The time-dependent reorderable matrix method for visualizing evolving tabular data
NASA Astrophysics Data System (ADS)
Qeli, Ermir; Wiechert, Wolfgang; Freisleben, Bernd
2005-03-01
The reorderable matrix method is a convenient way of representing static tabular data (i.e. matrices) visually. In this paper, we present an approach to use the reorderable matrix method for visualizing time-varying matrix data. Solutions to the problems encountered during the adaptation of this visualization method for time-varying matrices and proposals to solve the problems related to the automatic reordering of static tabular data are discussed. The approach is illustrated by visualizing sensitivity matrices generated during the simulation of metabolic network models.
Tribological Behavior of TiAl Matrix Composites with MoO3 Tabular Crystal
NASA Astrophysics Data System (ADS)
Zhang, Ao; Shi, Xiaoliang; Zhai, Wenzheng; Yang, Kang; Wang, Zhihai
2015-11-01
The friction and wear behaviors of TiAl matrix self-lubricating composites (TMSC) with MoO3 tabular crystal (MTC) against GCr15 steel ball are tested using a constant load of 10 N and a constant speed of 0.2 m/s from room temperature to 600 °C. The result shows that, during the sliding friction and wear process, the MTC which has the microstructure of multiple layers could reduce the shear stress, leading to the reduction of friction coefficient. Meanwhile, TMSC with MTC exhibits the excellent tribological performance over a wide temperature range, if compared to TiAl based alloy. Moreover, MTC can improve the tribological properties of TMSC obviously below 400 °C.
NASA Astrophysics Data System (ADS)
Siegel, Carl Ludwig; Siegel, Edward Carl-Ludwig
2011-03-01
NOT "philosophy" per se but raising serious salient Arnol'd [Huygens and Barrow, Newton and Hooke(96)] questions begged is Rota empiricism Husserl VS. Frege maths-objects Dichotomy controversy: Hill-Haddock[Husserl or Frege?(00)]as manifestly-demonstrated by Hintikka[B.U.]-Critchey[Derrida Deconstruction Ethics(78)] deconstruction; Altshuler TRIZ; Siegel F=C/C-S; Siegel-Baez(UCR) Cognition C-S = "Category-theory ``+'' Cognitive-Semantics[Wierzbica-Langacker-Lakoff-Nunez[Where Maths Comes From(00)]-Fauconnier-Turner[Blending(98)]-Coulson[Semantic-Leaps (00)
A new model for tabular-type uranium deposits
Sanford, R.F.
1992-01-01
Tabular-type uranium deposits occur as tabular, originally subhorizontal bodies entirely within reduced fluvial sandstones of Late Silurian age or younger. This paper proposes that belts of tabular-type uranium deposits formed in areas of mixed local and regional groundwater discharge shortly after deposition of the host sediments. The general characteristics of tabular-type uranium deposits indicate that their essential feature was the formation at a density-stratified ground-water interface in areas of local and regional ground-water discharge. Reconstruction of the paleohydrogeology is the key to understanding the formation of these deposits. Geologic ground-water controls that favor discharge, such as the pinch-out of major aquifers, are also favorable for uranium ore. The combination of topographic and geologic features that both cause discharge is most favorable for ore deposition. -from Author
Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies
NASA Astrophysics Data System (ADS)
Subrahmanyam, M.
2016-05-01
In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.
Network-Based Visual Analysis of Tabular Data
ERIC Educational Resources Information Center
Liu, Zhicheng
2012-01-01
Tabular data is pervasive in the form of spreadsheets and relational databases. Although tables often describe multivariate data without explicit network semantics, it may be advantageous to explore the data modeled as a graph or network for analysis. Even when a given table design conveys some static network semantics, analysts may want to look…
Min-cut segmentation of cursive handwriting in tabular documents
NASA Astrophysics Data System (ADS)
Davis, Brian L.; Barrett, William A.; Swingle, Scott D.
2015-01-01
Handwritten tabular documents, such as census, birth, death and marriage records, contain a wealth of information vital to genealogical and related research. Much work has been done in segmenting freeform handwriting, however, segmentation of cursive handwriting in tabular documents is still an unsolved problem. Tabular documents present unique segmentation challenges caused by handwriting overlapping cell-boundaries and other words, both horizontally and vertically, as "ascenders" and "descenders" overlap into adjacent cells. This paper presents a method for segmenting handwriting in tabular documents using a min-cut/max-flow algorithm on a graph formed from a distance map and connected components of handwriting. Specifically, we focus on line, word and first letter segmentation. Additionally, we include the angles of strokes of the handwriting as a third dimension to our graph to enable the resulting segments to share pixels of overlapping letters. Word segmentation accuracy is 89.5% evaluating lines of the data set used in the ICDAR2013 Handwriting Segmentation Contest. Accuracy is 92.6% for a specific application of segmenting first and last names from noisy census records. Accuracy for segmenting lines of names from noisy census records is 80.7%. The 3D graph cutting shows promise in segmenting overlapping letters, although highly convoluted or overlapping handwriting remains an ongoing challenge.
MCNP/X TRANSPORT IN THE TABULAR REGIME
HUGHES, H. GRADY
2007-01-08
The authors review the transport capabilities of the MCNP and MCNPX Monte Carlo codes in the energy regimes in which tabular transport data are available. Giving special attention to neutron tables, they emphasize the measures taken to improve the treatment of a variety of difficult aspects of the transport problem, including unresolved resonances, thermal issues, and the availability of suitable cross sections sets. They also briefly touch on the current situation in regard to photon, electron, and proton transport tables.
GeoCSV: tabular text formatting for geoscience data
NASA Astrophysics Data System (ADS)
Stults, M.; Arko, R. A.; Davis, E.; Ertz, D. J.; Turner, M.; Trabant, C. M.; Valentine, D. W., Jr.; Ahern, T. K.; Carbotte, S. M.; Gurnis, M.; Meertens, C.; Ramamurthy, M. K.; Zaslavsky, I.; McWhirter, J.
2015-12-01
The GeoCSV design was developed within the GeoWS project as a way to provide a baseline of compatibility between tabular text data sets from various sub-domains in geoscience. Funded through NSF's EarthCube initiative, the GeoWS project aims to develop common web service interfaces for data access across hydrology, geodesy, seismology, marine geophysics, atmospheric science and other areas. The GeoCSV format is an essential part of delivering data via simple web services for discovery and utilization by both humans and machines. As most geoscience disciplines have developed and use data formats specific for their needs, tabular text data can play a key role as a lowest common denominator useful for exchanging and integrating data across sub-domains. The design starts with a core definition compatible with best practices described by the W3C - CSV on the Web Working Group (CSVW). Compatibility with CSVW is intended to ensure the broadest usability of data expressed as GeoCSV. An optional, simple, but limited metadata description mechanism was added to allow inclusion of important metadata with comma separated data, while staying with the definition of a "dialect" by CSVW. The format is designed both for creating new datasets and to annotate data sets already in a tabular text format such that they are compliant with GeoCSV.
Supporting awareness through collaborative brushing and linking of tabular data.
Hajizadeh, Amir Hossein; Tory, Melanie; Leung, Rock
2013-12-01
Maintaining an awareness of collaborators' actions is critical during collaborative work, including during collaborative visualization activities. Particularly when collaborators are located at a distance, it is important to know what everyone is working on in order to avoid duplication of effort, share relevant results in a timely manner and build upon each other's results. Can a person's brushing actions provide an indication of their queries and interests in a data set? Can these actions be revealed to a collaborator without substantially disrupting their own independent work? We designed a study to answer these questions in the context of distributed collaborative visualization of tabular data. Participants in our study worked independently to answer questions about a tabular data set, while simultaneously viewing brushing actions of a fictitious collaborator, shown directly within a shared workspace. We compared three methods of presenting the collaborator's actions: brushing & linking (i.e. highlighting exactly what the collaborator would see), selection (i.e. showing only a selected item), and persistent selection (i.e. showing only selected items but having them persist for some time). Our results demonstrated that persistent selection enabled some awareness of the collaborator's activities while causing minimal interference with independent work. Other techniques were less effective at providing awareness, and brushing & linking caused substantial interference. These findings suggest promise for the idea of exploiting natural brushing actions to provide awareness in collaborative work. PMID:24051785
Summer Decay Processes in a Large Tabular Iceberg
NASA Astrophysics Data System (ADS)
Wadhams, P.; Wagner, T. M.; Bates, R.
2012-12-01
Summer Decay Processes in a Large Tabular Iceberg Peter Wadhams (1), Till J W Wagner(1) and Richard Bates(2) (1) Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK (2) Scottish Oceans Institute, School of Geography and Geosciences, University of St Andrews, St. Andrews, Scotland KY16 9AL We present observational results from an experiment carried out during July-August 2012 on a giant grounded tabular iceberg off Baffin Island. The iceberg studied was part of the Petermann Ice Island B1 (PIIB1) which calved off the Petermann Glacier in NW Greenland in 2010. Since 2011 it has been aground in 100 m of water on the Baffin Island shelf at 69 deg 06'N, 66 deg 06'W. As part of the project a set of high resolution GPS sensors and tiltmeters was placed on the ice island to record rigid body motion as well as flexural responses to wind, waves, current and tidal forces, while a Waverider buoy monitored incident waves and swell. On July 31, 2012 a major breakup event was recorded, with a piece of 25,000 sq m surface area calving off the iceberg. At the time of breakup, GPS sensors were collecting data both on the main berg as well as on the newly calved piece, while two of us (PW and TJWW) were standing on the broken-out portion which rose by 0.6 m to achieve a new isostatic equilibrium. Crucially, there was no significant swell at the time of breakup, which suggests a melt-driven decay process rather than wave-driven flexural break-up. The GPS sensors recorded two disturbances during the hour preceding the breakup, indicative of crack growth and propagation. Qualitative observation during the two weeks in which our research ship was moored to, or was close to, the ice island edge indicates that an important mechanism for summer ablation is successive collapses of the overburden from above an unsupported wave cut, which creates a submerged ram fringing the berg. A model of buoyancy stresses induced by
Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics.
García-Cortés, Miren; Robles-Díaz, Mercedes; Ortega-Alonso, Aida; Medina-Caliz, Inmaculada; Andrade, Raul J
2016-01-01
Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™) while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang). Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs. PMID:27070596
Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics
García-Cortés, Miren; Robles-Díaz, Mercedes; Ortega-Alonso, Aida; Medina-Caliz, Inmaculada; Andrade, Raul J.
2016-01-01
Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™) while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang). Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs. PMID:27070596
An Uncertainty Quantification System for Tabular Equations of State
NASA Astrophysics Data System (ADS)
Carpenter, John; Robinson, Allen; Debusschere, Bert; Mattsson, Ann; Drake, Richard; Rider, William
2013-06-01
Providing analysts with information regarding the accuracy of computational models is key for enabling predictive design and engineering. Uncertainty in material models can make significant contributions to the overall uncertainty in calculations. As a first step toward tackling this large problem, we present an uncertainty quantification system for tabular equations of state (EOS). First a posterior distribution of EOS model parameters is inferred using Bayes rule and a set of experimental and computational data. EOS tables are generated for parameter states sampled from the posterior distribution. A new unstructured triangular table format allows for capturing multi-phase model behavior. A principal component analysis then reduces this set of tables to a mean table and most significant perturbations. This final set of tables is provided to hydrocodes for performing simulations using standard non-intrusive uncertainty propagation methods. A multi-phase aluminum model is used to demonstrate the system. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Wind-driven upwelling around grounded tabular icebergs
NASA Astrophysics Data System (ADS)
Stern, Alon A.; Johnson, Eric; Holland, David M.; Wagner, Till J. W.; Wadhams, Peter; Bates, Richard; Abrahamsen, E. Povl; Nicholls, Keith W.; Crawford, Anna; Gagnon, Jonathan; Tremblay, Jean-Eric
2015-08-01
Temperature and salinity data collected around grounded tabular icebergs in Baffin Bay in 2011, 2012, and 2013 indicate wind-induced upwelling at certain locations around the icebergs. These data suggest that along one side of the iceberg, wind forcing leads to Ekman transport away from the iceberg, which causes upwelling of the cool saline water from below. The upwelling water mixes with the water above the thermocline, causing the mixed layer to become cooler and more saline. Along the opposite side of the iceberg, the surface Ekman transport moves towards the iceberg, which causes a sharpening of the thermocline as warm fresh water is trapped near the surface. This results in higher mixed layer temperatures and lower mixed layer salinities on this side of the iceberg. Based on these in situ measurements, we hypothesize that the asymmetries in water properties around the iceberg, caused by the opposing effects of upwelling and sharpening of the thermocline, lead to differential deterioration around the iceberg. Analysis of satellite imagery around iceberg PII-B-1 reveals differential decay around the iceberg, in agreement with this mechanism.
Geosites inventory of the northwestern Tabular Middle Atlas of Morocco
NASA Astrophysics Data System (ADS)
El Wartiti, Mohamed; Malaki, Amina; Zahraoui, Mohamed; El Ghannouchi, Abdelilah; di Gregorio, Felice
2008-07-01
Across the northwestern Tabular Middle Atlas of Morocco there are many examples of landscapes, rocks and fossils that provide key evidence of a particular moment or period in Earth history. Such Earth heritage sites are important for educating the general public in environmental matters. They also serve as tools for demonstrating sustainable development and for illustrating methods of site conservation as well as remembering that rocks, minerals, fossils, soils, landforms form an integral part of the natural world. The significance of certain sites for aesthetic or tourism reasons is obvious. There are numerous geosites, which could contribute to effective exploitation of geotourism, often in conjunction with ecotourism. The strategy employed to such sites involves close consultation with all communities in the vicinity of the respective geosite and is not only aimed at tourism and education, but also at sustainable improvement of the infrastructure of the people of this area. Geological heritage sites, properly managed, can generate employment and new economic activities, especially in regions in need of new or additional sources of income.
Automated Generation of Tabular Equations of State with Uncertainty Information
NASA Astrophysics Data System (ADS)
Carpenter, John H.; Robinson, Allen C.; Debusschere, Bert J.; Mattsson, Ann E.
2015-06-01
As computational science pushes toward higher fidelity prediction, understanding the uncertainty associated with closure models, such as the equation of state (EOS), has become a key focus. Traditional EOS development often involves a fair amount of art, where expert modelers may appear as magicians, providing what is felt to be the closest possible representation of the truth. Automation of the development process gives a means by which one may demystify the art of EOS, while simultaneously obtaining uncertainty information in a manner that is both quantifiable and reproducible. We describe our progress on the implementation of such a system to provide tabular EOS tables with uncertainty information to hydrocodes. Key challenges include encoding the artistic expert opinion into an algorithmic form and preserving the analytic models and uncertainty information in a manner that is both accurate and computationally efficient. Results are demonstrated on a multi-phase aluminum model. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Brooks, Robert A.; Campbell, John A.
1976-01-01
Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.
Analyzing Tabular and State-Transition Requirements Specifications in PVS
NASA Technical Reports Server (NTRS)
Owre, Sam; Rushby, John; Shankar, Natarajan
1997-01-01
We describe PVS's capabilities for representing tabular specifications of the kind advocated by Parnas and others, and show how PVS's Type Correctness Conditions (TCCs) are used to ensure certain well-formedness properties. We then show how these and other capabilities of PVS can be used to represent the AND/OR tables of Leveson and the Decision Tables of Sherry, and we demonstrate how PVS's TCCs can expose and help isolate errors in the latter. We extend this approach to represent the mode transition tables of the Software Cost Reduction (SCR) method in an attractive manner. We show how PVS can check these tables for well-formedness, and how PVS's model checking capabilities can be used to verify invariants and reachability properties of SCR requirements specifications, and inclusion relations between the behaviors of different specifications. These examples demonstrate how several capabilities of the PVS language and verification system can be used in combination to provide customized support for specific methodologies for documenting and analyzing requirements. Because they use only the standard capabilities of PVS, users can adapt and extend these customizations to suit their own needs. Those developing dedicated tools for individual methodologies may find these constructions in PVS helpful for prototyping purposes, or as a useful adjunct to a dedicated tool when the capabilities of a full theorem prover are required. The examples also illustrate the power and utility of an integrated general-purpose system such as PVS. For example, there was no need to adapt or extend the PVS model checker to make it work with SCR specifications described using the PVS TABLE construct: the model checker is applicable to any transition relation, independently of the PVS language constructs used in its definition.
NASA Astrophysics Data System (ADS)
Kerry, J. T.; Bellwood, D. R.
2015-06-01
Large reef fishes may often be seen sheltering under tabular structures on coral reefs. There are two principle explanations for this behaviour: avoidance of predation or avoidance of solar irradiance. This study sought supporting evidence to distinguish between these two explanations by examining the usage of tabular structures on a shallow mid-shelf reef of the Great Barrier Reef at midday and sunset. If predation avoidance is most important, usage should increase towards sunset; conversely, if avoidance of solar radiation is most important, more fishes should use cover at midday. Underwater video observations revealed that tabular structures were extensively used by large reef fishes at midday, being characterised by numerous species, especially Lutjanidae and Haemulidae. In contrast, at sunset, tabular structures were used by significantly fewer large reef fishes, being characterised mostly by species of unicornfish ( Naso spp.). Resident times of fishes using tabular structures were also significantly longer at midday (28:06 ± 5:55 min) than at sunset (07:47 ± 2:19 min). The results suggest that the primary function of tabular structures for large reef fishes is the avoidance of solar irradiance. This suggestion is supported by the position of fishes when sheltering. The majority of large reef fishes were found to shelter under the lip of tabular structure, facing outwards. This behaviour is thought to allow protection from harmful downwelling UV-B irradiance while allowing the fish to retain photopic vision and survey more of the surrounding area. These findings help to explain the importance of tabular structures for large reef fishes on coral reefs, potentially providing a valuable energetic refuge from solar irradiance.
Do tabular corals constitute keystone structures for fishes on coral reefs?
NASA Astrophysics Data System (ADS)
Kerry, J. T.; Bellwood, D. R.
2015-03-01
This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals ( Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.
Ontology patterns for tabular representations of biomedical knowledge on neglected tropical diseases
Santana, Filipe; Schober, Daniel; Medeiros, Zulma; Freitas, Fred; Schulz, Stefan
2011-01-01
Motivation: Ontology-like domain knowledge is frequently published in a tabular format embedded in scientific publications. We explore the re-use of such tabular content in the process of building NTDO, an ontology of neglected tropical diseases (NTDs), where the representation of the interdependencies between hosts, pathogens and vectors plays a crucial role. Results: As a proof of concept we analyzed a tabular compilation of knowledge about pathogens, vectors and geographic locations involved in the transmission of NTDs. After a thorough ontological analysis of the domain of interest, we formulated a comprehensive design pattern, rooted in the biomedical domain upper level ontology BioTop. This pattern was implemented in a VBA script which takes cell contents of an Excel spreadsheet and transforms them into OWL-DL. After minor manual post-processing, the correctness and completeness of the ontology was tested using pre-formulated competence questions as description logics (DL) queries. The expected results could be reproduced by the ontology. The proposed approach is recommended for optimizing the acquisition of ontological domain knowledge from tabular representations. Availability and implementation: Domain examples, source code and ontology are freely available on the web at http://www.cin.ufpe.br/~ntdo. Contact: fss3@cin.ufpe.br PMID:21685092
ERIC Educational Resources Information Center
Thuemmel, William L.; And Others
This manual contains a tabular report of the competency identification of job task analysis component (Part Two) of the research project entitled "Agribusiness and Natural Resources Education in Michigan: Employment Demand, Competencies Required, and Recommended Delivery Systems." The data is a tabular supplement to Chapter III of the final…
Automated recognition and extraction of tabular fields for the indexing of census records
NASA Astrophysics Data System (ADS)
Clawson, Robert; Bauer, Kevin; Chidester, Glen; Pohontsch, Milan; Kennard, Douglas; Ryu, Jongha; Barrett, William
2013-01-01
We describe a system for indexing of census records in tabular documents with the goal of recognizing the content of each cell, including both headers and handwritten entries. Each document is automatically rectified, registered and scaled to a known template following which lines and fields are detected and delimited as cells in a tabular form. Whole-word or whole-phrase recognition of noisy machine-printed text is performed using a glyph library, providing greatly increased efficiency and accuracy (approaching 100%), while avoiding the problems inherent with traditional OCR approaches. Constrained handwriting recognition results for a single author reach as high as 98% and 94.5% for the Gender field and Birthplace respectively. Multi-author accuracy (currently 82%) can be improved through an increased training set. Active integration of user feedback in the system will accelerate the indexing of records while providing a tightly coupled learning mechanism for system improvement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Name of person subjecting a farm product to a security interest, on EFS and master list-format. 205.102 Section 205.102 Animals and Animal...), DEPARTMENT OF AGRICULTURE CLEAR TITLE-PROTECTION FOR PURCHASERS OF FARM PRODUCTS Regulations § 205.102...
NASA Astrophysics Data System (ADS)
Schmalz, M.; Ritter, G.; Key, R.
Accurate and computationally efficient spectral signature classification is a crucial step in the nonimaging detection and recognition of spaceborne objects. In classical hyperspectral recognition applications using linear mixing models, signature classification accuracy depends on accurate spectral endmember discrimination [1]. If the endmembers cannot be classified correctly, then the signatures cannot be classified correctly, and object recognition from hyperspectral data will be inaccurate. In practice, the number of endmembers accurately classified often depends linearly on the number of inputs. This can lead to potentially severe classification errors in the presence of noise or densely interleaved signatures. In this paper, we present an comparison of emerging technologies for nonimaging spectral signature classfication based on a highly accurate, efficient search engine called Tabular Nearest Neighbor Encoding (TNE) [3,4] and a neural network technology called Morphological Neural Networks (MNNs) [5]. Based on prior results, TNE can optimize its classifier performance to track input nonergodicities, as well as yield measures of confidence or caution for evaluation of classification results. Unlike neural networks, TNE does not have a hidden intermediate data structure (e.g., the neural net weight matrix). Instead, TNE generates and exploits a user-accessible data structure called the agreement map (AM), which can be manipulated by Boolean logic operations to effect accurate classifier refinement algorithms. The open architecture and programmability of TNE's agreement map processing allows a TNE programmer or user to determine classification accuracy, as well as characterize in detail the signatures for which TNE did not obtain classification matches, and why such mis-matches occurred. In this study, we will compare TNE and MNN based endmember classification, using performance metrics such as probability of correct classification (Pd) and rate of false
Sandia Unstructured Triangle Tabular Interpolation Package v 0.1 beta
2013-09-24
The software interpolates tabular data, such as for equations of state, provided on an unstructured triangular grid. In particular, interpolation occurs in a two dimensional space by looking up the triangle in which the desired evaluation point resides and then performing a linear interpolation over the n-tuples associated with the nodes of the chosen triangle. The interface to the interpolation routines allows for automated conversion of units from those tabulated to the desired output units. when multiple tables are included in a data file, new tables may be generated by on-the-fly mixing of the provided tables
NASA Astrophysics Data System (ADS)
Shan, Baohua; Li, Jingan; Duan, Zhongdong; Ou, Jinping; Shen, Wei
2012-05-01
To meet the inspection need for complex tabular joints weld of offshore platform structures, a portable ultrasonic phased array inspection device is developed. The integrated device is small and portable. As designed, the device can implement different algorithm of the ultrasonic phased array inspection technology. With proposed inspection plan, the experiment of Y tubular joint model was performed in lab. Experiment results indicate that the possible ultrasonic phased array inspection device can detect and visualize the flaws on Y tubular joint weld, which are nearly consistent with the actual condition.
Sandia Unstructured Triangle Tabular Interpolation Package v 0.1 beta
Energy Science and Technology Software Center (ESTSC)
2013-09-24
The software interpolates tabular data, such as for equations of state, provided on an unstructured triangular grid. In particular, interpolation occurs in a two dimensional space by looking up the triangle in which the desired evaluation point resides and then performing a linear interpolation over the n-tuples associated with the nodes of the chosen triangle. The interface to the interpolation routines allows for automated conversion of units from those tabulated to the desired output units.more » when multiple tables are included in a data file, new tables may be generated by on-the-fly mixing of the provided tables« less
The breakup of large tabular icebergs - direct observations and theoretical considerations
NASA Astrophysics Data System (ADS)
Wadhams, P.
2013-12-01
Peter Wadhams and Till Wagner Dept. of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge. We review the factors governing the stability, dynamics and decay of icebergs and describe areas where current models are inadequate. These include questions such as draft changes in capsizing icebergs; iceberg trajectory modelling; the melt rate of the ice underside and ways of reducing it; and wave-induced flexure and its role in the break-up of tabular icebergs. In July 2012 the authors worked on a very large (42 sq km) tabular iceberg in Baffin Bay, which had calved from the Petermann Glacier in NW Greenland. We measured incoming swell spectrum and the iceberg response; also the role of buoyancy forces due to erosion of a waterline wave cut and the creation of an underwater ram. The iceberg broke up while we were on it, allowing an instrumental measurement of the calving event. The experiments were included in the BBC-2 film 'Operation Iceberg' shown on Nov 1 2012 and repeated on Nov 18. We conclude that two processes interacted in the break-up event: increased bending stress due to buoyancy of underwater rams; and direct flexural strain due to incidence of ocean swell. Implications for icebergs in the open sea are estimated.
Liu Suwen; Wehmschulte, Rudolf J. . E-mail: rwehmsch@fit.edu; Lian Guoda; Burba, Christopher M.
2006-03-15
Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 {mu}m, some even more than 100 {mu}m, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)
Segmentation for handwritten characters overlapping a tabular formed slip by global interpolation
NASA Astrophysics Data System (ADS)
Naoi, Satoshi; Hotta, Yoshinobu; Yabuki, Maki; Asakawa, Atuko
1994-09-01
The global interpolation we proposed evaluates segment pattern continuity and connectedness to produce characters with smooth edges while interrupting blank or missing segments, e.g., in extracting a handwritten character overlapping one box border, correctly. In this paper, we expand our method to be able to separate handwritten characters overlapped a tabular formed slip. We solve two problems to realize it: (1) precise matching among blank segments of adjacent characters for interpolation, and (2) reinterpolation area decision when adjacent character strings are close to each other. Precise matching can be done by finding exact terminal points of blank segments or missing segments. We make efficient use of removed image in a border. The contour of the character segment in removed border image is tracked from the intersection of the character and the border toward the center of the border. Reinterpolation area is adaptively decided by not using one box border size, but, estimating a character size in each character string after removing borders of a tabular formed slip. When adjacent character strings are close to each other, their strings cannot be separated by calculating their horizontal projection value. We calculate the weighted horizontal projection value whose weight is approximated by a convex function, that is, the peak is in proportion to each labeled segment size and is set to the center of gravity of the labeled segment. Some experimental results show the effectiveness of our method.
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.
2002-01-01
For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.
CAP: A Computer Code for Generating Tabular Thermodynamic Functions from NASA Lewis Coefficients
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.
2001-01-01
For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.
A quantitative model of ground-water flow during formation of tabular sandstone uranium deposits
Sanford, R.F.
1994-01-01
Presents a quantitative simulation of regional groundwater flow during uranium deposition in the Westwater Canyon Member and Jackpile Sandstone Member of the Upper Jurassic Morrison Formation in the San Juan basin. Topographic slope, shoreline position, and density contrasts in the lake and pore fluids controlled the directions of flow and recharge-discharge areas. The most important results for uranium ore deposit formation are that regional groundwater discharged throughout the basin, regional discharge was concentrated along the shore line or playa margin, flow was dominantly gravity driven, and compaction dewatering was negligible. A strong association is found between the tabular sandstone uranium deposits and major inferred zones of mixed local and regional groundwater discharge. -from Author
Tabular water properties interface for Hydra-TH : CASL THM.CFD.P6.03 milestone report.
Carpenter, John H.; Belcourt, Noel
2013-04-01
Completion of the CASL L3 milestone THM.CFD.P6.03 provides a tabular material properties capability to the Hydra code. A tabular interpolation package used in Sandia codes was modified to support the needs of multi-phase solvers in Hydra. Use of the interface is described. The package was released to Hydra under a government use license. A dummy physics was created in Hydra to prototype use of the interpolation routines. Finally, a test using the dummy physics verifies the correct behavior of the interpolation for a test water table. 3
Calcium-doped ceria/titanate tabular functional nanocomposite by layer-by-layer coating method
Liu, Xiang W.; Devaraju, M.K.; Yin, Shu; Sato, Tsugio
2010-07-15
Ca-doped ceria (CDC)/tabular titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}, TT) UV-shielding functional nanocomposite with fairly uniform CDC coating layers was prepared through a polyelectrolyte-associated layer-by-layer (LbL) coating method. TT with lepidocrocite-like layered structure was used as the substrate, poly (diallyldimethylammonium chloride) (PDDA) was used as a coupling agent, CDC nanoparticles were used as the main UV-shielding component. CDC/TT nanocomposites with various coating layers of CDC were obtained through a multistep coating process. The phases were studied by X-ray diffraction. The morphology and coating quality were studied by scanning electron microscopy and element mapping of energy dispersive X-ray analysis. The oxidation catalytic activity, UV-shielding ability and using comfort were characterized by Rancimat test, UV-vis spectra and dynamic friction test, respectively. CDC/TT nanocomposites with low oxidation catalytic activity, high UV-shielding ability and good using comfort were finally obtained. - Graphical abstract: Through the control of surface charge of particles calcium-doped ceria/titanate composites with low oxidation catalytic activity, higher UV-shielding ability and excellent comfort was obtained by a facile layer-by-layer coating method.
Genesis of the tabular-type vanadium-uranium deposits of the Henry Basin, Utah
Northrop, H.R.; Goldhaber, M.B.
1990-01-01
Tabular-type vanadium-uranium deposits occur in fluvial sandstones of the Salt Wash Member of the Morrison Formation of Late Jurassic age The mineralized intervals and the weakly mineralized lateral extensions are bounded both above and below by zones rich in dolomite cement. Carbon isotope values of dolomite cements indicate that at least two sources of carbon existed. One source appears to be the same as that which formed the bedded carbonates in the evaporites in the Tidwell Member of the Morrison Formation stratigraphically below the mineralized interval. The second carbon source is typical of terrestrially deposited carbonates generally associated with meteoric water-dominated environments. Oxygen isotope values of these dolomites show the same trend of isotopically light values above the mineralized interval and isotopically heavier values in and below that interval; they indicate that two isotopically distinct fluids were involved in the mineralizing process. Some aspects of the origin of gangue and ore phases are explainable on the basis of processes which occurred solely within the saline fluid, but key aspects of ore genesis involved the interaction of the saline and meteoric waters. It is postulated that the solution interface migrated vertically within the stratigraphic section. -from Authors
Ambient seismic, hydroacoustic, and flexural gravity wave noise on a tabular iceberg
NASA Astrophysics Data System (ADS)
MacAyeal, Douglas R.; Wang, Yitan; Okal, Emile A.
2015-02-01
Cross correlation of ambient seismic noise between four seismographs on tabular iceberg C16, Ross Sea, Antarctica, reveals both the source and the propagation characteristics of signals associated with icebergs. We find that noise correlation functions computed from station data are asymmetric about zero time lag, and this indicates that noise observed on the iceberg originates primarily from a compact, localized source associated with iceberg collisions between C16 and a neighboring iceberg, B15A. We additionally find two, and possibly more, distinct phases of noise propagation. We believe that flexural gravity wave propagation dominates the low-frequency noise (>10 s period) and that hydroacoustic wave propagation in the water column between the ice and seabed appears to dominate high-frequency noise (>10 Hz). Faster seismic propagation dominates the intermediate band (2-6 Hz); however, we do not have sufficient data to characterize the wave mechanisms more precisely, e.g., by identifying distinct longitudinal and shear body waves and/or surface waves. Secular changes in the amplitude and timing of ambient noise correlations, e.g., a diurnal cycle and an apparent shift in the noise correlation of fast seismic modes between two periods of the deployment, allow us to speculate that ambient noise correlation analysis may be helpful in understanding the sources and environmental controls on iceberg-generated ocean noise as well as geometric properties (such as water column thickness) of subglacial lakes.
NASA Astrophysics Data System (ADS)
Riley, P.; Tikoff, B.
