.</p> <div class="credits"> <p class="dwt_author">Moorman, Brian James</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">40</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008PhDT.......101T"> <span id="translatedtitle">Barometric effects on <span class="hlt">tabular</span> iceberg drift in the Ross Sea, Antarctica</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Inverse Barometer Effect (IBE) was observed in the nineteenth century by Sir James Clark Ross (Ross, 1854a), as deviations in sea-surface elevation in response to deviations in atmospheric pressure. This effect embodies the inverse relationship between sea-surface height (relative to long-term mean sea level) and atmospheric surface pressure. This thesis addresses the hypothesis that icebergs in the Ross Sea region of Antarctica are influenced by the same forces that create the IBE. This hypothesis is motivated by studies of icebergs in the Ross Sea, where drift data suggest that icebergs are drawn into temporary holding zones, or "Iceberg Parking Lots" situated where the surface pressure tends to display persistent, annual average low pressure. A physical explanation for the IBE's influence on icebergs is that they are often able to travel up the sea-surface slope induced by the IBE below atmospheric lows against the gravitational pull because of the pressure gradient force of the atmosphere acting on the iceberg's freeboard (the part of the iceberg that is above the waterline). Here, I evaluate the validity of the hypothesized IBE-iceberg relationship using a combined approach of data analysis and modeling. I have examined atmospheric surface pressure and wind records taken directly from the surfaces of four Ross Sea icebergs---B15A, B15K, C16, and B15J, and I have also built, and experimented with, models that predict iceberg drift response to atmospheric surface pressure and surface winds, using observed pressures and winds from B15A and B15J as model forcing. I additionally performed various experiments on a large, idealized <span class="hlt">tabular</span> iceberg's physical sensitivity to the IBE using a model that treats atmospheric pressure and winds in an idealized, theoretical manner. I discovered that the IBE is indeed a significant influence on iceberg drift in and around Lewis Bay, just to the north of Ross Island, which will further our understanding of these icebergs' trajectories. While I do not believe that the IBE-iceberg relationship is universally so pronounced as it is in Lewis Bay, and may not necessarily be responsible for all other places where icebergs tend to collect for long periods, it should be considered in any iceberg drift models that deal with regions having strong and persistent pressure gradients. In the Ross Sea, the pressure gradient toward Ross Island can be the overwhelming force on icebergs drifting just to the north of it, until another force such as the ocean current is able to exert itself more strongly.</p> <div class="credits"> <p class="dwt_author">Turnbull, Ian D.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_2 div --> <div id="page_3" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">41</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008amos.confE..40S"> <span id="translatedtitle">Noise-Tolerant Hyperspectral Signature Classification in Unresolved Object Detection with Adaptive <span class="hlt">Tabular</span> Nearest Neighbor Encoding</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Accurate spectral signature classification is a crucial step in the nonimaging detection and recognition of spaceborne objects. In classical hyperspectral recognition applications, especially where linear mixing models are employed, signature classification accuracy depends on accurate spectral endmember discrimination. In selected target recognition (ATR) applications, previous non-adaptive techniques for signature classification have yielded class separation and classifier refinement results that tend to be suboptimal. In practice, the number of signatures accurately classified often depends linearly on the number of inputs. This can lead to potentially severe classification errors in the presence of noise or densely interleaved signatures. In this paper, we present an enhancement of an emerging technology for nonimaging spectral signature classification based on a highly accurate, efficient search engine called <span class="hlt">Tabular</span> Nearest Neighbor Encoding (TNE). Adaptive TNE can optimize its classifier performance to track input nonergodicities and yield measures of confidence or caution for evaluation of classification results. Unlike neural networks, TNE does not have a hidden intermediate data structure (e.g., a neural net weight matrix). Instead, TNE generates and exploits a user-accessible data structure called the agreement map (AM), which can be manipulated by Boolean logic operations to effect accurate classifier refinement through programmable algorithms. The open architecture and programmability of TNE's pattern-space (AM) processing allows a TNE developer to determine the qualitative and quantitative reasons for classification accuracy, as well as characterize in detail the signatures for which TNE does not obtain classification matches, and why such mis-matches occur. In this study AM-based classification has been modified to partially compensate for input statistical changes, in response to performance metrics such as probability of correct classification (Pd) and rate of false detections (Rfa). Adaptive TNE can thus achieve accurate signature classification in the presence of time-varying noise, closely spaced or interleaved signatures, and imaging system optical distortions. We analyze classification accuracy of closely spaced spectral signatures adapted from a NASA database of space material signatures. Additional analysis pertains to computational complexity and noise sensitivity, which are superior to non-adaptive TNE or Bayesian techniques based on classical neural networks.</p> <div class="credits"> <p class="dwt_author">Schmalz, M.; Key, G.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">42</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61349529"> <span id="translatedtitle">Graphical and <span class="hlt">tabular</span> summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary <span class="hlt">tabular</span> characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water</p> <div class="credits"> <p class="dwt_author">A. G. Croff; M. S. Liberman; G. W. Morrison</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">43</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFM.C23C0648B"> <span id="translatedtitle">The far field effect of ice shelf calving: the oceanographic effect of the decay of large <span class="hlt">tabular</span> icebergs at South Georgia</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">South Georgia is a small island approximately 190 x 30 km within the Antarctic Circumpolar Current in the South Atlantic. It is surrounded by a continental shelf which extends typically more than 50 km from the coast and has an average depth ~200 m, although there are deeper submarine canyons. It is downstream of the Antarctic Peninsula and satellite observations have frequently shown that very large <span class="hlt">tabular</span> icebergs which originate in the Bellingshausen and Weddell Seas, for example B10A, A22B and A38, reach the island. Once there they ground on the relatively wide and extensive shelf. Occasionally they can pass the island and continue their drift and decay in the open ocean of the Antarctic Circumpolar Current however, for many, such as A38 (~300 Gt), the region around the island is effectively the graveyard. When this happens potentially very large volumes of meteoric water are deposited onto the shelf of the island and there are consequent large effects on the regional hydrography. The island has been for many decades a long term study site for cross disciplinary work and from 2002-2006 two oceanographic moorings recorded physical parameters including temperature, salinity and water velocity in the region. This time period encompasses the period of A38’s demise. The effects of the melt water addition are clear in the regional situation and here we present melt rate calculations from both tidal forcing and background hydrography on the <span class="hlt">tabular</span> icebergs, and consequent impacts of the significant freshwater addition at this isolated site.</p> <div class="credits"> <p class="dwt_author">Brandon, M. A.; Enderlein, P.; Murphy, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">44</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AGUFM.V12B..06C"> <span id="translatedtitle">Dimensional scaling relationships of <span class="hlt">tabular</span> igneous intrusions and their implications for a size, depth and compositionally dependent spectrum of emplacement processes in the crust</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A global compilation of the horizontal (L) and vertical dimensions (T) of broadly <span class="hlt">tabular</span>, sub-horizontal intrusions of mafic to felsic composition emplaced into shallow to mid-crustal levels of continental crust reveals two well-defined and continuous curves in log L vs. log T space. The data set comprises a six and five orders of magnitude range in L (1 m to 1000 km) and T (~ 10 cm to 10 km), respectively. Data for <span class="hlt">tabular</span> sheets and sills (mafic and felsic) define a straight line with a slope a ~ 0.7 at all horizontal length scales, indicating a tendency for the L/T ratio of these intrusions to increase with increasing L (horizontal lengthening dominates over vertical thickening). Laccoliths, plutons and layered mafic intrusions and batholiths define an open, continuous S-shaped curve that bifurcates from the <span class="hlt">tabular</span> sheets and sills curve at L ~ 500 m towards higher T-values. For L ~ 500 m to 10 km the slope of this curve is a ~ 1.5, corresponding to laccoliths that are characterized by a decrease in L/T ratio with increasing L (vertical thickening dominates over horizontal lengthening). Between L ~ 10 and 100 km the slope is < 1 and decreases with increasing L, having a mean value a ~ 0.6. Plutons and layered mafic intrusions therefore show an increasing tendency for horizontal lengthening over vertical thickening as L increases. Batholiths and very large layered mafic intrusions with L > 100 km lie on a slope with a ~ 0. The corresponding constant T-value of ~ 15 km may represent a vertical growth limit for igneous intrusions in the crust. The continuous nature of the dimensional data over such a wide range of length scales reflects a spectrum of igneous emplacement processes repeated in space and time. Thresholds or transitions in this spectrum defined by bifurcations in the curves (e.g., between sill and laccolith emplacement) and changes in slope reflect changes in emplacement mechanism(s) that are related to intrinsic and extrinsic controls such as intrusion depth, magma viscosity, composition and temperature, and local tectonic setting. For example the bifurcation between shallow level sills and laccoliths likely reflects magma viscosity; low viscosity mafic magma can drive a fracture that lengthens faster than it thickens, while a higher viscosity intermediate to felsic magma has limited potential to spread laterally and vertical thickening will dominate due to continuous inflation or sequential stacking of intrusive sheets. The transition from laccolith growth (a > 1) to pluton growth (a < 1) is most likely depth controlled, reflecting the transition from shallow emplacement where vertical growth by roof lifting is favored, to deeper levels where vertical growth must be accommodated by the interaction between crustal scale mass transfer (floor depression) and regional and local tectonic- and intrusion-related deformation. Although available data is limited, vertical growth of plutons and layered mafic intrusions may be achieved by sequential stacking of sheets with dimensions that define distinct growth curves in log T vs. log L space. Likewise, the dimensions of batholiths represent limits on the vertical and horizontal aggradation of smaller plutons in the crust.</p> <div class="credits"> <p class="dwt_author">Cruden, A.; McCaffrey, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">45</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2640353"> <span id="translatedtitle">Sentinel lymph node biopsy for breast cancer using methylene blue dye manifests a short learning curve among experienced surgeons: a prospective <span class="hlt">tabular</span> cumulative sum (CUSUM) analysis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background The benefits of sentinel lymph node biopsy (SLNB) for breast cancer patients with histologically negative axillary nodes, in whom axillary lymph node dissection (ALND) is thereby avoided, are now established. Low false negative rate, certainly with blue dye technique, mostly reflects the established high inherent accuracy of SLNB and low axillary nodal metastatic load (subject to patient selection). SLN identification rate is influenced by volume, injection site and choice of mapping agent, axillary nodal metastatic load, SLN location and skill at axillary dissection. Being more subject to technical failure, SLN identification seems to be a more reasonable variable for learning curve assessment than false negative rate. Methylene blue is as good an SLN mapping agent as Isosulfan blue and is much cheaper. Addition of radio-colloid mapping to blue dye does not achieve a sufficiently higher identification rate to justify the cost. Methylene blue is therefore the agent of choice for SLN mapping in developing countries. The American Society of Breast Surgeons recommends that, for competence, surgeons should perform 20 SLNB but admits that the learning curve with a standardized technique may be "much shorter". One appropriate remedy for this dilemma is to plot individual learning curves. Methods Using methylene blue dye, experienced breast surgeons performed SLNB in selected patients with breast cancer (primary tumor < 5 cm and clinically negative ipsilateral axilla). Intraoperative assessment and completion ALND were performed for standardization on the first 13 of 24 cases. SLN identification was plotted for each surgeon on a <span class="hlt">tabular</span> cumulative sum (CUSUM) chart with sequential probability ratio test (SPRT) limits based on a target identification rate of 85%. Results The CUSUM plot crossed the SPRT limit line after 8 consecutive, positively identified SLN, signaling achievement of an acceptable level of competence. Conclusion <span class="hlt">Tabular</span> CUSUM charting, based on a justified choice of parameters, indicates that the learning curve for SLNB using methylene blue dye is completed after 8 consecutive, positively identified SLN. CUSUM charting may be used to plot individual learning curves for trainee surgeons by applying a proxy parameter for failure in the presence of a mentor (such as failed SLN identification within 15 minutes).</p> <div class="credits"> <p class="dwt_author">East, Jeffrey M; Valentine, Christopher SP; Kanchev, Emil; Blake, Garfield O</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">46</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2009-title14-vol4/pdf/CFR-2009-title14-vol4-sec331-23.pdf"> <span id="translatedtitle">14 CFR 331.23 - In what <span class="hlt">format</span> must applications be submitted?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p class="result-summary">...financial and accounting <span class="hlt">tabular</span> data in Excel spreadsheet <span class="hlt">format</span>, utilizing a 3.5â³ floppy disk, compact disk, or flash memory device, and doing so may expedite the processing of your claim. (c) Faxed and e-mailed applications are...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">47</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2010-title14-vol4/pdf/CFR-2010-title14-vol4-sec331-23.pdf"> <span id="translatedtitle">14 CFR 331.23 - In what <span class="hlt">format</span> must applications be submitted?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p class="result-summary">...financial and accounting <span class="hlt">tabular</span> data in Excel spreadsheet <span class="hlt">format</span>, utilizing a 3.5â³ floppy disk, compact disk, or flash memory device, and doing so may expedite the processing of your claim. (c) Faxed and e-mailed applications are...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">48</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60203633"> <span id="translatedtitle">Origin and significance of organic matter in uranium deposits of Morrison <span class="hlt">Formation</span>, San Juan Basin, New Mexico</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Primary uranium orebodies in the Morrison <span class="hlt">Formation</span> of the San Juan Basin, New Mexico, consist of submicroscopic coffinite in a matrix of dark-colored structureless carbonaceous matter that impregnates and partially replaces the Morrison sandstones. Recognizable carbonized plant fragments are also abundant both in and near ore. The orebodies are elongated, lenticular or <span class="hlt">tabular</span> masses; they are oriented parallel to paleochannel</p> <div class="credits"> <p class="dwt_author">Squyres</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">49</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5925375"> <span id="translatedtitle">Three-dimensional braid-plain architecture, Bulgo <span class="hlt">Formation</span>, Sydney basin, Australia</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Triassic Bulgo <span class="hlt">Formation</span> of the Sydney basin was deposited by a basin-wide braid-plain system. Detailed outcrop analysis of facies relationships and correlation with subsurface data allow for recognition of three-dimensional facies architecture and paleogeography reconstruction. The Lachlan foldbelt was the primary source for the Bulgo <span class="hlt">Formation</span>. Three outcrop sites in varying proximity to the source area were examined: (1) Blue Mountains, (2) Burragorrang Walls, and (3) Royal National Park. Proximal deposits of the Blue Mountains consist of two members. Both the lower and upper Bulgo are coarse-grained, <span class="hlt">tabular</span> sandstone sheets. They are separated by a paleosoil horizon which is the only criterion for separation. Medial deposits at Burrangorang Walls can be distinguished on the basis of shale content. The lower Bulgo remains a coarse-grained, <span class="hlt">tabular</span> sandstone sheet. The upper Bulgo is also a coarse-grained, <span class="hlt">tabular</span> sandstone sheet. The upper Bulgo is also a coarse-grained, <span class="hlt">tabular</span> sandstone sheet. The upper Bulgo is also a coarse-grained sandstone sheet but contains a significant proportion of interchannel shale deposits and mud plugs. Distal deposits of the Royal National Park are characterized by a similar coarse-grained lower member which was deposited by a large braid-plain system where smaller braided systems coalesced into a basin-wide <span class="hlt">tabular</span> sandstone sheet. However, the upper Bulgo member shows a further downdip evolution to a fine-grained sandstone sheet deposited by small, interconnected braided streams which were separated by numerous flood-plain and paludal deposits. This upsection and lateral evolution reflects waning sediment supply and denudation of the Lachlan foldbelt source area.</p> <div class="credits"> <p class="dwt_author">Reynolds, S.A.; Glasford, J.L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">50</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.geologie.uni-halle.de/igw/allgeo/staff/Haubold/Lucasetal2001.pdf"> <span id="translatedtitle">First record of Amphisauropus and Varanopus in the Lower Permian Abo <span class="hlt">Formation</span>, central New Mexico Erster Nachweis von Amphisauropus und Varanopus in der Abo <span class="hlt">Formation</span>, Unteres Perm von Zentral New Mexico</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">At a tracksite at Abo Pass in central New Mexico, USA, tetrapod tracks are found approximately 141 m above the base of the Abo <span class="hlt">Formation</span> (Lower Permian, early ?Artinskian, Wolfcampian). The track-bearing stratum is a 0.3-1.3-m-thick, thinly bedded, fine-grained <span class="hlt">tabular</span> sandstone with extensive ripple laminae that we interpret as a sheetflood deposit on a floodplain. Seven vertebrate ichnotaxa are present:</p> <div class="credits"> <p class="dwt_author">SPENCER G. LUCAS; ALLAN J. LERNER; HARTMUT HAUBOLD</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">51</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011APS..MAR.S1264S"> <span id="translatedtitle">Jargonial-Obfuscation(J-O) DISambiguation Elimination via Siegel-Baez Cognition Category-Semantics(C-S) in Siegel FUZZYICS=CATEGORYICS (Son of TRIZ)/(F=C) <span class="hlt">Tabular</span> List-<span class="hlt">Format</span> Dichotomy Truth-Table Matrix Analytics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">NOT "philosophy" per se but raising serious salient Arnol'd [Huygens and Barrow, Newton and Hooke(96)] questions begged is Rota empiricism Husserl VS. Frege maths-objects Dichotomy controversy: Hill-Haddock[Husserl or Frege?(00)]as manifestly-demonstrated by Hintikka[B.U.]-Critchey[Derrida Deconstruction Ethics(78)] deconstruction; Altshuler TRIZ; Siegel F=C/C-S; Siegel-Baez(UCR) Cognition C-S = "Category-theory "+" Cognitive-Semantics[Wierzbica-Langacker-Lakoff-Nunez[Where Maths Comes From(00)]-Fauconnier-Turner[Blending(98)]-Coulson[Semantic-Leaps (00)</p> <div class="credits"> <p class="dwt_author">Siegel, Carl Ludwig; Carl-Ludwig Siegel, Edward</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">52</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB92592210"> <span id="translatedtitle">Enforcement Document Retrieval System (EDRS) - <span class="hlt">ASCII</span> (1972-November 1991).</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Enforcement Document Retrieval System (EDRS) is a full text database for documents related to enforcement policy and procedures, administrative decisions, judicial decisions, and model/sample forms. All environmental statutes that the Environmental Pr...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">53</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39220865"> <span id="translatedtitle"><span class="hlt">ASCII</span> extension and expansion and their impact on data communications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During the past several years, a subcommittee within the American National Standard Institute Committee on Computers and Information Processing has been working on a standard that will impact computer communications. The proposed Standard is on: An Eight-Bit Code for General Information Interchange and Code Extension Procedures for 7 and 8-Bit Codes. This paper presents the historical background to this effort,</p> <div class="credits"> <p class="dwt_author">Thomas F. Fitzsimons</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">54</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60376179"> <span id="translatedtitle">Developments in Alaska in 1979. [<span class="hlt">Tabular</span> data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Twenty-three exploratory wells were drilled in Alaska in 1979. Six apparent oil discovery wells were drilled on the North Slope and 3 gas discoveries were made in the Cook Inlet basin. Four wells drilled in the Lower Cook Inlet outer continental shelf (OCS) area were dry. Eighty-four development and service wells were drilled and successfully completed. Geologic-geophysical field activity by</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">55</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/371674"> <span id="translatedtitle">GALENA: <span class="hlt">Tabular</span> DCG Parsing for Natural Languages</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a definite clause based parsing environment for natural languages, whoseoperational model is the dynamic interpretation of logical push-down automata. We attemptto briefly explain our design decisions in terms of a set of properties that practical naturallanguage processing systems should incorporate. The aim is to show both the advantagesand the drawbacks of our approach.1 IntroductionLogic programming have been extensively</p> <div class="credits"> <p class="dwt_author">Manuel Vilares Ferro; Miguel A. Alonso; Jorge Graña Gil; David Cabrero Souto</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">56</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6963132"> <span id="translatedtitle">Lakota <span class="hlt">Formation</span>, southern Black Hills, South Dakota: an Early Cretaceous evolving fluvial system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The fluvial, Early Cretaceous Lakota <span class="hlt">Formation</span> consists of four spatially and temporally distinct sandstone units in the southern Black Hills and southeastern Powder River basin. Three of these units crop out in proximity to an area of uranium roll-front development (Edgemont mining district) where approximately 2300 wells were drilled and logged. Comparison of the resistivity logs of several of these wells with continuous cores of the Lakota <span class="hlt">Formation</span> confirms their lithologic sensitivity. These logs (utilized to assist in subsurface facies interpretations where cores were not available), cores, and outcrops are the basis for the following facies interpretations. The discharge, sediment load, and resulting sinuosity of this fluvial system varied substantially throughout the time of Lakota deposition. The oldest unit consists of <span class="hlt">tabular</span> deposits with complex internal architecture comprised of cross-cutting lateral accretion deposits. Upward-fining grain size, upward-decreasing scale of sedimentary structures, and the angular relationship between lateral accretion surfaces and overlying crevasse-splay deposits support this conclusion. The intermediate unit of ephemeral stream sediments is characterized by abundant pebble- and cobble-strewn erosional surfaces with up to 1.5 m relief, very poor clast sorting, and trough and planar cross-bedding with concave-upward foresets. The youngest unit has a predominance of <span class="hlt">tabular</span> cross-bedding with back flow climbing ripples and low dispersion of paleocurrent directions, suggesting a relatively straight, bed-load-type channel dominated by trains of sand waves.</p> <div class="credits"> <p class="dwt_author">Dahlstrom D.J.; Fox, J.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">57</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5211038"> <span id="translatedtitle">Depositional environments of the Santa Margarita <span class="hlt">Formation</span> in the Miocene Santa Maria basin, Huasna syncline</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Preliminary investigation of the depositional environments of the middle sandstone member of the late middle Miocene Santa Margarita <span class="hlt">Formation</span> in the Huasna syncline suggests a current-dominated shallow shelf environment. Progradation of coarse-grained clastic and bioclastic-rich sediment over siltstone documents the initial stage of deposition of this sand body. Overlying the basal intensely bioturbated bioclastic sediments are large-scale <span class="hlt">tabular</span> cross-beds, up to 16 m thick, interbedded with <span class="hlt">tabular</span> lag deposits of barnacles, oysters, and echinoids. The <span class="hlt">tabular</span> fossil-rich beds, which form sequences up to 6 m thick between the large-scale cross-beds, represent either deposition of bottom set beds of the large-scale cross-beds or current swept lag deposits. Increasing energy conditions are recorded vertically by a decrease in the amount of bioturbation and by an increase in large-scale cross-bed sets and cosets. however, in the northern outcrop area subtidal channels are incised into the upper bioclastic sediments suggesting local shoaling conditions. Paleocurrent data record a unidirectional southwest-directed current trend normal to the basin axis and the East Huasna fault. The coarse clastic deposition terminates with deposition of siltstone as energy conditions decreased and water depth again increased. A current-swept shallow shelf containing extensive sandwaves comprises the major depositional environments. The paleocurrent data and large-scale cross-beds suggest that the shallow shelf extended to the east of the Huasna syncline and that the currents were most likely tidal in origin.</p> <div class="credits"> <p class="dwt_author">Phillips, R.L. (Geological Survey, Menlo Park, CA (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">58</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.usgs.gov/of/1970/0101/report.pdf@displayLabelpdf@notePLATE#texthttp://pubs.usgs.gov/of/1970/0101/plate-1.pdf@displayLabelpdf@notePLATE#texthttp://pubs.usgs.gov/of/1970/0101/plate-2.pdf@displayLabelpdf@notePLATE#texthttp://pubs.usgs.gov/of/1970/0101/plate-3.pdf"> <span id="translatedtitle">Analysis of Shublik <span class="hlt">Formation</span> rocks from Mt. Michelson quadrangle, Alaska</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">Analysis of 88 samples from the Shublik <span class="hlt">formation</span> on Fire Creek, Mt. Michelson Quadrangle, Alaska, are presented in <span class="hlt">tabular</span> form. The results include the determination of elements by semiquantitative spectrographic analysis, phosphate by X-ray fluorescence, carbon dioxide by acid decomposable carbonate, total carbon by induction furnace, carbonate carbon by conversion using the conversion factor of 0.2727 for amount of carbon in carbon dioxide, and organic carbon by difference. A seven- cycle semilogarithmic chart presents the data graphically and illustrates the range, mode, and mean for some of the elements. The chart shows, also, the approximate concentration of the same elements in rocks similar to the black shale and limestone of the Shublik <span class="hlt">Formation</span>. Each sample represents 5 feet of section and is composed of rock chips taken at 1 - foot intervals. The samples are keyed into a stratigraphic column of the <span class="hlt">formation</span>. Rocks of the Shublik <span class="hlt">Formation</span> contain anomalously high concentrations of some of the elements. These same elements might be expected to be high in some of the petroleum from northern Alaska if the Shublik <span class="hlt">Formation</span> is a source for this petroleum. Several of the stratigraphic intervals may represent, also, a low-grade phosphate deposit.</p> <div class="credits"> <p class="dwt_author">Detterman, Robert L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">59</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22vaidya%22&pg=2&id=ED193035"> <span id="translatedtitle">Concept <span class="hlt">Formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">This document, published in India by the Regional College of Education, deals with 13 subjects: the tough context (thinking), definitions of concept, functions of concept, the process of concept <span class="hlt">formation</span>, discriminant learning, mediation process, second signalling system, factors affecting concept <span class="hlt">formation</span>, studies in concept <span class="hlt">formation</span>, the…</p> <div class="credits"> <p class="dwt_author">Vaidya, Narendera</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">60</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://faculty.wcas.northwestern.edu/~jnd260/preference%20formation%20annual%20review%20of%20poli%20sci.pdf"> <span id="translatedtitle">PREFERENCE <span class="hlt">FORMATION</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">? Abstract This review concerns political preferences—what they are and where they come from. We begin by documenting the close relationship between processes of preference <span class="hlt">formation</span> and change. Rather than suddenly appearing, most preferences emerge from interactions between individuals and their environment. This aspect of preference <span class="hlt">formation</span> poses a concrete challenge: to uncover the mechanics of these interactions in important</p> <div class="credits"> <p class="dwt_author">James N. Druckman; Arthur Lupia</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_3 div --> <div id="page_4" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">61</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60229641"> <span id="translatedtitle"><span class="hlt">Formation</span> fracturing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A fracturing process is described in which a fracture formed in a <span class="hlt">formation</span> is acid etched near the well and particle propped in the more remote portions of the fracture. A fracture is formed in the <span class="hlt">formation</span> extending from the well and an acidizing fluid is injected into the fracture, in order to acid etch the walls thereof adjacent to</p> <div class="credits"> <p class="dwt_author">J. L. Fitch; T. C. Jr. Vogt</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">62</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMIN51B1587T"> <span id="translatedtitle">NASA Standard for Airborne Data: ICARTT <span class="hlt">Format</span> ESDS-RFC-019</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Airborne field studies generate a plethora of data products in the effort to study atmospheric composition and processes. Data file <span class="hlt">formats</span> for airborne field campaigns are designed to present data in an understandable and organized way to support collaboration and to document relevant and important meta data. The ICARTT file <span class="hlt">format</span> was created to facilitate data management during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign in 2004 that involved government-agencies and university participants from five countries. Since this mission the ICARTT <span class="hlt">format</span> has been used in subsequent field campaigns such as Polar Study Using Aircraft Remote Sensing, Surface Measurements and Models of Climates, Chemistry, Aerosols, and Transport (POLARCAT) and the first phase of Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). The ICARTT file <span class="hlt">format</span> has been endorsed as a standard <span class="hlt">format</span> for airborne data by the Standard Process Group (SPG), one of the Earth Science Data Systems Working Groups (ESDSWG) in 2010. The detailed description of the ICARTT <span class="hlt">format</span> can be found at http://www-air.larc.nasa.gov/missions/etc/ESDS-RFC-019-v1.00.pdf. The ICARTT data <span class="hlt">format</span> is an <span class="hlt">ASCII</span>, comma delimited <span class="hlt">format</span> that was based on the NASA Ames and GTE file <span class="hlt">formats</span>. The file header is detailed enough to fully describe the data for users outside of the instrument group and includes a description of the meta data. The ICARTT scanning tools, <span class="hlt">format</span> structure, implementations, and examples will be presented.</p> <div class="credits"> <p class="dwt_author">Thornhill, A.; Brown, C.; Aknan, A.; Crawford, J. H.; Chen, G.; Williams, E. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">63</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011EAS....51...59E"> <span id="translatedtitle">Star <span class="hlt">Formation</span> During Galaxy <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Young galaxies are clumpy, gas-rich, and highly turbulent. Star <span class="hlt">formation</span> appears to occur by gravitational instabilities in galactic disks. The high dispersion makes the clumps massive and the disks thick. The star <span class="hlt">formation</span> rate should be comparable to the gas accretion rate of the whole galaxy, because star <span class="hlt">formation</span> is usually rapid and the gas would be depleted quickly otherwise. The empirical laws for star <span class="hlt">formation</span> found locally hold at redshifts around 2, although the molecular gas consumption time appears to be smaller, and mergers appear to form stars with a slightly higher efficiency than the majority of disk galaxies.</p> <div class="credits"> <p class="dwt_author">Elmegreen, B. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">64</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6301717"> <span id="translatedtitle">Reaction mechanisms in the <span class="hlt">formation</span> of lead zirconate titanate solid solutions under hydrothermal conditions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Reaction mechanisms in the <span class="hlt">formation</span> of PZT solid solution were studied under hydrothermal conditions (Pb/(Zr + Ti) = 1.0 to 1.9, Zr/Ti = 0/10 to 10/0, 1M to 5M KOH, 100C to 220C, 2 h). A yellow <span class="hlt">tabular</span> crystallite with tetragonal symmetry and Pb/Ti [approx] 2 was formed at 100 to 130C. A PZT crystallite was formed just above 150C. The crystallite was a mixture of Ti-rich PZT and Zr-rich PZT phases. When the temperature and KOH concentration were increased, the composition of the PZT product tended to be homogeneous. The PZT in the morphotropic phase boundary zone was formed at Zr/Ti = 5/5, 5M KOH, 220C, 2h. Neither PbTiO[sub 3] nor PbZrO[sub 3] was detected as a separate phase under the above hydrothermal conditions.</p> <div class="credits"> <p class="dwt_author">Humin Cheng; Jiming Ma; Bin Zhu; Yuhong Cui (Peking Univ., Beijing (China). Dept. of Chemistry)</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">65</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18069109"> <span id="translatedtitle">Overview of the mineralogy of the Biwabik Iron <span class="hlt">Formation</span>, Mesabi Iron Range, northern Minnesota.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The mineralogy of the Biwabik Iron <span class="hlt">Formation</span> changes dramatically from west to east as the <span class="hlt">formation</span> nears the basal contact of the Duluth Complex. This reflects a contact metamorphism that took place with the emplacement of the igneous Duluth Complex at temperatures as high as 1200 degrees C. However, the mineralogy of the Biwabik Iron <span class="hlt">Formation</span> also varies vertically through the stratigraphy of the unit. This variability in both the vertical and horizontal dimensions makes it difficult to predict exact horizons where specific minerals will occur. The iron-<span class="hlt">formation</span> has been subdivided into four broad stratigraphic units (lower cherty, lower slaty, upper cherty, and upper slaty) and into four lateral mineralogical zones (1-4). Zone 1, the westernmost zone, is characterized by quartz, magnetite, hematite, carbonates, talc, chamosite, greenalite, minnesotaite, and stilpnomelane. The silicate mineralogy in Zone 2 of the Biwabik Iron <span class="hlt">Formation</span> changes very little. However, the minerals begin to change dramatically in Zone 3. Most significantly, Zone 3 is characterized by the appearance of grunerite in both a <span class="hlt">tabular</span> form and a fibrous form. In Zone 4, the original silicate minerals have completely reacted, and a new suite of minerals occupies the iron-<span class="hlt">formation</span>. These include grunerite, hornblende, hedenbergite, ferrohypersthene (ferrosilite), and fayalite. PMID:18069109</p> <div class="credits"> <p class="dwt_author">McSwiggen, Peter L; Morey, G B</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">66</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/44362516"> <span id="translatedtitle">Planet <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Models of planetary <span class="hlt">formation</span> are developed using the present single example of a planetary system, supplemented by limited astrophysical observations of star-forming regions and circumstellar disks. The solar nebula theory and the planetesimal hypothesis are discussed. The latter is found to provide a viable theory of the growth of the terrestrial planets, the cores of the giant planets, and the</p> <div class="credits"> <p class="dwt_author">Jack J. Lissauer</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">67</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011plfo.book.....K"> <span id="translatedtitle">Planet <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">1. Historical notes on planet <span class="hlt">formation</span> Bodenheimer; 2. The <span class="hlt">formation</span> and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal <span class="hlt">formation</span> Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet <span class="hlt">formation</span>: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.</p> <div class="credits"> <p class="dwt_author">Klahr, Hubert; Brandner, Wolfgang</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">68</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2009-title16-vol1/pdf/CFR-2009-title16-vol1-sec4-2.pdf"> <span id="translatedtitle">16 CFR 4.2 - Requirements as to form, and filing of documents other than correspondence.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p class="result-summary">...in <span class="hlt">ASCII</span> <span class="hlt">format</span>, WordPerfect, or Microsoft Word). Except as otherwise provided...in <span class="hlt">ASCII</span> <span class="hlt">format</span>, WordPerfect, or Microsoft Word). (2) The first page of the...in <span class="hlt">ASCII</span> <span class="hlt">format</span>, WordPerfect, or Microsoft Word) by e-mail, as the...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">69</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=34192"> <span id="translatedtitle">Galaxy <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ? 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure <span class="hlt">formation</span>, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure <span class="hlt">formation</span>.</p> <div class="credits"> <p class="dwt_author">Peebles, P. J. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">70</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/75640r27m6257274.pdf"> <span id="translatedtitle">Planet <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Motivating the study of planet <span class="hlt">formation</span> is not difficult for any curious audience. One of the fundamental human questions\\u000a is that of origins: “where did I come from?„. Breaking this down into constituents produces a series of questions. How did\\u000a the Universe begin? How did stars form? How did planets form? How did life begin? How did intelligent life develop?</p> <div class="credits"> <p class="dwt_author">Thomas Quinn</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">71</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48337084"> <span id="translatedtitle">Dune <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Dunes are ubiquitous and exist in many forms in deserts and along coasts. They are a consequence of the wind moving sand grains\\u000a by a mechanism called “saltation”. In order to describe the <span class="hlt">formation</span> and evolution of dunes one must understand the surface\\u000a flux of sand. Using the equation of motion of turbulent air in the approximation of Jackson and</p> <div class="credits"> <p class="dwt_author">Hans J. Herrmann</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">72</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004PhTea..42..301G"> <span id="translatedtitle">Cloud <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Cloud <span class="hlt">formation</span> is crucial to the heritage of modern physics, and there is a rich literature on this important topic.1 In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud <span class="hlt">formation</span> after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, ``The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894.''3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the <span class="hlt">formation</span> of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud <span class="hlt">formation</span> is never covered in physics texts.</p> <div class="credits"> <p class="dwt_author">Graham, Mark Talmage</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">73</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6717446"> <span id="translatedtitle">Developments in eastern Canada in 1979. [<span class="hlt">Tabular</span> data and maps</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In Eastern Canada 245 wells, not including 10 lost holes, were drilled for oil and gas during 1979. Of this total, 90 wells were classed as exploratory, 144 as development, and 11 were drilled for various service and storage purposes. The total meterage drilled in Eastern Canada amounted to 177,623.3. The production of natural gas in Eastern Canada increased 29.4% in 1979, whereas oil production dropped 1.2%. A total of approximately 399,353,200 cu m of natural gas and 96,1186.6 cu m of oil was produced from southwestern Ontario and New Brunswick. Additional production from Lake Erie, coming on stream, accounted for the rise in natural gas production figures. All phases of exploration increased in Quebec, the Maritimes, and Atlantic offshore during 1979; 23 exploratory wells were completed, 2 of which had been suspended in 1978. This represents a 61.5% increase in exploratory drilling for the area. In southwestern Ontario, 67 exploratory and 144 development wells, not including 10 lost holes, were drilled in 1979. The overall success rate for southwestern Ontario for 1979 was 42.1%, down 5.2% from 1978. An increase in development drilling in Lake Erie (up 63.8%), accompanied by an even greater percentage of offshore development dry holes, accounted for the decline in the overall success ratio. This trend may continue, as it is anticipated that the 1980 drilling season in Ontario will surmount that of 1979.</p> <div class="credits"> <p class="dwt_author">Robertson, D.C. (Petroleum Resources Lab., London, Ontario); Bryant, R.G.; Roliff, W.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">74</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60376164"> <span id="translatedtitle">Developments in New York in 1979. [<span class="hlt">Tabular</span> data and map</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In 1979, an estimated 623 wells were completed in New York. In existing fields, 172 oil and 370 gas wells were completed. Exploratory drilling resulted in 12 new gas-field discoveries, 1 deeper pool gas discovery, and 27 extensions to existing gas fields. Two discoveries were in the Lower Devonian Oriskany Sandstone, one along the Oriskany pinch-out and the other on</p> <div class="credits"> <p class="dwt_author">Van Tyne</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB246102"> <span id="translatedtitle">In situ Leaching of <span class="hlt">Tabular</span> Metalliferous Ore Deposits.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This report describes the progress of laboratory studies on in situ leaching of sulfide and native copper ores of Michigan. Tests on pure copper have shown that leaching is diffusion controlled and that under certain conditions cuprous oxide will precipit...</p> <div class="credits"> <p class="dwt_author">W. A. Hockings W. L. Freyberger</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58988111"> <span id="translatedtitle">Formal semantics for <span class="hlt">tabular</span> expressions and Software Cost Reduction method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Unambiguous and precise software specification can not be achieved without some use of formal notation. Table-based specification techniques are both readable and convenient. They allow the representation of systems specifications in a very compact and yet precise manner. They scale to software systems, and they may be easily used even by people unfamiliar with the application domain. Additionally, the use</p> <div class="credits"> <p class="dwt_author">Imene Bourguiba</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994LNP...433..365V"> <span id="translatedtitle">Galaxy <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This is an introductory lecture to the problem of Galaxy <span class="hlt">Formation</span>. A general background in Cosmology, containing basic notions that enter in this problem, is briefly presented in the introduction. Section 2 deals with the properties of density perturbations. The emphasis is given on describing the role of the power spectrum of density perturbations in constructing the typical mass fluctuations of various mass scales. The evolution of a density peak in the post recombination era is examined up to the point where this evolution can be given by analytical formulae (linear phase). These formulae are very useful in understanding the role and the significance of various quantities in the problem of galaxy <span class="hlt">formation</span>. The evolution of density fluctuations in the non-linear phase can be followed by N-Body simulations. This requires a careful preparation of initial conditions for the N-Body runs, consistent with a given power spectrum, that is discussed. In section 3 the problem of angular momentum transfer to protogalaxies is discussed in connection with the behavior of the cosmological tidal torques. The difficulties of simulating this behavior are explained. Counterrotating objects may result from the behavior of the cosmological tidal torque combined with the incomplete mixing of the material after the collapse. In section 4 the main properties of objects resulting from dissipationless collapse are compared with the observational laws of galaxies. An insight is given into the mechanism of redistribution of energies during violent relaxation, and its consequences on the collapse factors of various shells. The collapse factors in the inner parts of these objects can be considerably larger than those predicted by the virial theorem. The role of dissipation is examined in section 5. Dimensional analysis allows to define various loci on the plane of virial density versus virial temperature. The <span class="hlt">formation</span> of a disk supported by rotation is also discussed.</p> <div class="credits"> <p class="dwt_author">Voglis, Nikos</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013A%26A...558A..33A"> <span id="translatedtitle">Astropy: A community Python package for astronomy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file <span class="hlt">formats</span> such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common <span class="hlt">ASCII</span> table <span class="hlt">formats</span>, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as <span class="hlt">tabular</span> data, and a framework for cosmological transformations and conversions. Significant functionality is under activedevelopment, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions.</p> <div class="credits"> <p class="dwt_author">Astropy Collaboration; Robitaille, Thomas P.; Tollerud, Erik J.; Greenfield, Perry; Droettboom, Michael; Bray, Erik; Aldcroft, Tom; Davis, Matt; Ginsburg, Adam; Price-Whelan, Adrian M.; Kerzendorf, Wolfgang E.; Conley, Alexander; Crighton, Neil; Barbary, Kyle; Muna, Demitri; Ferguson, Henry; Grollier, Frédéric; Parikh, Madhura M.; Nair, Prasanth H.; Unther, Hans M.; Deil, Christoph; Woillez, Julien; Conseil, Simon; Kramer, Roban; Turner, James E. H.; Singer, Leo; Fox, Ryan; Weaver, Benjamin A.; Zabalza, Victor; Edwards, Zachary I.; Azalee Bostroem, K.; Burke, D. J.; Casey, Andrew R.; Crawford, Steven M.; Dencheva, Nadia; Ely, Justin; Jenness, Tim; Labrie, Kathleen; Lian Lim, Pey; Pierfederici, Francesco; Pontzen, Andrew; Ptak, Andy; Refsdal, Brian; Servillat, Mathieu; Streicher, Ole</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3293178"> <span id="translatedtitle">Presenting Research Risks and Benefits to Parents: Does <span class="hlt">Format</span> Matter?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background/Aim Several studies suggest that many parents and research participants have poor understanding of the elements of consent, particularly the risks and benefits. However, some data suggest that the <span class="hlt">format</span> and framing of research risks and benefits may be an important determinant of subject understanding. We examined the effect of <span class="hlt">tabular</span> and graphical presentation of risks and benefits on parents’ understanding of a research study. Methods/Materials Parents of children scheduled to undergo an elective surgical procedure (N=408) were randomized to receive information about the risks and benefits of a sham study of postoperative pain control using text, tables, or pictographs and then completed a questionnaire to examine their gist (essential) and verbatim (actual) understanding of the information. Parent demographics were recorded and their literacy and numeracy skills measured. Results Parents randomized to receive information using tables or pictographs had significantly (P<0.025) greater gist and verbatim understanding compared with parents who received the information using standard text. Tables and pictographs were also superior to text in promoting understanding among parents with low numeracy and literacy skills. Conclusions Many parents and patients have difficulty in assimilating and interpreting risk/benefit information for both research and treatment. This is due, in part, to the manner in which risks and benefits are communicated and to the literacy and numeracy abilities of the individual. The results of this study suggest a simple and practical method for enhancing understanding of risk/benefit statistics for parents with varying numeracy and literacy skills.</p> <div class="credits"> <p class="dwt_author">Tait, Alan R.; Voepel-Lewis, Terri; Zikmund-Fisher, Brian J.; Fagerlin, Angela</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2137508"> <span id="translatedtitle">ANTIBODY <span class="hlt">FORMATION</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Injection of a small bacteriophage ?X 174 into guinea pigs results in an accelerated elimination of phage detectable as early as 24 hours after injection. The immune nature of the accelerated elimination is indicated by its specificity, by the appearance of excess specific serum antibody after phage elimination, and by the prevention of accelerated elimination by 400 r whole body x-irradiation of guinea pigs prior to injection of phage. The early antibody response is considered to be a primary one since an analogous response occurs in newborn guinea pigs, antibody is not detectable in the sera of non-immunized animals, and the second challenge with ?X stimulates a serum antibody response 100-fold greater than that after primary immunization. The early detection of immune elimination appears to be due, in part, to the small amounts of phage employed, since larger doses of phage delay the time of onset of detectable immune elimination. The early rise of serum antibody in the primary and secondary response appears exponential with a similar rate constant of antibody <span class="hlt">formation</span>. The rate constant is also independent of dose. These findings have led to the suggestion that during this exponential phase, the relative rate of antibody <span class="hlt">formation</span> at a cellular level may be constant for a given antigen.</p> <div class="credits"> <p class="dwt_author">Uhr, Jonathan W.; Finkelstein, Martin S.; Baumann, Joyce B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1962-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.water.usgs.gov/wri944176@displayLabelpdf@noteDOCUMENT#texthttp://pubs.usgs.gov/wri/1994/4176/report.pdf@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/herbicide1.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/herbicide2.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/herbicide3.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/herbicide4.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/herbicide5.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/nit85.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/nit86.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/nit87.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/nit88.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/nit89.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/nit90.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/nit91.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/ag_land.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/ag_expn.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/ag_crop2.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/ag_crop1.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/ag_chem.xml@noteMETADATA#texthttp://water.usgs.gov/GIS/metadata/usgswrd/XML/ag_stock.xml"> <span id="translatedtitle">Spatial data in geographic information system <span class="hlt">format</span> on agricultural chemical use, land use, cropping practices in the United States</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">The spatial data in geographic information system <span class="hlt">format</span> described in this report consist of estimates for all counties in the conterminous United States of the annual use of 96 herbicides in 1989; annual sales of nitrogen fertilizer, in tons, for 1985-91; and agricultural expenses, land use, chemical use, livestock holdings, and cropping practices in 1987. The source information, originally in <span class="hlt">tabular</span> form, is summarized as digital polygon attribute data in the 18 geographic information system spatial data layers (coverages) provided. The information in these coverages can be used in estimating regional agricultural-chemical use or agricultural practices and in producing visual displays and mapping relative rates of agricultural-chemical use or agricultural practices across broad regions of the United States.</p> <div class="credits"> <p class="dwt_author">Battaglin, W. A.; Goolsby, D. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39229391"> <span id="translatedtitle">Digital steganography for <span class="hlt">ASCII</span> text documents Ph.D. research proposal</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The digitization of analog signals has inadvertently opened doors for Covert Channel communication which is being exploited as an innocent carrier of Secret information. A number of techniques have been proposed and are in use to attain confidentiality, integrity and authentication for on-line transaction\\/exchange of messages of which Cryptography and Steganography stands ahead. Cryptography is focused on changing the contents</p> <div class="credits"> <p class="dwt_author">Khan Farhan Rafat; Muhammad Sher</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55164978"> <span id="translatedtitle">Bimodal Star <span class="hlt">Formation</span>, Starbursts, and Galaxy <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A phenomenological approach is developed for studying star <span class="hlt">formation</span> in the galactic disk, in starbursts, and in protogalaxies. The evidence is reviewed for bimodal star <span class="hlt">formation</span>, and physical mechanisms are mentioned. A simple expression for the star <span class="hlt">formation</span> rate in the disk is derived, and applied to estimate star <span class="hlt">formation</span> time scales in the disk, in starbursts, and in protogalaxies.</p> <div class="credits"> <p class="dwt_author">Joseph Silk</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSH31A1782K"> <span id="translatedtitle">Realistic MHD Simulations of <span class="hlt">Formation</span> of Sunspot-like Structures and Comparison with Observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The process of <span class="hlt">formation</span> of magnetic structures such as sunspot and pores in the turbulent convection zone is still enigma. However, the recent progress in numerical radiative MHD simulations provides clues about the possible mechanism of magnetic field accumulation in spontaneously formed stable structures. Implementation of sub-grid turbulent models in our "SolarBox" code, gives us the possibility to model more accurately turbulent properties, and reproduce the dynamics of the magnetized plasma. The code takes into account non-ideal (<span class="hlt">tabular</span>) EOS, effects of ionization, chemical composition, radiation, turbulence and magnetic field. Our simulation results show an important role of vortices, which create local cavity of pressure and are associated with strong converging flows under the surface, during the initial stage of the spontaneous structure <span class="hlt">formation</span>. The resulting structure represents a compact self-organized concentration of strong magnetic field, reaching ~6 kG in the interior, and ~1.5 kG on the surface. It has a cluster-like internal structurization, and is maintained by strong downdrafts extending into the deep layers. We discuss the role of turbulent MHD dynamics in this mechanism, and compare the simulation results with observations of the sunspot <span class="hlt">formation</span> process during a magnetic flux emergence, from the Solar Dynamics Observatory and Hinode.</p> <div class="credits"> <p class="dwt_author">Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1988OrLi...18..389S"> <span id="translatedtitle"><span class="hlt">Formate</span> ester <span class="hlt">formation</span> in amide solutions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Simple aliphatic alcohols, deoxynucleosides and nucleosides undergo reaction with formamide yielding <span class="hlt">formate</span> esters. <span class="hlt">Formate</span> ester <span class="hlt">formation</span> was observed to occur slowly at 100°C and more rapidly at 130°C. As expected, <span class="hlt">formate</span> esters were hydrolyzed to the alcohol and formic acid upon heating in aqueous solution. It was proposed to study the possibility that <span class="hlt">formate</span> esters are formed initially in amide solvents, followed by displacement of <span class="hlt">formate</span> by dihydrogen phosphate ion to form monophosphate esters. Experiments are described which demonstrate the <span class="hlt">formation</span> and hydrolysis of <span class="hlt">formate</span> esters, as well as their lack of reaction with hydrogen phosphate ion. <span class="hlt">Formate</span> esters are not intermediates in the phosphorylation of nucleosides in formamide. Their <span class="hlt">formation</span> has been observed and such an esterification is a side reaction during the phosphorylation of nucleosides in formamide.