2010-10-01
An undocumented type of fracture system - Tabular Fracture Clusters (TFCs) - occurs in the Cathedral Peak granodiorite, Sierra Nevada Batholith, CA. TFCs are linear zones of sub-parallel, densely spaced fractures, approximately 4-40 cm wide and 3-100 m long. TFCs occur in highest density adjacent to the Johnson granite porphyry, which intruded the Cathedral Peak granodiorite. Individual fractures in TFCs exhibit only opening-mode displacement. Microstructural analysis indicates that TFC fractures contain micro-breccia of angular clasts of host rock. Fine-grained zeolite and quartz are observed along many of the fractures within TFCs, all of which are absent in the host rock. The characteristics of TFCs suggest that they differ from previously documented fracture systems in the Sierra Nevada Batholith. The dense spacing, nature of the fractures, and association of TFCs with miarolitic cavities provide compelling evidence that TFCs formed in response to volatile overpressure from the adjacent Johnson granite porphyry. We attribute the formation of TFCs to dynamic fracturing, based on the clustered nature of the extension fractures and the geometric similarities of TFCs to other dynamic fracturing arrays.
Kirk, J; Gray, W M; Watson, E R
1977-01-01
In five previous papers, the concept of the Cumulative Radiation Effect (CRE) has been presented as a scale of accumulative sub-tolerance radiation damage. The biological effect generated in normal connective tissue by fractionated or continuous radiation therapy given in any temporal arrangement is described by the CRE on a unified scale of assessment, so that a unique value of the CRE describes a specific level of radiation effect. The basic methods of evaluating CREs were shown in these papers to facilitate a full understanding of the fundamental aspects of the CRE-system, but these methods can be time-consuming and tediuous for complex situations. In this paper, simple nomographic and tabular methods for the solution of practical problems are presented. An essential feature of solving a CRE problem is firstly to present it in a concise and readily appreciated form, and, to do this, nomenclature is introduced to describe schedules and regimes as compactly as possible. Simple algebraic equations are derived to describe the CRE achieved by multi-schedule regimes. In these equations, the equivalence conditions existing at the junctions between schedules are not explicit and the equations are based on the CREs of the constituent schedules assessed individually without reference to their context in the regime as a whole. This independent evaluations of CREs for each schedule results in a considerable simplification in the calculation of complex problems. The calculations are further simplified by the use of suitable tables and nomograms, so that the mathematics involved is reduced to simple arithmetical operations which require at the most the use of a slide rule but can be done by hand. The order of procedure in the presentation and calculation of CRE problems can be summarised in an evaluation procedure sheet. The resulting simple methods for solving practical problems of any complexity on the CRE-system are demonstrated by a number of examples. PMID:856533
NASA Astrophysics Data System (ADS)
Dauteuil, O.; Moreau, F.; Qarqori, K.
2016-07-01
The plain of Saïss is a fertile area of great agricultural production with major economic interests. Therefore, the improved knowledge about the water supply is imperative within a context of recurrent droughts and overexploitation of the groundwater. This plain is located in the Meknes-Fes basin and between two deformed domains: the Rif and Middle Atlas. The aquifers are fed by water coming from the Tabular Middle Atlas, for which the pathways are poorly constrained. This study provides new data to determine the water pathways based on a structural map produced from a novel analysis of SPOT images and a digital elevation model. This structural map reveals two fracture sets trending NE-SW and NW-SE. The first set is well known and corresponds to a main trend that controlled the tectonic and stratigraphic evolution of the study area. On the other hand, the NW-SE set was poorly described until now: it is both diffuse and widespread on the Tabular Middle Atlas. A comparison between the regional water flow trend, drainage pattern and structural map shows that the NW-SE fractures control the water flow from the Tabular Middle Atlas to the Saïss plain. A hydrological model is discussed where the water flow is confined onto Liassic carbonates and driven by NW-SE fractures. This study explains how a detailed structural mapping shows hydrology constraints.
Barometric effects on tabular iceberg drift in the Ross Sea, Antarctica
NASA Astrophysics Data System (ADS)
Turnbull, Ian D.
The Inverse Barometer Effect (IBE) was observed in the nineteenth century by Sir James Clark Ross (Ross, 1854a), as deviations in sea-surface elevation in response to deviations in atmospheric pressure. This effect embodies the inverse relationship between sea-surface height (relative to long-term mean sea level) and atmospheric surface pressure. This thesis addresses the hypothesis that icebergs in the Ross Sea region of Antarctica are influenced by the same forces that create the IBE. This hypothesis is motivated by studies of icebergs in the Ross Sea, where drift data suggest that icebergs are drawn into temporary holding zones, or "Iceberg Parking Lots" situated where the surface pressure tends to display persistent, annual average low pressure. A physical explanation for the IBE's influence on icebergs is that they are often able to travel up the sea-surface slope induced by the IBE below atmospheric lows against the gravitational pull because of the pressure gradient force of the atmosphere acting on the iceberg's freeboard (the part of the iceberg that is above the waterline). Here, I evaluate the validity of the hypothesized IBE-iceberg relationship using a combined approach of data analysis and modeling. I have examined atmospheric surface pressure and wind records taken directly from the surfaces of four Ross Sea icebergs---B15A, B15K, C16, and B15J, and I have also built, and experimented with, models that predict iceberg drift response to atmospheric surface pressure and surface winds, using observed pressures and winds from B15A and B15J as model forcing. I additionally performed various experiments on a large, idealized tabular iceberg's physical sensitivity to the IBE using a model that treats atmospheric pressure and winds in an idealized, theoretical manner. I discovered that the IBE is indeed a significant influence on iceberg drift in and around Lewis Bay, just to the north of Ross Island, which will further our understanding of these icebergs
Hazen, T.C.
1993-09-01
This document consists solely of data acquired during phase 2 of the integrated demonstration project concerning in situ bioremediation performed at the Savannah River Site, Aiken, South Carolina. The data is presented in tabular form.
Klett, T.R.; Le, P.A.
2007-01-01
This chapter describes data used in support of the process being applied by the U.S. Geological Survey (USGS) National Oil and Gas Assessment (NOGA) project. Digital tabular data used in this report and archival data that permit the user to perform further analyses are available elsewhere on this CD-ROM. Computers and software may import the data without transcription from the Portable Document Format files (.pdf files) of the text by the reader. Graphical images are provided as .pdf files and tabular data are provided in a raw form as tab-delimited text files (.tab files) because of the number and variety of platforms and software available.
SAMDIST: A Computer Code for Calculating Statistical Distributions for R-Matrix Resonance Parameters
Leal, L.C.
1995-01-01
The: SAMDIST computer code has been developed to calculate distribution of resonance parameters of the Reich-Moore R-matrix type. The program assumes the parameters are in the format compatible with that of the multilevel R-matrix code SAMMY. SAMDIST calculates the energy-level spacing distribution, the resonance width distribution, and the long-range correlation of the energy levels. Results of these calculations are presented in both graphic and tabular forms.
SAMDIST: A computer code for calculating statistical distributions for R-matrix resonance parameters
Leal, L.C.; Larson, N.M.
1995-09-01
The SAMDIST computer code has been developed to calculate distribution of resonance parameters of the Reich-Moore R-matrix type. The program assumes the parameters are in the format compatible with that of the multilevel R-matrix code SAMMY. SAMDIST calculates the energy-level spacing distribution, the resonance width distribution, and the long-range correlation of the energy levels. Results of these calculations are presented in both graphic and tabular forms.
NASA Astrophysics Data System (ADS)
Hall, Duncan; Kisters, Alexander
2016-01-01
Granitoid plutons in the deeply eroded south Central Zone of the Damara Belt in Namibia commonly show tabular geometries and pronounced stratigraphic controls on their emplacement. Subhorizontal, sheet-like pluton geometries record emplacement during regional subhorizontal shortening, but the intrusion of spatially and temporally closely-related granitoid plutons at different structural levels and in distinct structural settings suggests independent controls on their levels of emplacement. We describe and evaluate the controls on the loci of the dyke-to-sill transition that initiated the emplacement of three syntectonic (560-530 Ma) plutons in the basement-cover stratigraphy of the Erongo region. Intrusive relationships highlight the significance of (1) rigidity anisotropies associated with competent sedimentary packages or pre-existing subhorizontal granite sheets and (2) rheological anisotropies associated with the presence of thick ductile marble horizons. These mechanical anisotropies may lead to the initial deflection of steep feeder conduits as well as subsequent pluton assembly by the repeated underaccretion of later magma batches. The upward displacement of regional isotherms due to the heat advection associated with granite emplacement is likely to have a profound effect on the mechanical stratification of the upper crust and, consequently, on the level at which granitoid pluton emplacement is initiated. In this way, pluton emplacement at progressively shallower crustal depths may have resulted in the unusually high apparent geothermal gradients recorded in the upper crustal levels of the Damara Belt during its later evolution.
NASA Technical Reports Server (NTRS)
Roddy, D. J.
1977-01-01
A tabular outline of comparative data is presented for 340 basic dimensional, morphological, and structural parameters and related aspects for three craters of the flat-floored, central uplift type, two of which are natural terrestrial impact craters and one is a large-scale experimental explosion crater. The three craters are part of a general class, in terms of their morphology and structural deformation that is represented on each of the terrestrial planets including the moon. One of the considered craters, the Flynn Creek Crater, was formed by a hypervelocity impact event approximately 360 m.y. ago in what is now north central Tennessee. The impacting body appears to have been a carbonaceous chondrite or a cometary mass. The second crater, the Steinheim Crater, was formed by an impact event approximately 14.7 m.y. ago in what is now southwestern Germany. The Snowball Crater was formed by the detonation of a 500-ton TNT hemisphere on flat-lying, unconsolidated alluvium in Alberta, Canada.
Croff, A.G.; Liberman, M.S.; Morrison, G.W.
1982-01-01
Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.; Karadzhov, Yuri
2011-07-01
We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2008-01-01
A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.
Energy Science and Technology Software Center (ESTSC)
2004-12-31
Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.
NASA Technical Reports Server (NTRS)
Stumpff, P.; Lieske, J. H.
1984-01-01
Properties of astronomical time scales (ET and UT) are considered, with particular emphasis on correctly determining of-date longitude as the sum of inertial mean longitude of the sun relative to the mean equinox of a fixed epoch (1950.0), and the general precession in longitude accumulated since the epoch. The inertial mean longitude and motion (relative to the mean equinox) are derived from tabular ephemerides such as the Jet Propulsion Laboratories' DE 102 and DE 96, by comparisons with subroutines based on Newcomb's perturbation theory. An unresolved inconsistency of approximately 1 second per century among the mean inertial motion of DE 102, IAU precession speed (1976), and the classical Newcomb of-date mean motion is found. Interpretation difficulties arising from the use of different systems of Ephemeris Time are also discussed.
Brower, M.C.; Factor, T.
1997-12-31
The Iowa Wind Energy Institute, under a grant from the Iowa Energy Center, undertook in 1994 to map wind resources in Iowa. Fifty-meter met towers were erected at 13 locations across the state deemed promising for utility-scale wind farm development. Two years of summarized wind speed, direction, and temperature data were used to create wind resource maps incorporating effects of elevation, relative exposure, terrain roughness, and ground cover. Maps were produced predicting long-term mean monthly and annual wind speeds on a one-kilometer grid. The estimated absolute standard error in the predicted annual average wind speeds at unobstructed locations is 9 percent. The relative standard error between points on the annual map is estimated to be 3 percent. These maps and tabular data for 2,000 cities and towns in Iowa are now available on the Iowa Energy Center`s web site (http.//www.energy.iastate.edu).
NASA Astrophysics Data System (ADS)
Brandon, M. A.; Enderlein, P.; Murphy, E.
2010-12-01
South Georgia is a small island approximately 190 x 30 km within the Antarctic Circumpolar Current in the South Atlantic. It is surrounded by a continental shelf which extends typically more than 50 km from the coast and has an average depth ~200 m, although there are deeper submarine canyons. It is downstream of the Antarctic Peninsula and satellite observations have frequently shown that very large tabular icebergs which originate in the Bellingshausen and Weddell Seas, for example B10A, A22B and A38, reach the island. Once there they ground on the relatively wide and extensive shelf. Occasionally they can pass the island and continue their drift and decay in the open ocean of the Antarctic Circumpolar Current however, for many, such as A38 (~300 Gt), the region around the island is effectively the graveyard. When this happens potentially very large volumes of meteoric water are deposited onto the shelf of the island and there are consequent large effects on the regional hydrography. The island has been for many decades a long term study site for cross disciplinary work and from 2002-2006 two oceanographic moorings recorded physical parameters including temperature, salinity and water velocity in the region. This time period encompasses the period of A38’s demise. The effects of the melt water addition are clear in the regional situation and here we present melt rate calculations from both tidal forcing and background hydrography on the tabular icebergs, and consequent impacts of the significant freshwater addition at this isolated site.
Klett, T.R.; Le, P.A.
2006-01-01
This chapter describes data used in support of the process being applied by the U.S. Geological Survey (USGS) National Oil and Gas Assessment (NOGA) project. Digital tabular data used in this report and archival data that permit the user to perform further analyses are available elsewhere on this CD-ROM. Computers and software may import the data without transcription from the Portable Document Format files (.pdf files) of the text by the reader. Because of the number and variety of platforms and software available, graphical images are provided as .pdf files and tabular data are provided in a raw form as tab-delimited text files (.tab files).
Spirakis, C.S.; Hansley, P.L.
1987-05-01
Organic matter was the key to the initial concentration of uranium and vanadium (during the sulfate reduction stage of early diagenesis) in all sandstone-hosted, tabular deposits in the Morrison Formation, Colorado Plateau. In deposits rich in amorphous organic matter, as are many in the Grants uranium region (GUR), diagenesis did not proceed beyond sulfate reduction. In contrast, in organic-poor, chlorite deposits of the Henry Mountains district, /sup 13/C- and /sup 18/O-enriched dolomites preserve evidence of a subsequent methanogenic stage. In these and similar organic-poor deposits in the Slick Rock district and in parts of the GUR, aluminosilicate dissolution (including a distinctive, organic-acid-induced etching of garnets) and growth of coarse-grained coffinite, albite, ankerite, and chlorite suggest diagenesis reached the organic acid stage. Temperature and thermal maturation indicators (vitrinite reflectance, type IIb chlorite, ordered illite/smectite, and fluid inclusion data) are consistent with temperatures of organic-acid stage diagenesis (approx. 100/sup 0/C). The localization of these alterations in and around organic-poor, clay-rich ore; the similarities in type and sequence of these alterations to the normal alteration of organic-bearing sediments; the alteration of iron-titanium oxides (attributed to the action of soluble organic complexes) around both organic-rich and organic-poor deposits; and the gradation from organic-rich to organic-poor, chlorite-rich deposits (in GUR) suggest that (1) amorphous organic matter was involved in the genesis of all of these deposits and (2) differences among deposits may reflect varying degrees of diagenesis of the organic matter.
Hybrid matrix fiber composites
Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.
2003-07-15
Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
Grcar, Joseph F.
2002-02-04
A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.
Farooque, M.; Yuh, C.Y.
1996-12-03
A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.
Farooque, Mohammad; Yuh, Chao-Yi
1996-01-01
A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.
Matrix differentiation formulas
NASA Technical Reports Server (NTRS)
Usikov, D. A.; Tkhabisimov, D. K.
1983-01-01
A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.
Matrix with Prescribed Eigenvectors
ERIC Educational Resources Information Center
Ahmad, Faiz
2011-01-01
It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…
Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan
2010-01-12
Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
Fong, Jiunn N. C.; Yildiz, Fitnat H.
2015-01-01
Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709
Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil
1982-01-01
An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.
Matrix cracking in ceramic-matrix composites
Danchaivijit, S.; Shetty, D.K. . Dept. of Materials Science and Engineering)
1993-10-01
Matrix cracking in ceramic-matrix composites with unbonded frictional interface has been studied using fracture mechanics theory. The critical stress for extension of a fiber-bridged crack has been analyzed using the stress-intensity approach. The analysis uses a new shear-lag formulation of the crack-closure traction applied by the bridging fibers based on the assumption of a constant sliding friction stress over the sliding length of the fiber-matrix interface. The new formulation satisfies two required limiting conditions: (a) when the stress in the bridging fiber approaches the far-field applied stress, the crack-opening displacement approaches a steady-state upper limit that is in agreement with the previous formulations; and (b) in the limit of zero crack opening, the stress in the bridging fiber approaches the far-field fiber stress. This lower limit of the bridging stress is distinctly different from the previous formulations. For all other conditions, the closure traction is a function of the far-field applied stress in addition to the local crack-opening displacement, the interfacial sliding friction stress, and the material properties. Numerical calculations using the stress-intensity approach indicate that the critical stress for crack extension decreases with increasing crack length and approaches a constant steady-state value for large cracks. The steady-state matrix-cracking stress agrees with a steady-state energy balance analysis applied to the continuum model, but it is slightly less than the matrix-cracking stress predicted by such theories of steady-state cracking as that of Aveston, Cooper, and Kelly. The origin of this difference and a method for reconciliation of the two theoretical approaches are discussed.
Energy Science and Technology Software Center (ESTSC)
2001-10-18
PETRA V2 provides matrix and vector services and the ability construct, query, and use matrix and vector objects that are used and computed by TRILINOS solvers. It provides all basic matr5ix and vector operations for solvers in TRILINOS.
Matrix metalloproteinases and epileptogenesis.
Ikonomidou, Chrysanthy
2014-12-01
Matrix metalloproteinases are vital drivers of synaptic remodeling in health and disease. It is suggested that at early stages of epileptogenesis, inhibition of matrix metalloproteinases may help ameliorate cell death, aberrant network rewiring, and neuroinflammation and prevent development of epilepsy. PMID:26567100
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
Given a multivariable system, it is proved that the numerator matrix N(s) of the transfer function evaluated at any system pole either has unity rank or is a null matrix. It is also shown that N(s) evaluated at any transmission zero of the system has rank deficiency. Examples are given for illustration.
Stoenescu, M.L.; Smith, T.M.
1980-02-01
The collision integral terms in Boltzmann equation are reformulated numerically leading to the substitution of the multiple integrals with a multiplicative matrix of the two colliding species velocity distribution functions which varies with the differential collision cross section. A matrix of lower rank may be constructed when one of the distribution functions is specified, in which case the matrix elements represent kinetic transition probabilities in the velocity space and the multiplication of the time rate collision matrix with the unknown velocity distribution function expresses the time rate of change of the distribution. The collision matrix may be used to describe the time evolution of systems in nonequilibrium conditions, to evaluate the rate of momentum and energy transfer between given species, or to generate validity criteria for linearized kinetic equations.
Grassmann matrix quantum mechanics
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-01
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. We discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.
Martens, J.S.; Hietala, V.M.; Plut, T.A.
1995-01-03
The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.
Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.
1995-01-01
The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.
U.S. Geological Survey
2006-01-01
This chapter describes data used in support of the process being applied by the U.S. Geological Survey (USGS) National Oil and Gas Assessment (NOGA) project. Digital tabular data used in this report and archival data that permit the user to perform further analyses are available elsewhere on the CD-ROM. Computers and software may import the data without transcription from the Portable Document Format files (.pdf files) of the text by the reader. Because of the number and variety of platforms and software available, graphical images are provided as .pdf files and tabular data are provided in a raw form as tab-delimited text files (.tab files).
Klett, T.R.; Le, P.A.
2006-01-01
This chapter describes data used in support of the process being applied by the U.S. Geological Survey (USGS) National Oil and Gas Assessment (NOGA) project. Digital tabular data used in this report and archival data that permit the user to perform further analyses are available elsewhere on the CD-ROM. Computers and software may import the data without transcription from the Portable Document Format files (.pdf files) of the text by the reader. Because of the number and variety of platforms and software available, graphical images are provided as .pdf files and tabular data are provided in a raw form as tab-delimited text files (.tab files).
Klett, T.R.; Le, P.A.
2007-01-01
This chapter describes data used in support of the assessment process. Digital tabular data used in this report and archival data that permit the user to perform further analyses are available elsewhere on this CD–ROM. Computers and software may import the data without transcription from the portable document format (.pdf) files of the text by the reader. Because of the number and variety of platforms and software available, graphical images are provided as .pdf files and tabular data are provided in a raw form as tab-delimited text files (.tab files).
Klett, T.R.; Le, P.A.
2013-01-01
This chapter describes data used in support of the process being applied by the U.S. Geological Survey (USGS) National Oil and Gas Assessment (NOGA) project. Digital tabular data used in this report and archival data that permit the user to perform further analyses are available elsewhere on this CD–ROM. Computers and software may import the data without transcription from the Portable Document Format files (.pdf files) of the text by the reader. Because of the number and variety of platforms and software available, graphical images are provided as .pdf files and tabular data are provided in a raw form as tab-delimited text files (.tab files).
Measurement matrix optimization method based on matrix orthogonal similarity transformation
NASA Astrophysics Data System (ADS)
Pan, Jinfeng
2016-05-01
Optimization of the measurement matrix is one of the important research aspects of compressive sensing theory. A measurement matrix optimization method is presented based on the orthogonal similarity transformation of the information operator's Gram matrix. In terms of the fact that the information operator's Gram matrix is a singular symmetric matrix, a simplified orthogonal similarity transformation is deduced, and thus the simplified diagonal matrix that is orthogonally similar to it is obtained. Then an approximation of the Gram matrix is obtained by letting all the nonzero diagonal entries of the simplified diagonal matrix equal their average value. Thus an optimized measurement matrix can be acquired according to its relationship with the information operator. Results of experiments show that the optimized measurement matrix compared to the random measurement matrix is less coherent with dictionaries. The relative signal recovery error also declines when the proposed measurement matrix is utilized.
Hunt, Warren; Herling, Darrell R.
2004-02-01
Metal matrix composites have found selected application in areas that can cost-effectively capitalize on improvements in specific stiffness, specific strength, fatigue resistance, wear resistance, and coefficient of thermal expansion. Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored, including aluminum, beryllium, magnesium, titanium, iron, nickel, cobalt, and silver. However, aluminum is by far the most preferred. For reinforcements, the materials are typically ceramics, which provide a very beneficial combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, metallic materials such as tungsten and steel fibers have been considered.
The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.
ERIC Educational Resources Information Center
Hill, William Fawcett
1971-01-01
Leadership style, group composition, and group development are simultaneously quantified through the use of the matrix. It represents an attempt to objectify the art of group therapy. Comment by Richard C. Rank follows. (Author)
Matrix computations in MACSYMA
NASA Technical Reports Server (NTRS)
Wang, P. S.
1977-01-01
Facilities built into MACSYMA for manipulating matrices with numeric or symbolic entries are described. Computations will be done exactly, keeping symbols as symbols. Topics discussed include how to form a matrix and create other matrices by transforming existing matrices within MACSYMA; arithmetic and other computation with matrices; and user control of computational processes through the use of optional variables. Two algorithms designed for sparse matrices are given. The computing times of several different ways to compute the determinant of a matrix are compared.
Optical coherency matrix tomography
Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.
2015-01-01
The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452
NASA Astrophysics Data System (ADS)
Siegel, Edward Plato Aristotle Archimedes Carl-Ludwig; Young, Frederic; Lewis, Thomas
2013-06-01
Siegel[MRS Fall-Mtgs,:Symp.Fractals(89)-5-papers!!!;Symp.Scaling(90)] FCP/CSC {aka SPD}(Tic-Tac-Toe-Matrix/Tabular List-Format) ``COMMON-FUNCTIONING-PRINCIPLE'' DI/TRI-CHOTOMY GENERIC ``INEVITABILITY_-WEB'' PURPOSEFUL PARSIMONY-of-DI/TRI-CHOTOMY STRATEGY REdiscovery of SoO automatically/optimality is in NON-list-format/matrix: DIMENSIONALITY-DOMINATION -INEVIT-ABILITY ROOT-CAUSE(RC) ULTIMATE-ORIGIN(UO): (level-0.-logic) DIMENSIONALITY (level-0. logic): [dst = ODD-Z] <->{Dst=FRACTAL-UNcertainty FLUCTUATIONS} <->(dst = EVEN-Z): CAUSES: (level- I.-logic): EXTENT/SCALE/RADIUS: (relative)-[LOCALITY] <-> (relative)-(...GLOBALITY...) & (level-II.-logic): POWER-SPECTRUM{noise ≅generalized-susceptibility}: [``l''/ω0-White] <->(...-``l''/ω 1 . 000 . . . - HYPERBOLICITY...) & (level-III.-logic) CRITICAL-EXPONENT:n =0 <->n = 1.000... ; BUT ALL 3 ALSO CAUSED BY ANOTHER INdependent RCUO (level-IV.-logic):
Tendon Functional Extracellular Matrix
Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.
2015-01-01
This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030
Pan, Feng; Kasiviswanathan, Shiva
2010-01-01
In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.
Brown, T. W.
2011-04-15
The same complex matrix model calculates both tachyon scattering for the c=1 noncritical string at the self-dual radius and certain correlation functions of operators which preserve half the supersymmetry in N=4 super-Yang-Mills theory. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich-Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces.
Matrixed business support comparison study.
Parsons, Josh D.
2004-11-01
The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.
Wieczorek, Michael E.; LaMotte, Andrew E.
2010-01-01
This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). These characteristics are reach catchment shape index, stream density, sinuosity, mean elevation, mean slope and number of road-stream crossings. The source data sets are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011) and the U.S. Census Bureau's TIGER/Line Files (U.S. Census Bureau,2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
Matrix Synthesis and Characterization
NASA Technical Reports Server (NTRS)
1984-01-01
The role of NASA in the area of composite material synthesis; evaluation techniques; prediction analysis techniques; solvent-resistant tough composite matrix; resistance to paint strippers; acceptable processing temperature and pressure for thermoplastics; and the role of computer modeling and fiber interface improvement were discussed.
Foster, James A; Gerton, George L
2016-01-01
The acrosome, a single exocytotic vesicle on the head of sperm, has an essential role in fertilization, but the exact mechanisms by which it facilitates sperm-egg interactions remain unresolved. The acrosome contains dozens of secretory proteins that are packaged into the forming structure during spermatogenesis; many of these proteins are localized into specific topographical areas of the acrosome, while others are more diffusely distributed. Acrosomal proteins can also be biochemically classified as components of the acrosomal matrix, a large, relatively insoluble complex, or as soluble proteins. This review focuses on recent findings using genetically modified mice (gene knockouts and transgenic "green acrosome" mice) to study the effects of eliminating acrosomal matrix-associated proteins on sperm structure and function. Some gene knockouts produce infertile phenotypes with obviously missing, specific activities that affect acrosome biogenesis during spermatogenesis or interfere with acrosome function in mature sperm. Mutations that delete some components produce fertile phenotypes with subtler effects that provide useful insights into acrosomal matrix function in fertilization. In general, these studies enable the reassessment of paradigms to explain acrosome formation and function and provide novel, objective insights into the roles of acrosomal matrix proteins in fertilization. The use of genetically engineered mouse models has yielded new mechanistic information that complements recent, important in vivo imaging studies. PMID:27194348
Matrix Embedded Organic Synthesis
NASA Astrophysics Data System (ADS)
Kamakolanu, U. G.; Freund, F. T.
2016-05-01
In the matrix of minerals such as olivine, a redox reaction of the low-z elements occurs. Oxygen is oxidized to the peroxy state while the low-Z-elements become chemically reduced. We assign them a formula [CxHyOzNiSj]n– and call them proto-organics.
NASA Astrophysics Data System (ADS)
Elliott, John
2012-09-01
As part of our 'toolkit' for analysing an extraterrestrial signal, the facility for calculating structural affinity to known phenomena must be part of our core capabilities. Without such a resource, we risk compromising our potential for detection and decipherment or at least causing significant delay in the process. To create such a repository for assessing structural affinity, all known systems (language parameters) need to be structurally analysed to 'place' their 'system' within a relational communication matrix. This will need to include all known variants of language structure, whether 'living' (in current use) or ancient; this must also include endeavours to incorporate yet undeciphered scripts and non-human communication, to provide as complete a picture as possible. In creating such a relational matrix, post-detection decipherment will be assisted by a structural 'map' that will have the potential for 'placing' an alien communication with its nearest known 'neighbour', to assist subsequent categorisation of basic parameters as a precursor to decipherment. 'Universal' attributes and behavioural characteristics of known communication structure will form a range of templates (Elliott, 2001 [1] and Elliott et al., 2002 [2]), to support and optimise our attempt at categorising and deciphering the content of an extraterrestrial signal. Detection of the hierarchical layers, which comprise intelligent, complex communication, will then form a matrix of calculations that will ultimately score affinity through a relational matrix of structural comparison. In this paper we develop the rationales and demonstrate functionality with initial test results.
Tabular Equation of State for Gold
NASA Astrophysics Data System (ADS)
Boettger, Jonathan; Honnell, Kevin; Peterson, Jeffrey; Greeff, Carl; Crockett, Scott
2011-06-01
A new, SESAME-type equation of state (EOS) is described for gold, suitable for use in hydrodynamic calculations. The EOS is tabulated on a rectangular temperature-and-density grid, spanning densities from 0 - 29 g/cc, temperatures from 0 - 85,000 K, and extending up to pressures of 1000 GPa. It is constructed using the standard decomposition of the pressure into a static-lattice cold curve, a thermal nuclear contribution, and a thermal electronic contribution. The cold curve is derived from a combination of empirical data and density functional theory, the thermal nuclear contribution from the Johnson model, and the thermal electronic contribution using Thomas-Fermi-Dirac theory. Pressures, internal energies, and Helmholtz free energies are tabulated as functions of temperature and density. Predictions for the room-temperature isotherm, principal Hugoniot, thermal expansion, heat capacity, and vapor pressure are compared with experimental data and with the EOS currently available in the SESAME library (SESAME 2700).
Tabular equation of state for gold
NASA Astrophysics Data System (ADS)
Boettger, Jonathan; Honnell, Kevin G.; Peterson, Jeffrey H.; Greeff, Carl; Crockett, Scott
2012-03-01
A new, SESAME-type equation of state (EOS) , suitable for use in hydrodynamic calculations, is described for gold. Pressures, internal energies, and Helmholtz free energies are tabulated on a rectangular temperature-and-density grid, spanning densities from 0 - 36 g/cc, temperatures from 0 - 800 eV, and extending up to pressures of 800 GPa. The EOS is constructed using the standard decomposition of the pressure into a static-lattice cold curve, a thermal nuclear contribution, and a thermal electronic contribution. The cold curve is derived from existing diamond-anvil-cell measurements, the thermal nuclear contribution from the Johnson model, and the thermal electronic contribution using Thomas-Fermi-Dirac theory. Predictions of the new EOS (SESAME 2705) for the cold curve, roomtemperature isotherm, principal Hugoniot, thermal expansion, heat capacity, melt line, and vapor pressure compare favorably with experimental data and are superior to the EOS currently available in the SESAME library (SESAME 2700).
A Tabular Approach to Titration Calculations
ERIC Educational Resources Information Center
Lim, Kieran F.
2012-01-01
Titrations are common laboratory exercises in high school and university chemistry courses, because they are easy, relatively inexpensive, and they illustrate a number of fundamental chemical principles. While students have little difficulty with calculations involving a single titration step, there is a significant leap in conceptual difficulty…
Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang
2015-09-15
Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions. PMID:26371930
Hypercube matrix computation task
NASA Technical Reports Server (NTRS)
Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.
1988-01-01
A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).
NASA Astrophysics Data System (ADS)
Miljutina, Maria A.; Miljutin, Dmitry M.
2015-01-01
The species-rich genus of marine free-living nematodes, Paracanthonchus Mikoletzky 1924 (Nematoda: Cyatholaimidae), is revised. The genus numbers 72 valid species; twenty are indicated as species inquirenda because of poor descriptions and/or doubtful placement in the genus. Species of the genus were described from all oceans and latitudes. Of valid species, 64 ones (90%) were described from the tidal or upper subtidal zones, four species were recorded from the medium or lower shelf, and three species are abyssal. Thirty one species (43%) are known from Europe and the Northern Africa; 19 and 9 ones were described from South and North America (respectively); 8 ones were recorded from Asia; and 6 ones from the Australian region. The type species, Paracanthonchus caecus Mikoletzky 1924 has been recorded by a number of authors from various oceans around the World, yet many of these specimens have only roughly resembled the type description. Evidently, this species represents a complex of closely related species. Possibly, the same situation is in some other Paracanthonchus species, the repeated findings of which have no strong resemblance to type specimens. A tabular key to species is provided. A new abyssal species Paracanthonchus mamubiae from the Zenkevich Rise (North-Western Pacific, off North Japan, 5350 m depth) is described. The new species is characterized by: the tail, which is long with a thin, cylindrical terminal section; the absence of lateral differentiation of the cuticle; the presence of two groups of lateral pores (level of posterior part of pharynx and in cloacal region); one large dorsal tooth and two pairs of small subventral teeth combined with pharyngostomal cuticular ridges forming two denticles which may appear as a third pair of subventral teeth; 3-5 indistinct tubular preanal supplements; and a massive, proximally paired gubernaculum possessing broad flattened plates on each distal end. Each flattened gubernacular plate bears numerous (50
Standard Errors for Matrix Correlations.