</p> <div class="credits"> <p class="dwt_author">Schoffstall, Allen M.; Mahone, Saralyn M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ojp.usdoj.gov/bjs/abstract/cp97.htm"> <span id="translatedtitle">Capital Punishment 1997</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Recently released by the US Department of Justice's Bureau of Justice Statistics, this report presents capital punishment data for 1997 as well as preliminary data on executions in 1998. The report finds that in 1997, 3,335 men and women were on death row in 34 states, and during the year, seventeen states executed 74 prisoners -- all male -- with half of the executions occurring in Texas. <span class="hlt">Tabular</span> data in the report display prisoners' sex, race, education, marital status, age, and method of execution, and the time between the imposition of the death sentence and execution. The report also includes historical tables that provide data on the 4,291 prisoners executed in the US between 1930 and 1997. The report is available in .pdf and <span class="hlt">ASCII</span> <span class="hlt">format</span>. Spreadsheets may be downloaded as a .zip file.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3094370"> <span id="translatedtitle">mmView: a web-based viewer of the mmCIF <span class="hlt">format</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background Structural biomolecular data are commonly stored in the PDB <span class="hlt">format</span>. The PDB <span class="hlt">format</span> is widely supported by software vendors because of its simplicity and readability. However, the PDB <span class="hlt">format</span> cannot fully address many informatics challenges related to the growing amount of structural data. To overcome the limitations of the PDB <span class="hlt">format</span>, a new textual <span class="hlt">format</span> mmCIF was released in June 1997 in its version 1.0. mmCIF provides extra information which has the advantage of being in a computer readable form. However, this advantage becomes a disadvantage if a human must read and understand the stored data. While software tools exist to help to prepare mmCIF files, the number of available systems simplifying the comprehension and interpretation of the mmCIF files is limited. Findings In this paper we present mmView - a cross-platform web-based application that allows to explore comfortably the structural data of biomacromolecules stored in the mmCIF <span class="hlt">format</span>. The mmCIF categories can be easily browsed in a tree-like structure, and the corresponding data are presented in a well arranged <span class="hlt">tabular</span> form. The application also allows to display and investigate biomolecular structures via an integrated Java application Jmol. Conclusions The mmView software system is primarily intended for educational purposes, but it can also serve as a useful research tool. The mmView application is offered in two flavors: as an open-source stand-alone application (available from http://sourceforge.net/projects/mmview) that can be installed on the user's computer, and as a publicly available web server.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.nsf.gov/statistics/databrf/db95303.htm"> <span id="translatedtitle">U.S. Research & Development Expenditures Continued Slow Growth in 1994</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.nsf.gov/publications/ods/">NSF Publications Database</a></p> <p class="result-summary">... & Development Expenditures Continued Slow Growth in 1994 (January 20, 1995) This report is available ... information about viewing publications in different <span class="hlt">formats</span>. <span class="hlt">ASCII</span> text <span class="hlt">Format</span> Portable Document ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5505882"> <span id="translatedtitle">Geochemistry and structure of the Hawley <span class="hlt">Formation</span>: Northwestern Massachusetts</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Hawley <span class="hlt">Formation</span> in northwestern Massachusetts is composed of mafic and felsic, (trondhjemitic) igneous units and black sulfidic schists and quartzites. The dominant lithology is a thinly foliated hbd-plag.-chi-qtz.-Fe carbonate schist with or without hornblende fasicules. Locally, this schist has alternating folia of chl/hbd and plag. and probably has a volcaniclastic protolith. Distinct pillows and tuffs are observed locally. In general, these schists have flat REE patterns at 10X chondrite and plot as IABs on discrimination diagrams. In the eastern part of the Hawley, some amphibolites show concave upward REE patterns, plot in the IAT or boninite field on discrimination diagrams, and appear to have boninitic affinities. The felsic lithologies are trondhjemitic and are intrusive into the IAT/boninite amphibolites. The intrusive nature is based on the presence of mafic xenoliths and intruded rafts of country rock in the trondhjemite as well as the occurrence of thin <span class="hlt">tabular</span> trondhjemite bodies in sharp contact with the surrounding amphibolite. The trondhjemite varies from coarse-grained weakly foliated qtz-plag.-biotite gneiss with probable relict igneous zoned plagioclases to finer-grained well foliated qtz-plag.-garnet-hbd gneiss. REE patterns for the trondhjemites are weakly U-shaped with moderate to pronounced negative Eu anomalies. The trondhjemites, surrounding amphibolites, and black sulfidic schists and quartzites of the eastern part of the Hawley are intruded by massive, granular, medium grained, plagioclase phenocryst amphibolites with chilled margins. These intrusive sills predate or are coeval with the dominant foliation in the Hawley. Both sills and country rock contain a contact-parallel foliation as well as a later foliation at a low angle to the earlier foliation. The sill amphibolites are high TiO2 high Zr varieties that plot as MORBs to WPBs on discrimination diagrams and exhibit slightly LREE enriched MORB-like to T-MORB REE patterns.</p> <div class="credits"> <p class="dwt_author">Kim, J.; Jacobi, R. (State Univ. of New York, Buffalo, NY (United States). Dept. of Geology)</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52756550"> <span id="translatedtitle">Star <span class="hlt">formation</span> in disks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is noted that the principal characteristics of the stellar populations in galaxies depend on the history of star <span class="hlt">formation</span> and the initial mass spectrum with which the stars are formed. Whereas there have been a number of attempts to model the history of star <span class="hlt">formation</span> in galaxies using various quasi-theoretical descriptions of star <span class="hlt">formation</span>, star <span class="hlt">formation</span> remains poorly understood</p> <div class="credits"> <p class="dwt_author">R. B. Larson</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3112519"> <span id="translatedtitle"><span class="hlt">Formate</span> <span class="hlt">Formation</span> and <span class="hlt">Formate</span> Conversion in Biological Fuels Production</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. <span class="hlt">Formate</span> is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. <span class="hlt">Formate</span> is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. <span class="hlt">Formate</span> is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of <span class="hlt">formate</span> and discuss potential applications for biofuels production.</p> <div class="credits"> <p class="dwt_author">Crable, Bryan R.; Plugge, Caroline M.; McInerney, Michael J.; Stams, Alfons J. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21687599"> <span id="translatedtitle"><span class="hlt">Formate</span> <span class="hlt">formation</span> and <span class="hlt">formate</span> conversion in biological fuels production.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO(2) and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. <span class="hlt">Formate</span> is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. <span class="hlt">Formate</span> is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO(2) in an NADH- or ferredoxin-dependent manner. <span class="hlt">Formate</span> is consumed through oxidation to CO(2) and H(2) or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of <span class="hlt">formate</span> and discuss potential applications for biofuels production. PMID:21687599</p> <div class="credits"> <p class="dwt_author">Crable, Bryan R; Plugge, Caroline M; McInerney, Michael J; Stams, Alfons J M</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-24</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.usgs.gov/of/1992/ofr-92-0507/"> <span id="translatedtitle">The digital geologic map of Colorado in ARC/INFO <span class="hlt">format</span>, Part C. Explanation sheet database</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an <span class="hlt">ASCII</span> vector <span class="hlt">format</span>. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO <span class="hlt">Format</span> Open-File Report 92-050</p> <div class="credits"> <p class="dwt_author">Green, Gregory N.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013pss6.book..141B"> <span id="translatedtitle">Star <span class="hlt">Formation</span> in Galaxies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The process of star <span class="hlt">formation</span> is at the core of the evolutionary cycle of galaxies, as newborn stars produce new chemical elements, dust, and light. The energetic output delivered first by stellar winds and then by supernovae a few Myr after a star <span class="hlt">formation</span> episode may also directly impact on the evolution of galaxies and their interstellar medium (ISM), as well as having an effect on the intergalactic medium (IGM), through feedback and outflows.This chapter concerns star <span class="hlt">formation</span> on galactic scales. First, the galactic processes that may affect large-scale star <span class="hlt">formation</span> are presented. Second, the various methods to measure star <span class="hlt">formation</span> rates are discussed (star <span class="hlt">formation</span> tracers, timescales, calibrations, limits). Finally, the observational status concerning star <span class="hlt">formation</span> in galaxies (its relation to other quantities and its evolution) is presented. The Schmidt Law (star <span class="hlt">formation</span> rate-gas relationship) is amply discussed.</p> <div class="credits"> <p class="dwt_author">Boissier, Samuel</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55278775"> <span id="translatedtitle">Star <span class="hlt">Formation</span> in Galaxies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Star <span class="hlt">formation</span> on a galactic scale is regulated by the self-gravity of the gas, as shown by the Jeans-length spacing of giant cloud complexes along spiral arms and the sensitivity of the star <span class="hlt">formation</span> rate to the gravitational stability parameter Q. Simple models based on this scenario reproduce the general properties of galactic star <span class="hlt">formation</span> in both normal and starburst</p> <div class="credits"> <p class="dwt_author">B. G. Elmegreen</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54347737"> <span id="translatedtitle">Theory of Star <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We review current understanding of star <span class="hlt">formation</span>, outlining an overall theoretical framework and the observations that motivate it. A conception of star <span class="hlt">formation</span> has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star <span class="hlt">formation</span>---turbulence, magnetic</p> <div class="credits"> <p class="dwt_author">Christopher F. McKee; Eve C. Ostriker</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA275533"> <span id="translatedtitle">NRL Report <span class="hlt">Formats</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This NRL Report <span class="hlt">Formats</span> publication has been extracted from the <span class="hlt">Format</span> and Style Guide to provide authors and those who prepare reports a concise reference guide to technical report <span class="hlt">formats</span>. This publication is organized in the same way as an NRL Report, ...</p> <div class="credits"> <p class="dwt_author">T. D. Calderwood</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1592861"> <span id="translatedtitle">Autonomous <span class="hlt">formation</span> flight</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article describes an approach to close-<span class="hlt">formation</span> flight of autonomous aircraft. A standard LQ-based structure was synthesized for each vehicle and for <span class="hlt">formation</span> position error control using linearized equations of motion and a lifting line model of the aircraft wake. We also consider the definition of a <span class="hlt">formation</span> management structure, capable of dealing with a variety of generic transmission and</p> <div class="credits"> <p class="dwt_author">F. Giulietti; L. Pollini; M. Innocenti</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7065275"> <span id="translatedtitle">Tropical cyclone <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The physics of tropical cyclone <span class="hlt">formation</span> is not well understood, and more is known about the mature hurricane than the <span class="hlt">formative</span> mechanisms that produce it. It is believed part of the reason for this can be traced to insufficient upper-level atmospheric data. Recent observations suggest that tropical cyclones are initiated by asymmetric interactions associated with migratory upper-level potential vorticity disturbances and low-level disturbances. Favored theories of cyclones <span class="hlt">formation</span>, however, focus on internal processes associated with cumulus convection and/or air-sea interaction. This work focuses on external mechanisms of cyclone <span class="hlt">formation</span> and, using both a two- and three-dimensional moist geostrophic momentum model, investigates the role of upper-level potential vorticity disturbances on the <span class="hlt">formation</span> process. A conceptual model of tropical cyclone <span class="hlt">formation</span> is proposed, and implications of the theory are discussed. 71 refs., 5 figs., 1 tab.</p> <div class="credits"> <p class="dwt_author">Montgomery, M.T.; Farrell, B.F. (Harvard Univ., Cambridge, MA (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/k47u676j0037l105.pdf"> <span id="translatedtitle">Impulsively Triggered Star <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">I review several different modes of impulsively triggered star <span class="hlt">formation</span>, starting with star <span class="hlt">formation</span> in turbulent molecular\\u000a clouds, and exploring the origin of the clump mass function and the scaling relations between clump mass, radius and internal\\u000a velocity dispersion. This leads to the identification of a critical ram pres-sure for triggering rapid star <span class="hlt">formation</span>, and\\u000a a reappraisal of the minimum</p> <div class="credits"> <p class="dwt_author">A. P. Whitworth</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/x12413815l30r756.pdf"> <span id="translatedtitle">Homeownership and family <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In Western countries, home-ownership and family <span class="hlt">formation</span> are closely connected. From most research on the transition to home-ownership, one gets the impression that the association between family <span class="hlt">formation</span> and home-ownership is positive: family <span class="hlt">formation</span> seems to speed up the process of acquiring a home in several countries. However, it has also been argued that there might be a negative association</p> <div class="credits"> <p class="dwt_author">Clara H. Mulder</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6653018"> <span id="translatedtitle">Data <span class="hlt">format</span> translation routines</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">To enable the effective connection of several dissimilar computers into a network, modification of the data being passed from one computer to another may become necessary. This document describes a package of routines which permit the translation of data in PDP-8 <span class="hlt">formats</span> to PDP-11 or DECsystem-10 <span class="hlt">formats</span> or from PDP-11 <span class="hlt">format</span> to DECsystem-10 <span class="hlt">format</span>. Additional routines are described which permit the effective use of the translation routines in the environment of the Fusion Energy Division (FED) network and the Elmo Bumpy Torus (EBT) data base.</p> <div class="credits"> <p class="dwt_author">Burris, R.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.macromedia.com/software/flash/open/"> <span id="translatedtitle">Flash Open File <span class="hlt">Format</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Macromedia has released the file <span class="hlt">format</span> specification for its Flash (discussed in the April 11, 1997 Scout Report) multimedia web tool. Flash allows web developers to create vector based graphics and animation. By making the <span class="hlt">format</span> (.swf) available, Macromedia hopes to establish it as a standard for vector graphics and animation. The company claims it will "submit the <span class="hlt">format</span> specification to a recognized Internet standards organization." In addition to providing the file <span class="hlt">format</span> specification, the site provides Flash related news releases, a Flash FAQ, and a vector graphics white paper.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA380348"> <span id="translatedtitle">Three Dimensional <span class="hlt">Formation</span> Flight Control.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Automating the control of an aircraft flying in <span class="hlt">formation</span> necessitates the extension of the theory of <span class="hlt">formation</span> flight control to allow for three dimensional maneuvers. The <span class="hlt">formation</span> was modeled as a two-aircraft, leader and wingspan, <span class="hlt">formation</span>. Both airc...</p> <div class="credits"> <p class="dwt_author">J. K. Hall</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009ApJ...700..262S"> <span id="translatedtitle">Global Star <span class="hlt">Formation</span> Revisited</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A general treatment of disk star <span class="hlt">formation</span> is developed from a dissipative multiphase model, with the dominant dissipation due to cloud collisions. The Schmidt-Kennicutt (SK) law emerges naturally for star-forming disks and starbursts. We predict that there should be an inverse correlation between Tully-Fisher law and SK law residuals. The model is extended to include a multiphase treatment of supernova feedback that leads to a turbulent pressure-regulated generalization of the star <span class="hlt">formation</span> law and is applicable to gas-rich starbursts. Enhanced pressure, as expected in merger-induced star <span class="hlt">formation</span>, enhances star <span class="hlt">formation</span> efficiency. An upper limit is derived for the disk star <span class="hlt">formation</span> rate in starbursts that depends on the ratio of global ISM to cloud pressures. We extend these considerations to the case where the interstellar gas pressure in the inner galaxy is dominated by outflows from a central active galactic nucleus (AGN). During massive spheroid <span class="hlt">formation</span>, AGN-driven winds trigger star <span class="hlt">formation</span>, resulting in enhanced supernova feedback and outflows. The outflows are comparable to the AGN-boosted star <span class="hlt">formation</span> rate and saturate in the super-Eddington limit. Downsizing of both SMBH and spheroids is a consequence of AGN-driven positive feedback. Bondi accretion feeds the central black hole with a specific accretion rate that is proportional to the black hole mass. AGN-enhanced star <span class="hlt">formation</span> is mediated by turbulent pressure and relates spheroid star <span class="hlt">formation</span> rate to black hole accretion rate. The relation between black hole mass and spheroid velocity dispersion has a coefficient (Salpeter time to gas consumption time ratio) that provides an arrow of time. Highly efficient, AGN-boosted star <span class="hlt">formation</span> can occur at high redshift.</p> <div class="credits"> <p class="dwt_author">Silk, Joseph; Norman, Colin</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=rocks&pg=3&id=EJ782671"> <span id="translatedtitle"><span class="hlt">Formative</span> Assessment Probes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|<span class="hlt">Formative</span> assessment probes can be effective tools to help teachers build a bridge between students' initial ideas and scientific ones. In this article, the authors describe how using two <span class="hlt">formative</span> assessment probes can help teachers determine the extent to which students make similar connections between developing a concept of matter and a…</p> <div class="credits"> <p class="dwt_author">Eberle, Francis; Keeley, Page</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=UCRL78211"> <span id="translatedtitle">Extendable Information <span class="hlt">Formats</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Information <span class="hlt">formats</span> can often be adapted for use by processes different than those for which they were initially designed. The extent to which a <span class="hlt">format</span> can be so adapted without semantic modification is a measure of its extendability. There are many infor...</p> <div class="credits"> <p class="dwt_author">J. E. Donnelley</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18828901"> <span id="translatedtitle">Theories of star <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A well defined theory of star <span class="hlt">formation</span> does not yet exist. A serious deficiency therefore remains in current theories of the structure and evolution of stars. Since stars must be forming at the present phase of Galactic evolution, it is pertinent to investigate what conditions favour star <span class="hlt">formation</span>. Observational evidence for the pre-main sequence phase of stellar evolution is entirely</p> <div class="credits"> <p class="dwt_author">D. McNally</p> <p class="dwt_publisher"></p> <p class="publishDate">1971-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60412131"> <span id="translatedtitle">Subsurface <span class="hlt">formation</span> fracturing method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this fracturing method, the well is first prepared for fracturing by cutting the casing and notching the <span class="hlt">formation</span> at the desired level in the well. Fracturing fluid is then applied at the notch under sufficient pressure to initiate a fracture in the <span class="hlt">formation</span>. During propagation of the fracture, fracturing fluid containing propping agent is pumped into the fracture in</p> <div class="credits"> <p class="dwt_author">J. L. Huitt; B. B. McGlothlin; J. Papaila</p> <p class="dwt_publisher"></p> <p class="publishDate">1965-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23841981"> <span id="translatedtitle"><span class="hlt">Formate</span> production through biocatalysis.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The generation of <span class="hlt">formate</span> from CO 2 provides a method for sequestration of this greenhouse gas as well as the production of a valuable commodity chemical and stabilized form of hydrogen fuel. <span class="hlt">Formate</span> dehydrogenases are enzymes with the potential to catalyze this reaction; however they generally favor the reverse process, i.e., <span class="hlt">formate</span> oxidation. By contrast, the <span class="hlt">formate</span> dehydrogenase of the acetogen Clostridium carboxidivorans has been found to preferentially catalyze the reduction of CO 2. This is in accord with its natural role to introduce CO 2 as a carbon source in the Wood-Ljungdahl pathway. The direction of catalysis derives from the enzyme's low affinity for <span class="hlt">formate</span>. This enzyme is therefore an excellent candidate for biotechnological applications aimed at producing formic acid and derivative chemicals from CO 2. PMID:23841981</p> <div class="credits"> <p class="dwt_author">Alissandratos, Apostolos; Kim, Hye-Kyung; Easton, Christopher J</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-21</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21612679"> <span id="translatedtitle">DUST-CORRECTED STAR <span class="hlt">FORMATION</span> RATES OF GALAXIES. II. COMBINATIONS OF ULTRAVIOLET AND INFRARED TRACERS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We present new calibrations of far-ultraviolet (FUV) attenuation as derived from the total infrared to FUV luminosity ratio (IRX) and the FUV-near-UV(NUV) color. We find that the IRX-corrected FUV luminosities are tightly and linearly correlated with the attenuation-corrected H{alpha} luminosities (as measured from the Balmer decrement), with an rms scatter of {+-}0.09 dex. The ratios of these attenuation-corrected FUV to H{alpha} luminosities are consistent with evolutionary synthesis model predictions, assuming a constant star <span class="hlt">formation</span> rate over 100 Myr, solar metallicity, and either a Salpeter or a Kroupa initial mass function with lower and upper mass limits of 0.1 and 100 M{sub Sun }. The IRX-corrected FUV to Balmer-corrected H{alpha} luminosity ratios do not show any trend with other galactic properties over the ranges covered by our sample objects. In contrast, FUV attenuation derived from the FUV-NUV color (UV spectral slope) show much larger random and systematic uncertainties. When compared to either Balmer-corrected H{alpha} luminosities or IRX-corrected FUV luminosities the color-corrected FUV luminosities show {approx}2.5 times larger rms scatter, and systematic nonlinear deviations as functions of luminosity and other parameters. Linear combinations of 25 {mu}m and 1.4 GHz radio continuum luminosities with the observed FUV luminosities are also well correlated with the Balmer-corrected H{alpha} luminosities. These results provide useful prescriptions for deriving attenuation-corrected star <span class="hlt">formation</span> rates of galaxies based on linear combinations of UV and IR or radio luminosities, which are presented in convenient <span class="hlt">tabular</span> form. Comparisons of our calibrations with attenuation corrections in the literature and with dust attenuation laws are also made.</p> <div class="credits"> <p class="dwt_author">Hao Caina [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Kennicutt, Robert C.; Johnson, Benjamin D. [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dale, Daniel A. [Department of Physics, University of Wyoming, Laramie, WY 82071 (United States); Moustakas, John, E-mail: cainahao@gmail.com [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093-0424 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.usgs.gov/pp/1146/report.pdf@displayLabelpdf@notePLATE#texthttp://pubs.usgs.gov/pp/1146/plate-1.pdf@displayLabelhtml@noteINDEX+PAGE#texthttp://ngmdb.usgs.gov/Prodesc/proddesc_4734.htm"> <span id="translatedtitle">Revised nomenclature and stratigraphic relationships of the Fredericksburg Complex and Quantico <span class="hlt">Formation</span> of the Virginia Piedmont</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">The Fredericksburg Complex, in part a migmatitic terrane in northeast Virginia, is subdivided on the basis of lithology, as well as aeromagnetic and aeroradiometric data, into two metamorphic suites. These suites are separated by the northeast-trending Spotsylvania lineament, a rectilinear geophysical feature that is probably the trace of an old fault zone. East of the lineament, the Po River Metamorphic Suite, of Proterozoic Z and (or) early Paleozoic age, consists dominantly of biotite gneiss, generally augen gneiss, and lesser amounts of hornblende gneiss and mica schist. West of the Spotsylvania lineament is the Ta River Metamorphic Suite, composed mostly of amphibolite and amphibole gneiss. However, to the southwest, along its strike belt, the Ta River contains abundant biotite gneiss and mica schist. Both the Ta River and Po River contain abundant foliated granitoid and pegmatoid bodies as concordant <span class="hlt">tabular</span> masses and as crosscutting dikes; these rocks are considered part of the Ta River and Po River Metamorphic Suites. The amphibolitic Holly Corner Gneiss is interpreted to be a western allochthonous equivalent of the Ta River. Both the Ta River and Holly Corner are considered to be coeval, eastern, distal facies of the Lower Cambrian(?) Chopawamsic <span class="hlt">Formation</span>. The Paleozoic Falls Run Granite Gneiss intrudes the Ta River Metamorphic Suite and the Holly Corner Gneiss; locally the Falls Run is interpreted to have been transported westward with the Holly Corner after intrusion. The Quantico <span class="hlt">Formation</span>, in the core of the Quantico-Columbia synclinorium, rests with angular unconformity along its northwest and southeast limbs, respectively, on the Chopawamsic <span class="hlt">Formation</span> and the Ta River Metamorphic Suite. The Quantico <span class="hlt">Formation</span> is assigned the same Late Ordovician age and similar stratigraphic position as the Arvonia Slate of the Arvonia syncline. The youngest rocks of the area are the granitoid and pegmatoid bodies of the Falmouth Intrusive Suite. They consist of several generations of chiefly dikes and sills that are intrusive into the Fredericksburg Complex and into the Quantico <span class="hlt">Formation</span>. Granitoid rocks also form small plutons. The Falmouth is isotopically dated as Carboniferous in age. Some of the metavolcanic rocks of the Evington Group and part of the amphibolite gneiss and amphibolite of the Hatcher Complex, named by W. B. Brown in 1969, are probably coeval with the Chopawamsic <span class="hlt">Formation</span> and hence equivalents of the Ta River Metamorphic Suite and the Holly Corner Gneiss. The biotitic gneiss and granitoid rocks east of the Spotsylvania lineament in the Dillwyn area are considered to be coeval with the Po River Metamorphic Suite.</p> <div class="credits"> <p class="dwt_author">Pavlides, Louis</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009ApJ...690.1112P"> <span id="translatedtitle">When Efficient Star <span class="hlt">Formation</span> Drives Cluster <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We investigate the impact of the star-<span class="hlt">formation</span> efficiency (SFE) in cluster-forming cores (i.e., local SFE) on the evolution of mass in star clusters (SCs) over the age range 1-100 Myr, when SCs undergo their infant weight-loss/mortality phase. Our model builds on the N-body simulation grid of Baumgardt & Kroupa. Assuming a constant <span class="hlt">formation</span> rate of gas-embedded clusters and a weak tidal field, we show that the ratio between the total mass in stars bound to the clusters over that age range and the total mass in stars initially formed in gas-embedded clusters is a strongly increasing function of the averaged local SFE, with little influence from any assumed core mass-radius relation. Our results suggest that, for young starbursts with estimated tidal field strength and known recent star-<span class="hlt">formation</span> history, observed cluster-to-star mass ratios, once corrected for the undetected clusters, constitute promising probes of the local SFE without the need to resort to gas mass estimates. Similarly, the mass ratio of stars that remain in bound clusters at the end of the infant mortality/weight-loss phase (i.e., age gsim50 Myr) depends sensitively on the mean local SFE, although the impacts of the width of the SFE distribution function and of the core mass-radius relation require more careful assessment in this case. Following the recent finding by Bastian that galaxies form, on average, 8% of their stars in bound clusters regardless of their star-<span class="hlt">formation</span> rate, we raise the hypothesis that star <span class="hlt">formation</span> in the present-day universe is characterized by a near-universal distribution of the local SFE. A related potential application of our model is in tracing the evolution of the local SFE over cosmological lookback times by comparing the age distribution of the total mass in SCs to that in field stars in galaxies where field stars can be resolved and age dated. We describe aspects of our model which are still to be worked out before this goal can be achieved.</p> <div class="credits"> <p class="dwt_author">Parmentier, G.; Fritze, U.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42753213"> <span id="translatedtitle"><span class="hlt">Format</span> Monopolies: The Evolution of “Nationwide <span class="hlt">Format</span> Oligopolies”</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Almost ten years after the Telecommunications Act of 1996, 26 different radio station <span class="hlt">formats</span> in Arbitron's 296 survey areas were examined in 2005 as a followup to Wirth's 2001 “Nationwide <span class="hlt">Format</span> Oligopolies.” This longitudinal study sought to ascertain if <span class="hlt">format</span> oligopolies (four companies reaching over 50% of a specific radio <span class="hlt">format</span>'s audience nationally) had evolved into <span class="hlt">format</span> duopolies (two companies</p> <div class="credits"> <p class="dwt_author">Todd L. Wirth</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2012-title48-vol5/pdf/CFR-2012-title48-vol5-sec752-7005.pdf"> <span id="translatedtitle">48 CFR 752.7005 - Submission requirements for development experience documents.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p class="result-summary">...WordPerfect, Microsoft Word, <span class="hlt">ASCII</span>, and Portable Document <span class="hlt">Format</span> (PDF). Submission in Portable Document <span class="hlt">format</span> is encouraged. ...create the file, e.g., WordPerfect Version 6.1 or <span class="hlt">ASCII</span> or PDF. (B) The <span class="hlt">format</span> for any graphic and/or image file...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013MmSAI..84..162R"> <span id="translatedtitle">Rethinking globular clusters <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper is aimed at emphasizing some of the main hints, constraints and difficulties we currently have in trying to understand how globular clusters formed, along with their multiple stellar generations, an issue that must be regarded as intimately connected to the <span class="hlt">formation</span> process itself. Thus, the topics that are addressed include i) the required mass of the progenitor, ii) how to form new stars in an environment already crowded by a previous stellar generation, iii) how photometry and spectroscopy appear to suggest different <span class="hlt">formation</span> processes for second generation stars, iv) whether dilution with pristine material may (or may not) be necessary for the <span class="hlt">formation</span> of second generations, v) why the few clusters with multiple iron abundances are after all not so different from those that are homogeneous, and finally vi) why special environmental conditions may not be necessary for the <span class="hlt">formation</span> of globular clusters with multiple stellar generations.</p> <div class="credits"> <p class="dwt_author">Renzini, Alvio</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://bcs.whfreeman.com/understandingearth/pages/bcs-main.asp?v=category&s=00110&n=22000&i=22110.01&o=%7C00510%7C00520%7C00530%7C00540%7C00560%7C00590%7C00600%7C00610%7C00620%7C00640%7C00650%7C00670%7C00680%7C00700%7C00PRS%7C00690%7C00010%7C00100%7C00110%7C00020%7C00030%7C00040%7C00050%7C00060%7C00070%7C0"> <span id="translatedtitle">Understanding Earth: Coal <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Supplementary material from Understanding Earth (4th ed.), this short animation guides viewers through the <span class="hlt">formation</span> of coal and its pathway through different grades. The animation is annotated with labels.</p> <div class="credits"> <p class="dwt_author">W.H. Freeman & Co. Publishing</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD709679"> <span id="translatedtitle"><span class="hlt">Formatted</span> File Organization Techniques.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The report contains papers presenting several useful steps toward the creation of a more scientific discipline of <span class="hlt">formatted</span> file design. In particular, there are papers on: (1) The first extensive, fundamentally oriented comparison of key-to-address trans...</p> <div class="credits"> <p class="dwt_author">M. E. Senko V. Y. Lum F. P. Palermo S. P. Ghosh P. J. Owens</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA369070"> <span id="translatedtitle">NRL Report <span class="hlt">Formats</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">NRL Report <span class="hlt">Formats</span> was prepared to provide information to those at the Naval Research Laboratory (NRL) who write technical reports and for those who typeset and lay out reports for reproduction. This publication provides easy-to-follow instructions, given...</p> <div class="credits"> <p class="dwt_author">T. D. Calderwood P. E. Staffieri</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52970935"> <span id="translatedtitle">What Drives Star <span class="hlt">Formation</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Current theoretical models for what drives star <span class="hlt">formation</span> (especially low-mass star <span class="hlt">formation</span>) are: (1) magnetic support of self-gravitating clouds with ambipolar diffusion removing support in cores and triggering collapse, and (2) compressible turbulence forming self-gravitating clumps that collapse as soon as the turbulent cascade produces insufficient turbulent support. A crucial observational difference between the two models is the mass to</p> <div class="credits"> <p class="dwt_author">R. M. Crutcher</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/835750"> <span id="translatedtitle">Plant <span class="hlt">Formate</span> Dehydrogenase</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The research in this study identified <span class="hlt">formate</span> dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the <span class="hlt">formate</span> dehydrogenase enzyme to initiate further studies.</p> <div class="credits"> <p class="dwt_author">John Markwell</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.4852..481L"> <span id="translatedtitle"><span class="hlt">Formation</span>-flying interferometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There are many advantages to space-based interferometry, but monolithic, single-spacecraft platforms set limits on the collecting area and baseline length. These constraints can be overcome by distributing the optical elements of the interferometer over a system of multiple spacecraft flying in precise <span class="hlt">formation</span>, opening up new realms of angular resolution and sensitivity. While the principles of interferometry are the same as for structurally-connected systems, <span class="hlt">formation</span>-flying interferometers must integrate a wide range of technologies to provide an optically stable platform capable of finding, tracking and measuring fringes. This paper discusses some of the key differences between <span class="hlt">formation</span>-flying and structurally-connected interferometers, including <span class="hlt">formation</span> configurations, controlling beam shear, station-keeping, and the importance of delay and delay rate estimation in determining the instrument sensitivity. Proposed future <span class="hlt">formation</span>-flying interferometer missions include the Terrestrial Planet Finder (TPF), Darwin, the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), the Stellar Imager, the Micro-Arcsecond Xray Imaging Mission (MAXIM), and its precursor, MAXIM Pathfinder. In addition, Life Finder and Planet Imager have been identified as two <span class="hlt">formation</span>-flying missions capable of detailed characterization of habitable exo-planets. The parameters for these missions are compared and described briefly.</p> <div class="credits"> <p class="dwt_author">Lay, Oliver P.; Blackwood, Gary H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53319365"> <span id="translatedtitle">Star <span class="hlt">formation</span> in irregular galaxies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The problems associated with star <span class="hlt">formation</span> in irregular galaxies are outlined. The basic model of star <span class="hlt">formation</span> is reviewed. Global star <span class="hlt">formation</span> rates, feedback processes, the physical conditions of the interstellar medium which affect star <span class="hlt">formation</span>, and the internal structures of star-forming regions in irregular galaxies are discussed. In addition, star <span class="hlt">formation</span> in the amorphous irregular galaxies described by Sandage</p> <div class="credits"> <p class="dwt_author">D. A. Hunter; J. S. Gallagher III</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/yyvarw70cpdh5meq.pdf"> <span id="translatedtitle">Urethral seam <span class="hlt">formation</span> and hypospadias</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Knowledge of the <span class="hlt">formation</span> of the normal male urethra may elucidate the etiology of hypospadias. We describe urethral <span class="hlt">formation</span> in the mouse, show the similarities and relevance to human urethral development, and introduce the concept of the epithelial seam <span class="hlt">formation</span> and remodeling during urethral <span class="hlt">formation</span>. Three mechanisms may account for epithelial seam <span class="hlt">formation</span>: (1) epithelial-mesenchymal transformation similar to that described</p> <div class="credits"> <p class="dwt_author">Laurence S. Baskin; Ali Erol; Priya Jegatheesan; Yingwu Li; Wenhui Liu; Gerald R. Cunha</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFM.A51C..06G"> <span id="translatedtitle">The boundary layer, the land surface, and orographic precipitation: the 2012 <span class="hlt">ASCII</span> campaign in the Sierra Madre, Wyoming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It remains a puzzle why even rather shallow orographic clouds hugging the terrain are remarkably efficient snowfall producers, at least under typical conditions in the Rocky Mountains in winter. We provide evidence for the importance of both boundary-layer turbulence and surface-induced ice crystal production in the explanation of the efficiency of orographic precipitation. This evidence will be examined more in a field campaign to be conducted in early 2012 in the Sierra Madre in Wyoming, a campaign which will deploy airborne profiling radar and lidar, dual-pol DOW radar, radiosondes, and ground-based snow observations, in the context of ongoing research into the effect of AgI seeding of orographic clouds to enhance snowfall.</p> <div class="credits"> <p class="dwt_author">Geerts, B.; Yang, Y.; Miao, Q.; Pokharel, B.; Breed, D. W.; Rasmussen, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60336863"> <span id="translatedtitle">GenBank at Los Alamos: User manual, training guide, and reference manual for the <span class="hlt">ASCII</span> AWB</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The GenBank project at Los Alamos collects nucleotide sequence submissions from the biological research community. This work includes the processing of data received in several different forms as well as maintenance and quality control on those submissions. This manual explains the procedures involved in that work for both Los Alamos GenBank staff and off-site users. The GenBank database stores annotated</p> <div class="credits"> <p class="dwt_author">G. C. Reese; G. M. Keen; P. Gilna; M. J. Cinkosky</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6572344"> <span id="translatedtitle">GenBank at Los Alamos: User manual, training guide, and reference manual for the <span class="hlt">ASCII</span> AWB</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The GenBank project at Los Alamos collects nucleotide sequence submissions from the biological research community. This work includes the processing of data received in several different forms as well as maintenance and quality control on those submissions. This manual explains the procedures involved in that work for both Los Alamos GenBank staff and off-site users. The GenBank database stores annotated DNA sequences. This manual contains the procedures for depositing these sequences into the database. There are two ways to do this. Either the sequence arrives at GenBank as a submission and is entered by the database staff or the sequence is directly entered by an off-site user. The Annotator's WorkBench (AWB), which is a database browsing and editing tool, is used in both cases. This manual is for GenBank staff and off-site users of the GenBank database at the Los Alamos National Laboratory. It contains an introduction and tutorials for AWB, as well as procedures for entering sequences either as submissions or as data directly deposited by an off-site user. Instructions for all of these are found in Chapters 2 through 4. The introduction to AWB is in Chapter 2. Instructions for submission handling are in Chapter 3. Instructions for entering sequence information are in Chapter 4. Off-site users should look at section 4.3 for instructions on entering a sequence. In addition, the manual describes various in-house curatorial tasks that are part of maintaining the database, as well as the procedures and conventions for annotating sequences. The procedures for annotation and review are in Chapters 5 and 6. The description of in-house curator's tasks is in Chapter 7. The appendices contain: Annotation conventions, two reference chapters on AWB and other utility programs, a complete list of all the forms, fields, and commands in AWB and descriptions of other (non-AWB) software utilities used by database staff.</p> <div class="credits"> <p class="dwt_author">Reese, G.C.; Keen, G.M.; Gilna, P.; Cinkosky, M.J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-03-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3312398"> <span id="translatedtitle">Vascular Lumen <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo <span class="hlt">formation</span> of blood vessels, e.g., aorta <span class="hlt">formation</span> in vertebrate embryogenesis. In contrast, angiogenesis is the <span class="hlt">formation</span> of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen <span class="hlt">formation</span> takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell–cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel <span class="hlt">formation</span> to better understand and manipulate the pathomechanisms involved.</p> <div class="credits"> <p class="dwt_author">Lammert, Eckhard; Axnick, Jennifer</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009LNCS.5867..295B"> <span id="translatedtitle"><span class="hlt">Format</span>-Preserving Encryption</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Format</span>-preserving encryption (FPE) encrypts a plaintext of some specified <span class="hlt">format</span> into a ciphertext of identical <span class="hlt">format</span>—for example, encrypting a valid credit-card number into a valid credit-card number. The problem has been known for some time, but it has lacked a fully general and rigorous treatment. We provide one, starting off by formally defining FPE and security goals for it. We investigate the natural approach for achieving FPE on complex domains, the “rank-then-encipher” approach, and explore what it can and cannot do. We describe two flavors of unbalanced Feistel networks that can be used for achieving FPE, and we prove new security results for each. We revisit the cycle-walking approach for enciphering on a non-sparse subset of an encipherable domain, showing that the timing information that may be divulged by cycle walking is not a damaging thing to leak.</p> <div class="credits"> <p class="dwt_author">Bellare, Mihir; Ristenpart, Thomas; Rogaway, Phillip; Stegers, Till</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1035143"> <span id="translatedtitle">Primary Radiation Damage <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The physical processes that give rise to changes in the microstructure, and the physical and mechanical properties of materials exposed to energetic particles are initiated by essentially elastic collisions between atoms in what has been called an atomic displacement cascade. The <span class="hlt">formation</span> and evolution of this primary radiation damage mechanism are described to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the primary variables cascade energy and irradiation temperature are discussed, along with a range of secondary factors that can influence damage <span class="hlt">formation</span>.</p> <div class="credits"> <p class="dwt_author">Stoller, Roger E [ORNL</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/915374"> <span id="translatedtitle">Isolating Triggered Star <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Galaxy pairs provide a potentially powerful means of studying triggered star <span class="hlt">formation</span> from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to 'field' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than 'field' galaxies is primarily a selection effect. We use our simulations to devise a means to select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N= 2 halos) and to select a control sample of isolated galaxies (N= 1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M{sub B,j} {le} -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star <span class="hlt">formation</span> and the average elevation in the star <span class="hlt">formation</span> rate. We find that 24% (30.5 %) of these L* and sub-L* galaxies in isolated 50 (30) h{sup -1} kpc pairs exhibit star <span class="hlt">formation</span> that is boosted by a factor of {approx}> 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star <span class="hlt">formation</span>. Our orbit models suggest that 12% (16%) of 50 (30) h{sup -1} kpc close pairs that are isolated according to our definition have had a close ({le} 30 h{sup -1} kpc) pass within the last Gyr. Thus, the data are broadly consistent with a scenario in which most or all close passes of isolated pairs result in triggered star <span class="hlt">formation</span>. The isolation criteria we develop provide a means to constrain star <span class="hlt">formation</span> and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of triggered star <span class="hlt">formation</span> in a cosmological context.</p> <div class="credits"> <p class="dwt_author">Barton, Elizabeth J.; Arnold, Jacob A.; /UC, Irvine; Zentner, Andrew R.; /KICP, Chicago /Chicago U., EFI; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-09-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.wotsit.org/"> <span id="translatedtitle">Wotsit's File <span class="hlt">Format</span> Collection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Wotsit's File <span class="hlt">Format</span> Collection, provided by Paul Oliver, features a very large number of file <span class="hlt">formats</span>. These include JPEG image files, wave sound files, Rich Text files, and common database and word-processing files such as Paradox and Wordperfect. Documents collected or linked at the site are primarily either original specifications from the creator or an improved version of the original. All of the specifications are very technical and are directed towards programmers. Users can subscribe to a mailing list for notification of site updates.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/75409"> <span id="translatedtitle">Sedimentology and lithofacies of the Eocene Skookumchuk <span class="hlt">Formation</span> in the Centralia coal mine, southwest Washington</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The late middle to late Eocene Skookumchuck <span class="hlt">Formation</span> is well exposed in highwalls of the Centralia mine, southwest Washington. Three coal zones and intervening sandstone-rich successions occur in a 220-m-thick interval that extends from below the Smith to above the Tono No. 1 coal beds. The Smith-Big Dirty, Lower-Upper Thompson, and Tono No.`s. 1-2 coal zones contain coal beds that range from 0.5 to 15 m thick. The coal beds are interbedded with coarsening-upward units of mudstone, siltstone, and sandstone that are burrowed, flaser-and lenticular-bedded, mud-draped in their lower part, and rippled, wavy bedded, and <span class="hlt">tabular</span> crossbedded (with reactivation surfaces) in their upper part. These coarsening-upward units are commonly overlain erosionally by fining-upward beds of trough-crossbedded, rippled, burrowed, and rooted sandstones. Coal formed in low-lying peat mires above mean high tide levels. Two discrete facies occur in the sandstone-rich successions between the coal zones. The first facies consists of very fine to coarse grained sandstones that have sharply defined bases and tops and are heavily bioturbated, horizontally bedded, trough crossbedded, hummocky bedded, and rippled. The second facies of the sandstone-rich successions consists of sandstone, siltstone, and mudstone beds with common ripple lamination, lenticular and flaser bedding, trough crossbedding, biotrubation, bivalve fossils, and root marks. Upward thinning of coal beds is consistent with deposition during a major transgression. These coals formed in mires of the tidally influenced coastal plain in the Centralia mine area, in contrast to coals elsewhere in Washington that accumulated in mires of the fluvial- and distributary-channel-influenced coastal plain. The Northcraft volcanic center to the east probably deflected fluvial drainages of the coastal plain to the north and south.</p> <div class="credits"> <p class="dwt_author">Flores, R.M.; Johnson, S.Y. [Geological Survey, Denver, CO (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.teachersdomain.org/resource/ess05.sci.ess.earthsys.kanecave/"> <span id="translatedtitle">Cave <span class="hlt">Formation</span>: Kane Cave</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This video documents an experiment conducted in Kane Cave, Wyoming, to see if microbes that inhabit the cave could actually be contributing to the cave-<span class="hlt">formation</span> process. Adapted from a NOVA broadcast, the segment is four minutes and twelve seconds in length.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2010-11-25</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://oaspub.epa.gov/eims/eimsapi.dispdetail?deid=41902"> <span id="translatedtitle"><span class="hlt">FORMATION</span> OF PHOTOCHEMICAL AEROSOLS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p class="result-summary">The objective was to develop a better understanding of smog aerosol <span class="hlt">formation</span> with particular reference to haze in the Southern California area. This study combined laboratory work with ambient air studies. Counting of particles by light scattering was the principle physical tech...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N20010029165"> <span id="translatedtitle"><span class="hlt">Formation</span> of Giant Planets.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Under the support of NASA Origins grant, we studied the <span class="hlt">formation</span> of gaps in protoplanetary disks due the tidal interaction between a fully grown protoplanet and protostellar disk. The result of this study is published in the Astrophysical Journal, (vol 5...</p> <div class="credits"> <p class="dwt_author">D. Lin</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19009422"> <span id="translatedtitle">Pattern <span class="hlt">formation</span> during electropolishing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Using atomic force microscopy, we find that the surface morphology of a dissolving aluminum anode in a commercial electropolishing electrolyte can exhibit both highly regular and randomly packed stripe and hexagonal patterns with amplitudes of about 5 nm and wavelengths of 100 nm. The driving instability of this pattern <span class="hlt">formation</span> phenomenon is proposed to be the preferential adsorption of polar</p> <div class="credits"> <p class="dwt_author">Vadim V. Yuzhakov; Hsueh-Chia Chang; Albert E. Miller</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013APS..APRH14005E"> <span id="translatedtitle">Ultrarelativistic black hole <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A topic in general relativity that remains poorly understood is the <span class="hlt">formation</span> of black holes in ultrarelativistic collisions. Besides being an interesting theoretical question, it has been suggested that this may occur in the collision of cosmic rays with the Earth's atmosphere and in proton collisions at the LHC, in scenarios where large extra dimensions set the true Planck scale at around a TeV. We present results from numerical simulations of the head-on collision of equal mass particles, modeled as self-gravitating fluid spheres, obtained by solving the Einstein equations coupled to hydrodynamics. We focus on cases well within the kinetic energy dominated regime (?=8 to 12) and find that black hole <span class="hlt">formation</span> does occur for sufficiently large boosts. Moreover, near yet above the threshold of black hole <span class="hlt">formation</span>, the collision initially leads to the <span class="hlt">formation</span> of two distinct apparent horizons that subsequently merge. We argue that this can be understood in terms of a focusing effect, where one boosted particle acts as a gravitational lens on the other and vice versa, and that this is further responsible for the threshold being lower (by a factor of a few) compared to simple hoop conjecture estimate.</p> <div class="credits"> <p class="dwt_author">East, William; Pretorius, Frans</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1987PAICz..69..433S"> <span id="translatedtitle"><span class="hlt">Formation</span> of neutrino halos.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A fully general relativistic non-linear model of the <span class="hlt">formation</span> of massive neutrino halos in an Einstein-Straus universe was given by Fabbri, Jantzen and Ruffini. Here the author considers the role which a non-vanishing, repulsive cosmological constant ? > 0, admissible by observational limits, can have in the FJR model.</p> <div class="credits"> <p class="dwt_author">Stuchlík, Z.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pycia.bol.ucla.edu/pycia-bargaining-and-coalition-formation.pdf"> <span id="translatedtitle">Bargaining and Coalition <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper provides a su¢ cient condition for the non-emptiness of the core in coalition for- mation such as the <span class="hlt">formation</span> of clubs, partnerships, …rms, business alliances, and jurisdictions voting on public goods. The condition is formulated for settings in which agents …rst form coalitions and then each coalition realizes a payopro…le from the set of available alternatives via mechanisms</p> <div class="credits"> <p class="dwt_author">Marek Pycia; Penn State</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55375983"> <span id="translatedtitle"><span class="hlt">Formation</span> of Language</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">PERMIT me to reply to your correspondent Mr. W. J. Stillman, on the ``<span class="hlt">Formation</span> of Language'' (NATURE, March 26, p. 491). The interesting fact he records of the spontaneous invention and use of child-names for objects is not unknown to philologists. The phenomenon has been previously noticed, among others, by Miss Watson, of Boston, and Dr. E. R. Hun, of</p> <div class="credits"> <p class="dwt_author">Agnes Crane</p> <p class="dwt_publisher"></p> <p class="publishDate">1891-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA147425"> <span id="translatedtitle">Frazil Ice <span class="hlt">Formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Frazil ice forms in flowing or turbulent water that has become supercooled by heat transfer to overlying air. This report investigates the influences of turbulence and water temperature on frazil ice <span class="hlt">formation</span>. The rate and the quantity of frazil ice form...