ERIC Educational Resources Information Center
Ogasawara, Haruhiko
1999-01-01
Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)
On the Matrix Exponential Function
ERIC Educational Resources Information Center
Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai
2006-01-01
A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.
The cellulose resource matrix.
Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G
2013-03-01
The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the
NASA Technical Reports Server (NTRS)
Li, Zhuang; Bradt, Richard C.
1989-01-01
The thermoelastic micromechanical stresses associated with a single large hexagonal alpha-SiC grain within a fine-grain-size cubic (3C) beta-SiC matrix were calculated. The naturally occurring residual stresses which are created during cooling from the processing temperatures and the effects of superimposed applied external stresses are both considered. A significant effect of the shape or geometry of the alpha-SiC grain is revealed, with the largest residual stresses associated with the naturally occurring tabular or platelet structure. The stresses are compared with the published strength results for these materials, which suggests that the residual stresses assume a significant role in the strength reduction that is observed.
Ceramic matrix and resin matrix composites: A comparison
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Ceramic matrix and resin matrix composites - A comparison
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Hastings, Matthew B
2009-01-01
We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.
NASA Astrophysics Data System (ADS)
Frahm, K. M.; Shepelyansky, D. L.
2012-10-01
We construct the Google matrix of the entire Twitter network, dated by July 2009, and analyze its spectrum and eigenstate properties including the PageRank and CheiRank vectors and 2DRanking of all nodes. Our studies show much stronger inter-connectivity between top PageRank nodes for the Twitter network compared to the networks of Wikipedia and British Universities studied previously. Our analysis allows to locate the top Twitter users which control the information flow on the network. We argue that this small fraction of the whole number of users, which can be viewed as the social network elite, plays the dominant role in the process of opinion formation on the network.
Hyaluronan: A Matrix Component
NASA Astrophysics Data System (ADS)
Rügheimer, Louise
2008-09-01
The glucosaminoglycan hyaluronan is a key component of the extracellular matrix. It is a large, negatively charged molecule that can act as an ion exchange reservoir for positive ions. Hyaluronan is involved in renomedullary water handling through its water-binding capacity. In the renal medulla, the main source for hyaluronan production is the renomedullary interstitial cells. Hyaluronan synthases are found in the inner part of the plasma membrane and polymerize hyaluronan chains which are extruded into the extracellular space. Hyaluronidases are a family of enzymes involved in the degradation of hyaluronan. They have a wide range of properties, including differences in size, inhibitor sensitivities, catalytic mechanisms, substrate specificities and pH optima.
Mixed Mode Matrix Multiplication
Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall
2004-09-30
In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.
Matrix membranes and integrability
Zachos, C.; Fairlie, D.; Curtright, T.
1997-06-01
This is a pedagogical digest of results reported in Curtright, Fairlie, {ampersand} Zachos 1997, and an explicit implementation of Euler`s construction for the solution of the Poisson Bracket dual Nahm equation. But it does not cover 9 and 10-dimensional systems, and subsequent progress on them Fairlie 1997. Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are explored. Their associated first order equations are transformed to Nahm`s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. Most constructions introduced also apply to matrix commutator or Moyal Bracket analogs.
NASA Astrophysics Data System (ADS)
Dorey, Nick; Tong, David; Turner, Carl
2016-08-01
We study a U( N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.
Matrix market: a web resource for test matrix collection
Boisvert, R.F.; Pozo, R.; Remington, K.; Barrett, R.F.; Dongarra, J.J. /
1996-05-30
We describe a repository of data for the testing of numerical algorithms and mathematical software for matrix computations. The repository is designed to accommodate both dense and sparse matrices, as well as software to generate matrices. It has been seeded with the well known Harwell-Boeing sparse matrix collection. The raw data files have been augmented with an integrated World Wide Web interface which describes the matrices in the collection quantitatively and visually, For example, each matrix has a Web page which details its attributes, graphically depicts its sparsity pattern, and provides access to the matrix itself in several formats. In addition, a search mechanism is included which allows retrieval of matrices based on a variety of attributes, such as type and size, as well as through free-text search in abstracts. The URL is http://math.nist.gov/MatrixMarket.
Calkins, Noel C.
1991-01-01
An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.
Hypercube matrix computation task
NASA Technical Reports Server (NTRS)
Calalo, R.; Imbriale, W.; Liewer, P.; Lyons, J.; Manshadi, F.; Patterson, J.
1987-01-01
The Hypercube Matrix Computation (Year 1986-1987) task investigated the applicability of a parallel computing architecture to the solution of large scale electromagnetic scattering problems. Two existing electromagnetic scattering codes were selected for conversion to the Mark III Hypercube concurrent computing environment. They were selected so that the underlying numerical algorithms utilized would be different thereby providing a more thorough evaluation of the appropriateness of the parallel environment for these types of problems. The first code was a frequency domain method of moments solution, NEC-2, developed at Lawrence Livermore National Laboratory. The second code was a time domain finite difference solution of Maxwell's equations to solve for the scattered fields. Once the codes were implemented on the hypercube and verified to obtain correct solutions by comparing the results with those from sequential runs, several measures were used to evaluate the performance of the two codes. First, a comparison was provided of the problem size possible on the hypercube with 128 megabytes of memory for a 32-node configuration with that available in a typical sequential user environment of 4 to 8 megabytes. Then, the performance of the codes was anlyzed for the computational speedup attained by the parallel architecture.
Hybridized polymer matrix composites
NASA Technical Reports Server (NTRS)
House, E. E.; Hoggatt, J. T.; Symonds, W. A.
1980-01-01
The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.
Emergency Response Synchronization Matrix
Energy Science and Technology Software Center (ESTSC)
1999-06-01
An emergency response to a disaster is complex, requiring the rapid integration, coordination, and synchronization of multiple levels of governmental and non-governmental organizations from numerous jurisdictions into a unified community response. For example, a communitys response actions to a fixed site hazardous materials incident could occur in an area extending from an on-site storage location to points 25 or more miles away. Response actions are directed and controlled by local governments and agencies situated withinmore » the response area, as well as by state and federal operaticns centers quite removed from the area of impact. Time is critical and the protective action decision-making process is greatly compressed. The response community must carefully plan and coordinate response operations in order to have confidence that they will be effectively implemented when faced with the potentially catastrophic nature of such releases. A graphical depiction of the entire response process via an emergency response synchronization matrix is an effective tool in optimizing the planning, exercising, and implementation of emergency plans. This systembased approach to emergency planning depicts how a community organizes its response tasks across space and time in relation to hazard actions. It provides the opportunity to make realtime adjustments as necessary for maximizing the often limited resources in protecting area residents. A response must involve the entire community and must not be limited by individual jurisdictions and organizations acting on their own without coordination, integration, and synchronization.« less
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Synthetic Division and Matrix Factorization
ERIC Educational Resources Information Center
Barabe, Samuel; Dubeau, Franc
2007-01-01
Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.
ERIC Educational Resources Information Center
Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng
2012-01-01
This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…
NASA Astrophysics Data System (ADS)
Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.
2005-04-01
perform this exchange, as a matrix, understood as source, of new ideas.
Matrix cracking in brittle-matrix composites with tailored interfaces
Danchaivijit, S.; Chao, L.Y.; Shetty, D.K.
1995-10-01
Matrix cracking from controlled through cracks with bridging filaments was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. An unbonded, frictional interface was produced by moderating the curing shrinkage of the epoxy with the alumina filler and coating the filaments with a releasing agent. Uniaxial tension test specimens (2.5 x 25 x 125 mm) with filament-bridged through cracks were fabricated by a novel two-step casting technique involving casting, precracking and joining of cracked and uncracked sections. Distinct matrix-cracking stresses, corresponding to the extension of the filament-bridged cracks, were measured in uniaxial tension tests using a high-sensitivity extensometer. The crack-length dependence of the matrix-cracking stress was found to be in good agreement with the prediction of a fracture-mechanics analysis that employed a new crack-closure force-crack-opening displacement relation in the calculation of the stress intensity for fiber-bridged cracks. The prediction was based on independent experimental measurements of the matrix fracture toughness (K{sub cm}), the interfacial sliding friction stress ({tau}) and the residual stress in the matrix ({sigma}{sub m}{sup I}). The matrix-cracking stress for crack lengths (2a) greater than 3 mm was independent of the crack length and agreed with the prediction of the steady-state theory of Budiansky, Hutchinson and Evans. Tests on specimens without the deliberately introduced cracks indicated a matrix-cracking stress significantly higher than the steady-state stress.
Genotype imputation via matrix completion.
Chi, Eric C; Zhou, Hua; Chen, Gary K; Del Vecchyo, Diego Ortega; Lange, Kenneth
2013-03-01
Most current genotype imputation methods are model-based and computationally intensive, taking days to impute one chromosome pair on 1000 people. We describe an efficient genotype imputation method based on matrix completion. Our matrix completion method is implemented in MATLAB and tested on real data from HapMap 3, simulated pedigree data, and simulated low-coverage sequencing data derived from the 1000 Genomes Project. Compared with leading imputation programs, the matrix completion algorithm embodied in our program MENDEL-IMPUTE achieves comparable imputation accuracy while reducing run times significantly. Implementation in a lower-level language such as Fortran or C is apt to further improve computational efficiency. PMID:23233546
High Temperature Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
1985-01-01
These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.
Canonical density matrix perturbation theory.
Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias
2015-12-01
Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847
Mechanotransduction and extracellular matrix homeostasis
Humphrey, Jay D.; Dufresne, Eric R.; Schwartz, Martin A.
2015-01-01
Preface Soft connective tissues at steady state are yet dynamic; resident cells continually read environmental cues and respond to promote homeostasis, including maintenance of the mechanical properties of the extracellular matrix that are fundamental to cellular and tissue health. The mechanosensing process involves assessment of the mechanics of the matrix by the cells through integrins and the actomyosin cytoskeleton, and is followed by a mechano-regulation process that includes the deposition, rearrangement, or removal of matrix to maintain overall form and function. Progress toward understanding the molecular, cellular, and tissue scale effects that promote mechanical homeostasis has helped identify key questions for future research. PMID:25355505
Matrix Elements for Hylleraas CI
NASA Astrophysics Data System (ADS)
Harris, Frank E.
The limitation to at most a single interelectron distance in individual configurations of a Hylleraas-type multiconfiguration wave function restricts significantly the types of integrals occurring in matrix elements for energy calculations, but even then if the formulation is not handled efficiently the angular parts of these integrals escalate to create expressions of great complexity. This presentation reviews ways in which the angular-momentum calculus can be employed to systematize and simplify the matrix element formulas, particularly those for the kinetic-energy matrix elements.
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094
Stochastic determination of matrix determinants.
Dorn, Sebastian; Ensslin, Torsten A
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination. PMID:26274302
Stochastic determination of matrix determinants
NASA Astrophysics Data System (ADS)
Dorn, Sebastian; Enßlin, Torsten A.
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
Performance Appraisal for Matrix Management.
ERIC Educational Resources Information Center
Edwards, M. R.; Sproull, J. Ruth
1985-01-01
A matrix management system designed for use by a highly technical nuclear weapons research and development facility to improve productivity and flexibility by the use of multiple authority, responsibility, and accountability relationships is described. (MSE)
Extracellular matrix and wound healing.
Maquart, F X; Monboisse, J C
2014-04-01
Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. PMID:24650524
Molybdenum disilicide alloy matrix composite
Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott
1991-01-01
Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.
Molybdenum disilicide alloy matrix composite
Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.
1991-12-03
Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.
Universal Keplerian state transition matrix
NASA Technical Reports Server (NTRS)
Shepperd, S. W.
1985-01-01
A completely general method for computing the Keplerian state transition matrix in terms of Goodyear's universal variables is presented. This includes a new scheme for solving Kepler's problem which is a necessary first step to computing the transition matrix. The Kepler problem is solved in terms of a new independent variable requiring the evaluation of only one transcendental function. Furthermore, this transcendental function may be conveniently evaluated by means of a Gaussian continued fraction.
Molybdenum disilicide alloy matrix composite
Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott
1990-01-01
Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.
Form development sample test matrix
Ebbinghaus, B B
1999-10-15
This document summarizes the status of sample fabrication and analysis in the Form Development Sample Test Matrix. Since its publication in the ''Baseline Formulation'' report (UCRL-ID- 133089, PIP-99-O 12) and in the ''Complete Single-Phase Sample Fabrications that Support the Licensing Application and Complete Process and Compositional Extreme Sample Fabrications that Support the Licensing Application'' report (PIP-99-078), the Sample Test Matrix has been updated and expanded. This version is current though September 30, 1999.
The Astrobiology Matrix and the "Drake Matrix" in Education
NASA Technical Reports Server (NTRS)
Mizser, A.; Kereszturi, A.
2003-01-01
We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.
Matrix factorizations and elliptic fibrations
NASA Astrophysics Data System (ADS)
Omer, Harun
2016-09-01
I use matrix factorizations to describe branes at simple singularities of elliptic fibrations. Each node of the corresponding Dynkin diagrams of the ADE-type singularities is associated with one indecomposable matrix factorization which can be deformed into one or more factorizations of lower rank. Branes with internal fluxes arise naturally as bound states of the indecomposable factorizations. Describing branes in such a way avoids the need to resolve singularities. This paper looks at gauge group breaking from E8 fibers down to SU (5) fibers due to the relevance of such fibrations for local F-theory GUT models. A purpose of this paper is to understand how the deformations of the singularity are understood in terms of its matrix factorizations. By systematically factorizing the elliptic fiber equation, this paper discusses geometries which are relevant for building semi-realistic local models. In the process it becomes evident that breaking patterns which are identical at the level of the Kodaira type of the fibers can be inequivalent at the level of matrix factorizations. Therefore the matrix factorization picture supplements information which the conventional less detailed descriptions lack.
Relativistic Dipole Matrix Element Zeros
NASA Astrophysics Data System (ADS)
Lajohn, L. A.; Pratt, R. H.
2002-05-01
There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).
Extracellular matrix in ovarian follicles.
Rodgers, R J; Irving-Rodgers, H F; van Wezel, I L
2000-05-25
A lot is known about the control of the development of ovarian follicles by growth factors and hormones, but less is known about the roles of extracellular matrix in the control of follicular growth and development. In this review we focus on the specialized extracellular matrix of the basal laminas that are present in ovarian follicles. These include the follicular basal lamina itself, the Call-Exner bodies of the membrana granulosa, the subendothelial and arteriole smooth muscle basal laminas in the theca, and the basal lamina-like material of the thecal matrix. We discuss the evidence that during follicle development the follicular basal lamina changes in composition, that many of its components are produced by the granulosa cells, and that the follicular basal laminas of different follicles have different ultrastructural appearances, linked to the shape of the aligning granulosa cells. All these studies suggest that the follicular basal lamina is extremely dynamic during follicular development. PMID:10963877
NASA Astrophysics Data System (ADS)
Raju, Suvrat
2009-06-01
As a simple example of how recently developed on-shell techniques apply to nonlocal theories, we study the S-matrix of noncommutative gauge theories. In the complex plane, this S-matrix has essential singularities that signal the nonlocal behavior of the theory. In spite of this, we show that tree-level amplitudes may be obtained by BCFW type recursion relations. At one loop we find a complete basis of master integrals (this basis is larger than the corresponding basis in the ordinary theory). Any one-loop noncommutative amplitude may be written as a linear combination of these integrals with coefficients that we relate to products of tree amplitudes. We show that the noncommutative Script N = 4 SYM theory has a structurally simple S-matrix, just like the ordinary Script N = 4 SYM theory.
Matrix model approach to cosmology
NASA Astrophysics Data System (ADS)
Chaney, A.; Lu, Lei; Stern, A.
2016-03-01
We perform a systematic search for rotationally invariant cosmological solutions to toy matrix models. These models correspond to the bosonic sector of Lorentzian Ishibashi, Kawai, Kitazawa and Tsuchiya (IKKT)-type matrix models in dimensions d less than ten, specifically d =3 and d =5 . After taking a continuum (or commutative) limit they yield d -1 dimensional Poisson manifolds. The manifolds have a Lorentzian induced metric which can be associated with closed, open, or static space-times. For d =3 , we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a resolution of cosmological singularities, at least within the context of the toy matrix models. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the d =3 solutions have analogues in higher dimensions. The case of d =5 , in particular, has the potential for yielding realistic four-dimensional cosmologies in the continuum limit. We find four-dimensional de Sitter d S4 or anti-de Sitter AdS4 solutions when a totally antisymmetric term is included in the matrix action. A nontrivial Poisson structure is attached to these manifolds which represents the lowest order effect of noncommutativity. For the case of AdS4 , we find one particular limit where the lowest order noncommutativity vanishes at the boundary, but not in the interior.
Shrinkage estimation of the realized relationship matrix
Technology Transfer Automated Retrieval System (TEKTRAN)
The additive relationship matrix plays an important role in mixed model prediction of breeding values. For genotype matrix X (loci in columns), the product XX' is widely used as a realized relationship matrix, but the scaling of this matrix is ambiguous. Our first objective was to derive a proper ...
Integrability and generalized monodromy matrix
Lhallabi, T.; Moujib, A.
2007-09-15
We construct the generalized monodromy matrix M-circumflex({omega}) of two-dimensional string effective action by introducing the T-duality group properties. The integrability conditions with general solutions depending on spectral parameter are given. This construction is investigated for the exactly solvable Wess, Zumino, Novikov, and Witten model in pp-wave limit when B=0.
NASA Astrophysics Data System (ADS)
Kuhapatanakul, Kantaphon
2015-11-01
In this note, we study the Fibonacci and Lucas p-numbers. We introduce the Lucas p-matrix and companion matrices for the sums of the Fibonacci and Lucas p-numbers to derive some interesting identities of the Fibonacci and Lucas p-numbers.
[Matrix Support: a bibliographical study].
Iglesias, Alexandra; Avellar, Luziane Zacché
2014-09-01
This article presents a bibliographical review of matrix support in mental health. A search was conducted in the Virtual Health Library and the LILACS, SciELO and Google Scholar databases using the key words: "matrix support in mental health." Fourteen articles were located with the desired characteristics, which indicates that only a restricted number of publications are in circulation. The articles were analyzed with respect to their structural and methodological aspects, which revealed the absolute predominance of the use of qualitative methods and health professionals as the target research population. The same articles were then analyzed for their theoretical discussions. Among other issues, the importance of matrix support to enhance the primary health care teams provided to people suffering from psychic distress is highlighted. However, there is still considerable confusion regarding the proposal of the matrix support and shared responsibilities between teams of reference and mental health professionals, which emphasizes the need for training of these professionals, as well as better coordination and organization of the mental health care network. PMID:25184584
Matrix Treatment of Ray Optics.
ERIC Educational Resources Information Center
Quon, W. Steve
1996-01-01
Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…
Information & Technology Literacy Standards Matrix.
ERIC Educational Resources Information Center
Potter, Calvin J.; Lohr, Neah J.; Klein, Jim; Sorensen, Richard J.
Intended to help library media specialists, technology educators, and curriculum planning teams identify where specific information and technology competencies might best fit into the assessed content areas of the curriculum, this document presents a matrix that identifies the correlation between Wisconsin's Information and Technology Literacy…
The Enrollment Analysis Matrix Concept.
ERIC Educational Resources Information Center
Chisholm, Mark
The underlying assumptions and the structure of the enrollment analysis matrix (EAM) concept are discussed. EAM is a component of the Strategic Planning Project of the National Center for Higher Education Management Systems. EAM relates changes in the population of potential students external to the institution to the impacts that might result…
Scrambling with matrix black holes
NASA Astrophysics Data System (ADS)
Brady, Lucas; Sahakian, Vatche
2013-08-01
If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.
Corrosion of Titanium Matrix Composites
Covino, B.S., Jr.; Alman, D.E.
2002-09-22
The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.
Sapphire reinforced alumina matrix composites
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Setlock, John A.
1994-01-01
Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.
Tough high performance composite matrix
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)
1994-01-01
This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.
SnapShot: Mechanosensing Matrix.
Irianto, Jerome; Pfeifer, Charlotte R; Xia, Yuntao; Discher, Dennis E
2016-06-16
Cells sense and respond to properties of their microenvironment that can affect cell morphology, protein levels and localization, gene expression, and even nuclear integrity. Tissue micro-stiffness, largely influenced by extracellular matrix, varies dramatically within an organism and can be a useful parameter to both clarify and organize a wide range of cell and molecular processes, such as genomic changes in cancer. PMID:27315485
MALDI Matrix Research for Biopolymers
Fukuyama, Yuko
2015-01-01
Matrices are necessary materials for ionizing analytes in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). The choice of a matrix appropriate for each analyte controls the analyses. Thus, in some cases, development or improvement of matrices can become a tool for solving problems. This paper reviews MALDI matrix research that the author has conducted in the recent decade. It describes glycopeptide, carbohydrate, or phosphopeptide analyses using 2,5-dihydroxybenzoic acid (2,5-DHB), 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA), 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA) or 3-AQ/CA and gengeral peptide, peptide containing disulfide bonds or hydrophobic peptide analyses using butylamine salt of CHCA (CHCAB), 1,5-diaminonaphthalene (1,5-DAN), octyl 2,5-dihydroxybenzoate (alkylated dihydroxybenzoate, ADHB), or 1-(2,4,6-trihydroxyphenyl)octan-1-one (alkylated trihydroxyacetophenone, ATHAP). PMID:26819908
Metal-matrix composites: Status and prospects
NASA Technical Reports Server (NTRS)
1974-01-01
Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.
A fuel-oil matrix heat exchanger
NASA Astrophysics Data System (ADS)
Mikulin, E. I.; Shevich, Iu. A.; Potapov, V. N.; Veselov, V. A.; Saltais, E. A.; Glukhovskii, G. I.
A novel design of a welded matrix heat exchanger capable of handling high-pressure liquid and gas coolants is described. Results of tests conducted on matrix heat exchangers and their models are presented, and formulas are recommended for calculating the heat transfer and hydraulic resistance characteristics. A comparison of the characteristics of matrix and tube heat exchangers demonstrates the advantages of the former.
Random Matrix Theory and Econophysics
NASA Astrophysics Data System (ADS)
Rosenow, Bernd
2000-03-01
Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory
Regenerator matrix physical property data
NASA Technical Reports Server (NTRS)
Fucinari, C. A.
1980-01-01
Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.
Matrix management for aerospace 2000
NASA Technical Reports Server (NTRS)
Mccarthy, J. F., Jr.
1980-01-01
The martix management approach to program management is an organized effort for attaining program objectives by defining and structuring all elements so as to form a single system whose parts are united by interaction. The objective of the systems approach is uncompromisingly complete coverage of the program management endeavor. Starting with an analysis of the functions necessary to carry out a given program, a model must be defined; a matrix of responsibility assignment must be prepared; and each operational process must be examined to establish how it is to be carried out and how it relates to all other processes.
Brain Extracellular Matrix in Neurodegeneration
Bonneh-Barkay, Dafna; Wiley, Clayton A.
2009-01-01
The role of extracellular matrix (ECM) in neurological development, function and degeneration has evolved from a simplistic physical adhesion to a system of intricate cellular signaling. While most cells require ECM adhesion to survive, it is now clear that differentiated function is intimately dependent upon cellular interaction with the ECM. Therefore, it is not surprising that the ECM is increasingly found to be involved in the enigmatic process of neurodegeneration. Descriptive studies of human neurodegenerative disorders and experimental studies of animal models of neurodegeneration have begun to define potential mechanisms of ECM disruption that can lead to synaptic and neuronal loss. PMID:18662234
Teaching Tip: When a Matrix and Its Inverse Are Stochastic
ERIC Educational Resources Information Center
Ding, J.; Rhee, N. H.
2013-01-01
A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.
The Theory of Quaternion Matrix Derivatives
NASA Astrophysics Data System (ADS)
Xu, Dongpo; Mandic, Danilo P.
2015-03-01
A systematic theory is introduced for calculating the derivatives of quaternion matrix function with respect to quaternion matrix variables. The proposed methodology is equipped with the matrix product rule and chain rule and it is able to handle both analytic and nonanalytic functions. This corrects a flaw in the existing methods, that is, the incorrect use of the traditional product rule. In the framework introduced, the derivatives of quaternion matrix functions can be calculated directly without the differential of this function. Key results are summarized in tables. Several examples show how the quaternion matrix derivatives can be used as an important tool for solving problems related to signal processing.
The q-Laguerre matrix polynomials.
Salem, Ahmed
2016-01-01
The Laguerre polynomials have been extended to Laguerre matrix polynomials by means of studying certain second-order matrix differential equation. In this paper, certain second-order matrix q-difference equation is investigated and solved. Its solution gives a generalized of the q-Laguerre polynomials in matrix variable. Four generating functions of this matrix polynomials are investigated. Two slightly different explicit forms are introduced. Three-term recurrence relation, Rodrigues-type formula and the q-orthogonality property are given. PMID:27190749
Bohn, Mark S.; Anselmo, Mark
2001-01-01
Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.
Characterization of Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Chun, H. J.; Karalekas, D.
1994-01-01
Experimental methods were developed, adapted, and applied to the characterization of a metal matrix composite system, namely, silicon carbide/aluminim (SCS-2/6061 Al), and its constituents. The silicon carbide fiber was characterized by determining its modulus, strength, and coefficient of thermal expansion. The aluminum matrix was characterized thermomechanically up to 399 C (750 F) at two strain rates. The unidirectional SiC/Al composite was characterized mechanically under longitudinal, transverse, and in-plane shear loading up to 399 C (750 F). Isothermal and non-isothermal creep behavior was also measured. The applicability of a proposed set of multifactor thermoviscoplastic nonlinear constitutive relations and a computer code was investigated. Agreement between predictions and experimental results was shown in a few cases. The elastoplastic thermomechanical behavior of the composite was also described by a number of new analytical models developed or adapted for the material system studied. These models include the rule of mixtures, composite cylinder model with various thermoelastoplastic analyses and a model based on average field theory. In most cases satisfactory agreement was demonstrated between analytical predictions and experimental results for the cases of stress-strain behavior and thermal deformation behavior at different temperatures. In addition, some models yielded detailed three-dimensional stress distributions in the constituents within the composite.
On matrix Painlevé hierarchies
NASA Astrophysics Data System (ADS)
Gordoa, P. R.; Pickering, A.; Zhu, Z. N.
2016-07-01
We define a matrix first Painlevé hierarchy and a matrix second Painlevé (PII) hierarchy. For our matrix PII hierarchy we also give auto-Bäcklund transformations and consider the iteration of solutions. This is the first paper to define matrix Painlevé hierarchies and to give auto-Bäcklund transformations for a matrix Painlevé hierarchy. We also consider, amongst other results, the derivation of sequences of special integrals and autonomous limits. Until now it has been unknown how to connect the known matrix PII equation to the obvious candidates for related completely integrable matrix partial differential equations. Our matrix PII hierarchy is placed firmly within the context of a matrix modified Korteweg-de Vries (mKdV) hierarchy. In deriving our matrix PII hierarchy we make use of the Hamiltonian structure of this matrix mKdV hierarchy. We thus see once again the importance for Painlevé hierarchies of the integrability structures of related completely integrable equations.
Stabilized matrix for molten carbonate fuel cell
Nirasawa, Hitoshi; Kawachi, Takanori; Ogawa, Takashi; Hori, Michio; Tomimatsu, Norihiro; Nakagawa, Kazuaki; Ohzu, Hideyuki; Yamazaki, Yohtaro
1996-12-31
For commercialization of molten carbonate fuel cell (MCFC) power plants, the most important factors are MCFC performance and life. The performance and life of an MCFC depend on the electrolyte loss and gas crossover due to the matrix degradation, such as LiAlO{sub 2} particle growth during cell operation and the matrix cracking at the initial heat-up stage. In order to suppress the matrix degradation, the authors fabricated a stabilized matrix with {alpha}-LiAlO{sub 2} as the electrolyte support material and with long {alpha}-Al{sub 2}O{sub 3} fibers as the reinforcement. They assembled the cell with the stabilized matrix. The performance of the cell is stable for 7,000 hours. They consider that the matrix degradation, such as the particle growth during cell operation and matrix cracking, has not occurred in this cell.
Radial matrix cracking in unidirectional brittle matrix composites
Tandon, G.P.; Pagano, N.J.
1994-12-31
This work presents a mathematical study of radial cracking in the transverse direction of a unidirectional composite under the influence of thermal and mechanical loads. The formulation is based on the use of Reissner`s variational theorem in conjunction with an equilibrium stress field in which the r-dependence is assumed. In this study, this newly developed model is employed to evaluate the effect of the extent of radial matrix cracking on the elastic response of a unidirectional composite. Parametric studies are also conducted to examine the effect of varying the elastic properties of the constituents on the energy release rate of a radial crack. The computed values are shown to be in good agreement with the reported exact solution.
Crosslinked Matrix-free Nanocomposites
NASA Astrophysics Data System (ADS)
Dach, Benjamin; Rengifo, Hernan; Turro, Nicholas; Koberstein, Jeffrey
2010-03-01
Matrix-free polymer-silica nanocomposites are formed by crosslinking polymer coated nanoparticles via the `click' reaction. The `click' reaction is also known as H"uisgen 1, 3-dipolar cycloaddition of terminal alkyne and azide functional groups to give 1, 2, 3-triazoles. Silica nanoparticles are functionalized with alkyne and azide moieties. Heterobifunctional α,φ-trimethylsilane-alkyne,azide-poly(styrene) (TMS-PS-N3) and α,φ-trimethylsilane-alkyne,azide--poly(tert-butyl acrylate) (TMS-PtBA-N3) are then covalently bound to the surfaces of the nanoparticles via the `click' reaction. The bare and modified nanoparticles are analyzed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The thermal, morphological, and mechanical properties of the systems are investigated by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and dynamic rheology, respectively. .
Thermoplastic matrix composite processing model
NASA Technical Reports Server (NTRS)
Dara, P. H.; Loos, A. C.
1985-01-01
The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.
Evaluation of metal matrix composites
NASA Technical Reports Server (NTRS)
Okelly, K. P.
1971-01-01
The results of an evaluation of candidate metal-matrix composite materials for shuttle space radiators mounted to external structure are presented. The evaluation was specifically applicable to considerations of the manufacturing and properties of a potential space radiator. Two candidates, boron/aluminum and graphite/aluminum were obtained or made in various forms and tested in sufficient depth to allow selection of one of the two for future scale-up programs. The effort accomplished on this program verified that aluminum reinforced with boron was within the state-of-the-art in industry and possessed properties usable in the external skin areas available for shuttle radiators where re-entry temperatures will not exceed 800 F. It further demonstrated that graphite/aluminum has an apparently attractive future for space applications but requires extension development prior to scale-up.
Hastings, M. B.
2009-09-15
We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {delta}=0.5, we simulate to a time of {approx_equal}22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.
Applications of matrix inversion tomosynthesis
NASA Astrophysics Data System (ADS)
Warp, Richard J.; Godfrey, Devon J.; Dobbins, James T., III
2000-04-01
The improved image quality and characteristics of new flat- panel x-ray detectors have renewed interest in advanced algorithms such as tomosynthesis. Digital tomosynthesis is a method of acquiring and reconstructing a three-dimensional data set with limited-angle tube movement. Historically, conventional tomosynthesis reconstruction has suffered contamination of the planes of interest by blurred out-of- plane structures. This paper focuses on a Matrix Inversion Tomosynthesis (MITS) algorithm to remove unwanted blur from adjacent planes. The algorithm uses a set of coupled equations to solve for the blurring function in each reconstructed plane. This paper demonstrates the use of the MITS algorithm in three imaging applications: small animal microscopy, chest radiography, and orthopedics. The results of the MITS reconstruction process demonstrate an improved reduction of blur from out-of-plane structures when compared to conventional tomosynthesis. We conclude that the MITS algorithm holds potential in a variety of applications to improve three-dimensional image reconstruction.
Intermetallic bonded ceramic matrix composites
Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.; Becher, P.F.; Schneibel, J.H.; Waters, S.B.; Menchhofer, P.A.
1995-07-01
A range of carbide and oxide-based cermets have been developed utilizing ductile nickel aluminide (Ni{sub 3}Al) alloy binder phases. Some of these, notably materials based upon tungsten and titanium carbides (WC and TiC respectively), offer potential as alternatives to the cermets which use cobalt binders (i.e. WC/Co). Samples have been prepared by blending commercially available Ni{sub 3}Al alloy powders with the desired ceramic phases, followed by hot-pressing. Alumina (Al{sub 2}O{sub 3}) matrix materials have also been prepared by pressurized molten alloy infiltration. The microstructure, flexure strength and fracture toughness of selected materials are discussed.
Extracellular matrix component signaling in cancer.
Multhaupt, Hinke A B; Leitinger, Birgit; Gullberg, Donald; Couchman, John R
2016-02-01
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. PMID:26519775
Convex nonnegative matrix factorization with manifold regularization.
Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong
2015-03-01
Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. PMID:25523040
Recent developments on the CKM matrix
NASA Astrophysics Data System (ADS)
Wang, Wei
2014-07-01
In Standard Model, CP violation arises from an irreducible complex phase in the quark mixing matrix, now under the name Cabibbo-Kobayashi-Maskawa matrix. This description has shown remarkable overall agreement with various experimental measurements. In this review, we discuss recent experimental data and theoretical developments on three quantities of CKM matrix that are most uncertain: the Vub, including its magnitude and the phase γ in standard parametrization, and the Bs-\\bar Bs mixing phase βs.
NASA Astrophysics Data System (ADS)
Xu, Guo-Ming; Ni, Si-Dao
1998-11-01
The `auxiliary' symmetry properties of the system matrix (symmetry with respect to the trailing diagonal) for a general anisotropic dissipative medium and the special form for a monoclinic medium are revealed by rearranging the motion-stress vector. The propagator matrix of a single-layer general anisotropic dissipative medium is also shown to have auxiliary symmetry. For the multilayered case, a relatively simple matrix method is utilized to obtain the inverse of the propagator matrix. Further, Woodhouse's inverse of the propagator matrix for a transversely isotropic medium is extended in a clearer form to handle the monoclinic symmetric medium. The properties of a periodic layer system are studied through its system matrix Aly , which is computed from the propagator matrix P. The matrix Aly is then compared with Aeq , the system matrix for the long-wavelength equivalent medium of the periodic isotropic layers. Then we can find how the periodic layered medium departs from its long-wavelength equivalent medium when the wavelength decreases. In our numerical example, the results show that, when λ/D decreases to 6-8, the components of the two matrices will depart from each other. The component ratio of these two matrices increases to its maximum (more than 15 in our numerical test) when λ/D is reduced to 2.3, and then oscillates with λ/D when it is further reduced. The eigenvalues of the system matrix Aly show that the velocities of P and S waves decrease when λ/D is reduced from 6-8 and reach their minimum values when λ/D is reduced to 2.3 and then oscillate afterwards. We compute the time shifts between the peaks of the transmitted waves and the incident waves. The resulting velocity curves show a similar variation to those computed from the eigenvalues of the system matrix Aly , but on a smaller scale. This can be explained by the spectrum width of the incident waves.
Multiscale Modeling of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.
2015-01-01
Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.
Finding Nonoverlapping Substructures of a Sparse Matrix
Pinar, Ali; Vassilevska, Virginia
2005-08-11
Many applications of scientific computing rely on computations on sparse matrices. The design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of nonoverlapping dense blocks in a sparse matrix, which is previously not studied in the sparse matrix community. We show that the maximum nonoverlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm that runs in linear time in the number of nonzeros in the matrix. This extended abstract focuses on our results for 2x2 dense blocks. However we show that our results can be generalized to arbitrary sized dense blocks, and many other oriented substructures, which can be exploited to improve the memory performance of sparse matrix operations.
Third Intermetallic Matrix Composites Symposium, volume 350
Graves, J.A.; Bowman, R.R.; Lewandowski, J.J.
1994-04-01
Partial contents include: issues in potential IMC application for aerospace structures; powder metallurgy processing of intermetallic matrix composites; microstructure and properties of intermetallic matrix composites produced by reaction synthesis; combustion synthesis of niobium aluminide matrix composites; ambient temperature synthesis of bulk intermetallics; wear behavior of SHS intermetallic matrix composites; fracture characteristics of metal-intermetallic laminates produced by SHS reactions; and vapor phase synthesis of Ti aluminides and the interfacial bonding effect on the mechanical property of micro-composites reinforced by pyrolized SiC fibers.
Reconstituted asbestos matrix for fuel cells
NASA Technical Reports Server (NTRS)
Mcbryar, H.
1975-01-01
Method is described for reprocessing commercially available asbestos matrix stock to yield greater porosity and bubble pressure (due to increased surface tension), improved homogeneity, and greater uniformity.
The Evolution of Extracellular Matrix
Özbek, Suat; Balasubramanian, Prakash G.; Chiquet-Ehrismann, Ruth; Tucker, Richard P.
2010-01-01
We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology. PMID:21160071
Extracellular Matrix Abnormalities in Schizophrenia
Berretta, Sabina
2011-01-01
Emerging evidence points to the involvement of the brain extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Abnormalities affecting several ECM components, including Reelin and chondroitin sulfate proteoglycans (CSPGs), have been described in subjects with this disease. Solid evidence supports the involvement of Reelin, an ECM glycoprotein involved in corticogenesis, synaptic functions and glutamate NMDA receptor regulation, expressed prevalently in distinct populations of GABAergic neurons, which secrete it into the ECM. Marked changes of Reelin expression in SZ have typically been reported in association with GABA-related abnormalities in subjects with SZ and bipolar disorder. Recent findings from our group point to substantial abnormalities affecting CSPGs, a main ECM component, in the amygdala and entorhinal cortex of subjects with schizophrenia, but not bipolar disorder. Striking increases of glial cells expressing CSPGs were accompanied by reductions of perineuronal nets, CSPG- and Reelin-enriched ECM aggregates enveloping distinct neuronal populations. CSPGs developmental and adult functions, including neuronal migration, axon guidance, synaptic and neurotransmission regulation are highly relevant to the pathophysiology of SZ. Together with reports of anomalies affecting several other ECM components, these findings point to the ECM as a key component of the pathology of SZ. We propose that ECM abnormalities may contribute to several aspects of the pathophysiology of this disease, including disrupted connectivity and neuronal migration, synaptic anomalies and altered GABAergic, glutamatergic and dopaminergic neurotransmission. PMID:21856318
The influence of matrix microstructure
NASA Astrophysics Data System (ADS)
Vyletel, G. M.; Allison, J. E.; Aken, D. C.
1993-11-01
The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and artificially aged 2219/TiC/15p and unreinforced 2219 Al were investigated utilizing plastic strain-controlled and stress-controlled testing. The cyclic response of both the reinforced and un-reinforced materials was similar for all plastic strain amplitudes tested except that the saturation stress level for the composite was always greater than that of the unreinforced material. The cyclic response of the naturally aged materials exhibited cyclic hardening and, in some cases, cyclic softening, while the cyclic response for the artificially aged materials showed no evidence of either cyclic hardening or softening. The higher ductility of the unreinforced material made it more resistant to fatigue failure at high strains, and thus, at a given plastic strain, it had longer fatigue life. It should be noted that the tensile ductilities of the 2219/TiC/15p were significantly higher than those previously reported for 2XXX-series composites. During stress-controlled test-ing at stresses below 220 MPa, the presence of TiC particles lead to an improvement in fatigue life. Above 220 MPa, no influence of TiC reinforcement on fatigue life could be detected. In both the composite and unreinforced materials, the low-cycle and high-cycle fatigue lives were found to be virtually independent of matrix microstructure.
Channeled partial Mueller matrix polarimetry
NASA Astrophysics Data System (ADS)
Alenin, Andrey S.; Tyo, J. S.
2015-09-01
In prior work,1,2 we introduced methods to treat channeled systems in a way that is similar to Data Reduction Method (DRM), by focusing attention on the Fourier content of the measurement conditions. Introduction of Q enabled us to more readily extract the performance of the system and thereby optimize it to obtain reconstruction with the least noise. The analysis tools developed for that exercise can be expanded to be applicable to partial Mueller Matrix Polarimeters (pMMPs), which were a topic of prior discussion as well. In this treatment, we combine the principles involved in both of those research trajectories and identify a set of channeled pMMP families. As a result, the measurement structure of such systems is completely known and the design of a channeled pMMP intended for any given task becomes a search over a finite set of possibilities, with the additional channel rotation allowing for a more desirable Mueller element mixing.
Advanced Integration Matrix Education Outreach
NASA Technical Reports Server (NTRS)
Paul Heather L.
2004-01-01
The Advanced Integration Matrix (AIM) will design a ground-based test facility for developing revolutionary integrated systems for joint human-robotic missions in order to study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO). This paper describes development plans for educational outreach activities related to technological and operational integration scenarios similar to the challenges that will be encountered through this project. The education outreach activities will provide hands-on, interactive exercises to allow students of all levels to experience design and operational challenges similar to what NASA deals with everyday in performing the integration of complex missions. These experiences will relate to and impact students everyday lives by demonstrating how their interests in science and engineering can develop into future careers, and reinforcing the concepts of teamwork and conflict resolution. Allowing students to experience and contribute to real-world development, research, and scientific studies of ground-based simulations for complex exploration missions will stimulate interest in the space program, and bring NASA's challenges to the student level. By enhancing existing educational programs and developing innovative activities and presentations, AIM will support NASA s endeavor to "inspire the next generation of explorers.. .as only NASA can."
Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials
NASA Technical Reports Server (NTRS)
Mcgill, Preston B.; Mount, Angela R.
1992-01-01
The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.
Domino: Extracting, Comparing, and Manipulating Subsets across Multiple Tabular Datasets
Gratzl, Samuel; Gehlenborg, Nils; Lex, Alexander; Pfister, Hanspeter; Streit, Marc
2016-01-01
Answering questions about complex issues often requires analysts to take into account information contained in multiple interconnected datasets. A common strategy in analyzing and visualizing large and heterogeneous data is dividing it into meaningful subsets. Interesting subsets can then be selected and the associated data and the relationships between the subsets visualized. However, neither the extraction and manipulation nor the comparison of subsets is well supported by state-of-the-art techniques. In this paper we present Domino, a novel multiform visualization technique for effectively representing subsets and the relationships between them. By providing comprehensive tools to arrange, combine, and extract subsets, Domino allows users to create both common visualization techniques and advanced visualizations tailored to specific use cases. In addition to the novel technique, we present an implementation that enables analysts to manage the wide range of options that our approach offers. Innovative interactive features such as placeholders and live previews support rapid creation of complex analysis setups. We introduce the technique and the implementation using a simple example and demonstrate scalability and effectiveness in a use case from the field of cancer genomics. PMID:26356916
Weak matrix elements for CP violation.
Lee, W.; Gupta, R.; Christ, N.; Fleming, G. T.; Kilcup, G.; Liu, G.; Mawhinney, R.; Sharpe, S.; Wu, L.; Bhattacharya, T.
2001-01-01
We present preliminary results of matrix elements of four fermion operators relevant to the determination of e and E ' / E using staggered fermions. To calculate the matrix elements relevant to CP violation in Kaon decays it is important to use a lattice formulation which preserves (some) chiral symmetry.
Transfer matrix of a spherical scatterer
Podolsky, V.S.; Lisyansky, A.A.
1996-11-01
We derive the off-shell scattering matrix for a spherical scatterer. The result obtained generalizes the off-on-shell matrix commonly used in the theory of scalar waves propagation in random media. {copyright} {ital 1996 The American Physical Society.}
Optimum interface properties for metal matrix composites
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Lerch, Bradley A.
1989-01-01
Due to the thermal expansion coefficient mismatch (CTE) between the fiber and the matrix, high residual sresses exist in metal matrix composite systems upon cool down from processing temperature to room temperature. An interface material can be placed between the fiber and the matrix to reduce the high tensile residual stresses in the matrix. A computer program was written to minimize the residual stress in the matrix subject to the interface material properties. The decision variables are the interface modulus, thickness and thermal expansion coefficient. The properties of the interface material are optimized such that the average distortion energy in the matrix and the interface is minimized. As a result, the only active variable is the thermal expansion coefficient. The optimum modulus of the interface is always the minimum allowable value and the interface thickness is always the maximum allowable value, independent of the fiber/matrix system. The optimum interface thermal expansion coefficient is always between the values of the fiber and the matrix. Using this analysis, a survey of materials was conducted for use as fiber coatings in some specific composite systems.
Improvements in sparse matrix operations of NASTRAN
NASA Technical Reports Server (NTRS)
Harano, S.
1980-01-01
A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.
Finding nonoverlapping substructures of a sparse matrix
Pinar, Ali; Vassilevska, Virginia
2004-08-09
Many applications of scientific computing rely on computations on sparse matrices, thus the design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of non overlapping rectangular dense blocks in a sparse matrix, which has not been studied in the sparse matrix community. We show that the maximum non overlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm for 2 times 2 blocks that runs in linear time in the number of nonzeros in the matrix. We discuss alternatives to rectangular blocks such as diagonal blocks and cross blocks and present complexity analysis and approximation algorithms.
Risk Management using Dependency Stucture Matrix
NASA Astrophysics Data System (ADS)
Petković, Ivan
2011-09-01
An efficient method based on dependency structure matrix (DSM) analysis is given for ranking risks in a complex system or process whose entities are mutually dependent. This rank is determined according to the element's values of the unique positive eigenvector which corresponds to the matrix spectral radius modeling the considered engineering system. For demonstration, the risk problem of NASA's robotic spacecraft is analyzed.
7 CFR 1770.17 - Expense matrix.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 12 2013-01-01 2013-01-01 false Expense matrix. 1770.17 Section 1770.17 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS TELECOMMUNICATIONS BORROWERS Uniform System of Accounts § 1770.17 Expense matrix. The...
Metal matrix composites microfracture: Computational simulation
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Caruso, John J.; Chamis, Christos C.
1990-01-01
Fiber/matrix fracture and fiber-matrix interface debonding in a metal matrix composite (MMC) are computationally simulated. These simulations are part of a research activity to develop computational methods for microfracture, microfracture propagation and fracture toughness of the metal matrix composites. The three-dimensional finite element model used in the simulation consists of a group of nine unidirectional fibers in three by three unit cell array of SiC/Ti15 metal matrix composite with a fiber volume ration of 0.35. This computational procedure is used to predict the fracture process and establish the hierarchy of fracture modes based on strain energy release rate. It is also used to predict stress redistribution to surrounding matrix-fibers due to initial and progressive fracture of fiber/matrix and due to debonding of fiber-matrix interface. Microfracture results for various loading cases such as longitudinal, transverse, shear and bending are presented and discussed. Step-by-step procedures are outlined to evaluate composite microfracture for a given composite system.
The Molecules of the Cell Matrix.
ERIC Educational Resources Information Center
Weber, Klaus; Osborn, Mary
1985-01-01
Cytoplasmic proteins form a highly structured yet changeable matrix that affects cell shape, division, motion, and transport of vesicles and organelles. Types of microfilaments, research techniques, actin and myosin, tumor cells, and other topics are addressed. Evidence indicates that the cell matrix might have a bearing on metabolism. (DH)
Induced Course Load Matrix: Conception and Use
ERIC Educational Resources Information Center
Suslow, Sidney
1976-01-01
The origins and range of applications of the academic matrix, or ICLM (Induced Course Load Matrix), are described by its originator. Its identification of interrelations among student majors and their course preferences makes it useful for academic planning and curriculum reviews, particularly in simulation models for exploring costs, personnel,…
Counseling Uses of the Hill Interaction Matrix.
ERIC Educational Resources Information Center
Boyd, Robert E.
While the Hill Interaction Matrix was developed as a research instrument to assess interview process, it is also generally useful in any undertaking requiring the evaluation of verbal interaction and, hence, can be used as an aid in modifying communication in order to increase its therapeutic effect. The Hill Interaction Matrix with accompanying…
Application of the matrix exponential kernel
NASA Technical Reports Server (NTRS)
Rohach, A. F.
1972-01-01
A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials.
Matrix model description of baryonic deformations
Bena, Iosif; Murayama, Hitoshi; Roiban, Radu; Tatar, Radu
2003-03-13
We investigate supersymmetric QCD with N{sub c} + 1 flavors using an extension of the recently proposed relation between gauge theories and matrix models.The impressive agreement between the two sides provides a beautiful confirmation of the extension of the gauge theory-matrix model relation to this case.
Adiabatic approximation for the density matrix
NASA Astrophysics Data System (ADS)
Band, Yehuda B.
1992-05-01
An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.
Biocompatible 3D Matrix with Antimicrobial Properties.
Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria
2016-01-01
The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering. PMID:26805790
The matrix exponential in transient structural analysis
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
1987-01-01
The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.
Adaptive wavelet methods - Matrix-vector multiplication
NASA Astrophysics Data System (ADS)
Černá, Dana; Finěk, Václav
2012-12-01
The design of most adaptive wavelet methods for elliptic partial differential equations follows a general concept proposed by A. Cohen, W. Dahmen and R. DeVore in [3, 4]. The essential steps are: transformation of the variational formulation into the well-conditioned infinite-dimensional l2 problem, finding of the convergent iteration process for the l2 problem and finally derivation of its finite dimensional version which works with an inexact right hand side and approximate matrix-vector multiplications. In our contribution, we shortly review all these parts and wemainly pay attention to approximate matrix-vector multiplications. Effective approximation of matrix-vector multiplications is enabled by an off-diagonal decay of entries of the wavelet stiffness matrix. We propose here a new approach which better utilize actual decay of matrix entries.
A matrix analysis of conjugate gradient algorithms
Ashby, S.F.; Gutknecht, M.H.
1993-04-01
This paper explores the relationships between the conjugate gradient algorithms Orthodir, Orthomin, and Orthores. To facilitate this exploration, a matrix formulation for each algorithm is given. It is shown that Orthodir directly computes a Hessenberg matrix H{sub k} at step k. Orthores also computes a Hessenberg matrix, G{sub k}, which is similar to a Hessenberg matrix obtained from H{sub k} by perturbing its last column. (This perturbation vanishes at convergence.) Orthomin, on the other hand, computes a UL and LU factorization of the perturbed H{sub k} and G{sub k}, respectively. The breakdown of Orthomin and Orthores are interpreted in terms of these underlying matrix factorizations. A connection with Lanczos algorithms is also examined, as is the special case of B-normal(1) matrices (for which efficient three-term CG algorithms exist).
Graphical evaluation of relativistic matrix elements
NASA Technical Reports Server (NTRS)
Huang, K. N.
1978-01-01
A graphical representation of angular momentum was used to evaluate relativistic matrix elements between antisymmetrized states of many particle configurations having any number of open shells. The antisymmetrized matrix element was expanded as a sum of semisymmetrized matrix elements. The diagram representing a semisymmetrized matrix element was composed of four diagram blocks; the bra block, the ket block, the spectator block, and the interaction block. The first three blocks indicate the couplings of the two interacting configurations while the last depends on the interaction and is the replaceable component. Interaction blocks for relativistic operators and commonly used potentials were summarized in ready to use forms. A simple step by step procedure was prescribed generally for calculating antisymmetrized matrix elements of one and two particle operators.
Active Matrix OLED Test Report
NASA Technical Reports Server (NTRS)
Salazar, George
2013-01-01
This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits
Contact guidance induced organization of extracellular matrix.
Manwaring, Michael E; Walsh, Jennifer F; Tresco, Patrick A
2004-08-01
The scarring response following injury to the central nervous system disrupts the anatomical organization of nervous tissue posing a barrier to the regeneration of axons. In the present study, using materials with nanometer level surface features we examined whether matrix organization could be controlled by engineering meningeal cell asymmetry. Following 5 days in culture, the organization of meningeal cells along with their cytoskeletal elements and extracellular matrix proteins was evaluated. Meningeal cell morphology was markedly affected by nanometer level substrate topography. Cell alignment increased with increasing surface roughness. In addition, linear arrays of extracellular matrix were expressed that appeared related to cellular orientation. When cultured on substrates with topographical features of less than 10 nm neither cells nor their extracellular matrix showed organizational asymmetry. However, as oriented surface roughness increased, cellular and matrix asymmetrical organization became more pronounced reaching a threshold at 345 nm. These results suggest that biomaterial surface topography or other methods of altering the orientation of cells may be used to engineer orientation into the secreted extracellular matrix and as such may be a potential strategy for developing organized cell-derived matrix as a bridging material for nerve repair or other regenerative applications. PMID:15020137
Bone Matrix Turnover And Balance In Vitro
Flanagan, Barry; Nichols, George
1969-01-01
Labeled proline from incubation media has been shown to be incorporated into living bone matrix collagen in vitro. Hydroxyproline is released from fresh bone slices in similar systems in a characteristic curve against time. This hydroxyproline is derived from three distinct sources, each of which may be separately quantitated. Part of the total represents passive solubilization of matrix collagen, part is derived from new synthesis of soluble collagen occurring in vitro, and the remainder is released by cell-mediated resorptive action. The latter two processes are linear with time up to 8 hr; the former decays to zero at about 2 hr. Consequently, rates of collagen synthesis and of new collagen deposition and resorption can be quantitated simultaneously in the same system. The ability to measure these parameters of bone collagen metabolism provides methods both for the accurate evaluation of organic matrix resorption in vitro and for the accurate measurement of rates of collagen synthesis and collagen deposition. The application of the method is illustrated using parathyroid hormone and thyrocalcitonin. Parathyroid hormone diminishes collagen synthesis and stimulates collagen resorption. It reduces slightly the deposition of newly formed collagen in stable matrix. The net effect of these changes is to produce a marked negative balance. It does not significantly affect the solubility of matrix collagen. Thyrocalcitonin does not affect collagen synthesis or its deposition. It causes a marked fall in resorption rate. It has no effect on matrix collagen solubility. The net effect is to produce a marked positive balance of matrix collagen. Images PMID:5774102
A transilient matrix for moist convection
Romps, D.; Kuang, Z.
2011-08-15
A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.
High-temperature polymer matrix composites
NASA Technical Reports Server (NTRS)
Meador, Michael A.
1990-01-01
Polymers research at the NASA Lewis Research Center has produced high-temperature, easily processable resin systems, such as PMR-15. In addition, the Polymers Branch has investigated ways to improve the mechanical properties of polymers and the microcracking resistance of polymer matrix composites in response to industry need for new and improved aeropropulsion materials. Current and future research in the Polymers Branch is aimed at advancing the upper use temperature of polymer matrix composites to 700 F and beyond by developing new resins, by examining the use of fiber reinforcements other than graphite, and by developing coatings for polymer matrix composites to increase their oxidation resistance.
Anderson transition for Google matrix eigenstates
NASA Astrophysics Data System (ADS)
Zhirov, O. V.; Shepelyansky, D. L.
2015-10-01
We introduce a number of random matrix models describing the Google matrix G of directed networks. The properties of their spectra and eigenstates are analyzed by numerical matrix diagonalization. We show that for certain models it is possible to have an algebraic decay of PageRank vector with the exponent similar to real directed networks. At the same time the spectrum has no spectral gap and a broad distribution of eigenvalues in the complex plain. The eigenstates of G are characterized by the Anderson transition from localized to delocalized states and a mobility edge curve in the complex plane of eigenvalues.
Visual Matrix Clustering of Social Networks
Wong, Pak C.; Mackey, Patrick S.; Foote, Harlan P.; May, Richard A.
2013-07-01
The prevailing choices to graphically represent a social network in today’s literature are a node-link graph layout and an adjacency matrix. Both visualization techniques have unique strengths and weaknesses when applied to different domain applications. In this article, we focus our discussion on adjacency matrix and how to turn the matrix-based visualization technique from merely showing pairwise associations among network actors (or graph nodes) to depicting clusters of a social network. We also use node-link layouts to supplement the discussion.
Earthquake prediction decision and risk matrix
NASA Astrophysics Data System (ADS)
Zou, Qi-Jia
1993-08-01
The issuance of an earthquake prediction must cause widespread social responses. It is suggested and discussed in this paper that the comprehensive decision issue for earthquake prediction considering the factors of the social and economic cost. The method of matrix decision for earthquake prediction (MDEP) is proposed in this paper and it is based on the risk matrix. The goal of decision is that search the best manner issuing earthquake prediction so that minimize the total losses of economy. The establishment and calculation of the risk matrix is discussed, and the decision results taking account of economic factors and not considering the economic factors are compared by examples in this paper.
Random matrix approach to shareholding networks
NASA Astrophysics Data System (ADS)
Souma, Wataru; Fujiwara, Yoshi; Aoyama, Hideaki
2004-12-01
A shareholding network is represented by a symmetrical adjacency matrix. The random matrix theoretical approach to this matrix shows that the spectrum follows a power law distribution, ρ(λ)∼|λ|, in the tail part. It is also shown that the degree distribution of this network follows a power law distribution, p(k)∼k, in the large degree range. The scaling law δ=2γ-1 is found in this network. The reason why this relation holds is attributed to the local tree-like structure of the shareholding network.
48 CFR 2152.370 - Use of the matrix.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Use of the matrix. 2152... CONTRACT CLAUSES Provision and Clause Matrix 2152.370 Use of the matrix. (a) The matrix in this section... clause is to be used only when the applicable conditions are met. FEGLI Program Clause Matrix Clause...
48 CFR 2152.370 - Use of the matrix.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Use of the matrix. 2152... CONTRACT CLAUSES Provision and Clause Matrix 2152.370 Use of the matrix. (a) The matrix in this section... clause is to be used only when the applicable conditions are met. FEGLI Program Clause Matrix Clause...
48 CFR 2152.370 - Use of the matrix.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Use of the matrix. 2152... CONTRACT CLAUSES Provision and Clause Matrix 2152.370 Use of the matrix. (a) The matrix in this section... clause is to be used only when the applicable conditions are met. FEGLI Program Clause Matrix Clause...
48 CFR 2152.370 - Use of the matrix.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Use of the matrix. 2152... CONTRACT CLAUSES Provision and Clause Matrix 2152.370 Use of the matrix. (a) The matrix in this section... clause is to be used only when the applicable conditions are met. FEGLI Program Clause Matrix Clause...
Integrated optic vector-matrix multiplier
Watts, Michael R.
2011-09-27
A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
Matrix Models, Emergent Spacetime and Symmetry Breaking
Grosse, Harald; Steinacker, Harold; Lizzi, Fedele
2009-12-15
We discuss how a matrix model recently shown to describe emergent gravity may contain extra degrees of freedom which reproduce some characteristics of the standard model, in particular the breaking of symmetries and the correct quantum numbers of fermions.
Nuclear waste storage container with metal matrix
Sump, Kenneth R.
1978-01-01
The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.
Enter the matrix: shape, signal and superhighway.
Lund, Dane K; Cornelison, D D W
2013-09-01
Mammalian skeletal muscle is notable for both its highly ordered biophysical structure and its regenerative capacity following trauma. Critical to both of these features is the specialized muscle extracellular matrix, comprising both the multiple concentric sheaths of connective tissue surrounding structural units from single myofibers to whole muscles and the dense interstitial matrix that occupies the space between them. Extracellular matrix-dependent interactions affect all activities of the resident muscle stem cell population (the satellite cells), from maintenance of quiescence and stem cell potential to the regulation of proliferation and differentiation. This review focuses on the role of the extracellular matrix in muscle regeneration, with a particular emphasis on regulation of satellite-cell activity. PMID:23374506
Optimal matrix approximants in structural identification
NASA Technical Reports Server (NTRS)
Beattie, C. A.; Smith, S. W.
1992-01-01
Problems of model correlation and system identification are central in the design, analysis, and control of large space structures. Of the numerous methods that have been proposed, many are based on finding minimal adjustments to a model matrix sufficient to introduce some desirable quality into that matrix. In this work, several of these methods are reviewed, placed in a modern framework, and linked to other previously known ideas in computational linear algebra and optimization. This new framework provides a point of departure for a number of new methods which are introduced here. Significant among these is a method for stiffness matrix adjustment which preserves the sparsity pattern of an original matrix, requires comparatively modest computational resources, and allows robust handling of noisy modal data. Numerical examples are included to illustrate the methods presented herein.
Enzymatic activation of a matrix metalloproteinase inhibitor†
Major Jourden, Jody L.; Cohen, Seth M.
2010-01-01
Matrix metalloproteinase inhibitors (MMPi) possessing a glucose protecting group on the zinc-binding group (ZBG) show a dramatic increase in inhibitory activity upon cleavage by β-glucosidase. PMID:20449263
Matrix Gla protein in tumoral pathology.
Gheorghe, Simona Roxana; Crăciun, Alexandra Mărioara
2016-01-01
Matrix Gla protein is a vitamin K-dependent protein secreted by chondrocytes and vascular smooth muscle cells. The presence of matrix Gla protein was reported in arterial and venous walls, lungs, kidney, uterus, heart, tooth cementum and eyes. Several studies identified matrix Gla protein in tumoral pathology. Until recently, it was thought to only have an inhibitory role of physiological and ectopic calcification. New studies demonstrated that it also has a role in physiological and pathological angiogenesis, as well as in tumorigenesis. The aim of this review is to report the latest findings related to the expression and clinical implications of matrix Gla protein in different types of cancer with an emphasis on cerebral tumors. PMID:27547048
Matrix Gla protein in tumoral pathology
GHEORGHE, SIMONA ROXANA; CRĂCIUN, ALEXANDRA MĂRIOARA
2016-01-01
Matrix Gla protein is a vitamin K-dependent protein secreted by chondrocytes and vascular smooth muscle cells. The presence of matrix Gla protein was reported in arterial and venous walls, lungs, kidney, uterus, heart, tooth cementum and eyes. Several studies identified matrix Gla protein in tumoral pathology. Until recently, it was thought to only have an inhibitory role of physiological and ectopic calcification. New studies demonstrated that it also has a role in physiological and pathological angiogenesis, as well as in tumorigenesis. The aim of this review is to report the latest findings related to the expression and clinical implications of matrix Gla protein in different types of cancer with an emphasis on cerebral tumors. PMID:27547048
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Fiber coatings for ceramic matrix composites
Carpenter, H.W.; Bohlen, J.W.
1992-08-01
Two fiber coating concepts for ceramic matrix composites were successfully demonstrated in a preliminary study. These coatings were designed to promote toughness in composites and resist oxidation. The concepts were: (1) thin, multiple unbonded layers, and (2) a single porous layer that provided low interfacial strengths between the fiber and matrix. Chemical vapor deposited (CVD) SiC and sol-gel derived oxides were used to produce the fiber coatings. Specimens consisted of a single coated monofilament fiber and a sheath of CVD SiC to represent the matrix. Results from flexure tests showed that matrix cracks were deflected and that fibers debonded the same as in specimens made using carbon-coated fibers. Crack deflection and fiber debonding were also evident after exposure in air at elevated temperatures. 5 refs.
Sensitivity analysis of periodic matrix population models.
Caswell, Hal; Shyu, Esther
2012-12-01
Periodic matrix models are frequently used to describe cyclic temporal variation (seasonal or interannual) and to account for the operation of multiple processes (e.g., demography and dispersal) within a single projection interval. In either case, the models take the form of periodic matrix products. The perturbation analysis of periodic models must trace the effects of parameter changes, at each phase of the cycle, on output variables that are calculated over the entire cycle. Here, we apply matrix calculus to obtain the sensitivity and elasticity of scalar-, vector-, or matrix-valued output variables. We apply the method to linear models for periodic environments (including seasonal harvest models), to vec-permutation models in which individuals are classified by multiple criteria, and to nonlinear models including both immediate and delayed density dependence. The results can be used to evaluate management strategies and to study selection gradients in periodic environments. PMID:23316494
Matrix Models, Emergent Spacetime and Symmetry Breaking
NASA Astrophysics Data System (ADS)
Grosse, Harald; Lizzi, Fedele; Steinacker, Harold
2009-12-01
We discuss how a matrix model recently shown to describe emergent gravity may contain extra degrees of freedom which reproduce some characteristics of the standard model, in particular the breaking of symmetries and the correct quantum numbers of fermions.
Celsian Glass-Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Dicarlo, James A.
1996-01-01
Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.
Amyloid Structures as Biofilm Matrix Scaffolds.