</p> <div class="credits"> <p class="dwt_author">R. Ettema M. F. Karim J. F. Kennedy</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=30th+AND+Anniversary+AND+Issue+AND+%2f+AND+Mary+AND+Boone%3a+AND+Art+AND+Dealer&pg=3&id=EJ941792"> <span id="translatedtitle"><span class="hlt">Formation</span> in the Classroom</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">What is the relationship between the academic knowledge of the guild and the <span class="hlt">formation</span> of students in the classroom? This Forum gathers four essays originally presented at a Special Topics Session at the 2009 conference of the American Academy of Religion (Atlanta, Georgia), with a brief introductory essay by Fred Glennon explaining the genesis of…</p> <div class="credits"> <p class="dwt_author">Glennon, Fred; Jacobsen, Douglas; Jacobsen, Rhonda Hustedt; Thatamanil, John J.; Porterfield, Amanda; Moore, Mary Elizabeth</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=chlorine&pg=5&id=EJ195190"> <span id="translatedtitle">The <span class="hlt">Formation</span> of Trihalomethanes.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Reviewed are a number of factors important in the <span class="hlt">formation</span> of trihalomethanes (THM) including the nature of aquatic humus and the influences of preozonation, bromide, pH, and chlorine. A brief investigation is also conducted into the kinetics of the THM reaction. Several major research needs are represented. (CS)|</p> <div class="credits"> <p class="dwt_author">Trussell, R. Rhodes; Umphres, Mark D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=religion+AND+college+AND+students&pg=3&id=EJ941792"> <span id="translatedtitle"><span class="hlt">Formation</span> in the Classroom</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|What is the relationship between the academic knowledge of the guild and the <span class="hlt">formation</span> of students in the classroom? This Forum gathers four essays originally presented at a Special Topics Session at the 2009 conference of the American Academy of Religion (Atlanta, Georgia), with a brief introductory essay by Fred Glennon explaining the genesis…</p> <div class="credits"> <p class="dwt_author">Glennon, Fred; Jacobsen, Douglas; Jacobsen, Rhonda Hustedt; Thatamanil, John J.; Porterfield, Amanda; Moore, Mary Elizabeth</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=photoshop&pg=3&id=EJ594630"> <span id="translatedtitle">Technobabble: File <span class="hlt">Formats</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Considers the confusion of over 20 different kinds of graphics programs. Briefly distinguishes between some of the more popular graphics <span class="hlt">formats</span> (Photoshop, TIFF, JPEG, GIF, PICT, and EPS), and describes the benefits and disadvantages of each in the context of journalism education. (SC)|</p> <div class="credits"> <p class="dwt_author">Wilson, Bradley</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011IAUS..270.....A"> <span id="translatedtitle">Computational Star <span class="hlt">Formation</span> (IAU S270)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">1. Historical introduction; 2. Individual star <span class="hlt">formation</span>: observations; 3. Low-mass star <span class="hlt">formation</span>: observations; 4. Individual star <span class="hlt">formation</span>: theory; 5. <span class="hlt">Formation</span> of clusters: observations; 6. <span class="hlt">Formation</span> of clusters: theory; 7. Numerical methods: MHD; 8. Numerical methods: radiative dynamics; 9. Local star <span class="hlt">formation</span> processes; 10. Star <span class="hlt">formation</span> feedback; 11. Star <span class="hlt">formation</span> on galactic scales; 12. Special purpose hardware; 13. Computational methods; 14. Radiation diagnostics of star <span class="hlt">formation</span>; 15. Large scale star <span class="hlt">formation</span>; 16. Cosmological star <span class="hlt">formation</span>; 17. Computational star <span class="hlt">formation</span>: Summary; Index.</p> <div class="credits"> <p class="dwt_author">Alves, João.; Elmegreen, Bruce G.; Girart, Josep M.; Trimble, Virginia</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2874132"> <span id="translatedtitle">Pattern <span class="hlt">formation</span> today</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Patterns are orders embedded in randomness. They may appear as spatial arrangements or temporal series, and the elements may appear identical or with variations. Patterns exist in the physical world as well as in living systems. In the biological world, patterns can range from simple to complex, forming the basic building blocks of life. The process which generates this ordering in the biological world was termed pattern <span class="hlt">formation</span>. Since Wolpert promoted this concept four decades ago, scientists from molecular biology, developmental biology, stem cell biology, tissue engineering, theoretical modeling and other disciplines have made remarkable progress towards understanding its mechanisms. It is time to review and re-integrate our understanding. Here, we explore the origin of pattern <span class="hlt">formation</span>, how the genetic code is translated into biological form, and how complex phenotypes are selected over evolutionary time. We present four topics: Principles, Evolution, Development, and Stem Cells and Regeneration. We have interviewed several leaders in the field to gain insight into how their research and the field of pattern <span class="hlt">formation</span> have shaped each other. We have learned that both molecular process and physico-chemical principles are important for biological pattern <span class="hlt">formation</span>. New understanding will emerge through integration of the analytical approach of molecular-genetic manipulation and the systemic approach of model simulation. We regret that we could not include every major investigator in the field, but hope that this Special Issue of the Int. J. Dev. Biol. represents a sample of our knowledge of pattern <span class="hlt">formation</span> today, which will help to stimulate more research on this fundamental process.</p> <div class="credits"> <p class="dwt_author">Chuong, Cheng-Ming; Richardson, Michael K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/n5p821t358r41142.pdf"> <span id="translatedtitle">Global Star-<span class="hlt">Formation</span> Rates</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">I review the basic modes of quiescent star <span class="hlt">formation</span> and starbursts. Star-<span class="hlt">formation</span> efficiency is the key to reconciling hierarchical\\u000a galaxy <span class="hlt">formation</span> with observed galaxy colours and counts. A unified viewpoint is that all star <span class="hlt">formation</span> is, at some level,\\u000a bursty. This is motivated both by local observations and by theory. I describe how self-regulation of star <span class="hlt">formation</span> provides\\u000a prescriptions for</p> <div class="credits"> <p class="dwt_author">Joseph Silk</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51306182"> <span id="translatedtitle">External triggers of star <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The local processes leading to star-<span class="hlt">formation</span> are not well known; gravitational instabilities can be triggered by shocks and stellar winds, and it is believed that star-<span class="hlt">formation</span> can thus propagate. Cloud-cloud collisions have been assumed to trigger star-<span class="hlt">formation</span> or at least giant molecular clouds <span class="hlt">formation</span>. On the kpc scale, the star-<span class="hlt">formation</span> rate seems to be proportional to some power of the</p> <div class="credits"> <p class="dwt_author">F. Combes</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3465733"> <span id="translatedtitle">Pattern <span class="hlt">formation</span> during vasculogenesis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Vasculogenesis, the assembly of the first vascular network, is an intriguing developmental process that yields the first functional organ system of the embryo. In addition to being a fundamental part of embryonic development, vasculogenic processes also have medical importance. To explain the organizational principles behind vascular patterning, we must understand how morphogenesis of tissue level structures can be controlled through cell behavior patterns that, in turn, are determined by biochemical signal transduction processes. Mathematical analyses and computer simulations can help conceptualize how to bridge organizational levels and thus help in evaluating hypotheses regarding the <span class="hlt">formation</span> of vascular networks. Here we discuss the ideas that have been proposed to explain the <span class="hlt">formation</span> of the first vascular pattern: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and sprouting guided by cell-cell contacts.</p> <div class="credits"> <p class="dwt_author">Czirok, Andras; Little, Charles D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/k835861gm82prvg7.pdf"> <span id="translatedtitle">Mechanisms of Stone <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have reviewed the general mechanisms involved in kidney stone <span class="hlt">formation</span>, with reference to those composed of calcium oxalate\\u000a or phosphate, uric acid, and cystine. These processes include nucleation of individual crystals, aggregation or secondary\\u000a nucleation to produce small intrarenal multicrystalline aggregates, fixation within the kidney, and further aggregation and\\u000a secondary nucleation to produce the clinical stone. The factors regulating</p> <div class="credits"> <p class="dwt_author">Vishal N. Ratkalkar; Jack G. Kleinman</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://serc.carleton.edu/NAGTWorkshops/geomorph/activities/23478.html"> <span id="translatedtitle">Drumlin <span class="hlt">Formation</span> Library Work</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Students will individually produce a written introduction for a paper about the presence of drumlins on Mars - this introduction describes different models for drumlin <span class="hlt">formation</span> on earth. To prepare for this assignment, students work in groups to do library research to find and read articles. The groups summarize their findings for each other. Each student then writes an introduction incorporating material from all the groups. Designed for a geomorphology course Uses geomorphology to solve problems in other fields</p> <div class="credits"> <p class="dwt_author">Anders, Alison M.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48486503"> <span id="translatedtitle">GALEX and star <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Wide-field far-UV (FUV, 1344–1786 Å) and near-UV (NUV, 1771–2831 Å) imaging from GALEX provides a deep, comprehensive view of the young stellar populations in hundreds of nearby galaxies, shedding new light on\\u000a the process of star <span class="hlt">formation</span> (SF) in different environments, and on the interplay between dust and SF. GALEX’s FUV-NUV color is extremely sensitive to stellar populations of ages up to</p> <div class="credits"> <p class="dwt_author">Luciana Bianchi</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pbslearningmedia.org/resource/ess05.sci.ess.earthsys.cavebiogeo/"> <span id="translatedtitle">Cave <span class="hlt">Formation</span>: Biogeochemical Cycles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This video explores the role of biogeochemical cycles in the <span class="hlt">formation</span> of caves. It discusses a radical new theory that identifies sulfuric acid as a cave-forming agent. The video, adapted from a NOVA broadcast, identifies the source of the sulfuric acid, which, unlike carbonic acid, the typical cave-forming agent, does not readily form in nature. The segment is 5 minutes and forty seconds in length.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008PhDT.........2R"> <span id="translatedtitle">Chemistry of planet <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This thesis explores how the chemical environment in which planets develop influences planet <span class="hlt">formation</span>. The total solid mass, gas/solid ratio, and specific ice inventory of protoplanetary disks can dramatically alter the planet's <span class="hlt">formation</span> timescale, core/atmosphere mass ratio, and atmosphere composition. We present the results of three projects that probe the links between solar nebula composition and giant planet <span class="hlt">formation</span>. The first project offers evidence that stars with planets exhibit statistically significant silicon and nickel enrichment over the general metal-rich population. To test whether this prediction is compatible with the core accretion theory of planet <span class="hlt">formation</span>, we construct new numerical simulations of planet <span class="hlt">formation</span> by core accretion that establish the timescale on which a planet forming at 5 AU reaches rapid gas accretion, t rga , as a function of solid surface density s solid : ( t rga /1 Myr) = (s solid /25.0 g cm -2 ) - 1.44 . This relation enables us to construct Monte Carlo simulations that predict the fraction of star-disk systems that form planets as a function of [Fe/H], [Si/Fe], disk mass, outer disk radius and disk lifetime. Our simulations reproduce both the known planet-metallicity correlation and the planet-silicon correlation reported in this paper. The simulations predict that 15% of Solar-type stars form Jupiter-mass planets, in agreement with 12% predicted from extrapolation of the observed planet frequency-semimajor axis distribution. Despite the success of our Monte Carlo simulation of the planet-silicon correlation at predicting the properties of extrasolar Jovian planets, there is still no in situ core accretion simulation that can successfully account for the <span class="hlt">formation</span> of Saturn, Uranus or Neptune within the observed 2-3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet <span class="hlt">formation</span> is to take a full inventory of all the solids present in the solar nebula. In Project 2 (Chapter 3) we combine a viscously evolving protostellar disk with a kinetic model of ice <span class="hlt">formation</span>, which includes not just water but methane, ammonia, CO and 54 minor ices. We use this combined dynamical+chemical simulation to calculate the planetesimal composition and solid surface density in the solar nebula as a function of heliocentric distance and time. We find three effects that strongly favor giant planet <span class="hlt">formation</span>: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) recent lab results (Collings et al. 2004) showing that the ammonia and water ice lines should coincide, and (3) the presence of a substantial amount of methane ice in the trans-Saturnian region. Our results show higher solid surface densities than assumed in the core accretion models of Pollack et al. (1996) by a factor of 3-4 throughout the trans-Saturnian region. We also discuss the location of ice lines and their movement through the solar nebula, and provide new constraints on the possible initial disk configurations from gravitational stability arguments. Finally, we present a core accretion simulation of Saturn with a planet <span class="hlt">formation</span> timescale of 3.37 Myr, consistent with observed protostellar disk lifetimes. The protostellar disk model underlying this simulation is also capable of forming Jupiter within 2.5 Myr. We observe a new manifestation of the core accretion theory, in which Saturn's solid core does not reach isolation mass, and argue that this paradigm should apply to Uranus and Neptune as well. The planet <span class="hlt">formation</span> timescale is then governed primarily by the solid accretion rate instead of the gas contraction efficiency. Our model predicts a core mass of 44 M (+) for Saturn, heavier than inferred from observations by a factor of at least 2. We discuss possible mechanisms for reducing the core size without slowing down <span class="hlt">formation</span> and comment on the similarity between our core- heavy Saturn model and the exoplanet HD 149026 b .</p> <div class="credits"> <p class="dwt_author">Robinson, Sarah Elaine</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3228478"> <span id="translatedtitle">Terrestrial planet <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Advances in our understanding of terrestrial planet <span class="hlt">formation</span> have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet <span class="hlt">formation</span> from dust to planetesimals (?106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet <span class="hlt">formation</span> might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.</p> <div class="credits"> <p class="dwt_author">Righter, K.; O'Brien, D. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005JSP...121..901V"> <span id="translatedtitle">Flocks and <span class="hlt">Formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Given a large number (the "flock") of moving physical objects, we investigate physically reasonable mechanisms of influencing their orbits in such a way that they move along a prescribed course and in a prescribed and fixed configuration (or "in <span class="hlt">formation</span>"). Each agent is programmed to see the position and velocity of a certain number of others. This flow of information from one agent to another defines a fixed directed (loopless) graph in which the agents are represented by the vertices. This graph is called the communication graph. To be able to fly in <span class="hlt">formation</span>, an agent tries to match the mean position and velocity of his neighbors (his direct antecedents on the communication graph) to his own. This operation defines a (directed) Laplacian on the communication graph. A linear feedback is used to ensure stability of the coherent flight patterns. We analyze in detail how the connectedness of the communication graph affects the coherence of the stable flight patterns and give a characterization of these stable flight patterns. We do the same if in addition the flight of the flock is guided by one or more leaders. Finally we use this theory to develop some applications. Examples of these are: flight guided by external controls, flocks of flocks, and some results about flocks whose <span class="hlt">formation</span> is always oriented along the line of flight (such as geese).</p> <div class="credits"> <p class="dwt_author">Veerman, J. J. P.; Lafferriere, G.; Caughman, J. S.; Williams, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999PhDT........11T"> <span id="translatedtitle">Simulation of galaxy <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This thesis presents a detailed study of the simulation of galaxy <span class="hlt">formation</span> in the cold dark matter (CDM) cosmology. Smoothed Particle Hydrodynamics (SPH) is used to follow the hydrodynamics within the simulations and an analysis of the performance of twelve different implementations of SPH is presented. Seven tests are used which are designed to isolate key hydrodynamic elements of cosmological simulations. It is shown that the artificial viscosity is the single most important factor in determining results. The way in which force symmetry is achieved in the equation of motion has a secondary effect. Most results favour a kernel symmetrization approach. A detailed description of a method for simulating the <span class="hlt">formation</span> of individual galaxies is given. Gas regions which fall within temperature, density, self- gravity and convergent-flow criteria are assumed to form stars. A Lagrangian Schmidt Law is used to calculate the star <span class="hlt">formation</span> rate. Feedback from supernovae is incorporated by returning thermal energy to the inter- stellar medium. Radiative losses are prevented from heated particles by adjusting the radiative cooling mechanism. The model is tested on isolated disc galaxies as well as galaxies formed from cosmological initial conditions. A discussion is presented on the implementation of `HYDRA', a combined hydrodynamic and gravity N-body particle integrator, on shared-memory architectures with a symmetric multi- processor configuration (SMP). Parallelization is achieved using the directives in the OpenMP application program interface. The performance of the code is examined for up to 128 processors and excellent scaling is found, provided a large enough problem is studied. A high resolution simulation is presented which satisfies a number of criteria for accuracy defined in the SPH tests. Due to limitations of the parallel code it was not possible to integrate the simulation to the desired final epoch. At high resolution gas in-fall is seen to be highly unsmooth, and the gas appears to lose angular momentum more rapidly. Although higher resolution prevents the <span class="hlt">formation</span> of very dense gas cores it does not entirely prevent the condensation of cold gas. Prospects for the future of the simulation field, and the CDM model of structure <span class="hlt">formation</span> are given.</p> <div class="credits"> <p class="dwt_author">Thacker, Robert John</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N20000085955"> <span id="translatedtitle"><span class="hlt">Formation</span> Flying In Highly Elliptical Orbits Initializing the <span class="hlt">Formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">In this paper several methods are examined for initializing <span class="hlt">formations</span> in which all spacecraft start in a common elliptical orbit subsequent to separation from the launch vehicle. The tetrahedron <span class="hlt">formation</span> used on missions such as the Magnetospheric Multi...</p> <div class="credits"> <p class="dwt_author">L. Mailhe C. Schiff S. Hughes</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1987eram....4..433S"> <span id="translatedtitle"><span class="hlt">Formation</span> of neutrino halos</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A fully general relativistic nonlinear model of the <span class="hlt">formation</span> of massive neutrino halos in an Einstein-Straus universe was given by Fabbri, Jantzen and Ruffini (1982). The paper considers the role which a nonvanishing, repulsive cosmological constant Lambda greater than 0, admissible by observational limits, can have in the FJR model. The main conclusion is that the influence of Lambda is negligible in the FJR model for massive neutrinos with mass of about 10 eV, indicated by recent observations of SN 1987a. On the other hand, the cosmological constant is relevant in the model, if neutrinos have low mass, less than 0.2 eV.</p> <div class="credits"> <p class="dwt_author">Stuchlik, Zdenek</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20722749"> <span id="translatedtitle">Adiabatic Halo <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo <span class="hlt">formation</span>.</p> <div class="credits"> <p class="dwt_author">Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G. [Physics Department University of Bologna, INFN Bologna, via Irnerio 46 40126 Bologna Italy (Italy)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-06-08</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23521246"> <span id="translatedtitle">Ultrarelativistic black hole <span class="hlt">formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We study the head-on collision of fluid particles well within the kinetic energy dominated regime (? = 8 to 12) by numerically solving the Einstein-hydrodynamic equations. We find that the threshold for black hole <span class="hlt">formation</span> is lower (by a factor of a few) than simple hoop conjecture estimates, and, moreover, near this threshold two distinct apparent horizons first form postcollision and then merge. We argue that this can be understood in terms of a gravitational focusing effect. The gravitational radiation reaches luminosities of 0.014 c(5)/G, carrying 16 ± 2% of the total energy. PMID:23521246</p> <div class="credits"> <p class="dwt_author">East, William E; Pretorius, Frans</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-07</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007ASPC..376..343S"> <span id="translatedtitle">Kepler Data <span class="hlt">Formats</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Kepler data archive will endeavor to provide access to mission data in convenient <span class="hlt">formats</span> for astronomical researchers. The Kepler photometer will accumulate single-bandpass counts on 170,000 targets at a cadence of 30 min. Since archive users are expected to typically access data by astronomical source, pixels from each cadence will be sorted into files by target star. Files that contain the raw pixel values, calibrated pixel values, and calibrated flux for each target will be available from the Kepler archive. Ancillary engineering, collateral, and background data will also be available. All Kepler data will be subject to proprietary rights restrictions based on time and target.</p> <div class="credits"> <p class="dwt_author">Swade, D. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2040410"> <span id="translatedtitle">Modeling river delta <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A model to simulate the time evolution of river delta <span class="hlt">formation</span> process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/erosion law. Different delta types are reproduced by using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore, our model is capable of simulating the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi River.</p> <div class="credits"> <p class="dwt_author">Seybold, Hansjorg; Andrade, Jose S.; Herrmann, Hans J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.solarviews.com/cap/misc/ssanim.htm"> <span id="translatedtitle"><span class="hlt">Formation</span> of the Solar System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This animation depicts the <span class="hlt">formation</span> of the solar system from a solar nebula, a great swirling cloud of gas and dust. It is accompanied by a link to a written description explaining the solar system's <span class="hlt">formation</span> in greater detail.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=galaxies&pg=3&id=EJ321615"> <span id="translatedtitle">Star <span class="hlt">Formation</span> in Irregular Galaxies.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Examines mechanisms of how stars are formed in irregular galaxies. <span class="hlt">Formation</span> in giant irregular galaxies, <span class="hlt">formation</span> in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)|</p> <div class="credits"> <p class="dwt_author">Hunter, Deidre; Wolff, Sidney</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N7225749"> <span id="translatedtitle">Star <span class="hlt">Formation</span> a Literature Survey.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">formation</span> of stars from galactic clouds is considered. Dynamic collapse, fragmentation, and the Helmholtz-Kelvin contraction are discussed. Galactic cloud rotation and the influence of a magnetic field on stellar evolution are reviewed. The <span class="hlt">formation</span> ...</p> <div class="credits"> <p class="dwt_author">P. Ingvarson</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55830100"> <span id="translatedtitle">Star <span class="hlt">formation</span> and the Galaxy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This review discusses the extent of star <span class="hlt">formation</span> in the Milky Way with emphasis on the role of large-scale phenomena. Consideration is given to the problems of star <span class="hlt">formation</span> in the disk in the particular context of density-wave shock theory. Some tests of the relationships between the density-wave shock and star <span class="hlt">formation</span>, the rate of star <span class="hlt">formation</span>, the role of</p> <div class="credits"> <p class="dwt_author">F. J. Kerr</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/38566211"> <span id="translatedtitle">Identity <span class="hlt">Formation</span> During Early Adolescence</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A special issue of the Journal of Early Adolescence has been prepared to address theoretical and research issues concerning identity <span class="hlt">formation</span> during early adolescence. The issue has been designed to help direct and stimulate interest in research on identity <span class="hlt">formation</span> during early adolescence. In these introductory comments the major tenets of Erikson's psychosocial theory of identity <span class="hlt">formation</span> are outlined, the</p> <div class="credits"> <p class="dwt_author">Gerald R. Adams; Raymond Montemayor</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51823607"> <span id="translatedtitle">Initial Conditions for Star <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Recent studies have provided important information on the initial conditions for the <span class="hlt">formation</span> of low mass stars. These studies, using submillimeter continuum and line observations, have identified objects in the earliest stages of star <span class="hlt">formation</span> as cold, dense cores in which most molecules are frozen onto dust grains. We are placing constraints on different theories of star <span class="hlt">formation</span> with these</p> <div class="credits"> <p class="dwt_author">N. J. Evans</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56446714"> <span id="translatedtitle">Star <span class="hlt">Formation</span> in Spiral Arms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The origin and types of spiral arms are reviewed with an emphasis on the connections between these arms and star <span class="hlt">formation</span>. Flocculent spiral arms are most likely the result of transient instabilities in the gas that promote dense cloud <span class="hlt">formation</span>, star <span class="hlt">formation</span>, and generate turbulence. Long irregular spiral arms are usually initiated by gravitational instabilities in the stars, with the</p> <div class="credits"> <p class="dwt_author">B. G. Elmegreen</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57952916"> <span id="translatedtitle"><span class="hlt">Format</span> Integration and Serials Cataloging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Format</span> integration has achieved some goals: Seriality of nonprint materials can be expressed. Materials in several physical <span class="hlt">formats</span> can be described. Archival control of non-print materials can be designated. Content designation has been standardized. Validation routines have been simplified or eliminated. Documentation has been much reduced. <span class="hlt">Format</span> integration also brings new problems and issues. Bibliographic records are more complex, partly</p> <div class="credits"> <p class="dwt_author">Judith Johnston Recorder</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/x512001tx2675u11.pdf"> <span id="translatedtitle">Bone <span class="hlt">formation</span> by cancer metastases</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">formation</span> of heterotopic bone tissue in malignant tumors or in their metastases is extremely rare. In a 60 years old male patient with bronchogenic carcinoma (adenocarcinoma) extensive bone <span class="hlt">formation</span> was observed within multiple metastases in the skeletal muscles. On the basis of the microscopic findings, the mechanism of bone <span class="hlt">formation</span> by malignant tumors is discussed. Obviously, proliferation of local</p> <div class="credits"> <p class="dwt_author">U. Bettendorf; W. Remmele; H. Laaff</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60390844"> <span id="translatedtitle">Multiple fracturing of subterranean <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A method of fracturing subterranean <span class="hlt">formations</span> is described wherein a <span class="hlt">formation</span> is fractured and propped 2 or more times to increase the width of the propped fracture. The method involves the steps of propping the fracture with particulate material, consolidating the particulate material into a permeable mass, and thereafter refracturing the <span class="hlt">formation</span> and then propping the fracture produced by the</p> <div class="credits"> <p class="dwt_author">C. E. Jr. Cooke; J. W. Graham; T. W. Muecke</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6504696"> <span id="translatedtitle">Method for treating subterranean <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A method for treating a subterranean <span class="hlt">formation</span> comprised of placing in or adjacent the <span class="hlt">formation</span> a quantity of free-flowing, heat curable particles comprised of a high strength center, a coupling agent chemically bound to the center, a heat curable resin coated over the center; and causing said free flowing particles in or adjacent the <span class="hlt">formation</span> to form a cohesive mass.</p> <div class="credits"> <p class="dwt_author">Graham, J. W.; Sinclair, A. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-05-21</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001RMxAC..10..101M"> <span id="translatedtitle">Explosions During Galaxy <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">As an idealized model of the effects of energy release by supernovae during galaxy <span class="hlt">formation</span>, we consider an explosion at the center of a halo which forms at the intersection of filaments in the plane of a cosmological pancake by gravitational instability during pancake collapse. Such halos resemble the virialized objects found in N-body simulations in a CDM universe and, therefore, serve as a convenient, scale-free test-bed model for galaxy <span class="hlt">formation</span>. ASPH/P3M simulations reveal that such explosions are anisotropic. The energy and metals are channeled into the low density regions, away from the pancake plane. The pancake remains essentially undisturbed, even if the explosion is strong enough to blow away all the gas located inside the halo at the onset of the explosion and reheat the IGM surrounding the pancake. Infall quickly replenishes this ejected gas and gradually restores the gas fraction as the halo mass continues to grow. Estimates of the collapse epoch and SN energy-release for galaxies of different mass in the CDM model can relate these results to scale-dependent questions of blow-out and blow-away and their implication for early IGM heating and metal enrichment and the creation of dark-matter-dominated dwarf galaxies.</p> <div class="credits"> <p class="dwt_author">Martel, H.; Shapiro, P. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AAS...208.7304P"> <span id="translatedtitle">Planet <span class="hlt">Formation</span> and Migration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The discovery of over 160 extrasolar planets, many with very unusual properties, has driven a renaissance in the study of planet <span class="hlt">formation</span>. It is likely that Jovian and supra-Jovian planets formed at large distances, migrated towards their central stars, and yet somehow managed to stop short of plunging in. The growing theoretical and observational study of protostellar disks is allowing us to better probe the mechanism(s) of planet <span class="hlt">formation</span> and migration through disk-gas interactions. In this talk, we explore new insights in mechanisms for determing planetary masses that arise from the presence of turbulence-free, so called dead-zones in protostellar disks. Such regions should be present on scales of up to 15 AU in most disks and should have profound effects on the migration of both terrestrial and Jovian planets - in effect - saving planetary systems. We also explore some obervational consequences of such ideas for observing programmes that can be implemented at the planned new large-scale ground-based facilities; TMT and SKA.</p> <div class="credits"> <p class="dwt_author">Pudritz, Ralph E.; Matsumura, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3011924"> <span id="translatedtitle">Egg <span class="hlt">Formation</span> in Lepidoptera</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Reproductive biology in the Twentieth Century produced comprehensive descriptions of the mechanisms of egg <span class="hlt">formation</span> in most of the major orders of insects. While many general principles of ovarian development and physiology emerged, every order turned out to have a set of its own special motifs. Discovery of the lepidopteran motifs is summarized in this essay. The emphasis is on developmental mechanisms, beginning with the early growth and differentiation of female germ cells and ending, after many turns in morphogenesis, physiology and biosynthesis, with eggs that are filled with yolk and encased in chorions. Examples of uniquely lepidopteran traits include the cellular composition of ovarian follicles, the number of tubular ovarioles in which they mature, the functions of cell-to-cell junctional complexes in their maturation, their use of glycosaminoglycans to maintain intercellular patency during vitellogenesis, the role of proton and calcium pumps in their ion physiology, a separate postvitellogenic period of water and inorganic ion uptake, and the fine structure and protein composition of their chorions. Discovery of this combination of idiosyncracies was based on advances in the general concepts and techniques of cell and molecular biology and on insights borrowed from studies on other insects. The lepidopteran ovary in turn has contributed much to the understanding of egg <span class="hlt">formation</span> in insects generally.</p> <div class="credits"> <p class="dwt_author">Telfer, William H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23057712"> <span id="translatedtitle">Biofilm <span class="hlt">formation</span> by haloarchaea.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A fluorescence-based live-cell adhesion assay was used to examine biofilm <span class="hlt">formation</span> by 20 different haloarchaea, including species of Halobacterium, Haloferax and Halorubrum, as well as novel natural isolates from an Antarctic salt lake. Thirteen of the 20 tested strains significantly adhered (P-value ?< 0.05) to a plastic surface. Examination of adherent cell layers on glass surfaces by differential interference contrast, fluorescence and confocal microscopy showed two types of biofilm structures. Carpet-like, multi-layered biofilms containing micro- and macrocolonies (up to 50 ?m in height) were formed by strains of Halobacterium salinarum and the Antarctic isolate t-ADL strain DL24. The second type of biofilm, characterized by large aggregates of cells adhering to surfaces, was formed by Haloferax volcanii DSM 3757T and Halorubrum lacusprofundi DL28. Staining of the biofilms formed by the strongly adhesive haloarchaeal strains revealed the presence of extracellular polymers, such as eDNA and glycoconjugates, substances previously shown to stabilize bacterial biofilms. For Hbt. salinarum DSM 3754T and Hfx. volcanii DSM 3757T , cells adhered within 1 day of culture and remained viable for at least 2 months in mature biofilms. Adherent cells of Hbt. salinarum DSM 3754T showed several types of cellular appendages that could be involved in the initial attachment. Our results show that biofilm <span class="hlt">formation</span> occurs in a surprisingly wide variety of haloarchaeal species. PMID:23057712</p> <div class="credits"> <p class="dwt_author">Fröls, Sabrina; Dyall-Smith, Mike; Pfeifer, Felicitas</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-12</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49484180"> <span id="translatedtitle">Tracking large <span class="hlt">tabular</span> icebergs using the SeaWinds Ku-band microwave scatterometer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Knowledge of iceberg locations is important for safety reasons as well as for understanding many geophysical and biological processes. Originally designed to measure wind speed and direction over the ocean, SeaWinds is a microwave scatterometer that operates at 13.4GHz (Ku-band) on the QuikSCAT satellite. Radar measurements from SeaWinds are collected and processed on a daily basis using resolution-enhancement techniques to</p> <div class="credits"> <p class="dwt_author">K. M. Stuart; D. G. Long</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22Student+Success+rates%22&pg=4&id=EJ616808"> <span id="translatedtitle">Developmental Algebra Students' Use of Prose and <span class="hlt">Tabular</span> Representations of Functions To Construct Symbolic Models.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Reports that most of 13 developmental algebra students interviewed preferred constructing tables of values, or the combination of prose with tables, as symbolic models for additive and unit-rate functional relationships. States that these students achieved greater success rates than those who used only prose in their symbolic modeling attempts.…</p> <div class="credits"> <p class="dwt_author">Gray, Susan</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55231880"> <span id="translatedtitle">a <span class="hlt">Tabular</span> Method for the Computation of Temperature Change by Infrared Radiation in the Free Atmosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents tables for the computation of the rate of temperature change due to infrared radiation in the free atmosphere. The tables are based on empirical measurements by F. A. Brooks and Robinson of the emissivity of water vapor, and allow the computation of the rate of radiational temperature change at a given level of the atmosphere by a</p> <div class="credits"> <p class="dwt_author">Douglas Lee Brooks</p> <p class="dwt_publisher"></p> <p class="publishDate">1950-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3464260"> <span id="translatedtitle">Calcification, Storm Damage and Population Resilience of <span class="hlt">Tabular</span> Corals under Climate Change</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Two facets of climate change–increased tropical storm intensity and ocean acidification–are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms’ short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs.</p> <div class="credits"> <p class="dwt_author">Madin, Joshua S.; Hughes, Terry P.; Connolly, Sean R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRB..115.6311M"> <span id="translatedtitle">Kinematic and seismic analysis of giant <span class="hlt">tabular</span> iceberg breakup at Cape Adare, Antarctica</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Satellite imagery reveals that a series of large icebergs (B15B in April 2001, C19 in June 2003, and B15A in October 2005) broke up or fractured while exiting the Ross Sea in a narrowly defined area off Cape Adare, Antarctica. Examination of recent swath-mapped bathymetric observations revealed that the principle agent of these breakups is a previously unknown 9 km long ridge with minimum depths of 215 m that we call Davey Shoal. Satellite imagery shows that the icebergs are driven into the shoal by coastal currents that converge over the narrow continental shelf. One of the icebergs, the 120 km by 30 km B15A, was instrumented with a seismograph, GPS, and fluxgate compass. This instrumentation provided a unique opportunity to establish the details of the iceberg kinematics that were not revealed by satellite imagery alone and to correlate seismic events observed both on the iceberg and in the far field during breakup. B15A fractured from multiple strikes against Davey Shoal and the adjacent Possession Islands; these strikes were driven by the combination of tidal currents and the coastal mean flow. The periods of iceberg-sourced seismic radiation were correlated with the strikes. The iceberg- and land-based seismic signals showed that the iceberg fracture, its sliding across the shoals, and the ice-on-ice stick-slip contacts among the postbreakup iceberg fragments generated the strong chaotic and harmonic tremor episodes that were observed at distances as far as the South Pole, where these signals propagated as seismically coupled hydroacoustic T phases.</p> <div class="credits"> <p class="dwt_author">Martin, Seelye; Drucker, Robert; Aster, Richard; Davey, Fred; Okal, Emile; Scambos, Ted; Macayeal, Douglas</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://svs.gsfc.nasa.gov/vis/a000000/a002300/a002344/index.html"> <span id="translatedtitle">Pine Island Iceberg <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This animation is a sequence showing the <span class="hlt">formation</span> of the Pine Island iceberg and the glacial seaward flow upstream from the crack. It is a series of MISR images from the Terra satellite on top of the continental Radarsat view of Antarctica. The Pine Island Glacier is the largest discharger of ice in Antarctica and the continents fastest moving glacier. Even so, when a large crack formed across the glacier in mid 2000, it was surprising how fast the crack expanded, 15 meters per day, and how soon the resulting iceberg broke off, mid-November, 2001. This iceberg, called B-21, is 42 kilometers by 17 kilometers and contains seven years of glacier outflow released to the sea in a single event.</p> <div class="credits"> <p class="dwt_author">Perkins, Lori; Bindschadler, Bob; Diner, Dave</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011APS..MART43006G"> <span id="translatedtitle">Transitions in biofilm <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Biofilms are multicellular, dynamic communities formed by interacting unicellular organisms bound to a surface. Forming a biofilm is a developmental process, characterized by sequential changes in gene expression and behavior as bacteria and yeast progress from discrete, free-swimming cells though stages that arrive at a mature biofilm. We are developing automated metrics to identify key transitions in early biofilm <span class="hlt">formation</span> as cells attach to a surface, populate that surface, and adhere to each other to form early microcolonies. Our metrics use high-throughput tracking and analysis of microscopy movies to localize these transitions in space and time. Each of these transitions is associated with a loss of entropy in the bacterial system and, therefore, with biological activity that drives this loss of entropy. Better understanding of these transitions will allow automated determination of the strength and turn-on of attractive cell-surface and cell-cell interactions as biofilm development progresses.</p> <div class="credits"> <p class="dwt_author">Gordon, Vernita; Thatcher, Travis; Cooley, Benjamin</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009aai..book..383R"> <span id="translatedtitle">The Argument Interchange <span class="hlt">Format</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">While significant progress has been made in understanding the theoretical properties of different argumentation logics and in specifying argumentation dialogues, there remain major barriers to the development and practical deployment of argumentation systems. One of these barriers is the lack of a shared, agreed notation or “interchange <span class="hlt">format</span>” for argumentation and arguments. In the last years a number of different argument mark-up languages have been proposed in the context of tools developed for argument visualisation and construction (see [10] for a review). Thus, for example, the Assurance and Safety Case Environment (ASCE)1 is a graphical and narrative authoring tool for developing and managing assurance cases, safety cases and other complex project documentation.</p> <div class="credits"> <p class="dwt_author">Rahwan, Iyad; Reed, Chris</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/15011520"> <span id="translatedtitle">Mechanism of GEMS <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">GEMS (glass with embedded metal and sulfides) in interplanetary dust particles (IDPs) were examined using 200 keV analytical transmission electron microscopy. The morphologies and crystallography of embedded relict grains reveal that GEMS are pseudomorphs formed by irradiation processing of crystals free-floating in space. Some GEMS retain a compositional and morphological ''memory'' of the crystal from which they formed. Pseudomorphism rules out condensation, annealing, flash heating, or shock melting as alternative mechanisms of GEMS <span class="hlt">formation</span>. A significant and often dominant fraction of the atoms in GEMS were sputtered deposited from other grains. Therefore, a normal (solar) isotopic composition is not a reliable indicator of whether GEMS formed in the solar system or in presolar interstellar or circumstellar environments.</p> <div class="credits"> <p class="dwt_author">Bradley, J P; Dai, Z R</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-03-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998PhDT........97J"> <span id="translatedtitle">Cellular pattern <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This thesis studies the <span class="hlt">formation</span> and evolution of cellular patterns in foams and living organisms using the extended large-Q Potts model. Specific problems include grain growth, foam drainage, foam rheology, and patterning and cell sorting in the mound phase of the slime mode Dictyostelium discoideum. In a wide range of cellular materials, surface-energy-driven diffusion leads to boundary motion which causes some grains to expend and others to shrink. Two-dimensional large-Q Potts model simulation of the evolution of a disordered cluster developed from a hexagonal grain array with a defect shows that abnormal grain growth can occur without strong anisotropy of surface energy. The grains at the boundary of the disordered cluster reach a special scaling state with no scale change. In three-dimensional liquid foams, drainage occurs due to gravity. Large-Q Potts model simulations, extended to include gravity in three dimensions, agree with both experimental and analytical results for various kinds of foam drainage, and also predict new phenomena. Foams exhibit a unique rheological transition from solid-like to fluid-like. Simulations using the large-Q Potts model, extended to apply shear to a two-dimensional foam, show three different types of hysteresis in foam's stress-strain relationship, which correspond to the elastic, viscoelastic and viscous fluid properties. This wide-ranging mechanical response depends on the structure and dynamics of local topological rearrangement of foam cells. Biological tissues resemble foams and the large-Q Potts model can also simulate sorting in biological cell aggregates. In Dictyostelium mound, two types of cells are initially randomly distributed. In time, one cell type sorts to form a tip. Simulations show that both differential adhesion and chemotaxis are required for sorted tip <span class="hlt">formation</span>. With only differential adhesion, no tip forms. With only chemotaxis, a tip forms containing both cell types. Thus simulations can provide a method to determine the processes necessary for biological patterning.</p> <div class="credits"> <p class="dwt_author">Jiang, Yi</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6219471"> <span id="translatedtitle">User's guide for TRANZ: a data transformation and analysis program</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report is a user's guide for TRANZ, a program developed by Pacific Northwest Laboratory (PNL) for an IBM PC with a basic compiler, Version 2.0. The purpose of TRANZ is to convert, organize, and evaluate electrical end-use load data obtained from the Field Data Acquistion Systems (FDAS). These FDAS will be installed in commercial buildings and residence as part of the End-Use Load and Conservation Assessment Program (ELCAP) that is being managed by PNL for the Bonneville Power Administration (BPA). TRANZ has been developed with highly interactive menu-driven routines and requires little computer experience for proper operation. It is executable on a single or double disk drive IBM PC. The program can be used for spot checking data, troubleshooting installation problems, and preparing <span class="hlt">tabular</span> and graphical summaries. Sample files and program output, and a program source code listing are provided as appendices. The program itself contains six primary routines: The first routine converts the raw character byte data dumped from the FDAS into a <span class="hlt">formatted</span> <span class="hlt">ASCII</span> engineering unit file. The second routine checks the data to make sure that each value is within a reasonable range. The third routine sorts a file so that the records start at the earliest time and end at the latest time. The fourth routine appends two files for the same building or residence, removing any overlap in the files. The fifth routine summarizes the data in both a <span class="hlt">tabular</span> and graphical form. The sixth routine generates a hard copy table of day numbers and their corresponding dates.</p> <div class="credits"> <p class="dwt_author">Fischer, K.J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.nutrientdataconf.org/PastConf/NDBC21/c4.pdf"> <span id="translatedtitle">Paper C4-1 Nutrient Data Laboratory (USDA\\/ARS)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">USDA Nutrient Database for Standard Reference. The USDA Nutrient Database for Standard Reference (SR), Release 11 will be available in August, 1996. The database will adopt a relational structure and will be released as <span class="hlt">ASCII</span> delimited files. In addition to the <span class="hlt">ASCII</span> delimited files, the CD-ROM release will add files in DBF and the IFDA Data Exchange <span class="hlt">format</span>. 2) Primary</p> <div class="credits"> <p class="dwt_author">Joanne Holden</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/9759"> <span id="translatedtitle">Large <span class="hlt">Format</span> Radiographic Imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Radiographic imaging continues to be a key diagnostic in many areas at Los Alamos National Laboratory (LANL). Radiographic recording systems have taken on many form, from high repetition-rate, gated systems to film recording and storage phosphors. Some systems are designed for synchronization to an accelerator while others may be single shot or may record a frame sequence in a dynamic radiography experiment. While film recording remains a reliable standby in the radiographic community, there is growing interest in investigating electronic recording for many applications. The advantages of real time access to remote data acquisition are highly attractive. Cooled CCD camera systems are capable of providing greater sensitivity with improved signal-to-noise ratio. This paper begins with a review of performance characteristics of the Bechtel Nevada large <span class="hlt">format</span> imaging system, a gated system capable of viewing scintillators up to 300 mm in diameter. We then examine configuration alternatives in lens coupled and fiber optically coupled electro-optical recording systems. Areas of investigation include tradeoffs between fiber optic and lens coupling, methods of image magnification, and spectral matching from scintillator to CCD camera. Key performance features discussed include field of view, resolution, sensitivity, dynamic range, and system noise characteristics.</p> <div class="credits"> <p class="dwt_author">J. S. Rohrer; Lacey Stewart; M. D. Wilke; N. S. King; S. A Baker; Wilfred Lewis</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997PhRvB..5612608Y"> <span id="translatedtitle">Pattern <span class="hlt">formation</span> during electropolishing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using atomic force microscopy, we find that the surface morphology of a dissolving aluminum anode in a commercial electropolishing electrolyte can exhibit both highly regular and randomly packed stripe and hexagonal patterns with amplitudes of about 5 nm and wavelengths of 100 nm. The driving instability of this pattern <span class="hlt">formation</span> phenomenon is proposed to be the preferential adsorption of polar or polarizable organic molecules on surface ridges where the contorted double layer produces a higher electric potential gradient. The enhanced relative coverage shields the anode and induces a smaller dissolution rate at the ridges. The instability is balanced by surface diffusion of the adsorbate to yield a length scale of 4?(Ds/kd)1/2, where Ds is the surface diffusivity and kd is the desorption coefficient of the adsorbate, which correlates well with the measured wavelength. A long-wavelength expansion of the double-layer field yields an interface evolution equation that reproduces all of the observed patterns. In particular, bifurcation analysis and numerical simulation yield a single voltage-dependent dimensionless parameter ? that measures a balance between smoothing of adsorbate concentration by electric-field-dependent surface diffusion and fluctuation due to interfacial curvature and stretching. Randomly oriented stripes are favored at large ? (low voltage), while random hills dominate at small ? (high voltage) with perfectly periodic stripes and hexagonal hill patterns within a small window near ?=1. These predictions are in qualitative and quantitative agreement with our measurements.</p> <div class="credits"> <p class="dwt_author">Yuzhakov, Vadim V.; Chang, Hsueh-Chia; Miller, Albert E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19714327"> <span id="translatedtitle">Microbial <span class="hlt">formation</span> of esters.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Small aliphatic esters are important natural flavor and fragrance compounds and have numerous uses as solvents and as chemical intermediates. Besides the chemical or lipase-catalyzed <span class="hlt">formation</span> of esters from alcohols and organic acids, small volatile esters are made by several biochemical routes in microbes. This short review will cover the biosynthesis of esters from acyl-CoA and alcohol condensation, from oxidation of hemiacetals formed from aldehydes and alcohols, and from the insertion of oxygen adjacent to the carbonyl group in a straight chain or cyclic ketone by Baeyer-Villiger monooxygenases. The physiological role of the ester-forming reactions can allow degradation of ketones for use as a carbon source and may play a role in detoxification of aldehydes or recycling cofactors. The enzymes catalyzing each of these processes have been isolated and characterized, and a number of genes encoding the proteins from various microbes have been cloned and functionally expressed. The use of these ester-forming organisms or recombinant organisms expressing the appropriate genes as biocatalysts in biotechnology to make specific esters and chiral lactones has been studied in recent years. PMID:19714327</p> <div class="credits"> <p class="dwt_author">Park, Yong Cheol; Shaffer, Catherine Emily Horton; Bennett, George N</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60458638"> <span id="translatedtitle">Colloid <span class="hlt">formation</span> in implanted glasses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Metal colloids in glasses can yield an enhanced ([chi]([sup 3])) susceptibility which leads to an intensity dependent refractive index. Ion implantation is a convenient means of introducing the metal species. The host glass plays an important role in colloid <span class="hlt">formation</span>. We have characterized Ag-colloid <span class="hlt">formation</span> in various silicate glasses and, in addition, have studied the <span class="hlt">formation</span> of colloids in Ag-doped</p> <div class="credits"> <p class="dwt_author">G. W. Arnold; P. Mazzoldi; L. Tramontin; A. Boscolo-Boscoletto; G. Battaglin</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60546447"> <span id="translatedtitle">Colloid <span class="hlt">formation</span> in implanted glasses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Metal colloids in glasses can yield an enhanced (Ï(³)) susceptibility which leads to an intensity dependent refractive index. Ion implantation is a convenient means of introducing the metal species. The host glass plays an important role in colloid <span class="hlt">formation</span>. We have characterized Ag-colloid <span class="hlt">formation</span> in various silicate glasses and, in addition, have studied the <span class="hlt">formation</span> of colloids in Ag-doped phosphate</p> <div class="credits"> <p class="dwt_author">G. W. Arnold; P. Mazzoldi; L. Tramontin; A. Boscolo-Boscoletto; G. Battaglin</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/14982179"> <span id="translatedtitle">Struvite scale <span class="hlt">formation</span> and control.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Struvite scale <span class="hlt">formation</span> is a major operational issue at both conventional and biological nutrient removal wastewater treatment plants. Factors affecting the <span class="hlt">formation</span> of struvite scales were investigated including supersaturation, pH and pipe material and roughness. A range of control methods have been investigated including low fouling materials, pH control, inhibitor and chemical dosing. Control methods exist to reduce scale <span class="hlt">formation</span> although each has its advantages and disadvantages. PMID:14982179</p> <div class="credits"> <p class="dwt_author">Parsons, S A; Doyle, J D</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27612088"> <span id="translatedtitle">Star <span class="hlt">Formation</span> in Spiral Arms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The origin and types of spiral arms are reviewed with an emphasis on the\\u000aconnections between these arms and star <span class="hlt">formation</span>. Flocculent spiral arms are\\u000amost likely the result of transient instabilities in the gas that promote dense\\u000acloud <span class="hlt">formation</span>, star <span class="hlt">formation</span>, and generate turbulence. Long irregular spiral\\u000aarms are usually initiated by gravitational instabilities in the stars, with\\u000athe</p> <div class="credits"> <p class="dwt_author">Bruce G. Elmegreen</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50198046"> <span id="translatedtitle"><span class="hlt">Formation</span> flying in elliptical orbits</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a general approach to the analysis of the <span class="hlt">formation</span> flying problem, based on FreeFlyer(R) and MATLAB(R), that is designed with spacecraft <span class="hlt">formations</span> in mind. With this approach, we are able to quickly combine new algorithms for the initialization and control of a <span class="hlt">formation</span> within the context of a high-fidelity operational tool. As an example, we can use a</p> <div class="credits"> <p class="dwt_author">Conrad Schiff; D. Rohrbaugh; J. Bristow</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004IAUS..217..224W"> <span id="translatedtitle">Modelling the ISM and Star <span class="hlt">Formation</span> in Galaxy <span class="hlt">Formation</span> Simulations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using a set of 60 Tree-SPH simulations of the <span class="hlt">formation</span> of an individual galaxy, including star <span class="hlt">formation</span> physics, we quantitatively assess the numerical accuracy and convergence of these methods. For simulations using 24000 particles in total, the gross structures of the resultant galaxies are reliably resolved.