Taglialegna, Agustina; Lasa, Iñigo; Valle, Jaione
2016-10-01
Recent insights into bacterial biofilm matrix structures have induced a paradigm shift toward the recognition of amyloid fibers as common building block structures that confer stability to the exopolysaccharide matrix. Here we describe the functional amyloid systems related to biofilm matrix formation in both Gram-negative and Gram-positive bacteria and recent knowledge regarding the interaction of amyloids with other biofilm matrix components such as extracellular DNA (eDNA) and the host immune system. In addition, we summarize the efforts to identify compounds that target amyloid fibers for therapeutic purposes and recent developments that take advantage of the amyloid structure to engineer amyloid fibers of bacterial biofilm matrices for biotechnological applications. PMID:27185827
Axial grading of inert matrix fuels
Recktenwald, G. D.; Deinert, M. R.
2012-07-01
Burning actinides in an inert matrix fuel to 750 MWd/kg IHM results in a significant reduction in transuranic isotopes. However, achieving this level of burnup in a standard light water reactor would require residence times that are twice that of uranium dioxide fuels. The reactivity of an inert matrix assembly at the end of life is less than 1/3 of its beginning of life reactivity leading to undesirable radial and axial power peaking in the reactor core. Here we show that axial grading of the inert matrix fuel rods can reduce peaking significantly. Monte Carlo simulations are used to model the assembly level power distributions in both ungraded and graded fuel rods. The results show that an axial grading of uranium dioxide and inert matrix fuels with erbium can reduces power peaking by more than 50% in the axial direction. The reduction in power peaking enables the core to operate at significantly higher power. (authors)
Fibre-Matrix Interaction in Soft Tissue
Guo, Zaoyang
2010-05-21
Although the mechanical behaviour of soft tissue has been extensively studied, the interaction between the collagen fibres and the ground matrix has not been well understood and is therefore ignored by most constitutive models of soft tissue. In this paper, the human annulus fibrosus is used as an example and the potential fibre-matrix interaction is identified by careful investigation of the experimental results of biaxial and uniaxial testing of the human annulus fibrosus. First, the uniaxial testing result of the HAF along the axial direction is analysed and it is shown that the mechanical behaviour of the ground matrix can be well simulated by the incompressible neo-Hookean model when the collagen fibres are all under contraction. If the collagen fibres are stretched, the response of the ground matrix can still be described by the incompressible neo-Hookean model, but the effective stiffness of the matrix depends on the fibre stretch ratio. This stiffness can be more than 10 times larger than the one obtained with collagen fibres under contraction. This phenomenon can only be explained by the fibre-matrix interaction. Furthermore, we find that the physical interpretation of this interaction includes the inhomogeneity of the soft tissue and the fibre orientation dispersion. The dependence of the tangent stiffness of the matrix on the first invariant of the deformation tensor can also be explained by the fibre orientation dispersion. The significant effect of the fibre-matrix interaction strain energy on mechanical behaviour of the soft tissue is also illustrated by comparing some simulation results.
Polymer Matrix Composite Material Oxygen Compatibility
NASA Technical Reports Server (NTRS)
Owens, Tom
2001-01-01
Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.
Micromechanical Modeling of Woven Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1997-01-01
This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity
Cryogenic regenerator including sarancarbon heat conduction matrix
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)
1989-01-01
A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.
Fuel cell with electrolyte matrix assembly
Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.
1988-01-01
This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.
Application of Fuzzy Logic to Matrix FMECA
NASA Astrophysics Data System (ADS)
Shankar, N. Ravi; Prabhu, B. S.
2001-04-01
A methodology combining the benefits of Fuzzy Logic and Matrix FMEA is presented in this paper. The presented methodology extends the risk prioritization beyond the conventional Risk Priority Number (RPN) method. Fuzzy logic is used to calculate the criticality rank. Also the matrix approach is improved further to develop a pictorial representation retaining all relevant qualitative and quantitative information of several FMEA elements relationships. The methodology presented is demonstrated by application to an illustrative example.
Nanophosphor composite scintillator with a liquid matrix
McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark
2010-03-16
An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.
[Research on pericellular matrix properties for chondrcytes].
Han, Jun-liang; Duan, Wang-ping; Shi, Guang-hua; Yuan, Wei; Wei, Xiao-chun
2015-06-01
Pericellular matrix (PCM) is a narrow tissue region surrounding chondrocytes, which "chondron" with its enclosed cells. A number of studies suggested that PCM is rich in proteoglycans, collagen and fibronectin, and plays an important role in regulating microenvironment of chondrocytes. Direct measures of PCM properties through micropipette aspiration technique showed that PCM was different from mechanical property of chondrocytes and nature extracellular matrix. However, the function of PCM is not clear, and need further study. PMID:26255489
Whitby Mudstone, flow from matrix to fractures
NASA Astrophysics Data System (ADS)
Houben, Maartje; Hardebol, Nico; Barnhoorn, Auke; Boersma, Quinten; Peach, Colin; Bertotti, Giovanni; Drury, Martyn
2016-04-01
Fluid flow from matrix to well in shales would be faster if we account for the duality of the permeable medium considering a high permeable fracture network together with a tight matrix. To investigate how long and how far a gas molecule would have to travel through the matrix until it reaches an open connected fracture we investigated the permeability of the Whitby Mudstone (UK) matrix in combination with mapping the fracture network present in the current outcrops of the Whitby Mudstone at the Yorkshire coast. Matrix permeability was measured perpendicular to the bedding using a pressure step decay method on core samples and permeability values are in the microdarcy range. The natural fracture network present in the pavement shows a connected network with dominant NS and EW strikes, where the NS fractures are the main fracture set with an orthogonal fracture set EW. Fracture spacing relations in the pavements show that the average distance to the nearest fracture varies between 7 cm (EW) and 14 cm (NS), where 90% of the matrix is 30 cm away from the nearest fracture. By making some assumptions like; fracture network at depth is similar to what is exposed in the current pavements and open to flow, fracture network is at hydrostatic pressure at 3 km depth, overpressure between matrix and fractures is 10% and a matrix permeability perpendicular to the bedding of 0.1 microdarcy, we have calculated the time it takes for a gas molecule to travel to the nearest fracture. These input values give travel times up to 8 days for a distance of 14 cm. If the permeability is changed to 1 nanodarcy or 10 microdarcy travel times change to 2.2 years or 2 hours respectively.
Mechanisms balancing skeletal matrix synthesis and degradation.
Blair, Harry C; Zaidi, Mone; Schlesinger, Paul H
2002-01-01
Bone is regulated by evolutionarily conserved signals that balance continuous differentiation of bone matrix-producing cells against apoptosis and matrix removal. This is continued from embryogenesis, where the skeleton differentiates as a solid mass and is shaped into separate bones by cell death and proteolysis. The two major tissues of the skeleton are avascular cartilage, with an extracellular matrix based on type II collagen and hydrophilic proteoglycans, and bone, a stronger and lighter material based on oriented type I collagen and hydroxyapatite. Both differentiate from the same mesenchymal stem cells. This differentiation is regulated by a family of related signals centred on bone morphogenic proteins. Fibroblast growth factors, Indian hedgehog and parathyroid hormone-related protein are important in determining the type of matrix and the relation of skeletal and non-skeletal structures. Removal of mineralized matrix involves apoptosis of matrix cells and differentiation of acid-secreting cells (osteoclasts) from macrophage precursors. Key regulators of matrix removal are signals in the tumour-necrosis-factor family. Osteoclasts dissolve bone by isolating a region of the matrix and secreting HCl and proteinases at that site. Successive cycles of removal and replacement allow growth, repair and remodelling. The signals for bone turnover are predominantly cell-membrane-associated, allowing very specific spatial regulation. In addition to its support function, bone is a reservoir of Ca2+, PO3-(4) and OH-. Secondary modulation of mineral secretion and bone degradation are mediated by humoral signals, including parathyroid hormone and vitamin D, as well as the cytokines that also regulate the underlying cell differentiation. PMID:12023876
Ubiquitination of specific mitochondrial matrix proteins.
Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron
2016-06-17
Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. PMID:27157140
Pseudomonas biofilm matrix composition and niche biology
Mann, Ethan E.; Wozniak, Daniel J.
2014-01-01
Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072
Instructive Roles of Extracellular Matrix on Autophagy
Neill, Thomas; Schaefer, Liliana; Iozzo, Renato V.
2015-01-01
Autophagy plays an essential role in maintaining an intricate balance between nutrient demands and energetic requirements during normal homeostasis. Autophagy recycles metabolic substrates from nonspecific bulk degradation of proteins and excess or damaged organelles. Recent work posits an active and dynamic signaling role for extracellular matrix-evoked autophagic regulation, that is, allosteric and independent of prevailing nutrient conditions. Several candidates, representing a diverse repertoire of matrix constituents (decorin, collagen VI, laminin α2, endostatin, endorepellin, and kringle V), can modulate autophagic signaling pathways. Importantly, a novel principle indicates that matrix constituents can differentially modulate autophagic induction and repression via interaction with specific receptors. Most of the matrix-derived factors described here appear to control autophagy in a canonical manner but independent of nutrient deprivation. Because the molecular composition and structure of the extracellular matrix are dynamically remodeled during various physiological and pathological conditions, we propose that matrix-regulated autophagy is key for maintaining proper tissue homeostasis and disease prevention, such as cancer progression and muscular dystrophies. PMID:24976620
NASA Astrophysics Data System (ADS)
Smirnov, Andrey
2016-08-01
A torus action on a symplectic variety allows one to construct solutions to the quantum Yang-Baxter equations ( R-matrices). For a torus action on cotangent bundles over flag varieties the resulting R-matrices are the standard rational solutions of the Yang-Baxter equation, well known in the theory of quantum integrable systems. The torus action on the instanton moduli space leads to more complicated R-matrices, depending additionally on two equivariant parameters t 1 and t 2. In this paper we derive an explicit expression for the R-matrix associated with the instanton moduli space. We study its matrix elements and its Taylor expansion in the powers of the spectral parameter. Certain matrix elements of this R-matrix give a generating function for the characteristic classes of tautological bundles over the Hilbert schemes in terms of the bosonic cut-and-join operators. In particular we rederive from the R-matrix the well known Lehn's formula for the first Chern class. We explicitly compute the first several coefficients for the power series expansion of the R-matrix in the spectral parameter. These coefficients are represented by simple contour integrals of some symmetrized bosonic fields.
Temperature dependent nonlinear metal matrix laminae behavior
NASA Technical Reports Server (NTRS)
Barrett, D. J.; Buesking, K. W.
1986-01-01
An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.
Genetic Relationships Between Chondrules, Rims and Matrix
NASA Technical Reports Server (NTRS)
Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.
2004-01-01
The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.
Matrix method for acoustic levitation simulation.
Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C
2011-08-01
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort. PMID:21859587
Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens
NASA Technical Reports Server (NTRS)
Liu, H. K.; Liang, Y.-Z.
1984-01-01
A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4 percent, which corresponds to an 8-bit accuracy.
Inhibition of membrane-type 1 matrix metalloproteinase at cell-matrix adhesions.
Takino, Takahisa; Saeki, Hiromi; Miyamori, Hisashi; Kudo, Tomoya; Sato, Hiroshi
2007-12-15
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion and metastasis. We previously reported that extracellular matrix degradation by MT1-MMP regulates cell migration via modulating sustained integrin-mediated signals. In this study, MT1-MMP-expressing cells were plated onto fibronectin-coated plates and monitored for cell-matrix adhesion formation and fibronectin degradation. The fibronectin was degraded and removed in line with the cell migration track. The migrating cells showed a polarized morphology and were in contact with the edge of fibronectin through the leading edge, in which cell-matrix adhesions are concentrated. Expression of MT1-MMP targeted to cell-matrix adhesions by fusing with the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) promoted the initial fibronectin lysis at the cell periphery immediately after adhesion. These results suggest that fibronectin is degraded by MT1-MMP located at cell-matrix adhesions, which are concentrated at the leading edge of the migrating cells. To inhibit MT1-MMP at cell-matrix adhesion, the dominant negative form of MT1-MMP (MT1-Pex) was targeted to the cell-matrix adhesion by fusing with the FAT domain (MT1-Pex-FAT). MT1-Pex-FAT accumulated at cell-matrix adhesions and inhibited fibronectin degradation as well as FAK phosphorylation more effectively than parental MT1-Pex. MT1-Pex-FAT was also shown to suppress the invasion of tumor cells into three-dimensional collagen gel more strongly than MT1-Pex. These results suggest that MT1-MMP-mediated extracellular matrix lysis at cell-matrix adhesions induces the establishment of cell polarity, which facilitates cell-matrix adhesion turnover and subsequent cell migration. This model highlights the role of MT1-MMP at the leading edge of migrating cells. PMID:18089791
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1988-01-01
Continuous fiber reinforced metal matrix composites (MMC) are projected for use in high temperature, stiffness critical parts that will be subjected to cyclic loadings. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four catagories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage are discussed and illustrated by examples. The emphasis is on the fatigue of unnotched laminates.
Auger analysis of a fiber/matrix interface in a ceramic matrix composite
NASA Technical Reports Server (NTRS)
Honecy, Frank S.; Pepper, Stephen V.
1988-01-01
Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.
Experimental study on mechanical behavior of fiber/matrix interface in metal matrix composite
Wang, Q.; Chiang, F.P.
1994-12-31
The technique SIEM(Speckle Interferometry with Electron Microscopy) was employed to quantitatively measure the deformation on the fiber/matrix interface in SCS-6/Ti-6-4 composite at a microscale level. The displacement field within the fiber/matrix interphase zone was determined by in-situ observation with sensitivity of 0.003({micro}m). The macro-mechanical properties were compared with micro-mechanical behavior. It is shown that the strength in the interphase zone is weaker than the matrix tensile strength. The deformation process can be characterized by the uniform deformation, interface strain concentration and debond, and matrix plastic deformation.
Method of producing a hybrid matrix fiber composite
Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.
2006-03-28
Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1
NASA Technical Reports Server (NTRS)
2003-01-01
INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 3
INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1
NASA Technical Reports Server (NTRS)
2003-01-01
INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 1
NASA Astrophysics Data System (ADS)
Haxton, Wick; Lunardini, Cecilia
2008-09-01
Semi-leptonic electroweak interactions in nuclei—such as β decay, μ capture, charged- and neutral-current neutrino reactions, and electron scattering—are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |p→|/M, where p→ and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q, where q is the magnitude of the three-momentum transfer. While results for such matrix elements are available in tabular form, with certain restriction on quantum numbers, the task of determining the analytic form of a response function can still be quite tedious, requiring the folding of the tabulated matrix elements with the nuclear density matrix, and subsequent algebra to evaluate products of operators. Here we provide a Mathematica script for generating these matrix elements, which will allow users to carry out all such calculations by symbolic manipulation. This will eliminate the errors that may accompany hand calculations and speed the calculation of electroweak nuclear cross sections and rates. We illustrate the use of the new script by calculating the cross sections for charged- and neutral-current neutrino scattering in 12C. Program summaryProgram title: SevenOperators Catalogue identifier: AEAY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
METCAN-PC - METAL MATRIX COMPOSITE ANALYZER
NASA Technical Reports Server (NTRS)
Murthy, P. L.
1994-01-01
High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN
Inelastic deformation of metal matrix composites
NASA Technical Reports Server (NTRS)
Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.
1993-01-01
A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.
Spark plasma sintering of aluminum matrix composites
NASA Astrophysics Data System (ADS)
Yadav, Vineet
2011-12-01
Aluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.
Thermal stress effects in intermetallic matrix composites
NASA Technical Reports Server (NTRS)
Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.
1993-01-01
Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.
Thermal shock resistance of ceramic matrix composites
NASA Technical Reports Server (NTRS)
Carper, D. M.; Nied, H. F.
1993-01-01
The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.
Transfer matrix representation for periodic planar media
NASA Astrophysics Data System (ADS)
Parrinello, A.; Ghiringhelli, G. L.
2016-06-01
Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.
Estimating the Inertia Matrix of a Spacecraft
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Keim, Jason; Shields, Joel
2007-01-01
A paper presents a method of utilizing some flight data, aboard a spacecraft that includes reaction wheels for attitude control, to estimate the inertia matrix of the spacecraft. The required data are digitized samples of (1) the spacecraft attitude in an inertial reference frame as measured, for example, by use of a star tracker and (2) speeds of rotation of the reaction wheels, the moments of inertia of which are deemed to be known. Starting from the classical equations for conservation of angular momentum of a rigid body, the inertia-matrix-estimation problem is formulated as a constrained least-squares minimization problem with explicit bounds on the inertia matrix incorporated as linear matrix inequalities. The explicit bounds reflect physical bounds on the inertia matrix and reduce the volume of data that must be processed to obtain a solution. The resulting minimization problem is a semidefinite optimization problem that can be solved efficiently, with guaranteed convergence to the global optimum, by use of readily available algorithms. In a test case involving a model attitude platform rotating on an air bearing, it is shown that, relative to a prior method, the present method produces better estimates from few data.
Calculus of continuous matrix product states
NASA Astrophysics Data System (ADS)
Haegeman, Jutho; Cirac, J. Ignacio; Osborne, Tobias J.; Verstraete, Frank
2013-08-01
We discuss various properties of the variational class of continuous matrix product states, a class of Ansatz states for one-dimensional quantum fields that was recently introduced as the direct continuum limit of the highly successful class of matrix product states. We discuss both attributes of the physical states, e.g., by showing in detail how to compute expectation values, as well as properties intrinsic to the representation itself, such as the gauge freedom. We consider general translation noninvariant systems made of several particle species and derive certain regularity properties that need to be satisfied by the variational parameters. We also devote a section to the translation invariant setting in the thermodynamic limit and show how continuous matrix product states possess an intrinsic ultraviolet cutoff. Finally, we introduce a new set of states, which are tangent to the original set of continuous matrix product states. For the case of matrix product states, this construction has recently proven relevant in the development of new algorithms for studying time evolution and elementary excitations of quantum spin chains. We thus lay the foundation for similar developments for one-dimensional quantum fields.
Phylogenetic Stochastic Mapping Without Matrix Exponentiation
Irvahn, Jan; Minin, Vladimir N.
2014-01-01
Abstract Phylogenetic stochastic mapping is a method for reconstructing the history of trait changes on a phylogenetic tree relating species/organism carrying the trait. State-of-the-art methods assume that the trait evolves according to a continuous-time Markov chain (CTMC) and works well for small state spaces. The computations slow down considerably for larger state spaces (e.g., space of codons), because current methodology relies on exponentiating CTMC infinitesimal rate matrices—an operation whose computational complexity grows as the size of the CTMC state space cubed. In this work, we introduce a new approach, based on a CTMC technique called uniformization, which does not use matrix exponentiation for phylogenetic stochastic mapping. Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that targets the distribution of trait histories conditional on the trait data observed at the tips of the tree. The computational complexity of our MCMC method grows as the size of the CTMC state space squared. Moreover, in contrast to competing matrix exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and increase the computational efficiency of our algorithm further. Using simulated data, we illustrate advantages of our MCMC algorithm and investigate how large the state space needs to be for our method to outperform matrix exponentiation approaches. We show that even on the moderately large state space of codons our MCMC method can be significantly faster than currently used matrix exponentiation methods. PMID:24918812
D-MATRIX: A web tool for constructing weight matrix of conserved DNA motifs
Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok
2009-01-01
Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. DMATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the coregulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sosbox cisregulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. DMATRIX tool is accessible through the CIMAP domain network. Availability http://203.190.147.116/dmatrix/ PMID:19759861
Quaternion from rotation matrix. [four-parameter representation of coordinate transformation matrix
NASA Technical Reports Server (NTRS)
Shepperd, S. W.
1978-01-01
A quaternion is regarded as a four-parameter representation of a coordinate transformation matrix, where the four components of the quaternion are treated on an equal basis. This leads to a unified, compact, and singularity-free approach to determining the quaternion when the matrix is given.
Cache oblivious storage and access heuristics for blocked matrix-matrix multiplication
Bock, Nicolas; Rubensson, Emanuel H; Niklasson, Anders M N; Challacombe, Matt; Salek, Pawel
2008-01-01
The authors investigate effects of ordering in blocked matrix-matrix multiplication. They find that submatrices do not have to be stored contiguously in memory in order to achieve near optimal performance. They also find a good choice of execution order of submatrix operations can lead to a speedup of up to four times for small block sizes.
Electrolyte matrix for molten carbonate fuel cells
Huang, C.M.; Yuh, C.Y.
1999-02-09
A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.
Electrolyte matrix for molten carbonate fuel cells
Huang, Chao M.; Yuh, Chao-Yi
1999-01-01
A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.
Snapshot retinal imaging Mueller matrix polarimeter
NASA Astrophysics Data System (ADS)
Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael
2015-09-01
Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.
Ethynylated aromatics as high temperature matrix resins
NASA Technical Reports Server (NTRS)
Hurwitz, F. I.
1987-01-01
Difunctional and trifunctional arylacetylenes were used as monomers to form thermoset matrix resin composites. Composites can be hot-pressed at 180 C to react 80 percent of the acetylene groups. Crosslinking is completed by postcuring at 350 C. The postcured resins are thermally stable to nominally 460 C in air. As a result of their high crosslink density, the matrix exhibits brittle failure when uniaxial composites are tested in tension. Failure of both uniaixial tensile and flexural specimens occurs in shear at the fiber-matrix interface. Tensile fracture stresses for 0-deg composites fabricated with 60 v/o Celion 6K graphite fiber were 827 MPa. The strain to failure was 0.5 percent. Composites fabricated with 8 harness satin Celion cloth (Fiberite 1133) and tested in tension also failed in shear at tensile stresses of 413 MPa.
Achondrogenesis type II, abnormalities of extracellular matrix.
Horton, W A; Machado, M A; Chou, J W; Campbell, D
1987-09-01
Immune and lectin histochemical and microchemical methods were employed to study growth cartilage from seven cases of achondrogenesis type II (Langer-Saldino). The normal architecture of the epiphyseal and growth plate cartilage was replaced by a morphologically heterogeneous tissue. Some areas were comprised of vascular canals surrounded by extensive fibrous tissue and enlarged cells that had the appearance and histochemical characteristics of hypertrophic chondrocytes. Other areas contained a mixture of cells ranging from small to the enlarged chondrocytes. The extracellular matrix in the latter areas was more abundant and had characteristics of both precartilage mesenchymal matrix and typical cartilage matrix; it contained types I and II collagen, cartilage proteoglycan, fibronectin, and peanut agglutinin binding glycoconjugate(s). Peptide mapping of cyanogen bromide cartilage collagen peptides revealed the presence of types I and II collagen. These observations could be explained by a defect in the biosynthesis of type II collagen or in chondrocyte differentiation. PMID:3309860
t matrix of metallic wire structures
Zhan, T. R. Chui, S. T.
2014-04-14
To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures.
Google matrix analysis of directed networks
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2015-10-01
In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.
Iterative electro-optic matrix processor
NASA Astrophysics Data System (ADS)
Carlotto, M. J.
An electro-optic vector matrix processor with electronic feedback is described. The iterative optical processor (IOP) is designed for the rapid solution of linear algebraic equations. The IOP and the iterative algorithm it realizes are analyzed and simulated. A version of the system was fabricated using advanced solid state light sources and detectors plus fiber optic technology, and its performance is evaluated. An extension of the system using wavelength multiplexing is developed and the basic system concepts demonstrated. Its use in the restoration of degraded images or signals (deconvolution) and the computation of matrix eigenvectors and eigenvalues and matrix inversion are demonstrated. The two major case studies pursued are: adaptive phased array radar processing and optimal control. In the former case, the system is used to compute the adaptive antenna weights for a radar system. In the latter case, the IOP solves the linear quadratic regular and algebraic Ricatti equations of modern control theory.
Radiative transfer model: matrix operator method.
Liu, Q; Ruprecht, E
1996-07-20
A radiative transfer model, the matrix operator method, is discussed here. The matrix operator method is applied to a plane-parallel atmosphere within three spectral ranges: the visible, the infrared, and the microwave. For a homogeneous layer with spherical scattering, the radiative transfer equation can be solved analytically. The vertically inhomogeneous atmosphere can be subdivided into a set of homogeneous layers. The solution of the radiative transfer equation for the vertically inhomogeneous atmosphere is obtained recurrently from the analytical solutions for the subdivided layers. As an example for the application of the matrix operator method, the effects of the cirrus and the stratocumulus clouds on the net radiation at the surface and at the top of the atmosphere are investigated. The relationship between the polarization in the microwave range and the rain rates is also studied. Copies of the FORTRAN program and the documentation of the FORTRAN program on a diskette are available. PMID:21102832
Propulsive matrix of a helical flagellum
NASA Astrophysics Data System (ADS)
Zhang, He-Peng; Liu, Bin; Bruce, Rodenborn; Harry, L. Swinney
2014-11-01
We study the propulsion matrix of bacterial flagella numerically using slender body theory and the regularized Stokeslet method in a biologically relevant parameter regime. All three independent elements of the matrix are measured by computing propulsive force and torque generated by a rotating flagellum, and the drag force on a translating flagellum. Numerical results are compared with the predictions of resistive force theory, which is often used to interpret micro-organism propulsion. Neglecting hydrodynamic interactions between different parts of a flagellum in resistive force theory leads to both qualitative and quantitative discrepancies between the theoretical prediction of resistive force theory and the numerical results. We improve the original theory by empirically incorporating the effects of hydrodynamic interactions and propose new expressions for propulsive matrix elements that are accurate over the parameter regime explored.
Enter the Matrix: Shape, Signal, and Superhighway
Lund, Dane K.; Cornelison, DDW
2013-01-01
Mammalian skeletal muscle is notable for both its highly ordered biophysical structure and its regenerative capacity following trauma. Critical to both of these features is the specialized muscle extracellular matrix (ECM), comprising both the multiple concentric sheaths of connective tissue surrounding structural units from single myofibers to whole muscles and the dense interstitial matrix that occupies the space between them. ECM-dependent interactions affect all activities of the resident muscle stem cell population, the satellite cell, from the maintenance of quiescence and stem cell potential to the regulation of proliferation and differentiation. This review will focus on the role of the extracellular matrix in muscle regeneration, with a particular emphasis on regulation of satellite cell activity. PMID:23374506
Dentin Matrix Proteins in Bone Tissue Engineering
Ravindran, Sriram
2016-01-01
Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering. PMID:26545748
Improved high temperature resistant matrix resins
NASA Technical Reports Server (NTRS)
Chang, G. E.; Powell, S. H.; Jones, R. J.
1983-01-01
The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.
Phosphorylated silk fibroin matrix for methotrexate release.
Volkov, Vadim; Sárria, Marisa P; Gomes, Andreia C; Cavaco-Paulo, Artur
2015-01-01
Silk-based matrix was produced for delivery of a model anticancer drug, methotrexate (MTX). The calculation of net charge of silk fibroin and MTX was performed to better understand the electrostatic interactions during matrix formation upon casting. Silk fibroin films were cast at pH 7.2 and pH 3.5. Protein kinase A was used to prepare phosphorylated silk fibroin. The phosphorylation content of matrix was controlled by mixing at specific ratios the phosphorylated and unphosphorylated solutions. In vitro release profiling data suggest that the observed interactions are mainly structural and not electrostatical. The release of MTX is facilitated by use of proteolytic enzymes and higher pHs. The elevated β-sheet content and crystallinity of the acidified-cast fibroin solution seem not to favor drug retention. All the acquired data underline the prevalence of structural interactions over electrostatical interactions between methotrexate and silk fibroin. PMID:25435334
Nanomechanics of the Cartilage Extracellular Matrix
NASA Astrophysics Data System (ADS)
Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine
2011-08-01
Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.
Nonsmooth nonnegative matrix factorization (nsNMF).
Pascual-Montano, Alberto; Carazo, J M; Kochi, Kieko; Lehmann, Dietrich; Pascual-Marqui, Roberto D
2006-03-01
We propose a novel nonnegative matrix factorization model that aims at finding localized, part-based, representations of nonnegative multivariate data items. Unlike the classical nonnegative matrix factorization (NMF) technique, this new model, denoted "nonsmooth nonnegative matrix factorization" (nsNMF), corresponds to the optimization of an unambiguous cost function designed to explicitly represent sparseness, in the form of nonsmoothness, which is controlled by a single parameter. In general, this method produces a set of basis and encoding vectors that are not only capable of representing the original data, but they also extract highly localized patterns, which generally lend themselves to improved interpretability. The properties of this new method are illustrated with several data sets. Comparisons to previously published methods show that the new nsNMF method has some advantages in keeping faithfulness to the data in the achieving a high degree of sparseness for both the estimated basis and the encoding vectors and in better interpretability of the factors. PMID:16526426
Ethynylated aromatics as high temperature matrix resins
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1986-01-01
Difunctional and trifunctional arylacetylenes were used as monomers to form thermoset matrix resin composites. Composites can be hot pressed at 180 C to react 80 percent of the acetylene groups. Crosslinking is completed by postcuring at 350 C. The postcured resins are thermally stable to nominally 460 C in air. As a result of their high crosslink density, the matrix exhibits brittle failure when unaxial composites are tested in tension. Failure of both uniaxial tensile and flexural specimens occurs in shear at the fiber matrix interface. Tensile fracture stresses for 0 deg composites fabricated with 60 v/o Celion 6K graphite fiber were 827 MPa. The strain to failure was 0.5 percent. Composites fabricated with 8 harness satin Celion cloth (Fiberite 1133) and tested in tension also failed in shear at tensile stresses of 413 MPa.
Decorin modulates matrix mineralization in vitro
NASA Technical Reports Server (NTRS)
Mochida, Yoshiyuki; Duarte, Wagner R.; Tanzawa, Hideki; Paschalis, Eleftherios P.; Yamauchi, Mitsuo
2003-01-01
Decorin (DCN), a member of small leucine-rich proteoglycans, is known to modulate collagen fibrillogenesis. In order to investigate the potential roles of DCN in collagen matrix mineralization, several stable osteoblastic cell clones expressing higher (sense-DCN, S-DCN) and lower (antisense-DCN, As-DCN) levels of DCN were generated and the mineralized nodules formed by these clones were characterized. In comparison with control cells, the onset of mineralization by S-DCN clones was significantly delayed; whereas it was markedly accelerated and the number of mineralized nodules was significantly increased in As-DCN clones. The timing of mineralization was inversely correlated with the level of DCN synthesis. In these clones, the patterns of cell proliferation and differentiation appeared unaffected. These results suggest that DCN may act as an inhibitor of collagen matrix mineralization, thus modulating the timing of matrix mineralization.
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; Schwartz, Oded
2016-05-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
Thermal and mechanical behavior of metal matrix and ceramic matrix composites
NASA Technical Reports Server (NTRS)
Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)
1990-01-01
The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.
Polymeric matrix materials for infrared metamaterials
Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar
2014-04-22
A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.
Fermi matrix element with isospin breaking
NASA Astrophysics Data System (ADS)
Guichon, P. A. M.; Thomas, A. W.; Saito, K.
2011-02-01
Prompted by the level of accuracy now being achieved in tests of the unitarity of the CKM matrix, we consider the possible modification of the Fermi matrix element for the β-decay of a neutron, including possible in-medium and isospin violating corrections. While the nuclear modifications lead to very small corrections once the Behrends-Sirlin-Ademollo-Gatto theorem is respected, the effect of the u-d mass difference on the conclusion concerning Vud is no longer insignificant. Indeed, we suggest that the correction to the value of |+|+| is at the level of 10.
Reaction kinetics between fiber and matrix
NASA Technical Reports Server (NTRS)
Kopp, M. W.; Tien, J. K.; Petrasek, D. W.
1988-01-01
Interdiffusion and interdiffusion controlled intermediate phase formation in metal matrix composites can be of interest for the prolonged application of these systems at high temperatures. Methods are discussed that address the kinetics of interdiffusion in systems that exhibit solid solution intermixing or the formation of a third intermediate phase at the fiber/matrix interface, or both. The tungsten fiber reinforced niobium and tungsten fiber reinforced superalloy systems are employed as model systems for experimentation and discussion. In an effort to impede interdiffusion, the concept of ion implanted diffusion barriers have been examined. Preliminary results on the feasibility and effectiveness of ion implanted diffusion barriers are presented.