</p> <div class="credits"> <p class="dwt_author">Williams, P. R.; Nelson, A. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ApJ...749...36K"> <span id="translatedtitle">Dwarf Galaxy <span class="hlt">Formation</span> with H2-regulated Star <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We describe cosmological galaxy <span class="hlt">formation</span> simulations with the adaptive mesh refinement code Enzo that incorporate a star <span class="hlt">formation</span> prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star <span class="hlt">formation</span> in low-mass halos (Mh <~ 1010 M ?) at z > 4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy <span class="hlt">formation</span> models. H2 regulation modifies the efficiency of star <span class="hlt">formation</span> of cold gas directly, rather than indirectly reducing the cold gas content with "supernova feedback." We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z = 4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized one-dimensional radiative transfer calculations of H2 <span class="hlt">formation</span>-dissociation balance in ~100 pc atomic-molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low ?gas cutoff due to the transition from atomic to molecular phase and the metallicity dependence thereof, without the use of an explicit density threshold in our star <span class="hlt">formation</span> prescription. We compare the evolution of the luminosity function, stellar mass density, and star <span class="hlt">formation</span> rate density from our simulations to recent observational determinations of the same at z = 4-8 and find reasonable agreement between the two.</p> <div class="credits"> <p class="dwt_author">Kuhlen, Michael; Krumholz, Mark R.; Madau, Piero; Smith, Britton D.; Wise, John</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFM.V51E..04O"> <span id="translatedtitle">Microdiamonds <span class="hlt">Formation</span> During</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The previous studies on the Kokchetav UHPM rocks by the authors group demonstrated the following subjects on the <span class="hlt">formation</span> of microdiamonds. Microdiamond is highly abundant (max. ca. 2700carat/ton) in dolomite marble that has diopside (with K-bearing silicate lamella)-dolomite-garnet assemblage and was stable at XCO2=0.1. The microdiamonds in dolomite marble are classified into 3- types; S, R and T. The dominant type S (ca. 80%) indicates that it grew at two stages, the core and rim stages. R-type grew mainly at the core stage, and T-type grew at the rim stage (Ishida et al., 2003; Yoshioka & Ogasawara, 2005). One of the possible source of carbon for the 2nd stage growth is a fluid during UHPM. Some domains of dolomite marble contacting with dolomitic marble lack diamond, and indicate are lower XCO2 than diamond-bearing marble. No diamond occurs in dolomitic marble that is a product of strong H2O-rich fluid effect during UHPM (Ogasawara & Aoki, 2005); Ti-clinohumite-aragonite corresponds to extremely low-XCO2 (=<0.01), and the TiO2 carrier could be a H2O-rich fluid. Hydroxyl in lamellar-free diopside was confirmed as > 850ppm (Kikuchi & Ogasawara, in press). Low XCO2 condition corresponds to relatively oxidized conditions (Ogasawara et al., 2000). Extremely low-XCO2 conditions are unsuitable for diamond <span class="hlt">formation</span>. A small amount of microdiamond (61 grains) occurs in diopside (with lamellar) in some layers of titanite-bearing calcite marble. Other domain contains titanite with coesite exsolution and the precursor silica-excess composition of titanite gave the minimum pressure as 6 GPa (Ogasawara et al., 2002). The presence of titanite (including relic aragonite + rutile) indicates very low-XCO2 (ca. 0.02). All grains of microdiamond are similar to R-type in morphology. No evidence for the 2nd stage diamond growth was observed. No diamond occurs in garnet- clinopyroxene rock like _gskarns_h. This rock has UHP evidence; coesite exsolution in titanite and K- bearing-silicate lamella in clinopyroxene, and is a product of the metasomatism (indicating very low XCO2) under UHP. The lack of diamond is consistent with other diamond-free carbonate rocks that were stable under extremely low- XCO2. The 2nd abundant diamond-bearing rock is pelitic gneiss. The characteristic features of microdiamonds show the strong contrast with those in dolomite marble. The dominant morphology is rounded to cuboidal form with rugged surface (> 80%); this corresponds to R- type. S-type is rare in pelitic gneiss. Morphology of microdiamond is controlled by growth and/or dissolution. Rounded grain with smooth surface may show the resorption after diamond growth. The absence of S-type diamond is a great difference from the microdiamond in dolomite marble, and indicates that fluid played different roles in both two diamond-bearing rocks; 1) carbon dissolved into aqueous fluid in pelitic gneiss, and 2) carbon precipitated from fluid to form microdiamond at the 2nd stage in dolomite marble. The microdiamond formed at the 2nd stage might be closely related to UHPM fluid. A model for fluid evolution from CO2-rich to H2O-rich during prograde stage can explain the metamorphic history of the Kokchetav carbonate rocks. Such UHPM fluid evolution may be caused by the dehydration in gneisses/eclogites surrounding the carbonate. Summarizing these, ``Intraslab UHP metasomatism" could be proposed. References: Ishida et al. (2003) J. Metamorphic Geol., 21. Kikuchi & Ogasawara (in press) GSA Special Papers. Ogasawara et al. (2000) Island Arc, 9, 400-416. Ogasawara et al. (2002) Am. Min., 87, 454-461. Ogasawara & Aoki (2005) Int. Geol. Rev., 47 (in press). Yoshioka & Ogasawara (2005) Int. Geol. Rev., 47, 703-715.</p> <div class="credits"> <p class="dwt_author">Ogasawara, Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/553096"> <span id="translatedtitle">Pattern <span class="hlt">formation</span> during electropolishing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Using atomic force microscopy, we find that the surface morphology of a dissolving aluminum anode in a commercial electropolishing electrolyte can exhibit both highly regular and randomly packed stripe and hexagonal patterns with amplitudes of about 5 nm and wavelengths of 100 nm. The driving instability of this pattern <span class="hlt">formation</span> phenomenon is proposed to be the preferential adsorption of polar or polarizable organic molecules on surface ridges where the contorted double layer produces a higher electric potential gradient. The enhanced relative coverage shields the anode and induces a smaller dissolution rate at the ridges. The instability is balanced by surface diffusion of the adsorbate to yield a length scale of 4{pi}(D{sub s}/k{sub d}){sup 1/2}, where D{sub s} is the surface diffusivity and k{sub d} is the desorption coefficient of the adsorbate, which correlates well with the measured wavelength. A long-wavelength expansion of the double-layer field yields an interface evolution equation that reproduces all of the observed patterns. In particular, bifurcation analysis and numerical simulation yield a single voltage-dependent dimensionless parameter {xi} that measures a balance between smoothing of adsorbate concentration by electric-field-dependent surface diffusion and fluctuation due to interfacial curvature and stretching. Randomly oriented stripes are favored at large {xi} (low voltage), while random hills dominate at small {xi} (high voltage) with perfectly periodic stripes and hexagonal hill patterns within a small window near {xi}=1. These predictions are in qualitative and quantitative agreement with our measurements. {copyright} {ital 1997} {ital The American Physical Society}</p> <div class="credits"> <p class="dwt_author">Yuzhakov, V.V.; Chang, H.; Miller, A.E. [Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007prpl.conf..591L"> <span id="translatedtitle"><span class="hlt">Formation</span> of Giant Planets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The observed properties of giant planets, models of their evolution, and observations of protoplanetary disks provide constraints on the <span class="hlt">formation</span> of gas giant planets. The four largest planets in our solar system contain considerable quantities of hydrogen and helium; these gases could not have condensed into solid planetesimals within the protoplanetary disk. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. The transiting extrasolar planet HD149026b, which is slightly more massive than Saturn, appears to have comparable amounts of light gases and heavy elements. The other observed transiting exoplanets are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our solar system, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus, and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of these planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the giant planet cores grow massive enough to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary question regarding the core nucleated growth model is under what conditions can planets develop cores sufficiently massive to accrete gas envelopes within the lifetimes of gaseous protoplanetary disks.</p> <div class="credits"> <p class="dwt_author">Lissauer, J. J.; Stevenson, D. J.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2180411"> <span id="translatedtitle">ANTIBODY <span class="hlt">FORMATION</span> IN VITRO</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Neutralizing activity against T2 bacteriophage appeared in cultures of lymph node cells from normal rats in response to their in vitro stimulation with a cell-free filtrate derived from homogenized rat macrophages which had been incubated with T2 bacteriophage. This activity was specifically directed against T2 bacteriophage. It resided in a fraction of the culture fluid which had the salting-out properties of serum globulin. Phage neutralization was inhibited by antibody specific for rat serum gamma globulin. Antibody production against T2 bacteriophage in cultures of lymph node cells from normal animals failed to occur if (a) T2 bacteriophage alone was added, (b) if the incubation period of macrophages and T2 phage was unduly shortened, (c) if the cell-free filtrate was heated at 80–100°C for 15 minutes, (d) if more than an optimal amount of T2 bacteriophage was added to the macrophages. Additional factors which prevented the <span class="hlt">formation</span> of antibody were the heat inactivation of the lymph node cells or the addition to the culture medium of either streptomycin or ribonuclease. Finally, it was found that macrophages and lymph node cells had to be obtained from animals of one and the same species. All essential findings on the production of antibody to T2 bacteriophage in vitro could be confirmed by substitution of the chick embryo for the tissue culture medium. The results are discussed in terms of a possible mechanism of antibody production in which an RNAse-sensitive substance resulting from the interaction of macrophages and antigen is capable of stimulating antibody synthesis in lymphocytic cells.</p> <div class="credits"> <p class="dwt_author">Fishman, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1961-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22coaching%22&pg=5&id=EJ963530"> <span id="translatedtitle">The Principal as <span class="hlt">Formative</span> Coach</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|<span class="hlt">Formative</span> coaching, an approach that uses student work as the foundation for mentoring and professional development, can help principals become more effective instructional leaders. In <span class="hlt">formative</span> coaching, teaches and coaches analyze student work to determine next steps for instruction. This article shows how a principal can use the steps of the…</p> <div class="credits"> <p class="dwt_author">Nidus, Gabrielle; Sadder, Maya</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/l50t664303201260.pdf"> <span id="translatedtitle">The <span class="hlt">formation</span> of tropical cyclones</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary This paper attempts a synthesis of new observations and new concepts on how tropical cyclone <span class="hlt">formation</span> occurs. Despite many worthy observational and numerical modeling studies in recent decades, our understanding of the detailed physical processes associated with the early stages of tropical cyclone <span class="hlt">formation</span> is still inadequate; operational forecast skill is not very high. Although theoretical ideas cover a</p> <div class="credits"> <p class="dwt_author">W. M. Gray</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50404849"> <span id="translatedtitle"><span class="hlt">Formation</span> control using generalized coordinates</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper develops a control methodology which allows a number of vehicles to move as a group while maintaining a desired <span class="hlt">formation</span> pattern. The control is based on the use of generalized coordinates. These coordinates characterize the location (L), orientation (O), and shape (S) of the <span class="hlt">formation</span>. This provides a natural and convenient way of specifying configuration and allows the</p> <div class="credits"> <p class="dwt_author">Stephen Spry; J. Karl Hedrick</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22customization%22&pg=4&id=ED527526"> <span id="translatedtitle">New Frontiers in <span class="hlt">Formative</span> Assessment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|"<span class="hlt">Formative</span> assessment is a powerful learning tool that is too seldom, too haphazardly, and too ineffectively used in the United States," Pendred E. Noyce writes in the introduction to this volume. "The purpose of this book is to delve into why this is so and how it can be changed." <span class="hlt">Formative</span> assessment involves constantly monitoring student…</p> <div class="credits"> <p class="dwt_author">Noyce, Pendred E., Ed.; Hickey, Daniel T., Ed.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JOM....64l1403M"> <span id="translatedtitle">Hydride <span class="hlt">Formation</span> in Zirconium Alloys</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The ingress of hydrogen during corrosion in service can degrade the mechanical properties of zirconium alloy nuclear fuel cladding because of the <span class="hlt">formation</span> of brittle hydrides. The <span class="hlt">formation</span> of these hydrides is reviewed in light of recent synchrotron radiation experimental results and phase-field modeling computational results that provide new insight on the process.</p> <div class="credits"> <p class="dwt_author">Motta, Arthur T.; Chen, Long-Qing</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40609961"> <span id="translatedtitle">Gene expression regulating blastocyst <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Development of embryos to the blastocyst stage is a critical event in the early lives of all eutherian mammalian species. Blastocyst <span class="hlt">formation</span> is essential for implantation and is the principal morphological determinant of embryo quality prior to embryo transfer. The physiological events and roles of specific gene families that regulate blastocyst <span class="hlt">formation</span> are subjects of intense research. Recent findings have</p> <div class="credits"> <p class="dwt_author">A. J Watson; M. E Westhusin; P. A De Sousa; D. H Betts; L. C Barcroft</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21260143"> <span id="translatedtitle">Star <span class="hlt">formation</span> in the multiverse</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We develop a simple semianalytic model of the star <span class="hlt">formation</span> rate as a function of time. We estimate the star <span class="hlt">formation</span> rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.</p> <div class="credits"> <p class="dwt_author">Bousso, Raphael; Leichenauer, Stefan [Center for Theoretical Physics, Department of Physics, University of California, Berkeley, California 94720-7300 (United States) and Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/15000927"> <span id="translatedtitle">Infrared studies of star <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Infrared observations at wavelengths of a few microns to 1 mm are reviewed which pertain to the problem of star <span class="hlt">formation</span>. The data considered include observations of large gas and dust clouds within which stars may be forming and detailed studies of individual objects within these clouds. Stages of star <span class="hlt">formation</span> are outlined, the IR luminosity of forming stars is</p> <div class="credits"> <p class="dwt_author">M. W. Werner; E. E. Becklin; G. Neugebauer</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56096533"> <span id="translatedtitle">Recent star <span class="hlt">formation</span> in galaxies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In recent years the study of starburst galaxies has become a very popular subject because of their intimate connection with the global star <span class="hlt">formation</span> history of the Universe. Current estimates of the star <span class="hlt">formation</span> rate of the Unvierse have been interpreted on the basis of our understanding of local analogous galaxies, in particular through UV continuum and optical line emission.</p> <div class="credits"> <p class="dwt_author">Alessandro Bressan</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53203103"> <span id="translatedtitle">Star <span class="hlt">Formation</span> Through Cosmic Time</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">I will review the literature on the star <span class="hlt">formation</span> history of the Universe, from the first stars up to the current day. The first (population III) stars appear to be responsible for the re-ionization of the Universe, and for seeding the inter-galactic medium with heavy elements, facilitating the <span class="hlt">formation</span> of subsequent generations. There are now many lines of evidence from</p> <div class="credits"> <p class="dwt_author">Michael A. Dopita</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6670751"> <span id="translatedtitle">Method for acidizing siliceous <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A method is described for treating a subterranean <span class="hlt">formation</span> surrounding a wellbore which comprises injecting into the <span class="hlt">formation</span> an aqueous acidizing solution. The aqueous acidizing solution contains hydrofluoric acid and excess fluoride. The excess fluoride is present in an amount greater than the amount of fluoride stoichiometrically required to form hydrofluoric acid, and thereafter fluids are produced from the wellbore.</p> <div class="credits"> <p class="dwt_author">Lamb, W.J.; Kunze, K.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-03-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22definition%22+AND+%22self-efficacy%22&pg=4&id=EJ912798"> <span id="translatedtitle"><span class="hlt">Formative</span> Assessment: A Critical Review</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|This paper covers six interrelated issues in <span class="hlt">formative</span> assessment (aka, "assessment for learning"). The issues concern the definition of <span class="hlt">formative</span> assessment, the claims commonly made for its effectiveness, the limited attention given to domain considerations in its conceptualisation, the under-representation of measurement principles in that…</p> <div class="credits"> <p class="dwt_author">Bennett, Randy Elliot</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49530037"> <span id="translatedtitle">Tubulogenesis during blood vessel <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The ability to form and maintain a functional system of contiguous hollow tubes is a critical feature of vascular endothelial cells (ECs). Lumen <span class="hlt">formation</span>, or tubulogenesis, occurs in blood vessels during both vasculogenesis and angiogenesis in the embryo. <span class="hlt">Formation</span> of vascular lumens takes place prior to the establishment of blood flow and to vascular remodeling which results in a characteristic</p> <div class="credits"> <p class="dwt_author">Ke Xu; Ondine Cleaver</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57904364"> <span id="translatedtitle">Fast Food Television Advertisement <span class="hlt">Formats</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The purpose of the study was to examine favorite <span class="hlt">formats</span> in hamburger television advertisements in order to assist companies in effectively communicating with their target audiences and to motivate those audiences to purchase products. The main findings of the study are that college students appear to prefer the special-effects <span class="hlt">format</span> for presenting hamburgers in television advertisements. In addition, the testimonial</p> <div class="credits"> <p class="dwt_author">Fang-Yi Lin; Shane C. Blum; Tim Dodd</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60294833"> <span id="translatedtitle">Method of fracturing subsurface <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In a method of forming a multilayer pack of rigid, spherical propping agent particles in a fracture in a relatively soft <span class="hlt">formation</span>, after the <span class="hlt">formation</span> has been fractured, the faces of the fracture are sealed for only a part of the distance from the well. A liquid carrying the propping agent is then displaced into the fracture whereby the liquid</p> <div class="credits"> <p class="dwt_author">J. L. Huitt; B. B. McGlothlin</p> <p class="dwt_publisher"></p> <p class="publishDate">1967-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=physical+AND+fitness+AND+motivators&id=EJ794504"> <span id="translatedtitle">Motivating Students through <span class="hlt">Formative</span> Feedback</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Technology tools that are used to help apply standards and benchmarks motivate physical educators to use new methods of teaching, and create new ways to provide students with direct <span class="hlt">formative</span> feedback, the number one motivator for students. Direct <span class="hlt">formative</span> feedback refers to verbal communication between the teacher and/or parent and student. The…</p> <div class="credits"> <p class="dwt_author">Mauch, Lois</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3230774"> <span id="translatedtitle">Tubulogenesis during blood vessel <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The ability to form and maintain a functional system of contiguous hollow tubes is a critical feature of vascular endothelial cells (ECs). Lumen <span class="hlt">formation</span>, or tubulogenesis, occurs in blood vessels during both vasculogenesis and angiogenesis in the embryo. <span class="hlt">Formation</span> of vascular lumens takes place prior to the establishment of blood flow and to vascular remodeling which results in a characteristic hierarchical vessel organization. While epithelial lumen <span class="hlt">formation</span> has received intense attention in past decades, more recent work has only just begun to elucidate the mechanisms controlling the initiation and morphogenesis of endothelial lumens. Studies using in vitro and in vivo models, including zebrafish and mammals, are beginning to paint an emerging picture of how blood vessels establish their characteristic morphology and become patent. In this chapter, we review and discuss the molecular and cellular mechanisms driving the <span class="hlt">formation</span> of vascular tubes, primarily in vivo, and we compare and contrast proposed models for blood vessel lumen <span class="hlt">formation</span>.</p> <div class="credits"> <p class="dwt_author">Xu, Ke; Cleaver, Ondine</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013Tectp.593....1S"> <span id="translatedtitle">The <span class="hlt">formation</span> of Pangea</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The making of Pangea is the result of large-scale amalgamation of continents and micro-continents, which started at the end of the Neoproterozoic with the <span class="hlt">formation</span> of Gondwana. As pieces were added to Gondwana on its South-American, Antarctica and Australia side, ribbon-like micro-continents were detached from its African and South-Chinese side: Cadomia in the late Neoproterozoic, Avalonia and Hunia in the Ordovician, Galatia in the Devonian and Cimmeria in the Permian. Cadomia was re-accreted to Gondwana, but the other ribbon-continents were accreted to Baltica, North-China, Laurussia or Laurasia. Finding the origin of these numerous terranes is a major geological challenge. Recently, a global plate tectonic model was developed together with a large geological/geodynamic database, at the Lausanne University, covering the last 600 Ma of the Earth's history. Special attention was given to the placing of Gondwana derived terranes in their original position, using all possible constraints. We propose here a solution for the Variscan terranes, another paper deals with the Altaids. The Galatian super-terrane was detached from Gondwana in the Devonian, during the opening of Paleotethys, and was quickly separated into four sub-terranes that started to by-pass each other. The leading terranes collided at the end of the Devonian with the Hanseatic terrane detached from Laurussia. In the Carboniferous, Gondwana started to impinge onto the amalgamated terranes, creating the Variscan chain and the Pangean super-continent. East of Spain Paleotethys remained opened until the Triassic, subducting northward under Laurasia. Roll-back of the Paleotethyan slab triggered the collapse of most of the European Variscan orogen, which was replaced by series of Permian rifts, some of them becoming oceanized back-arc basins during the Triassic. Major force changes at the Pangean plate limits at the end of the Triassic provoked its break-up, through the opening of the proto-Caribbean, central-Atlantic, Alpine-Tethys oceanic seaways.</p> <div class="credits"> <p class="dwt_author">Stampfli, G. M.; Hochard, C.; Vérard, C.; Wilhem, C.; vonRaumer, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006noao.prop..576M"> <span id="translatedtitle">Star <span class="hlt">Formation</span> at z ~ 1</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We propose using FLAMINGOS in MOS mode to obtain near-infrared spectra of ~ 200 GOODS galaxies at z ~ 1, using the 4-m telescope on Kitt Peak. This will, for the first time, provide a sample of sufficient size to allow for a statistically sound analysis of the star <span class="hlt">formation</span> rate at z ~ 1; a crucial epoch in the star <span class="hlt">formation</span> history of the Universe. Several controversial issues will be addressed using this dataset. H(alpha), used routinely as a local star <span class="hlt">formation</span> indicator, will be directly measured in order to determine the global star <span class="hlt">formation</span> rate at z ~ 1, where many conflicting results exist. Star <span class="hlt">formation</span> rates derived from the H(alpha) emission will also be used to calibrate star <span class="hlt">formation</span> derived from existing MIPS 24 (mu) m data, equivalent at z ~ 1 to 12 (mu) m rest frame emission, which is caused by PAHs and warm, small-grain thermal continuum. Finally, star <span class="hlt">formation</span> estimates from the most commonly used indicators, namely H(alpha), [OII], radio, UV and PAH features, will be compared and assessed. Line ratios from features in the FLAMINGOS near-IR and recently obtained Keck optical spectra will allow for the quantification of extinction and metallicity.</p> <div class="credits"> <p class="dwt_author">MacDonald, Emily; Dickinson, Mark; Mobasher, Bahram; Allen, Paul; Papovich, Casey</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6702924"> <span id="translatedtitle">Liquid HEC <span class="hlt">formation</span> damage potential</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Hydroxyethylcellulose (HEC) polymer is used extensively in completion/workover operations as a viscosifying agent for gravel-pack carrier fluid and fluid-loss-control pills. <span class="hlt">Formation</span> damage potential of HEC gels is typically attributed to the presence of fisheyes or microgels. Potential for fisheye- and microgel-<span class="hlt">formation</span> damage can be minimized by keeping powder dry to prevent water absorption and consequent hydration of the outer polymer layer that would prevent full polymer solution. To avoid problems in dry-powder storage and handling, HEC powder is sometimes pre-dispersed in alcohols, kerosene, diesel or mineral oil. These formulations are known as liquid HEC. Although they prevent premature powder hydration and consequent fisheye <span class="hlt">formation</span>, they are not effective against <span class="hlt">formation</span> damage because they contain microgels that are often pre-existing in the HEC powder used to prepare the slurry. In addition, these formulations may not be as clean as the HEC oilfield applications require, and may contain other additives which can, in some instances, react with the polymer. While the <span class="hlt">formation</span> damage potential of HEC gels mixed in the field from HEC powder is well recognized, the damage potential of pre-mixed liquid HEC is less known. Hayatdavoudi, et al., noted that the gel prepared with liquid HEC contained as much microgels as those prepared using HEC powder. Chauveteau and Kohler reported that microgels can build up on the <span class="hlt">formation</span> surface, as well as invade the <span class="hlt">formation</span> and clog pores.</p> <div class="credits"> <p class="dwt_author">Ali, S.A.; Sketchler, B.C. (Chevron USA Production Co., New Orleans, LA (United States)); Hashemi, R. (Pall Corp., East Hills, NY (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/974919"> <span id="translatedtitle">Bacteriorhodopsin <span class="hlt">formation</span> in Halobacterium halobium.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Systematic examinations were made of factors influencing bacteriorhodopsin <span class="hlt">formation</span> during the growth of Halobacterium halobium. Light-induced adenosine triphosphate (ATP) production and [14C]proline uptake were used as measures of functional ability of the purple membrane. Maximum bacteriorhodopsin <span class="hlt">formation</span> occurred under growth conditions of illumination and limited aeration. The purple membrane -ATP production system did not confer an appreciable growth advantage. Growth in the dark or with adequate aeration partially suppressed bacteriorhodopsin <span class="hlt">formation</span> and the effects were additive. Nicotine effectively inhibited bacteriorhodopsin <span class="hlt">formation</span>. A rapid synthesis of functional pigment occurred when washed suspensions of cells which had been grown under illumination with nicotine present were incubated under dark, aerobic conditions. The alleviation of this nicotine inhibition was not blocked by chloramphenicol or bacitracin. Bacteriorhodopsin <span class="hlt">formation</span> was negligible when washed suspensions of cells from dark, limited aeration or light, adequate aeration cultures were incubated in the light with limited aeration. A nutritionally complex medium was needed to elicit appreciable bacteriorhodopsin <span class="hlt">formation</span> by the cells from the dark or adequately aerated cultures. Bacitracin partially inhibited this bacteriorhodopsin <span class="hlt">formation</span> by cells form the light, adequately aerated culture. PMID:974919</p> <div class="credits"> <p class="dwt_author">Hubbard, J S; Rinehart, C A</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=46609"> <span id="translatedtitle">Dissipative processes in galaxy <span class="hlt">formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A galaxy commences its life in a diffuse gas cloud that evolves into a predominantly stellar aggregation. Considerable dissipation of gravitational binding energy occurs during this transition. I review here the dissipative processes that determine the critical scales of luminous galaxies and the generation of their morphology. The universal scaling relations for spirals and ellipticals are shown to be sensitive to the history of star <span class="hlt">formation</span>. Semiphenomenological expressions are given for star-<span class="hlt">formation</span> rates in protogalaxies and in starbursts. Implications are described for elliptical galaxy <span class="hlt">formation</span> and for the evolution of disk galaxies.</p> <div class="credits"> <p class="dwt_author">Silk, J</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7013059"> <span id="translatedtitle">Colloid <span class="hlt">formation</span> in implanted glasses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Metal colloids in glasses can yield an enhanced ([chi]([sup 3])) susceptibility which leads to an intensity dependent refractive index. Ion implantation is a convenient means of introducing the metal species. The host glass plays an important role in colloid <span class="hlt">formation</span>. We have characterized Ag-colloid <span class="hlt">formation</span> in various silicate glasses and, in addition, have studied the <span class="hlt">formation</span> of colloids in Ag-doped phosphate glass as a function of N and H implantation. Some preliminary results for Cu-implanted glasses are presented.</p> <div class="credits"> <p class="dwt_author">Arnold, G.W. (Sandia National Labs., Albuquerque, NM (United States)); Mazzoldi, P.; Tramontin, L. (Padua Univ. (Italy)); Boscolo-Boscoletto, A. (ECP-EniChem Polimeri, Porto Marghera (Italy)); Battaglin, G. (Venice Univ. (Italy))</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/10131198"> <span id="translatedtitle">Colloid <span class="hlt">formation</span> in implanted glasses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Metal colloids in glasses can yield an enhanced ({chi}({sup 3})) susceptibility which leads to an intensity dependent refractive index. Ion implantation is a convenient means of introducing the metal species. The host glass plays an important role in colloid <span class="hlt">formation</span>. We have characterized Ag-colloid <span class="hlt">formation</span> in various silicate glasses and, in addition, have studied the <span class="hlt">formation</span> of colloids in Ag-doped phosphate glass as a function of N and H implantation. Some preliminary results for Cu-implanted glasses are presented.</p> <div class="credits"> <p class="dwt_author">Arnold, G.W. [Sandia National Labs., Albuquerque, NM (United States); Mazzoldi, P.; Tramontin, L. [Padua Univ. (Italy); Boscolo-Boscoletto, A. [ECP-EniChem Polimeri, Porto Marghera (Italy); Battaglin, G. [Venice Univ. (Italy)</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-12-31</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013hsa7.conf..470H"> <span id="translatedtitle">Circumstellar disks and planetary <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Circumstellar disks are the the cradle of planetary systems. They are found around a large number of intermediate- and low-mass stellar objects in star forming regions and young clusters. Their study can provide important clues about the timescales and physical conditions for planet <span class="hlt">formation</span>. In this paper, I review some properties of circumstellar disks that come from the analysis of multi-wavelength observational data, and that are important in the context of planet <span class="hlt">formation</span>. In addition, I also present the first evidences of planetary <span class="hlt">formation</span> within the so-called transitional disks.</p> <div class="credits"> <p class="dwt_author">Huélamo, N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6194188"> <span id="translatedtitle">Dynamics of rock varnish <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Our studies of rock varnish from the southwestern United States suggest that the Mn-phase in rock varnish has neither the chemistry nor the crystal structure of birnessite. Rather, the Mn-rich phase is non-crystalline and contains Ba, Ca, Fe, Al, and P. Unknowns concerning the <span class="hlt">formation</span> of this non-crystalline Mn phase must be resolved before researchers are able to define chemical parameters of rock varnish <span class="hlt">formation</span> based upon conditions of <span class="hlt">formation</span> of the Mn phase. 6 refs., 9 figs.</p> <div class="credits"> <p class="dwt_author">Raymond, R. Jr.; Reneau, S.L.; Guthrie, G.D. Jr.; Bish, D.L.; Harrington, C.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47032744"> <span id="translatedtitle">Study of the Morrison <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Not Available Bibtex entry for this abstract Preferred <span class="hlt">format</span> for this abstract (see Preferences) Find Similar Abstracts: Use: Authors Title Return: Query Results Return items starting with number Query Form Database: Astronomy Physics arXiv e-prints</p> <div class="credits"> <p class="dwt_author">Charles Craig Mook</p> <p class="dwt_publisher"></p> <p class="publishDate">1916-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.nlm.nih.gov/medlineplus/ency/article/003061.htm"> <span id="translatedtitle">Tooth <span class="hlt">formation</span> - delayed or absent</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://medlineplus.gov/">MedlinePLUS</a></p> <p class="result-summary">Specific diseases can have a profound effect on tooth shape, tooth color, time of appearance, or tooth absence. Delayed or absent tooth <span class="hlt">formation</span> can result from many different conditions, including: Apert syndrome Cleidocranial dysostosis ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pumice.pdx.edu/201/Chapter_7.pdf"> <span id="translatedtitle">Metamorphism and Metamorphic <span class="hlt">Formation</span> & Deformation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This presentation on metamorphis and metamorphic <span class="hlt">formation</span> was created by Martin Streck of Portland State University. The lesson provides an overview on the deformation of metamorphic rocks and minerals and includes helpful diagrams and images.</p> <div class="credits"> <p class="dwt_author">Streck, Martin</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-25</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/14971547"> <span id="translatedtitle">XENON TETRAFLUORIDE: HEAT OF <span class="hlt">FORMATION</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Calorimetric measurements of the heat of reaction of xenon tetrafluoride ; with aqueous iodide solution give -- 60 kilocalories per mole for the standard ; heat of <span class="hlt">formation</span>, or an average thermochemical bond energy of about 31 ; kilocalories. (auth);</p> <div class="credits"> <p class="dwt_author">S. R. Gunn; S. M. Williamson</p> <p class="dwt_publisher"></p> <p class="publishDate">1963-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD769512"> <span id="translatedtitle">The Mechanism of Tornado <span class="hlt">Formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The mechanism (phases) of a developing tornado was investigated in this study on a laboratory model. Three existing theories for the mechanism of tornado <span class="hlt">formation</span> were studied and discussed in length. From the information gained in this study an experime...</p> <div class="credits"> <p class="dwt_author">K. T. Repsholdt</p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37076438"> <span id="translatedtitle">Circadian rhythms and memory <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">There has been considerable progress in elucidating the molecular mechanisms that contribute to memory <span class="hlt">formation</span> and the generation of circadian rhythms. However, it is not well understood how these two processes interact to generate long-term memory. Recent studies in both vertebrate and invertebrate models have shown time-of-day effects on neurophysiology and memory <span class="hlt">formation</span>, and have revealed a possible role for</p> <div class="credits"> <p class="dwt_author">Jason R. Gerstner; Jerry C. P. Yin</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1986PhRvL..56.2195D"> <span id="translatedtitle">Monovacancy <span class="hlt">formation</span> enthalpy in silicon</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Positron-lifetime experiments have been conducted on silicon at temperatures between 300 and 1523 K. A lifetime attributable to positrons annihilating in monovacancies is directly observed above 1450 K. This lifetime has the same value as that associated with monovacancies at low temperature indicating that the character of the monovacancy is essentially independent of temperature. The results yield an activation enthalpy for neutral monovacancy <span class="hlt">formation</span> of 3.6+/-0.2 eV. No evidence for divacancy <span class="hlt">formation</span> could be found.</p> <div class="credits"> <p class="dwt_author">Dannefaer, S.; Mascher, P.; Kerr, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39202519"> <span id="translatedtitle">Pellicle <span class="hlt">formation</span> in Shewanella oneidensis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">BACKGROUND: Although solid surface-associated biofilm development of S. oneidensis has been extensively studied in recent years, pellicles formed at the air-liquid interface are largely overlooked. The goal of this work was to understand basic requirements and mechanism of pellicle <span class="hlt">formation</span> in S. oneidensis. RESULTS: We demonstrated that pellicle <span class="hlt">formation</span> can be completed when oxygen and certain cations were present. Ca(II),</p> <div class="credits"> <p class="dwt_author">Yili Liang; Haichun Gao; Jingrong Chen; Yangyang Dong; Lin Wu; Zhili He; Xueduan Liu; Guanzhou Qiu; Jizhong Zhou</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22368611"> <span id="translatedtitle">The Portable Document <span class="hlt">Format</span> - PDF.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This article demonstrates how documents prepared in hypertext or word processor <span class="hlt">format</span> can be saved in portable document <span class="hlt">format</span> (PDF). These files are self-contained documents that that have the same appearance on screen and in print, regardless of what kind of computer or printer are used, and regardless of what software package was originally used to for their creation. PDF files are compressed documents, invariably smaller than the original files, hence allowing rapid dissemination and download. PMID:22368611</p> <div class="credits"> <p class="dwt_author">Grech, V</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40681190"> <span id="translatedtitle">Methane <span class="hlt">formation</span> in sewer systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Methane <span class="hlt">formation</span> and emission in sewer systems has not received as much attention as hydrogen sulphide <span class="hlt">formation</span>. Through field measurements from two rising mains, with an average sewage temperature of 28.4 and 26.6°C, respectively, at the time of sampling, this study shows that a significant amount of methane can be produced in sewer systems, and that this production is positively</p> <div class="credits"> <p class="dwt_author">Albert Guisasola; David de Haas; Jurg Keller; Zhiguo Yuan</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57664578"> <span id="translatedtitle">Aerosol <span class="hlt">Formation</span> in Photochemical Smog</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During operation of smog chambers, the gas mixture is normally well-stirred although the extent of stirring varies from chamber to chamber. Experiments conducted at Battelle’s Columbus Laboratories in a 200-liter and a 610-cu ft smog chamber have shown that stirring can decrease aerosol <span class="hlt">formation</span>. The faster the chamber contents are stirred the greater the reduction in aerosol <span class="hlt">formation</span> observed. Sufficiently</p> <div class="credits"> <p class="dwt_author">Wm. E. Wilson Jr; E. L. Merryman; Arthur Levy; Harold R. Taliaferro</p> <p class="dwt_publisher"></p> <p class="publishDate">1971-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6896882"> <span id="translatedtitle">Depositional environments, subsurface stratigraphy, and post-burn characterization of the Paleocene-Eocene Hanna <span class="hlt">formation</span> at the Hanna, Wyo UCG site: Hanna III experiment. [Hanna III post mortem</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">During the summer of 1981 the Laramie Energy Technology Center conducted a post-burn coring program at the Hanna III Underground Coal Gasification site, Hanna, Wyoming. Detailed geologic studies were conducted on the altered and unaltered overburden as well as an analysis of the burn cavity. The overburden consists of about 46m of Paleocene-Eocene Hanna <span class="hlt">formation</span> above the Hanna No. 1 coal seam used in the burn. The overburden contains two basic lithologic units: Unit A consists of very fine-grained sandstones, siltstones, and claystones deposited as a lacustrine delta. Unit A is immediately above the Hanna No. 1 coal. Unit B is above Unit A and consists of carbonaceous shales and mudstones containing isolated lenticular and <span class="hlt">tabular</span> sandstone bodies deposited in a meandering fluvial system. The Hanna No. 1 coal accumulated in a poorly drained swamp that was subject to clastic flooding from an adjacent fluvial system. A reactor cavity 26m x 16m x 15m was formed during the burn and partially filled with rubble and three types of pyrometamorphic rock: paralava, paralava breccia, and buchite. The lithology, thickness, and lateral continuity of Unit A had a definite influence on the success of the experiment as the growth of the reactor cavity was contained completely within the lithologic unit.</p> <div class="credits"> <p class="dwt_author">Youngberg, A.D.; McClurg, J.E.; Schmitt, J.G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013MNRAS.429.2175N"> <span id="translatedtitle">Dense cloud <span class="hlt">formation</span> and star <span class="hlt">formation</span> in a barred galaxy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We investigate the properties of massive, dense clouds formed in a barred galaxy and their possible relation to star <span class="hlt">formation</span>, performing a two-dimensional hydrodynamical simulation with the gravitational potential obtained from the 2MASS data from the barred spiral galaxy, M83. Since the environment for cloud <span class="hlt">formation</span> and evolution in the bar region is expected to be different from that in the spiral arm region, barred galaxies are a good target to study the environmental effects on cloud <span class="hlt">formation</span> and the subsequent star <span class="hlt">formation</span>. Our simulation uses for an initial 80 Myr isothermal flow of non-self gravitating gas in the barred potential, then including radiative cooling, heating and self-gravitation of the gas for the next 40 Myr, during which dense clumps are formed. We identify many cold, dense gas clumps for which the mass is more than 104 M? (a value corresponding to the molecular clouds) and study the physical properties of these clumps. The relation of the velocity dispersion of the identified clump's internal motion with the clump size is similar to that observed in the molecular clouds of our Galaxy. We find that the virial parameters for clumps in the bar region are larger than that in the spiral arm region. From our numerical results, we estimate star <span class="hlt">formation</span> in the bar and spiral arm regions by applying the simple model of Krumholz & McKee (2005). The mean relation between star <span class="hlt">formation</span> rate and gas surface density agrees well with the observed Kennicutt-Schmidt relation. The star <span class="hlt">formation</span> efficiency in the bar region is ˜60 per cent of the spiral arm region. This trend is consistent with observations of barred galaxies.</p> <div class="credits"> <p class="dwt_author">Nimori, M.; Habe, A.; Sorai, K.; Watanabe, Y.; Hirota, A.; Namekata, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=247262"> <span id="translatedtitle"><span class="hlt">Formate</span> Dehydrogenase from Clostridium acidiurici</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Partial purification of <span class="hlt">formate</span> dehydrogenase from Clostridium acidiurici has been accomplished, and some properties of the enzyme have been determined. The molecular weight of the protein is at least 200,000 daltons. The enzyme showed marked instability to freezing and thawing and was inhibited strongly by oxygen and by light. Such inhibition was not reversed by incubation in the presence of thiol compounds. Cyanide inhibited the enzyme 90% at 0.1 mm concentrations, but ethylenediaminetetraacetate produced only slight inhibition at concentrations as high as 50 mm. The purified enzyme showed no ferredoxin activity in the Clostridium pasteurianum clastic system during pyruvate oxidation. Crude preparations of the enzyme could be coupled through ferredoxin to the reduction of nicotinamide adenine dinucleotide during <span class="hlt">formate</span> oxidation, but the purified enzyme could not catalyze the reduction of pyridine nucleotides by <span class="hlt">formate</span> in the presence of ferredoxin. <span class="hlt">Formate</span> oxidation with the purified enzyme was readily coupled to benzyl viologen reduction, in which case ferredoxin was not required. An exchange between <span class="hlt">formate</span> and bicarbonate was catalyzed by both crude and purified preparations of the enzyme, but the net synthesis of <span class="hlt">formate</span> from CO2 was not accomplished.</p> <div class="credits"> <p class="dwt_author">Kearny, James J.; Sagers, Richard D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5510338"> <span id="translatedtitle">Delayed star <span class="hlt">formation</span> in galaxies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The problem of delayed star <span class="hlt">formation</span> in galaxies is formulated, and some possible approaches to solving it are discussed. Observational evidence suggests that galaxies undergo long periods (10/sup 8/--10/sup 10/ yr) when star <span class="hlt">formation</span> is suppressed. Two modes of star <span class="hlt">formation</span> are considered: 1) gravitational collapse and fragmentation of initially rarefied gas; 2) creation of stars through collisions of interstellar clouds. In these contexts three mechanisms are examined for suppressing star <span class="hlt">formation</span>, each involving supernova outbursts: a) the gas density in the disk of a galaxy drops below its critical value; b) gravitationally bound fragments are disrupted through heating by external radiation sources (supernovae and supernova remnants); c) the cool interstellar gas phase decays when the heating rate rises above a critical value. Estimates of the heating rate indicate that star <span class="hlt">formation</span> will be suppressed by mechanisms b and c. If the number of supernovae and supernova remnants was formerly one to three orders of magnitude greater than today, as could have happened in the Galaxy during active evolutionary phases, then star <span class="hlt">formation</span> could indeed have been suppressed.</p> <div class="credits"> <p class="dwt_author">Suchkov, A.A.; Shchekinov, Y.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6077618"> <span id="translatedtitle">Schemes for biased galaxy <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Three independent schemes are proposed for biasing galaxy <span class="hlt">formation</span> toward luminous galaxies, early collapse, and denser protogalaxies in a universe containing a closure density of cold dark matter. Photinos, or other massive, neutral weakly interacting leptons are assumed to be the predominant dark matter species, and their annihilation in collapsing protogalactic clouds suppresses galaxy bulge <span class="hlt">formation</span> for isolated systems. Shock destruction of H2 can occur at low redshift during the epoch of massive galaxy and quasar <span class="hlt">formation</span>; the ensuing collapse and cooling of primordial clouds by Ly emission results in predominantly massive star <span class="hlt">formation</span> that should disrupt late-forming galaxies. The high rate of stgar formtion presumed to occur during gaseous protogalaxy collapse effectively strips low-density protogalaxies by initiating a supernova-driven wind, and leaves behind low surface density remnants: ''failed galaxies.'' These schemes could all be complementary, and generally lead to the <span class="hlt">formation</span> of luminous galaxies by rare, dense, early collapsing systems, luminous galaxy <span class="hlt">formation</span> being suppressed in the recent past.</p> <div class="credits"> <p class="dwt_author">Silk, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55488824"> <span id="translatedtitle">Star <span class="hlt">formation</span> in colliding and merging galaxies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The process of star <span class="hlt">formation</span> in interacting galaxies is discussed, reviewing the results of recent observational and theoretical investigations. Topics examined include the general characteristics of starburst galaxies, the spatial distribution of star <span class="hlt">formation</span>, the mechanisms governing the <span class="hlt">formation</span> of molecular gas, star-<span class="hlt">formation</span> rates, star-<span class="hlt">formation</span> efficiency, and initial mass functions. It is suggested that galactic collisions or mergers may lead</p> <div class="credits"> <p class="dwt_author">Francois Schweizer</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21307833"> <span id="translatedtitle">Microtiter dish biofilm <span class="hlt">formation</span> assay.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Biofilms are communities of microbes attached to surfaces, which can be found in medical, industrial and natural settings. In fact, life in a biofilm probably represents the predominate mode of growth for microbes in most environments. Mature biofilms have a few distinct characteristics. Biofilm microbes are typically surrounded by an extracellular matrix that provides structure and protection to the community. Microbes growing in a biofilm also have a characteristic architecture generally comprised of macrocolonies (containing thousands of cells) surrounded by fluid-filled channels. Biofilm-grown microbes are also notorious for their resistance to a range of antimicrobial agents including clinically relevant antibiotics. The microtiter dish assay is an important tool for the study of the early stages in biofilm <span class="hlt">formation</span>, and has been applied primarily for the study of bacterial biofilms, although this assay has also been used to study fungal biofilm <span class="hlt">formation</span>. Because this assay uses static, batch-growth conditions, it does not allow for the <span class="hlt">formation</span> of the mature biofilms typically associated with flow cell systems. However, the assay has been effective at identifying many factors required for initiation of biofilm <span class="hlt">formation</span> (i.e, flagella, pili, adhesins, enzymes involved in cyclic-di-GMP binding and metabolism) and well as genes involved in extracellular polysaccharide production. Furthermore, published work indicates that biofilms grown in microtiter dishes do develop some properties of mature biofilms, such a antibiotic tolerance and resistance to immune system effectors. This simple microtiter dish assay allows for the <span class="hlt">formation</span> of a biofilm on the wall and/or bottom of a microtiter dish. The high throughput nature of the assay makes it useful for genetic screens, as well as testing biofilm <span class="hlt">formation</span> by multiple strains under various growth conditions. Variants of this assay have been used to assess early biofilm <span class="hlt">formation</span> for a wide variety of microbes, including but not limited to, pseudomonads, Vibrio cholerae, Escherichia coli, staphylococci, enterococci, mycobacteria and fungi. In the protocol described here, we will focus on the use of this assay to study biofilm <span class="hlt">formation</span> by the model organism Pseudomonas aeruginosa. In this assay, the extent of biofilm <span class="hlt">formation</span> is measured using the dye crystal violet (CV). However, a number of other colorimetric and metabolic stains have been reported for the quantification of biofilm <span class="hlt">formation</span> using the microtiter plate assay. The ease, low cost and flexibility of the microtiter plate assay has made it a critical tool for the study of biofilms. PMID:21307833</p> <div class="credits"> <p class="dwt_author">O'Toole, George A</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-30</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3182663"> <span id="translatedtitle">Microtiter Dish Biofilm <span class="hlt">Formation</span> Assay</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Biofilms are communities of microbes attached to surfaces, which can be found in medical, industrial and natural settings. In fact, life in a biofilm probably represents the predominate mode of growth for microbes in most environments. Mature biofilms have a few distinct characteristics. Biofilm microbes are typically surrounded by an extracellular matrix that provides structure and protection to the community. Microbes growing in a biofilm also have a characteristic architecture generally comprised of macrocolonies (containing thousands of cells) surrounded by fluid-filled channels. Biofilm-grown microbes are also notorious for their resistance to a range of antimicrobial agents including clinically relevant antibiotics. The microtiter dish assay is an important tool for the study of the early stages in biofilm <span class="hlt">formation</span>, and has been applied primarily for the study of bacterial biofilms, although this assay has also been used to study fungal biofilm <span class="hlt">formation</span>. Because this assay uses static, batch-growth conditions, it does not allow for the <span class="hlt">formation</span> of the mature biofilms typically associated with flow cell systems. However, the assay has been effective at identifying many factors required for initiation of biofilm <span class="hlt">formation</span> (i.e, flagella, pili, adhesins, enzymes involved in cyclic-di-GMP binding and metabolism) and well as genes involved in extracellular polysaccharide production. Furthermore, published work indicates that biofilms grown in microtiter dishes do develop some properties of mature biofilms, such a antibiotic tolerance and resistance to immune system effectors. This simple microtiter dish assay allows for the <span class="hlt">formation</span> of a biofilm on the wall and/or bottom of a microtiter dish. The high throughput nature of the assay makes it useful for genetic screens, as well as testing biofilm <span class="hlt">formation</span> by multiple strains under various growth conditions. Variants of this assay have been used to assess early biofilm <span class="hlt">formation</span> for a wide variety of microbes, including but not limited to, pseudomonads, Vibrio cholerae, Escherichia coli, staphylocci, enterococci, mycobacteria and fungi. In the protocol described here, we will focus on the use of this assay to study biofilm <span class="hlt">formation</span> by the model organism Pseudomonas aeruginosa. In this assay, the extent of biofilm <span class="hlt">formation</span> is measured using the dye crystal violet (CV). However, a number of other colorimetric and metabolic stains have been reported for the quantification of biofilm <span class="hlt">formation</span> using the microtiter plate assay. The ease, low cost and flexibility of the microtiter plate assay has made it a critical tool for the study of biofilms.</p> <div class="credits"> <p class="dwt_author">O'Toole, George A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51557720"> <span id="translatedtitle">The history of star <span class="hlt">formation</span> in bulges</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Nearby bulge\\/E systems are examined with existing star-<span class="hlt">formation</span> data to determine when active star <span class="hlt">formation</span> occurred in relation to globular cluster <span class="hlt">formation</span>. Two scenarios of bulge history are contrasted including the classical notion by O'Connell (1958) and the notion of an extended period of star <span class="hlt">formation</span>. Spectroscopic data regarding recent star <span class="hlt">formation</span> are examined as are data on <span class="hlt">formation</span> of</p> <div class="credits"> <p class="dwt_author">Robert W. O'Connell</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ApJ...759....9K"> <span id="translatedtitle">Star <span class="hlt">Formation</span> in Atomic Gas</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Observations of nearby galaxies have firmly established, over a broad range of galactic environments and metallicities, that star <span class="hlt">formation</span> occurs exclusively in the molecular phase of the interstellar medium (ISM). Theoretical models show that this association results from the correlation between chemical phase, shielding, and temperature. Interstellar gas converts from atomic to molecular only in regions that are well shielded from interstellar ultraviolet (UV) photons, and since UV photons are also the dominant source of interstellar heating, only in these shielded regions does the gas become cold enough to be subject to Jeans instability. However, while the equilibrium temperature and chemical state of interstellar gas are well correlated, the timescale required to reach chemical equilibrium is much longer than that required to reach thermal equilibrium, and both timescales are metallicity-dependent. Here I show that the difference in timescales implies that, at metallicities below a few percent of the solar value, well shielded gas will reach low temperatures and proceed to star <span class="hlt">formation</span> before the bulk of it is able to convert from atomic to molecular. As a result, at extremely low metallicities, star <span class="hlt">formation</span> will occur in a cold atomic phase of the ISM rather than a molecular phase. I calculate the observable consequences of this result for star <span class="hlt">formation</span> in low-metallicity galaxies, and I discuss how some current numerical models for H2-regulated star <span class="hlt">formation</span> may need to be modified.</p> <div class="credits"> <p class="dwt_author">Krumholz, Mark R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3224470"> <span id="translatedtitle">Physicochemical regulation of biofilm <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">This article reviews the physical and chemical constraints of environments on biofilm <span class="hlt">formation</span>. We provide a perspective on how materials science and engineering can address fundamental questions and unmet technological challenges in this area of microbiology, such as biofilm prevention. Specifically, we discuss three factors that impact the development and organization of bacterial communities. (1) Physical properties of surfaces regulate cell attachment and physiology and affect early stages of biofilm <span class="hlt">formation</span>. (2) Chemical properties influence the adhesion of cells to surfaces and their development into biofilms and communities. (3) Chemical communication between cells attenuates growth and influences the organization of communities. Mechanisms of spatial and temporal confinement control the dimensions of communities and the diffusion path length for chemical communication between biofilms, which, in turn, influences biofilm phenotypes. Armed with a detailed understanding of biofilm <span class="hlt">formation</span>, researchers are applying the tools and techniques of materials science and engineering to revolutionize the study and control of bacterial communities growing at interfaces.</p> <div class="credits"> <p class="dwt_author">Renner, Lars D.; Weibel, Douglas B.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008IJMSp.270..166S"> <span id="translatedtitle"><span class="hlt">Formation</span> of the serine octamer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The mechanism of <span class="hlt">formation</span> for clusters of serine generated by electrospray ionization is hypothesized to play a critical role in determining their ultimate properties. Under carefully manipulated electrospray source conditions, two distinct and well-separated distributions of clusters can be observed. The characteristics of the two cluster populations are consistent with different <span class="hlt">formation</span> mechanisms, namely ion evaporation and charge residue. Upon further inspection, it is proposed that the magic number intensity, homochiral selectivity, and unique <span class="hlt">formation</span> of the serine octamer are best explained within the context of the ion evaporation mechanism. As a consequence, solution phase properties of the octamer become important, particularly in relation to interface effects present on the surface of the charged droplet. In contrast, other clusters of serine, including the B form of the octamer, are probably generated by the charge residue mechanism and may have no connection to condensed phase phenomena.</p> <div class="credits"> <p class="dwt_author">Spencer, Emily A. C.; Ly, Tony; Julian, Ryan R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/15013762"> <span id="translatedtitle">Jet-Induced Star <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Jets from radio galaxies can have dramatic effects on the medium through which they propagate. We review observational evidence for jet-induced star <span class="hlt">formation</span> in low ('FR-I') and high ('FR-II') luminosity radio galaxies, at low and high redshifts respectively. We then discuss numerical simulations which are aimed to explain a jet-induced starburst ('Minkowski's Object') in the nearby FR-I type radio galaxy NGC 541. We conclude that jets can induce star <span class="hlt">formation</span> in moderately dense (10 cm{sup -3}), warm (10{sup 4} K) gas; that this may be more common in the dense environments of forming, active galaxies; and that this may provide a mechanism for 'positive' feedback from AGN in the galaxy <span class="hlt">formation</span> process.</p> <div class="credits"> <p class="dwt_author">van Breugel, W; Fragile, C; Anninos, P; Murray, S</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-16</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AGUFM.P34A..06J"> <span id="translatedtitle">A New Spoke <span class="hlt">Formation</span> Model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new model is proposed for the <span class="hlt">formation</span> of spokes in Saturn's rings. We contend that they are formed by the electrostatic charging of sub-micron ring particles by magnetic field-aligned electron beams originating in Saturn's atmosphere. The existence of these beams has recently been confirmed by the MIMI instrument aboard Cassini. Although observed by MIMI outside the main ring system, the beams are also expected to occur closer to the planet. On striking the rings, the electrons charge the dust, causing the levitation of the fine grains above the main ring plane. A simulation of the proposed <span class="hlt">formation</span> process provides strong supporting evidence for the validity of the process, explaining the spokes' <span class="hlt">formation</span> locations, morphologies, and subsequent development as observed in Voyager images. The process can be tested using Cassini observations; we outline how the model's validity can be gauged.</p> <div class="credits"> <p class="dwt_author">Jones, G. H.; Krupp, N.; Krueger, H.; Roussos, E.; Ip, W.; Mitchell, D. G.; Krimigis, S. M.; Woch, J.; Lagg, A.; Fraenz, M.; Dougherty, M. K.; Arridge, C. S.; McAndrews, H. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993ApJ...415..779B"> <span id="translatedtitle"><span class="hlt">Formation</span> of Planets around Pulsars</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Pulse arrival-time delays PSR 1257+ 12 suggest the existence of at least two planets in nearly circular orbits around it. In this paper we discuss different scenarios for the <span class="hlt">formation</span> of planets in circular orbits around pulsars. Among other topics, we look in some detail at wind emission mechanisms that are particularly relevant to the process of evaporation of planets around pulsars and discuss their possible role in orbit circularization. We conclude that the <span class="hlt">formation</span> of such planets may occur in a very late phase of low-mass X-ray binary (LMXB) or binary millisecond pulsar (BMP) evolution. Evaporation of the companion star in these phases supplies matter to a circumbinary "excretion" disk in which the physical conditions, similar to those appropriate for the BMP 1957+20 system, may allow the <span class="hlt">formation</span> of planets like those observed in PSR 1257+12.</p> <div class="credits"> <p class="dwt_author">Banit, M.; Ruderman, M. A.; Shaham, J.; Applegate, J. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55580539"> <span id="translatedtitle"><span class="hlt">Formation</span> design and nonlinear control of spacecraft <span class="hlt">formation</span> flying</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The fundamental control challenges associated with Spacecraft <span class="hlt">Formation</span> Flying (SFF) can be classified into two categories: (i) trajectory design and (ii) trajectory tracking. In this research, we address these challenges for several different operating environments. The first part of this research focuses on providing a trajectory generation and an adaptive control design methodology to facilitate SFF missions near the Sun-Earth</p> <div class="credits"> <p class="dwt_author">Hong Wong</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013RPPh...76k2901B"> <span id="translatedtitle"><span class="hlt">Formation</span> of the first stars</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Understanding the <span class="hlt">formation</span> of the first stars is one of the frontier topics in modern astrophysics and cosmology. Their emergence signalled the end of the cosmic dark ages, a few hundred million years after the Big Bang, leading to a fundamental transformation of the early Universe through the production of ionizing photons and the initial enrichment with heavy chemical elements. We here review the state of our knowledge, separating the well understood elements of our emerging picture from those where more work is required. Primordial star <span class="hlt">formation</span> is unique in that its initial conditions can be directly inferred from the ? cold dark matter (?CDM) model of cosmological structure <span class="hlt">formation</span>. Combined with gas cooling that is mediated via molecular hydrogen, one can robustly identify the regions of primordial star <span class="hlt">formation</span>, the so-called minihalos, having total masses of ?106 M? and collapsing at redshifts z ? 20–30. Within this framework, a number of studies have defined a preliminary standard model, with the main result that the first stars were predominantly massive. This model has recently been modified to include a ubiquitous mode of fragmentation in the protostellar disks, such that the typical outcome of primordial star <span class="hlt">formation</span> may be the <span class="hlt">formation</span> of a binary or small multiple stellar system. We will also discuss extensions to this standard picture due to the presence of dynamically significant magnetic fields, of heating from self-annihalating WIMP dark matter, or cosmic rays. We conclude by discussing possible strategies to empirically test our theoretical models. Foremost among them are predictions for the upcoming James Webb space telescope (JWST), to be launched ?2018, and for ‘stellar archaeology’, which probes the abundance pattern in the oldest, most-metal poor stars in our cosmic neighborhood, thereby constraining the nucleosynthesis inside the first supernovae.</p> <div class="credits"> <p class="dwt_author">Bromm, Volker</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhRvL.106b8103B"> <span id="translatedtitle">Pattern <span class="hlt">Formation</span> in Active Fluids</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We discuss pattern <span class="hlt">formation</span> in active fluids in which active stress is regulated by diffusing molecular components. Nonhomogeneous active stress profiles create patterns of flow which transport stress regulators by advection. Our work is motivated by the dynamics of the actomyosin cell cortex in which biochemical pathways regulate active stress. We present a mechanism in which a single diffusing species up regulates active stress, resulting in steady flow and concentration patterns. We also discuss general pattern-<span class="hlt">formation</span> behaviors of reaction-diffusion systems placed in active fluids.</p> <div class="credits"> <p class="dwt_author">Bois, Justin S.; Jülicher, Frank; Grill, Stephan W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012Ap.....55..397A"> <span id="translatedtitle">Initial phase of protostar <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Observational data on an active star <span class="hlt">formation</span> region in the dense molecular cloud Orion KL in the form of H2O maser emission are analyzed in terms of a hydrodynamic whirlwind mechanism for the excitation of bipolar outflows from the disk system. The whirlwind theory for the excitation of bipolar flows from the disk system is found to provide a first order approximation for explaining the major observed features of the active region and the structure accompanying the <span class="hlt">formation</span> of a protostar: a disk-bipolar flow, including the mechanism by which it is ejected and autocollimated, and the excitation of maser radiation.</p> <div class="credits"> <p class="dwt_author">Abrahamyan, M. G.; Matveenko, L. I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/4ct1y2tnpyh1hjpy.pdf"> <span id="translatedtitle">Myotome <span class="hlt">formation</span>: a multistage process</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The epaxial muscles of the body are localized in a dorsomedial position with respect to the axial structures, attach to the vertebral column and are concerned with maintenance of posture and movements of the vertebral column. The epaxial musculature derives from the myotome, a transient embryonic structure whose <span class="hlt">formation</span> is initiated at the epithelial somite stage and is accomplished following</p> <div class="credits"> <p class="dwt_author">Chaya Kalcheim; Yuval Cinnamon; Nitza Kahane</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/3210181"> <span id="translatedtitle">Identity <span class="hlt">Formation</span>: Discovery or Creation?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The contrasting metaphors of discovery and creation are proposed here as alternative ways of understanding the nature of the task of identity <span class="hlt">formation</span>. These two metaphors are related to the philosophies of eudaimonisn and existentialism, respectively. The processes of discovery and creation are shown to have distinctive theoretical implications regarding (a) the sources of identity elements, (b) the methods used</p> <div class="credits"> <p class="dwt_author">Alan S. Waterman</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53139802"> <span id="translatedtitle">Large-<span class="hlt">format</span> imaging system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Bechtel Nevada, in collaboration with Los Alamos National Laboratory, has designed a radiographic imaging system that takes advantage of large <span class="hlt">format</span> electron optical elements to produce a highly sensitive system for large diameter radiographic fluxes. Using specially designed fast lenses, the system is able to observe scintillator screens as large as 300 mm in diameter.A gated microchannel plate intensifier allows</p> <div class="credits"> <p class="dwt_author">Stuart A. Baker; Lawrence J. Castellano; Paul A. Flores; Brent C. Frogget; Wilfred Lewis; Paul T. Nedrow; John S. Rohrer; Nicholas S. King</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/332209"> <span id="translatedtitle">QGP <span class="hlt">formation</span> and strange antibaryons</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We explore, as function of the collision energy and stopping in relativistic nuclear collisions, the production yields of strange antibaryons, assuming <span class="hlt">formation</span> of a deconfined thermal quark-gluon plasma (QGP) fireball which undergoes a sudden hadronisation. Aside of assumptions related to this reaction picture and QCD properties at this energy scale, our work does not contain (fitted) parameters.</p> <div class="credits"> <p class="dwt_author">Jean Letessier; Johann Rafelski; Ahmed Tounsi</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41892641"> <span id="translatedtitle"><span class="hlt">Formation</span> and Composition of Planetesimals</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The composition of planetesimals depends upon the epoch and the location of their <span class="hlt">formation</span> in the solar nebula. Meteorites produced in the hot inner nebula contain refractory compounds. Volatiles were present in icy planetesimals and cometesimals produced in the cold outer nebula. However, the mechanism responsible for their trapping is still controversial. We argue for a general scenario valid in</p> <div class="credits"> <p class="dwt_author">Daniel Gautier; Franck Hersant</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006PhRvE..74b1405T"> <span id="translatedtitle">Junction <span class="hlt">formation</span> during desiccation cracking</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In order to provide a sound physical basis for the understanding of the <span class="hlt">formation</span> of desiccation crack networks, an experimental study is presented addressing junction <span class="hlt">formation</span>. Focusing on junctions, basic features of the network determining the final pattern, provides an elemental approach and imparts conceptual clarity to the rather complicated problem of the evolution of crack patterns. Using coffee-water mixtures a clear distinction between junction <span class="hlt">formation</span> during nucleation and propagation is achieved. It is shown that for the same drying suspension, one can switch from the well-known symmetric triple junctions that are unique to the nucleation phase to propagation junctions that are purely dictated by the variations of the stress state. In the latter case, one can even manipulate the path of a propagating crack in a deterministic fashion by changing the stress state within the suspension. Clear microscopic evidence is provided for the <span class="hlt">formation</span> of propagation junctions, and material inhomogeneity is observed to be reflected by a broad distribution of angles, in stark contrast to shrinkage cracks in homogeneous solid films.</p> <div class="credits"> <p class="dwt_author">Toga, K. B.; Alaca, B. Erdem</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17025423"> <span id="translatedtitle">Junction <span class="hlt">formation</span> during desiccation cracking.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In order to provide a sound physical basis for the understanding of the <span class="hlt">formation</span> of desiccation crack networks, an experimental study is presented addressing junction <span class="hlt">formation</span>. Focusing on junctions, basic features of the network determining the final pattern, provides an elemental approach and imparts conceptual clarity to the rather complicated problem of the evolution of crack patterns. Using coffee-water mixtures a clear distinction between junction <span class="hlt">formation</span> during nucleation and propagation is achieved. It is shown that for the same drying suspension, one can switch from the well-known symmetric triple junctions that are unique to the nucleation phase to propagation junctions that are purely dictated by the variations of the stress state. In the latter case, one can even manipulate the path of a propagating crack in a deterministic fashion by changing the stress state within the suspension. Clear microscopic evidence is provided for the <span class="hlt">formation</span> of propagation junctions, and material inhomogeneity is observed to be reflected by a broad distribution of angles, in stark contrast to shrinkage cracks in homogeneous solid films. PMID:17025423</p> <div class="credits"> <p class="dwt_author">Toga, K B; Alaca, B Erdem</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-08-09</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008NatGe...1..290M"> <span id="translatedtitle">Geochemistry: Leftovers from core <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Late addition of meteoric material to the Earth's mantle could explain the presence of iron-loving elements that should have entered the Earth's core at its <span class="hlt">formation</span>. But experiments at realistic conditions show that enough palladium could have remained in the mantle.</p> <div class="credits"> <p class="dwt_author">Marty, Bernard</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.econ.yale.edu/seminars/microt/mt05/herrera-050406.pdf"> <span id="translatedtitle">Group <span class="hlt">formation</span> and voter participation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a model of participation in large elections in which the <span class="hlt">formation</span> of voter groups is endogenous. Partisan citizens decide whether to become lead- ers (activists) and try to persuade impressionable citizens to vote for the leaders' preferred party. In the (unique) pure strategy equilibrium, the number of lead- ers favoring each party depends on the cost of activism</p> <div class="credits"> <p class="dwt_author">HELIOS HERRERA; CÉSAR MARTINELLI</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://spatdif.org/papers/stpope-spat-audio2.pdf"> <span id="translatedtitle">INTERCHANGE <span class="hlt">FORMATS</span> FOR SPATIAL AUDIO</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Space has been a central parameter in electroacoustic music composition and performance since its origins. Nevertheless, the design of a standardized interchange <span class="hlt">format</span> for spatial audio performances is a complex task that poses a diverse set of constraints and problems. This position paper attempts to describe the current state of the art in terms of what can be called \\</p> <div class="credits"> <p class="dwt_author">Stephen Travis Pope</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19479248"> <span id="translatedtitle"><span class="hlt">Formation</span> of the Giant Planets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The structure of a gaseous envelope surrounding a protoplanet has been investigated in connection with the <span class="hlt">formation</span> of the giant planets. Under the assumptions of spherical symmetry and hydrostatic equilibrium, the structure has been calculated for the regions of Jupiter, Saturn, Uranus and Neptune. Energy transfer in the envelope has been taken into account precisely. When the core mass increases</p> <div class="credits"> <p class="dwt_author">Hiroshi Mizuno</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.chandrabrown.org/surendar/papers/MMSJ02.pdf"> <span id="translatedtitle">Implications for Popular Streaming <span class="hlt">Formats</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">With the proliferation of mobile streaming multimedia, available bat- tery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore various mechanisms to conserve client WNIC energy consumption for popular streaming <span class="hlt">formats</span> such as Microsoft Windows media, Real and Apple</p> <div class="credits"> <p class="dwt_author">Surendar Chandra</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/23134471"> <span id="translatedtitle">The <span class="hlt">formation</span> of incense smoke</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">formation</span> of incense smoke generated from four different types of incense sticks, three manufactured in Taiwan and one in Japan, was investigated in a small controlled chamber. The scanning mobility particle sizer and the quartz crystal microbalance were used for particle size analyses. The count median diameter (CMD) was found to rise swiftly along the path of the incense</p> <div class="credits"> <p class="dwt_author">Yu-Chen Chang; Hsiu-Wei Lee; Huan-Hsiung Tseng</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/2028886"> <span id="translatedtitle">Pattern <span class="hlt">formation</span> outside of equilibrium</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A comprehensive review of spatiotemporal pattern <span class="hlt">formation</span> in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media.</p> <div class="credits"> <p class="dwt_author">M. C. Cross; P. C. Hohenberg</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52722528"> <span id="translatedtitle">Star <span class="hlt">formation</span> triggered by interactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The fact that galaxy interactions can trigger major starbursts is nicely exemplified by nearby interacting and merging galaxies, such as the Antennae. Interaction processes have been more common and thus more important at large lookback times, when galaxies assembled through mergers and interactions. At high redshift, we can currently only trace the most luminous mergers, resulting in star <span class="hlt">formation</span> rates</p> <div class="credits"> <p class="dwt_author">F. Walter</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21906265"> <span id="translatedtitle">Biofilm <span class="hlt">formation</span> in Streptococcus pneumoniae.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Biofilm-grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm <span class="hlt">formation</span> by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular matrix composed of DNA, proteins and, possibly, polysaccharide(s). Although neither the precise nature of these proteins nor the composition of the putative polysaccharide(s) is clear, it is known that choline-binding proteins are required for successful biofilm <span class="hlt">formation</span>. Further, many genes appear to be involved, although the role of each appears to vary when biofilms are produced in batch or continuous culture. Prophylactic and therapeutic measures need to be developed to fight S.?pneumoniae biofilm <span class="hlt">formation</span>. However, much care needs to be taken when choosing strains for such studies because different S.?pneumoniae isolates can show remarkable genomic differences. Multispecies and in vivo biofilm models must also be developed to provide a more complete understanding of biofilm <span class="hlt">formation</span> and maintenance. PMID:21906265</p> <div class="credits"> <p class="dwt_author">Domenech, Mirian; García, Ernesto; Moscoso, Miriam</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-09</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40678150"> <span id="translatedtitle">Struvite <span class="hlt">formation</span>, control and recovery</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Recent legislation on the removal of nutrients from wastewater has led to a number of operation problems with struvite scaling. Struvite is MgNH4PO4·6H2O and this paper reviews the <span class="hlt">formation</span>, control and recovery of struvite from primarily municipal wastewater and other waste streams. Treatment options for control and technologies for recovery are discussed.</p> <div class="credits"> <p class="dwt_author">James D Doyle; Simon A Parsons</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/337570"> <span id="translatedtitle">Extraposition via Complex Domain <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We propose a novel approach to extraposition in German within an alternative conception of syntax in which syntactic structure and linear order are mediated not via encodings of hierarchical relations but instead via order domains. At the heart of our proposal is a new kind of domain <span class="hlt">formation</span> which affords analyses of extraposition constructions that are linguistically more adequate than</p> <div class="credits"> <p class="dwt_author">Andreas Kathol; Carl Pollard</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/w824724460411873.pdf"> <span id="translatedtitle">Salesperson impression and strategy <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Personal selling is one of the most expensive, and for many companies, one of the most important elements of the marketing mix. Salesperson adaptivity is an especially important element of salesperson performance. The purpose of this research was to explore factors that may influence salespersons' adaptivity during the impression-<span class="hlt">formation</span> and strategy formulation stages of the selling process. We found that</p> <div class="credits"> <p class="dwt_author">Elizabeth H. Creyer; William T. Ross</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22Alzheimers+disease%22&pg=7&id=EJ838107"> <span id="translatedtitle">Amyloid Beta Mediates Memory <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid [beta] (1-42) peptide (A[beta][1-42]), which is believed to play a major role in amyloid plaque <span class="hlt">formation</span> in Alzheimer's disease (AD). Here we provide evidence that, in contrast with its pathological role when accumulated,…</p> <div class="credits"> <p class="dwt_author">Garcia-Osta, Ana; Alberini, Cristina M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51549384"> <span id="translatedtitle">Sandbar <span class="hlt">Formation</span> Under Surface Waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We report a combined theoretical and experimental study of sandbar <span class="hlt">formation</span> under simple-harmonic surface waves. For coarse grains and weak waves, an established empirical rule of bedload transport is used with an asymptotic theory for the fluid flow. The surface waves are governed by potential theory and a depth-linear eddy viscosity is employed in the turbulent boundary layer at the</p> <div class="credits"> <p class="dwt_author">M. J. Hancock; B. J. Landry; C. C. Mei</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://tourism.wu-wien.ac.at/lehrv/lven/04ws/lv4/gnoth.pdf"> <span id="translatedtitle">Tourism motivation and expectation <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This theoretical study introduces a model of tourism motivation and expectation <span class="hlt">formation</span>. It is based on a discussion and operationalization of both the behaviorist notion of drive reduction and the cognitivist constructs of attitudes and values. While the satisfaction of inner-directed values and motivations depends on classes of objects, outer-directed values target specific objects. In the case of trying to</p> <div class="credits"> <p class="dwt_author">Juergen Gnoth</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA439514"> <span id="translatedtitle">Geometric Cooperative Control of <span class="hlt">Formations</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Robots in a team are modeled as particles which obey simple, second order dynamics. The whole team can be viewed as a deformable body with changing shape and orientation. Jacobi shape theory is applied to model such a <span class="hlt">formation</span>. The configuration space of...</p> <div class="credits"> <p class="dwt_author">F. Zhang</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%221975%22&pg=6&id=EJ875648"> <span id="translatedtitle">Stereotype <span class="hlt">Formation</span>: Biased by Association</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|We propose that biases in attitude and stereotype <span class="hlt">formation</span> might arise as a result of learned differences in the extent to which social groups have previously been predictive of behavioral or physical properties. Experiments 1 and 2 demonstrate that differences in the experienced predictiveness of groups with respect to evaluatively neutral…</p> <div class="credits"> <p class="dwt_author">Le Pelley, Mike E.; Reimers, Stian J.; Calvini, Guglielmo; Spears, Russell; Beesley, Tom; Murphy, Robin A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=physical+AND+conditioning&pg=2&id=EJ875648"> <span id="translatedtitle">Stereotype <span class="hlt">Formation</span>: Biased by Association</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">We propose that biases in attitude and stereotype <span class="hlt">formation</span> might arise as a result of learned differences in the extent to which social groups have previously been predictive of behavioral or physical properties. Experiments 1 and 2 demonstrate that differences in the experienced predictiveness of groups with respect to evaluatively neutral…</p> <div class="credits"> <p class="dwt_author">Le Pelley, Mike E.; Reimers, Stian J.; Calvini, Guglielmo; Spears, Russell; Beesley, Tom; Murphy, Robin A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53480706"> <span id="translatedtitle"><span class="hlt">Formation</span> of Supermassive Black Holes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Three different proposed mechanisms for supermassive black hole (SMBH) <span class="hlt">formation</span> have been presented. Firstly, it has been suggested that SMBHs form in galactic nuclei by coherent collapse. Secondly, it has been suggested that SMBHs form by stellar collapse and then grow in mass. A third scenario is that massive black holes have a primordial origin and then grow in mass</p> <div class="credits"> <p class="dwt_author">Selig Kainer; William K. Rose</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/231354"> <span id="translatedtitle">A standard audit trail <span class="hlt">format</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The central role of audit trails, or (more properly) logs, in security monitoring needs little description, for it is too well known for any to doubt it. Auditing, or the analysis of logs, is a central part of security not only in computer system security but also in analyzing financial and other non-technical systems. As part of this process, it is often necessary to reconcile logs from different sources. This speaks of a need for a standard logging <span class="hlt">format</span>. A standard log <span class="hlt">format</span> robust enough to meet the needs of heterogeneity, transportability across various network protocols, and flexibility sufficient to meet a variety of needs in very different environments must satisfy two basic properties: extensibility and portability. This report presents the author`s proposed <span class="hlt">format</span> for a standard log record. In section 3, he shows how and where the translation should be done, and in section 4 he demonstrates how log records from several disparate systems would be put into this <span class="hlt">format</span>. Section 5 concludes with some observations and suggestions for future work.</p> <div class="credits"> <p class="dwt_author">Bishop, M. [Univ. of California, Davis, CA (United States). Dept. of Computer Science</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.uark.edu/ua/uarpp/Publications/Milling/Siebenmorgen%20et%20al%20%202009%20Trans%20ASABE.pdf"> <span id="translatedtitle">MILLED RICE FISSURE <span class="hlt">FORMATION</span> KINETICS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Milled rice samples at various moisture contents (MCs) were exposed to air inside a chamber that was equipped with a video camera and monitoring system that enabled observation of fissure <span class="hlt">formation</span> over a 24-h exposure duration. The effects of milled rice kernel MC (11%, 12%, 13%, or 14%), cultivar (Bengal, Wells, and CL161), air relative humidity (RH; 10%, 20%, 30%,</p> <div class="credits"> <p class="dwt_author">T. J. Siebenmorgen; M. I. Saleh; R. C. Bautista</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://sun-valley.stanford.edu/papers/AdamsRZH:96.pdf"> <span id="translatedtitle">Technologies for Spacecraft <span class="hlt">Formation</span> Flying</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Differential carrier phase GPS for orbit and attitude determination is emerging as a very promising low cost alternative to more conventional methods, such as horizon sensors, sun sensors, magnetometers, and star trackers. Relative spacecraft position and attitude determination are important for missions involving <span class="hlt">formation</span> flying, such as those proposed for stellar interferometry under NASA's New Millennium Program, and LEO missions</p> <div class="credits"> <p class="dwt_author">John Adams; Andrew Robertson; Kurt Zimmerman</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://astrobiology.arc.nasa.gov/workshops/1996/astrobiology/speakers/cassen/cassen.html"> <span id="translatedtitle">The Theory of Planetary <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This website offers an audio of a lecture on the theory of planetary <span class="hlt">formation</span>. There is also an option to use a viewgraph if you do not have real audio player. The site also provides a detailed written summary of the audio lecture.</p> <div class="credits"> <p class="dwt_author">Cassen, Patrick</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-04-25</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60363857"> <span id="translatedtitle">Increasing permeability of subsurface <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This is a method of increasing permeability of a fractured <span class="hlt">formation</span> to fluid flow by depositing in the fractures a single layer or less of solid particle-form, propping agents of preselected size and strength. A large volume of nonpenetrating fluid which has been treated to control leakoff is injected to lenghten and seal the fracture walls. Conventional size sand is</p> <div class="credits"> <p class="dwt_author">W. J. Jr. McGuire; L. R. Kern</p> <p class="dwt_publisher"></p> <p class="publishDate">1965-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42397326"> <span id="translatedtitle">Alliance <span class="hlt">formation</span> and national security</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The premise that nations form alliances in order to improve their security is widespread in the study of international relations. Yet in spite of the crucial role played by this assumption, the claims of policy makers and statesmen form our only evidence that it is the need for greater national security which motivates the <span class="hlt">formation</span> of alliances. What is more,</p> <div class="credits"> <p class="dwt_author">David Lalman; David Newman</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://files.eric.ed.gov/fulltext/ED246909.pdf"> <span id="translatedtitle">CCF: The Common Communication <span class="hlt">Format</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">The purpose of the Common Communication <span class="hlt">Format</span> (CCF) is to provide a detailed and structured method for recording a number of mandatory and optional data elements in a computer-readable bibliographic record for exchange purposes between two or more computer-based systems. However, it can also be useful within non-computerized bibliographic…</p> <div class="credits"> <p class="dwt_author">Simmons, Peter, Ed.; Hopkinson, Alan, Ed.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AN....334..589D"> <span id="translatedtitle"><span class="hlt">Formation</span> of (exo-)planets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this small review I will address three recent topics in the field of theoretical planet <span class="hlt">formation</span> studies. This review is not meant to be complete in any way. It is meant to give an idea where some of the recent developments are.</p> <div class="credits"> <p class="dwt_author">Dullemond, C. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1984GeCoA..48..605B"> <span id="translatedtitle">Sedimentary pyrite <span class="hlt">formation</span>: An update</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Sedimentary pyrite <span class="hlt">formation</span> during early diagenesis is a major process for controlling the oxygen level of the atmosphere and the sulfate concentration in seawater over geologic time. The amount of pyrite that may form in a sediment is limited by the rates of supply of decomposable organic matter, dissolved sulfate, and reactive detrital iron minerals. Organic matter appears to be the major control on pyrite <span class="hlt">formation</span> in normal (non-euxinic) terrigenous marine sediments where dissolved sulfate and iron minerals are abundant. By contrast, pyrite <span class="hlt">formation</span> in non-marine, freshwater sediments is severely limited by low concentrations of sulfate and this characteristic can be used to distinguish ancient organic-rich fresh water shales from marine shales. Under marine euxinic conditions sufficient H 2S is produced that the dominant control on pyrite <span class="hlt">formation</span> is the availability of reactive iron minerals. Calculations, based on a sulfur isotope model, indicate that over Phanerozoic time the worldwide average organic carbon-to-pyrite sulfur ratio of sedimentary rocks has varied considerably. High C/S ratios during Permo-Carboniferous time can be explained by a shift of major organic deposition from the oceans to the land which resulted in the <span class="hlt">formation</span> of vast coal swamps at that time. Low C/S ratios, compared to today, during the early Paleozoic can be explained in terms of a greater abundance of euxinic basins combined with deposition of a more reactive type of organic matter in the remaining oxygenated portions of the ocean. The latter could have been due to lower oceanic oxygen levels and/or a lack of transportation of refractory terrestrial organic matter to the marine environment due to the absence of vascular land plants at that time.</p> <div class="credits"> <p class="dwt_author">Berner, Robert A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012APS..NWS.H4009D"> <span id="translatedtitle">Ultrafast Dynamics of Polaron <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">formation</span> of localized electronic states reflects the fundamental physics of coupling between electronic and lattice dynamics, as first noted by Landau who in 1933 described the process of polaron <span class="hlt">formation</span> as ``the electron `digs its own hole' and is trapped there.'' Localization of electronic states plays a critical role in determining the properties of a wide range of materials: polaron <span class="hlt">formation</span> has a profound impact on charge transport properties of electronic materials, and <span class="hlt">formation</span> of self-trapped excitons, or exciton-polarons, dramatically changes optical properties and energy transport mechanisms. I will present femtosecond time-resolved studies of the dynamics of the localization process, focusing on the <span class="hlt">formation</span> and evolution of self-trapped excitons and polarons. The experiments are carried out in quasi-one-dimensional materials in which the strength of the electron-phonon coupling that drives the dynamics can be systematically tuned by varying the material composition. Experiments using femtosecond vibrationally impulsive excitation, in which the system is excited with an optical pulse short compared to the periods of the relevant vibrational modes, allow us to time-resolve the coupled electronic and lattice dynamics as the system evolves from the initially photoexcited delocalized electronic state to form a self-trapped exciton, revealing rapid dynamics involving both optical and acoustic phonon modes. Polaron dynamics are probed using time-resolved terahertz spectroscopy, in which short pulses of far-infrared light are used to monitor the fast photoinduced carrier response, and show localization on the time scale of a single vibrational period of the lattice.</p> <div class="credits"> <p class="dwt_author">Dexheimer, Susan</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54432913"> <span id="translatedtitle">Controlling factors for global star <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Here I attempt to address the question: What do we know, or can we know, about the controlling factors for global star <span class="hlt">formation</span>? First, I open with a very brief review of measurements of current star <span class="hlt">formation</span> rates. While absolute estimates of current star <span class="hlt">formation</span> rates carry a significant degree of uncertainty, the comparison of current star <span class="hlt">formation</span> rates has</p> <div class="credits"> <p class="dwt_author">Evan D. Skillman</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=867279"> <span id="translatedtitle">Method of fracturing a geological <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An improved method of fracturing a geological <span class="hlt">formation</span> surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the <span class="hlt">formation</span> breakdown pressure and preferably greater than the fracture propagation pressure of the <span class="hlt">formation</span>. The charge is denoted while the bore is so pressurized, resulting in the <span class="hlt">formation</span> of multiple fractures in the surrounding <span class="hlt">formation</span> with little or no accompanying <span class="hlt">formation</span> damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic <span class="hlt">formations</span>.</p> <div class="credits"> <p class="dwt_author">Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012DPS....4441511K"> <span id="translatedtitle">Rapid <span class="hlt">Formation</span> Of Saturn Induced By Jupiter <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have investigated Saturn's core <span class="hlt">formation</span> at a radial pressure maximum in the solar nebula, which is created by gap opening by Jupiter. A large core induces collisional fragmentation of surrounding planetesimals, which generally inhibits further growth of the core by removal of the resultant fragments due to radial drift caused by gas drag. However, the emergence of the pressure maximum halts the drift of the fragments, while their orbital eccentricities and inclinations are efficiently damped by gas drag. As a result, the core of Saturn rapidly grows via accretion of the fragments near the pressure maximum. We have found that in the minimum-mass solar nebula, kilometer sized planetesimals can produce a core larger than 10 Earth masses within two million years. Since Jupiter may not have undergone significant type II inward migration, it is likely that Jupiter's <span class="hlt">formation</span> was completed when the local disk mass has already decayed to a value comparable to or less than Jovian mass. The expected rapid growth of Saturn's core on a timescale comparable to or shorter than observationally inferred disk lifetime enables Saturn to acquire the current amount of envelope gas before the disk gas is completely depleted. The high heat energy release rate onto the core surface due to the rapid accretion of the fragments delays onset of runaway gas accretion until the core mass becomes somewhat larger than that of Jupiter, which is consistent with the estimate based on interior modeling. Therefore, the rapid <span class="hlt">formation</span> of Saturn induced by gap opening of Jupiter can account for the <span class="hlt">formation</span> of multiple gas giants (Jupiter and Saturn) without significant inward migration and larger core mass of Saturn than that of Jupiter.</p> <div class="credits"> <p class="dwt_author">Kobayashi, Hiroshi; Ormel, C. W.; Ida, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.wcponline.com/pdf/0811on_tap.pdf"> <span id="translatedtitle">Biofilm <span class="hlt">Formation</span> Biofilm <span class="hlt">Formation</span> Biofilm <span class="hlt">Formation</span> .EW#LUESIN5NDERSTANDING</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">he water industry has long been plagued by the effects of biofilm <span class="hlt">formation</span> in water supplies, pipes, fittings and filters. Such biomasses lead to adverse taste, odor and possible health effects in the water and decrease the life of treatment equipment. Scientists are just beginning to solve the mystery of how and why biofilms form. New evidence indicates that microorganisms</p> <div class="credits"> <p class="dwt_author">Kelly A. Reynolds</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2010-title14-vol4/pdf/CFR-2010-title14-vol4-sec302-603.pdf"> <span id="translatedtitle">14 CFR 302.603 - Contents of complaint or request for determination.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p class="result-summary">...versions, or in such other <span class="hlt">format</span> as may be specified by notice in the Federal Register: Microsoft Word (or RTF), Word Perfect, Ami Pro, Microsoft Excel, Lotus 123, Quattro Pro, or <span class="hlt">ASCII</span> tab-delineated files. Parties should...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2009-title14-vol4/pdf/CFR-2009-title14-vol4-sec302-603.pdf"> <span id="translatedtitle">14 CFR 302.603 - Contents of complaint or request for determination.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p class="result-summary">...versions, or in such other <span class="hlt">format</span> as may be specified by notice in the Federal Register: Microsoft Word (or RTF), Word Perfect, Ami Pro, Microsoft Excel, Lotus 123, Quattro Pro, or <span class="hlt">ASCII</span> tab-delineated files. Parties should...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB2000500020"> <span id="translatedtitle">Medical Expenditure Panel Survey (MEPS HC-005) Population Characteristics, 1997 P1P3/P2R1 (Raw Data File on CD-ROM).</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The CD-ROM contains the fifth release of public use data from the Medical Expenditure Panel Survey Household Component (MEPS HC). Provided in <span class="hlt">ASCII</span> and SAS Transport <span class="hlt">formats</span> (with related SAS programming statements), this release contains information coll...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www2.fdic.gov/structur/trust/index_old.html"> <span id="translatedtitle">Trust Assets of Financial Institutions 1996: Federal Deposit Insurance Corporation (FDIC)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">The US Federal Deposit Insurance Corporation has released this report, a series of 47 tables (<span class="hlt">ASCII</span> <span class="hlt">format</span> only) in five major categories (personal and employee benefit trust activities, collective investment funds, corporate trust activities, affiliated investment advisors, and fiduciary income.)</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991ASPC...21..379P"> <span id="translatedtitle">Radio galaxies and galaxy <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Radio galaxies at large redshift constrain galaxy <span class="hlt">formation</span> models in two ways: (1) through their comoving density; (2) through the ages of their stellar population. The observed density of radio galaxies at z roughly 4 sets important limits on power-spectrum normalization in hierarchical models. CDM models probably require a low degree of bias to survive. The 'alignment effect' has been used to argue that observed high-z radio galaxies are young objects in which the majority of stars are generated by the jets from the AGN. However, new data show that alignments are confined to sources of the most extreme radio power. It therefore seems likely that the stellar populations in high-z radio galaxies are old - as expected in hierarchical models for galaxy <span class="hlt">formation</span>.</p> <div class="credits"> <p class="dwt_author">Peacock, John</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5757975"> <span id="translatedtitle">Spontaneous protoplast <span class="hlt">formation</span> in Methanobacterium</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Methanobacterium bryantii was found to undergo rapid lysis when grown in a prereduced chemically defined medium under H/sub 2/-CO/sub 2/ (4:1, vol/vol). The addition of 20 mM MgCl/sub 2/ to the medium gave, rather than rapid lysis, a gradual <span class="hlt">formation</span> of phase-dark spherical bodies which in thin section appeared as true protoplasts. In general, the protoplasts were stabilized by divalent but not monovalent cations and, unlike whole cells, were sensitive to lysis by Triton X-100. Electron microscopic examination revealed that protoplast <span class="hlt">formation</span> was preceded by a general breakdown of the cell wall with an apparent squeezing out of the protoplast through the degraded wall. The growth of cells was greatly increased and not accompanied by detectable lysis in a medium modified by elevating the levels of nickel and ammonium.</p> <div class="credits"> <p class="dwt_author">Jarrell, K.F.; Colvin, J.R.; Sprott, G.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001PhRvE..64c1604R"> <span id="translatedtitle">Porous silicon <span class="hlt">formation</span> and electropolishing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Electrochemical etching of silicon in hydrofluoride containing electrolytes leads to pore <span class="hlt">formation</span> for low and to electropolishing for high applied current. The transition between pore <span class="hlt">formation</span> and polishing is accompanied by a change of the valence of the electrochemical dissolution reaction. The local etching rate at the interface between the semiconductor and the electrolyte is determined by the local current density. We model the transport of reactants and reaction products and thus the current density in both, the semiconductor and the electrolyte. Basic features of the chemical reaction at the interface are summarized in the law of mass-action-type boundary conditions for the transport equations at the interface. We investigate the linear stability of a planar and flat interface. Upon increasing the current density the stability flips either through a change of the valence of the dissolution reaction or by a nonlinear boundary condition at the interface.</p> <div class="credits"> <p class="dwt_author">Rauscher, Markus; Spohn, Herbert</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AIPC..693...49P"> <span id="translatedtitle">CEA Studies on Halo <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Beginning with the TRISPAL project, halo <span class="hlt">formation</span> has been extensively studied at CEA last 10 years. Effect of mismatching, non-linear forces, resonances, longitudinal-transverse coupling, intrabeam scattering, and interaction with the residual gas have been explored. They have been studied theoretically from both analytical models and dedicated simulation codes and, for some of them, experimentally from proton beam profile measurements over a high dynamic range in a 26 periods FODO channel. Our knowledge, strongly improved through collaborations with our worldwide colleagues, has been applied to the design of several linac projects, whose last are SPIRAL2 and RX2. The goal of this presentation is to summarise the contribution of the CEA teams to the understanding of the halo <span class="hlt">formation</span>.</p> <div class="credits"> <p class="dwt_author">Pichoff, N.; Beauvais, P.-Y.; Duperrier, R.; Haouat, G.; Lagniel, J.-M.; Uriot, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3044331"> <span id="translatedtitle">Engineering biofilm <span class="hlt">formation</span> and dispersal</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Anywhere water is in the liquid state, bacteria will exist as biofilms, which are complex communities of cells cemented together. Although frequently associated with disease and biofouling, biofilms are also important for engineering applications, such as bioremediation, biocatalysis and microbial fuel cells. Here we review approaches to alter genetic circuits and cell signaling toward controlling biofilm <span class="hlt">formation</span>, and emphasize utilizing these tools for engineering applications. Based on a better understanding of the genetic basis of biofilm <span class="hlt">formation</span>, we find that biofilms may be controlled by manipulating extracellular signals and that they may be dispersed using conserved intracellular signals and regulators. Biofilms could also be formed at specific locations where they might be engineered to make chemicals or treat human disease.</p> <div class="credits"> <p class="dwt_author">Wood, Thomas K.; Hong, Seok Hoon; Ma, Qun</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22536172"> <span id="translatedtitle">GSK-3? and memory <span class="hlt">formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In Alzheimer's disease (AD), tau hyperphosphorylation and neurofibrillary tangle (NFT) <span class="hlt">formation</span> are strongly associated with dementia, a characteristic and early feature of this disease. Glycogen synthase kinase 3? (GSK-3?) is a pivotal kinase in both the normal and pathological phosphorylation of tau. In the diseased state, hyperphosphorylated tau is deposited in NFTs, the <span class="hlt">formation</span> of which, drive the disease process. GSK-3? which is also involved in long-term depression induction, interacts with tau to inhibit synaptic long-term potentiation. Strong lines of evidence suggest that the activation of GSK-3? is responsible for the memory deficits seen in both advanced age and AD. In this review, we will focus on the role of GSK-3? in brain function, particularly in memory maintenance. We will examine human and mouse studies which suggest a role for GSK-3? in memory maintenance and the eventual development of memory deficits. PMID:22536172</p> <div class="credits"> <p class="dwt_author">Takashima, Akihiko</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-23</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6391192"> <span id="translatedtitle">Method of fracturing subsurface <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A method is described of fracturing a subsurface <span class="hlt">formation</span> which is traversed by a borehole comprising: positioning within the borehole a quantity of a first composition which includes a mixture of a propellant and a granular propping agent, the first composition as positioned forming a first section; positioning a second composition, which includes a propellant, in the borehole so as to occupy a volume separate from and closely adjacent to that volume occupied by the first composition. The second composition as so positioned forms a second section; the first and second sections being positioned in the borehole by introducing the first and second compositions simultaneously into the borehole; igniting the first composition and the second composition to form multiple fissures radiating from the borehole into the <span class="hlt">formation</span>.</p> <div class="credits"> <p class="dwt_author">Broade, R.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-05-05</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003fthp.conf..384H"> <span id="translatedtitle">Galaxy <span class="hlt">Formation</span>: Feedback from Supernovae</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We simulate the collapse of a spherically symmetric proto-galaxy with a SPH/N-body code for a non-rotating, inhomogeneous initial density profile. We include dark matter, (cooling) gas, star <span class="hlt">formation</span> and energy feedback from supernovae. An energy of 1051 ergs per supernova is deposited in the gas as thermal energy, but this does not significantly alter the dynamics of the collapse, as radiative losses are efficient.</p> <div class="credits"> <p class="dwt_author">Hartmann, Dieter H.; Myers, Jeannette M.; The, Lih-Sin</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48122746"> <span id="translatedtitle"><span class="hlt">Formation</span> and Composition of Planetesimals</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The composition of planetesimals depends upon the epoch and the location of their <span class="hlt">formation</span> in the solar nebula. Meteorites\\u000a produced in the hot inner nebula contain refractory compounds. Volatiles were present in icy planetesimals and cometesimals\\u000a produced in the cold outer nebula. However, the mechanism responsible for their trapping is still controversial. We argue\\u000a for a general scenario valid in</p> <div class="credits"> <p class="dwt_author">Daniel Gautier; Franck Hersant</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhyA..392.5194O"> <span id="translatedtitle">Network <span class="hlt">formation</span> under linking constraints</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We study the effects of linking constraints on stability, efficiency and network <span class="hlt">formation</span>. An exogenous "link-constraining system" specifies the admissible links. It is assumed that each player may initiate links only with players within a specified set of players, thus restricting the feasible strategies and networks. In this setting, we examine the impact of such constraints on stable/efficient architectures and on dynamics.</p> <div class="credits"> <p class="dwt_author">Olaizola, Norma; Valenciano, Federico</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008glyc.book..343J"> <span id="translatedtitle">C=C Bond <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The material presented in this chapter describes the general methodology used for the preparation of unsaturated sugars. The `older' methods (i. e. those being developed since at least the 1950s) which are still very useful and have general application are also presented but they are illustrated by newer examples. The direct <span class="hlt">formation</span> of the double bond(s) is emphasized, but the methodology based on the rearrangement of unsaturated sugars into other olefinic carbohydrates is also reviewed.