Some remarks on unilateral matrix equations
Cerchiai, Bianca L.; Zumino, Bruno
2001-02-01
We briefly review the results of our paper LBNL-46775: We study certain solutions of left-unilateral matrix equations. These are algebraic equations where the coefficients and the unknown are square matrices of the same order, or, more abstractly, elements of an associative, but possibly noncommutative algebra, and all coefficients are on the left. Recently such equations have appeared in a discussion of generalized Born-Infeld theories. In particular, two equations, their perturbative solutions and the relation between them are studied, applying a unified approach based on the generalized Bezout theorem for matrix polynomials.
Postglacial matrix diffusion in a boulder sample
Rasilainen, K.; Suksi, J.; Kulmala, S.; Hellmuth, K.H.; Lindberg, A.
1996-08-01
A boulder sample was studied for its unusual U content. Analyses of U-series nuclides within the rock matrix perpendicular to an assumed fracture face show abrupt pulse-like concentration distributions with very low concentrations of U daughters. Both Th-230/U-234 and Pa-231/U-235 activity ratios are low, indicating recent U accumulation into the rock. Matrix diffusion is tested as a possible cause for the experimental observations. The authors assume that the diffusion process was triggered and controlled by rock expansion, strong mixing of different water types and rapid land uplift at the end phase of the last glaciation.
Ceramic Matrix Composite (CMC) Materials Characterization
NASA Technical Reports Server (NTRS)
Calomino, Anthony
2001-01-01
Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.
Ceramic Matrix Composite (CMC) Materials Development
NASA Technical Reports Server (NTRS)
DiCarlo, James
2001-01-01
Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.
Novel formulations of CKM matrix renormalization
Kniehl, Bernd A.; Sirlin, Alberto
2009-12-17
We review two recently proposed on-shell schemes for the renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix in the Standard Model. One first constructs gauge-independent mass counterterm matrices for the up- and down-type quarks complying with the hermiticity of the complete mass matrices. Diagonalization of the latter then leads to explicit expressions for the CKM counterterm matrix, which are gauge independent, preserve unitarity, and lead to renormalized amplitudes that are non-singular in the limit in which any two quarks become mass degenerate. One of the schemes also automatically satisfies flavor democracy.
NbTi superconductors with aluminium matrix
Buryak, V.P.; Dugadko, A.B.; Mironova, O.N.; Petrusenko, A.I. ); Bliznyuk, V.A.; Dolbinov, J.D.; Lykhin, V.A. )
1992-01-01
This paper reports that the authors designed, produced and studied NbTi composite superconductors with Al, or Al-alloy, or combined Al and Cu matrix, which have reduced weight. Wires of different design with 0.5-2.0 mm diameter were manufactured using hydrostatic extrusion. The weight reduction in comparison with the same filling factor copper matrix superconductor achieves 20-40%. The overall critical current density at 5 T magnetic field is (1.6-2.8) {center dot} 10{sup 9} A/cm{sup 2}.
Khriachtchev, Leonid; Tapio, Salla; Domanskaya, Alexandra V.; Raesaenen, Markku; Isokoski, Karoliina; Lundell, Jan
2011-03-28
We report on a new noble-gas molecule HXeOBr prepared in a low-temperature xenon matrix from the HBr and N{sub 2}O precursors by UV photolysis and thermal annealing. This molecule is assigned with the help of deuteration experiments and ab initio calculations including anharmonic methods. The H-Xe stretching frequency of HXeOBr is observed at 1634 cm{sup -1}, which is larger by 56 cm{sup -1} than the frequency of HXeOH identified previously. The experiments show a higher thermal stability of HXeOBr molecules in a xenon matrix compared to HXeOH.
Matrix Metalloproteinases: Regulators of the Tumor Microenvironment
Kessenbrock, Kai; Plaks, Vicki; Werb, Zena
2010-01-01
Extracellular proteolysis mediates tissue homeostasis. In cancer, altered proteolysis leads to unregulated tumor growth, tissue remodeling, inflammation, tissue invasion, and metastasis. The matrix metalloproteinases (MMPs) represent the most prominent family of proteinases associated with tumorigenesis. Recent technological developments have markedly advanced our understanding of MMPs as modulators of the tumor microenvironment. In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner. These aspects of MMP function are reorienting our approaches to cancer therapy. PMID:20371345
Interaction picture density matrix quantum Monte Carlo
Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.
Physical quantities involved in a Mueller matrix
NASA Astrophysics Data System (ADS)
Gil, José J.
2016-05-01
The polarimetric properties of a material medium are summarized in the sixteen elements of its associated Mueller matrix. The quantities carrying specific information on the significant polarimetric features have to be defined on the basis of the analysis of the mathematical structure of Mueller matrices. It is found that any Mueller matrix can be parameterized through two retardance vectors and ten quantities that are invariant under dual retarder transformations. This parameterization leads to proper definitions of the retardance and depolarization properties, which together with the diattenuation and polarizance properties provide complete polarimetric characterization of the sample under consideration.
Invariant quantities of a nondepolarizing Mueller matrix
NASA Astrophysics Data System (ADS)
Gil, José J.; José, Ignacio San
2016-07-01
Orthogonal Mueller matrices can be considered either as corresponding to retarders or to generalized transformations of the polarization basis for the representation of Stokes vectors, so that they constitute the only type of Mueller matrices that preserve the degree of polarization and the intensity of any partially-polarized input Stokes vector. The physical quantities which remain invariant when a nondepolarizing Mueller matrix is transformed through its product by different types of orthogonal Mueller matrices are identified and interpreted, providing a better knowledge of the information contained in a nondepolarizing Mueller matrix.
NASA Astrophysics Data System (ADS)
Asano, Yuhma; Kawai, Daisuke; Yoshida, Kentaroh
2015-06-01
We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ansätze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincaré sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.; Prewo, K. M.
1977-01-01
The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.
On Matrix Representations of Participation Constraints
NASA Astrophysics Data System (ADS)
Hartmann, Sven; Leck, Uwe; Link, Sebastian
We discuss the existence of matrix representations for generalised and minimum participation constraints which are frequently used in database design and conceptual modelling. Matrix representations, also known as Armstrong relations, have been studied in literature e.g. for functional dependencies and play an important role in example-based design and for the implication problem of database constraints. The major tool to achieve the results in this paper is a theorem of Hajnal and Szemerédi on the occurrence of clique graphs in a given graph.
Solidification processing of metal-matrix composites
Mortensen, A.; Cornie, J.A.; Flemings, M.C.
1988-02-01
Infiltration of fibers with molten metal and metal/reinforcement slurry casting have been developed for the net-shape solidification processing of MMCs, the largest portion of whose production costs are associated with processing. The low viscosity of liquid metals renders the fabrication of MMCs by casting much easier than that of polymer matrix composites. Attention is given to the methods developed to date to deal with problems that arise from fiber/matrix reactivity and porosity due to poor infiltration. 219 references.
More on rotations as spin matrix polynomials
Curtright, Thomas L.
2015-09-15
Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.
Corporate bond liquidity and matrix pricing
NASA Astrophysics Data System (ADS)
Kagraoka, Yusho
2005-09-01
Matrix priced bond price data are investigated to model the liquidity of a corporate bond. Preliminary study shows that the yield spread is wide when a yield history records jumps. As well as respecting the way how matrix prices are generated, this finding leads us to a conjecture that time series of yield is represented by a jump-diffusion process. Then the kurtosis of a yield distribution can be regarded as a proxy variable for the liquidity. The conjecture is empirically validiated by regression analysis of yield spreads.
Analytical solutions to matrix diffusion problems
Kekäläinen, Pekka
2014-10-06
We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.
A personal journey with matrix metalloproteinases.
Nagase, Hideaki
2016-09-01
I was given the honor of delivering the 2015 Lifetime Membership Award lecture at the International Proteolysis Society's annual meeting held in Penang, Malaysia in October 2015. It gave me an opportunity to look back on how I started my research on matrix metalloproteinases (MMPs) and how I continued to work on these proteinases for the next 42 years. This is a series of sketches from the personal journey that I took with MMPs, starting from the purification of metalloproteinases, cloning, structural studies, then to a more recent encounter, endocytic regulation of matrix-degrading metalloproteinases. PMID:27341559
Generating Nice Linear Systems for Matrix Gaussian Elimination
ERIC Educational Resources Information Center
Homewood, L. James
2004-01-01
In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…
48 CFR 1652.370 - Use of the matrix.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Use of the matrix. 1652... EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES FEHBP Clause Matrix 1652.370 Use of the matrix. (a) The matrix in this section lists the FAR and FEHBAR clauses to be used...
48 CFR 1652.370 - Use of the matrix.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Use of the matrix. 1652... EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES FEHBP Clause Matrix 1652.370 Use of the matrix. (a) The matrix in this section lists the FAR and FEHBAR clauses to be used...
48 CFR 1652.370 - Use of the matrix.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Use of the matrix. 1652.370 Section 1652.370 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES FEHBP Clause Matrix 1652.370 Use of the matrix. (a) The matrix...
48 CFR 1652.370 - Use of the matrix.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Use of the matrix. 1652... EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES FEHBP Clause Matrix 1652.370 Use of the matrix. (a) The matrix in this section lists the FAR and FEHBAR clauses to be used...
Factor Analysis of the Image Correlation Matrix.
ERIC Educational Resources Information Center
Kaiser, Henry F.; Cerny, Barbara A.
1979-01-01
Whether to factor the image correlation matrix or to use a new model with an alpha factor analysis of it is mentioned, with particular reference to the determinacy problem. It is pointed out that the distribution of the images is sensibly multivariate normal, making for "better" factor analyses. (Author/CTM)
Proving Program Termination With Matrix Weighted Digraphs
NASA Technical Reports Server (NTRS)
Dutle, Aaron
2015-01-01
Program termination analysis is an important task in logic and computer science. While determining if a program terminates is known to be undecidable in general, there has been a significant amount of attention given to finding sufficient and computationally practical conditions to prove termination. One such method takes a program and builds from it a matrix weighted digraph. These are directed graphs whose edges are labeled by square matrices with entries in {-1,0,1}, equipped with a nonstandard matrix multiplication. Certain properties of this digraph are known to imply the termination of the related program. In particular, termination of the program can be determined from the weights of the circuits in the digraph. In this talk, the motivation for addressing termination and how matrix weighted digraphs arise will be briefly discussed. The remainder of the talk will describe an efficient method for bounding the weights of a finite set of the circuits in a matrix weighted digraph, which allows termination of the related program to be deduced.
Polymer matrix electroluminescent materials and devices
Marrocco, III, Matthew L.; Motamedi, Farshad J.; Abdelrazzaq, Feras Bashir; Abdelrazzaq, legal representative, Bashir Twfiq
2012-06-26
Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.
Emerging Educational Institutional Decision-Making Matrix
ERIC Educational Resources Information Center
Ashford-Rowe, Kevin H.; Holt, Marnie
2011-01-01
The "emerging educational institutional decision-making matrix" is developed to allow educational institutions to adopt a rigorous and consistent methodology of determining which of the myriad of emerging educational technologies will be the most compelling for the institution, particularly ensuring that it is the educational or pedagogical but…
Simulating Microfracture In Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.; Gotsis, Pascal K.
1994-01-01
Computational procedures developed for simulating microfracture in metal-matrix/fiber composite materials under mechanical and/or thermal loads at ambient and high temperatures. Procedures evaluate microfracture behavior of composites, establish hierarchies and sequences of fracture modes, and examine influences of compliant layers and partial debonding on properties of composites and on initiation of microfractures in them.
Inverter Matrix for the Clementine Mission
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Blaes, B. R.; Tardio, G.; Soli, G. A.
1994-01-01
An inverter matrix test circuit was designed for the Clementine space mission and is built into the RRELAX (Radiation and Reliability Assurance Experiment). The objective is to develop a circuit that will allow the evaluation of the CMOS FETs using a lean data set in the noisy spacecraft environment.
["Archaic matrix of the oedipus complex"].
Vogt, R
1990-10-01
The clinical implication of Janine Chasseguet-Smirgel's concept of the "archaic matrix of the Oedipus complex" is examined, the resulting deeper understanding of the Oedipus myth is considered. A discussion follows of Chasseguet-Smirgel's way of using this concept in her historical evaluation of German Romantism with regard to the Nazi times and nowadays politics of the Westgerman Green Party. PMID:2251392
Light weight polymer matrix composite material
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)
1988-01-01
A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750 F in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.
Light weight polymer matrix composite material
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)
1991-01-01
A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.
Science Unlimited: Grades K-6 Competency Matrix.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Div. of Arts and Sciences.
This competency matrix matches the primary and intermediate Science Unlimited lessons with the established competencies which appear in the Science Unlimited competency continuum. Primary lessons deal with: investigating dripping faucets; classification/sorting; smell; eyes; color; air; weather; observation and description; mystery boxes; change;…
Hypercontractivity in finite-dimensional matrix algebras
Junge, Marius; Palazuelos, Carlos
2015-02-15
We obtain hypercontractivity estimates for a large class of semigroups defined on finite-dimensional matrix algebras M{sub n}. These semigroups arise from Poisson-like length functions ψ on ℤ{sub n} × ℤ{sub n} and provide new hypercontractive families of quantum channels when ψ is conditionally negative. We also study the optimality of our estimates.
Proteases decode the extracellular matrix cryptome.
Ricard-Blum, Sylvie; Vallet, Sylvain D
2016-03-01
The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets. PMID:26382969
A matrix approach for assessing biosolids stability
Switzenbaum, M.S.; Moss, L.H.; Epstein, E.; Pincince, A.B.; Donovan, J.F.
1998-07-01
Stability assessment of biosolids must be made on the basis of the stabilization process used and the intended use of the manufactured biosolids. In this manner, a matrix based on technology and use was developed as an approach for assessing biosolids stability. Specific tests were recommended as to the most useful methods of stability assessment for each of the stabilization technologies examined.
Matrix--mineral relationships in enamel tissues.
Fearnhead, R W
1979-03-01
A personal view of vertebrate enamels and their matrix-mineral relationships is given by first considering enamel types and speculating on the nature, distribution, formation and role of enamel protein. Not all the work consulted is mentioned in the text. The additional works are, however, included in the list of references. PMID:283133
Evaluation of the Matrix Project. Interchange 77.
ERIC Educational Resources Information Center
McIvor, Gill; Moodie, Kristina
The Matrix Project is a program that has been established in central Scotland with the aim of reducing the risk of offending and anti-social behavior among vulnerable children. The project provides a range of services to children between eight and 11 years of age who are at risk in the local authority areas of Clackmannanshire, Falkirk and…
Improving the precision matrix for precision cosmology
NASA Astrophysics Data System (ADS)
Paz, Dante J.; Sánchez, Ariel G.
2015-12-01
The estimation of cosmological constraints from observations of the large-scale structure of the Universe, such as the power spectrum or the correlation function, requires the knowledge of the inverse of the associated covariance matrix, namely the precision matrix, Ψ . In most analyses, Ψ is estimated from a limited set of mock catalogues. Depending on how many mocks are used, this estimation has an associated error which must be propagated into the final cosmological constraints. For future surveys such as Euclid and Dark Energy Spectroscopic Instrument, the control of this additional uncertainty requires a prohibitively large number of mock catalogues. In this work, we test a novel technique for the estimation of the precision matrix, the covariance tapering method, in the context of baryon acoustic oscillation measurements. Even though this technique was originally devised as a way to speed up maximum likelihood estimations, our results show that it also reduces the impact of noisy precision matrix estimates on the derived confidence intervals, without introducing biases on the target parameters. The application of this technique can help future surveys to reach their true constraining power using a significantly smaller number of mock catalogues.
Computer program performs stiffness matrix structural analysis
NASA Technical Reports Server (NTRS)
Bamford, R.; Batchelder, R.; Schmele, L.; Wada, B. K.
1968-01-01
Computer program generates the stiffness matrix for a particular type of structure from geometrical data, and performs static and normal mode analyses. It requires the structure to be modeled as a stable framework of uniform, weightless members, and joints at which loads are applied and weights are lumped.
ABCD matrix for apertured spherical waves.
Wang, S; Bernabeu, E; Alda, J
1991-05-01
An ABCD matrix for describing the hard aperture under a large Fresnel number is defined in this Technical Note based on Li and Wolf's formula. It is useful for analyzing focal shifts of complicated optical systems with hard apertures. PMID:20700324
Fracture toughness testing of polymer matrix composites
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
1992-01-01
The experimental techniques and associated data analysis methods used to measure the resistance to interlaminar fracture, or 'fracture toughness', of polymer matrix composite materials are described. A review in the use of energy techniques to characterize fracture behavior in elastic solids is given. An overview is presented of the types of approaches employed in the design of delamination-resistant composite materials.
The algebras of large N matrix mechanics
Halpern, M.B.; Schwartz, C.
1999-09-16
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.
On solving for the density matrix
NASA Astrophysics Data System (ADS)
Cummings, F. W.
1985-11-01
A “generating matrix” formalism is presented which is useful in the solution of a class of time-dependent quantum density matrix problems. Three examples of its use are sketched, giving a unified approach to the solution of the problem of the spontaneous emission of electromagnetic radiation from a single atom in various environments.
Decision Matrix. NCEDL Spotlights, No. 8.
ERIC Educational Resources Information Center
National Center for Early Development & Learning, Chapel Hill, NC.
This report focuses on a decision-making model developed at the National Center for Early Development and Learning (NCEDL) and designed to help decisionmakers and policy analysts weigh various policy options for a public issue such as childcare quality. The matrix allows users to compare strategies in terms of desirability and feasibility factors…
Illinois Early Childhood Program Expanded Matrix, 2001.
ERIC Educational Resources Information Center
Illinois State Dept. of Human Services, East St. Louis. Head Start State Collaboration Office.
This matrix provides information on eight early childhood programs offered in Illinois. Presented in grid form, the information can be compared across programs. The programs described are: (1) Head Start and Early Head Start; (2) Illinois Department of Children and Family Services child care; (3) Illinois Department of Human Services child care;…
The Bushido Matrix for Couple Communication
ERIC Educational Resources Information Center
Li, Chi-Sing; Lin, Yu-Fen; Ginsburg, Phil; Eckstein, Daniel
2012-01-01
The concept of Japanese Bushido and its seven virtues were introduced by the authors in this article for the practice and application of couple communication. The Bushido Matrix Worksheet (BMW) was created for enhancing couple's awareness and understanding of each other's values and experiences. An activity and a case study to demonstrate the use…
Preschool Test Matrix: Individual Test Descriptions.
ERIC Educational Resources Information Center
Coordinating Office for Regional Resource Centers, Lexington, KY.
Provided via a text matrix and individual test descriptor sheets is information on 127 tests intended for evaluation of and educational prescription for preschool handicapped children. Brief sections explain the procedures used for selection of assessment devices and define each of the descriptor dimensions--type of assessment device,…
Matrix product states for quantum metrology.
Jarzyna, Marcin; Demkowicz-Dobrzański, Rafał
2013-06-14
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise and is related to the elusive nature of the Heisenberg precision scaling in the asymptotic limit of a large number of probes. PMID:25165900
Modification of natural matrix lac-bagasse for matrix composite films
NASA Astrophysics Data System (ADS)
Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono
2016-02-01
Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.
Extracellular matrix of the developing ovarian follicle.
Irving-Rodgers, Helen F; Rodgers, Raymond J
2006-09-01
There are many different types of extracellular matrices in the different follicle compartments. These have different roles in follicle development and atresia, and they change in composition during these processes. This review focuses on basal lamina matrix in particular, and considers follicular fluid, the newly identified focimatrix, and thecal matrices. When follicles commence growing, the follicular basal lamina changes in its composition from containing all six alpha chains of type IV collagen to only alpha1 and alpha2. Perlecan and nidogen-1 and -2 subsequently become components of the follicular basal lamina, and there is an increase in the amount of laminin chains alpha1, beta2, and gamma1, in the bovine at least. Late in follicular development and on atresia some follicles contain laminin alpha2. On atresia the follicular basal lamina is not degraded, as occurs in ovulation, but can be breached by cells from the thecal layer when it is not aligned by granulosa cells. A novel type of basal lamina-like matrix, called focimatrix (abbreviated from focal intraepithelial matrix), develops between the cells of the membrana granulosa as aggregates of basal lamina material. It does not envelop cells and so cannot perform functions of basal lamina as currently understood. It is hypothesized that focimatrix assists or initiates depolarization of the membrana granulosa necessary for the transformation into luteal cells. The largest osmotically active molecules in follicular fluid are hyaluronan and chondroitin sulfate proteoglycans, including versican and inter-alpha trypsin inhibitor. It has been suggested that these might be responsible for the formation of follicular fluid by creating an osmotic gradient across the follicular wall. The formation, development, and then either ovulation or regression of follicles requires considerable tissue remodeling, cellular replication, and specialization. The expectation of researchers is that extracellular matrix will be
Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A
2007-08-15
Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments
NASA Astrophysics Data System (ADS)
Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.
2007-08-01
Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.
Determination of Matrix Diffusion Properties of Granite
Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti
2007-07-01
Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, {sup 36}Cl, {sup 131}I, {sup 22}Na and {sup 85}Sr at flow rates of 1-50 {mu}L.min{sup -1}. Rock matrix was characterized using {sup 14}C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 {mu}L.min{sup -1}. The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)
Generalized Rayleigh scattering. II. Matrix source functions.
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Kasaurov, A. M.; Loskutov, V. M.; Viik, T.
1995-11-01
Numerical and analytical data are presented on the matrix source functions S(τ) of the standard problem of multiple generalized Rayleigh scattering (GRS) in homogeneous semi-infinite atmospheres with uniformly distributed embedded primary sources of partially polarized radiation. The source matrices S(τ) are found by the discrete-ordinate solution of the relevant 2x2 matrix transfer equation and by albedo shifting technique, which is a version of the accelerated {LAMBDA}-iteration approach. The dependence of the solution of the matrix transfer equation on the parameters of the problem of multiple molecular scattering, albedo of single scattering λ_I_ and depolarization factor W, is carefully considered. (The value W=1 corresponds to Rayleigh scattering, while for scalar isotropic scattering W=0). From the pair of the parameters (λ_I_, W) we switch to (λ_I_, λ_Q_), with λ_Q_=0.7Wλ_I_, and instead of the physically natural domain of the parameter values, λ_Iin[0,1], λ_ Qin[0,0.7λ_I_], in GRS we consider a wider one, λ_ I_, λ_Qin[0,1]. On the plane with the axes (λ_I_, λ_Q_), or the λ-plane, there is a one-parameter family of curves, the isopols, along which S(0) remains constant. The λ-plane and the isopols are the basic instruments in our analysis. Along with presenting the numerical data we discuss the asymptotic behavior of S(τ) for τ->{infinity}. It is shown that the matrix counterpart of the usual scalar conservative isotropic scattering is not the ordinary conservative Rayleigh scattering (λ_I_=1, λ_ Q_=0.7), but the biconservative scattering, i.e., scattering with λ_I_=λ_Q_=1. The analysis of the remarkable properties of biconservative scattering naturally leads to matrix generalizations of the Hopf-Bronstein relation, the Hopf constant etc.
Probabilistic Modeling of Ceramic Matrix Composite Strength
NASA Technical Reports Server (NTRS)
Shan, Ashwin R.; Murthy, Pappu L. N.; Mital, Subodh K.; Bhatt, Ramakrishna T.
1998-01-01
Uncertainties associated with the primitive random variables such as manufacturing process (processing temperature, fiber volume ratio, void volume ratio), constituent properties (fiber, matrix and interface), and geometric parameters (ply thickness, interphase thickness) have been simulated to quantify the scatter in the first matrix cracking strength (FMCS) and the ultimate tensile strength of SCS-6/RBSN (SiC fiber (SCS-6) reinforced reaction-bonded silicon nitride composite) ceramic matrix composite laminate at room temperature. Cumulative probability distribution function for the FMCS and ultimate tensile strength at room temperature (RT) of (0)(sub 8), (0(sub 2)/90(sub 2), and (+/-45(sub 2))(sub S) laminates have been simulated and the sensitivity of primitive variables to the respective strengths have been quantified. Computationally predicted scatter of the strengths for a uniaxial laminate have been compared with those from limited experimental data. Also the experimental procedure used in the tests has been described briefly. Results show a very good agreement between the computational simulation and the experimental data. Dominating failure modes in (0)(sub 8), (0/90)(sub s) and (+/-45)(sub S) laminates have been identified. Results indicate that the first matrix cracking strength for the (0)(sub S), and (0/90)(sub S) laminates is sensitive to the thermal properties, modulus and strengths of both the fiber and matrix whereas the ultimate tensile strength is sensitive to the fiber strength and the fiber volume ratio. In the case of a (+/-45)(sub S), laminate, both the FMCS and the ultimate tensile strengths have a small scatter range and are sensitive to the fiber tensile strength as well as the fiber volume ratio.
Regulation of Corneal Stroma Extracellular Matrix Assembly
Chen, Shoujun; Mienaltowski, Michael J.; Birk, David E.
2014-01-01
The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. PMID:25819456
Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne
2013-01-01
Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787
Bäcklund transformation of matrix equations and a discrete matrix first Painlevé equation
NASA Astrophysics Data System (ADS)
Gordoa, P. R.; Pickering, A.; Zhu, Z. N.
2013-08-01
We show that the known auto-Bäcklund transformation for the matrix second Painlevé equation can be generalized to a much wider class of equations. This auto-Bäcklund transformation is an involution and so cannot be used on its own to generate an infinite sequence of different solutions, although for particular equations a second auto-Bäcklund transformation allows this to be done. We also give a Bäcklund transformation for this general class of matrix equations. For the matrix second Painlevé equation we also give a coalescence limit, and a construction of special integrals and of a discrete matrix first Painlevé equation.
High-frequency matrix converter with square wave input
Carr, Joseph Alexander; Balda, Juan Carlos
2015-03-31
A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.
Matrix Pade-type approximant and directional matrix Pade approximant in the inner product space
NASA Astrophysics Data System (ADS)
Gu, Chuanqing
2004-03-01
A new matrix Pade-type approximant (MPTA) is defined in the paper by introducing a generalized linear functional in the inner product space. The expressions of MPTA are provided with the generating function form and the determinant form. Moreover, a directional matrix Pade approximant is also established by giving a set of linearly independent matrices. In the end, it is shown that the method of MPTA can be applied to the reduction problems of the high degree multivariable linear system.
Optimizing Tpetra%3CU%2B2019%3Es sparse matrix-matrix multiplication routine.
Nusbaum, Kurtis Lee
2011-08-01
Over the course of the last year, a sparse matrix-matrix multiplication routine has been developed for the Tpetra package. This routine is based on the same algorithm that is used in EpetraExt with heavy modifications. Since it achieved a working state, several major optimizations have been made in an effort to speed up the routine. This report will discuss the optimizations made to the routine, its current state, and where future work needs to be done.
Tjäderhane, Leo; Buzalaf, Marília Afonso Rabelo; Carrilho, Marcela; Chaussain, Catherine
2015-01-01
Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties. PMID:25661522
Mosala Nezhad, Zahra; Poncelet, Alain; de Kerchove, Laurent; Gianello, Pierre; Fervaille, Caroline; El Khoury, Gebrine
2016-06-01
Extracellular matrix (ECM) derived from small intestinal submucosa (SIS) is widely used in clinical applications as a scaffold for tissue repair. Recently, CorMatrix® porcine SIS-ECM (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) has gained popularity for 'next-generation' cardiovascular tissue engineering due to its ease of use, remodelling properties, lack of immunogenicity, absorbability and potential to promote native tissue growth. Here, we provide an overview of the biology of porcine SIS-ECM and systematically review the preclinical and clinical literature on its use in cardiovascular surgery. CorMatrix® has been used in a variety of cardiovascular surgical applications, and since it is the most widely used SIS-ECM, this material is the focus of this review. Since CorMatrix® is a relatively new product for cardiovascular surgery, some clinical and preclinical studies published lack systematic reporting of functional and pathological findings in sufficient numbers of subjects. There are also emerging reports to suggest that, contrary to expectations, an undesirable inflammatory response may occur in CorMatrix® implants in humans and longer-term outcomes at particular sites, such as the heart valves, may be suboptimal. Large-scale clinical studies are needed driven by robust protocols that aim to quantify the pathological process of tissue repair. PMID:26912574
Pendulum impact resistance of tungsten fiber/metal matrix composites.
NASA Technical Reports Server (NTRS)
Winsa, E. A.; Petrasek, D. W.
1972-01-01
The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.
Onychomatricoma: A Rare Tumor of Nail Matrix.
Joo, Hong Jin; Kim, Mi Ri; Cho, Baik Kee; Yoo, Gyeol; Park, Hyun Jeong
2016-04-01
Onychomatricoma is a rare tumor of the nail matrix. Until now, few cases of onychomatricoma have been reported in the literature. Immunohistochemically, CD10, a marker of the onychodermis, is expressed in the stroma of the onychomatricoma. In the present case, a 27-year-old woman presented with an 8-year history of a yellowish, thickened, and overcurved nail plate of the right index finger, mimicking onychomycosis. She had been treated for 4 years with antifungal agents by general physicians, without improvement. The nail was surgically removed, and the tumor at the nail matrix was excised. The nail plate continued to grow in the 2 months after the excision. This is a case of onychomatricoma in South Korea, which was initially misdiagnosed as onychomycosis. In addition, we present a review of the literature regarding clinical, sonographic, and histological features, differential diagnoses, and treatment of onychomatricoma. PMID:27081273
Solidification processing of monotectic alloy matrix composites
NASA Technical Reports Server (NTRS)
Frier, Nancy L.; Shiohara, Yuh; Russell, Kenneth C.
1989-01-01
Directionally solidified aluminum-indium alloys of the monotectic composition were found to form an in situ rod composite which obeys a lambda exp 2 R = constant relation. The experimental data shows good agreement with previously reported results. A theoretical boundary between cellular and dendritic growth conditions was derived and compared with experiments. The unique wetting characteristics of the monotectic alloys can be utilized to tailor the interface structure in metal matrix composites. Metal matrix composites with monotectic and hypermonotectic Al-In matrices were made by pressure infiltration, remelted and directionally solidified to observe the wetting characteristics of the alloys as well as the effect on structure of solidification in the constrained field of the fiber interstices. Models for monotectic growth are modified to take into account solidification in these constrained fields.
Quantitative matrix assisted plasma desorption mass spectrometry
NASA Astrophysics Data System (ADS)
Jungclas, Hartmut; Schmidt, Lothar; Köhl, Peter; Fritsch, Hans-Walter
1993-07-01
The development of optimized sample preparation methods accompanied the history of successful applications of 252Cf-PDMS. Studying the pharmacokinetics of the antineoplastic agent etoposide serum samples from cancer patients were labelled with the homologeous compounds teniposide as internal standard for the quantitative PDMS analysis. Sample purification by chloroform extraction and by thin layer chromatography turned out to be insufficient to guarantee a satisfying final PDMS result. Embedding the purified sample into a matrix of suitable substances on the target reduced the negative influence of impurities, raised the signal-to-noise ratio of molecular ions and improved the reproducibility of calibration. This preparation method was again successfully employed for the quantitative analysis of the cytostatic drug doxorubicin. The application of a different matrix optimized for the preparation of this anthracycline and its homologeous compound daunorubicin, improved the sensitivity, linearity and detection limit.
OVARIAN CANCER: INVOLVEMENT OF THE MATRIX METALLOPROTEINASES
Al-Alem, Linah; Curry, Thomas E.
2016-01-01
Ovarian cancer is the leading cause of death from gynecologic malignancies. Reasons for the high mortality rate associated with ovarian cancer include a late diagnosis at which time the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members in the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. This review sheds light on the different MMPs in the various types of ovarian cancer and their impact on the progression of this gynecologic malignancy. PMID:25918438
Rolling Element Bearing Stiffness Matrix Determination (Presentation)
Guo, Y.; Parker, R.
2014-01-01
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.
Ceramic-matrix composites fatigue and fracture
NASA Astrophysics Data System (ADS)
Davidson, David L.
1995-10-01
Fiber-reinforced ceramic-matrix composites (CMCs) have been shown to exhibit excellent high-temperature properties. There are some published data on the mechanical properties of Nicalon fiber-reinforced composites with various matrices, but much of the work was performed in bending, and there is little information on the failure modes in textile-reinforced CMCs, especially under cyclic-loading conditions. This article is an interim report on research that examines the tensile deformation, fracture, smoothbar fatigue, and fatigue crack-growth behavior of several CMCs. Unidirectional, two-dimensional eight-harness satin weave, and three-dimensional angle-interlock weave Nicalon fiber architectures infiltrated with polymers and then pyrolized were investigated and are compared with similar experiments on Nicalon-reinforced calcium-silicate glass-ceramic-matrix composites.
System Matrix Analysis for Computed Tomography Imaging
Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo
2015-01-01
In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482
System Matrix Analysis for Computed Tomography Imaging.
Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo
2015-01-01
In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482
Matrix Remodeling in Pulmonary Fibrosis and Emphysema.
Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B; Gaggar, Amit; Thannickal, Victor J
2016-06-01
Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema. PMID:26741177
Influence of Binder in Iron Matrix Composites
Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.
2010-03-11
The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100 deg. C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.
Random matrix approach to categorical data analysis.
Patil, Aashay; Santhanam, M S
2015-09-01
Correlation and similarity measures are widely used in all the areas of sciences and social sciences. Often the variables are not numbers but are instead qualitative descriptors called categorical data. We define and study similarity matrix, as a measure of similarity, for the case of categorical data. This is of interest due to a deluge of categorical data, such as movie ratings, top-10 rankings, and data from social media, in the public domain that require analysis. We show that the statistical properties of the spectra of similarity matrices, constructed from categorical data, follow random matrix predictions with the dominant eigenvalue being an exception. We demonstrate this approach by applying it to the data for Indian general elections and sea level pressures in the North Atlantic ocean. PMID:26465449
Ceramic fiber ceramic matrix filter development
Judkins, R.R.; Stinton, D.P.; Smith, R.G.; Fischer, E.M.
1994-09-01
The objectives of this project were to develop a novel type of candle filter based on a ceramic fiber-ceramic matrix composite material, and to extend the development to full-size, 60-mm OD by 1-meter-long candle filters. The goal is to develop a ceramic filter suitable for use in a variety of fossil energy system environments such as integrated coal gasification combined cycles (IGCC), pressurized fluidized-bed combustion (PFBC), and other advanced coal combustion environments. Further, the ceramic fiber ceramic matrix composite filter, hereinafter referred to as the ceramic composite filter, was to be inherently crack resistant, a property not found in conventional monolithic ceramic candle filters, such as those fabricated from clay-bonded silicon carbide. Finally, the adequacy of the filters in the fossil energy system environments is to be proven through simulated and in-plant tests.
Onychomatricoma: A Rare Tumor of Nail Matrix
Joo, Hong Jin; Kim, Mi Ri; Cho, Baik Kee; Yoo, Gyeol
2016-01-01
Onychomatricoma is a rare tumor of the nail matrix. Until now, few cases of onychomatricoma have been reported in the literature. Immunohistochemically, CD10, a marker of the onychodermis, is expressed in the stroma of the onychomatricoma. In the present case, a 27-year-old woman presented with an 8-year history of a yellowish, thickened, and overcurved nail plate of the right index finger, mimicking onychomycosis. She had been treated for 4 years with antifungal agents by general physicians, without improvement. The nail was surgically removed, and the tumor at the nail matrix was excised. The nail plate continued to grow in the 2 months after the excision. This is a case of onychomatricoma in South Korea, which was initially misdiagnosed as onychomycosis. In addition, we present a review of the literature regarding clinical, sonographic, and histological features, differential diagnoses, and treatment of onychomatricoma. PMID:27081273
Extracellular Matrix Roles During Cardiac Repair
Jourdan-LeSaux, Claude; Zhang, Jianhua; Lindsey, Merry L.
2010-01-01
The cardiac extracellular matrix (ECM) provides a platform for cells to maintain structure and function, which in turn maintains tissue function. In response to injury, the ECM undergoes remodeling that involves synthesis, incorporation, and degradation of matrix proteins, with the net outcome determined by the balance of these processes. The major goals of this review are a) to serve as an initial resource for students and investigators new to the cardiac ECM remodeling field, and b) to highlight a few of the key exciting avenues and methodologies that have recently been explored. While we focus on cardiac injury and responses of the left ventricle (LV), the mechanisms reviewed here have pathways in common with other wound healing models. PMID:20670633
Numerical matrix method for quantum periodic potentials
NASA Astrophysics Data System (ADS)
Le Vot, Felipe; Meléndez, Juan J.; Yuste, Santos B.
2016-06-01
A numerical matrix methodology is applied to quantum problems with periodic potentials. The procedure consists essentially in replacing the true potential by an alternative one, restricted by an infinite square well, and in expressing the wave functions as finite superpositions of eigenfunctions of the infinite well. A matrix eigenvalue equation then yields the energy levels of the periodic potential within an acceptable accuracy. The methodology has been successfully used to deal with problems based on the well-known Kronig-Penney (KP) model. Besides the original model, these problems are a dimerized KP solid, a KP solid containing a surface, and a KP solid under an external field. A short list of additional problems that can be solved with this procedure is presented.
Interaction picture density matrix quantum Monte Carlo.
Malone, Fionn D; Blunt, N S; Shepherd, James J; Lee, D K K; Spencer, J S; Foulkes, W M C
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible. PMID:26233116
Diffusion at the Random Matrix Hard Edge
NASA Astrophysics Data System (ADS)
Ramírez, José A.; Rider, Brian
2009-06-01
We show that the limiting minimal eigenvalue distributions for a natural generalization of Gaussian sample-covariance structures (beta ensembles) are described by the spectrum of a random diffusion generator. This generator may be mapped onto the “Stochastic Bessel Operator,” introduced and studied by A. Edelman and B. Sutton in [6] where the corresponding convergence was first conjectured. Here, by a Riccati transformation, we also obtain a second diffusion description of the limiting eigenvalues in terms of hitting laws. All this pertains to the so-called hard edge of random matrix theory and sits in complement to the recent work [15] of the authors and B. Virág on the general beta random matrix soft edge. In fact, the diffusion descriptions found on both sides are used below to prove there exists a transition between the soft and hard edge laws at all values of beta.
Reliability analysis of ceramic matrix composite laminates
NASA Technical Reports Server (NTRS)
Thomas, David J.; Wetherhold, Robert C.
1991-01-01
At a macroscopic level, a composite lamina may be considered as a homogeneous orthotropic solid whose directional strengths are random variables. Incorporation of these random variable strengths into failure models, either interactive or non-interactive, allows for the evaluation of the lamina reliability under a given stress state. Using a non-interactive criterion for demonstration purposes, laminate reliabilities are calculated assuming previously established load sharing rules for the redistribution of load as the failure of laminae occur. The matrix cracking predicted by ACK theory is modeled to allow a loss of stiffness in the fiber direction. The subsequent failure in the fiber direction is controlled by a modified bundle theory. Results using this modified bundle model are compared with previous models which did not permit separate consideration of matrix cracking, as well as to results obtained from experimental data.
Social patterns revealed through random matrix theory
NASA Astrophysics Data System (ADS)
Sarkar, Camellia; Jalan, Sarika
2014-11-01
Despite the tremendous advancements in the field of network theory, very few studies have taken weights in the interactions into consideration that emerge naturally in all real-world systems. Using random matrix analysis of a weighted social network, we demonstrate the profound impact of weights in interactions on emerging structural properties. The analysis reveals that randomness existing in particular time frame affects the decisions of individuals rendering them more freedom of choice in situations of financial security. While the structural organization of networks remains the same throughout all datasets, random matrix theory provides insight into the interaction pattern of individuals of the society in situations of crisis. It has also been contemplated that individual accountability in terms of weighted interactions remains as a key to success unless segregation of tasks comes into play.
Prediction of thermal cycling induced matrix cracking
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1992-01-01
Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.
Parallel matrix multiplication on the Connection Machine
NASA Technical Reports Server (NTRS)
Tichy, Walter F.
1988-01-01
Matrix multiplication is a computation and communication intensive problem. Six parallel algorithms for matrix multiplication on the Connection Machine are presented and compared with respect to their performance and processor usage. For n by n matrices, the algorithms have theoretical running times of O(n to the 2nd power log n), O(n log n), O(n), and O(log n), and require n, n to the 2nd power, n to the 2nd power, and n to the 3rd power processors, respectively. With careful attention to communication patterns, the theoretically predicted runtimes can indeed be achieved in practice. The parallel algorithms illustrate the tradeoffs between performance, communication cost, and processor usage.
Extracellular matrix as target for antitumor therapy
Harisi, Revekka; Jeney, Andras
2015-01-01
The aim of the present review is to survey the accumulated knowledge on the extracellular matrix (ECM) of tumors referring to its putative utility as therapeutic target. Following the traditional observation on the extensive morphological alteration in the tumor-affected tissue, the well-documented aberrant cellular regulation indicated that ECM components have an active role in tumor progression. However, due to the diverse functions and variable expression of proteoglycans, matrix proteins, and integrins, it is rather difficult to identify a comprehensive therapeutic target among ECM components. At present, the elevated level of heparanase and the prominent expression of αvβ5 integrin are considered as promising therapeutic targets. The inhibition of glycosaminoglycan offers another promising approach in the treatment of those tumors which are stimulated by proteoglycans. It can be ascertained that a selective ECM inhibitor would be a great asset to control metastasis driven by ECM-mediated signaling. PMID:26089687
Form Invariance of the Neutrino Mass Matrix
NASA Astrophysics Data System (ADS)
Ma, Ernest
2003-06-01
Consider the most general 3×3 Majorana neutrino mass matrix M. Motivated by present neutrino-oscillation data, much theoretical effort is directed at reducing it to a specific texture in terms of a small number of parameters. This procedure is often adhoc. I propose instead that for any M one may choose, it should satisfy the condition UMUT=M, where U≠1 is a specific unitary matrix such that UN represents a well-defined discrete symmetry in the νe,μ,τ basis, N being a particular integer not necessarily equal to 1. I illustrate this idea with a number of examples, including the realistic case of an inverted hierarchy of neutrino masses.
Matrix reformulation of the Gabor transform
NASA Astrophysics Data System (ADS)
Balart, Rogelio
1992-06-01
We have observed that if one restricts the von Neumann lattice to N points on the time axis and M points in the frequency axis there are, by definition, only MN independent Gabor coefficients. If the data is sampled such that there are exactly MN samples, then the forward and inverse Gabor transforms should be representable as linear transformations in CMN, the MN-dimensional vector space over the complex numbers, and the relationships that hold become matrix equations. These matrix equations are formulated, and some conclusions are drawn about the relative merits of using some methods as opposed to others, i.e., speed versus accuracy as well as whether or not the coefficients that are obtained via some methods are true Gabor coefficients.
Matrix reformulation of the Gabor transform
NASA Astrophysics Data System (ADS)
Balart, Rogelio
1991-12-01
We have observed that if one restricts the von Neumann lattice to N points on the time axis and M points in the frequency axis there are, by definition, only MN independent Gabor coefficients. If the data is sampled such that there are exactly MN samples, then the forward and inverse Gabor transforms should be representable as linear transformations in CMN, the MN-dimensional vector space over the complex numbers, and the relationships that hold become matrix equations. These matrix equations are formulated, and some conclusions are drawn about the relative merits of using some methods as opposed to others, i.e., speed versus accuracy, as well as whether or not the coefficients that are obtained via some methods are true Gabor coefficients.
Data from acellular human heart matrix.
Sánchez, Pedro L; Fernández-Santos, M Eugenia; Espinosa, M Angeles; González-Nicolas, M Angeles; Acebes, Judith R; Costanza, Salvatore; Moscoso, Isabel; Rodríguez, Hugo; García, Julio; Romero, Jesús; Kren, Stefan M; Bermejo, Javier; Yotti, Raquel; Del Villar, Candelas Pérez; Sanz-Ruiz, Ricardo; Elizaga, Jaime; Taylor, Doris A; Fernández-Avilés, Francisco
2016-09-01
Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. This article contains additional data of our experience decellularizing and testing structural integrity and composition of a large series of human hearts, "Acellular human heart matrix: a critical step toward whole heat grafts" (Sanchez et al., 2015) [1]. Here we provide the information about the heart decellularization technique, the valve competence evaluation of the decellularized scaffolds, the integrity evaluation of epicardial and myocardial coronary circulation, the pressure volume measurements, the primers used to assess cardiac muscle gene expression and, the characteristics of donors, donor hearts, scaffolds and perfusion decellularization process. PMID:27331090
Random matrix triality at nonzero chemical potential
Halasz, M.A.; Osborn, J.C.; Verbaarschot, J.J.
1997-12-01
We introduce three universality classes of chiral random matrix ensembles with a nonzero chemical potential and real, complex or quaternion real matrix elements. In the thermodynamic limit we find that the distribution of the eigenvalues in the complex plane does not depend on the Dyson index, and is given by the solution proposed by Stephanov. For a finite number of degrees of freedom, N, we find an accumulation of eigenvalues on the imaginary axis for real matrices, whereas for quaternion real matrices we find a depletion of eigenvalues in this domain. This effect is of order 1/{radical} (N) . In particular for the real case the resolvent shows a discontinuity of order 1/{radical} (N) . These results are in agreement with lattice QCD simulations with staggered fermions and recent instanton liquid simulations both for two colors and a nonzero chemical potential. {copyright} {ital 1997} {ital The American Physical Society}
Matrix representation of the time operator
Bender, Carl M.; Gianfreda, Mariagiovanna
2012-06-15
In quantum mechanics the time operator {Theta} satisfies the commutation relation [{Theta}, H]=i, and thus it may be thought of as being formally canonically conjugate to the Hamiltonian H. The time operator associated with a given Hamiltonian H is not unique because one can replace {Theta} by {Theta}+{Theta}{sub hom}, where {Theta}{sub hom} satisfies the homogeneous condition [{Theta}{sub hom}, H]= 0. To study this nonuniqueness the matrix elements of {Theta} for the harmonic-oscillator Hamiltonian are calculated in the eigenstate basis. This calculation requires the summation of divergent series, and the summation is accomplished by using zeta-summation techniques. It is shown that by including appropriate homogeneous contributions, the matrix elements of {Theta} simplify dramatically. However, it is still not clear whether there is an optimally simple representation of the time operator.
NLO matrix elements and truncated showers
NASA Astrophysics Data System (ADS)
Höche, Stefan; Krauss, Frank; Schönherr, Marek; Siegert, Frank
2011-08-01
In this publication, an algorithm is presented that combines the ME+PS approach to merge sequences of tree-level matrix elements into inclusive event samples [1] with the P owheg method, which combines exact next-to-leading order matrix element results with the parton shower [2, 3]. It was developed in parallel to the ME nloPS technique discussed in [4] and has been implemented in the event generator S herpa [5, 6]. The benefits of this approach are exemplified by some first predictions for a number of processes, namely the production of jets in e + e --annihilation, in deep-inelastic ep scattering, in association with single W, Z or Higgs bosons, and with vector boson pairs at hadron colliders.
Luneburg lens and optical matrix algebra research
NASA Technical Reports Server (NTRS)
Wood, V. E.; Busch, J. R.; Verber, C. M.; Caulfield, H. J.
1984-01-01
Planar, as opposed to channelized, integrated optical circuits (IOCs) were stressed as the basis for computational devices. Both fully-parallel and systolic architectures are considered and the tradeoffs between the two device types are discussed. The Kalman filter approach is a most important computational method for many NASA problems. This approach to deriving a best-fit estimate for the state vector describing a large system leads to matrix sizes which are beyond the predicted capacities of planar IOCs. This problem is overcome by matrix partitioning, and several architectures for accomplishing this are described. The Luneburg lens work has involved development of lens design techniques, design of mask arrangements for producing lenses of desired shape, investigation of optical and chemical properties of arsenic trisulfide films, deposition of lenses both by thermal evaporation and by RF sputtering, optical testing of these lenses, modification of lens properties through ultraviolet irradiation, and comparison of measured lens properties with those expected from ray trace analyses.
Visualization of a stock market correlation matrix
NASA Astrophysics Data System (ADS)
Rea, Alethea; Rea, William
2014-04-01
This paper presents a novel application of Neighbor-Net, a clustering algorithm developed for constructing a phylogenetic network in the field of evolutionary biology, to visualizing a correlation matrix. We apply Neighbor-Net as implemented in the SplitsTree software package to 48 stocks listed on the New Zealand Stock Exchange. We show that by visualizing the correlation matrix using a Neighbor-Net splits graph and its associated circular ordering of the stocks that some of the problems associated with understanding the large number of correlations between the individual stocks can be overcome. We compare the visualization of Neighbor-Net with that provided by hierarchical clustering trees and minimum spanning trees. The use of Neighbor-Net networks, or splits graphs, yields greater insight into how closely individual stocks are related to each other in terms of their correlations and suggests new avenues of research into how to construct small diversified stock portfolios.
Universal shocks in random matrix theory
NASA Astrophysics Data System (ADS)
Blaizot, Jean-Paul; Nowak, Maciej A.
2010-11-01
We link the appearance of universal kernels in random matrix ensembles to the phenomenon of shock formation in some fluid dynamical equations. Such equations are derived from Dyson’s random walks after a proper rescaling of the time. In the case of the Gaussian unitary ensemble, on which we focus in this paper, we show that the characteristics polynomials and their inverse evolve according to a viscid Burgers equation with an effective “spectral viscosity” νs=1/2N , where N is the size of the matrices. We relate the edge of the spectrum of eigenvalues to the shock that naturally appears in the Burgers equation for appropriate initial conditions, thereby suggesting a connection between the well-known microscopic universality of random matrix theory and the universal properties of the solution of the Burgers equation in the vicinity of a shock.
METCAN: The metal matrix composite analyzer
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Murthy, Pappu L. N.
1988-01-01
Metal matrix composites (MMC) are the subject of intensive study and are receiving serious consideration for critical structural applications in advanced aerospace systems. MMC structural analysis and design methodologies are studied. Predicting the mechanical and thermal behavior and the structural response of components fabricated from MMC requires the use of a variety of mathematical models. These models relate stresses to applied forces, stress intensities at the tips of cracks to nominal stresses, buckling resistance to applied force, or vibration response to excitation forces. The extensive research in computational mechanics methods for predicting the nonlinear behavior of MMC are described. This research has culminated in the development of the METCAN (METal Matrix Composite ANalyzer) computer code.
Random matrix approach to categorical data analysis
NASA Astrophysics Data System (ADS)
Patil, Aashay; Santhanam, M. S.
2015-09-01
Correlation and similarity measures are widely used in all the areas of sciences and social sciences. Often the variables are not numbers but are instead qualitative descriptors called categorical data. We define and study similarity matrix, as a measure of similarity, for the case of categorical data. This is of interest due to a deluge of categorical data, such as movie ratings, top-10 rankings, and data from social media, in the public domain that require analysis. We show that the statistical properties of the spectra of similarity matrices, constructed from categorical data, follow random matrix predictions with the dominant eigenvalue being an exception. We demonstrate this approach by applying it to the data for Indian general elections and sea level pressures in the North Atlantic ocean.
Infrared Mueller matrix acquisition and preprocessing system.
Carrieri, Arthur H; Owens, David J; Schultz, Jonathan C
2008-09-20
An analog Mueller matrix acquisition and preprocessing system (AMMS) was developed for a photopolarimetric-based sensor with 9.1-12.0 microm optical bandwidth, which is the middle infrared wavelength-tunable region of sensor transmitter and "fingerprint" spectral band for chemical-biological (analyte) standoff detection. AMMS facilitates delivery of two alternate polarization-modulated CO(2) laser beams onto subject analyte that excite/relax molecular vibrational resonance in its analytic mass, primes the photoelastic-modulation engine of the sensor, establishes optimum throughput radiance per backscattering cross section, acquires Mueller elements modulo two laser beams in hexadecimal format, preprocesses (normalize, subtract, filter) these data, and formats the results into digitized identification metrics. Feed forwarding of formatted Mueller matrix metrics through an optimally trained and validated neural network provides pattern recognition and type classification of interrogated analyte. PMID:18806864
Matrix product states for gauge field theories.
Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank
2014-08-29
The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field. PMID:25215973
Primitive material surviving in chondrites - Matrix
NASA Technical Reports Server (NTRS)
Scott, E. R. D.; Barber, D. J.; Alexander, C. M.; Hutchinson, R.; Peck, J. A.
1988-01-01
A logical place to search for surviving pristine nebular material is in the fine-grained matrices of ordinary and carbonaceous chondrites of petrographic type 3. Unfortunately, many of these chondrites have experienced brecciation, thermal metamorphism, and aqueous alteration, so that interpreting individual features in terms of specific nebular conditions and/or processes is difficult. It follows that the origin and evolutionary history of such matrix phases are controversial, and a consensus is difficult to define. In this chapter, therefore, after summarizing the salient mineralogical, petrographic, chemical, and isotopic features of matrix in apparently primitive chondrites, an attempt is made to provide an overview both of areas of agreement and of topics that are currently in dispute.
Differential/algebraic systems and matrix pencils
Gear, C.W.; Petzold, L.R.
1982-04-01
In this paper we study the numerical solution of the differential/algebraic systems F(t, y, y') = 0. Many of these systems can be solved conveniently and economically using a range of ODE methods. Others can be solved only by a small subset of ODE methods, and still others present insurmountable difficulty for all current ODE methods. We examine the first two groups of problems and indicate which methods we believe to be best for them. Then we explore the properties of the third group which cause the methods to fail. The important factor which determines the solvability of systems of linear problems is a quantity called the global nilpotency. This differs from the usual nilpotency for matrix pencils when the problem is time dependent, so that techniques based on matrix transformations are unlikely to be successful.
Matrix transformations for spacecraft attitude determination
NASA Technical Reports Server (NTRS)
Cauffman, D. P.
1972-01-01
A common problem for experimental space physicists is the determination of the attitude matrix T which transforms vectors between representations in X and X' coordinate systems according to (vector V sub X) = (T sub XX')(vector V sub X'). A straightforward, simple, and efficient solution for the transformation matrix is a double-cross transformation. It is calculated from any two directions A and B, which are vectors normalized to unit length and are known in both X and X' coordinates. The B direction need be known only well enough to define the plane in which vectors A and B lie. The problem of the intersection of two cones as applicable to attitude solutions is also discussed.
Thermomechanical fatigue of polymer matrix composites
Strait, L.H.; Koudela, K.L.; Karasek, M.L.; Amateau, M.F.; Runt, J.P.
1996-12-31
The present research was undertaken to evaluate the effects of mechanical constraint on the response of polymer matrix composites during thermal cycling. Analytical and experimental techniques were used to characterize the response of carbon-fiber-reinforced cyanate ester and bismaleimide composites. Cross-ply laminates were subjected to thermal cycles from 24 to 177 C in the unconstrained, fully constrained, and overconstrained conditions. Laminate response, damage mechanisms, and residual compressive properties were characterized for each material and degree of constraint. The results of this research indicate that the level of constraint can have a significant effect on the response of polymer matrix composites during thermal cycling. However, longer-term testing is required to determine if the observed changes in response will ultimately affect the final failure mode and fatigue endurance of the materials.
Nanophosphor composite scintillators comprising a polymer matrix
Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David
2010-11-16
An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.
Thermal expansion measurements of metal matrix composites
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Dries, Gregory A.
1988-01-01
The laser-interferometric-dilatometer system currently operational at NASA-Langley is described. The system, designed to characterize metal matrix composites, features high precision, automated data acquisition, and the ability to test a wide variety of specimen geometries over temperature ranges within 80-422 K. The paper presents typical thermal-expansion measurement data for a Gr/Al rod; Gr/Al and Gr/Mg unidirectional laminates; and a Gr/Mg (+ or -8)s laminate.
Metal matrix composites - Their time to shine?
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1987-01-01
Basic types of metal matrix composite (MMC) systems (namely, the particulates-, the whisker/flakes-, and the continuous-fiber-reinforced) are discussed together with the advantages and the disadvantages of each system. Special consideration is given to the new MMC systems under development that meet the needs of aerospace applications and to the properties of stiffness and thermal expansion of these systems. As a family of structural materials, MMCs have great potential for missile airframe applications.
Plastic matrix composites with continuous fiber reinforcement
1991-09-19
Most plastic resins are not suitable for structural applications. Although many resins are extremely tough, most lack strength, stiffness, and deform under load with time. By mixing strong, stiff, fibrous materials into the plastic matrix, a variety of structural composite materials can be formed. The properties of these composites can be tailored by fiber selection, orientation, and other factors to suit specific applications. The advantages and disadvantages of fiberglass, carbon-graphite, aramid (Kevlar 49), and boron fibers are summarized.
Proton decay matrix elements from lattice QCD
Aoki, Yasumichi; Shintani, Eigo; Collaboration: RBC Collaboration; UKQCD Collaboration
2012-07-27
We report on the calculation of the matrix elements of nucleon to pseudoscalar decay through a three quark operator, a part of the low-energy, four-fermion, baryon-number-violating operator originating from grand unified theories. The direct calculation of the form factors using domain-wall fermions on the lattice, incorporating the u, d and s sea-quarks effects yields the results with all the relevant systematic uncertainties controlled for the first time.
Absorption properties of waste matrix materials
Briggs, J.B.
1997-06-01
This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.
Spin Forming of Aluminum Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)
2001-01-01
An exploratory effort between NASA-Marshall Space Flight Center (MSFC) and SpinCraft, Inc., to experimentally spin form cylinders and concentric parts from small and thin sheets of aluminum Metal Matrix Composites (MMC), successfully yielded good microstructure data and forming parameters. MSFC and SpinCraft will collaborate on the recent technical findings and develop strategy to implement this technology for NASA's advanced propulsion and airframe applications such as pressure bulkheads, combustion liner assemblies, propellant tank domes, and nose cone assemblies.
Ceramic Matrix Composites for Rotorcraft Engines
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2011-01-01
Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.
Efficient Computation Of Manipulator Inertia Matrix
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1991-01-01
Improved method for computation of manipulator inertia matrix developed, based on concept of spatial inertia of composite rigid body. Required for implementation of advanced dynamic-control schemes as well as dynamic simulation of manipulator motion. Motivated by increasing demand for fast algorithms to provide real-time control and simulation capability and, particularly, need for faster-than-real-time simulation capability, required in many anticipated space teleoperation applications.
2d PDE Linear Asymmetric Matrix Solver
Energy Science and Technology Software Center (ESTSC)
1983-10-01
ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
An Operator Formalism for Unitary Matrix Models
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K. N.; Bowick, M. J.; Ishibashi, N.
We analyze the double scaling limit of unitary matrix models in terms of trigonometric orthogonal polynomials on the circle. In particular we find a compact formulation of the string equation at the kth multicritical point in terms of pseudodifferential operators and a corresponding action principle. We also relate this approach to the mKdV hierarchy which appears in the analysis in terms of conventional orthogonal polynomials on the circle.
Boost matrix converters in clean energy systems
NASA Astrophysics Data System (ADS)
Karaman, Ekrem
This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid. Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype.
Nonequilibrium chemistry boundary layer integral matrix procedure
NASA Technical Reports Server (NTRS)
Tong, H.; Buckingham, A. C.; Morse, H. L.
1973-01-01
The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.
Metal matrix composite structural panel construction
NASA Technical Reports Server (NTRS)
Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.
1983-01-01
Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.
The matrix Euler-Fermat theorem
NASA Astrophysics Data System (ADS)
Arnol'd, Vladimir I.
2004-12-01
We prove many congruences for binomial and multinomial coefficients as well as for the coefficients of the Girard-Newton formula in the theory of symmetric functions. These congruences also imply congruences (modulo powers of primes) for the traces of various powers of matrices with integer elements. We thus have an extension of the matrix Fermat theorem similar to Euler's extension of the numerical little Fermat theorem.
Graphite matrix materials for nuclear waste isolation
Morgan, W.C.
1981-06-01
At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.
Ultrasonic 2D matrix PVDF transducer
NASA Astrophysics Data System (ADS)
Ptchelintsev, A.; Maev, R. Gr.
2000-05-01
During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.
Processable polyimide adhesive and matrix composite resin
NASA Technical Reports Server (NTRS)
Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)
1990-01-01
A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.
Polymer matrix effects on acid generation
NASA Astrophysics Data System (ADS)
Fedynyshyn, Theodore H.; Goodman, Russell B.; Roberts, Jeanette
2008-03-01
We have measured the acid generation efficiency with EUV exposure of a PAG in different polymer matrixes representing the main classes of resist polymers as well as some previously described fluoropolymers for lithographic applications. The polymer matrix was found to have a significant effect on the acid generation efficiency of the PAG studied. A linear relationship exists between the absorbance of the resist and the acid generation efficiency. A second inverse relationship exists between Dill C and aromatic content of the resist polymer. It was shown that polymer sensitization is important for acid generation with EUV exposure and the Dill C parameter can be increased by up to five times with highly absorbing non-aromatic polymers, such as non-aromatic fluoropolymers, over an ESCAP polymer. The increase in the Dill C value will lead to an up to five fold increase in resist sensitivity. It is our expectation that these insights into the nature of polymer matrix effects on acid generation could lead to increased sensitivity for EUV resists.
Constructing acoustic timefronts using random matrix theory.
Hegewisch, Katherine C; Tomsovic, Steven
2013-10-01
In a recent letter [Hegewisch and Tomsovic, Europhys. Lett. 97, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment can be deduced from the timefronts and how to connect features of the data to that environmental information. It also makes direct connections to methods used in other disordered waveguide contexts where the use of random matrix theory has a multi-decade history. PMID:24116514
Renormalization group equations for the CKM matrix
Kielanowski, P.; Juarez W, S. R.; Montes de Oca Y, J. H.
2008-12-01
We derive the one loop renormalization group equations for the Cabibbo-Kobayashi-Maskawa (CKM) matrix for the standard model, its two Higgs extension, and the minimal supersymmetric extension in a novel way. The derived equations depend only on a subset of the model parameters of the renormalization group equations for the quark Yukawa couplings so the CKM matrix evolution cannot fully test the renormalization group evolution of the quark Yukawa couplings. From the derived equations we obtain the invariant of the renormalization group evolution for three models which is the angle {phi}{sub 2} of the unitarity triangle. For the special case of the standard model and its extensions with v{sub 1}{approx_equal}v{sub 2} we demonstrate that also the shape of the unitarity triangle and the Buras-Wolfenstein parameters {rho} and {eta} are conserved. The invariance of the angles of the unitarity triangle means that it is not possible to find a model in which the CKM matrix might have a simple, special form at asymptotic energies.
Matrix-bound nanovesicles within ECM bioscaffolds
Huleihel, Luai; Hussey, George S.; Naranjo, Juan Diego; Zhang, Li; Dziki, Jenna L.; Turner, Neill J.; Stolz, Donna B.; Badylak, Stephen F.
2016-01-01
Biologic scaffold materials composed of extracellular matrix (ECM) have been used in a variety of surgical and tissue engineering/regenerative medicine applications and are associated with favorable constructive remodeling properties including angiogenesis, stem cell recruitment, and modulation of macrophage phenotype toward an anti-inflammatory effector cell type. However, the mechanisms by which these events are mediated are largely unknown. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting physiologic and pathologic processes. Formerly identified exclusively in biologic fluids, the presence of EVs within the ECM of connective tissue has not been reported. In both laboratory-produced and commercially available biologic scaffolds, MBVs can be separated from the matrix only after enzymatic digestion of the ECM scaffold material, a temporal sequence similar to the functional activity attributed to implanted bioscaffolds during and following their degradation when used in clinical applications. The present study shows that MBVs contain microRNA capable of exerting phenotypical and functional effects on macrophage activation and neuroblastoma cell differentiation. The identification of MBVs embedded within the ECM of biologic scaffolds provides mechanistic insights not only into the inductive properties of ECM bioscaffolds but also into the regulation of tissue homeostasis. PMID:27386584
Airway and Extracellular Matrix Mechanics in COPD
Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud
2015-01-01
Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894
Matrix elasticity directs stem cell lineage specification
NASA Astrophysics Data System (ADS)
Discher, Dennis
2010-03-01
Adhesion of stem cells - like most cells - is not just a membrane phenomenon. Most tissue cells need to adhere to a ``solid'' for viability, and over the last decade it has become increasingly clear that the physical ``elasticity'' of that solid is literally ``felt'' by cells. Here we show that Mesenchymal Stem Cells (MSCs) specify lineage and commit to phenotypes with extreme sensitivity to the elasticity typical of tissues [1]. In serum only media, soft matrices that mimic brain appear neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. Inhibition of nonmuscle myosin II activity blocks all elasticity directed lineage specification, which indicates that the cytoskeleton pulls on matrix through adhesive attachments. Results have significant implications for `therapeutic' stem cells and have motivated development of a proteomic-scale method to identify mechano-responsive protein structures [2] as well as deeper physical studies of matrix physics [3] and growth factor pathways [4]. [4pt] [1] A. Engler, et al. Matrix elasticity directs stem cell lineage specification. Cell (2006).[0pt] [2] C.P. Johnson, et al. Forced unfolding of proteins within cells. Science (2007).[0pt] [3] A.E.X. Brown, et al. Multiscale mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water. Science (2009).[0pt] [4] D.E. Discher, et al. Growth factors, matrices, and forces combine and control stem cells. Science (2009).
Analyticity and the Holographic S-Matrix
Fitzpatrick, A.Liam; Kaplan, Jared; /SLAC
2012-04-03
We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.
On the new Continuous Matrix Product Ansatz
NASA Astrophysics Data System (ADS)
Chung, S. S.; Bauman, S.; Sun, Kuei; Bolech, C. J.
2016-03-01
The fertile new field of quantum information theory is inspiring new ways to study correlated quantum systems by providing fresh insights into the structure of their Hilbert spaces. One of the latest developments in this direction was the extension of the ubiquitous matrix-product-state constructions, epitomized by the density-matrix renormalization-group algorithm, to continuous space-time; so as to be able to describe low-dimensional field theories within a variational approach. Following the earlier success achieved for bosonic theories, we present the first implementation of a continuous matrix product state (cMPS) for spinfull non-relativistic fermions in 1D. We propose a construction of variational matrices with an efficient parametrization that respects the translational symmetry of the problem (without being overly constraining) and readily meets the regularity conditions that arise from removing the ultraviolet divergences in the kinetic energy. We tested the validity of our approach on an interacting spin-1/2 system with spin imbalance. We observe that the ansatz correctly predicts the ground-state magnetic properties for the attractive spin-1/2 Fermi gas, including a phase-oscillating pair correlation function in the partially polarized regime (the 1D correlate of the FFLO state). We shall also discuss how to generalize the cMPS ansatz to other situations.
Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives.
Beaudeux, Jean-Louis; Giral, Philippe; Bruckert, Eric; Foglietti, Marie-José; Chapman, M John
2004-02-01
Matrix metalloproteinases (MMPs), also called matrixins, are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are precisely regulated at the level of transcription, of activation of the pro-MMP precursor zymogens and of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases; TIMPs). Alteration in the regulation of MMP activity is implicated in diseases such as cancer, fibrosis, arthritis and atherosclerosis. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and left ventricular remodelling after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinase activity have been demonstrated during atherosclerotic lesion progression (including plaque disruption), MMPs represent a potential target for therapeutic intervention aimed at modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. This review describes the members of the MMP and TIMP families and discusses the structure, function and regulation of MMP activity; finally, pharmacological approaches to MMP inhibition are highlighted. PMID:15061349
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Thompson, E. R.
1980-01-01
High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.
Matrix-bound nanovesicles within ECM bioscaffolds.
Huleihel, Luai; Hussey, George S; Naranjo, Juan Diego; Zhang, Li; Dziki, Jenna L; Turner, Neill J; Stolz, Donna B; Badylak, Stephen F
2016-06-01
Biologic scaffold materials composed of extracellular matrix (ECM) have been used in a variety of surgical and tissue engineering/regenerative medicine applications and are associated with favorable constructive remodeling properties including angiogenesis, stem cell recruitment, and modulation of macrophage phenotype toward an anti-inflammatory effector cell type. However, the mechanisms by which these events are mediated are largely unknown. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting physiologic and pathologic processes. Formerly identified exclusively in biologic fluids, the presence of EVs within the ECM of connective tissue has not been reported. In both laboratory-produced and commercially available biologic scaffolds, MBVs can be separated from the matrix only after enzymatic digestion of the ECM scaffold material, a temporal sequence similar to the functional activity attributed to implanted bioscaffolds during and following their degradation when used in clinical applications. The present study shows that MBVs contain microRNA capable of exerting phenotypical and functional effects on macrophage activation and neuroblastoma cell differentiation. The identification of MBVs embedded within the ECM of biologic scaffolds provides mechanistic insights not only into the inductive properties of ECM bioscaffolds but also into the regulation of tissue homeostasis. PMID:27386584
Skeletal biology: Where matrix meets mineral.
Young, Marian F
2016-01-01
The skeleton is unique from all other tissues in the body because of its ability to mineralize. The incorporation of mineral into bones and teeth is essential to give them strength and structure for body support and function. For years, researchers have wondered how mineralized tissues form and repair. A major focus in this context has been on the role of the extracellular matrix, which harbors key regulators of the mineralization process. In this introductory minireview, we will review some key concepts of matrix biology as it related to mineralized tissues. Concurrently, we will highlight the subject of this special issue covering many aspects of mineralized tissues, including bones and teeth and their associated structures cartilage and tendon. Areas of emphasis are on the generation and analysis of new animal models with permutations of matrix components as well as the development of new approaches for tissue engineering for repair of damaged hard tissue. In assembling key topics on mineralized tissues written by leaders in our field, we hope the reader will get a broad view of the topic and all of its fascinating complexities. PMID:27131884
Decellularized kidney matrix for perfused bone engineering.
Burgkart, Rainer; Tron, Alexandru; Prodinger, Peter; Culmes, Mihaela; Tuebel, Jutta; van Griensven, Martijn; Saldamli, Belma; Schmitt, Andreas
2014-07-01
The vascularization of tissue-engineered constructs is yet an unsolved problem. Here, recent work on the decellularization of whole organs has opened new perspectives on tissue engineering. However, existing decellularization protocols last several days and derived biomatrices have only been reseeded with cells from the same tissue origin or stem cells differentiating into these types of tissue. Within the present work, we demonstrate a novel standardized, time-efficient, and reproducible protocol for the decellularization of solid tissues to derive a ready to use biomatrix within only 5 h. Furthermore, we prove that biomatrices are usable as potential scaffolds for tissue engineering of vascularized tissues, even beyond tissue and maybe even species barriers. To prove this, we seeded human primary osteoblasts into a rat kidney bioscaffold. Here, seeded cells spread homogeneously within the matrix and proliferate under dynamic culture conditions. The cells do not only maintain their original phenotype within the matrix, they also show a strong metabolic activity and remodel the biomatrix toward a bone-like extracellular matrix. Thus, the decellularization technique has the ability to become a platform technology for tissue engineering. It potentially offers a universally applicable and easily producible scaffold that addresses the yet unsolved problem of vascularization. PMID:24164381
Full CKM matrix with lattice QCD
Okamoto, Masataka; /Fermilab
2004-12-01
The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.
Design of channeled partial Mueller matrix polarimeters.
Alenin, Andrey S; Scott Tyo, J
2016-06-01
In this paper, we introduce a novel class of systems called channeled partial Mueller matrix polarimeters (c-pMMPs). Their analysis benefits greatly by drawing from the concepts of generalized construction of channeled polarimeters as described by the modulation matrix. The modulation matrix resembles that of the data reduction method of a conventional polarimeter, but instead of using Mueller vectors as the bases, attention is focused on the Fourier properties of the measurement conditions. By leveraging the understanding of the measurement's structure, its decomposition can be manipulated to reveal noise resilience and information about the polarimeter's ability to measure the aspect of polarization that are important for any given task. We demonstrate the theory with a numerical optimization that designs c-pMMPs for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)APOPAI0003-693510.1364/AO.46.008364]. We select several example systems that produce a fewer-than-full-system number of channels yet retain the ability to discriminate objects of interest. Their respective trade-offs are discussed. PMID:27409432
Multispectral Palmprint Recognition Using a Quaternion Matrix
Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng
2012-01-01
Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049
Measuring Entanglement Spectrum via Density Matrix Exponentiation
NASA Astrophysics Data System (ADS)
Zhu, Guanyu; Seif, Alireza; Pichler, Hannes; Zoller, Peter; Hafezi, Mohammad
Entanglement spectrum (ES), the eigenvalues of the reduced density matrix of a subsystem, serves as a powerful theoretical tool to study many-body systems. For example, the gap and degeneracies of the entanglement spectrum have been used to identify various topological phases. However, the usefulness of such a concept in real experiments has been debated, since it is believed that obtaining the ES requires full state tomography, at a cost which exponentially grows with the systems size. Inspired by a recent density matrix exponentiation technique, we propose a scheme to measure ES by evolving the system with a Hamiltonian that is the subsystem's own reduced density matrix. Such a time evolution can be induced by an ancilla photon that is coupled to multiple qubits at the same time. The phase associated with the time evolution can be detected and converted into ES through either a digital or an analogue scheme. The digital scheme involves a modified quantum phase estimation algorithm based on random time evolution, while the analogue scheme is in the spirit of Ramsey interferometry. Both schemes are not limited by the size of the system, and are especially sensitive to the gap and degeneracies. We also discuss the implementation in cavity/circuit-QED and ion trap systems.
Gas chromatography/matrix-isolation apparatus
Reedy, Gerald T.
1986-01-01
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.
Nanomechanics of the Cartilage Extracellular Matrix
Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine
2012-01-01
Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology. PMID:22792042
Properties of five toughened matrix composite materials
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Dow, Marvin B.
1992-01-01
The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.
Polymer Matrix Composite Lines and Ducts
NASA Technical Reports Server (NTRS)
Nettles, A. T.
2001-01-01
Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, a task was undertaken to assess the feasibility of making cryogenic feedlines with integral flanges from polymer matrix composite materials. An additional level of complexity was added by having the feedlines be elbow shaped. Four materials, each with a unique manufacturing method, were chosen for this program. Feedlines were to be made by hand layup (HLU) with standard autoclave cure, HLU with electron beam cure, solvent-assisted resin transfer molding (SARTM), and thermoplastic tape laying (TTL). A test matrix of fill and drain cycles with both liquid nitrogen and liquid helium, along with a heat up to 250 F, was planned for each of the feedlines. A pressurization to failure was performed on any feedlines that passed the cryogenic cycling testing. A damage tolerance subtask was also undertaken in this study. The effects of foreign object impact to the materials used was assessed by cross-sectional examination and by permeability after impact testing. At the end of the program, the manufacture of the electron beam-cured feedlines never came to fruition. All of the TTL feedlines leaked heavily before any cryogenic testing, all of the SARTM feedlines leaked heavily after one cryogenic cycle. Thus, only the HLU with autoclave cure feedlines underwent the complete test matrix. They passed the cyclic testing and were pressurized to failure.
Matrix Metalloproteinases in Non-Neoplastic Disorders
Tokito, Akinori; Jougasaki, Michihisa
2016-01-01
The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234
Using SEM Programs To Perform Matrix Manipulations and Data Simulation.
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Boyd, Jeremy
2003-01-01
Illustrates how commonly available structural equation modeling programs can be used to conduct some basic matrix manipulations and generate multivariate normal data with given means and positive definite covariance matrix. Demonstrates the outlined procedure. (SLD)
Involvement of extracellular matrix constituents in breast cancer
Lochter, Andre; Bissell, Mina J
1995-06-01
It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.
Fatigue damage accumulation in various metal matrix composites
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1987-01-01
The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.
Program For Analysis Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Mital, S. K.
1994-01-01
METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.
Matrix heat exchanger including a liquid, thermal couplant
Fewell, Thomas E.; Ward, Charles T.
1976-01-01
A tube-to-tube heat exchanger is disclosed with a thermally conductive matrix between and around the tubes to define annuli between the tubes and matrix. The annuli are filled to a level with a molten metal or alloy to provide a conductive heat transfer path from one tube through the matrix to the second tube. A matrix heat exchanger of this type is particularly useful for heat transfer between fluids which would react should one leak into the second.
String coupling and interactions in type IIB matrix model
Kitazawa, Yoshihisa; Nagaoka, Satoshi
2009-05-15
We investigate the interactions of closed strings in a IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in a IIB matrix model via two-dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g{sub s} in the IIB matrix model. We confirm that our identification is consistent with matrix string theory.
Applications of optical Boolean matrix operations to graph theory.
Gibson, P M; Caulfield, H J
1991-09-10
The transition from optical numerical matrix algebra to optical Boolean matrix algebra is explored in detail. All important Boolean matrix algebra tasks can be performed optically. Quantitative measurement is replaced by a simple light-or-no-light decision, something optics can do well. The parallelism advantage of optics becomes greater as the matrix size increases. As an illustration of utility, we consider graph theory. PMID:20706446
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.
Matrix cracking initiation stress in fiber-reinforced ceramic-matrix composites
Kangutkar, P.B.
1991-01-01
One of the important design parameters in CMC's is the matrix cracking initiation stress (MCIS) which corresponds to the stress at which first matrix cracks are observed. Above the MCIS, the fibers will be exposed to the oxidizing environment which may degrade the mechanical property of the fibers and thus of the composite. In this thesis, a systematic study to explore the effects of matrix toughness and inherent strength, fiber diameter, stiffness and volume fraction, temperature and interfacial bonding on the MCIS was carried out. Composites were fabricated using three different matrices - borosilicate glass, aluminosilicate glass and polycrystalline zirconium silicate (or zircon), and two different reinforcing fibers - an SiC monofilament (140 {mu}m diameter) and an SiC yarn (16 {mu}m diameter). In-situ observations during 3-point bend test inside the SEM indicate that matrix cracking is a local phenomenon and occurs first in the matrix between widest spaced fibers. In all composites the MCIS was found to increase with fiber additions and scaled with the monolithic strength.
NASA Astrophysics Data System (ADS)
Luo, Shu
2012-01-01
Enlightened by the idea of the 3×3 Cabibbo-Kobayashi-Maskawa angle matrix proposed recently by Harrison , we introduce the Dirac angle matrix Φ and the Majorana angle matrix Ψ in the lepton sector for Dirac and Majorana neutrinos, respectively. We show that in the presence of CP violation, the angle matrix Φ or Ψ is entirely equivalent to the complex Maki-Nakagawa-Sakata matrix V itself, but has the advantage of being real, phase rephasing invariant, directly associated to the leptonic unitarity triangles and do not depend on any particular parametrization of V. In this paper, we further analyzed how the angle matrices evolve with the energy scale. The one-loop renormalization group equations of Φ, Ψ and some other rephasing invariant parameters are derived and a numerical analysis is performed to compare between the case of Dirac and Majorana neutrinos. Different neutrino mass spectra are taken into account in our calculation. We find that apparently different from the case of Dirac neutrinos, for Majorana neutrinos the renormalization group equation evolutions of Φ, Ψ and J strongly depend on the Majorana-type CP-violating parameters and are more sensitive to the sign of Δm312. They may receive significant radiative corrections in the minimal supersymmetric standard model with large tanβ if three neutrino masses are nearly degenerate.
Condition and Error Estimates in Numerical Matrix Computations
Konstantinov, M. M.; Petkov, P. H.
2008-10-30
This tutorial paper deals with sensitivity and error estimates in matrix computational processes. The main factors determining the accuracy of the result computed in floating--point machine arithmetics are considered. Special attention is paid to the perturbation analysis of matrix algebraic equations and unitary matrix decompositions.
Matrix Training of Preliteracy Skills with Preschoolers with Autism
ERIC Educational Resources Information Center
Axe, Judah B.; Sainato, Diane M.
2010-01-01
Matrix training is a generative approach to instruction in which words are arranged in a matrix so that some multiword phrases are taught and others emerge without direct teaching. We taught 4 preschoolers with autism to follow instructions to perform action-picture combinations (e.g., circle the pepper, underline the deer). Each matrix contained…
Conversion of a Rhotrix to a "Coupled Matrix"
ERIC Educational Resources Information Center
Sani, B.
2008-01-01
In this note, a method of converting a rhotrix to a special form of matrix termed a "coupled matrix" is proposed. The special matrix can be used to solve various problems involving n x n and (n - 1) x (n - 1) matrices simultaneously.
Teaching Improvement Model Designed with DEA Method and Management Matrix
ERIC Educational Resources Information Center
Montoneri, Bernard
2014-01-01
This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…
Comment on S-matrix parameterizations in NN-scattering
Mulders, P. J.
1981-08-01
The parameterization of the S-matrix used for the elastic part of the NN-scattering matrix in, for example, the Virginia Polytechnic Institute ineractive nucleon-nucleon program SAID, is not general enough to parameterize any 2 by 2 submatrix of a unitary matrix.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2016-08-01
In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2016-02-01
In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress.
SALTSTONE MATRIX CHARACTERIZATION AND STADIUM SIMULATION RESULTS
Langton, C.
2009-07-30
SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM{reg_sign} service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM{reg_sign} concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples is
Analytical techniques for instrument design - matrix methods
Robinson, R.A.
1997-09-01
We take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalisation to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, we discuss a toolbox of matrix manipulations that can be performed on the 6- dimensional Cooper-Nathans matrix: diagonalisation (Moller-Nielsen method), coordinate changes e.g. from ({Delta}k{sub I},{Delta}k{sub F} to {Delta}E, {Delta}Q & 2 dummy variables), integration of one or more variables (e.g. over such dummy variables), integration subject to linear constraints (e.g. Bragg`s Law for analysers), inversion to give the variance-covariance matrix, and so on. We show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. We will argue that a generalised program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. We will also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question.
2d PDE Linear Symmetric Matrix Solver
Energy Science and Technology Software Center (ESTSC)
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Gas chromatography/matrix-isolation apparatus
Reedy, G.T.
1986-06-10
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.
Matrix computations on systolic-type meshes
Moreno, J.H.; Lang, T. )
1990-04-01
This article focuses on the execution of matrix computations on systolic-type arrays in an application-specific environment. The authors first present an extension to the concept of a systolic cell by incorporating a small, fixed amount of storage inside the cells, and they discuss the trade-offs this storage gives rise to. Then they review different approaches to decomposing (partitioning) large problems, highlighting their bandwidth requirements and their capabilities for using the storage in the cells. Finally, the authors discuss the basic characteristics of methods for the design of systolic-type arrays, describe the multimesh graph (MMG) design method, and illustrate its application to the transitive closure algorithm.
The myoendothelial junction: breaking through the matrix?
Heberlein, Katherine; Straub, Adam; Isakson, Brant E
2009-01-01
Within the vasculature, specialized cellular extensions from endothelium (and sometimes smooth muscle) protrude through the extracellular matrix where they interact with the opposing cell type. These structures, termed myoendothelial junctions, have been cited as a possible key element in the control of several vascular physiologies and pathologies. This review will discuss observations that have led to a focus on the myoendothelial junction as a cellular integration point in the vasculature for both homeostatic and pathological conditions and as a possible independent signaling entity. We will also highlight the need for novel approaches to studying the myoendothelial junction in order to comprehend the cellular biology associated with this structure. PMID:19330678
Effective dynamics of the matrix big bang
Craps, Ben; Rajaraman, Arvind; Sethi, Savdeep
2006-05-15
We study the leading quantum effects in the recently introduced matrix big bang model. This amounts to a study of supersymmetric Yang-Mills theory compactified on the Milne orbifold. We find a one-loop potential that is attractive near the big bang. Surprisingly, the potential decays very rapidly at late times where it appears to be generated by D-brane effects. Usually, general covariance constrains the form of any effective action generated by renormalization group flow. However, the form of our one-loop potential seems to violate these constraints in a manner that suggests a connection between the cosmological singularity and long wavelength, late time physics.
Entanglement classification with matrix product states
NASA Astrophysics Data System (ADS)
Sanz, M.; Egusquiza, I. L.; di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.
2016-07-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .
Development of Matrix Microstructures in UHTC Composites
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael
2012-01-01
One of the major issues hindering the use of ultra high temperature ceramics for aerospace applications is low fracture toughness. There is considerable interest in developing fiber-reinforced composites to improve fracture toughness. Considerable knowledge has been gained in controlling and improving the microstructure of monolithic UHTCs, and this paper addresses the question of transferring that knowledge to composites. Some model composites have been made and the microstructures of the matrix developed has been explored and compared to the microstructure of monolithic materials in the hafnium diboride/silicon carbide family. Both 2D and 3D weaves have been impregnated and processed.
Low-power SXGA active matrix OLED
NASA Astrophysics Data System (ADS)
Wacyk, Ihor; Prache, Olivier; Ghosh, Amal
2009-05-01
This paper presents the design and first evaluation of a full-color 1280×3×1024 pixel, active matrix organic light emitting diode (AMOLED) microdisplay that operates at a low power of 200mW under typical operating conditions of 35fL, and offers a precision 30-bit RGB digital interface in a compact size (0.78-inch diagonal active area). The new system architecture developed by eMagin for the SXGA microdisplay, based on a separate FPGA driver and AMOLED display chip, offers several benefits, including better power efficiency, cost-effectiveness, more features for improved performance, and increased system flexibility.
A random matrix approach to credit risk.
Münnix, Michael C; Schäfer, Rudi; Guhr, Thomas
2014-01-01
We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided. PMID:24853864
Wave propagation analysis using the variance matrix.
Sharma, Richa; Ivan, J Solomon; Narayanamurthy, C S
2014-10-01
The propagation of a coherent laser wave-field through a pseudo-random phase plate is studied using the variance matrix estimated from Shack-Hartmann wavefront sensor data. The uncertainty principle is used as a tool in discriminating the data obtained from the Shack-Hartmann wavefront sensor. Quantities of physical interest such as the twist parameter, and the symplectic eigenvalues, are estimated from the wavefront sensor measurements. A distance measure between two variance matrices is introduced and used to estimate the spatial asymmetry of a wave-field in the experiment. The estimated quantities are then used to compare a distorted wave-field with its undistorted counterpart. PMID:25401243
Mueller matrix of a dicot leaf
NASA Astrophysics Data System (ADS)
Vanderbilt, Vern C.; Daughtry, Craig S. T.
2012-06-01
A better understanding of the information contained in the spectral, polarized bidirectional reflectance and transmittance of leaves may lead to improved techniques for identifying plant species in remotely sensed imagery as well as better estimates of plant moisture and nutritional status. Here we report an investigation of the optical polarizing properties of several leaves of one species, Cannabis sativa, represented by a 3x3 Mueller matrix measured over the wavelength region 400-2,400 nm. Our results support the hypothesis that the leaf surface alters the polarization of incident light - polarizing off nadir, unpolarized incident light, for example - while the leaf volume tends to depolarized incident polarized light.
Bidirectional extracellular matrix signaling during tissue morphogenesis
Gjorevski, Nikolce; Nelson, Celeste M.
2009-01-01
Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo. PMID:19896886
Metal Matrix Composite Materials for Aerospace Applications
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)
2001-01-01
Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.
A Random Matrix Approach to Credit Risk
Guhr, Thomas
2014-01-01
We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided. PMID:24853864
Quantum hyperparallel algorithm for matrix multiplication
NASA Astrophysics Data System (ADS)
Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan
2016-04-01
Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N2), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and “big data” analysis.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Thompson, E. R.
1981-01-01
A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.
Bousso, Raphael
2005-01-25
We study conditions for the existence of asymptotic observables in cosmology. With the exception of de Sitter space, the thermal properties of accelerating universes permit arbitrarily long observations, and guarantee the production of accessible states of arbitrarily large entropy. This suggests that some asymptotic observables may exist, despite the presence of an event horizon. Comparison with decelerating universes shows surprising similarities: Neither type suffers from the limitations encountered in de Sitter space, such as thermalization and boundedness of entropy. However, we argue that no realistic cosmology permits the global observations associated with an S-matrix.
METal matrix composite ANalyzer (METCAN): Theoretical manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1993-01-01
This manuscript is intended to be a companion volume to the 'METCAN User's Manual' and the 'METAN Demonstration Manual.' The primary purpose of the manual is to give details pertaining to micromechanics and macromechanics equations of high temperature metal matrix composites that are programmed in the METCAN computer code. The subroutines which contain the programmed equations are also mentioned in order to facilitate any future changes or modifications that the user may intend to incorporate in the code. Assumptions and derivations leading to the micromechanics equations are briefly mentioned.
Massless Flavor in Geometry and Matrix Models
Roiban, Radu; Tatar, Radu; Walcher, Johannes
2003-01-27
The proper inclusion of flavor in the Dijkgraaf-Vafa proposal for the solution of N=1 gauge theories through matrix models has been subject of debate in the recent literature. We here reexamine this issue by geometrically engineering fundamental matter with type IIB branes wrapped on non-compact cycles in the resolved geometry, and following them through the geometric transition. Our approach treats massive and massless flavor fields on equal footing, including the mesons. We also study the geometric transitions and superpotentials for finite mass of the adjoint field. All superpotentials we compute reproduce the field theory results. Crucial insights come from T-dual brane constructions in type IIA.
Zero minors of the neutrino mass matrix
Lashin, E. I.; Chamoun, N.
2008-10-01
We examine the possibility that a certain class of neutrino mass matrices, namely, those with two independent vanishing minors in the flavor basis, regardless of being invertible or not, is sufficient to describe current data. We compute generic formulas for the ratios of the neutrino masses and for the Majorana phases. We find that seven textures with two vanishing minors can accommodate the experimental data. We present an estimate of the mass matrix for these patterns. All of the possible textures can be dynamically generated through the seesaw mechanism augmented with a discrete Abelian symmetry.
Quantum hyperparallel algorithm for matrix multiplication.
Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan
2016-01-01
Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N(2)), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and "big data" analysis. PMID:27125586
Metal matrix composites for aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Signorelli, R. A.
1975-01-01
Studies of advanced aircraft propulsion systems have indicated that performance gains and operating costs are possible through the application of metal matrix composites. Compressor fan blades and turbine blades have been identified as components with high payoff potential as a result of these studies. This paper will present the current status of development of five candidate materials for such applications. Boron fiber/aluminum, boron fiber/titanium, and silicon carbide fiber/titanium composites are considered for lightweight compressor fan blades. Directionally solidified eutectic superalloy and tungsten wire/superalloy composites are considered for application to turbine blades for use temperatures to 1100 C (2000 F).
Matrix factorization on a hypercube multiprocessor
Geist, G.A.; Heath, M.T.
1985-08-01
This paper is concerned with parallel algorithms for matrix factorization on distributed-memory, message-passing multiprocessors, with special emphasis on the hypercube. Both Cholesky factorization of symmetric positive definite matrices and LU factorization of nonsymmetric matrices using partial pivoting are considered. The use of the resulting triangular factors to solve systems of linear equations by forward and back substitutions is also considered. Efficiencies of various parallel computational approaches are compared in terms of empirical results obtained on an Intel iPSC hypercube. 19 refs., 6 figs., 2 tabs.
Matrix Metalloproteinases as Modulators of Inflammation
Manicone, Anne M.; McGuire, John K.
2008-01-01
An increased expression of members of the matrix metalloproteinase (MMP) family of enzymes is seen in almost every human tissue in which inflammation is present. Through the use of models of human disease in mice with targeted deletions of individual MMPs, it has become clear that MMPs act broadly in inflammation to regulate barrier function, inflammatory cytokine and chemokine activity, and the generation of chemokine gradients. Individual MMPs regulate both normal and pathological inflammatory processes, and therefore, developing rational therapies requires further identification of specific MMP substrates and characterization of the downstream consequences of MMP proteolytic activity. PMID:17707664
Oriented polymers: A transfer matrix calculation
NASA Astrophysics Data System (ADS)
Koo, W. M.
1995-11-01
Based on transfer matrix techniques and finite-size scaling, we study the oriented polymer (self-avoiding walk) with nearest neighbor interaction. In the repulsive regime, various critical exponents are computed and compared with exact values predicted recently. The polymer is also found to undergo a spiral transition for sufficiently strong attractive interaction. The fractal dimension of the polymer is computed in the repulsive and attractive regimes and at the spiral transition point. The later is found to be different from that at the collapse transition of the ordinary self-avoiding walk.
Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites
NASA Astrophysics Data System (ADS)
Ahn, B. K.; Curtin, W. A.
1997-02-01
A theory is presented to predict the stress/strain relations and unload/reload hysteresis behavior during the evolution of multiple matrix cracking in unidirectional fiber reinforced ceramic matrix composites (CMCs). The theory is based on the similarity between multiple matrix cracking and fiber fragmentation in a single fiber composite, and determines the crack and strain evolution as a function of the statistical distribution of initial flaws in the material, the interfacial sliding resistance τ, and the thermal residual stresses in the composite. The model properly includes matrix fragments of all lengths, from lengths smaller than the current slip length δ(σ) to larger than 2δ(σ), at applied stress σ, and accounts for their respective and differing contributions to the overall strain and hysteresis behavior of the composite. The procedure by which experimental stress/strain and hysteresis data can be interpreted to derive values for the interfacial shear stress, thermal stresses, and intrinsic matrix flaw distribution is discussed. The actual physical crack spacing needs only to be determined at one load level, such as post-fracture, which greatly simplifies the data acquisition and analysis. Several detailed examples are presented, and the results compared with a widely-used approach in which the crack spacing is assumed constant and equal to the average spacing obtained directly from experiment. The discrepancy between the previous and present theories is manifest in an incorrect estimate for the interfacial sliding, but only by approximately 10%. The effect of changing temperature, and hence residual stresses, without changing either matrix flaws or interfacial sliding resistance, is studied.
Exact [ital S] matrix of the deformed [ital c]=1 matrix model
Demeterfi, K.; Klebanov, I.R. ); Rodrigues, J.P. )
1993-11-22
We consider the [ital c]=1 matrix model deformed by the operator 1/2[ital M] [ital Tr][Phi][sup [minus]2], which was conjectured by Jevicki and Yoneya to describe a two-dimensional black hole of mass [ital M]. We calculate the exact nonperturbative [ital S] matrix and show that all the amplitudes involving an odd number of particles vanish at least to all orders of perturbation theory. We conjecture that these amplitudes vanish nonperturbatively and prove this for the 2[ital n][r arrow]1 scattering. For the two- and four-particle amplitudes we give some leading terms of the perturbative expansion.
Robert J. Hurtubise
2004-06-14
In this report, the major results and conclusions of the research over the last two years and five months is considered. The report discusses the mechanistic aspects of oxygen quenching of solid-matrix phosphorescence (SMP), mechanistic aspects of moisture quenching of SMP, interactions and methodology to investigate phosphors in glucose glasses, new methods for coating filter paper for solid-phase microextraction with solid-matrix fluorescence (SMF) and SMP detection, mechanistic consideration of the heavy-atom quenching of the SMF and the enhancement of SMP of benzo[a]pyrene-DNA adducts, and new developments in liquid-liquid-liquid microextraction.
Smallwood, D. O.
1996-01-01
It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.
Systems and methods for deactivating a matrix converter
Ransom, Ray M.
2013-04-02
Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.
Superstring vertex operators in type IIB matrix model
Kitazawa, Yoshihisa; Nagaoka, Satoshi
2008-06-15
We clarify the relation between the vertex operators in type IIB matrix model and superstring. Green-Schwarz light-cone closed superstring theory is obtained from IIB matrix model on two-dimensional noncommutative backgrounds. Superstring vertex operators should be reproduced from those of IIB matrix model through this connection. Indeed, we confirm that supergravity vertex operators in IIB matrix model on the two-dimensional backgrounds reduce to those in superstring theory. Noncommutativity plays an important role in our identification. Through this correspondence, we can reproduce superstring scattering amplitudes from IIB matrix model.
Development, implementation, and test results on integrated optics switching matrix
NASA Technical Reports Server (NTRS)
Rutz, E.
1982-01-01
A small integrated optics switching matrix, which was developed, implemented, and tested, indicates high performance. The matrix serves as a model for the design of larger switching matrices. The larger integrated optics switching matrix should form the integral part of a switching center with high data rate throughput of up to 300 megabits per second. The switching matrix technique can accomplish the design goals of low crosstalk and low distortion. About 50 illustrations help explain and depict the many phases of the integrated optics switching matrix. Many equations used to explain and calculate the experimental data are also included.
The Riccati transfer matrix method. [for computerized structural analysis
NASA Technical Reports Server (NTRS)
Horner, G. C.; Pilkey, W. D.
1977-01-01
The Riccati transfer matrix method is a new technique for analyzing structural members. This new technique makes use of an existing large catalog of transfer matrices for various structural members such as rotating shafts. The numerical instability encountered when calculating high resonant frequencies, static response of a flexible member on a stiff foundation, or the response of a long member by the transfer matrix method is eliminated by the Riccati transfer matrix method. The computational time and storage requirements of the Riccati transfer matrix method are about half the values for the transfer matrix method. A rotating shaft analysis demonstrates the numerical accuracy of the method.