</p> <div class="credits"> <p class="dwt_author">Jarosz, S?awomir; Nowogródzki, Marcin</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5894099"> <span id="translatedtitle">Interface <span class="hlt">formation</span> during spinodal decomposition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Already Swanger, Gupta, and Cooper have shown that the nonlinear term in the differential equation that describes spinodal decomposition is responsible for the decomposition going to completion. We contend that the term is also responsible for the decomposition going to completion. We contend that the term is also responsible for the <span class="hlt">formation</span> of sharp interfaces relatively early in the decomposition process. There is experimental verification of this.</p> <div class="credits"> <p class="dwt_author">Williams, R.O.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/ktmjm377571m061r.pdf"> <span id="translatedtitle">Biofilm <span class="hlt">formation</span> on oral piercings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary  PURPOSE: Biofilms on oral piercings might serve as a bacterial reservoir in the host and lead to bacteraemia and even septic\\u000a complications. The use of piercing materials less susceptible to biofilm accumulation could contribute to alleviation of problems.\\u000a The present study aimed to assess biofilm <span class="hlt">formation</span> on four commercially available, surface characterized piercing materials\\u000a in vitro (polytetrafluoroethylene, titanium, stainless steel,</p> <div class="credits"> <p class="dwt_author">Ines Kapferer; Christoph Steiner; Ulrike Beier; Natalia Schiefermeier; Markus Nagl; Frederik Klauser</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/1h6450m16270u667.pdf"> <span id="translatedtitle">Crystal sedimentation and stone <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Mechanisms of crystal collision being the first step of aggregation (AGN) were analyzed for calcium oxalate monohydrate (COM)\\u000a directly produced in urine. COM was produced by oxalate titration in urine of seven healthy men, in solutions of urinary macromolecules\\u000a and in buffered distilled water (control). Crystal <span class="hlt">formation</span> and sedimentation were followed by a spectrophotometer and analyzed\\u000a by scanning electron microscopy.</p> <div class="credits"> <p class="dwt_author">Johannes Markus Baumann; Beat Affolter; Rolf Meyer</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5911115"> <span id="translatedtitle">Method for fracturing subterranean <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The present invention relates to a thermally stable crosslinked gel fracturing fluid for use in the treatment of subterranean <span class="hlt">formations</span> penetrated by a well bore. The fracturing fluid comprises an aqueous liquid, a gelling agent comprising a selected modified cellulose ether, a crosslinking agent and any additional additives that may be present. The fracturing fluid is thermally stable under shear at temperatures in excess of about 200/sup 0/ F.</p> <div class="credits"> <p class="dwt_author">Almond, S. W.; Conway, M. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-11-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JPhCS.296a2019L"> <span id="translatedtitle">Spray <span class="hlt">formation</span> with complex fluids</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Droplet <span class="hlt">formation</span> through Faraday excitation has been tested in the low driving frequency limit. Kerosene was used to model liquid fuel with the addition of PIB in different proportions. All fluids were characterized in detail. The mechanisms of ejection were investigated to identify the relative influence of viscosity and surface tension. It was also possible to characterize the type of instability leading to the emission drop process.</p> <div class="credits"> <p class="dwt_author">Lustig, S.; Rosen, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/2411490"> <span id="translatedtitle">Union <span class="hlt">formation</span> in fragile families</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this article, we use data from a new longitudinal survey—the Fragile Families and Child Wellbeing Study—to examine union\\u000a <span class="hlt">formation</span> among unmarried parents who have just had a child together. We used multinomial logistic regression to estimate\\u000a the effects of economic, cultural\\/interpersonal, and other factors on whether (relative to having no romantic relationship)\\u000a parents are romantically involved and living apart,</p> <div class="credits"> <p class="dwt_author">Marcia Carlson; Sara Mclanahan; Paula England</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27763486"> <span id="translatedtitle">The <span class="hlt">Formation</span> of Stellar Clusters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We review recent work that investigates the <span class="hlt">formation</span> of stellar clusters,\\u000aranging in scale from globular clusters through open clusters to the small\\u000ascale aggregates of stars observed in T associations. In all cases, recent\\u000aadvances in understanding have been achieved through the use of state of the\\u000aart stellar dynamical and gas dynamical calculations, combined with the\\u000apossibility of</p> <div class="credits"> <p class="dwt_author">Cathie J. Clarke; Ian A. Bonnell; Lynne A. Hillenbrand</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55773301"> <span id="translatedtitle">A New Spoke <span class="hlt">Formation</span> Model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We propose a new model for the <span class="hlt">formation</span> of spokes in Saturn's rings. The model involves the electrostatic charging of sub-micron dust grains in the rings by magnetic field-aligned electron beams. Such beams have recently been observed by the MIMI instrument aboard Cassini at 3.1 Saturn radii, outside the main ring system. It is reasonable to expect the beams to</p> <div class="credits"> <p class="dwt_author">Geraint H. Jones; N. Krupp; H. Krueger; E. Roussos; W. Ip; D. G. Mitchell; S. M. Krimigis; J. Woch; A. Lagg; M. Fraenz; M. K. Dougherty; C. S. Arridge; H. J. McAndrews</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/qrw363m50503x461.pdf"> <span id="translatedtitle">Pyrazines: occurrence, <span class="hlt">formation</span> and biodegradation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Pyrazines are a class of compounds that occur almost ubiquitously in nature. Pyrazines can be synthesised chemically or biologically,\\u000a and are used as flavouring additives. The major <span class="hlt">formation</span> of pyrazines occurs during heating of food. There is very little\\u000a information available on the degradation of these compounds. In humans and animals, pyrazines are excreted as glucuronates\\u000a or bound to glutathione</p> <div class="credits"> <p class="dwt_author">Rudolf Müller; Sugima Rappert</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/15236700"> <span id="translatedtitle">Darwinian 'blind' hypothesis <span class="hlt">formation</span> revisited</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Over the last four decades arguments for and against the claim that creative hypothesis <span class="hlt">formation</span> is based on Darwinian ‘blind’\\u000a variation have been put forward. This paper offers a new and systematic route through this long-lasting debate. It distinguishes\\u000a between undirected, random, and unjustified variation, to prevent widespread confusions regarding the meaning of undirected\\u000a variation. These misunderstandings concern Lamarckism, equiprobability,</p> <div class="credits"> <p class="dwt_author">Maria E. Kronfeldner</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997GeCoA..61..323W"> <span id="translatedtitle"><span class="hlt">Formation</span> processes of framboidal pyrite</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Pyrite framboid <span class="hlt">formation</span> may be the result of four consecutive processes: (1) nucleation and growth of initial iron monosulfide microcrystals; (2) reaction of the microcrystals to greigite (Fe 3S 4; (3) aggregation of uniformly sized greigite microcrystals, i.e., framboid growth; and (4) replacement of greigite framboids by pyrite. The uniform morphology, uniform size range, and ordering of the microcrystals in individual framboids, as well as the range of observed framboid structures from irregular aggregates to densely packed spherical aggregates and polyframboids, are consequences of these processes. Using DLVO theory (Derjaguin, Landau, Verwey, and Overbeek), we have evaluated the stability of colloidal, iron monosulfide suspensions with ionic strengths typical of marine and lacustrine waters. In addition to van der Waals attractive and double-layer repulsive forces, a term is included to account for the ferrimagnetic properties of greigite. Numerical models predict that magnetically saturated greigite particles >0.1 ?m in diameter will rapidly aggregate in either marine or fresh water. The aggregation model is in agreement with the sequence of greigite <span class="hlt">formation</span> followed by pyrite framboid <span class="hlt">formation</span> established in a previous experimental study (Sweeney and Kaplan, 1973) and is consistent with the occurrence of framboids composed of other magnetic minerals, e.g., greigite, magnetite, and magnesioferrite. Based on the temperature-dependent magnetic properties of greigite and aging experiments in hydrothermal solutions, this mechanism for framboid <span class="hlt">formation</span> via precursor greigite could operate to temperatures of ˜200°C, consistent with the occasional occurrence of pyrite framboids in the paragenesis of metalliferous ore deposits.</p> <div class="credits"> <p class="dwt_author">Wilkin, R. T.; Barnes, H. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60468374"> <span id="translatedtitle">Fracturing of subsurface earth <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This is a hydraulic fracturing operation using a pelletized propping agent which has sustained load-carrying and deformation-resisting characteristics. The <span class="hlt">formation</span> is first fractured and pellets are then introduced into the fracture to prop it open. The pellets are formed from a butadiene-containing rubber which has been cured and then hardened. The hardening is accomplished by cyclization of the rubber by</p> <div class="credits"> <p class="dwt_author">G. G. East; J. A. Burkhardt</p> <p class="dwt_publisher"></p> <p class="publishDate">1965-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2107912"> <span id="translatedtitle">SCALE <span class="hlt">FORMATION</span> IN CHRYSOPHYCEAN ALGAE</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The cell wall of the marine chrysophycean alga Pleurochrysis scherfellii is composed of distinct wall fragments embedded in a gelatinous mass. The latter is a polysaccharide of pectic character which is rich in galactose and ribose. These wall fragments are identified as scales. They have been isolated and purified from the vegetative mother cell walls after zoospore <span class="hlt">formation</span>. Their ultrastructure is described in an electron microscope study combining sectioning, freeze-etch, and negative staining techniques. The scales consist of a layer of concentrically arranged microfibrils (ribbons with cross-sections of 12 to 25 x 25 to 40 A) and underlying radial fibrils of similar dimensions. Such a network-plate is densely coated with particles which are assumed to be identical to the pectic component. The microfibrils are resistant to strong alkaline treatment and have been identified as cellulose by different methods, including sugar analysis after total hydrolysis, proton resonance spectroscopical examination (NMR spectroscopy) of the benzoylated product, and diverse histochemical tests. The <span class="hlt">formation</span> and secretion of the scales can be followed along the maturing Golgi cisternae starting from a pronounced dilated "polymerization center" as a completely intracisternal process which ends in the exocytotic extrusion of the scales. The scales reveal the very same ultrastructure within the Golgi cisternae as they do in the cell wall. The present finding represents the first evidence on cellulose <span class="hlt">formation</span> by the Golgi apparatus and is discussed in relation to a basic scheme for cellulose synthesis in plant cells in general.</p> <div class="credits"> <p class="dwt_author">Brown, R. Malcolm; Franke, Werner W.; Kleinig, Hans; Falk, Heinz; Sitte, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013MNRAS.tmp.2252P"> <span id="translatedtitle">Clumpy disc and bulge <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a set of hydrodynamical/N-body controlled simulations of isolated gas-rich galaxies that self-consistently include supernova (SN) feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star-forming galaxies at z ˜ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the <span class="hlt">formation</span> of clumps which, in general, are not easily disrupted on time-scales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sérsic index, n > 2. Our physically motivated SN feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per SN event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our SN feedback model is able to establish self-regulated star <span class="hlt">formation</span>, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge <span class="hlt">formation</span> by clumps may coexist with other channels of bulge assembly such as bars and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.</p> <div class="credits"> <p class="dwt_author">Perez, Josefa; Valenzuela, Octavio; Tissera, Patricia B.; Michel-Dansac, Leo</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013MNRAS.436..259P"> <span id="translatedtitle">Clumpy disc and bulge <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a set of hydrodynamical/N-body controlled simulations of isolated gas-rich galaxies that self-consistently include supernova (SN) feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star-forming galaxies at z ˜ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the <span class="hlt">formation</span> of clumps which, in general, are not easily disrupted on time-scales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sérsic index, n > 2. Our physically motivated SN feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per SN event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our SN feedback model is able to establish self-regulated star <span class="hlt">formation</span>, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge <span class="hlt">formation</span> by clumps may coexist with other channels of bulge assembly such as bars and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.</p> <div class="credits"> <p class="dwt_author">Perez, Josefa; Valenzuela, Octavio; Tissera, Patricia B.; Michel-Dansac, Leo</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/14977559"> <span id="translatedtitle">Modulators of urinary stone <span class="hlt">formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Urine contains compounds that modulate the nucleation, growth and aggregation of crystals as well as their attachment to renal epithelial cells. These compounds may function to protect the kidneys against: 1, the possibility of crystallization in tubular fluid and urine, which are generally metastable with respect to calcium salts, 2, crystal retention within the kidneys thereby preventing stone <span class="hlt">formation</span> and 3, possibly against plaque <span class="hlt">formation</span> at the nephron basement membrane. Since oxalate is the most common stone type, the effect of various modulators on calcium oxalate (CaOx) crystallization has been examined in greater details. Most of the inhibitory activity resides in macromolecules such as glycoproteins and glycosaminoglycans while nucleation promotion activity is most likely sustained by membrane lipids. Nephrocalcin, Tamm-Horsfall protein, osteopontin, urinary prothrombin fragment 1, and bikunin are the most studied inhibitory proteins while chondroitin sulfate (CS), heparan sulfate (HS) and hyaluronic acid (HA) are the best studied glycosaminoglycans. Crystallization modulating macromolecules discussed here are also prominent in cell injury, inflammation and recovery. Renal epithelial cells on exposure to oxalate and CaOx crystals produce some of the inflammatory molecules such as monocyte chemoattractant protein-1 (MCP-1) with no apparent role in crystal <span class="hlt">formation</span>. In addition, macrophages surround the CaOx crystals present in the renal interstitium. These observations indicate a close relationship between inflammation and nephrolithiasis. PMID:14977559</p> <div class="credits"> <p class="dwt_author">Khan, Saeed R; Kok, Dirk J</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/10901204"> <span id="translatedtitle">New insight in eggshell <span class="hlt">formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The matrix proteins that participate in crystalization fulfill important functions during the <span class="hlt">formation</span> of the calcified tissues and contribute to the biomechanical properties of the mature product. We suggest that osteopontin (OPN) is part of an array of macromolecules synthesized and secreted by the cells adjacent to the mineralization front that self-assemble outside the cell and direct crystal <span class="hlt">formation</span>. The OPN meets the theoretical requirements for involvement in the mineralization process. The phosphorylated residues of acidic phosphoprotein have been shown to exist in the protein as reactive monoesters that are available for interaction with other ions, among them crystal constituents such as calcium ions. In addition, sulfation of OPN was also found to be associated with mineralization of other tissues. In contrast to the calbindin gene, whose expression is dependent on the calcium flux, the regulation of OPN synthesis is at least in part dependent on the mechanical strain imposed by the resident egg. These results demonstrate the complexity of the regulation of the matrix genes governing eggshell <span class="hlt">formation</span>. PMID:10901204</p> <div class="credits"> <p class="dwt_author">Lavelin, I; Meiri, N; Pines, M</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006DPS....38.4214J"> <span id="translatedtitle">A New Spoke <span class="hlt">Formation</span> Model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We propose a new model for the <span class="hlt">formation</span> of spokes in Saturn's rings. The model involves the electrostatic charging of sub-micron dust grains in the rings by magnetic field-aligned electron beams. Such beams have recently been observed by the MIMI instrument aboard Cassini at 3.1 Saturn radii, outside the main ring system. It is reasonable to expect the beams to also occur closer to the planet. We contend that on striking the rings, the electron beams’ dust-charging effects cause the levitation of the fine grains above the main ring plane, forming the spokes. Using a semi-quantitative model, we explain the spokes’ <span class="hlt">formation</span> locations, their initial morphologies, and the subsequent development of their appearance as reported in studies based on Voyager observations. Controlling effects on the spokes’ locations are also proposed. We outline tests that can be carried out using Cassini datasets to gauge the validity of our proposed <span class="hlt">formation</span> process. MIMI/LEMMS work at MPS is financed by the German Bundesministerium für Bildung und Forschung, and by the Max Planck Gesellschaft.</p> <div class="credits"> <p class="dwt_author">Jones, Geraint H.; Krupp, N.; Krueger, H.; Roussos, E.; Ip, W.; Mitchell, D. G.; Krimigis, S. M.; Woch, J.; Lagg, A.; Fraenz, M.; Dougherty, M. K.; Arridge, C. S.; McAndrews, H. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22693333"> <span id="translatedtitle">Illusory contour <span class="hlt">formation</span> survives crowding.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Flanked objects are difficult to identify using peripheral vision due to visual crowding, which limits conscious access to target identity. Nonetheless, certain types of visual information have been shown to survive crowding. Such resilience to crowding provides valuable information about the underlying neural mechanism of crowding. Here we ask whether illusory contour <span class="hlt">formation</span> survives crowding of the inducers. We manipulated the presence of illusory contours through the (mis)alignment of the four inducers of a Kanizsa square. In the inducer-aligned condition, the observers judged the perceived shape (thin vs. fat) of the illusory Kanizsa square, manipulated by small rotations of the inducers. In the inducer-misaligned condition, three of the four inducers (all except the upper-left) were rotated 90°. The observers judged the orientation of the upper-left inducer. Crowding of the inducers worsened observers' performance significantly only in the inducer-misaligned condition. Our findings suggest that information for illusory contour <span class="hlt">formation</span> survives crowding of the inducers. Crowding happens at a stage where the low-level featural information is integrated for inducer orientation discrimination, but not at a stage where the same information is used for illusory contour <span class="hlt">formation</span>. PMID:22693333</p> <div class="credits"> <p class="dwt_author">Lau, Jonathan Siu Fung; Cheung, Sing-Hang</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-12</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://learningcenter.nsta.org/product_detail.aspx?id=10.2505/7/SCB-RK.2.1"> <span id="translatedtitle">Rock Cycle: Environments of <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This Science Object is the second of four Science Objects in the Rocks SciPack. It provides an in-depth exploration of the conditions and environment required during the <span class="hlt">formation</span> of igneous, sedimentary, and metamorphic rocks. Igneous rock forms from the cooling and crystallization of magma. Sometimes the magma reaches Earth's surface and cools quickly; sometimes it does not reach the surface and thus cools slowly. Rocks at Earth's surface are subjected to processes of weathering and erosion, producing sediments as they are broken down. Sedimentary rock is formed when sediments are buried and solidified through various processes. Sedimentary rock buried deep enough may be transformed into metamorphic rock or melted down to magma. Rock formed deep within the crust (either igneous or metamorphic) may be forced up again to become land surface and even mountains by the forces that drive the motion of Earth's plates. Subsequently, this new rock too will erode. Learning Outcomes:� Realize that different rocks have specific origins, and that they are the product of any number of processes.� Identify the processes through which igneous, sedimentary, and metamorphic rock form.� Explain the role of intermediary materials such as sediment and magma in the <span class="hlt">formation</span> of different kinds of rock.� Provide an overarching description of the steps in the rock cycle, the <span class="hlt">formation</span> of sedimentary rock, the re-forming of rock by heat and pressure, and the process by which re-formed rock can return to the surface.</p> <div class="credits"> <p class="dwt_author">National Science Teachers Association (NSTA)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=210544"> <span id="translatedtitle"><span class="hlt">Formate</span> auxotroph of Methanobacterium thermoautotrophicum Marburg.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A <span class="hlt">formate</span>-requiring auxotroph of Methanobacterium thermoautotrophicum Marburg was isolated after hydroxylamine mutagenesis and bacitracin selection. The requirement for <span class="hlt">formate</span> is unique and specific; combined pools of other volatile fatty acids, amino acids, vitamins, and nitrogen bases did not substitute for <span class="hlt">formate</span>. Compared with those of the wild type, cell extracts of the <span class="hlt">formate</span> auxotroph were deficient in <span class="hlt">formate</span> dehydrogenase activity, but cells of all of the strains examined catalyzed a <span class="hlt">formate</span>-carbon dioxide exchange activity. All of the strains examined took up a small amount (200 to 260 mumol/liter) of <span class="hlt">formate</span> (3 mM) added to medium. The results of the study of this novel auxotroph indicate a role for <span class="hlt">formate</span> in biosynthetic reactions in this methanogen. Moreover, because methanogenesis from H2-CO2 is not impaired in the mutant, free <span class="hlt">formate</span> is not an intermediate in the reduction of CO2 to CH4.</p> <div class="credits"> <p class="dwt_author">Tanner, R S; McInerney, M J; Nagle, D P</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFMMR44A..06K"> <span id="translatedtitle">Shear band <span class="hlt">formation</span> and poromechanical properties; application to unlithified sand, Humboldt County, CA</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In response to shear strain, porous granular media may fail in <span class="hlt">tabular</span> zones of grain deformation, commonly referred to as shear bands. Previous researchers have argued that shear bands form via cataclasis and strain hardening, and that once formed they do not accommodate additional shear-strain. If correct, this hypothesis requires that shear bands are stronger than their parent material, and that parent material strengthens in response to shear-driven cataclasis, each of which may alter the effective permeability. We report on laboratory experiments designed to resolve the frictional strength and permeability of shear bands formed in well-sorted nearshore marine sand and their unlithified parent material, and to elucidate the strength and deformation properties of parent material under conditions of shear-band <span class="hlt">formation</span>. Experiments were conducted on in situ shear bands and parent material from late Quaternary nearshore marine sand in the footwall of the active McKinleyville thrust fault, Humboldt County, CA. Shear bands are exposed in positive relief, a consequence of reduced grain size and cementation, which result in decreased permeability. Permeability was measured under hydrostatic stress conditions at effective confining pressures from 0.2 MPa - 5.0 MPa . Shear bands have permeabilities of 8.2*10 -15 - 1.3*10 -17 m 2 , which represents roughly a 1 to 3 order of magnitude decrease relative to that of the parent material (7.0*10 -14 - 2.0*10 -14 m 2 ). We sheared parent material and in situ shear bands in the single-direct shear geometry over a range of probable in situ normal stresses (0.5-1.8 MPa). Shear bands have greater strength than parent material, with the coefficient of internal friction being ? i = 0.623 and ? i = 0.525, respectively. We sheared parent material in the double-direct shear geometry under conditions approximating shear band <span class="hlt">formation</span> (sliding velocity = 10 ?m/s-10 mm/s, ? n = 0.75-1.75 MPa, saturated/dry, shear strain = 0.5-20). We find that parent material strengthens as a function of shear strain throughout individual experiments; frictional yield strength increases by 1 to 9% over a range of shear strain from 0 to 10. We attribute the increase in strength to increased grain angularity and abundance of small particles, both of which are a consequence of pervasive cataclasis. Our results support the hypothesis that shear bands are stronger than their parent material and that parent material exhibits strengthening as a function of shear-driven cataclasis. Further, cataclasis may be responsible for the observed permeability contrast of in situ shear bands and parent material. Ongoing work will analyze the role of cataclasis on parent material permeability as a function of shear strain.</p> <div class="credits"> <p class="dwt_author">Kaproth, B. M.; Perez, E.; Cashman, S. M.; Saffer, D. M.; Marone, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.er.usgs.gov/publication/70011834"> <span id="translatedtitle">Lower Eocene alluvial paleosols (Willwood <span class="hlt">Formation</span>, Northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">The lower Eocene Willwood <span class="hlt">Formation</span> of northwest Wyoming is a 700 m thick accumulation of alluvial floodplain and channel mudstones and sandstones, nearly all of which show paleopedogenic modifications. Pedogenesis of Willwood sandstones is indicated by taproot and vertebrate and invertebrate bioturbation, early local cementation by calcium carbonate, and thin illuviation cutans on clastic grains. Pedogenesis in Willwood mudstones is indicated by plant bioturbation, insect and other invertebrate burrow casts and lebensspuren; free iron, aluminum, and manganese mobilization, including hydromorphic gleying; sesquioxide and calcareous glaebule <span class="hlt">formation</span> in lower parts of the solum; presence of clay-rich and organic carbon-rich zones; and well differentiated epipedons and albic and spodic horizons. Probable A horizons are also locally well developed. Occurrence of variegated paleosol units in thick floodplain mudstone deposits and their association with thin, lenticular, and unconnected fluvial sandstones in the Willwood <span class="hlt">Formation</span> of the central and southeast Bighorn Basin suggest that these soils formed during times of rapid sediment accumulation. The <span class="hlt">tabular</span> geometry and lateral persistence of soil units as well as the absence of catenization indicate that Willwood floodplains were broad and essentially featureless. All Willwood paleosols were developed on alluvial parent materials and are complex in that B horizons of younger paleosols were commonly superimposed upon and mask properties of suspected A and B horizons of the next older paleosols. The soils appear to be wet varieties of the Spodosol and Entisol groups (aquods and ferrods, and aquents, respectively), though thick, superposed and less mottled red, purple, and yellow paleosols resemble some ultisols. Most Willwood paleosols resemble warm temperate to subtropical alluvial soils that form today under alternating wet and dry conditions and (or) fluctuating water tables. The up-section decrease in frequency of gley mottles, increase in numerical proportion and thickness of red versus orange coloration, and increase in abundance of calcrete glaebules indicate better drained soils and probably drier climate in late Willwood time. This drying is believed to be related to creation of rain shadows and spacing of rainfall (but not necessarily decrease in absolute rainfall) due to progressive tectonic structural elevation of the mountainous margins of the Bighorn Basin. ?? 1981.</p> <div class="credits"> <p class="dwt_author">Bown, T. M.; Kraus, M. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17432330"> <span id="translatedtitle">Dioxin <span class="hlt">formation</span> from waste incineration.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the <span class="hlt">formation</span> mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin <span class="hlt">formation</span> from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin <span class="hlt">formation</span>. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin <span class="hlt">formation</span> were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste samples were burned, were analyzed by gas chromatography/mass spectrometry. <span class="hlt">Formation</span> of total PCDFs was much higher than that of PCDDs in all samples. The total PCDFs comprised 70%-90% of the total dioxin formed. The amount of total PCDFs formed ranged from 0.78 ng/g (newspaper) to 8,490ng/g (PVC burned in high CO concentration). The amount of total PCDDs formed ranged from 0.02ng/g (newspaper) to 430ng/g (PVC). Coplanar PCBs were found at the lowest level of the dioxins formed. Their <span class="hlt">formation</span> levels ranged from 0ng/g (newspaper) to 77.6ng/g (PVC). It is obvious that the samples with either inorganic or organic chlorides produced much more dioxins than the sample without chlorides when incinerated under similar conditions. It is not clear how inorganic and organic chloride contribute differently to dioxin <span class="hlt">formation</span>. Among the metals examined, copper seems to have higher activity toward dioxin <span class="hlt">formation</span> than other metals. It acted not only as a catalyst but also as a transmitter of heterogeneous chlorine. The toxicity equivalence quantity (TEQ) values generally correlated with the amount of chlorine content in the samples and the amount of dioxin formed in exhaust gases from an incinerator. When the same sample was incinerated at different temperatures, however, the sample burned at low temperature yielded a higher TEQ value than did the sample burned at high temperature. The samples that did not contain chlorine or were not combusted with chlorides exhibited low TEQ values. In contrast, samples with high chlorine content, such as PVC (51.3%), gave high TEQ values. Combustion temperatures may play an important role in dioxin <span class="hlt">formation</span> in exhaust gases from the incineration of waste materials. However, no significant relationship between dioxin <span class="hlt">formation</span> and chamber temperatures was reported in the core articles. However, It is obvious that dioxin <span class="hlt">formation</span> occurred at temperatures above 450'C and was reduced significantly at temperatures above 850 degrees C. The reaction occurring in an incinerator is extremely complex, and there are many factors in addition to</p> <div class="credits"> <p class="dwt_author">Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFMMR31B..04N"> <span id="translatedtitle">Core <span class="hlt">formation</span> in silicate bodies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core <span class="hlt">formation</span> happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core <span class="hlt">formation</span>; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system <span class="hlt">formation</span>, respectively [4]. These <span class="hlt">formation</span> times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core <span class="hlt">formation</span> [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re-equilibration is also suggested by mantle siderophile abundances [13], though simple partitioning models do not capture the likely complex P,T evolution during successive giant impacts. The timescale of Martian core <span class="hlt">formation</span> is currently uncertain (0-10 My) [14], though it is clear that Martian core <span class="hlt">formation</span> ended before that of the Earth. [1] Stevenson, in Origin of the Earth, 1990. [2] Groebner and Kohlstedt, EPSL 2006. [3] Rubie et al., Treatise Geophys. 2007. [4] Kleine et al., GCA submitted. [5] Weiss et al., LPSC 39, 2008. [6] Keil and Wilson, EPSL 1993 [7] Wanke and Dreibus, PTRSL, 1984. [8] Agnor et al. Icarus 1999 [9] Canup and Asphaug, Nature 2001 [10] Nimmo and Agnor, EPSL 2006. [11] Rubie et al., EPSL 2003 [12] O'Brien et al, Icarus 2006 [13] Righter, AREPS 2003. [14] Nimmo and Kleine, Icarus 2007.</p> <div class="credits"> <p class="dwt_author">Nimmo, F.; O'Brien, D. P.; Kleine, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2225131"> <span id="translatedtitle">WOUND HEALING AND COLLAGEN <span class="hlt">FORMATION</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The regular sequence encountered in healing guinea pig skin wounds has been examined by methods of light and electron microscopy. Observations on cell populations, their fine structure, and fibril <span class="hlt">formation</span> in the connective tissue have been made. Linear incisions in the skin of normal female guinea pigs weighing 300 to 350 grams were allowed to heal. The wounds were then excised, fixed with buffered 2 per cent osmium tetroxide, and postfixed in neutral buffered formalin, at 16 and 24 hours and at 3, 5, 9, and 14 days after wounding. They were then embedded in epoxy resin. In the inflammatory phase the exudate observed in the early wounds consists largely of polymorphonuclear neutrophilic leukocytes, macrophages, fibrin, and free extracellular organelles from the disrupted inflammatory cells. These organelles later appear in vacuoles in the cytoplasm of the macrophages. Fibroblasts first appear at 24 hours, and show extensive development and dilatation of the endoplasmic reticulum, which sometimes contains moderately dense flocculent material. In addition, these fibroblasts have enlarged mitochondria and condensations of filamentous material within the cytoplasm near the cell surface. Occasional myelin figures and moderately dense, 0.5 to 1.0 micron bodies are found within the cytoplasm of the early fibroblasts. Collagen fibrils are first seen at 3 days extracellularly near the cell surfaces. They appear at the later times in two populations of sizes. With increasing wound age the fibroblasts retain their morphology and the wounds decrease in cellularity concomitantly with the <span class="hlt">formation</span> of increasing amounts of collagen. Several proposed mechanisms of collagen fibril <span class="hlt">formation</span> are discussed in relation to the observed phenomena. The problem of correlating fibril diameter with the appearance of the periodic structure of collagen in relation to the minimal size fibril which would be anticipated to display this appearance is discussed.</p> <div class="credits"> <p class="dwt_author">Ross, Russell; Benditt, Earl P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1961-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6329012"> <span id="translatedtitle"><span class="hlt">Formation</span> fracturing kills Indonesian blowout</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Dynamic killing methods without fracturing could not be applied in killing PT-29 blowout, due to the reservoir rock properties (shaley sand <span class="hlt">formation</span>). A special fracturing and acidizing technique was required in order to allow the calculated kill rate of 40 bbl/ min. A low injection rate of 0.5 bbl/min with high injection pressure of 1,250 psi occurred due to a degree of <span class="hlt">formation</span> damage and the mud cake covering the sand face. The calculated <span class="hlt">formation</span> fracture pressure of 1,393 psi was a reliable value compared to actual fracture pressure of 1,400 psi. The designed killing rate of 40 bbl/ min could not reach the blowout well due to some leak-off of the injected fluid in unexpected directions of the induced fractures. Clearing PT-29 of all debris was very important for immediate well capping. The capping operation was done after the fire was extinguished; although the well was still flowing gas and water, no hazard of explosion was detected. The exact subsurface position of the blowout well of PT-29 was uncertain due to the lack of directional survey data. This problem reduced the effectiveness of the killing operation. A reliable water supply is important to the success of the killing job. Once the fracture had been induced, kill fluid had to be pumped continuously; any interruption might cause the fracture to heal. Deviation and directional survey data on every vertical or directional well are absolutely important for accurate relief well drilling purposes in case it is required.</p> <div class="credits"> <p class="dwt_author">Wizyodiazjo, S.; Salech, M.; Sumanta, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997AAS...190.1501C"> <span id="translatedtitle"><span class="hlt">Formation</span> of Stars and Planets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">One of the most active fields of investigation at the present time is the series of events that starts with the <span class="hlt">formation</span> of cores in molecular clouds, follows their collapse to form stars with accompanying disks, and then follows the set of processes that can occur in such disks to form planets. The initial part of the story is investigated by astronomers and the latter part by geoscientists, who rarely communicate with one another because of the jargon barrier. Here I shall discuss some of the interdisciplinary connections. Molecular cloud cores form as a result of ambipolar diffusion which carries neutral molecules across magnetic field lines. A simple expectation would then be that the gas would flow along the field lines to form a pancake configuration, but observations show that the cores are strongly elongated along the field lines instead. Since the radial velocities of the molecules are also nonthermal, it follows that the energy content of the dense interstellar medium is dominated by MHD waves, except at the centers of cores where the velocities are thermal. If no other major processes enter, then continued shrinkage of the cores accelerates the collapse toward free fall conditions, but the total time interval well exceeds a million years. However, in the case of the solar system, we find primitive meteoritic materials containing the decay products of extinct radioactivities with mean lives as short as 150,000 years. In our case at least, core collapse was quicker. I shall discuss star <span class="hlt">formation</span> triggered by shocks, probably primarily from supernova explosions a few parsecs away, and give other evidence that such shocks may dominate the total star <span class="hlt">formation</span> process. This should also produce great diversity in planetary systems that form in such events.</p> <div class="credits"> <p class="dwt_author">Cameron, A. G. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2668337"> <span id="translatedtitle">Biofilm <span class="hlt">Formation</span> by Staphylococcus haemolyticus?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Infections due to coagulase-negative staphylococci (CoNS) most frequently occur after the implantation of medical devices and are attributed to the biofilm-forming potential of CoNS. Staphylococcus haemolyticus is the second most frequently isolated CoNS from patients with hospital-acquired infections. There is only limited knowledge of the nature of S. haemolyticus biofilms. The aim of this study was to characterize S. haemolyticus biofilm <span class="hlt">formation</span>. We analyzed the biofilm-forming capacities of 72 clinical S. haemolyticus isolates. A detachment assay with NaIO4, proteinase K, or DNase was used to determine the main biofilm components. Biofilm-associated genes, including the ica operon, were analyzed by PCR, and the gene products were sequenced. Confocal laser scanning microscopy (CLSM) was used to elucidate the biofilm structure. Fifty-three isolates (74%) produced biofilms after growth in Trypticase soy broth (TSB) with glucose, but only 22 (31%) produced biofilms after growth in TSB with NaCl. It was necessary to dissolve the biofilm in ethanol-acetone to measure the optical density of the full biofilm mass. DNase, proteinase K, and NaIO4 caused biofilm detachment for 100%, 98%, and 38% of the isolates, respectively. icaRADBC and polysaccharide intercellular adhesin (PIA) production were found in only two isolates. CLSM indicated that the biofilm structure of S. haemolyticus clearly differs from that of S. epidermidis. We conclude that biofilm <span class="hlt">formation</span> is a common phenotype in clinical S. haemolyticus isolates. In contrast to S. epidermidis, proteins and extracellular DNA are of functional relevance for biofilm accumulation, whereas PIA plays only a minor role. The induction of biofilm <span class="hlt">formation</span> and determination of the biofilm mass also needed to be optimized for S. haemolyticus.</p> <div class="credits"> <p class="dwt_author">Fredheim, Elizabeth Gladys Aarag; Klingenberg, Claus; Rohde, Holger; Frankenberger, Stephanie; Gaustad, Peter; Flaegstad, Trond; Sollid, Johanna Ericson</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6677254"> <span id="translatedtitle">Salt <span class="hlt">formations</span> offer disposal alternative</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper discusses how three U.S. firms are spending millions to permit and build underground disposal sites in salt <span class="hlt">formations</span>. These companies claim salt is the ideal geological medium for holding hazardous wastes. Two Texas locations and one in Michigan have been targeted as future sites for hazardous waste disposal. The Michigan site, outside Detroit, is a former salt mine 2,000 feet beneath the Ford Motor Co. (Detroit) assembly works in Dearborn. Both Texas sites are atop salt domes---one east and one west of Houston.</p> <div class="credits"> <p class="dwt_author">Funderburk, R. (IM-Tech Immobilization Technologes, Fairfield, TX (US))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17011499"> <span id="translatedtitle">Transcriptional control of adipocyte <span class="hlt">formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A detailed understanding of the processes governing adipose tissue <span class="hlt">formation</span> will be instrumental in combating the obesity epidemic. Much progress has been made in the last two decades in defining transcriptional events controlling the differentiation of mesenchymal stem cells into adipocytes. A complex network of transcription factors and cell-cycle regulators, in concert with specific transcriptional coactivators and corepressors, respond to extracellular stimuli to activate or repress adipocyte differentiation. This review summarizes advances in this field, which constitute a framework for potential antiobesity strategies. PMID:17011499</p> <div class="credits"> <p class="dwt_author">Farmer, Stephen R</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/376889"> <span id="translatedtitle">Biofilm <span class="hlt">formation</span> and microbial corrosion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Biofilms-colonies of microorganisms growing on surfaces - can greatly accelerate the corrosion rates of metals and alloys in utility water systems. Fundamental EPRI research is showing how mechanisms of biofilm <span class="hlt">formation</span>, interactions between bacterial species, and metabolic activities control such biofilm properties as corrosive potential This research is identifying methods to control biofilm development and prevent microbially influenced corrosion. The results should also apply to the control of other processes involving biological consortia, including the bioremediation of contaminated groundwater and soil and the biodesulfurization of coal.</p> <div class="credits"> <p class="dwt_author">Goldstein, R.; Porcella, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/877139"> <span id="translatedtitle">SAR polar <span class="hlt">format</span> implementation with MATLAB.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Traditional polar <span class="hlt">format</span> image <span class="hlt">formation</span> for Synthetic Aperture Radar (SAR) requires a large amount of processing power and memory in order to accomplish in real-time. These requirements can thus eliminate the possible usage of interpreted language environments such as MATLAB. However, with trapezoidal aperture phase history collection and changes to the traditional polar <span class="hlt">format</span> algorithm, certain optimizations make MATLAB a possible tool for image <span class="hlt">formation</span>. Thus, this document's purpose is two-fold. The first outlines a change to the existing Polar <span class="hlt">Format</span> MATLAB implementation utilizing the Chirp Z-Transform that improves performance and memory usage achieving near realtime results for smaller apertures. The second is the addition of two new possible image <span class="hlt">formation</span> options that perform a more traditional interpolation style image <span class="hlt">formation</span>. These options allow the continued exploration of possible interpolation methods for image <span class="hlt">formation</span> and some preliminary results comparing image quality are given.</p> <div class="credits"> <p class="dwt_author">Martin, Grant D.; Doerry, Armin Walter</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA226221"> <span id="translatedtitle">Complex <span class="hlt">Formation</span> between Dimethyl Methylphosphonate and Hexafluoroisopropanol.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A solvent/water partitioning method was used to measure the complex <span class="hlt">formation</span> between dimethyl methylphosphonate (DMMP) and hexafluoroisopropanol (HFIP). The highest <span class="hlt">formation</span> constant was obtained when n-hexane was used as the partitioning solvent. Other...</p> <div class="credits"> <p class="dwt_author">D. C. Leggett</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/952429"> <span id="translatedtitle">XML <span class="hlt">Format</span> for SESAME and LEOS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The objective of this document is to describe the XML <span class="hlt">format</span> used by LLNL and LANL to represent the equation-of-state and related material information in the LEOS and SESAME data libraries. The primary purpose of this document is to describe a specific XML <span class="hlt">format</span> for representing EOS data that is tailored to the nature of the underlying data and is amenable to conversion to both legacy SESAME and LEOS binary <span class="hlt">formats</span>. The secondary purpose is to describe an XML <span class="hlt">format</span> that lends itself to a 'natural' representation in a binary file <span class="hlt">format</span> of the SESAME, pdb or hdf5 form so that this <span class="hlt">format</span> and related tools can be used for the rapid and efficient development and implementation of prototype data structures. This document describes the XML <span class="hlt">format</span> only. A working knowledge of LEOS and SESAME <span class="hlt">formats</span> is assumed.</p> <div class="credits"> <p class="dwt_author">Durrenberger, J K; Neely, J R; Sterne, P A</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-29</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9322810"> <span id="translatedtitle">DF: A Proposed Data <span class="hlt">Format</span> Standard.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A standard is proposed describing a portable <span class="hlt">format</span> for electronic exchange of data in the physical sciences. Writing scientific data in a standard <span class="hlt">format</span> has three basic advantages: portability; the ability to use metadata to aid in interpretation of the...</p> <div class="credits"> <p class="dwt_author">L. R. Lait E. R. Nash P. A. Newman</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2012-title1-vol1/pdf/CFR-2012-title1-vol1-sec10-3.pdf"> <span id="translatedtitle">1 CFR 10.3 - <span class="hlt">Format</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p class="result-summary">...2012-01-01 false <span class="hlt">Format</span>. 10.3 Section 10.3 General Provisions ADMINISTRATIVE...PAPERS Regular Publication § 10.3 <span class="hlt">Format</span>. The Daily Compilation...published online on the Government Printing Office access system. [74...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/k287062p47l17150.pdf"> <span id="translatedtitle">Gas-bubble <span class="hlt">formation</span> in liquid layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The dynamics of bubble <span class="hlt">formation</span> and breakaway when a gas issues into a liquid is considered. The different modes of gas-bubble <span class="hlt">formation</span> in a liquid layer are indicated. The results of analytic investigation are compared with experimental data.</p> <div class="credits"> <p class="dwt_author">A. A. Voloshko; A. V. Vurgaft; V. N. Frolov</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N7824953"> <span id="translatedtitle">Void Lattice <span class="hlt">Formation</span>: Spinodal Decomposition of Vacancies.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Superlattices of voids form in various metallic crystals and alloys under conditions of heavy radiation damage near the threshold temperature of void <span class="hlt">formation</span>. The mechanism of the void lattice <span class="hlt">formation</span> is considered as a spinodal decomposition, of vaca...</p> <div class="credits"> <p class="dwt_author">M. Imada</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8724289"> <span id="translatedtitle">Measuring Star <span class="hlt">Formation</span> Rates in Blue Galaxies.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The problems associated with measurements of star <span class="hlt">formation</span> rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star <span class="hlt">formation</span> rates from H alpha and Far Infrared (FIR) luminosities. The models are appli...</p> <div class="credits"> <p class="dwt_author">J. S. Gallagher D. A. Hunter</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://learningcenter.nsta.org/product_detail.aspx?id=10.2505/15/ERNASA10_0153"> <span id="translatedtitle">External Resource: The <span class="hlt">Formation</span> of the Moon</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This Windows to The Universe webpage explores the <span class="hlt">formation</span> of the Moon. Topics: Moon surface, planetismals, Period of Late Heavy Bombardment, Moon core and mantle, lunar Maria, collisional ejection theory, capture theory, co-<span class="hlt">formation</span> theory.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1900-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2013-title40-vol34/pdf/CFR-2013-title40-vol34-sec1502-10.pdf"> <span id="translatedtitle">40 CFR 1502.10 - Recommended <span class="hlt">format</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p class="result-summary">...ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.10 Recommended...shall use a <span class="hlt">format</span> for environmental impact statements which will encourage...following standard <span class="hlt">format</span> for environmental impact statements should be followed...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD691487"> <span id="translatedtitle">Heats of <span class="hlt">Formation</span> of Light Element Compounds.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A summary is given of research on the determination of the heats of <span class="hlt">formation</span> of iodides by direct reaction of an element with iodine, and the determination of the heat of <span class="hlt">formation</span> of beryllium boride. (Author)</p> <div class="credits"> <p class="dwt_author">C. Hayman G. C. Curme P. Gross R. H. Lewin</p> <p class="dwt_publisher"></p> <p class="publishDate">1969-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB198330"> <span id="translatedtitle">Recharging the Ogallala <span class="hlt">Formation</span> Using Shallow Holes.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Natural groundwater recharge cannot sustain the Southern High Plains portion of the Ogallala <span class="hlt">Formation</span>. Nearly all the water used in this region is derived from the Ogallala <span class="hlt">Formation</span>. The southern part of the Ogallala is hydrologically isolated from all ...</p> <div class="credits"> <p class="dwt_author">M. J. Dvoracek S. H. Peterson</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47597374"> <span id="translatedtitle">Molecular cloud evolution and star <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The origin and growth of molecular clouds is described and mechanisms for molecular cloud support are reviewed. Cloud disruption\\u000a is discussed with emphasis on star <span class="hlt">formation</span> efficiency. Issues pertaining to massive star enhanced star <span class="hlt">formation</span> are summarized,\\u000a and a mechanism for bimodal star <span class="hlt">formation</span> is presented. Applications are made to the global star <span class="hlt">formation</span> rate and to starburst\\u000a galaxies.</p> <div class="credits"> <p class="dwt_author">Joseph Silk</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013IAUS..292..336N"> <span id="translatedtitle">Stochastic star <span class="hlt">formation</span> and early galactic nucleosynthesis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We discuss calculations of the star <span class="hlt">formation</span>, nucleosynthesis, and stochastic evolution of proto-galactic clouds in a galactic chemical evolution model which is motivated by cold dark matter simulations of hierarchical galaxy <span class="hlt">formation</span> (Saleh et al. 2006; Lan et al. 2010). We utilize SN-induced and dark matter halo <span class="hlt">formation</span>-induced star <span class="hlt">formation</span> within a model that follows the evolution of chemical enrichment and energy input to the clouds via Type II, Ia supernovae and stellar winds.</p> <div class="credits"> <p class="dwt_author">Nguyen, Lan; Mathews, Grant</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22JAVA%22&id=EJ897894"> <span id="translatedtitle">String <span class="hlt">Formatting</span> Considered Harmful for Novice Programmers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|In Java, "System.out.printf" and "String.<span class="hlt">format</span>" consume a specialised kind of string commonly known as a <span class="hlt">format</span> string. In our study of first-year students at the Ateneo de Manila University, we discovered that <span class="hlt">format</span> strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found that 8% of all the…</p> <div class="credits"> <p class="dwt_author">Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60459147"> <span id="translatedtitle">Sequential hydraulic fracturing of a subsurface <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This patent describes a method for propagating a vertical hydraulic fracture in an earth <span class="hlt">formation</span> surrounding a borehole wherein the original in-situ stresses favor a horizontal fracture. It comprises: pumping a first fracturing fluid into the <span class="hlt">formation</span> at a first depth within the borehole so that a first fracturing pressure is applied to the <span class="hlt">formation</span> by the first fracturing fluid</p> <div class="credits"> <p class="dwt_author">T. C. Jr. Vogt; M. W. Hale; J. R. Sellers</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22a+job+stuffing+envelopes+or+postcards+for+great+pay+working+from+home+online+application%22+OR+%22mailer%22&id=ED353333"> <span id="translatedtitle">Response Rate Effects of Three Questionnaire <span class="hlt">Formats</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|This paper compares the response rates of university graduates on the following three <span class="hlt">formats</span> of a questionnaire: (1) a two-page questionnaire that is to be returned with an accompanying self-addressed stamped envelope; (2) a <span class="hlt">format</span> using smaller type and condensed <span class="hlt">format</span> to present the questionnaire items on a single page that is to be returned…</p> <div class="credits"> <p class="dwt_author">Enger, John M.; And Others</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37865159"> <span id="translatedtitle">Store <span class="hlt">format</span> choice and shopping trip types</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – The purpose of the paper is to identify store <span class="hlt">format</span> attributes that impact on store <span class="hlt">format</span> choice when consumers conduct fill-in or major trips to buy groceries. By doing so, we take into consideration that consumers patronise multiple (store based) <span class="hlt">formats</span> depending on the shopping situation operationalised by the type of shopping trip. Design\\/methodology\\/approach – The paper adopts</p> <div class="credits"> <p class="dwt_author">Thomas Reutterer; Christoph Teller</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61396419"> <span id="translatedtitle"><span class="hlt">Formation</span> consolidation using a combustible liner</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In a method of consolidating an incompetent <span class="hlt">formation</span>, a liner of combustible material is positioned in a well at a point contiguous to the <span class="hlt">formation</span> and then ignited to heat the <span class="hlt">formation</span> to a temperature sufficient to consolidate it. A gas containing oxygen is supplied to the liner during combustion and is preferably supplied at a pressure sufficient to establish</p> <div class="credits"> <p class="dwt_author">Vogt; T. C. Jr</p> <p class="dwt_publisher"></p> <p class="publishDate">1968-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.quantchem.kuleuven.ac.be/minh/Articles/ChemPhysLett/98-91.pdf"> <span id="translatedtitle">HCNq CO and HCOq CN <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In order to investigate HCNq CO andror HCOq CN <span class="hlt">formation</span> during the reaction of the ethynyl radical with nitric wx oxide we explore the potential energy surface of C HNO isomers via density functional theory. Product <span class="hlt">formation</span> takes 2 place via several isomerization steps after the initial adduct <span class="hlt">formation</span>. We identified one reaction pathway resulting in fragmentation that is accessible</p> <div class="credits"> <p class="dwt_author">Debasis Sengupta; Jozef Peeters; Minh Tho</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/3773596"> <span id="translatedtitle">Sox9 is required for cartilage <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Chondrogenesis results in the <span class="hlt">formation</span> of cartilages, initial skeletal elements that can serve as templates for endochondral bone <span class="hlt">formation</span>. Cartilage <span class="hlt">formation</span> begins with the condensation of mesenchyme cells followed by their differentiation into chondrocytes. Although much is known about the terminal differentiation products that are expressed by chondrocytes, little is known about the factors that specify the chondrocyte lineage. SOX9</p> <div class="credits"> <p class="dwt_author">Weimin Bi; Jian Min Deng; Zhaoping Zhang; Richard R. Behringer; Benoit de Crombrugghe</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57734502"> <span id="translatedtitle">Television <span class="hlt">Formats</span>: Primetime Staple, Global Market</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The last decade has witnessed the growth of TV <span class="hlt">formats</span> such as Big Brother or The X Factor, developed in one market and sold internationally for local adaptation. This article reveals the scale and significance <span class="hlt">formatted</span> television content has attained, drawing on a case study analysis of US schedules from the 2007–2008 broadcast season. The high share of <span class="hlt">formatted</span> programming</p> <div class="credits"> <p class="dwt_author">Andrea Esser</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41318615"> <span id="translatedtitle">Achievement goal orientations and identity <span class="hlt">formation</span> styles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present article points to shared underlying theoretical assumptions and central processes of a prominent academic motivation perspective – achievement goal theory – and recent process perspectives in the identity <span class="hlt">formation</span> literature, and more specifically, identity <span class="hlt">formation</span> styles. The review highlights the shared definition of achievement goal orientations and identity <span class="hlt">formation</span> styles as mental frames that guide interpretation of situations,</p> <div class="credits"> <p class="dwt_author">Avi Kaplan; Hanoch Flum</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53345586"> <span id="translatedtitle">Physical Conditions in Regions of Star <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The physical conditions in molecular clouds control the nature and rate of star <span class="hlt">formation</span>, with consequences for planet <span class="hlt">formation</span> and galaxy evolution. The focus of this review is on the conditions that characterize regions of star <span class="hlt">formation</span> in our Galaxy. A review of the tools and tracers for probing physical conditions includes summaries of generally applicable results. Further discussion distinguishes</p> <div class="credits"> <p class="dwt_author">Neal J. Evans II</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55016948"> <span id="translatedtitle">Radio triggered star <span class="hlt">formation</span> in cooling flows</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The giant galaxies located at the centers of cluster cooling flows are frequently sites of vigorous star <span class="hlt">formation</span>. In some instances, star <span class="hlt">formation</span> appears to have been triggered by the galaxy's radio source. The colors and spectral indices of the young populations are generally consistent with short duration bursts or continuous star <span class="hlt">formation</span> for durations \\/≪1 Gyr, which is less</p> <div class="credits"> <p class="dwt_author">B. R. McNamara</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52347261"> <span id="translatedtitle">The rate of star <span class="hlt">formation</span> in galaxies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Suggested types of star <span class="hlt">formation</span> mechanisms are reviewed as they relate to external galaxies. Following the definition of the star <span class="hlt">formation</span> rate as the time derivative of the conversion of mass from a tenuous state into a self-luminous condensed stellar phase, attention is given to Schmidt's law expressing the <span class="hlt">formation</span> rate solely as a function of the initial gas density.</p> <div class="credits"> <p class="dwt_author">B. F. Madore</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54084726"> <span id="translatedtitle">Control of star <span class="hlt">formation</span> by supersonic turbulence</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Understanding the <span class="hlt">formation</span> of stars in galaxies is central to much of modern astrophysics. However, a quantitative prediction of the star <span class="hlt">formation</span> rate and the initial distribution of stellar masses remains elusive. For several decades it has been thought that the star <span class="hlt">formation</span> process is primarily controlled by the interplay between gravity and magnetostatic support, modulated by neutral-ion drift (known</p> <div class="credits"> <p class="dwt_author">Mordecai-Mark Mac Low; Ralf S. Klessen</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12376269"> <span id="translatedtitle">Radio triggered star <span class="hlt">formation</span> in cooling flows</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The giant galaxies located at the centers of cluster cooling flows are frequently sites of vigorous star <span class="hlt">formation</span>. In some instances, star <span class="hlt">formation</span> appears to have been triggered by the galaxy’s radio source. The colors and spectral indices of the young populations are generally consistent with short duration bursts or continuous star <span class="hlt">formation</span> for durations ?1 Gyr, which is less</p> <div class="credits"> <p class="dwt_author">B. R. McNamara</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56083318"> <span id="translatedtitle">Star <span class="hlt">formation</span> in active galaxies and quasars</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The observationaal evidence for a causal or statistical link between star <span class="hlt">formation</span> and active galactic nuclei are reviewed. The chief difficulty is in quantitatively ascertaining the star <span class="hlt">formation</span> rate in active galaxies: most of the readily observable manifestations of star <span class="hlt">formation</span> superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star</p> <div class="credits"> <p class="dwt_author">Timothy M. Heckman</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50488437"> <span id="translatedtitle">Dynamics and control of electromagnetic satellite <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Satellite <span class="hlt">formation</span> flying is an enabling technology for many space missions, especially for space based telescopes. Electromagnetic <span class="hlt">formation</span> flying (EMFF) is a novel concept that uses superconducting electromagnetic coils to provide forces and torques between different satellites in a <span class="hlt">formation</span>. With EMFF the life-span of the mission becomes independent of the fuel. This comes at the cost of coupled and</p> <div class="credits"> <p class="dwt_author">Umair Ahsun; David W. Miller</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51518298"> <span id="translatedtitle">Cutting fluid mist <span class="hlt">formation</span> via atomization mechanisms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Cutting fluid mist is becoming an increasing concern for manufacturers as additional information is obtained on the health risks that it poses. An effective strategy to minimize the cutting fluid mist requires a fundamental understanding of cutting fluid mist <span class="hlt">formation</span> mechanisms and the underlying process conditions affecting mist <span class="hlt">formation</span>. In this dissertation, analytical models are developed to characterize mist <span class="hlt">formation</span></p> <div class="credits"> <p class="dwt_author">Yan Yue</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10184063"> <span id="translatedtitle">A new PICL trace file <span class="hlt">format</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A trace file <span class="hlt">format</span> is described that will be used in future releases of the Portable Instrumented Communication Library (PICL) and ParaGraph. The new <span class="hlt">format</span> provides improved support for tracing and profiling PICL communication primitives and user-defined events. The new <span class="hlt">format</span> is also easily extended and may be useful in other instrumentation packages and performance visualization tools.</p> <div class="credits"> <p class="dwt_author">Worley, P.H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22465050"> <span id="translatedtitle">Memory <span class="hlt">formation</span>, consolidation and transformation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Memory <span class="hlt">formation</span> is a highly dynamic process. In this review we discuss traditional views of memory and offer some ideas about the nature of memory <span class="hlt">formation</span> and transformation. We argue that memory traces are transformed over time in a number of ways, but that understanding these transformations requires careful analysis of the various representations and linkages that result from an experience. These transformations can involve: (1) the selective strengthening of only some, but not all, traces as a function of synaptic rescaling, or some other process that can result in selective survival of some traces; (2) the integration (or assimilation) of new information into existing knowledge stores; (3) the establishment of new linkages within existing knowledge stores; and (4) the up-dating of an existing episodic memory. We relate these ideas to our own work on reconsolidation to provide some grounding to our speculations that we hope will spark some new thinking in an area that is in need of transformation. PMID:22465050</p> <div class="credits"> <p class="dwt_author">Nadel, L; Hupbach, A; Gomez, R; Newman-Smith, K</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-24</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991LNP...390...17E"> <span id="translatedtitle">Testing Theories of Star <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recently developed models of star <span class="hlt">formation</span> involve infall onto a disk which then accretes onto the star (Shu, Adams, and Lizano 1987, Ann. Rev. Astr. Ap., 25, 23). Since this disk is a likely candidate for the <span class="hlt">formation</span> of planetary systems, this picture has considerable significance for bioastronomy. Current spatial resolution does not usually allow direct detection of the disks, so tests of the overall model are important. Various observational tests of these models will be presented, including far-infrared and molecular line observations. The results of these tests so far provide qualified support for the models. For example, a high-resolution study of the Bok globule B335 in the 6 cm line of H2CO finds a density distribution for the globule in good agreement with theoretical expectations: the density distribution appears to follow n(r) r-2 in the outer parts, but switch to n(r) r-1.5 inside a radius of about 0.03 pc, as expected for the infalling gas around a 1 M star. High-resolution far-infrared observations of star forming regions in Taurus (L1551 IRS 5) and Orion (NGC 2071) are consistent with density gradients with n(r) r-1.5, again consistent with infalling gas; in addition, direct comparison of the data on L1551 IRS 5 to the predictions of the model of this source (Adams, Lada, and Shu 1987, <u>Ap. J.</u>, 312, 788) indicate consistency.</p> <div class="credits"> <p class="dwt_author">Evans, J. N., II</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12787195"> <span id="translatedtitle">Recent concepts in plaque <span class="hlt">formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Dental plaque is an adherent, bacterial film, and is the main pathological agent for periodontal diseases. The <span class="hlt">formation</span> of dental plaque can occur both supragingivally and subgingivally. The development of plaque is a three-step process. Following the <span class="hlt">formation</span> of a pellicle, pioneer micro-organisms will adhere to it, proliferate and form colonies. The final stage involves the aggregation of filamentous organisms and spirochetes into a cohesive biofilm. Many products of the plaque bacteria reach the subepithelial tissue, causing inflammatory responses such as increased vascularity and leukocyte diapedesis. Both supragingival and subgingival plaque may form a hard, mineralized mass called calculus. The surface of calculus harbours bacteria, which may exacerbate the inflammatory responses. An effective oral antiseptic must be active against a wide range of Gram-positive and Gram-negative bacterial species, including streptococci and fusobacteria. Ideally, an effective agent would also penetrate the plaque biofilm. Data show that essential oil and chlorhexidine mouthwashes have the broadest antimicrobial effects. PMID:12787195</p> <div class="credits"> <p class="dwt_author">Bernimoulin, J-P</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6199058"> <span id="translatedtitle">Montezuma <span class="hlt">Formation</span> of Costa Rica</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Montezuma <span class="hlt">Formation</span> of the Nicoya Peninsula is one of the better known Neogene stratigraphic units of the Pacific side of Costa Rica. Past workers have reported its age to be Miocene-Pliocene or Miocene-Quaternary, and its environment of deposition to be inner shelf. The planktonic foraminiferal record of the unit in the type locality, however, places it firmly in the Lower Pliocene (Globorotalia margaritae zones). Furthermore, benthic such as Bolivina interjuncta var. bicostata, Epistominella exigua, and E. pacifica indicate that the sedimentation occurred at depths no shallower than the outermost shelf. No drastic faunal turnovers are observed within the <span class="hlt">formation</span>; a cluster analysis of various Neogene samples from the Nicoya Peninsula and other Pacific areas of Costa Rica demonstrate an overall uniformity of the Montezuma fauna. The frequency trends of certain species, particularly of Epistominella exigua, however, suggest a transgression, the assemblage in the upper part of the section definitely representing upper bathyal depths. Judging by the present elevation of Montezuma outcrops, this part of Costa Rica has been uplifted at least 300 meters in the past 5 m.y.</p> <div class="credits"> <p class="dwt_author">McKee, W.H.; Sen Gupta, B.K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10137399"> <span id="translatedtitle">Possible mechanisms of macrolayer <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The high heat flux nucleate boiling region, also called the vapor mushroom region, has been shown to have a thin liquid layer on the heater surface under the large mushroom-shaped vapor bubbles that grow from the heater surface. The name given to this liquid layer is the macrolayer to differentiate it from the microlayer that exists under the discrete bubbles found at lower heat fluxes in the nucleate boiling region. Typical thicknesses of this macrolayer range from 50 to 500 {mu}m for water on a flat horizontal boiling surface and depend upon the heat flux. Thus, the macrolayer is thicker than the wedge-shaped microlayers, found under discrete bubbles, which range in thickness from 1 to 10 {mu}m. Although the mechanism of microlayer <span class="hlt">formation</span> and its evaporation is conceptually simple that of the macrolayer is still not understood. This paper critically compares the potential mechanisms proposed for macrolayer <span class="hlt">formation</span>. These mechanisms include the Helmholtz instability applied to the vapor stem above active nucleation sites, liquid trapped by lateral coalescence of discrete bubbles that initially form during the mushroom bubble`s waiting period, and the limitation of liquid resupply at mushroom departure as a result of vapor flow from the active nucleation sites.</p> <div class="credits"> <p class="dwt_author">Sadasivan, P.; Chappidi, P.R.; Unal, C.; Nelson, R.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5452270"> <span id="translatedtitle">Possible mechanisms of macrolayer <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The high heat flux nucleate boiling region, also called the vapor mushroom region, has been shown to have a thin liquid layer on the heater surface under the large mushroom-shaped vapor bubbles that grow from the heater surface. The name given to this liquid layer is the macrolayer to differentiate it from the microlayer that exists under the discrete bubbles found at lower heat fluxes in the nucleate boiling region. Typical thicknesses of this macrolayer range from 50 to 500 {mu}m for water on a flat horizontal boiling surface and depend upon the heat flux. Thus, the macrolayer is thicker than the wedge-shaped microlayers, found under discrete bubbles, which range in thickness from 1 to 10 {mu}m. Although the mechanism of microlayer <span class="hlt">formation</span> and its evaporation is conceptually simple that of the macrolayer is still not understood. This paper critically compares the potential mechanisms proposed for macrolayer <span class="hlt">formation</span>. These mechanisms include the Helmholtz instability applied to the vapor stem above active nucleation sites, liquid trapped by lateral coalescence of discrete bubbles that initially form during the mushroom bubble's waiting period, and the limitation of liquid resupply at mushroom departure as a result of vapor flow from the active nucleation sites.</p> <div class="credits"> <p class="dwt_author">Sadasivan, P.; Chappidi, P.R.; Unal, C.; Nelson, R.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23129653"> <span id="translatedtitle">Dilatational band <span class="hlt">formation</span> in bone.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Toughening in hierarchically structured materials like bone arises from the arrangement of constituent material elements and their interactions. Unlike microcracking, which entails micrometer-level separation, there is no known evidence of fracture at the level of bone's nanostructure. Here, we show that the initiation of fracture occurs in bone at the nanometer scale by dilatational bands. Through fatigue and indentation tests and laser confocal, scanning electron, and atomic force microscopies on human and bovine bone specimens, we established that dilatational bands of the order of 100 nm form as ellipsoidal voids in between fused mineral aggregates and two adjacent proteins, osteocalcin (OC) and osteopontin (OPN). Laser microdissection and ELISA of bone microdamage support our claim that OC and OPN colocalize with dilatational bands. Fracture tests on bones from OC and/or OPN knockout mice (OC(-/-), OPN(-/-), OC-OPN(-/-;-/-)) confirm that these two proteins regulate dilatational band <span class="hlt">formation</span> and bone matrix toughness. On the basis of these observations, we propose molecular deformation and fracture mechanics models, illustrating the role of OC and OPN in dilatational band <span class="hlt">formation</span>, and predict that the nanometer scale of tissue organization, associated with dilatational bands, affects fracture at higher scales and determines fracture toughness of bone. PMID:23129653</p> <div class="credits"> <p class="dwt_author">Poundarik, Atharva A; Diab, Tamim; Sroga, Grazyna E; Ural, Ani; Boskey, Adele L; Gundberg, Caren M; Vashishth, Deepak</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-05</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5086552"> <span id="translatedtitle">Coke <span class="hlt">formation</span> in visbreaking process</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Visbreaking is a mild cracking process primarily used to reduce residual oil viscosity and thus decrease the amount of cutter stock required for blending to heavy fuels specification. It can also be used to produce incremental quantities of gasoline, middle distillates and catalytic cracker feeds. This process was widely used in the 1930s and 1940s and became obsolete until a few years ago. When the need for increased conversion of residues to light products became desirable, visbreaking offered economic advantages to many refining schemes - especially in Western Europe. Between 1978-1981, Exxon brought on stream seven visbreakers ranging from 1900 to 9100 tons/SD capacity. In January 1983, the world-wide visbreaking capacity was over 2 MM B/SD. The visbreaking process and its application in refinery operations have been well described. In general, the process economics improve as the process severity is increased but it is limited by coke <span class="hlt">formation</span> in the process. For this reason, they have studied the kinetics of coke <span class="hlt">formation</span> in the visbreaking process.</p> <div class="credits"> <p class="dwt_author">Yan, T.Y. (Mobil Research and Development Corp., Princeton, NJ (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002APS..MARH33061B"> <span id="translatedtitle">Pattern <span class="hlt">Formation</span> and Infinite Sets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In polynomial simulations of pattern <span class="hlt">formation</span> and self-organization (e.g., bifurcational cascades, fractal structures of Julia sets, cosmogenesis, bioevolution), starting from rational points and coefficients leaves all subsequent iterations rational. While rational points have zero Lebesgue measure, they are dense everywhere in any N-dimensional space and hence any iteration trail or fractal structure at any level of resolution can be constructed with arbitrary precision using subset of only rational points. Any geometrical object or pattern can be spanned over rational points (pixels) with arbitrary precision. Since all rationals can be one-to-one counted by set of all integers, or any infinite subset of them (e.g., by primes), any pattern spanned over rationals can be translated into pattern spanned over, say, only (counting) primes. Since counting rationals by any set of integers always forms jumpwise mapping (nonmonotonic bijectivity), resulting translation of connected pattern (say, 3D Euclidean, or 4D Einsteinian) appears chaotic, but can always be finitely descrambled (Arnold's Cat analogy). Simplest model when all rational points on x-axis are Cantor-counted by set of all primes results in infinitude of never-repeating primes on any arbitrary small epsilon-interval (fractal hologram with infinite depth). This potential "Platonic Library written in primes" provides infinite "reference" resource for pattern <span class="hlt">formation</span> dynamics.</p> <div class="credits"> <p class="dwt_author">Berezin, Alexander A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008PhRvE..77a6102K"> <span id="translatedtitle">Consensus <span class="hlt">formation</span> on adaptive networks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The structure of a network can significantly influence the properties of the dynamical processes that take place on them. While many studies have been paid to this influence, much less attention has been devoted to the interplay and feedback mechanisms between dynamical processes and network topology on adaptive networks. Adaptive rewiring of links can happen in real life systems such as acquaintance networks, where people are more likely to maintain a social connection if their views and values are similar. In our study, we consider different variants of a model for consensus <span class="hlt">formation</span>. Our investigations reveal that the adaptation of the network topology fosters cluster <span class="hlt">formation</span> by enhancing communication between agents of similar opinion, although it also promotes the division of these clusters. The temporal behavior is also strongly affected by adaptivity: while, on static networks, it is influenced by percolation properties, on adaptive networks, both the early and late time evolutions of the system are determined by the rewiring process. The investigation of a variant of the model reveals that the scenarios of transitions between consensus and polarized states are more robust on adaptive networks.</p> <div class="credits"> <p class="dwt_author">Kozma, Balazs; Barrat, Alain</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/897734"> <span id="translatedtitle">Virialization Heating in Galaxy <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In a hierarchical picture of galaxy <span class="hlt">formation</span> virialization continually transforms gravitational potential energy into kinetic energies in the baryonic and dark matter. For the gaseous component the kinetic, turbulent energy is transformed eventually into internal thermal energy through shocks and viscous dissipation. Traditionally this virialization and shock heating has been assumed to occur instantaneously allowing an estimate of the gas temperature to be derived from the virial temperature defined from the embedding dark matter halo velocity dispersion. As the mass grows the virial temperature of a halo grows. Mass accretion hence can be translated into a heating term. We derive this heating rate from the extended Press Schechter formalism and demonstrate its usefulness in semi-analytical models of galaxy <span class="hlt">formation</span>. Our method is preferable to the traditional approaches in which heating from mass accretion is only modeled implicitly through an instantaneous change in virial temperature. Our formalism can trivially be applied in all current semi-analytical models as the heating term can be computed directly from the underlying merger trees. Our analytic results for the first cooling halos and the transition from cold to hot accretion are in agreement with numerical simulations.</p> <div class="credits"> <p class="dwt_author">Wang, P. (KIPAC, Menlo Park); Abel, T. (Santa Barbara, KITP)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-17</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17988709"> <span id="translatedtitle">Methane <span class="hlt">formation</span> in sewer systems.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Methane <span class="hlt">formation</span> and emission in sewer systems has not received as much attention as hydrogen sulphide <span class="hlt">formation</span>. Through field measurements from two rising mains, with an average sewage temperature of 28.4 and 26.6 degrees C, respectively, at the time of sampling, this study shows that a significant amount of methane can be produced in sewer systems, and that this production is positively correlated with the hydraulic retention time of wastewater in these systems. The experimental results from a laboratory-scale sewer system fed with real sewage with a temperature of approximately 21 degrees C confirmed these field observations and further revealed that methanogenesis and sulphate reduction occur simultaneously in sewers, with methane production contributing considerably more to the loss of soluble COD in sewers than sulphate reduction. The production of methane in sewers at levels revealed by this study is a serious environmental concern as it potentially results in greenhouse emissions that is comparable to that caused by the energy consumption for the treatment of the same wastewater. Further, methane production in sewers influences sulphide production and its management due to the competition between methanogens and sulphate-reducing bacteria for potentially the same electron donors. The potential interactions between sulphate-reducing and methanogenic bacteria in sewer networks are discussed. PMID:17988709</p> <div class="credits"> <p class="dwt_author">Guisasola, Albert; de Haas, David; Keller, Jurg; Yuan, Zhiguo</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-10-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7048183"> <span id="translatedtitle">Enthalpy of <span class="hlt">formation</span> of zircon</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Using high-temperature solution calorimetry in molt 2PbO {center dot} B{sub 2}O{sub 3}, the enthalpy of reaction of the <span class="hlt">formation</span> of zircon, ZrSiO{sub 4}, from its constituent oxides has been determined: {Delta}{sub 4}H{sub 977}(ZrSiO{sub 4}) = {minus}27.9 ({plus minus}1.9) kJ/mol. With previously reported data for the heat contents of ZrO{sub 2} SiO{sub 2} and ZrSiO{sub 4} and standard-state enthalpies of <span class="hlt">formation</span> of ZrO{sub 2} and SiO{sub 2}, we obtain {Delta}{sub f}H{sub 298}{degrees}. (ZrSiO{sub 4}) = {minus}2034.2 ({plus minus}3.1) kJ/mol and {Delta}{sub t}G{sub 298}{degrees} (ZrSiO{sub 4}) = {minus}1919.8 kJ/mol. The free energy value is in excellent agreement with a range previously estimated from solid-state reaction equilibria. At higher temperature also the data are in close agreement with existing data, though the data sets diverge somewhat with increasing T. In this paper the limitations of the data for predicting the breakdown temperature of zircon into its constituent oxides are discussed.</p> <div class="credits"> <p class="dwt_author">Ellison, A.J.G. (Materials Science Div., Argonne National Lab., Argonne, IL (US)); Navrotsky, A. (Dept. of Geological and Geophysical Sciences, Princeton Univ., Princeton, NJ (US))</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2032302"> <span id="translatedtitle">Intralysosomal <span class="hlt">formation</span> of amyloid fibrils.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Unusual inclusions, which occurred in the reticuloendothelial cells intimately associated with fresh amyloid deposits, were analyzed by electron microscopy. The inclusions were located in the areas rich in the primary lysosome type of dense bodies and the cytoplasmic invaginations containing well-oriented amyloid fibrils. They were single-membrane-bounded, measured 0.3 to 0.8 mu in width and 0.5 to several microns in length, and showed considerable variation in the electron density of their contents. The latter consisted of two different ultrastructural elements: fibrillar profiles and a homogeneous or finely granular electron-dense substance. The fibrillar profiles were virtually identical in ulstrastructure to the amyloid fibrils and were well-oriented parallel to the long axis of the inclusion. The homogeneous or finely granular electron-dense substance appeared to be comparable to that composing the dense body matrix. The inclusions were usually acid phosphatase positive, but did not take up intravenously injected Thorotrast particles. These data led us to conclude that these inclusions were transitional forms from the usual dense bodies to the deep cytoplasmic invaginations containing well-oriented amyloid fibrils (which are accepted by most investigators as the sites of amyloid <span class="hlt">formation</span>) and thus constitute direct evidence for the involvement of lysosomes in amyloid fibril <span class="hlt">formation</span>. Images Figure 1 Figure 2A and 2B Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9</p> <div class="credits"> <p class="dwt_author">Shirahama, T.; Cohen, A. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22211839"> <span id="translatedtitle">Experimental adipocere <span class="hlt">formation</span>: implications for adipocere <span class="hlt">formation</span> on buried bone.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Adipocere, or grave wax (adipo = fat, cere = wax), is a distinctive decomposition product composed primarily of fatty acids (FA) and their alkali salts. FA result from the bacterial enzymatic hydrolysis of body fats. Reactions with ammonia and alkali metals originating from body fluids and pore waters of the depositional environment produce alkali salts of FA (soap). Adipocere <span class="hlt">formation</span> is generally associated with burial of corpses with ample adipose tissue available. No indications that adipocere can form on defleshed remains have been presented in the literature. At the termination of a long-term bone diagenesis experiment, several samples were found to possess growths of an unknown compound. Gas chromatography-mass spectrometry confirmed that the growths are adipocere. The results herein reveal that adipocere can indeed form on defleshed bones under the right conditions and that even residual adipose and lipids in defleshed bones are sufficient to produce adipocere growth on the surfaces of bone. PMID:22211839</p> <div class="credits"> <p class="dwt_author">Moses, Randolph J</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-28</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">397</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://tonto.eia.doe.gov/mer/mer.htm"> <span id="translatedtitle">Monthly Energy Review On-Line</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">The US Department of Energy's Monthly Energy Review, a publication that compiles "aggregate energy statistics", has recently been enhanced by the addition of a searchable database. Users can query over sixty tables from the publication, choose variables from each table, and retrieve annual (1973-96) or monthly (the last "two or three" years) data. Retrieval is available in HTML or <span class="hlt">ASCII</span> text (comma delimited files). MER is also available in <span class="hlt">ASCII</span> text, .wk1, or .xls <span class="hlt">format</span>. Historical databases are available in Microsoft Access or <span class="hlt">ASCII</span> delimited text.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">398</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gpo.gov:80/fdsys/pkg/CFR-2011-title49-vol6/pdf/CFR-2011-title49-vol6-sec537-7.pdf"> <span id="translatedtitle">49 CFR 537.7 - Pre-model year and mid-model year reports.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p class="result-summary">...in <span class="hlt">tabular</span> form or as a fixed <span class="hlt">format</span> computer tape. If a <span class="hlt">tabular</span> form is used then...identifiable form are also acceptable. If a computer tape is used, any NHTSA approved fixed...contain any additional categories. Each computer tape record must contain all the...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2011-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">399</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=1015188"> <span id="translatedtitle">Heating tar sands <span class="hlt">formations</span> while controlling pressure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">Methods for treating a tar sands <span class="hlt">formation</span> are described herein. Methods may include heating at least a section of a hydrocarbon layer in the <span class="hlt">formation</span> from a plurality of heaters located in the <span class="hlt">formation</span>. A pressure in the majority of the section may be maintained below a fracture pressure of the <span class="hlt">formation</span>. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the <span class="hlt">formation</span>.</p> <div class="credits"> <p class="dwt_author">Stegemeier, George Leo (Houston, TX); Beer, Gary Lee (Houston, TX); Zhang, Etuan (Houston, TX)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">400</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AIPC.1035...93S"> <span id="translatedtitle">The HI/Star <span class="hlt">Formation</span> Connection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There have been many observational programs exploring the connection between the HI distribution and the presence of star <span class="hlt">formation</span> in galaxies. Since the molecular phase of the ISM is most closely associated with star <span class="hlt">formation</span>, the results of these investigations depend greatly on the type of galaxy being observed. For low mass, low metallicity galaxies, where the molecular gas in only found associated with the densest concentrations of HI, the correlation between HI maxima and star <span class="hlt">formation</span> is very good. For high mass, high metallicity galaxies, star <span class="hlt">formation</span> correlates strongly with densest concentrations of molecular gas, and the majority of the HI gas can be unrelated to star <span class="hlt">formation</span>. Understanding the HI/star <span class="hlt">formation</span> connection requires observations of the quality being produced by the THINGS program. The THINGS sample is especially promising due to the abundance and quality of the ancillary observational databases. As a forward look, I pose the question: How many galaxies do we need to observe with this quality of data in order to answer our fundamental questions concerning the star <span class="hlt">formation</span> process? An important part of the answer is that we need to carefully study those galaxies and regions of galaxies which do not show current star <span class="hlt">formation</span> in order to understand the absence of star <span class="hlt">formation</span> as well as the presence of star <span class="hlt">formation</span>. I describe a method of recreating star <span class="hlt">formation</span> histories of galaxies over the last ~500 Myr which will help us to understand how the gas has come to its present state.</p> <div class="credits"> <p class="dwt_author">Skillman, Evan D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-08-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_20 div --> <div id="page_21" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">401</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5310122"> <span id="translatedtitle">Conditioning of <span class="hlt">formation</span> for sandstone acidizing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This patent describes a method of matrix acidizing a sandstone oil-bearing <span class="hlt">formation</span> surrounding a wellbore. It comprises: injecting through the wellbore and into the <span class="hlt">formation</span> a conditioning fluid having solvency for, or in, oil contained within the zone to be treated to miscibly displace the oil outwardly from the wellbore, the conditioning fluid including a solvent selected from the group consisting of carbon dioxide and mixtures of carbon dioxide and another solvent; injecting an aqueous acid preflush solution into the <span class="hlt">formation</span> to displace the conditioning fluid outwardly from wellbore; injecting an acid solution containing HF into the <span class="hlt">formation</span> to react with clays in the <span class="hlt">formation</span> and to displace the acid preflush outwardly from the wellbore; and injecting an afterflush solution into the <span class="hlt">formation</span> to water wet the <span class="hlt">formation</span> and to displace the preceding fluids radially outwardly from the wellbore.</p> <div class="credits"> <p class="dwt_author">Gidley, J.L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-03-31</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">402</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004AGUFM.C31C..04S"> <span id="translatedtitle">Antarctic Megadunes: Characteristics and <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We review field geophysical, meteorological, and remote sensing data covering Antarctica's 'megadune' regions with the purpose of constraining <span class="hlt">formation</span> models for the features. Megadunes are striped accumulation variations, oriented perpendicular to mean katabatic windflow, with hieghts ranging from 2 to 8 meters, and crest spacing from 2 to 6 km. Crest ridges have lateral extents of up to 100 km. Upwind faces are steeper than downwind faces, and are characterized by very large, eroded sastrugi. Surface 'glazes' of ice, with coarse recrystalized grains in the subsurface, are present in the lee faces. Dunes are widespread across the East Antarctic plateau, although laterally extensive dune fields occur in just a few regions. Strong variations in surface roughness and snow grain size between crest/upwind faces and trough/downwind faces are evident in albedo and radar or visible-light backscatter. Field measurements at a site 400 km southeast of Vostok station (80.78 deg S, 124.5 deg E) provide insight into dune origin, longevity and migration. Detailed surface topography from GPS confirms height and width of dunes inferred earlier using ICESat. Internal layering of megadunes (imaged using ground-penetrating radar) shows sigmoidal layers of higher accumulation along the dune crests and windward faces. Dunes accrete new layers in the upwind direction. Radar layer structures, consisting of a 6- to 15-meter-thick sequence of accumulation layers separated by erosive or very low accretion glaze layers, are visible to at least 70 meters below the surface. Given an estimated mean accumulation of 20 - 30 kg/m2 over the dune region, each dune sequence represents approximately 250 years of time. High accretion occurs over roughly 1/3 of an active dune field surface. This implies that surfaces on the lee-side dune face spend between 150 and 200 years exposed to near-surface air and temperature variations before burial by the next advancing dune face. GPS ice motion measurements indicate an ice flow of 4 m/yr at bearing 130, almost perpendicular to the mean wind direction of 226. Dune winds are dominated by flow in this direction (+/- 15 degrees) at 8 - 12 m/s for 10 months of the year. Several possible models for dune <span class="hlt">formation</span> are considered. Katabatic wind flow of a near-surface air layer clearly controls snow redistriburtion. Previous studies have shown that dunes form in a narrow range of regional surface slope (0.0010 - 0.0015), implying that a specific range of winds speeds may determine <span class="hlt">formation</span>. One possibility is that wave-like boundary layer effects in the katabatic flow create the dunes. Compaction effects due to the long period of low accumulation in the glaze regions may amplify dune topography. An 'anti-dune' (a term from fluvial geomorphology) model of dune <span class="hlt">formation</span> is forwarded.</p> <div class="credits"> <p class="dwt_author">Scambos, T.; Fahnestock, M.; Shuman, C.; Bauer, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">403</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AIPC..900..129R"> <span id="translatedtitle">Macromolecules Relevant to Stone <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Despite years of research, no single macromolecule in kidney calculi or in urine has yet been shown to fulfill a specific function in stone pathogenesis. In this paper we briefly review papers investigating the urinary excretion of individual macromolecules, their effects on calcium oxalate (CaOx) crystallization and attachment of crystals to renal epithelial cells, and the influence of lithogenic conditions on their renal expression in cultured cells and animal models. Using prothrombin fragment 1 (PTF1) and human serum albumin as examples, we show the types of patterns resulting from the binding of a fluorescently tagged protein to a specific CaOx monohydrate (COM) crystal face and its incorporation into the crystal structure. Molecular modeling is also used to illustrate how PTF1 can align with the atomic array on a COM crystal surface. We conclude that although many macromolecules are, by strict definition, relevant to stone <span class="hlt">formation</span>, very few are probably truly influential.</p> <div class="credits"> <p class="dwt_author">Ryall, Rosemary L.; Cook, Alison F.; Thurgood, Lauren A.; Grover, Phulwinder K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">404</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008EL.....8228008K"> <span id="translatedtitle">Opinion <span class="hlt">formation</span> in laggard societies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We introduce a statistical-physics model for opinion dynamics on random networks where agents adopt the opinion held by the majority of their direct neighbors only if the fraction of these neighbors exceeds a certain threshold, pu. We find a transition from total final consensus to a mixed phase where opinions coexist amongst the agents. The relevant parameters are the relative sizes in the initial opinion distribution within the population and the connectivity of the underlying network. As the order parameter we define the asymptotic state of opinions. In the phase diagram we find regions of total consensus and a mixed phase. As the "laggard parameter" pu increases the regions of consensus shrink. In addition we introduce rewiring of the underlying network during the opinion <span class="hlt">formation</span> process and discuss the resulting consequences in the phase diagram.</p> <div class="credits"> <p class="dwt_author">Klimek, P.; Lambiotte, R.; Thurner, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">405</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/15254533"> <span id="translatedtitle"><span class="hlt">Formation</span> of zirconium metallic glass.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Bulk metallic glasses are commonly produced by the rapid cooling of liquid alloys. They have emerged over the past decade as a novel class of materials, with attractive properties and technological promise. The bulk metallic glasses so far produced contain three or more component elements. These complex compositions are necessary to frustrate the crystallization of the liquid melt on cooling, but can also lead to phase separation, which is detrimental to the thermal and mechanical properties of metallic glasses. Here we report, using X-ray diffraction measurements, the <span class="hlt">formation</span> of a bulk metallic glass from elemental zirconium at high static pressures and low temperatures (relative to its melting temperature at atmospheric pressure). Amorphous zirconium can be recovered at ambient conditions and demonstrates a superior thermal stability compared to amorphous alloys, which could lead to new high-temperature applications of amorphous metals. PMID:15254533</p> <div class="credits"> <p class="dwt_author">Zhang, Jianzhong; Zhao, Yusheng</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-07-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">406</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008ASPC..396..453G"> <span id="translatedtitle">The <span class="hlt">Formation</span> of Galaxy Disks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a new set of multi-million particle SPH simulations of the <span class="hlt">formation</span> of disk dominated galaxies in a cosmological context. Some of these galaxies are higher resolution versions of the models already described in Governato et al (2007). To correctly compare simulations with observations we create artificial images of our simulations and from them measure photometric bulge to disk (B/D) ratios and disk scale lengths. We show how feedback and high force and mass resolution are necessary ingredients to form galaxies that have flatter rotation curves, larger I-band disk scale lengths and smaller B/D ratios. A new simulated disk galaxy has an I-band disk scale length of 9.2 kpc and a B/D flux ratio of 0.64 (face on, dust reddened).</p> <div class="credits"> <p class="dwt_author">Governato, F.; Mayer, L.; Brook, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">407</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3212081"> <span id="translatedtitle">Selective <span class="hlt">formation</span> of tungsten nanowires</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">We report on a process for fabricating self-aligned tungsten (W) nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD) using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten <span class="hlt">formation</span> is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">408</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/7062445"> <span id="translatedtitle">Triamterene and renal stone <span class="hlt">formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We investigated the influence of triamterene (TA), and its metabolites parahydroxytriamterene (PHTA), and parahydroxytriamterene sulfate (PHTAS) on the nucleation and crystal growth of calcium oxalate monohydrate (COM), in supersaturated solution at 37C using a new constant composition technique. The spontaneous precipitation of COM is preceded by induction periods which decrease with increasing supersaturation. The addition of the triamterene seed materials substantially reduces there delay periods and induces the crystal growth of COM. Specific surface area and scanning electron microscopic results indicate that the seed materials act as sources for the heterogeneous nucleation of COM. In addition, the surface of the more crystalline PHTAS appears to offer sites from which COM crystals can develop as well formed rosettes. This evidence suggests that in addition to triamterene renal stone <span class="hlt">formation</span>, TA and its metabolites may catalyze the precipitation of other stone forming minerals with which urines may be supersaturated. PMID:7062445</p> <div class="credits"> <p class="dwt_author">White, D J; Nancollas, G H</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">409</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5525000"> <span id="translatedtitle">Comet <span class="hlt">formation</span> in molecular clouds</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The hypothesis that the long-period comet system may be dynamically unstable and may represent the outcome of a continuing exchange of material between the solar system and the star-forming regions in the Galaxy is discussed. The mean number density of comets in molecular clouds implied by the hypothesis is sufficient to deplete metals from the gaseous component of the intestellar medium, but leads to the problem of how stars are formed with solar metal abundances. <span class="hlt">Formation</span> of comets prior to stars in dense systems of near-zero energy may be indicated, and isotope signatures in cometary particles may be diagnostic of conditions in young spiral arm material. 35 references.</p> <div class="credits"> <p class="dwt_author">Clube, S.V.M.; Napier, W.M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">410</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AGUFM.V22C..01G"> <span id="translatedtitle">Mud Volcanoes <span class="hlt">Formation</span> And Occurrence</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and <span class="hlt">formation</span> of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano <span class="hlt">formation</span>. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption". Model of buoyancy drive (by Brown, 1990). Brown's basic hypothesis is similar to Ivanov and Guliev and may be summarized briefly as follows: -in situations where rapid sedimentation is occurring mud may be driven to the surface by buoyancy forces due to bulk density contrasts between mud and overlying sediment cover. Such density contrasts may be simply the result of compaction -disequilibrium, but more importantly may be related to gas expansion when fluids are transported to shallower depths with lower pressure and temperature conditions. Synthetic model had been proposed by I.Lerche, E.Bagirov, I.Guliyev (1997). The model includes the following studies: The starting point of the mud volcanoes begins with the <span class="hlt">formation</span> of a zone of decompaction as a consequence of a high rate of gas generation. The mud body starts to rise under buoyancy. The excess pressure inside the mud intrusion is less than in surrounding <span class="hlt">formation</span>. As a result, fluid flow toward the body of mud volcanoes. The body of the mud volcanoes then grows, increasing the buoyancy forces, with further drive the mud. If the rate of gas generation more thôn gas flow, causing exsolving of gas to free-phase gas. If there are open faults and fractures which cross the body of mud volcanoes, then gas and mud can penetrate through the faults, and so from gryphons and salses on the surface. A mud volcanoes can be consider as a huge accumulation of gas, where as the oil is concentrated on the flanks of the mud body.</p> <div class="credits"> <p class="dwt_author">Guliyev, I. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">411</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985Icar...62..384C"> <span id="translatedtitle">Comet <span class="hlt">formation</span> in molecular clouds</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The observed properties of the long-period comet system, and its periodic disturbance by galactic forces manifesting as terrestrial impact episodes, may be indicative of a comet capture/escape cycle as the Solar System orbits the Galaxy. A mean number density of comets in molecular clouds of ?10-1±1AU-3 is implied. This is sufficient to deplete metals from the gaseous component of the interstellar medium, as observed, but leads to the problem of how stars are formed nevertheless with solar metal abundances. <span class="hlt">Formation</span> of comets prior to stars in dense systems of near-zero energy may be indicated, and isotope signatures in cometary particles may be diagnostic of conditions in young spiral arm material.</p> <div class="credits"> <p class="dwt_author">Clube, S. V. M.; Napier, W. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">412</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12779549"> <span id="translatedtitle">Theory of electrochemical pattern <span class="hlt">formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The spatial coupling in electrochemical systems is mediated by ion migration under the influence of the electric field. Since field effects spread very rapidly, every point of an electrode can communicate with every other one practically instantaneously through migration coupling. Based on mathematical potential theory we present the derivation of a generally applicable reaction-migration equation, which describes the coupling via an integral over the whole electrode area. The corresponding coupling function depends only on the geometry of the electrode setup and has been computed for commonly used electrode shapes (such as ring, disk, ribbon or rectangle). The pattern <span class="hlt">formation</span> observed in electrochemical systems in the bistable, excitable and oscillatory regime can be reproduced in computer simulations, and the types of patterns occurring under different geometries can be rationalized. (c) 2002 American Institute of Physics. PMID:12779549</p> <div class="credits"> <p class="dwt_author">Christoph, J.; Eiswirth, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">413</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009IAUS..254..487G"> <span id="translatedtitle">The Science of Galaxy <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Our knowledge of the Universe remains discovery-led: in the absence of adequate physics-based theory, interpretation of new results requires a scientific methodology. Commonly, scientific progress in astrophysics is motivated by the empirical success of the “Copernican Principle”, that the simplest and most objective analysis of observation leads to progress. A complementary approach tests the prediction of models against observation. In practise, astrophysics has few real theories, and has little control over what we can observe. Compromise is unavoidable. Advances in understanding complex non-linear situations, such as galaxy <span class="hlt">formation</span>, require that models attempt to isolate key physical properties, rather than trying to reproduce complexity. A specific example is discussed, where substantial progress in fundamental physics could be made with an ambitious approach to modelling: simulating the spectrum of perturbations on small scales.</p> <div class="credits"> <p class="dwt_author">Gilmore, Gerard</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">414</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1995netr.conf...37L"> <span id="translatedtitle"><span class="hlt">Formation</span> of the Neptune system.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Neptune is the outermost of the four giant planets in our solar system. The region in which Neptune orbits has longer dynamical time scales and probably had a lower surface mass density of solids than zones closer to the Sun. Both of these properties suggest that Neptune took significantly longer to accrete than did the other giant planets. "Runaway accretion" may permit growth of isolated ?10 Mearth cores in the outer solar system on time scales of 107 to 108yr. It remains unclear, however, whether Neptune's core could have grown massive enough to trap >1 Mearth of H2 and He before the protoplanetary disk was dispersed. If core <span class="hlt">formation</span> did occur on that time scale, models for the accretion of gas onto a growing condensible element core provide insights into nebular conditions required for the growth of Neptune-like planets. An alternative model is that ice-rich planetesimals of mass ?0.1 Mearth trapped substantial quantities of solar nebula gas mixed with evaporated steam in high mean molecular weight atmospheres. The final stages of Neptune's growth could then have occurred after dispersal of the solar nebula, alleviating the possible time scale problem associated with the single core model. The orbits of Neptune's inner satellites are nearly circular and have low inclinations with respect to the planet's equatorial plane. These properties imply satellite growth within a circum-Neptunian disk. The authors review five different models for the <span class="hlt">formation</span> of such a disk: coaccretion, disruptive capture, giant impact, direct hydrodynamic accretion and spin-out. The high inclination of Triton's orbit suggests a capture origin.</p> <div class="credits"> <p class="dwt_author">Lissauer, J. J.; Pollack, J. B.; Wetherill, G. W.; Stevenson, D. J.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">415</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JGlac..54..579S"> <span id="translatedtitle">Calving and ice-shelf break-up processes investigated by proxy: Antarctic <span class="hlt">tabular</span> iceberg evolution during northward drift</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using a combination of satellite sensors, field measurements and satellite-uplinked in situ observing stations, we examine the evolution of several large icebergs drifting east of the Antarctic Peninsula towards South Georgia Island. Three styles of calving are observed during drift: 'rift calvings', 'edge wasting' and 'rapid disintegration'. Rift calvings exploit large pre-existing fractures generated in the shelf environment and can occur at any stage of drift. Edge wasting is calving of the iceberg perimeter by numerous small edge-parallel, sliver-shaped icebergs, preserving the general shape of the main iceberg as it shrinks. This process is observed only in areas north of the sea-ice edge. Rapid disintegration, where numerous small calvings occur in rapid succession, is consistently associated with indications of surface melt saturation (surface lakes, firn-pit ponding). Freeboard measurements by ICESat indicate substantial increases in ice-thinning rates north of the sea-ice edge (from <10ma-1 to >30ma-1), but surface densification is shown to be an important correction (>2m freeboard loss before the firn saturates). Edge wasting of icebergs in 'warm' surface water (sea-ice-free, >-1.8 °C) implies a mechanism based on waterline erosion. Rapid disintegration ('Larsen B-style' break-up) is likely due to the effects of surface or saturated-firn water acting on pre-existing crevasses, or on wave- or tidally induced fractures. Changes in microwave backscatter of iceberg firn as icebergs drift into warmer climate and experience increased surface melt suggest a means of predicting when floating ice plates are evolving towards disintegration.</p> <div class="credits"> <p class="dwt_author">Scambos, T.; Ross, R.; Bauer, R.; Yermolin, Y.; Skvarca, P.; Long, D.; Bohlander, J.; Haran, T.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">416</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010EGUGA..12.9756M"> <span id="translatedtitle">Dynamics of fold nappe <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Fold nappes are large-scale recumbent folds that have most likely formed by dominantly ductile deformation. In the Western Swiss Alps, the Middle and Lower Penninic basement nappes as well as the Helvetic ones display, in most cases, the typical geometry and stratigraphy of fold nappes with a normal flank, a frontal part and an overturned limb. The core of fold nappes often consists of metamorphic basement surrounded by a sedimentary cover. Examples are the Morcle-Mont-Blanc nappe or the Antigorio nappe. Although fold nappes are a prominent tectonic structure in the Alps and in many other past and present mountain belts, there are only few studies that investigated the dynamics of the <span class="hlt">formation</span> of fold nappes. Therefore, there are still many open questions concerning the controlling forces (gravity or horizontal compression), the far-field deformation field (simple and/or pure shear), the effective rheology (e.g. Newtonian viscous, power-law or viscoplastic) and the impact of geometrical and material heterogeneities (e.g. effective viscosity ratio or initial geometry). In this study, numerical results of finite element models simulating the <span class="hlt">formation</span> of fold nappes in ductile multilayers are presented. In these models, the sedimentary cover is modelled with ductile multilayers exhibiting a power-law rheology and the basement is modelled with one thick layer having also a power-law rheology. The far-field deformation field is assumed to be simple-shear. The applied finite element method employs a Lagrangian formulation with re-meshing where the numerical grid is deformed with the calculated velocity field. This method ensures that the boundaries between the different layers (i.e. sedimentary units and basement) are accurately resolved during the entire large strain deformation. Although the presented models are basic, the results already show several interesting features: a) the sedimentary layers are detached from the basement at several locations, b) folds of different size and order are formed, c) fold axial planes with different orientations are formed during one continuous deformation phase and d) recumbent folds with overturned limbs more or less parallel to the far-field simple shear direction are formed. Furthermore, in the middle of the model the multilayers formed a fold nappe which has an overturned limb, a frontal part and a normal limb. The applicability of the presented numerical models to natural fold nappes in the Alps is discussed. Also, modelling approaches for a more realistic numerical modelling of fold nappes in the Alps are presented.</p> <div class="credits"> <p class="dwt_author">Markus Schmalholz, Stefan</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">417</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994EM%26P...67....1K"> <span id="translatedtitle"><span class="hlt">Formation</span> of the terrestrial planets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The early phases of <span class="hlt">formation</span> in the inner solar system were dominated by collisions and short-range dynamical interactions among planetesimals. But the later phases, which account for most of the differences among planets, are unsure because the dynamics are more subtle. Jupiter's influence became more important, leading to drastic clearing out of the asteroid belt and the stunting of Mars's growth. Further in, the effect of Jupiter-- both directly and indirectly, through ejection of mass in the outer solar system-- was probably to speed up the process without greatly affecting the outcome. The great variety in bulk properties of the terrestrial bodies indicate a terminal phase of great collisions, so that the outcome is the result of small-N statistics. Mercury, 65 percent iron, appears to be a residual core from a high-velocity collision. All planets appear to require a late phase of high energy impacts to erode their atmospheres: including the Earth, to remove CO2 so that its ocean could form by condensation of water. Consistent with this model is that the largest collision, about 0.2 Earth masses, was into the proto-Earth, although the only property that appears to require it is the great lack of iron in the Moon. The other large differences between the Earth and Venus, angular momentum (spin plus satellite) and inert gas abundances, must arise from origin circumstances, but neither require nor forbid the giant impact. Venus's higher ratio of light to heavy inert gases argues for it receiving a large icy impactor, about 10-6 Earth masses from far out, requiring some improbable dynamics to get a low enough approach velocity. Core <span class="hlt">formation</span> in both planets probably started rather early during accretion. Some geochemical evidences argue for the Moon coming from the Earth's mantle, but are inconclusive. Large scale melting of the mantle by the giant impact would plausibly have led to stratification. But the "lock-up" at the end of turbulent mantle convection is a trade-off between rates: crystallization of constituents of small density difference versus overall freezing. Also, factors such as differences in melting temperatures and densities, melt compressibilities, and phase transitions may have had homogenizing effects in the subsequent mantle convection.</p> <div class="credits"> <p class="dwt_author">Kaula, William M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">418</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6045049"> <span id="translatedtitle">Depositional environments, subsurface stratigraphy, and post-burn characterization of the Paleocene-Eocene Hanna <span class="hlt">Formation</span> at the Hanna, Wyoming underground coal-gasification site: Hanna II Phase 1 experiment. [Hanna II; post mortem examination</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">During the summer of 1981, the Laramie Energy Technology Center conducted a post-burn coring program at the Hanna II, Phase 1, Underground Coal Gasification site, Hanna, Wyoming. Detailed geologic studies were conducted on the altered and unaltered overburden as well as an analysis of the burn cavity. The overburden consists of about 80 meters of Paleocene-Eocene Hanna <span class="hlt">formation</span> above the Hanna No. 1 coal bed used in the burn. The overburden contains three basic lithologic units: Unit A consists of very fine-grained sandstones, siltstones, and claystones deposited as a lacustrine delta. Unit A is immediately above the Hanna No. 1 coal. Unit B is above Unit A and consists of carbonaceous shales and mudstones containing isolated lenticular and <span class="hlt">tabular</span> sandstone bodies deposited in a meandering fluvial system. Unit C is above Unit B and contains coarse-grained sandstones and conglomerates deposited in a braided river system. The Hanna No. 1 coal bed accumulated in a poorly drained swamp that was subject to clastic flooding from an adjacent fluvial system. A reactor cavity 26m x 16m x 15m was formed during the Hanna II, Phase 1 burn and partially filled with rubble and three types of pyrometamorphic rock: paralava, paralava breccia, and buchite. The lithology, thickness, and lateral continuity of Unit A had a definite influence on the success of the experiment as the growth of the reactor cavity was contained completely within the unit. Temperatures up to 1200/sup 0/C were reached during the UCG test.</p> <div class="credits"> <p class="dwt_author">Youngberg, A.D.; McClurg, J.E.; Schmitt, J.G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">419</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRC..118.2507S"> <span id="translatedtitle">Dense water <span class="hlt">formation</span> around islands</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Basic constraints on the dense water <span class="hlt">formation</span> rate and circulation resulting from cooling around an island are discussed. The domain under consideration consists of an island surrounded by a shelf, a continental slope, and a stratified ocean. Atmospheric cooling over the shelf forms a dense water that penetrates down the sloping bottom into the stratified basin. Strong azimuthal flows are generated over the sloping bottom as a result of thermal wind. Thermally direct and indirect mean overturning cells are also forced over the slope as a result of bands of convergent and divergent Reynolds stresses associated with the jets. The Coriolis force associated with the net mass flux into the downwelling region over the slope is balanced by these nonlinear terms, giving rise to a fundamentally different momentum budget than arises in semienclosed marginal seas subject to cooling. A similar momentum balance is found for cases with canyons and ridges around the island provided that the terms are considered in a coordinate system that follows the topography. Both eddy fluxes and the mean overturning cells are important for the radial heat flux, although the eddy fluxes typically dominate. The properties of the dense water formed over the shelf (temperature, diapycnal mass flux) are predicted well by application of baroclinic instability theory and simple heat and mass budgets. It is shown that each of these quantities depends only on a nondimensional number derived from environmental parameters such as the shelf depth, Coriolis parameter, offshore temperature field, and atmospheric forcing.</p> <div class="credits"> <p class="dwt_author">Spall, Michael A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">420</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2799735"> <span id="translatedtitle">Dune <span class="hlt">formation</span> under bimodal winds</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The study of dune morphology represents a valuable tool in the investigation of planetary wind systems—the primary factor controlling the dune shape is the wind directionality. However, our understanding of dune <span class="hlt">formation</span> is still limited to the simplest situation of unidirectional winds: There is no model that solves the equations of sand transport under the most common situation of seasonally varying wind directions. Here we present the calculation of sand transport under bimodal winds using a dune model that is extended to account for more than one wind direction. Our calculations show that dunes align longitudinally to the resultant wind trend if the angle ?w between the wind directions is larger than 90°. Under high sand availability, linear seif dunes are obtained, the intriguing meandering shape of which is found to be controlled by the dune height and by the time the wind lasts at each one of the two wind directions. Unusual dune shapes including the “wedge dunes” observed on Mars appear within a wide spectrum of bimodal dune morphologies under low sand availability.</p> <div class="credits"> <p class="dwt_author">Parteli, Eric J. R.; Duran, Orencio; Tsoar, Haim; Schwammle, Veit; Herrmann, Hans J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_21 div --> <div id="page_22" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">421</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011ApJ...743...98M"> <span id="translatedtitle">Star <span class="hlt">Formation</span> in Dense Clusters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A model of core-clump accretion with equally likely stopping describes star <span class="hlt">formation</span> in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ~1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ~2, consistent with models of episodic disk accretion.</p> <div class="credits"> <p class="dwt_author">Myers, Philip C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">422</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://serc.carleton.edu/NAGTWorkshops/visualization/examples/solarsystem.html"> <span id="translatedtitle"><span class="hlt">Formation</span> of the solar system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This exercise is designed as a lab, but can also be used as a classroom demonstration. It requires the use of the VPython programs which require Python and VPython to be installed on your computers (this software is free and has been made available on the default image for all computers on our campus). The models show the gravitational collapse of a set of particles to create a central "Sun" with other orbiting particles, a simple model to demonstrate elliptical orbits, a simple model of the solar system showing the planetary orbits (speeded up). The task is to assess one hypothesis about the <span class="hlt">formation</span> of the solar system (from a dust and gas nebula) by comparing the computer simulation (model 1) to the shape and form of the actual solar system (model 3). Students can interact with the 3d models by, for example, selecting planetary objects to track, and changing perspectives in 3d space. In doing this students learn about the shapes of the planetary orbits (ellipticity etc) and reasons that they change.</p> <div class="credits"> <p class="dwt_author">Urbano, Lensyl</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">423</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001APS..MAR.Y9005B"> <span id="translatedtitle">Pattern <span class="hlt">Formation</span> and Complexity Emergence</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Success of nonlinear modelling of pattern <span class="hlt">formation</span> and self-organization encourages speculations on informational and number theoretical foundations of complexity emergence. Pythagorean "unreasonable effectiveness of integers" in natural processes is perhaps extrapolatable even to universal emergence "out-of-nothing" (Leibniz, Wheeler). Because rational numbers (R = M/N) are everywhere dense on real axis, any digital string (hence any "book" from "Library of Babel" of J.L.Borges) is "recorded" infinitely many times in arbitrary many rationals. Furthermore, within any arbitrary small interval there are infinitely many Rs for which (either or both) integers (Ms and Ns) "carry" any given string of any given length. Because any iterational process (such as generation of fractal features of Mandelbrot Set) is arbitrary closely approximatable with rational numbers, the infinite pattern of integers expresses itself in generation of complexity of the world, as well as in emergence of the world itself. This "tunnelling" from Platonic World ("Platonia" of J.Barbour) to a real (physical) world is modern recast of Leibniz's motto ("for deriving all from nothing there suffices a single principle").</p> <div class="credits"> <p class="dwt_author">Berezin, Alexander A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">424</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004EL.....68..141K"> <span id="translatedtitle">A model for fingerprint <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The uniqueness of fingerprints (epidermal ridges) has been recognized for over two thousand years. They have been studied scientifically for more than two hundred years. Yet, in spite of the accumulation of a wealth of empirical and experimental knowledge, no widely accepted explanation for the development of epidermal ridges on fingers, palms and soles has yet emerged. Informed by an extensive literature study we suggest that fingerprint patterns are created as the result of a buckling instability in the basal cell layer of the fetal epidermis. Analysis of the well-known von Karman equations informs us that the buckling direction is perpendicular to the direction of greatest stress in the basal layer. We propose that this stress is induced by resistance of furrows and creases to the differential growth of the basal layer and regression of the volar pads during the time of ridge <span class="hlt">formation</span>. These theories have been tested by computer experiments. The results are in close harmony with observations. Specifically, they are consistent with the well-known observation that the pattern type depends on the geometry of the fingertip surface when fingerprint patterns are formed.</p> <div class="credits"> <p class="dwt_author">Kücken, M.; Newell, A. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">425</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3282308"> <span id="translatedtitle">Properties of auditory stream <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A sequence of sounds may be heard as coming from a single source (called fusion or coherence) or from two or more sources (called fission or stream segregation). Each perceived source is called a ‘stream’. When the differences between successive sounds are very large, fission nearly always occurs, whereas when the differences are very small, fusion nearly always occurs. When the differences are intermediate in size, the percept often ‘flips’ between one stream and multiple streams, a property called ‘bistability’. The flips do not generally occur regularly in time. The tendency to hear two streams builds up over time, but can be partially or completely reset by a sudden change in the properties of the sequence or by switches in attention. Stream <span class="hlt">formation</span> depends partly on the extent to which successive sounds excite different ‘channels’ in the peripheral auditory system. However, other factors can play a strong role; multiple streams may be heard when successive sounds are presented to the same ear and have essentially identical excitation patterns in the cochlea. Differences between successive sounds in temporal envelope, fundamental frequency, phase spectrum and lateralization can all induce a percept of multiple streams. Regularities in the temporal pattern of elements within a stream can help in stabilizing that stream.</p> <div class="credits"> <p class="dwt_author">Moore, Brian C. J.; Gockel, Hedwig E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">426</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27767908"> <span id="translatedtitle">The Protostellar Jet Model of Chondrule <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A chondrule <span class="hlt">formation</span> theory is presented where the chondrule <span class="hlt">formation</span> zone\\u000ais located within 0.1 AU of the protosun. This hot, optically thick, inner zone\\u000aof the solar accretion disk is coincident with the <span class="hlt">formation</span> region of the\\u000aprotosolar jet.\\u000a The model assumes that particles, ranging in diameter from 1 micron to 1 cm,\\u000acan be ejected from the inner-accretion</p> <div class="credits"> <p class="dwt_author">Kurt Liffman; Michael J. I. Brown</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">427</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3623306"> <span id="translatedtitle">Tryptophan Inhibits Biofilm <span class="hlt">Formation</span> by Pseudomonas aeruginosa</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Biofilm <span class="hlt">formation</span> by Pseudomonas aeruginosa has been implicated in the pathology of chronic wounds. Both the d and l isoforms of tryptophan inhibited P. aeruginosa biofilm <span class="hlt">formation</span> on tissue culture plates, with an equimolar ratio of d and l isoforms producing the greatest inhibitory effect. Addition of d-/l-tryptophan to existing biofilms inhibited further biofilm growth and caused partial biofilm disassembly. Tryptophan significantly increased swimming motility, which may be responsible in part for diminished biofilm <span class="hlt">formation</span> by P. aeruginosa.</p> <div class="credits"> <p class="dwt_author">Brandenburg, Kenneth S.; Rodriguez, Karien J.; McAnulty, Jonathan F.; Murphy, Christopher J.; Abbott, Nicholas L.; Schurr, Michael J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">428</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009RJPCA..83..353L"> <span id="translatedtitle">The estimation of ether's enthalpies of <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Taking hydrocarbon as gerneratrix, the differences of enthalpies of <span class="hlt">formation</span> of ether and their corresponding generatrixes were compared and concluded and the equation to estimate ether’s enthalpy of <span class="hlt">formation</span>, which was ?f H {e/°}/(kJ/mol) = K(?f H {m/?} - 90 + A) was obtained. The results can be elucidated with bond dissociation energies data, bond-enthalpy of <span class="hlt">formation</span> method, induction effect and conjugative effect. The more essential account to explain the results can be got by using quantum chemistry theories, etc. Using replacement and comparison method, the way of estimation of organic compounds’ thermodynamic properties including enthalpy of <span class="hlt">formation</span> can be obtained either.</p> <div class="credits"> <p class="dwt_author">Li, Yansheng; Zhang, Baolin; Li, Hongping</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">429</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6047297"> <span id="translatedtitle">Processes and problems in secondary star <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Recent developments relating the conditions in molecular clouds to star <span class="hlt">formation</span> triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the <span class="hlt">formation</span> of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary <span class="hlt">formation</span>. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star <span class="hlt">formation</span> mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the <span class="hlt">formation</span> of new stars in congruent to 1-3 x 10/sup 4/ years and could account for the recent evidence for new massive star <span class="hlt">formation</span> in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star <span class="hlt">formation</span> observed, a uniform description of star <span class="hlt">formation</span> is likely to involve several secondary processes. Advances in the theory of star <span class="hlt">formation</span> will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields.</p> <div class="credits"> <p class="dwt_author">Klein, R.I.; Whitaker, R.W.; Sandford M.T. II</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">430</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012IAUS..284..317E"> <span id="translatedtitle">What triggers star <span class="hlt">formation</span> in galaxies?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Processes that promote the <span class="hlt">formation</span> of dense cold clouds in the interstellar media of galaxies are reviewed. Those that involve background stellar mass include two-fluid instabilities, spiral density wave shocking, and bar accretion. Young stellar pressures trigger gas accumulation on the periphery of cleared cavities, which often take the form of rings by the time new stars form. Stellar pressures also trigger star <span class="hlt">formation</span> in bright-rim structures, directly squeezing the pre-existing clumps in nearby clouds and clearing out the lower density gas between them. Observations of these processes are common. How they fit into the empirical star <span class="hlt">formation</span> laws, which relate the star <span class="hlt">formation</span> rate primarily to the gas density, is unclear. Most likely, star <span class="hlt">formation</span> follows directly from the <span class="hlt">formation</span> of cold dense gas, whatever the origin of that gas. If the average pressure from the weight of the gas layer is large enough to produce a high molecular fraction in the ambient medium, then star <span class="hlt">formation</span> should follow from a variety of processes that combine and lose their distinctive origins. Pressurized triggering might have more influence on the star <span class="hlt">formation</span> rate in regions with low average molecular fraction. This implies, for example, that the arm/interarm ratio of star <span class="hlt">formation</span> efficiency should be higher in the outer regions of galaxies than in the main disks.</p> <div class="credits"> <p class="dwt_author">Elmegreen, Bruce G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">431</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6485132"> <span id="translatedtitle">Acidification of subterranean <span class="hlt">formations</span> employing halogenated hydrocarbons</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A method and composition are described for the acidification of wells to restore permeability of subterranean <span class="hlt">formations</span>. The composition provides treating the <span class="hlt">formations</span> with hydrochloric. The in situ production of hydrochloric acid in a subterranean <span class="hlt">formation</span> is accomplished by decomposing a polychlorohydrocarbon in the <span class="hlt">formation</span>. The decomposition is accomplished at a lower temperature by injecting the chlorohydrocarbon together with isopropyl alcohol or a Lewis acid, e.g., FeCl/sub 3/, or a mixture of the alcohol and Lewis acid. Carbon tetrachloride is cited as an example of the chlorohydrocarbon. 1 claim.</p> <div class="credits"> <p class="dwt_author">Vivian, T.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-03-16</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">432</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006aiaa.conf....1L"> <span id="translatedtitle"><span class="hlt">Formation</span> of Gas Giant Planets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The observed physical properties and orbits of giant planets, models of their internal structure and observations of protoplanetary disks provide constraints on the <span class="hlt">formation</span> of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium; these gasses could not have condensed into solid planetesimals within the protoplanetary disk. Jupiter and Saturn are mostly hydrogen and helium, but have larger percentages of heavier elements than does the Sun. Neptune and Uranus are primarily composed of elements heavier than helium. The transiting extrasolar planet HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable amounts of light gases and heavy elements. The other observed transiting exoplanets are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of these planets. Extrasolar planets orbiting very close to their stars almost certainly formed at larger distances and migrated inwards as a consequence of gravitational interactions with their protoplanetary disks. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the giant planet cores grow massive enough to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary question regarding the core nucleated growth model is under what conditions can planets develop cores sufficiently massive to accrete gas envelopes within the lifetimes of typical gaseous protoplanetary disks.</p> <div class="credits"> <p class="dwt_author">Lissauer, Jack J.; D'Angelo, Gennaro</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">433</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21587529"> <span id="translatedtitle">STAR <span class="hlt">FORMATION</span> IN 30 DORADUS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Using observations obtained with the Wide-Field Camera 3 on board the Hubble Space Telescope, we have studied the properties of the stellar populations in the central regions of 30 Dor in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterize and quantify this effect using young massive main-sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main-sequence (PMS) stars by looking for objects with a strong (>4{sigma}) H{alpha} excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one-third of these objects are younger than {approx}4 Myr, compatible with the age of the massive stars in the central ionizing cluster R 136, whereas the rest have ages up to {approx}30 Myr, with a median age of {approx}12 Myr. This indicates that star <span class="hlt">formation</span> has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very center of the cluster. We attribute this latter effect to photo-evaporation of the older circumstellar disks caused by the massive ionizing members of R 136.</p> <div class="credits"> <p class="dwt_author">De Marchi, Guido; Spezzi, Loredana; Sirianni, Marco; Andersen, Morten [European Space Agency, Space Science Department, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Paresce, Francesco [Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Gobetti 101, 40129 Bologna (Italy); Panagia, Nino; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Beccari, Giacomo [European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching (Germany); Balick, Bruce [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Dopita, Michael A. [Mount Stromlo and Siding Spring Observatories, Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Frogel, Jay A. [Galaxies Unlimited, 8726 Hickory Bend Trail, Potomac, MD 20854 (United States); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Marcella Carollo, C. [Department of Physics, ETH-Zurich, Zurich 8093 (Switzerland); Disney, Michael J. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Hall, Donald N. B. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Holtzman, Jon A. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Kimble, Randy A. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McCarthy, Patrick J., E-mail: gdemarchi@rssd.esa.int [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101-1292 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">434</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ldeo.columbia.edu/~polsen/nbcp/olsen_formations_80_sm.pdf"> <span id="translatedtitle">TRIASSIC AND JURASSIC <span class="hlt">FORMATIONS</span> OF THE NEWARK BASIN</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Newark Supergroup deposits of the Newark Basin (New York, New Jersey and Pennsylvania) are divided into nine <span class="hlt">formations</span> called (from bottom up): Stockton <span class="hlt">Formation</span> (maximum 1800 m); Lockatong <span class="hlt">Formation</span> (maximum 1 150 m); Passaic <span class="hlt">Formation</span> (maximum 6000 m); Orange Mountain Basalt (maximum 200 m); Feltville <span class="hlt">Formation</span> (maximum 600 m); Preakness Basalt (maximum + 300 m); Towaco <span class="hlt">Formation</span> (max- imum 340</p> <div class="credits"> <p class="dwt_author">PAUL E. OLSEN</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">435</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/34533487"> <span id="translatedtitle">Yolk-platelet <span class="hlt">formation</span> in oocytes of Xenopus laevis (Daudin)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Yolk-platelet <span class="hlt">formation</span> in the South African clawed toad, Xenopus laevis, was studied with the electron microscope. A dual mode of <span class="hlt">formation</span> was found. One being associated with mitochondria, the other with the Golgi complex. These two ways of yolk <span class="hlt">formation</span> are named yolk <span class="hlt">formation</span> I and yolk <span class="hlt">formation</span> II respectively. Yolk <span class="hlt">formation</span> I involves an extensive uptake of pinocytotic vesicles,</p> <div class="credits"> <p class="dwt_author">Udo M. Spornitz; Annetrudi Kress</p> <p class="dwt_publisher"></p> <p class="publishDate">1971-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">436</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA313808"> <span id="translatedtitle">Geometric <span class="hlt">Formation</span> With Uniform Distribution and Movement in <span class="hlt">Formation</span> of Distributed Mobile Robots.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">formation</span> problem of distributed mobile robots was studied in the literature for idealized robots. Idealized robots are able to instantaneously move in any direction, and are equipped with perfect range sensors. In this study, the <span class="hlt">formation</span> problem of...</p> <div class="credits"> <p class="dwt_author">G. Alptekin</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">437</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=identity+AND+formation&id=EJ874336"> <span id="translatedtitle">Achievement Goal Orientations and Identity <span class="hlt">Formation</span> Styles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|The present article points to shared underlying theoretical assumptions and central processes of a prominent academic motivation perspective--achievement goal theory--and recent process perspectives in the identity <span class="hlt">formation</span> literature, and more specifically, identity <span class="hlt">formation</span> styles. The review highlights the shared definition of achievement…</p> <div class="credits"> <p class="dwt_author">Kaplan, Avi; Flum, Hanoch</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">438</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41227039"> <span id="translatedtitle">Ettringite <span class="hlt">formation</span> and behaviour in clayey soils</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Failures in soil stabilization have been reported previously as being due to the <span class="hlt">formation</span> of ettringite, an expansive mineral which develops in the presence of sulfate, calcium, and aluminum compounds of clay fraction in high pH levels between 10.36 and 14. By comparing the pattern of <span class="hlt">formation</span> of ettringite, formed from different possible sources and specifically in stabilized soil, it</p> <div class="credits"> <p class="dwt_author">Vahid R. Ouhadi; Raymond N. Yong</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">439</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=assessing+AND+assessment&pg=6&id=EJ912573"> <span id="translatedtitle">APPREND: <span class="hlt">Formative</span> Assessment Tools for APP</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|This article discusses how Assessing Pupils' Progress (APP) can be turned into more of a tool for <span class="hlt">formative</span> assessment. It describes an approach called "APPREND" as a set of APP-based tools for <span class="hlt">formative</span> assessment. The author provides a glimpse of how APPREND tools can help. (Contains 2 tables.)|</p> <div class="credits"> <p class="dwt_author">Sherborne, Tony</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">440</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22Stanley%22&id=ED525850"> <span id="translatedtitle"><span class="hlt">Formative</span> Assessments in a Professional Learning Community</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">The ideas and examples in this book help teachers successfully collaborate to raise student achievement through the use of <span class="hlt">formative</span> assessments. Here, Todd Stanley and Betsy Moore, educators with over 40 years of combined experience, offer proven <span class="hlt">formative</span> assessment strategies to teachers in a professional learning community. Contents include:…</p> <div class="credits"> <p class="dwt_author">Stanley, Todd; Moore, Betsy</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_22 div --> <div id="page_23" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">441</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://faculty.psy.ohio-state.edu/fazio/fazio/documents/FazioEiserShookJPSP2004.pdf"> <span id="translatedtitle">Attitude <span class="hlt">Formation</span> Through Exploration: Valence Asymmetries</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">formation</span> of attitudes toward novel objects was examined as a function of exploratory behavior. An initial experiment, in which participants played a computer game that required them to learn which stimuli, when sampled, produced favorable or unfavorable outcomes, demonstrated learning, attitude <span class="hlt">formation</span>, and generalization to novel objects. The findings also revealed 2 interesting valence asymmetries: a learning asymmetry involving</p> <div class="credits"> <p class="dwt_author">Russell H. Fazio; J. Richard Eiser; Natalie J. Shook</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">442</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/35939649"> <span id="translatedtitle">Initiation of aerial mycelium <span class="hlt">formation</span> in Streptomyces</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In the past two years, the isolation of extracellular factors involved in the initiation of aerial mycelium <span class="hlt">formation</span>, the identification of metabolic defects in certain developmental mutants, and the characterisation of three further bld genes and several ?-butyrolactone receptor genes have led to new ideas about the mechanisms that initiate aerial mycelium <span class="hlt">formation</span> in Streptomyces. The emerging picture suggests the</p> <div class="credits"> <p class="dwt_author">Gabriella H Kelemen; Mark J Buttner</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">443</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37864578"> <span id="translatedtitle">Retail <span class="hlt">format</span> change in US markets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Asks how consumers are responding to the diverse array of retail choices as new <span class="hlt">formats</span> continue to emerge in US retailing and increasingly in overseas markets. Through the collection of interview data, analyses penetration levels and patronage movement as well as market change push and pull factors. Studies ten retail <span class="hlt">formats</span> including department stores, speciality stores, mass merchandisers, discount stores,</p> <div class="credits"> <p class="dwt_author">Sarah P. Rousey; Michelle A. Morganosky</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">444</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5116271"> <span id="translatedtitle">Methane production from carbonaceous subterranean <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This patent describes a method for producing methane from a solid carbonaceous subterranean <span class="hlt">formation</span> penetrated by at least on injection well and at least one production well. It comprises: injecting a gas, consisting essentially of an inert gas through the injection well and into the solid carbonaceous subterranean <span class="hlt">formation</span>; and producing a composition comprising inert gas and methane from the production well.</p> <div class="credits"> <p class="dwt_author">Puri, R.; Stein, M.H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-05-14</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">445</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57802622"> <span id="translatedtitle">Experiences of habit <span class="hlt">formation</span>: A qualitative study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Habit <span class="hlt">formation</span> is an important goal for behaviour change interventions because habitual behaviours are elicited automatically and are therefore likely to be maintained. This study documented experiences of habit development in 10 participants enrolled on a weight loss intervention explicitly based on habit-<span class="hlt">formation</span> principles. Thematic analysis revealed three themes: Strategies used to support initial engagement in a novel behaviour; development</p> <div class="credits"> <p class="dwt_author">Phillippa Lally; Jane Wardle; Benjamin Gardner</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">446</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=vague&pg=5&id=ED525800"> <span id="translatedtitle">Improving Foreign Language Speaking through <span class="hlt">Formative</span> Assessment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Want a quick way to get your students happily conversing more in the target language? This practical book shows you how to use <span class="hlt">formative</span> assessments to gain immediate and lasting improvement in your students' fluency. You'll learn how to: (1) Imbed the 3-minute <span class="hlt">formative</span> assessment into every lesson with ease; (2) Engage students in peer…</p> <div class="credits"> <p class="dwt_author">Tuttle, Harry Grover; Tuttle, Alan Robert</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">447</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22remaking%22&pg=6&id=EJ821919"> <span id="translatedtitle">Remaking Civic <span class="hlt">Formation</span>: Towards a Learning Citizen?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|This paper uses three examples of educational innovation emerging in the contemporary context of market-liberal reform as a focus for exploring the patterns and possibilities of civic <span class="hlt">formation</span>. The first part of the paper contextualises contemporary civic <span class="hlt">formation</span> within the long historic struggle between capitalism and democracy, highlighting…</p> <div class="credits"> <p class="dwt_author">Seddon, Terri</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">448</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=bloom%27s+AND+taxonomy+AND+assessment&pg=6&id=EJ534320"> <span id="translatedtitle">Enhancing the Lecture: Revitalizing the Traditional <span class="hlt">Format</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">The traditional lecture <span class="hlt">format</span> of college courses can be enhanced by including active learning designed to further course goals of learning knowledge, developing skills, or fostering attitudes. Techniques suggested include using pauses, short writing periods, think-pair-share activities, <span class="hlt">formative</span> quizzes, lecture summaries, and several assessment…</p> <div class="credits"> <p class="dwt_author">Bonwell, Charles C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">449</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41319689"> <span id="translatedtitle">The <span class="hlt">Formation</span> of Materialist and Postmaterialist Values</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Inglehart's contentions regarding the adoption of materialist and postmaterialist values have provoked a lively debate. Inglehart's socialization and scarcity hypotheses together emphasize the enduring influence of the economic conditions during early adulthood. His more recent work stresses “<span class="hlt">formative</span> security” within the family of origin. This paper models the <span class="hlt">formation</span> of materialist and postmaterialist values. I distinguish five general influences on</p> <div class="credits"> <p class="dwt_author">Gary N. Marks</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">450</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6025854"> <span id="translatedtitle">Adiabatic theories of galaxy <span class="hlt">formation</span> and pancakes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The adiabatic theory of galaxy <span class="hlt">formation</span> in universes dominated by massive neutrinos or other more weakly interacting particles such as gravitinos or photinos is reviewed. Collisionless damping leads to a density fluctuation spectrum with a cutoff, the nonlinear evolution of which naturally results in the <span class="hlt">formation</span> of pancakes, strings, voids, galaxies, and galactic halos. 38 references.</p> <div class="credits"> <p class="dwt_author">Bond, J.R.; Szalay, A.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">451</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008CryRp..53..550K"> <span id="translatedtitle">Mechanism of <span class="hlt">formation</span> of curved Kikuchi lines</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The mechanism of <span class="hlt">formation</span> of curved Kikuchi lines, observed at displacement of point reflections from their normal positions, is proposed. Curving of Kikuchi lines is explained taking into account the participation of diffracted electron beams in the <span class="hlt">formation</span> of Kikuchi electron diffraction patterns.</p> <div class="credits"> <p class="dwt_author">Karakhanyan, R. K.; Karakhanyan, K. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">452</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/3667226"> <span id="translatedtitle">Regulation of endospore <span class="hlt">formation</span> in Bacillus subtilis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Spore <span class="hlt">formation</span> in bacteria poses a number of biological problems of fundamental significance. Asymmetric cell division at the onset of sporulation is a powerful model for studying basic cell-cycle problems, including chromosome segregation and septum <span class="hlt">formation</span>. Sporulation is one of the best understood examples of cellular development and differentiation. Fascinating problems posed by sporulation include the temporal and spatial control</p> <div class="credits"> <p class="dwt_author">Jeff Errington</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">453</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/36579863"> <span id="translatedtitle">Initiation of endospore <span class="hlt">formation</span> in Clostridium acetobutylicum</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Endospore <span class="hlt">formation</span> in bacilli and clostridia shows remarkable similarities in morphology as well as in physiological and molecular biological cellular events. Major differences are the <span class="hlt">formation</span> of clostridial stage cells and granulose accumulation in clostridia. In both genera, a cascade of sigma factors is activated after septation (by help of ?H and Spo0A?P) in the sequence ?F, ?E, ?G, and</p> <div class="credits"> <p class="dwt_author">Peter Dürre; Concha Hollergschwandner</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">454</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=et&pg=5&id=EJ953109"> <span id="translatedtitle">Learning Progressions that Support <span class="hlt">Formative</span> Assessment Practices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Black, Wilson, and Yao (this issue) lay out a comprehensive vision for the way that learning progressions (or other "road maps") might be used to inform and coordinate <span class="hlt">formative</span> and summative purposes of assessment. As Black, Wilson, and others have been arguing for over a decade, the effective use of <span class="hlt">formative</span> assessment has great potential to…</p> <div class="credits"> <p class="dwt_author">Alonzo, Alicia C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">455</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51230733"> <span id="translatedtitle">Gravitational instability, galaxy evolution, and star <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Theories of galaxy evolution and star <span class="hlt">formation</span> are reviewed with reference to current theories of gravitational collapse. Stars in elliptical galaxies and in spherical components of spiral galaxies were formed in a short time period during early stages of protogalactic collapse, at a time of violent star <span class="hlt">formation</span>. Disk-like components of spiral galaxies, however, evolved gradually in the course of</p> <div class="credits"> <p class="dwt_author">J. Palous</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">456</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54549682"> <span id="translatedtitle">Delays of star <span class="hlt">formation</span> in galaxies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Evidence for the extended supression of star <span class="hlt">formation</span> in galaxies is reviewed, and possible mechanisms for these delays are examined. Observations of metallic abundances and kinetics of stars are presented as evidence for gaps of up to 10 billion years between periods of star <span class="hlt">formation</span> in the Milky Way and other galaxies. Consideration is then given to models of star</p> <div class="credits"> <p class="dwt_author">A. A. Suchkov; Y. A. Shchekinov</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">457</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5017816"> <span id="translatedtitle">Insights from simulations of star <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Although the basic physics of star <span class="hlt">formation</span> is classical, numerical simulations have yielded essential insights into how stars form. They show that star <span class="hlt">formation</span> is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the</p> <div class="credits"> <p class="dwt_author">Richard B Larson</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">458</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.wendelstein-observatorium.de/ys/iau237_proc.pdf"> <span id="translatedtitle">Sequentially triggered star <span class="hlt">formation</span> in OB associations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We discuss observational evidence for sequential and triggered star <span class="hlt">formation</span> in galactic and extragalactic OB associations. We will first review in detail the star <span class="hlt">formation</span> process in the Scorpius-Centaurus OB association, the nearest OB association to the Sun, where several recent extensive studies have provided comprehensive information on the stellar content and the ages of the different OB subgroups. These</p> <div class="credits"> <p class="dwt_author">Thomas Preibisch; Hans Zinnecker</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">459</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=canon+AND+formation&id=EJ923251"> <span id="translatedtitle">Curriculum <span class="hlt">Formation</span>: A Case Study from History</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Drawing on the work of Bernstein and Maton and using a case-study approach, this study explores the <span class="hlt">formation</span> of an undergraduate history curriculum at the University of Cape Town. This article focuses on two periods of curriculum <span class="hlt">formation</span> referred to as history as canon and history as social science. With respect to these two curriculum periods…</p> <div class="credits"> <p class="dwt_author">Shay, Suellen</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">460</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/10192366"> <span id="translatedtitle">Does simvastatin stimulate bone <span class="hlt">formation</span> in vivo?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">BACKGROUND: Statins, potent compounds that inhibit cholesterol synthesis in the liver have been reported to induce bone <span class="hlt">formation</span>, both in tissue culture and in rats and mice. To re-examine potential anabolic effects of statins on bone <span class="hlt">formation</span>, we compared the activity of simvastatin (SVS) to the known anabolic effects of PTH in an established model of ovariectomized (OVX) Swiss-Webster mice.</p> <div class="credits"> <p class="dwt_author">Dietrich von Stechow; Susan Fish; Dror Yahalom; Itai Bab; Michael Chorev; Ralph Müller; Joseph M Alexander</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_23 div --> <div id="page_24" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_23");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a style="font-weight: bold;">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_25");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">461</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.cds.caltech.edu/~faxa/pubs/ifac1.pdf"> <span id="translatedtitle">GRAPH LAPLACIANS AND STABILIZATION OF VEHICLE <span class="hlt">FORMATIONS</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Control of vehicle <span class="hlt">formations</span> has emerged as a topic of signiflcant interest to the controls community. In this paper, we merge tools from graph theory and control theory to derive stability criteria for vehicle <span class="hlt">formations</span>. The interconnection between vehicles (i.e., which vehicles are sensed by other vehicles) is modeled as a graph, and the eigenvalues of the Laplacian matrix of</p> <div class="credits"> <p class="dwt_author">J. Alexander Fa; Richard M. Murray</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">462</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49242917"> <span id="translatedtitle">Molecular mechanisms of Staphylococcus epidermidis biofilm <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Coagulase-negative staphylococci, mainly Staphylococcus epidermidis, are the predominant cause of implanted medical-device related infections. The <span class="hlt">formation</span> of adherent multilayered biofilms embedded into a glycocalyx composed of exopolysaccharides on implanted devices is believed to be essential for the pathogenesis of S. epidermidis infections. Biofilm <span class="hlt">formation</span> may be separated into primary attachment of bacteria to native or modified polymer surfaces followed by</p> <div class="credits"> <p class="dwt_author">D. Mack</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">463</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22Amelia%22&pg=6&id=EJ847163"> <span id="translatedtitle">Island <span class="hlt">Formation</span>: Constructing a Coral Island</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|The process of coral island <span class="hlt">formation</span> is often difficult for middle school students to comprehend. Coral island <span class="hlt">formation</span> is a dynamic process, and students should have the opportunity to experience this process in a synergistic context. The authors provide instructional guidelines for constructing a coral island. Students play an interactive…</p> <div class="credits"> <p class="dwt_author">Austin, Heather; Edd, Amelia</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">464</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18604452"> <span id="translatedtitle">Positronium <span class="hlt">formation</span> in low temperature polymers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The trapped electrons or anions in molecular solids and polymers cause the enhancement of positronium (Ps) <span class="hlt">formation</span> at low temperatures during positron annihilation lifetime (PAL) measurement. It used to be understood that the physical structural change caused the enhancement. However, it has been clarified that the enhancement of Ps <span class="hlt">formation</span> at low temperatures are caused by the reaction of free</p> <div class="credits"> <p class="dwt_author">Tetsuya Hirade</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">465</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41055430"> <span id="translatedtitle">Beachrock occurrence, characteristics, <span class="hlt">formation</span> mechanisms and impacts</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Beachrocks are hard coastal sedimentary <span class="hlt">formations</span> consisting of various beach sediments, lithified through the precipitation of carbonate cements. The objectives of this contribution are to (a) collate and review information on the reported occurrences, characteristics and <span class="hlt">formation</span> mechanisms of beachrocks and (b) consider their impacts on the coastal zone. The analysis of the available information has shown that (a) beachrock</p> <div class="credits"> <p class="dwt_author">M. I. Vousdoukas; A. F. Velegrakis; T. A. Plomaritis</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">466</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26512384"> <span id="translatedtitle">The <span class="hlt">formation</span> of dioxins in combustion systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Flame chemistry in incineration systems involves the <span class="hlt">formation</span> of many organic products of incomplete combustion, including chlorinated species such as polychlorinated biphenyls (PCB), polychlorinated dibenzo-p-dioxins (PCDD), and polychlorinated dibenzofurans (PCDF). Because the latter are of environmental concern, a great deal of research has been expended on understanding their <span class="hlt">formation</span>. There are two temperature windows in which they can form: the</p> <div class="credits"> <p class="dwt_author">B. R Stanmore</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">467</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/23372788"> <span id="translatedtitle">Mechanisms of gas hydrate <span class="hlt">formation</span> and inhibition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">formation</span> of gas hydrates in gas and oil subsea pipelines often results in blockage and shutdown of these pipelines. Modern control methods depend on understanding the mechanisms through which gas hydrates form. This paper reviews our recent studies of clathrate hydrate <span class="hlt">formation</span> and inhibition mechanisms using neutron diffraction, differential scanning calorimetry (DSC) and a multiple cell photo-sensing instrument. The</p> <div class="credits"> <p class="dwt_author">C. A. Koh; R. E. Westacott; W. Zhang; K. Hirachand; J. L. Creek; A. K. Soper</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">468</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/u134p116170266p5.pdf"> <span id="translatedtitle">The evolutive style of identity <span class="hlt">formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In the study of differentiation of Styles of Identity <span class="hlt">formation</span> with a sample of high school age adolescents, a group of the participants were found (by discriminant analysis) to have common features and to be a distinct group that displays an Evolutive Style of Identity <span class="hlt">Formation</span>. The characteristics of this style are examined in this article, which focuses on the</p> <div class="credits"> <p class="dwt_author">Hanoch Flum</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">469</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=ego+AND+identity+AND+formation&pg=3&id=EJ449627"> <span id="translatedtitle">An Existentialist Account of Identity <span class="hlt">Formation</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Gives account of Marcia's identity <span class="hlt">formation</span> model in language of existentialist philosophy. Examines parallels between ego-identity and existentialist approaches. Describes identity in terms of existentialist concepts of Heidegger and Sartre. Argues that existentialist account of identity <span class="hlt">formation</span> has benefits of clarification of difficult…</p> <div class="credits"> <p class="dwt_author">Bilsker, Dan</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">470</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22050963"> <span id="translatedtitle">Mechanism of <span class="hlt">formation</span> of curved Kikuchi lines</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The mechanism of <span class="hlt">formation</span> of curved Kikuchi lines, observed at displacement of point reflections from their normal positions, is proposed. Curving of Kikuchi lines is explained taking into account the participation of diffracted electron beams in the <span class="hlt">formation</span> of Kikuchi electron diffraction patterns.</p> <div class="credits"> <p class="dwt_author">Karakhanyan, R. K., E-mail: rkarakhanyan@yandex.ru; Karakhanyan, K. R. [Yerevan State University (Armenia)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">471</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pagilla.ceat.okstate.edu/pubs_journal/zou-pagilla-ratliff-AIAA-jgcd-jan09.pdf"> <span id="translatedtitle">Distributed <span class="hlt">Formation</span> Flight Control Using Constraint Forces</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new approach for <span class="hlt">formation</span> flight control of multiple aircraft is presented. Constraint forces are used to derive the dynamics of a constrained, multibody system. A stable, distributed control algorithm is designed based on the information flow graph for a group of aircraft. The aircraft will achieve a particular <span class="hlt">formation</span> while ensuring an arbitrarily small bounded navigation tracking error with</p> <div class="credits"> <p class="dwt_author">Yunfei Zou; Prabhakar R. Pagilla; Ryan T. Ratliff</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">472</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57665651"> <span id="translatedtitle">Exhaust Hydrocarbon Relationships with Photochemical Aerosol <span class="hlt">Formation</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">formation</span> of photochemically derived aerosols from auto exhaust vapors has been studied in the Battelle-Columbus smog chamber for several years, and this paper summarizes our principal findings on the subject. In leading up to conclusions regarding exhaust composition effects on aerosol <span class="hlt">formation</span>, salient features of secondary aerosol growth and the measurement of these aerosols by light scattering methods are</p> <div class="credits"> <p class="dwt_author">David F. Miller; Arthur Levy</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">473</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61387558"> <span id="translatedtitle">Pore pressure <span class="hlt">formation</span> evaluation while drilling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This patent describes a method for investigating properties of subsurface <span class="hlt">formations</span> traversed by a borehole. The method consists the steps of: generating while drilling signals indicative of <span class="hlt">formation</span> properties derivable from measurements made while drilling; in response to the signals, generating a signal indicative of overpressure porosity; and in response to the overpressure porosity signal, optimizing the drilling process.</p> <div class="credits"> <p class="dwt_author">Rasmus</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">474</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57875921"> <span id="translatedtitle">Estimating Sand–Shale <span class="hlt">Formation</span> Pore Pressure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article presents a comprehensive evaluation method of estimating sand–shale <span class="hlt">formation</span> pore pressure by using sonic velocity and other logging data. The method takes the influence of porosity, density, shale content, effective stress, and some other physical properties of sand–shale <span class="hlt">formation</span> on sonic velocity into account. The influence and related logging data are combined to estimate the effective stress, and</p> <div class="credits"> <p class="dwt_author">F. Honghai; Y. Zhi; J. Rongyi</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">475</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60284489"> <span id="translatedtitle">Method and compositions for fracturing subterranean <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An aqueous gel containing a crosslinking agent comprising an organotitanate chelate and a retarding agent which delays crosslinking of the gel. This retarding agent comprises a polyhydroxyl-containing compound. The gel is useful for fracturing and placing propping agents within a subterranean <span class="hlt">formation</span>. The gel has a high viscosity in the <span class="hlt">formation</span> and has pumping characteristics in turbulent flow similar to</p> <div class="credits"> <p class="dwt_author">K. H. Hollenbeak; Ch. J. Githens</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">476</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60350143"> <span id="translatedtitle">Increasing permeability of deep subsurface <span class="hlt">formations</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic