Sample records for taconite processing plants

  1. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency ofmore » individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  2. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Ryan Wartman; David Tarnowski

    2006-03-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The

  3. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Angus Morison; David Tarnowski

    2005-09-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The

  4. Experimenting With Ore: Creating the Taconite Process; flow chart of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Experimenting With Ore: Creating the Taconite Process; flow chart of process - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN

  5. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations.

    PubMed

    Zanko, Lawrence M; Niles, Harlan B; Oreskovich, Julie A

    2008-10-01

    Eighteen coarse taconite tailings samples were collected in 2000-2001 from five western Mesabi Range taconite (iron ore) operations located in northern Minnesota, i.e., EVTAC, Hibbing Taconite (Hibtac), USX Minntac, Ispat Inland (Minorca), and National Steel Pellet Company (NSPC), to test their physical, geological, chemical, and mineralogical properties [Zanko, L.M., Niles, H.B., Oreskovich, J.A., 2003. Properties and aggregate potential of coarse taconite tailings from five Minnesota taconite operations, Minnesota Department of Transportation, Local Road Research Board, St. Paul, MN, Report No. 2004-06 (also as Natural Resources Research Institute technical report, NRRI/TR-2003/44)]. The goal was to assemble a body of technical data that could be used to better assess the potential of using a crushed taconite mining byproduct like coarse tailings for more widespread construction aggregate purposes, primarily in roads and highways. An important part of the mineralogical assessment included X-ray diffraction (XRD) analyses and microscopic (polarized light microscopy, scanning electron microscopy, and transmission electron microscopy, i.e., PLM, SEM, and TEM, respectively) evaluation of the size and shape (morphological) characteristics of potentially respirable microscopic mineral particles and fragments. Quantitative mineralogy, based on XRD analyses, showed that the dominant mineral in all samples was quartz (55-60%), followed by much smaller amounts of iron oxides, carbonates, and silicates. Specialized microscopic analyses and testing performed by the RJ Lee Group, Monroeville, PA, on both pulverized (-200 mesh, or 0.075mm) and as-is sample composites showed that no regulated asbestos minerals or amphibole minerals were detected in the western Mesabi Range samples. A small number (26) of non-asbestos and non-amphibole mineral cleavage fragments/mineral fibers were detected by SEM out of 1000 fields analyzed, but most were identified as minnesotaite and talc

  6. A case–control study of mesothelioma in Minnesota iron ore (taconite) miners

    PubMed Central

    Lambert, Christine S; Alexander, Bruce H; Ramachandran, Gurumurthy; MacLehose, Richard F; Nelson, Heather H; Ryan, Andrew D; Mandel, Jeffrey H

    2018-01-01

    Objectives An excess of mesothelioma has been observed in iron ore miners in Northeastern Minnesota. Mining and processing of taconite iron ore generate exposures that include elongate mineral particles (EMPs) of amphibole and non-amphibole origin. We conducted a nested case–control study of mesothelioma in a cohort of 68 737 iron ore miners (haematite and taconite ore miners) to evaluate the association between mesothelioma, employment and EMP exposures from taconite mining. Methods Mesothelioma cases (N=80) were identified through the Minnesota Cancer Surveillance System (MCSS) and death certificates. Four controls of similar age were selected for each case with 315 controls ultimately eligible for inclusion. Mesothelioma risk was evaluated by estimating rate ratios and 95% CIs with conditional logistic regression in relation to duration of taconite industry employment and cumulative EMP exposure [(EMP/cc)×years], defined by the National Institute for Occupational Safety and Health (NIOSH) 7400 method. Models were adjusted for employment in haematite mining and potential exposure to commercial asbestos products used in the industry. Results All mesothelioma cases were male and 57 of the cases had work experience in the taconite industry. Mesothelioma was associated with the number of years employed in the taconite industry (RR=1.03, 95% CI 1.00 to 1.06) and cumulative EMP exposure (RR=1.10, 95% CI 0.97 to –1.24). No association was observed with employment in haematite mining. Conclusions These results support an association between mesothelioma and employment duration and possibly EMP exposure in taconite mining and processing. The type of EMP was not determined. The potential role of commercial asbestos cannot be entirely ruled out. PMID:26655961

  7. A case-control study of mesothelioma in Minnesota iron ore (taconite) miners.

    PubMed

    Lambert, Christine S; Alexander, Bruce H; Ramachandran, Gurumurthy; MacLehose, Richard F; Nelson, Heather H; Ryan, Andrew D; Mandel, Jeffrey H

    2016-02-01

    An excess of mesothelioma has been observed in iron ore miners in Northeastern Minnesota. Mining and processing of taconite iron ore generate exposures that include elongate mineral particles (EMPs) of amphibole and non-amphibole origin. We conducted a nested case-control study of mesothelioma in a cohort of 68,737 iron ore miners (haematite and taconite ore miners) to evaluate the association between mesothelioma, employment and EMP exposures from taconite mining. Mesothelioma cases (N=80) were identified through the Minnesota Cancer Surveillance System (MCSS) and death certificates. Four controls of similar age were selected for each case with 315 controls ultimately eligible for inclusion. Mesothelioma risk was evaluated by estimating rate ratios and 95% CIs with conditional logistic regression in relation to duration of taconite industry employment and cumulative EMP exposure [(EMP/cc)×years], defined by the National Institute for Occupational Safety and Health (NIOSH) 7400 method. Models were adjusted for employment in haematite mining and potential exposure to commercial asbestos products used in the industry. All mesothelioma cases were male and 57 of the cases had work experience in the taconite industry. Mesothelioma was associated with the number of years employed in the taconite industry (RR=1.03, 95% CI 1.00 to 1.06) and cumulative EMP exposure (RR=1.10, 95% CI 0.97 to -1.24). No association was observed with employment in haematite mining. These results support an association between mesothelioma and employment duration and possibly EMP exposure in taconite mining and processing. The type of EMP was not determined. The potential role of commercial asbestos cannot be entirely ruled out. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Mortality of workers in two Minnesota taconite mining and milling operations.

    PubMed

    Cooper, W C; Wong, O; Graebner, R

    1988-06-01

    Mortality during the years 1947 to 1983 was studied in 3,444 men employed for at least 3 months in Minnesota taconite mining operations during the years 1947 to 1958. During 86,307 person-years of observation, there were 801 deaths for a standardized mortality ratio (SMR) of 88 (US white male rates) or 98 (Minnesota rates). The 41 deaths from respiratory cancer were fewer than expected, the SMR being 61 (P less than or equal to .01) (US rates) and 85 (Minnesota rates). There were 25 respiratory cancers 20 or more years after first taconite employment, for an SMR of 57 (P less than or equal to .01) (US rates). SMRs for colon cancer, kidney cancer, and lymphopoietic cancer were elevated, but below the level of statistical significance. There was one death from pleural mesothelioma, 11 years after first taconite employment, in a man with long prior employment as a locomotive operator. The pattern of deaths did not suggest asbestos-related disease in taconite miners and millers.

  9. Wave Action and Breakwater Location, Taconite Harbor (Two Islands), Lake Superior, Minnesota: Hydraulic Model Investigation

    DTIC Science & Technology

    1955-05-01

    president, Taconite Contractors, Erie. Mining Company, Duluth, Minnesota The model study was conducted in the Hydraulics Division of the Waterways...CORPS OF ENGINEERS. U. S. ARMY WAVE ACTION AND BREAKWATER LOCATION TACONITE HARBOR (TWO ISLANDS) LAKE SUPERIOR, MINNESOTA ARIIIY-MRC VICKSBURG...Breakwater Location, Taconite Harbor (Two Islands), Lake Superior, Minnesota : Hydraulic Model Investigation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  10. Analysis of airborne and waterborne particles around a taconite ore processing facility.

    PubMed

    Axten, Charles W; Foster, David

    2008-10-01

    Since the mid-1970s, samples of airborne and waterborne fibrous particulates have been collected in the area of the Northshore Taconite Ore Processing Facility by the Minnesota Department of Health (MDH), the Minnesota Pollution Control Agency (PCA), and the University of Minnesota. Indirect sample preparation has consistently been used although other aspects of the sampling methods and sites have varied and analytical procedures were altered over time as more accurate and precise microscopy methods were developed (i.e., phase contrast optical microscopy, transmission electron microscopy, transmission electron microscopy with energy dispersive spectroscopy). In the mid-1970s, levels of airborne fibrous particulate in the Silver Bay area averaged from 0.00030 to 0.03 f/ml. This level was significantly greater than levels of similar particulates in the St. Paul, MN area, although two of the Silver Bay sampling sites, considered individually, did not indicate levels of fibrous particulate markedly different than that seen in St. Paul. More recent sampling data (i.e., 1990-2001) indicate mean concentration of airborne fibrous particulates (amphibole-like fibrous particulates) of 0.0020 f/ml with a range of values from 0.0001 to 0.0140 f/ml. Such levels are not significantly different from those seen in other non-urban environments in the US and Europe. Concentrations of fibrous particulates in water samples were higher in the mid-1970 when iron ore tailings were being deposited in Lake Superior, but since the tailings have been deposited on land waterborne levels of fibrous particulate in the Beaver River have remained relatively constant averaging in the range of 7.5 MFL. This level is only slightly in excess of the current EPA drinking water standard for fibrous particulates. Review and consideration of this data is important in determining the potential health risks associated with airborne and waterborne fibrous particulates in the areas of the Northshore Taconite

  11. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  12. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  13. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  14. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  15. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  16. Mortality experience among Minnesota taconite mining industry workers.

    PubMed

    Allen, Elizabeth M; Alexander, Bruce H; MacLehose, Richard F; Ramachandran, Gurumurthy; Mandel, Jeffrey H

    2014-11-01

    To evaluate the mortality experience of Minnesota taconite mining industry workers. Mortality was evaluated between 1960 and 2010 in a cohort of Minnesota taconite mining workers employed by any of the seven companies in operation in 1983. Standardised mortality ratios (SMR) were estimated by comparing observed deaths in the cohort with expected frequencies in the Minnesota population. Standardised rate ratios (SRR) were estimated using an internal analysis to compare mortality by employment duration. The cohort included 31,067 workers with at least 1 year of documented employment. Among those, there were 9094 deaths, of which 949 were from lung cancer, and 30 from mesothelioma. Mortality from all causes was greater than expected in the Minnesota population (SMR=1.04, 95% CI 1.02 to 1.04). Mortality from lung cancer and mesothelioma was higher than expected with SMRs of 1.16 for lung cancer (95% CI 1.09 to 1.23) and 2.77 for mesothelioma (95% CI 1.87 to 3.96). Other elevated SMRs included those for cardiovascular disease (SMR=1.10, 95% CI 1.06 to 1.14), specifically for hypertensive heart disease (SMR=1.81, 95% CI 1.39 to 2.33) and ischemic heart disease (SMR=1.11, 95% CI 1.07 to 1.16). Results of the SRR analysis did not show variation in risk by duration of employment. This study provides evidence that taconite workers may be at increased risk for mortality from lung cancer, mesothelioma, and some cardiovascular disease. Occupational exposures during taconite mining operations may be associated with these increased risks, but non-occupational exposures may also be important contributors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Cancer Incidence among Minnesota Taconite Mining Industry Workers

    PubMed Central

    Allen, Elizabeth M; Alexander, Bruce H; MacLehose, Richard F; Nelson, Heather H; Ramachandran, Gurumurthy; Mandel, Jeffrey H

    2015-01-01

    Purpose To evaluate cancer incidence among Minnesota Taconite mining workers. Methods We evaluated cancer incidence between 1988 and 2010 in a cohort of 40,720 Minnesota taconite mining workers employed between 1937 and 1983. Standardized incidence ratios (SIRs) with 95% confidence intervals (CI) were estimated by comparing numbers of incident cancers with frequencies in the Minnesota Cancer Surveillance System. SIRs for lung cancer by histological subtypes were also estimated. We adjusted for out-of-state migration and conducted a probabilistic bias analysis for smoking related cancers. Results A total of 5,700 cancers were identified including 51 mesotheliomas and 973 lung cancers. The SIR for lung cancer and mesothelioma were 1.3 (95% CI: 1.2-1.4) and 2.4 (95% CI: 1.8-3.2) respectively. Stomach, laryngeal, and bladder cancers were also elevated. However, adjusting for potential confounding by smoking attenuated the estimates for lung (SIR=1.1, 95% CI: 1.0-1.3), laryngeal (SIR=1.2, 95% CI: 0.8-1.6), oral (SIR=0.9, 95% CI: 0.7-1.2), and bladder cancers (SIR=1.0, 95% CI: 0.8-1.1). Conclusions Taconite workers may have an increased risk for certain cancers. Lifestyle and work-related factors may play a role in elevated morbidity. The extent to which mining-related exposures contribute to disease burden is being investigated. PMID:26381550

  18. Cancer incidence among Minnesota taconite mining industry workers.

    PubMed

    Allen, Elizabeth M; Alexander, Bruce H; MacLehose, Richard F; Nelson, Heather H; Ramachandran, Gurumurthy; Mandel, Jeffrey H

    2015-11-01

    To evaluate cancer incidence among Minnesota taconite mining workers. We evaluated cancer incidence between 1988 and 2010 in a cohort of 40,720 Minnesota taconite mining workers used between 1937 and 1983. Standardized incidence ratios (SIRs) with 95% confidence intervals (CIs) were estimated by comparing numbers of incident cancers with frequencies in the Minnesota Cancer Surveillance System. SIRs for lung cancer by histologic subtypes were also estimated. We adjusted for out-of-state migration and conducted a probabilistic bias analysis for smoking-related cancers. A total of 5700 cancers were identified, including 51 mesotheliomas and 973 lung cancers. The SIRs for lung cancer and mesothelioma were 1.3 (95% CI = 1.2-1.4) and 2.4 (95% CI = 1.8-3.2), respectively. Stomach, laryngeal, and bladder cancers were also elevated. However, adjusting for potential confounding by smoking attenuated the estimates for lung (SIR = 1.1, 95% CI = 1.0-1.3), laryngeal (SIR = 1.2, 95% CI = 0.8-1.6), oral (SIR = 0.9, 95% CI = 0.7-1.2), and bladder cancers (SIR = 1.0, 95% CI = 0.8-1.1). Taconite workers may have an increased risk for certain cancers. Lifestyle and work-related factors may play a role in elevated morbidity. The extent to which mining-related exposures contribute to disease burden is being investigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Increased Lung Cancer Mortality in Taconite Mining: The Potential for Disease from Elongate Mineral Particle Exposure.

    PubMed

    Mandel, Jeffrey H; Ramachandran, Gurumurthy; Alexander, Bruce H

    2016-02-15

    Taconite mining involves potential exposure to non-asbestiform amphibole mineral fiber. More recent studies have demonstrated increased mortality from respiratory cancers and heart disease among workers in the taconite industry. This finding is not consistent with recent exposure assessment findings, nor is the toxicology of this mineral suggestive of neoplastic disease. The understanding of respiratory disease in taconite mining is hampered by the lack of exposure data to asbestiform mineral fibers that occurred in the 1950s and 1960s. Other industries with similar mineral exposure have not demonstrated definitive associations with respiratory cancer, although non-malignant respiratory disease is a consistent finding in epidemiological studies.

  20. Pleural abnormalities and exposure to elongate mineral particles in Minnesota iron ore (taconite) workers.

    PubMed

    Perlman, David; Mandel, Jeffrey H; Odo, Nnaemeka; Ryan, Andy; Lambert, Christine; MacLehose, Richard F; Ramachandran, Gurumurthy; Alexander, Bruce H

    2018-05-01

    Iron ore (taconite) mining and processing are an important industry in northern Minnesota and western Michigan. Concerns around exposures have centered largely on exposure to non-asbestiform amphibole elongate mineral particles (EMPs) found in the eastern portion of the Minnesota iron range. A cross sectional survey was undertaken of current and former taconite workers and spouses along with a detailed exposure assessment. Participants provided an occupational history and had a chest radiograph performed. A total of 1188 workers participated. Potential exposures to non-amphibole EMPs were evident across multiple jobs in all active mines. Pleural abnormalities were found in 16.8% of workers. There was an association of pleural abnormalities with cumulative EMP exposure that was not specific to the eastern portion of the range. There was evidence of a mild to moderate increase in pleural abnormalities in this population of miners, associated with geographically non-specific cumulative EMP exposure. © 2018 Wiley Periodicals, Inc.

  1. Comprehensive assessment of exposures to elongate mineral particles in the taconite mining industry.

    PubMed

    Hwang, Jooyeon; Ramachandran, Gurumurthy; Raynor, Peter C; Alexander, Bruce H; Mandel, Jeffrey H

    2013-10-01

    Since the 1970s, concerns have been raised about elevated rates of mesothelioma in the vicinity of the taconite mines in the Mesabi Iron Range. However, insufficient quantitative exposure data have hampered investigations of the relationship between cumulative exposures to elongate mineral particles (EMP) in taconite dust and adverse health effects. Specifically, no research on exposure to taconite dust, which includes EMP, has been conducted since 1990. This article describes a comprehensive assessment of present-day exposures to total and amphibole EMP in the taconite mining industry. Similar exposure groups (SEGs) were established to assess present-day exposure levels and buttress the sparse historical data. Personal samples were collected to assess the present-day levels of worker exposures to EMP at six mines in the Mesabi Iron Range. The samples were analyzed using National Institute for Occupational Safety and Health (NIOSH) methods 7400 and 7402. For many SEGs in several mines, the exposure levels of total EMP were higher than the NIOSH Recommended Exposure Limit (REL). However, the total EMP classification includes not only the asbestiform EMP and their non-asbestiform mineral analogs but also other minerals because the NIOSH 7400 cannot differentiate between these. The concentrations of amphibole EMP were well controlled across all mines and were much lower than the concentrations of total EMP, indicating that amphibole EMP are not major components of taconite EMP. The levels are also well below the NIOSH REL of 0.1 EMP cc(-1). Two different approaches were used to evaluate the variability of exposure between SEGs, between workers, and within workers. The related constructs of contrast and homogeneity were calculated to characterize the SEGs. Contrast, which is a ratio of between-SEG variability to the sum of between-SEG and between-worker variability, provides an overall measure of whether there are distinctions between the SEGs. Homogeneity, which is

  2. RELATIVE POTENCIES OF MINERAL FIBERS IN VIVO: FERROACTINOLITE FROM TACONITE

    EPA Science Inventory

    In the early 1970s EPA provided the scientific basis for the Federal Government's lead in the Reserve Mining Case. This historic case resulted in cessation of the discharge of taconite tailings into Lake Superior and controls on air and water emissions of microscopic amphibole fi...

  3. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  4. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  5. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  6. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  7. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  8. Mesothelioma and other lung disease in taconite miners; the uncertain role of non-asbestiform EMP.

    PubMed

    Mandel, Jeffrey H; Odo, Nnaemeka U

    2018-04-10

    The purpose of this paper was to assess the role of non-asbestiform amphibole EMPs in the etiology of mesotheliomas and other lung disease in taconite (iron ore) miners. Increased mesothelioma rates have been described in Minnesota taconite workers since the late 1990s. Currently, over 100 cases have been reported by the Minnesota Department of Health within the complete cohort of miners in Minnesota. Geologic sampling has indicated that only the eastern part of the iron range contains non-asbestiform amphibole elongate mineral particles (EMPs), in close proximity to the ore. This type of EMP has been less studied and also exists in talc and gold mining. A series of investigations into the state's taconite industry have been recently completed. Results from a cohort mortality study indicated an SMR of 2.77 (95% CI = 1.87-3.96) for mesothelioma. In a case-control study, the odds ratio for mesothelioma for high vs. low EMP exposure was 2.25 (5% CI = 1.13-4.5) but EMPs in this study were counted by phase contrast microscopy. Odds ratios were not elevated in mines located in the eastern part of the Mesabi iron range. The overall findings suggest that mesothelioma in taconite miners is related to EMP exposure. Because of the way EMPs were counted, results from these studies cannot allow a firm conclusion about the association between EMP exposure and the reported excess mesothelioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Occupational Exposures and Lung Cancer Risk among Minnesota Taconite Mining Workers

    PubMed Central

    Allen, Elizabeth M; Alexander, Bruce H; MacLehose, Richard F; Nelson, Heather H; Ryan, Andrew D; Ramachandran, Gurumurthy; Mandel, Jeffrey H

    2015-01-01

    Objective To examine the association between employment duration, elongate mineral particle (EMP) exposure, and silica exposure and the risk of lung cancer in the taconite mining industry. Methods We conducted a nested case control study of lung cancer within a cohort of Minnesota taconite iron mining workers employed by any of the mining companies in operation in 1983. Lung cancer cases were identified by vital records and cancer registry data through 2010. Two age-matched controls were selected from risk sets of cohort members alive and lung cancer free at the time of case diagnosis. Calendar time-specific exposure estimates were made for every job and were used to estimate workers’ cumulative exposures. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using conditional logistic regression. We evaluated total lung cancer risk and risk of histological subtype by total work duration and by cumulative EMP and silica exposure by quartile of the exposure distribution. Results A total of 1,706 cases and 3,381 controls were included in the analysis. After adjusting for work in hematite mining, asbestos exposure, and sex, the OR for total duration of employment was 0.99 (95% CI: 0.96–1.01). The ORs for quartile 4 versus 1 of EMP and silica exposure were 0.82 (95% CI: 0.57–1.19) and 0.97 (95% CI: 0.70–1.35) respectively. The risk of each histological subtype of lung cancer did not change with increasing exposure. Conclusions This study suggests that the estimated taconite mining exposures do not increase the risk for the development of lung cancer. PMID:25977445

  10. Occupational exposures and lung cancer risk among Minnesota taconite mining workers.

    PubMed

    Allen, Elizabeth M; Alexander, Bruce H; MacLehose, Richard F; Nelson, Heather H; Ryan, Andrew D; Ramachandran, Gurumurthy; Mandel, Jeffrey H

    2015-09-01

    To examine the association between employment duration, elongate mineral particle (EMP) exposure, silica exposure and the risk of lung cancer in the taconite mining industry. We conducted a nested case-control study of lung cancer within a cohort of Minnesota taconite iron mining workers employed by any of the mining companies in operation in 1983. Lung cancer cases were identified by vital records and cancer registry data through 2010. Two age-matched controls were selected from risk sets of cohort members alive and lung cancer free at the time of case diagnosis. Calendar time-specific exposure estimates were made for every job and were used to estimate workers' cumulative exposures. ORs and 95% CIs were estimated using conditional logistic regression. We evaluated total lung cancer risk and risk of histological subtype by total work duration and by cumulative EMP, and silica exposure by quartile of the exposure distribution. A total of 1706 cases and 3381 controls were included in the analysis. After adjusting for work in haematite mining, asbestos exposure and sex, the OR for total duration of employment was 0.99 (95% CI 0.96 to 1.01). The ORs for quartile 4 versus 1 of EMP and silica exposure were 0.82 (95% CI 0.57 to 1.19) and 0.97 (95% CI 0.70 to 1.35), respectively. The risk of each histological subtype of lung cancer did not change with increasing exposure. This study suggests that the estimated taconite mining exposures do not increase the risk of developing lung cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. The origins of public concern with taconite and human health: Reserve Mining and the asbestos case.

    PubMed

    Berndt, Michael E; Brice, William C

    2008-10-01

    Asbestos first became an issue to Minnesota's iron industry when it was revealed that mineral fibers similar to those in Reserve Mining's tailings were being found in drinking water for several communities that used Lake Superior as their primary water source. This discovery turned what had largely been an environmental court battle into a case concerning public health. The courts listened to much conflicting and uncertain scientific testimony on the size and distribution of the mineral fibers and on the potential health effects imposed by them. In April 1974, the plant was ordered to shut down by a federal judge but the company quickly appealed the decision. The appeals court granted a stay and ultimately ruled that the plant's closure could not be justified based on the unknown health effects of the mineral fibers since the consequences of such an action would have immediate and severe social and economic impacts. The plant was allowed to continue operation, but ordered to abate emissions to air around the plant and to switch to a land-based tailings disposal system. Much of the scientific uncertainty and public concern over mineral fibers in Minnesota's taconite industry remain today.

  12. The search for asbestos within the Peter Mitchell Taconite iron ore mine, near Babbitt, Minnesota.

    PubMed

    Ross, Malcolm; Nolan, Robert P; Nord, Gordon L

    2008-10-01

    Asbestos crystallizes within rock formations undergoing intense deformation characterized by folding, faulting, shearing, and dilation. Some of these conditions have prevailed during formation of the taconite iron ore deposits in the eastern Mesabi Iron Range of Minnesota. This range includes the Peter Mitchell Taconite Mine at Babbitt, Minnesota. The mine pit is over 8 miles long, up to 1 mile wide. Fifty three samples were collected from 30 sites within areas of the pit where faulting, shearing and folding occur and where fibrous minerals might occur. Eight samples from seven collecting sites contain significant amounts of ferroactinolite amphibole that is partially to completely altered to fibrous ferroactinolite. Two samples from two other sites contain ferroactinolite degraded to ropy masses of fibers consisting mostly of ferrian sepiolite as defined by X-ray diffraction and TEM and SEM X-ray spectral analysis. Samples from five other sites contain unaltered amphiboles, however some of these samples also contain a very small number of fiber bundles composed of mixtures of grunerite, ferroactinolite, and ferrian sepiolite. It is proposed that the alteration of the amphiboles was caused by reaction with water-rich acidic fluids that moved through the mine faults and shear zones. The fibrous amphiboles and ferrian sepiolite collected at the Peter Mitchell Mine composes a tiny fraction of one percent of the total rock mass of this taconite deposit; an even a smaller amount of these mineral fragments enter the ambient air during mining and milling. These fibrous minerals thus do not present a significant health hazard to the miners nor to those non-occupationally exposed. No asbestos of any type was found in the mine pit.

  13. An updated study of taconite miners and millers exposed to silica and non-asbestiform amphiboles.

    PubMed

    Cooper, W C; Wong, O; Trent, L S; Harris, F

    1992-12-01

    This is the second update of a study of 3,444 taconite miners and millers who were first exposed to taconite, with associated exposures to silica and nonasbestiform amphiboles, in the period 1947 through 1958. Previous analyses of deaths through 1977, and again through 1983, showed no significant excess deaths from any specific causes. The present study continues the follow-up through 1988, adding 14,748 person-years of observation and 261 death certificates for analysis. The population, reduced to 3,431 because of the detection of 13 earlier duplications, has now been observed for 101,055 person-years, with 1,058 deaths and 1,039 death certificates. Death certificates were obtained for 98.2% of those known to be dead. The total number of deaths was significantly fewer than expected. Based on US rates, the standardized mortality ratio (SMR) was 83 (ie, 83% of expected). Based on Minnesota death rates, it was 91. With both US and Minnesota death rates, the SMRs for malignant neoplasms, cancer of the respiratory tract, cancer of the digestive system, heart disease, nonmalignant respiratory disease, and cirrhosis of the liver were all below 100. Slightly elevated SMRs were found for cancer of the colon, cancer of the kidney, and lymphopoietic cancer. These elevations were not statistically significant. Separate analyses were made of total deaths, lung cancer deaths, and kidney cancer deaths in men who had worked with taconite for time periods of less than 1 year, 1-5 years, 5-10 years, and over 10 years, during observation periods less than 10 years, 10-20 years, and over 20 years.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. A comprehensive assessment of exposures to respirable dust and silica in the taconite mining industry.

    PubMed

    Hwang, Jooyeon; Ramachandran, Gurumurthy; Raynor, Peter C; Alexander, Bruce H; Mandel, Jeffrey H

    2017-05-01

    This study assessed the present-day levels (year 2010-2011) of exposure to respirable dust (RD) and respirable silica (RS) in taconite mines and evaluated how the mining process influences exposure concentrations. Personal samples (n = 679) were collected to assess exposure levels of workers to RD and RS at six mines in the Mesabi Iron Range of Minnesota. The RD and RS concentrations were measured using the National Institute for Occupational Safety and Health (NIOSH) 0600 and NIOSH 7500, respectively. Between-mine, between-SEG (similar exposure groups), within-SEG, and within-worker components of variability for RD and RS exposures were estimated using a two- or three-way nested random-effects ANOVA model. The majority of RD concentrations across all mines were below the Mine Safety and Health Administration (MSHA) Permissible Exposure Limit (PEL). The highest concentrations of RD were often observed in either the Pelletizing or Crushing departments, which are inherently dusty operations. With a few exceptions, the concentrations of RS in the crushing and concentrating processes were higher than those in the other mining processes, as well as higher than the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for RS. The magnetic separation and flotation processes in the concentrating department reduced the levels of RS significantly, and lowered the percentage of quartz in RD in the pelletizing department. There was little variability among the six mines or between the two mineralogically distinct zones for either RD or RS exposures. The between-SEG variability for RS did not differ substantially across most of the mines and was a major component of exposure variance. The within-SEG (or between-worker) variance component was typically the smallest because in many instances one worker from a SEG within a mine was monitored multiple times. Some of these findings were affected by the degree of censoring in each SEG and mine

  15. Risk assessment due to environmental exposures to fibrous particulates associated with taconite ore.

    PubMed

    Wilson, Richard; McConnell, Ernest E; Ross, M; Axten, Charles W; Nolan, Robert P

    2008-10-01

    In the early 1970s, it became a concern that exposure to the mineral fibers associated taconite ore processed in Silver Bay, Minnesota would cause asbestos-related disease including gastrointestinal cancer. At that time data gaps existed which have now been significantly reduced by further research. To further our understanding of the types of airborne fibers in Silver Bay we undertook a geological survey of their source the Peter Mitchell Pit, and found that there are no primary asbestos minerals at a detectable level. However we identified two non-asbestos types of fibrous minerals in very limited geological locales. Air sampling useful for risk assessment was done to determine the type, concentrations and size distribution of the population of airborne fibers around Silver Bay. Approximately 80% of the airborne fibers have elemental compositions consistent with cummingtonite-grunerite and the remaining 20% have elemental compositions in the tremolite-actinolite series. The mean airborne concentration of both fiber types is less than 0.00014 fibers per milliliter that is within the background level reported by the World Health Organization. We calculate the risk of asbestos-related mesothelioma and lung cancer using a variety of different pessimistic assumptions. (i) that all the non-asbestos fibers are as potent as asbestos fibers used in the EPA-IRIS listing for asbestos; with a calculated risk of asbestos-related cancer for environmental exposure at Silver Bay of 1 excess cancer in 28,500 lifetimes (or 35 excess cancers per 1,000,000 lifetimes) and secondly that taconite associated fibers are as potent as chrysotile the least potent form of asbestos. The calculated risk is less than 0.77 excess cancer case in 1,000,000 lifetimes. Finally, we briefly review the epidemiology studies of grunerite asbestos (amosite) focusing on the exposure conditions associated with increased risk of human mesothelioma.

  16. Lake Superior Harbors of Refuge at Lutsen and Beaver Bay Cook and Lake Counties Minnesota.

    DTIC Science & Technology

    1977-12-01

    attributed to the daily dumping into Lake Superior of 67,000 tons of taconite tailings by the Reserve Mining Cormpany. Reserve Mining will be totally...Reserve Mining must be given a reasonable period of time within which to change its operation to on-land disposal of taconite tailings. 2.33 While...shoreline, the city came into existence. The Reserve Mining Company began its construction of the taconite processing plant in 1951, and it went into

  17. A review of mortality associated with elongate mineral particle (EMP) exposure in occupational epidemiology studies of gold, talc, and taconite mining.

    PubMed

    Mandel, Jeffrey H; Alexander, Bruce H; Ramachandran, Gurumurthy

    2016-12-01

    Mining of gold, taconite, and talc may involve exposure to elongate mineral particles (EMP). The involved EMPs are typically non-asbestiform, include dimensions that regulatory definitions exclude, and have been less studied. A review of the literature was undertaken for this exposure and occupational epidemiological studies that occur in gold, talc, and taconite mining. Quantitative EMP exposure information in these industries is incomplete. However, there are consistent findings of pneumoconiosis in each of these types of mining. A recent case-control study suggests a possible association between this exposure and mesothelioma. Lung cancer is inconsistently reported in these industries and is an unlikely outcome of non-asbestiform EMP exposure. There is evidence of cardiovascular mortality excess across all of these types of mining. Non-malignant respiratory disease and cardiovascular mortality have been consistently increased in these industries. Further investigation, including additional insights for the role of non-asbestiform EMP, is warranted. Am. J. Ind. Med. 59:1047-1060, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Clinical presentation of asbestosis with intractable pleural pain in the adult child of a taconite miner and radiographic demonstration of the probable pathology causing the pain.

    PubMed

    Harbut, Michael R; Endress, Carmen; Graff, John J; Weis, Christopher; Pass, Harvey

    2009-01-01

    Taconite, although not classified by the United States Government as asbestos or asbestiform material, has been associated with asbestos-related diseases. The mineral is used in the production of steel and as a road-patch material and is mined in Michigan and Minnesota. This report describes the case of a middle-aged Caucasian woman with exposure to taconite mining dust from her miner father's clothing in childhood with a resultant presentation consistent with asbestosis and intractable pleural pain. Intractable pleural pain has been described in asbestos-exposed patients with theorized etiologies. However, no in vivo reported mechanism has demonstrated a plausible, anatomically apparent mechanism for the pain. We utilize an application of the Vitrea software for enhancement of high-resolution computerized tomography which demonstrates at least one likely mechanism for intractable pleural pain.

  19. 57. VIEW OF PLANT'S LOWER DOCK ON THE WEST BANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. VIEW OF PLANT'S LOWER DOCK ON THE WEST BANK OF THE CUYAHOGA RIVER, WHERE THREE HULETTS UNLOAD IRON ORE BROUGHT BY GREAT LAKES CARRIERS. ORE IN THE FORM OF TACONITE PELLETS COMES FROM MINNESOTA AND MICHIGAN AND IN ITS NATURAL STATE FROM THE MESABI RANGE IN MINNESOTA AND THE LABRADOR REGION OF CANADA. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  20. Mortality of Reserve Mining Company employees in relation to taconite dust exposure.

    PubMed

    Higgins, I T; Glassman, J H; Oh, M S; Cornell, R G

    1983-11-01

    Analysis of mortality among men who were employed by Reserve Mining Company from 1952 to 1976 has been carried out. Follow-up was conducted with standard methods, including searches by the Social Security Administration. Occupational exposures to dust were based on personal samples taken over the past five years by the industrial hygiene department of the company. Smoking habits were obtained by mailed questionnaires or telephone interviews. A modified life table method was used to compare death rates of the employees with those expected for white males in the state of Minnesota. Comparisons were also made with US rates for white males. The results showed that the death rates for all causes were significantly below expectation. Deaths from malignant diseases were marginally below those expected for the state. Exposures to total dust, to silica dust, or to fiber were low. There was no relationship between mortality and estimated lifetime dust exposures, nor was there any suggestion that deaths from malignant neoplasms were increased after 15 to 20 years latency. In contrast, there was a strong relationship between smoking habits and mortality from all causes, from cardiovascular diseases, and from cancer. This study does not suggest any increase in cancer mortality from taconite exposure.

  1. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  2. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  3. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  4. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  5. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  6. Ground and surface water in the Mesabi and Iron Range area, northeastern Minnesota

    USGS Publications Warehouse

    Cotter, R.D.; Young, H.L.; Petri, L.R.; Prior, C.H.

    1965-01-01

    Large uses of water in the area include: taconite processing (50 bgy), wash-ore processing (19 bgy), power plants (63 bgy), municipal water supplies (3 bgy) and paper processing (1 bgy). Optimum development of the water resources might be achieved by using streamflow in the spring and stunner and ground-water and surface-water storage in the fall and winter.

  7. The relationship between various exposure metrics for elongate mineral particles (EMP) in the taconite mining and processing industry.

    PubMed

    Hwang, Jooyeon; Ramachandran, Gurumurthy; Raynor, Peter C; Alexander, Bruce H; Mandel, Jeffrey H

    2014-01-01

    Different dimensions of elongate mineral particles (EMP) have been proposed as being relevant to respiratory health end-points such as mesothelioma and lung cancer. In this article, a methodology for converting personal EMP exposures measured using the National Institute for Occupational Safety and Health (NIOSH) 7400/7402 methods to exposures based on other size-based definitions has been proposed and illustrated. Area monitoring for EMP in the taconite mines in Minnesota's Mesabi Iron Range was conducted using a Micro Orifice Uniform Deposit Impactor (MOUDI) size-fractionating sampler. EMP on stages of the MOUDI were counted and sized according to each EMP definition using an indirect-transfer transmission electron microscopy (ISO Method 13794). EMP were identified using energy-dispersive x-ray and electron diffraction analysis. Conversion factors between the EMP counts based on different definitions were estimated using (1) a linear regression model across all locations and (2) a location-specific ratio of the count based on each EMP definition to the NIOSH 7400/7402 count. The highest fractions of EMP concentrations were found for EMP that were 1-3 μm in length and 0.2-0.5 μm in width. Therefore, the current standard NIOSH Method 7400, which only counts EMP >5 μm in length and ≥ 3 in aspect ratio, may underestimate amphibole EMP exposures. At the same time, there was a high degree of correlation between the exposures estimated according to the different size-based metrics. Therefore, the various dimensional definitions probably do not result in different dose-response relationships in epidemiological analyses. Given the high degree of correlation between the various metrics, a result consistent with prior research, a more reasonable metric might be the measurement of all EMP irrespective of size. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the

  8. 40 CFR 63.9583 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... new affected source and its initial startup date is on or before October 30, 2003, you must comply... initial startup date is after October 30, 2003, you must comply with each emission limitation, work... initial startup. (d) If your taconite iron ore processing plant is an area source that becomes a major...

  9. 40 CFR 63.9583 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... new affected source and its initial startup date is on or before October 30, 2003, you must comply... initial startup date is after October 30, 2003, you must comply with each emission limitation, work... initial startup. (d) If your taconite iron ore processing plant is an area source that becomes a major...

  10. 40 CFR 63.9583 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... new affected source and its initial startup date is on or before October 30, 2003, you must comply... initial startup date is after October 30, 2003, you must comply with each emission limitation, work... initial startup. (d) If your taconite iron ore processing plant is an area source that becomes a major...

  11. 40 CFR 63.9583 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... new affected source and its initial startup date is on or before October 30, 2003, you must comply... initial startup date is after October 30, 2003, you must comply with each emission limitation, work... initial startup. (d) If your taconite iron ore processing plant is an area source that becomes a major...

  12. 40 CFR 63.9583 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... new affected source and its initial startup date is on or before October 30, 2003, you must comply... initial startup date is after October 30, 2003, you must comply with each emission limitation, work... initial startup. (d) If your taconite iron ore processing plant is an area source that becomes a major...

  13. Development and demonstration of a lignite-pelletizing process. Phase II report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    The current work began with scale-up of laboratory equipment to commercial size equipment. For this purpose, BCI used an existing pilot plant that had been assembled to pelletize and indurate taconite ore. BCI determined therewith that lignite pellets can be produced continuously on a pilot scale using the basic process developed in the laboratory. The resulting pellets were found to be similar to the laboratory pellets at equivalent binder compositions. Tests of product made during a 5-ton test run are reported. A 50-ton demonstration test run was made with the pilot plant. Pellet production was sustained for a two-week period.more » The lignite pelletizing process has, therefore, been developed to the point of demonstration in a 50-ton test. BCI has completed and cost estimated a conceptually designed 4000 TPD facility. BCI believes it has demonstrated a technically feasible process to agglomerate lignite by using an asphalt emulsion binder. Product quality is promising. Capital and operating costs appear acceptable to justify continuing support and development. The next step should focus on three areas: production development, process refinement, and cost reduction. For further development, BCI recommends consideration of a 5 to 10 ton/h pilot plant or a 20 to 40 ton/h module of a full sized plant, the lower first cost of the former being offset by the ability to incorporate the latter into a future production unit. Other specific recommendations are made for future study that could lead to process and cost improvements: Binder Formulation, disc Sizing, Drier Bed Depth, and Mixing Approach. Pellet use other than power plant fuel is considered.« less

  14. Plants: Novel Developmental Processes.

    ERIC Educational Resources Information Center

    Goldberg, Robert B.

    1988-01-01

    Describes the diversity of plants. Outlines novel developmental and complex genetic processes that are specific to plants. Identifies approaches that can be used to solve problems in plant biology. Cites the advantages of using higher plants for experimental systems. (RT)

  15. 75 FR 5350 - Investigations Regarding Certifications of Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... 73028 TRW Automotive (Wkrs)...... Galesville, WI........ 12/07/09 10/11/09 73029 Faurecia Exhaust... Taconite Plant, Keewatin, MN 12/08/09 12/07/09 U.S. Steel Corporation (State). 73048 Mohawk Flush Door (UBC...

  16. Monitoring Stone Degradation on Coastal Structures in the Great Lakes - Summary Report

    DTIC Science & Technology

    2005-06-01

    Iron Mountain Quarry, Iron Mountain, MI). The Iron Mountain Quarry produces taconite . c. Quarry sample microstructural analyses. Microstructural...Iron Mountain Quarry, Iron Mountain, MI. The Iron Mountain Quarry produces taconite . Also, stone from a tenth quarry (Cedarville Quarry, Cedarville, MI...Quarry, Iron Mountain, MI). The Iron Mountain Quarry produces taconite . Samples of taconite from the Iron Mountain Quarry also were evaluated by

  17. 75 FR 5150 - Investigations Regarding Certifications of Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Automotive (Wkrs)...... Galesville, WI........ 12/07/09 10/11/09 73029 Faurecia Exhaust Systems, Troy, OH 12... Taconite Plant, Keewatin, MN 12/08/09 12/07/09 U.S. Steel Corporation (State). 73048 Mohawk Flush Door (UBC...

  18. Enhancing Elementary Pre-service Teachers' Plant Processes Conceptions

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-06-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to predict the fate of a healthy plant in a sealed terrarium (Plant-in-a-Jar), justify their predictions, observe the plant over a 5-week period, and complete guided inquiry activities centered on one of the targeted plant processes each week. Data sources included PTs' pre- and post-predictions with accompanying justifications, course artifacts such as weekly terrarium observations and science journal entries, and group models of the interrelated plant processes occurring within the sealed terraria. A subset of 33 volunteer PTs also completed interviews the week the Plant-in-a-Jar scenario was introduced and approximately 4 months after the instructional intervention ended. Pre- and post-predictions from all PTs as well as interview responses from the subgroup of PTs, were coded into categories based on key plant processes emphasized in the Next Generation Science Standards. Study findings revealed that PTs developed more accurate conceptions of plant processes and their interrelated nature as a result of the instructional intervention. Primary patterns of change in PTs' plant process conceptions included development of more accurate conceptions of how water is used by plants, more accurate conceptions of photosynthesis features, and more accurate conceptions of photosynthesis and cellular respiration as transformative processes.

  19. Multispectral Image Processing for Plants

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  20. Enzymes in bast fibrous plant processing.

    PubMed

    Kozlowski, Ryszard; Batog, Jolanta; Konczewicz, Wanda; Mackiewicz-Talarczyk, Maria; Muzyczek, Malgorzata; Sedelnik, Natalia; Tanska, Bogumila

    2006-05-01

    The program COST Action 847 Textile Quality and Biotechnology (2000-2005) has given an excellent chance to review the possibilities of the research, aiming at development of the industrial application of enzymes for bast fibrous plant degumming and primary processing. The recent advancements in enzymatic processing of bast fibrous plants (flax, hemp, jute, ramie and alike plants) and related textiles are given. The performance of enzymes in degumming, modification of bast fibres, roving, yarn, related fabrics as well as enzymatic bonding of lignocellulosic composites is provided.

  1. Next generation internet architecture and cyber-assisted energy efficiency in smart grids of buildings

    NASA Astrophysics Data System (ADS)

    Peterson, Robb Alex

    Northern Minnesota's iron mines are the starting point for the majority of the steel that gets produced in the United States. Their taconite processing plants use heat in furnaces to oxidize and indurate iron in the final stage of making a taconite pellet. Facilities can increase efficiencies when refractory service life is maintained. Efficiencies gained include: less fuel used, better quality control, better furnace control, and less mechanical component maintenance. Furnace refractory linings fail when the cracks that develop in them are uncontrolled or too large. These failures allow heat and gases retained by the lining to reach structural or mechanical components. Furnace control and efficiencies are also compromised when heat and gases are allowed to short circuit or escape the system. These failures are primarily the result of thermal of shock and expansion. It is common place to add stainless steel needle reinforcement to a monolithic refractory in an effort to counteract these effects. This study used several standard ASTM testing procedures to test 65% alumina mullite based refractory samples with 304 and 406 grade stainless steel needles. Mechanical property data gathered was used to analyze performance. The study found that adding reinforcement does not increase initial Compression and Cold Modulus of Ruptures strengths, however, after prolonged heat and thermal shock exposure, needles help maintain integrity and mechanical properties of samples. The study also found that corrosion due to oxidation was a major contributing factor to the way needles performed; and concluded that a concentration of 3% 406 "Alfa 1" stainless steel reinforcing needles added to the working lining of a taconite furnace is recommended.

  2. Occupational Exposure to Bioaerosols in Norwegian Crab Processing Plants.

    PubMed

    Thomassen, Marte R; Kamath, Sandip D; Lopata, Andreas L; Madsen, Anne Mette; Eduard, Wijnand; Bang, Berit E; Aasmoe, Lisbeth

    2016-08-01

    Aerosolization of components when processing king crab (Paralithodes camtschaticus) and edible crab (Cancer pagurus) may cause occupational health problems when inhaled by workers. A cross-sectional study was carried out in three king crab plants and one edible crab plant. Personal exposure measurements were performed throughout work shifts. Air was collected for measurement of tropomyosin, total protein, endotoxin, trypsin, and N-acetyl-β-d-glucosaminidase (NAGase). T-tests and ANOVAs were used to compare the levels of exposure in the different plants and areas in the plants. Total protein and tropomyosin levels were highest in the edible crab plant, endotoxin levels were highest in king crab plants. King crab exposure levels were highest during raw processing. Tropomyosin levels were highest during raw king crab processing with geometric mean (GM) 9.6 versus 2.5ng m(-3) during cooked processing. Conversely, edible crab tropomyosin levels were highest during cooked processing with GM 45.4 versus 8.7ng m(-3) during raw processing. Endotoxin levels were higher in king crab plants than in the edible crab plant with GM = 6285.5 endotoxin units (EU) m(-3) versus 72 EU m(-3). In the edible crab plant, NAGase levels were highest during raw processing with GM = 853 pmol4-methylumbelliferone (MU) m(-3) versus 422 pmol4-MU m(-3) during cooked processing. Trypsin activity was found in both king crab and edible crab plants and levels were higher in raw than cooked processing. Differences in exposure levels between plants and worker groups (raw and cooked processing) were identified. Norwegian crab processing workers are exposed to airborne proteins, tropomyosin, endotoxins, trypsin, and NAGase in their breathing zone. Levels vary between worker groups and factories. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. Plant hydrocarbon recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within themore » range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.« less

  4. Enhancing Elementary Pre-Service Teachers' Plant Processes Conceptions

    ERIC Educational Resources Information Center

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-01-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to…

  5. 75 FR 3728 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... purposes of collecting, validating, and verifying information, processing and maintaining information, and... transmit or otherwise disclose the information. Respondents/Affected Entities: Taconite iron ore processing... Control Number 2060-0538] Agency Information Collection Activities; Submission to OMB for Review and...

  6. Situation awareness acquired from monitoring process plants - the Process Overview concept and measure.

    PubMed

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-07-01

    We introduce Process Overview, a situation awareness characterisation of the knowledge derived from monitoring process plants. Process Overview is based on observational studies of process control work in the literature. The characterisation is applied to develop a query-based measure called the Process Overview Measure. The goal of the measure is to improve coupling between situation and awareness according to process plant properties and operator cognitive work. A companion article presents the empirical evaluation of the Process Overview Measure in a realistic process control setting. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA based on data collected by process experts. Practitioner Summary: The Process Overview Measure is a query-based measure for assessing operator situation awareness from monitoring process plants in representative settings.

  7. Tips and traps for reapplying used process plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conder, M.W.

    1999-07-01

    Many gas processing projects are based on reapplying used gas processing plants and equipment. There has been little information or advice in the literature which provides practical advice for this type of project. GPA's Technical Section A Committee has been developing a monograph on experiences in reapplying used plants and equipment. This paper includes excerpts from that monograph and presents advice illustrated by recent experiences with used plants.

  8. Empirical evaluation of the Process Overview Measure for assessing situation awareness in process plants.

    PubMed

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-03-01

    The Process Overview Measure is a query-based measure developed to assess operator situation awareness (SA) from monitoring process plants. A companion paper describes how the measure has been developed according to process plant properties and operator cognitive work. The Process Overview Measure demonstrated practicality, sensitivity, validity and reliability in two full-scope simulator experiments investigating dramatically different operational concepts. Practicality was assessed based on qualitative feedback of participants and researchers. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA in full-scope simulator settings based on data collected on process experts. Thus, full-scope simulator studies can employ the Process Overview Measure to reveal the impact of new control room technology and operational concepts on monitoring process plants. Practitioner Summary: The Process Overview Measure is a query-based measure that demonstrated practicality, sensitivity, validity and reliability for assessing operator situation awareness (SA) from monitoring process plants in representative settings.

  9. AIRBORNE MICROORGANISMS IN BROILER PROCESSING PLANTS.

    PubMed

    KOTULA, A W; KINNER, J A

    1964-05-01

    Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft(3) of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed.

  10. Airborne Microorganisms in Broiler Processing Plants

    PubMed Central

    Kotula, Anthony W.; Kinner, Jack A.

    1964-01-01

    Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft3 of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed. Images FIG. 3 PMID:14170951

  11. Great Lakes and St. Lawrence Seaway Navigation Season Extension. Volume 1. Main Report and Final Environmental Impact Statement

    DTIC Science & Technology

    1979-08-01

    MN - Taconite, MN - Silver Bay, MN - Presque Isle , MI - Marquette, MI 30 iC V.)Lake Michigan - Burns Harbor, IN - Gary, IN - Indiana, IN - Milwaukee...14,263 3.7 Presque Isle , MI 1,703 516 3.3 Marquette, MI 159 192 0.8 Taconite, MN 5,640 1,723 3.3 Silver Bay, MN 5,623 1,744 3.2 Ash-and, WI 250 668 0.4...required -for Taconite, Two Harbors, and Presque Isle and that only a single line of bubblers would be required in Ashland, MaLquette, and Silver Bay

  12. New Process Controls for the Hera Cryogenic Plant

    NASA Astrophysics Data System (ADS)

    Böckmann, T.; Clausen, M.; Gerke, Chr.; Prüß, K.; Schoeneburg, B.; Urbschat, P.

    2010-04-01

    The cryogenic plant built for the HERA accelerator at DESY in Hamburg (Germany) is now in operation for more than two decades. The commercial process control system for the cryogenic plant is in operation for the same time period. Ever since the operator stations, the control network and the CPU boards in the process controllers went through several upgrade stages. Only the centralized Input/Output system was kept unchanged. Many components have been running beyond the expected lifetime. The control system for one at the three parts of the cryogenic plant has been replaced recently by a distributed I/O system. The I/O nodes are connected to several Profibus-DP field busses. Profibus provides the infrastructure to attach intelligent sensors and actuators directly to the process controllers which run the open source process control software EPICS. This paper describes the modification process on all levels from cabling through I/O configuration, the process control software up to the operator displays.

  13. TREATMENT OF AMMONIA PLANT PROCESS CONDENSATE EFFLUENT

    EPA Science Inventory

    The report gives results of an examination of contaminant content and selected treatment techniques for process condensate from seven different ammonia plants. Field tests were performed and data collected on an in-plant steam stripping column with vapor injection into the reform...

  14. Nuclear processes associated with plant immunity and pathogen susceptibility.

    PubMed

    Motion, Graham B; Amaro, Tiago M M M; Kulagina, Natalja; Huitema, Edgar

    2015-07-01

    Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant-microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. © The Author 2015. Published by Oxford University Press.

  15. Computer Simulation of Great Lakes-St. Lawrence Seaway Icebreaker Requirements.

    DTIC Science & Technology

    1980-01-01

    of Run No. 1 for Taconite Task Command ... ....... 6-41 6.22d Results of Run No. I for Oil Can Task Command ........ ... 6-42 6.22e Results of Run No...Port and Period for Run No. 2 ... .. ... ... 6-47 6.23c Results of Run No. 2 for Taconite Task Command ... ....... 6-48 6.23d Results of Run No. 2 for...6-53 6.24b Predicted Icebreaker Fleet by Home Port and Period for Run No. 3 6-54 6.24c Results of Run No. 3 for Taconite Task Command. ....... 6

  16. 40 CFR 63.9632 - What are the installation, operation, and maintenance requirements for my monitoring equipment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Continuous Compliance Requirements § 63.9632 What are...

  17. 40 CFR 63.9632 - What are the installation, operation, and maintenance requirements for my monitoring equipment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Continuous Compliance Requirements § 63.9632 What are...

  18. Natural Gas Processing Plants in the United States: 2010 Update

    EIA Publications

    2011-01-01

    This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations.

  19. Nuclear processes associated with plant immunity and pathogen susceptibility

    PubMed Central

    Motion, Graham B.; Amaro, Tiago M.M.M.; Kulagina, Natalja

    2015-01-01

    Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant–microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. PMID:25846755

  20. 40 CFR 63.9600 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... correspond to your standard operating procedures for maintaining the proper and efficient combustion within... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Operation...

  1. 40 CFR 63.9600 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... correspond to your standard operating procedures for maintaining the proper and efficient combustion within... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Operation...

  2. 40 CFR 63.9600 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... correspond to your standard operating procedures for maintaining the proper and efficient combustion within... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Operation...

  3. Predicting green: really radical (plant) predictive processing

    PubMed Central

    Friston, Karl

    2017-01-01

    In this article we account for the way plants respond to salient features of their environment under the free-energy principle for biological systems. Biological self-organization amounts to the minimization of surprise over time. We posit that any self-organizing system must embody a generative model whose predictions ensure that (expected) free energy is minimized through action. Plants respond in a fast, and yet coordinated manner, to environmental contingencies. They pro-actively sample their local environment to elicit information with an adaptive value. Our main thesis is that plant behaviour takes place by way of a process (active inference) that predicts the environmental sources of sensory stimulation. This principle, we argue, endows plants with a form of perception that underwrites purposeful, anticipatory behaviour. The aim of the article is to assess the prospects of a radical predictive processing story that would follow naturally from the free-energy principle for biological systems; an approach that may ultimately bear upon our understanding of life and cognition more broadly. PMID:28637913

  4. Electronic data processing codes for California wildland plants

    Treesearch

    Merton J. Reed; W. Robert Powell; Bur S. Bal

    1963-01-01

    Systematized codes for plant names are helpful to a wide variety of workers who must record the identity of plants in the field. We have developed such codes for a majority of the vascular plants encountered on California wildlands and have published the codes in pocket size, using photo-reductions of the output from data processing machines. A limited number of the...

  5. Classified Scrap in Lake Superior.

    DTIC Science & Technology

    1977-07-08

    DEPARTMENT OF THE ARMY St. Paul District, Corps of Engineers Lake Superior Area Canal Park Duluth, Minnesota 55802 THE DAILY MINING GAZETTE...ago. Lind concurred with the reference groupts recommendations that Reserve Mining Company’s discharge of 67,000 tons of taconite tailings into Lake...installation located ap- proximately 13 miles north of Minneapolis - St. Paul, Minnesota . The prime contractor at the plant is Federal Cartridge Corporation with

  6. 40 CFR 98.177 - Records that must be retained.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Production capacity (in metric tons per year) for the production of taconite pellets, coke, sinter, iron, and raw steel. (d) Annual operating hours for taconite furnaces, coke oven batteries, sinter production... all sources of carbon input and output and the metric tons of coal charged to the coke ovens (e.g...

  7. Development of a material processing plant for lunar soil

    NASA Technical Reports Server (NTRS)

    Goettsch, Ulix; Ousterhout, Karl

    1992-01-01

    Currently there is considerable interest in developing in-situ materials processing plants for both the Moon and Mars. Two of the most important aspects of developing such a materials processing plant is the overall system design and the integration of the different technologies into a reliable, lightweight, and cost-effective unit. The concept of an autonomous materials processing plant that is capable of producing useful substances from lunar regolith was developed. In order for such a materials processing plant to be considered as a viable option, it must be totally self-contained, able to operate autonomously, cost effective, light weight, and fault tolerant. In order to assess the impact of different technologies on the overall systems design and integration, a one-half scale model was constructed that is capable of scooping up (or digging) lunar soil, transferring the soil to a solar furnace, heating the soil in the furnace to liberate the gasses, and transferring the spent soil to a 'tile' processing center. All aspects of the control system are handled by a 386 class PC via D/A, A/D, and DSP (Digital Signal Processor) control cards.

  8. Contamination of salmon fillets and processing plants with spoilage bacteria.

    PubMed

    Møretrø, Trond; Moen, Birgitte; Heir, Even; Hansen, Anlaug Å; Langsrud, Solveig

    2016-11-21

    The processing environment of salmon processing plants represents a potential major source of bacteria causing spoilage of fresh salmon. In this study, we have identified major contamination routes of important spoilage associated species within the genera Pseudomonas, Shewanella and Photobacterium in pre-rigor processing of salmon. Bacterial counts and culture-independent 16S rRNA gene analysis on salmon fillet from seven processing plants showed higher levels of Pseudomonas spp. and Shewanella spp. in industrially processed fillets compared to salmon processed under strict hygienic conditions. Higher levels of Pseudomonas spp. and Shewanella spp. were found on fillets produced early on the production day compared to later processed fillets. The levels of Photobacterium spp. were not dependent on the processing method or time of processing. In follow-up studies of two plants, bacterial isolates (n=2101) from the in-plant processing environments (sanitized equipment/machines and seawater) and from salmon collected at different sites in the production were identified by partial 16S rRNA gene sequencing. Pseudomonas spp. dominated in equipment/machines after sanitation with 72 and 91% of samples from the two plants being Pseudomonas-positive. The phylogenetic analyses, based on partial 16S rRNA gene sequencing, showed 48 unique sequence profiles of Pseudomonas of which two were dominant. Only six profiles were found on both machines and in fillets in both plants. Shewanella spp. were found on machines after sanitation in the slaughter department while Photobacterium spp. were not detected after sanitation in any parts of the plants. Shewanella spp. and Photobacterium spp. were found on salmon in the slaughter departments. Shewanella was frequently present in seawater tanks used for bleeding/short term storage. In conclusion, this study provides new knowledge on the processing environment as a source of contamination of salmon fillets with Pseudomonas spp. and

  9. 40 CFR 63.9631 - What are my monitoring requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false What are my monitoring requirements? 63.9631 Section 63.9631 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Continuous...

  10. Vacuolar processing enzyme: an executor of plant cell death.

    PubMed

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  11. Study on extraction process and activity of plant polysaccharides

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogen; Wang, Xiaojing; Fan, Shuangli; Chen, Jiezhong

    2017-10-01

    Recent studies have shown that plant polysaccharides have many pharmacological activities, such as hypoglycemic, anti-inflammatory and tumor inhibition. The pharmacological activities of plant polysaccharides were summarized. The extraction methods of plant polysaccharides were discussed. Finally, the extraction process of Herba Taraxaci polysaccharides was optimized by ultrasonic assisted extraction. Through single factor experiments and orthogonal experiment to optimize the optimum extraction process from dandelion polysaccharide, optimum conditions of dandelion root polysaccharide by ultrasonic assisted extraction method for ultrasonic power 320W, temperature 80°C, extraction time 40min, can get higher dandelion polysaccharide extract.

  12. Indicator system for a process plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  13. Epigenetic processes in flowering plant reproduction.

    PubMed

    Wang, Guifeng; Köhler, Claudia

    2017-02-01

    Seeds provide up to 70% of the energy intake of the human population, emphasizing the relevance of understanding the genetic and epigenetic mechanisms controlling seed formation. In flowering plants, seeds are the product of a double fertilization event, leading to the formation of the embryo and the endosperm surrounded by maternal tissues. Analogous to mammals, plants undergo extensive epigenetic reprogramming during both gamete formation and early seed development, a process that is supposed to be required to enforce silencing of transposable elements and thus to maintain genome stability. Global changes of DNA methylation, histone modifications, and small RNAs are closely associated with epigenome programming during plant reproduction. Here, we review current knowledge on chromatin changes occurring during sporogenesis and gametogenesis, as well as early seed development in major flowering plant models. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. 40 CFR 63.9621 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Initial Compliance... section. (b) For each ore crushing and handling affected source and each finished pellet handling affected... each ore crushing and handling affected source and each finished pellet handling affected source, you...

  15. 3. VIEW OF THE PROCESSING PLANT TO THE WEST. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF THE PROCESSING PLANT TO THE WEST. THE PROCESSING PLANT IS LEFT CENTER. THE BLACKSMITH/MINE CAR REPAIR SHOP AND PARTS/SUPPLIES BUILDINGS ARE RIGHT CENTER. - Smith Mine, Bear Creek 1.5 miles West of Town of Bear Creek, Red Lodge, Carbon County, MT

  16. W-waves Explain Gravitropism, Phototropism, Sap Flow, Plant Structure, and other Plant Processes

    NASA Astrophysics Data System (ADS)

    Wagner, Raymond E.; Wagner, Orvin E.

    1996-11-01

    Eight years of research here confirm that plants act as wave guides for W-waves: The wavelengths of these longitudinal plant waves depend on the angle with which they are traveling with respect to the gravitational field. A structure grows tuned to a particular angle under the influence of genetics. If a structure is displaced from this angle plant action produces a correction. (2) Light waves produce certain W-wave modes in the W-wave medium and a plant's response to light results. (3) Wave action produces forces in the plant (that cancel gravity in the vertical case), combined with other affects, and sap flow results. (4) Plant structures are determined by genetics and environment from a set of quantized wavelengths available to all plants. The quantized values available to plants and all life provide templates for life to develop. Compare with quantum mechanics as a template for the structure of matter. Life processes suggest that templates also influence the development and stability of all structures in the universe (see www.chatlink.com/ oedphd/ for references).

  17. High-autonomy control of space resource processing plants

    NASA Technical Reports Server (NTRS)

    Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue

    1993-01-01

    A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.

  18. [The airborne 1,3-butadiene concentrations in rubber and plastic processing plants].

    PubMed

    Yoshida, Toshiaki; Tainaka, Hidetsugu; Matsunaga, Ichiro; Goto, Sumio

    2002-03-01

    Environment pollution by 1,3-butadiene had considerably increased in Japan. The main cause of the pollution is the automotive exhaust gas, and leaks from factories, smoking, and burning of rubber and plastic products are considered to be minor sources. The object of this study was to determine the contamination levels of airborne 1,3-butadiene in factories processing rubber and plastics containing 1,3-butadiene. The concentrations of airborne 1,3-butadiene were measured in 21 plants (10 rubber processing plants and 11 plastics processing plants) in Osaka. 1,3-Butadiene in air was collected for 10 minutes with a charcoal tube and a portable small pump adjusted to a 250 ml/min flow rate. In each plant, indoor air samples at five points and an outdoor air sample at one point outside the plant were collected. The samples were subjected to gas chromatography/mass spectrometry after thermal desorption from the charcoal. The concentrations of airborne 1,3-butadiene in the rubber processing plants and the plastics processing plants were 0.14-2.20 micrograms/m3 (geometric mean: 0.48 microgram/m3) and 0.23-4.51 micrograms/m3 (geometric mean: 0.80 microgram/m3), respectively. In all plants examined, indoor 1,3-butadiene concentrations were higher than the outdoor concentrations around the plants. Therefore, 1,3-butadiene was considered to arise from the processing of rubber or plastics, but the indoor 1,3-butadiene concentrations were much lower than the PEL-TWA (1 ppm = 2.21 mg/m3) of OSHA and the TLV-TWA (2 ppm) of ACGIH. The concentrations in the plants with closed room conditions without ventilation were higher than the concentrations in the other plants. It was suggested that ventilation affected the 1,3-butadiene concentration in the plants.

  19. 40 CFR Table 1 to Subpart Rrrrr of... - Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Emission Limits 1 Table 1 to Subpart... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Pt. 63, Subpt. RRRRR...

  20. The pilot plant for electron beam food processing

    NASA Astrophysics Data System (ADS)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  1. Competitive regulation of plant allometry and a generalized model for the plant self-thinning process.

    PubMed

    Wang, Gang; Yuan, Jianli; Wang, Xizhi; Xiao, Sa; Huang, Wenbing

    2004-11-01

    Taking into account the individual growth form (allometry) in a plant population and the effects of intraspecific competition on allometry under the population self-thinning condition, and adopting Ogawa's allometric equation 1/y = 1/axb + 1/c as the expression of complex allometry, the generalized model describing the change mode of r (the self-thinning exponential in the self-thinning equation, log M = K + log N, where M is mean plant mass, K is constant, and N is population density) was constructed. Meanwhile, with reference to the changing process of population density to survival curve type B, the exponential, r, was calculated using the software MATHEMATICA 4.0. The results of the numerical simulation show that (1) the value of the self-thinning exponential, r, is mainly determined by allometric parameters; it is most sensitive to change of b of the three allometric parameters, and a and c take second place; (2) the exponential, r, changes continuously from about -3 to the asymptote -1; the slope of -3/2 is a transient value in the population self-thinning process; (3) it is not a 'law' that the slope of the self-thinning trajectory equals or approaches -3/2, and the long-running dispute in ecological research over whether or not the exponential, r, equals -3/2 is meaningless. So future studies on the plant self-thinning process should focus on investigating how plant neighbor competition affects the phenotypic plasticity of plant individuals, what the relationship between the allometry mode and the self-thinning trajectory of plant population is and, in the light of evolution, how plants have adapted to competition pressure by plastic individual growth.

  2. Pollination and seed dispersal are the most threatened processes of plant regeneration

    NASA Astrophysics Data System (ADS)

    Neuschulz, Eike Lena; Mueller, Thomas; Schleuning, Matthias; Böhning-Gaese, Katrin

    2016-07-01

    Plant regeneration is essential for maintaining forest biodiversity and ecosystem functioning, which are globally threatened by human disturbance. Here we present the first integrative meta-analysis on how forest disturbance affects multiple ecological processes of plant regeneration including pollination, seed dispersal, seed predation, recruitment and herbivory. We analysed 408 pairwise comparisons of these processes between near-natural and disturbed forests. Human impacts overall reduced plant regeneration. Importantly, only processes early in the regeneration cycle that often depend on plant-animal interactions, i.e. pollination and seed dispersal, were negatively affected. Later processes, i.e. seed predation, recruitment and herbivory, showed overall no significant response to human disturbance. Conserving pollination and seed dispersal, including the animals that provide these services to plants, should become a priority in forest conservation efforts globally.

  3. Extraction and downstream processing of plant-derived recombinant proteins.

    PubMed

    Buyel, J F; Twyman, R M; Fischer, R

    2015-11-01

    Plants offer the tantalizing prospect of low-cost automated manufacturing processes for biopharmaceutical proteins, but several challenges must be addressed before such goals are realized and the most significant hurdles are found during downstream processing (DSP). In contrast to the standardized microbial and mammalian cell platforms embraced by the biopharmaceutical industry, there are many different plant-based expression systems vying for attention, and those with the greatest potential to provide inexpensive biopharmaceuticals are also the ones with the most significant drawbacks in terms of DSP. This is because the most scalable plant systems are based on the expression of intracellular proteins in whole plants. The plant tissue must therefore be disrupted to extract the product, challenging the initial DSP steps with an unusually high load of both particulate and soluble contaminants. DSP platform technologies can accelerate and simplify process development, including centrifugation, filtration, flocculation, and integrated methods that combine solid-liquid separation, purification and concentration, such as aqueous two-phase separation systems. Protein tags can also facilitate these DSP steps, but they are difficult to transfer to a commercial environment and more generic, flexible and scalable strategies to separate target and host cell proteins are preferable, such as membrane technologies and heat/pH precipitation. In this context, clarified plant extracts behave similarly to the feed stream from microbes or mammalian cells and the corresponding purification methods can be applied, as long as they are adapted for plant-specific soluble contaminants such as the superabundant protein RuBisCO. Plant-derived pharmaceutical proteins cannot yet compete directly with established platforms but they are beginning to penetrate niche markets that allow the beneficial properties of plants to be exploited, such as the ability to produce 'biobetters' with tailored

  4. 40 CFR 98.177 - Records that must be retained.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Production capacity (in metric tons per year) for the production of taconite pellets, coke, sinter, iron, and...-recovery coke oven battery, sinter process, electric arc furnace, decarburization vessel, and direct... of coal charged to the coke ovens (e.g., weigh belts, a combination of measuring volume and bulk...

  5. 40 CFR 98.177 - Records that must be retained.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Production capacity (in metric tons per year) for the production of taconite pellets, coke, sinter, iron, and...-recovery coke oven battery, sinter process, electric arc furnace, decarburization vessel, and direct... of coal charged to the coke ovens (e.g., weigh belts, a combination of measuring volume and bulk...

  6. 40 CFR 98.177 - Records that must be retained.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Production capacity (in metric tons per year) for the production of taconite pellets, coke, sinter, iron, and...-recovery coke oven battery, sinter process, electric arc furnace, decarburization vessel, and direct... of coal charged to the coke ovens (e.g., weigh belts, a combination of measuring volume and bulk...

  7. 40 CFR 98.177 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Production capacity (in metric tons per year) for the production of taconite pellets, coke, sinter, iron, and...-recovery coke oven battery, sinter process, electric arc furnace, decarburization vessel, and direct... of coal charged to the coke ovens (e.g., weigh belts, a combination of measuring volume and bulk...

  8. Socioeconomic Impacts of Agricultural Processing Plants.

    ERIC Educational Resources Information Center

    Leistritz, F. Larry; Sell, Randall S.

    2001-01-01

    Studies in four North Dakota communities that had suffered economic and population decline in the 1980s examined the economic and community impacts of new agricultural processing plants in the late 1990s, including effects on residents' incomes, total and school-age population, needs for day care and community services, housing needs, public…

  9. Investigations of biological processes in Austrian MBT plants.

    PubMed

    Tintner, J; Smidt, E; Böhm, K; Binner, E

    2010-10-01

    Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Diversity and distribution of Listeria monocytogenes in meat processing plants.

    PubMed

    Martín, Belén; Perich, Adriana; Gómez, Diego; Yangüela, Javier; Rodríguez, Alicia; Garriga, Margarita; Aymerich, Teresa

    2014-12-01

    Listeria monocytogenes is a major concern for the meat processing industry because many listeriosis outbreaks have been linked to meat product consumption. The aim of this study was to elucidate L. monocytogenes diversity and distribution across different Spanish meat processing plants. L. monocytogenes isolates (N = 106) collected from food contact surfaces of meat processing plants and meat products were serotyped and then characterised by multilocus sequence typing (MLST). The isolates were serotyped as 1/2a (36.8%), 1/2c (34%), 1/2b (17.9%) and 4b (11.3%). MLST identified ST9 as the most predominant allelic profile (33% of isolates) followed by ST121 (16%), both of which were detected from several processing plants and meat products sampled in different years, suggesting that those STs are highly adapted to the meat processing environment. Food contact surfaces during processing were established as an important source of L. monocytogenes in meat products because the same STs were obtained in isolates recovered from surfaces and products. L. monocytogenes was recovered after cleaning and disinfection procedures in two processing plants, highlighting the importance of thorough cleaning and disinfection procedures. Epidemic clone (EC) marker ECI was identified in 8.5%, ECIII was identified in 2.8%, and ECV was identified in 7.5% of the 106 isolates. Furthermore, a selection of presumably unrelated ST9 isolates was analysed by multi-virulence-locus sequence typing (MVLST). Most ST9 isolates had the same virulence type (VT11), confirming the clonal origin of ST9 isolates; however, one ST9 isolate was assigned to a new VT (VT95). Consequently, MLST is a reliable tool for identification of contamination routes and niches in processing plants, and MVLST clearly differentiates EC strains, which both contribute to the improvement of L. monocytogenes control programs in the meat industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Plant uprooting by flow as a fatigue mechanical process

    NASA Astrophysics Data System (ADS)

    Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît

    2015-04-01

    In river corridors, plant uprooting by flow mostly occurs as a delayed process where flow erosion first causes root exposure until residual anchoring balances hydrodynamic forces on the part of the plant that is exposed to the stream. Because a given plant exposure time to the action of the stream is needed before uprooting occurs (time-to-uprooting), this uprooting mechanism has been denominated Type II, in contrast to Type I, which mostly affect early stage seedlings and is rather instantaneous. In this work, we propose a stochastic framework that describes a (deterministic) mechanical fatigue process perturbed by a (stochastic) process noise, where collapse occurs after a given exposure time. We test the model using the experimental data of Edmaier (2014) and Edmaier et al. (submitted), who investigated vegetation uprooting by flow in the limit of low plant stem-to-sediment size ratio by inducing parallel riverbed erosion within an experimental flume. We first identify the proper timescale and lengthscale for rescaling the model. Then, we show that it describes well all the empirical cumulative distribution functions (cdf) of time-to-uprooting obtained under constant riverbed erosion rate and assuming additive gaussian process noise. By this mean, we explore the level of determinism and stochasticity affecting the time-to-uprooting for Avena sativa in relation to root anchoring and flow drag forces. We eventually ascribe the overall dynamics of the Type II uprooting mechanism to the memory of the plant-soil system that is stored by root anchoring, and discuss related implications thereof. References Edmaier, K., Uprooting mechansims of juvenile vegetation by flow erosion, Ph.D. thesis, EPFL, 2014. Edmaier, K., Crouzy, B. and P. Perona. Experimental characterization of vegetation uprooting by flow. J. of Geophys. Res. - Biogeosci., submitted

  12. The Great Lakes of the United States, National Security and the Budget

    DTIC Science & Technology

    2005-02-14

    ship transport. Taconite pellets are shipped to the Duluth-Superior harbor from mines located in the upper peninsula of Michigan, Minnesota ...example, the Port of Duluth-Superior located on the far northwestern portion of Lake Superior is a major hub for cross loading taconite pellets from rail to...northwest Ontario and northern Ontario. Therefore mining activities take place on both USA and Canadian shores and have a commensurate international

  13. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation periodmore » were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.« less

  14. Hypersensitivity pneumonitis in a hardwood processing plant related to heavy mold exposure.

    PubMed

    Veillette, Marc; Cormier, Yvon; Israël-Assayaq, Evelyne; Meriaux, Anne; Duchaine, Caroline

    2006-06-01

    Two workers employed in a hardwood floor plant presented symptoms suggestive of hypersensitivity pneumonitis (HP). At that plant, kiln-dried wood often shows moldy growth and is subsequently brought inside for processing. This study evaluated the environment in attempt to identify the causative antigen and verify whether other workers of this and similar plants had or were at risk of developing HP. Dust from dust-removing systems and molds on the surface of wood planks were collected and air samples taken from a sister plant. Blood samples, spirometry, and symptoms' questionnaires were obtained from 11 co-workers. Dense Paecilomyces growth was observed on the surface of the dried processed wood in the index plant. This fungal genus was not detected in the sister plant. An additional worker had symptoms suggestive of HP, and his bronchoalveolar lavage revealed a lymphocytic alveolitis. The 3 confirmed cases of HP and the other 10 workers had positive specific IgG antibodies to Paecilomyces. We report 3 cases of HP out of 13 workers and a 100% sensitization to molds in workers of a hardwood processing plant. This rate is much higher than what is commonly seen in other environments associated with HP. The drying process is suspected of being responsible for the massive Paecilomyces contamination likely responsible for the HP.

  15. Great Lakes/St. Lawrence Seaway Regional Transportation Study: General Description of Great Lakes/St. Lawrence Seaway Physical System.

    DTIC Science & Technology

    1981-09-01

    Port of Detroit, MI Marquette, MI Detroit Harbor, Rouge Taconite , MN River, Ecorse, Wyandotte, Silver Bay, MN Riverview Ashland, WI Alpena, MI...VI-53 Marquette, MI VI-54 Taconite Harbor, MN VI-55 Silver Bay, MN VI-56 Ashland, WI VI-57 VI-50 TWO HARBORS, MN Controlling Depths Authorized - 28...Development The Duluth-Superior Harbor, Minnesota and Wisconsin study of improvements is in the planning stage. The principal alternatives examined in the

  16. A novel mesh processing based technique for 3D plant analysis

    PubMed Central

    2012-01-01

    Background In recent years, imaging based, automated, non-invasive, and non-destructive high-throughput plant phenotyping platforms have become popular tools for plant biology, underpinning the field of plant phenomics. Such platforms acquire and record large amounts of raw data that must be accurately and robustly calibrated, reconstructed, and analysed, requiring the development of sophisticated image understanding and quantification algorithms. The raw data can be processed in different ways, and the past few years have seen the emergence of two main approaches: 2D image processing and 3D mesh processing algorithms. Direct image quantification methods (usually 2D) dominate the current literature due to comparative simplicity. However, 3D mesh analysis provides the tremendous potential to accurately estimate specific morphological features cross-sectionally and monitor them over-time. Result In this paper, we present a novel 3D mesh based technique developed for temporal high-throughput plant phenomics and perform initial tests for the analysis of Gossypium hirsutum vegetative growth. Based on plant meshes previously reconstructed from multi-view images, the methodology involves several stages, including morphological mesh segmentation, phenotypic parameters estimation, and plant organs tracking over time. The initial study focuses on presenting and validating the accuracy of the methodology on dicotyledons such as cotton but we believe the approach will be more broadly applicable. This study involved applying our technique to a set of six Gossypium hirsutum (cotton) plants studied over four time-points. Manual measurements, performed for each plant at every time-point, were used to assess the accuracy of our pipeline and quantify the error on the morphological parameters estimated. Conclusion By directly comparing our automated mesh based quantitative data with manual measurements of individual stem height, leaf width and leaf length, we obtained the mean

  17. Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues

    NASA Astrophysics Data System (ADS)

    Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.

    1997-01-01

    Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.

  18. Proximate composition of poultry processing wastewater particulate matter from broiler slaughter plants.

    PubMed

    Kiepper, B H; Merka, W C; Fletcher, D L

    2008-08-01

    An experiment was conducted to compare the proximate composition of particulate matter recovered from poultry processing wastewater (PPW) generated by broiler slaughter plants. Poultry processing wastewater is the cumulative wastewater stream generated during the processing of poultry following primary and secondary physical screening (typically to 500 mum) that removes gross offal. Composite samples of PPW from 3 broiler slaughter plants (southeast United States) were collected over 8 consecutive weeks. All 3 broiler slaughter plants process young chickens with an average live weight of 2.0 kg. At each plant, a single 72-L composite sample was collected using an automatic sampler programmed to collect 1 L of wastewater every 20 min for 24 h during one normal processing day each week. Each composite sample was thoroughly mixed, and 60 L was passed through a series of sieves (2.0 mm, 1.0 mm, 500 mum, and 53 mum). The amount of particulate solids collected on the 2.0 mm, 1.0 mm, and 500 mum sieves was insignificant. The solids recovered from the 53-mum sieve were subjected to proximate analysis to determine percent moisture, fat, protein, ash, and fiber. The average percentages of fat, protein, ash, and fiber for all samples on a dry-weight basis were 55.3, 27.1, 6.1, and 4.1, respectively. Fat made up over half of the dry-weight matter recovered, representing PPW particulate matter between 500 and 53 mum. Despite the variation in number of birds processed daily, further processing operations, and number and type of wastewater screens utilized, there were no significance differences in percentage of fat and fiber between the slaughter plants. There were significant differences in percent protein and ash between the slaughter plants.

  19. Humic Substances: Determining Potential Molecular Regulatory Processes in Plants

    PubMed Central

    Shah, Zahid Hussain; Rehman, Hafiz M.; Akhtar, Tasneem; Alsamadany, Hameed; Hamooh, Bahget T.; Mujtaba, Tahir; Daur, Ihsanullah; Al Zahrani, Yahya; Alzahrani, Hind A. S.; Ali, Shawkat; Yang, Seung H.; Chung, Gyuhwa

    2018-01-01

    Humic substances (HSs) have considerable effects on soil fertility and crop productivity owing to their unique physiochemical and biochemical properties, and play a vital role in establishing biotic and abiotic interactions within the plant rhizosphere. A comprehensive understanding of the mode of action and tissue distribution of HS is, however, required, as this knowledge could be useful for devising advanced rhizospheric management practices. These substances trigger various molecular processes in plant cells, and can strengthen the plant’s tolerance to various kinds of abiotic stresses. HS manifest their effects in cells through genetic, post-transcriptional, and post-translational modifications of signaling entities that trigger different molecular, biochemical, and physiological processes. Understanding of such fundamental mechanisms will provide a better perspective for defining the cues and signaling crosstalk of HS that mediate various metabolic and hormonal networks operating in plant systems. Various regulatory activities and distribution strategies of HS have been discussed in this review. PMID:29593751

  20. Herding Ecologies and Ongoing Plant Domestication Processes in the Americas

    PubMed Central

    Lezama-Núñez, Paulina R.; Santos-Fita, Dídac; Vallejo, José R.

    2018-01-01

    Understanding both domestication processes and agricultural practices is an interdisciplinary endeavor. Ethnographic research is potentially helpful for reconstructing past events. Such knowledge is also crucial for documenting the links between biological and cultural diversity, as well as for future purposes such as innovation in food production and sustainability. Here, we review six ethnographic case studies in different pastoral socioecological systems of the American continent. The livestock species involved include the native South American camelids and Arctic reindeer, as well as some Old World species (mainly goats, sheep, and cattle). Starting with the Columbian exchange (15th-16th centuries) and continuing up to the present, Old World herbivores launched novel uses of the local flora which resulted in entirely new livelihoods and cultures, i.e., pastoralism with its variants. Three of these case studies approach specifically how herding ecologies (human–animal–plant relationships) stirred specific management practices (human–plant relationships) that in some instances have moved toward conscious human selection of plant phenotypes. The other examples correspond to three potential instances of similar ongoing processes that we propose on the basis of ethnobotanical and ethnozoological data that were produced separately by other authors. Based on the studies we have reviewed, along with additional information from other parts of the world, we are able to conclude that: (a) New World pastoralist societies are/have been continuously adding species to the humanity’s portfolio of useful plants; (b) animals have been aiding in this processes in different ways; and, (c) how human–animal–plant relationships unfold in the present could have been similar in the past, thus analogies may be proposed for explaining prehistoric multispecies interactions and their outcomes. With our review, we intend to bring more attention to contemporary pastoralists as

  1. Herding Ecologies and Ongoing Plant Domestication Processes in the Americas.

    PubMed

    Lezama-Núñez, Paulina R; Santos-Fita, Dídac; Vallejo, José R

    2018-01-01

    Understanding both domestication processes and agricultural practices is an interdisciplinary endeavor. Ethnographic research is potentially helpful for reconstructing past events. Such knowledge is also crucial for documenting the links between biological and cultural diversity, as well as for future purposes such as innovation in food production and sustainability. Here, we review six ethnographic case studies in different pastoral socioecological systems of the American continent. The livestock species involved include the native South American camelids and Arctic reindeer, as well as some Old World species (mainly goats, sheep, and cattle). Starting with the Columbian exchange (15th-16th centuries) and continuing up to the present, Old World herbivores launched novel uses of the local flora which resulted in entirely new livelihoods and cultures, i.e., pastoralism with its variants. Three of these case studies approach specifically how herding ecologies (human-animal-plant relationships) stirred specific management practices (human-plant relationships) that in some instances have moved toward conscious human selection of plant phenotypes. The other examples correspond to three potential instances of similar ongoing processes that we propose on the basis of ethnobotanical and ethnozoological data that were produced separately by other authors. Based on the studies we have reviewed, along with additional information from other parts of the world, we are able to conclude that: (a) New World pastoralist societies are/have been continuously adding species to the humanity's portfolio of useful plants; (b) animals have been aiding in this processes in different ways; and, (c) how human-animal-plant relationships unfold in the present could have been similar in the past, thus analogies may be proposed for explaining prehistoric multispecies interactions and their outcomes. With our review, we intend to bring more attention to contemporary pastoralists as plant managers

  2. Interior. Apparatus used in crushing and processing plant fibers to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Apparatus used in crushing and processing plant fibers to extract latex from the sap during experiments to find native North American plant which would yield sufficiently high percentage of latex to produce natural rubber. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  3. Development of an experimental approach to study coupled soil-plant-atmosphere processes using plant analogs

    NASA Astrophysics Data System (ADS)

    Trautz, Andrew C.; Illangasekare, Tissa H.; Rodriguez-Iturbe, Ignacio; Heck, Katharina; Helmig, Rainer

    2017-04-01

    The atmosphere, soils, and vegetation near the land-atmosphere interface are in a state of continuous dynamic interaction via a myriad of complex interrelated feedback processes which collectively, remain poorly understood. Studying the fundamental nature and dynamics of such processes in atmospheric, ecological, and/or hydrological contexts in the field setting presents many challenges; current experimental approaches are an important factor given a general lack of control and high measurement uncertainty. In an effort to address these issues and reduce overall complexity, new experimental design considerations (two-dimensional intermediate-scale coupled wind tunnel-synthetic aquifer testing using synthetic plants) for studying soil-plant-atmosphere continuum soil moisture dynamics are introduced and tested in this study. Validation of these experimental considerations, particularly the adoption of synthetic plants, is required prior to their application in future research. A comparison of three experiments with bare soil surfaces or transplanted with a Stargazer lily/limestone block was used to evaluate the feasibility of the proposed approaches. Results demonstrate that coupled wind tunnel-porous media experimentation, used to simulate field conditions, reduces complexity, and enhances control while allowing fine spatial-temporal resolution measurements to be made using state-of-the-art technologies. Synthetic plants further help reduce system complexity (e.g., airflow) while preserving the basic hydrodynamic functions of plants (e.g., water uptake and transpiration). The trends and distributions of key measured atmospheric and subsurface spatial and temporal variables (e.g., soil moisture, relative humidity, temperature, air velocity) were comparable, showing that synthetic plants can be used as simple, idealized, nonbiological analogs for living vegetation in fundamental hydrodynamic studies.

  4. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  5. Milk Processing Plant Employee. Agricultural Cooperative Training. Vocational Agriculture.

    ERIC Educational Resources Information Center

    Blaschke, Nolan; Page, Foy

    This course of study is designed for the vocational agricultural student enrolled in an agricultural cooperative part-time training program in the area of milk processing occupations. The course consists of 11 units, each with 4 to 13 individual topics that milk processing plant employees should know. Subjects covered by the units are the…

  6. SignalPlant: an open signal processing software platform.

    PubMed

    Plesinger, F; Jurco, J; Halamek, J; Jurak, P

    2016-07-01

    The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75  ×  10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.

  7. Prevalence and Persistence of Listeria monocytogenes in Ready-to-Eat Tilapia Sashimi Processing Plants.

    PubMed

    Chen, Bang-Yuan; Wang, Chung-Yi; Wang, Chia-Lan; Fan, Yang-Chi; Weng, I-Ting; Chou, Chung-Hsi

    2016-11-01

    A 2-year study was performed at two ready-to-eat tilapia sashimi processing plants (A and B) to identify possible routes of contamination with Listeria monocytogenes during processing. Samples were collected from the aquaculture environments, transportation tanks, processing plants, and final products. Seventy-nine L. monocytogenes isolates were found in the processing environments and final products; 3.96% (50 of 1,264 samples) and 3.86% (29 of 752 samples) of the samples from plants A and B, respectively, were positive for L. monocytogenes . No L. monocytogenes was detected in the aquaculture environments or transportation tanks. The predominant L. monocytogenes serotypes were 1/2b (55.70%) and 4b (37.97%); serotypes 3b and 4e were detected at much lower percentages. At both plants, most processing sections were contaminated with L. monocytogenes before the start of processing, which indicated that the cleaning and sanitizing methods did not achieve adequate pathogen removal. Eleven seropulsotypes were revealed by pulsed-field gel electrophoresis and serotyping. Analysis of seropulsotype distribution revealed that the contamination was disseminated by the processing work; the same seropulsotypes were repeatedly found along the work flow line and in the final products. Specific seropulsotypes were persistently found during different sampling periods, which suggests that the sanitation procedures or equipment used at these plants were inadequate. Plant staff should improve the sanitation procedures and equipment to reduce the risk of L. monocytogenes cross-contamination and ensure the safety of ready-to-eat tilapia products.

  8. Modeling of fugitive dust emission for construction sand and gravel processing plant.

    PubMed

    Lee, C H; Tang, L W; Chang, C T

    2001-05-15

    Due to rapid economic development in Taiwan, a large quantity of construction sand and gravel is needed to support domestic civil construction projects. However, a construction sand and gravel processing plant is often a major source of air pollution, due to its associated fugitive dust emission. To predict the amount of fugitive dust emitted from this kind of processing plant, a semiempirical model was developed in this study. This model was developed on the basis of the actual dust emission data (i.e., total suspended particulate, TSP) and four on-site operating parameters (i.e., wind speed (u), soil moisture (M), soil silt content (s), and number (N) of trucks) measured at a construction sand and gravel processing plant. On the basis of the on-site measured data and an SAS nonlinear regression program, the expression of this model is E = 0.011.u2.653.M-1.875.s0.060.N0.896, where E is the amount (kg/ton) of dust emitted during the production of each ton of gravel and sand. This model can serve as a facile tool for predicting the fugitive dust emission from a construction sand and gravel processing plant.

  9. Characterization of process air emissions in automotive production plants.

    PubMed

    D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W

    2016-01-01

    During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.

  10. Magnetic fluids effect upon growth processes in plants

    NASA Astrophysics Data System (ADS)

    Sala, F.

    1999-07-01

    The metabolic processes of plants growth and development take place according to some organic rules which are specific to their genetic potential. These processes may exhibit modifications of intensity, rhythm, sense, under the influence of the environmental conditions of agricultural systems, through certain factors and bioregulators artificially introduced by man. The results of some investigations regarding effects of biocompatible magnetic fluids (LMW 100 G) on the vegetal organism's (growth, development, fructifying, the level and quality of the yield precocity) are presented.

  11. Modeling of plant in vitro cultures: overview and estimation of biotechnological processes.

    PubMed

    Maschke, Rüdiger W; Geipel, Katja; Bley, Thomas

    2015-01-01

    Plant cell and tissue cultivations are of growing interest for the production of structurally complex and expensive plant-derived products, especially in pharmaceutical production. Problems with up-scaling, low yields, and high-priced process conditions result in an increased demand for models to provide comprehension, simulation, and optimization of production processes. In the last 25 years, many models have evolved in plant biotechnology; the majority of them are specialized models for a few selected products or nutritional conditions. In this article we review, delineate, and discuss the concepts and characteristics of the most commonly used models. Therefore, the authors focus on models for plant suspension and submerged hairy root cultures. The article includes a short overview of modeling and mathematics and integrated parameters, as well as the application scope for each model. The review is meant to help researchers better understand and utilize the numerous models published for plant cultures, and to select the most suitable model for their purposes. © 2014 Wiley Periodicals, Inc.

  12. A model framework to represent plant-physiology and rhizosphere processes in soil profile simulation models

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Javaux, M.; Couvreur, V.; Schröder, N.; Huber, K.; Abesha, B.; Schnepf, A.; Vereecken, H.

    2013-12-01

    Plant roots play a crucial role in several key processes in soils. Besides their impact on biogeochemical cycles and processes, they also have an important influence on physical processes such as water flow and transport of dissolved substances in soils. Interaction between plant roots and soil processes takes place at different scales and ranges from the scale of an individual root and its directly surrounding soil or rhizosphere over the scale of a root system of an individual plant in a soil profile to the scale of vegetation patterns in landscapes. Simulation models that are used to predict water flow and solute transport in soil-plant systems mainly focus on the individual plant root system scale, parameterize single-root scale phenomena, and aggregate the root system scale to the vegetation scale. In this presentation, we will focus on the transition from the single root to the root system scale. Using high resolution non-invasive imaging techniques and methods, gradients in soil properties and states around roots and their difference from the bulk soil properties could be demonstrated. Recent developments in plant sciences provide new insights in the mechanisms that control water fluxes in plants and in the adaptation of root properties or root plasticity to changing soil conditions. However, since currently used approaches to simulate root water uptake neither resolve these small scale processes nor represent processes and controls within the root system, transferring this information to the whole soil-plant system scale is a challenge. Using a simulation model that describes flow and transport processes in the soil, resolves flow and transport towards individual roots, and describes flow and transport within the root system, such a transfer could be achieved. We present a few examples that illustrate: (i) the impact of changed rhizosphere hydraulic properties, (ii) the effect of root hydraulic properties and root system architecture, (iii) the regulation

  13. Frequency of hepatitis E virus, rotavirus and porcine enteric calicivirus at various stages of pork carcass processing in two pork processing plants.

    PubMed

    Jones, Tineke H; Muehlhauser, Victoria

    2017-10-16

    Hepatitis E virus (HEV), rotavirus (RV), and porcine enteric calicivirus (PEC) infections are common in swine and raises concerns about the potential for zoonotic transmission through undercooked meat products. Enteric viruses can potentially contaminate carcasses during meat processing operations. There is a lack of information on the prevalence and control of enteric viruses in the pork processing chain. This study compared the incidence and levels of contamination of hog carcasses with HEV, RV and PEC at different stages of the dressing process. A total of 1000 swabs were collected from 2 pork processing plants on 10 separate occasions over the span of a year. The samples were obtained from random sites on hog carcasses at 4 dressing stages (plant A: bleeding, dehairing, pasteurization, and evisceration; plant B: bleeding, skinning, evisceration, and washing) and from meat cuts. Numbers of genome copies (gc) of HEV, RV and PEC were determined by RT-qPCR. RV and PEC were detected in 100%, and 18% of samples, respectively, after bleeding for plant A and in 98%, and 36% of samples, respectively, after bleeding for plant B. After evisceration, RV and PEC were detected in 21% and 3% of samples, respectively, for plant A and in 1%, and 0% of samples, respectively for plant B. RV and PEC were detected on 1%, and 5% of pork cuts, respectively, for plant A and on 0%, and 0% of pork cuts, respectively, for plant B. HEV was not detected in any pork carcass or retail pork samples from plants A or B. The frequency of PEC and RV on pork is progressively reduced along the pork processing chain but the viruses were not completely eliminated. The findings suggest that consumers could be at risk when consuming undercooked meat contaminated with pathogenic enteric viruses. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. A study of poultry processing plant noise characteristics and potential noise control techniques

    NASA Technical Reports Server (NTRS)

    Wyvill, J. C.; Jape, A. D.; Moriarity, L. J.; Atkins, R. D.

    1980-01-01

    The noise environment in a typical poultry processing plant was characterized by developing noise contours for two representative plants: Central Soya of Athens, Inc., Athens, Georgia, and Tip Top Poultry, Inc., Marietta, Georgia. Contour information was restricted to the evisceration are of both plants because nearly 60 percent of all process employees are stationed in this area during a normal work shift. Both plant evisceration areas were composed of tile walls, sheet metal ceilings, and concrete floors. Processing was performed in an assembly-line fashion in which the birds travel through the area on overhead shackles while personnel remain at fixed stations. Processing machinery was present throughout the area. In general, the poultry processing noise problem is the result of loud sources and reflective surfaces. Within the evisceration area, it can be concluded that only a few major sources (lung guns, a chiller component, and hock cutters) are responsible for essentially all direct and reverberant sound pressure levels currently observed during normal operations. Consequently, any effort to reduce the noise problem must first address the sound power output of these sources and/or the absorptive qualitities of the room.

  15. Potential use of advanced process control for safety purposes during attack of a process plant.

    PubMed

    Whiteley, James R

    2006-03-17

    Many refineries and commodity chemical plants employ advanced process control (APC) systems to improve throughputs and yields. These APC systems utilize empirical process models for control purposes and enable operation closer to constraints than can be achieved with traditional PID regulatory feedback control. Substantial economic benefits are typically realized from the addition of APC systems. This paper considers leveraging the control capabilities of existing APC systems to minimize the potential impact of a terrorist attack on a process plant (e.g., petroleum refinery). Two potential uses of APC are described. The first is a conventional application of APC and involves automatically moving the process to a reduced operating rate when an attack first begins. The second is a non-conventional application and involves reconfiguring the APC system to optimize safety rather than economics. The underlying intent in both cases is to reduce the demands on the operator to allow focus on situation assessment and optimal response planning. An overview of APC is provided along with a brief description of the modifications required for the proposed new applications of the technology.

  16. Simulation of Plant Physiological Process Using Fuzzy Variables

    Treesearch

    Daniel L. Schmoldt

    1991-01-01

    Qualitative modelling can help us understand and project effects of multiple stresses on trees. It is not practical to collect and correlate empirical data for all combinations of plant/environments and human/climate stresses, especially for mature trees in natural settings. Therefore, a mechanistic model was developed to describe ecophysiological processes. This model...

  17. Process and apparatus for detecting presence of plant substances

    DOEpatents

    Kirby, John A.

    1991-01-01

    An apparatus and process for detecting the presence of plant substances in a particular environment which comprises the steps of: measuring the background K40 gamma ray radiation level in a particular environment with a 1.46 MeV gamma ray counter system; measuring the amount of K40 gamma ray radiation emanating from a package containing a plant substance being passed through an environment with a counter; and generating an alarm signal when the total K40 gamma ray radiation reaches a predetermined level over and above the background level.

  18. [Design of a HACCP Plan for the Gouda-type cheesemaking process in a milk processing plant].

    PubMed

    Dávila, Jacqueline; Reyes, Genara; Corzo, Otoniel

    2006-03-01

    The Hazard Analysis and Critical Control Point (HACCP) is a preventive and systematic method used to identify, assess and control of the hazards related with raw material, ingredients, processing, marketing and intended consumer in order to assure the safety of the food. The aim of this study was to design a HACCP plan for implementing in a Gouda-type cheese-making process in a dairy processing plant. The used methodology was based in the application of the seven principles of the HACCP, the information from the plant about the compliment of the pre-requisite programs (70-80%), the experience of the HACCP team and the sequence of stages settles down by the COVENIN standard 3802 for implementing the HACCP system. A HACCP plan was proposed with the scope, the selection of HACCP team, the description of the product and the intended use, the flow diagram of the process, the hazard analysis and the control table of the plan with the critical control points (CCP). The following CCP were identified in the process: pasteurization, coagulation and ripening.

  19. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  20. Extraction and purification methods in downstream processing of plant-based recombinant proteins.

    PubMed

    Łojewska, Ewelina; Kowalczyk, Tomasz; Olejniczak, Szymon; Sakowicz, Tomasz

    2016-04-01

    During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Multiple mechanisms of early plant community assembly with stochasticity driving the process.

    PubMed

    Marteinsdóttir, Bryndís; Svavarsdóttir, Kristín; Thórhallsdóttir, Thóra Ellen

    2018-01-01

    Initial plant establishment is one of the most critical phases in ecosystem development, where an early suite of physical (environmental filtering), biological (seed limitation, species interactions) and stochastic factors may affect successional trajectories and rates. While functional traits are commonly used to study processes that influence plant community assembly in late successional communities, few studies have applied them to primary succession. The objective here was to determine the importance of these factors in shaping early plant community assembly on a glacial outwash plain, Skeiðarársandur, in SE Iceland using a trait based approach. We used data on vascular plant assemblages at two different spatial scales (community and neighborhood) sampled in 2005 and 2012, and compiled a dataset on seven functional traits linked to species dispersal abilities, establishment, and persistence for all species within these assemblages. Trait-based null model analyses were used to determine the processes that influenced plant community assembly from the regional species pool into local communities, and to determine if the importance of these processes in community assembly was dependent on local environment or changed with time. On the community scale, for most traits, random processes dominated the assembly from the regional species pool. However, in some communities, there was evidence of non-random assembly in relation to traits linked to species dispersal abilities, persistence, and establishment. On the neighborhood scale, assembly was mostly random. The relative importance of different processes varied spatially and temporally and the variation was linked to local soil conditions. While stochasticity dominated assembly patterns of our early successional communities, there was evidence of both seed limitation and environmental filtering. Our results indicated that as soil conditions improved, environmental constraints on assembly became weaker and the

  2. Integrating algaculture into small wastewater treatment plants: process flow options and life cycle impacts.

    PubMed

    Steele, Muriel M; Anctil, Annick; Ladner, David A

    2014-05-01

    Algaculture has the potential to be a sustainable option for nutrient removal at wastewater treatment plants. The purpose of this study was to compare the environmental impacts of three likely algaculture integration strategies to a conventional nutrient removal strategy. Process modeling was used to determine life cycle inventory data and a comparative life cycle assessment was used to determine environmental impacts. Treatment scenarios included a base case treatment plant without nutrient removal, a plant with conventional nutrient removal, and three other cases with algal unit processes placed at the head of the plant, in a side stream, and at the end of the plant, respectively. Impact categories included eutrophication, global warming, ecotoxicity, and primary energy demand. Integrating algaculture prior to activated sludge proved to be most beneficial of the scenarios considered for all impact categories; however, this scenario would also require primary sedimentation and impacts of that unit process should be considered for implementation of such a system.

  3. A Competency-Based Instructional Program for Plant Process Operations.

    ERIC Educational Resources Information Center

    McDaniel, Joy; Mills, Steven

    This program guide provides materials to prepare learners for employment as Process Plant Operators through classroom instruction and practical shop experience. Contents include instructional goal and subgoals, an instructional analysis that describes development of the materials and instructional equipment and supplies and facilities…

  4. Thirty thousand-year-old evidence of plant food processing

    PubMed Central

    Revedin, Anna; Aranguren, Biancamaria; Becattini, Roberto; Longo, Laura; Marconi, Emanuele; Lippi, Marta Mariotti; Skakun, Natalia; Sinitsyn, Andrey; Spiridonova, Elena; Svoboda, Jiří

    2010-01-01

    European Paleolithic subsistence is assumed to have been largely based on animal protein and fat, whereas evidence for plant consumption is rare. We present evidence of starch grains from various wild plants on the surfaces of grinding tools at the sites of Bilancino II (Italy), Kostenki 16–Uglyanka (Russia), and Pavlov VI (Czech Republic). The samples originate from a variety of geographical and environmental contexts, ranging from northeastern Europe to the central Mediterranean, and dated to the Mid-Upper Paleolithic (Gravettian and Gorodtsovian). The three sites suggest that vegetal food processing, and possibly the production of flour, was a common practice, widespread across Europe from at least ~30,000 y ago. It is likely that high energy content plant foods were available and were used as components of the food economy of these mobile hunter–gatherers. PMID:20956317

  5. Coal Preparation and Processing Plants New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn about the NSPS regulation for coal preparation and processing plants by reading the rule summary, the rule history, the code of federal regulation text, the federal register, and additional docket documents

  6. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    PubMed Central

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  7. Plant senescence and proteolysis: two processes with one destiny

    PubMed Central

    Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M. Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel

    2016-01-01

    Abstract Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling. PMID:27505308

  8. Plant senescence and proteolysis: two processes with one destiny.

    PubMed

    Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel

    2016-01-01

    Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling.

  9. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    NASA Technical Reports Server (NTRS)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  10. PROCESS DEVELOPMENT QUARTERLY REPORT. II. PILOT PLANT WORK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, N. ed.

    1957-05-01

    Progress is reported on the gross solubility of U in digestions of Mallinokrodt feed materials, studies of variables affecting U purity in a TBP hexane extraction cycle, low-acid flowsheet for TBP--hexane extraction process based on a 440 g U/liter in lM HNO/sub 3/ digest liquor, hacking studies in the pilot plant pumperdecanter system, recovery of U from residues from the dingot process, lowering the H level in dingot metal, forging of dingot bar stock, dingot extrusion, fubrication of UO/sub 2/ fuel elements, and the determination of H content of derby and ingot metal. (W.L.H.)

  11. 47. PROCESS PIPING AT SOUTH EDGE OF SOUTH PLANT. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. PROCESS PIPING AT SOUTH EDGE OF SOUTH PLANT. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  12. 9 CFR 590.680 - Approval of labeling for egg products processed in exempted egg products processing plants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Approval of labeling for egg products processed in exempted egg products processing plants. 590.680 Section 590.680 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF...

  13. 9 CFR 590.680 - Approval of labeling for egg products processed in exempted egg products processing plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Approval of labeling for egg products processed in exempted egg products processing plants. 590.680 Section 590.680 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF...

  14. Laboratory plant study on the melting process of asbestos waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Shinichi; Terazono, Atsushi; Takatsuki, Hiroshi

    The melting process was studied as a method of changing asbestos into non-hazardous waste and recovering it as a reusable resource. In an initial effort, the thermal behaviors of asbestos waste in terms of physical and chemical structure have been studied. Then, 10 kg/h-scale laboratory plant experiments were carried out. By X-ray diffraction analysis, the thermal behaviors of sprayed-on asbestos waste revealed that chrysotile asbestos waste change in crystal structure at around 800 C, and becomes melted slag, mainly composed of magnesium silicate, at around 1,500 C. Laboratory plant experiments on the melting process of sprayed-on asbestos have shown thatmore » melted slag can be obtained. X-ray diffraction analysis of the melted slag revealed crystal structure change, and SEM analysis showed the slag to have a non-fibrous form. And more, TEM analysis proved the very high treatment efficiency of the process, that is, reduction of the asbestos content to 1/10{sup 6} as a weight basis. These analytical results indicate the effectiveness of the melting process for asbestos waste treatment.« less

  15. Process control systems at Homer City coal preparation plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shell, W.P.

    1983-03-01

    An important part of process control engineering is the implementation of the basic control system design through commissioning to routine operation. This is a period when basic concepts can be reviewed and improvements either implemented or recorded for application in future systems. The experience of commissioning the process control systems in the Homer City coal cleaning plant are described and discussed. The current level of operating control performance in individual sections and the overall system are also reported and discussed.

  16. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    PubMed

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases.

    PubMed

    Schardon, Katharina; Hohl, Mathias; Graff, Lucile; Pfannstiel, Jens; Schulze, Waltraud; Stintzi, Annick; Schaller, Andreas

    2016-12-23

    Peptide hormones that regulate plant growth and development are derived from larger precursor proteins by proteolytic processing. Our study addressed the role of subtilisin-like proteinases (SBTs) in this process. Using tissue-specific expression of proteinase inhibitors as a tool to overcome functional redundancy, we found that SBT activity was required for the maturation of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION), a peptide signal for the abscission of floral organs in Arabidopsis We identified three SBTs that process the IDA precursor in vitro, and this processing was shown to be required for the formation of mIDA (the mature and bioactive form of IDA) as the endogenous signaling peptide in vivo. Hence, SBTs act as prohormone convertases in plants, and several functionally redundant SBTs contribute to signal biogenesis. Copyright © 2016, American Association for the Advancement of Science.

  18. Derived heuristics-based consistent optimization of material flow in a gold processing plant

    NASA Astrophysics Data System (ADS)

    Myburgh, Christie; Deb, Kalyanmoy

    2018-01-01

    Material flow in a chemical processing plant often follows complicated control laws and involves plant capacity constraints. Importantly, the process involves discrete scenarios which when modelled in a programming format involves if-then-else statements. Therefore, a formulation of an optimization problem of such processes becomes complicated with nonlinear and non-differentiable objective and constraint functions. In handling such problems using classical point-based approaches, users often have to resort to modifications and indirect ways of representing the problem to suit the restrictions associated with classical methods. In a particular gold processing plant optimization problem, these facts are demonstrated by showing results from MATLAB®'s well-known fmincon routine. Thereafter, a customized evolutionary optimization procedure which is capable of handling all complexities offered by the problem is developed. Although the evolutionary approach produced results with comparatively less variance over multiple runs, the performance has been enhanced by introducing derived heuristics associated with the problem. In this article, the development and usage of derived heuristics in a practical problem are presented and their importance in a quick convergence of the overall algorithm is demonstrated.

  19. 52. SOUTH PLANT PROCESS PIPING OVERHEAD RACK, WITH SHELL OIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. SOUTH PLANT PROCESS PIPING OVERHEAD RACK, WITH SHELL OIL COMPANY FACILITIES IN BACKGROUND. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  20. Display device for indicating the value of a parameter in a process plant

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  1. Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants

    DOEpatents

    Somerville, C.R.; Nawrath, C.; Poirier, Y.

    1997-03-11

    The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid. 37 figs.

  2. Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants

    DOEpatents

    Somerville, Christopher R.; Nawrath, Christiane; Poirier, Yves

    1997-03-11

    The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid.

  3. Measuring, managing and maximizing performance of mineral processing plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bascur, O.A.; Kennedy, J.P.

    1995-12-31

    The implementation of continuous quality improvement is the confluence of Total Quality Management, People Empowerment, Performance Indicators and Information Engineering. The supporting information technologies allow a mineral processor to narrow the gap between management business objectives and the process control level. One of the most important contributors is the user friendliness and flexibility of the personal computer in a client/server environment. This synergistic combination when used for real time performance monitoring translates into production cost savings, improved communications and enhanced decision support. Other savings come from reduced time to collect data and perform tedious calculations, act quickly with fresh newmore » data, generate and validate data to be used by others. This paper presents an integrated view of plant management. The selection of the proper tools for continuous quality improvement are described. The process of selecting critical performance monitoring indices for improved plant performance are discussed. The importance of a well balanced technological improvement, personnel empowerment, total quality management and organizational assets are stressed.« less

  4. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes

    DOE PAGES

    McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.; ...

    2017-03-13

    Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less

  5. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.

    Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less

  6. Microbiological status of broiler respiratory tracts before and during catching for transport to the processing plant

    USDA-ARS?s Scientific Manuscript database

    A significant point of entry for Salmonella into a processing plant is within the broilers to be processed. Prior to transport to the processing plant, feed (4 h) and water are withdrawn from the broilers on the farm before they are caught and cooped. During catching, an increased presence of dust i...

  7. Impacts of oil sands process water on fen plants: implications for plant selection in required reclamation projects.

    PubMed

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D

    2012-08-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. U.S. Steel Keewatin Taconite Plant - Petition to Object to Title V Permit

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  9. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity.

    PubMed

    Ben Khaled, Sara; Postma, Jelle; Robatzek, Silke

    2015-01-01

    A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.

  10. Using a 3D CAD plant model to simplify process hazard reviews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolpa, G.

    A Hazard and Operability (HAZOP) review is a formal predictive procedure used to identify potential hazard and operability problems associated with certain processes and facilities. The HAZOP procedure takes place several times during the life cycle of the facility. Replacing plastic models, layout and detail drawings with a 3D CAD electronic model, provides access to process safety information and a detailed level of plant topology that approaches the visualization capability of the imagination. This paper describes the process that is used for adding the use of a 3D CAD model to flowsheets and proven computer programs for the conduct ofmore » hazard and operability reviews. Using flowsheets and study nodes as a road map for the review the need for layout and other detail drawings is all but eliminated. Using the 3D CAD model again for a post-P and ID HAZOP supports conformance to layout and safety requirements, provides superior visualization of the plant configuration and preserves the owners equity in the design. The response from the review teams are overwhelmingly in favor of this type of review over a review that uses only drawings. Over the long term the plant model serves more than just process hazards analysis. Ongoing use of the model can satisfy the required access to process safety information, OHSA documentation and other legal requirements. In this paper extensive instructions address the logic for the process hazards analysis and the preparation required to assist anyone who wishes to add the use of a 3D model to their review.« less

  11. Vacuolar processing enzyme in plant programmed cell death

    PubMed Central

    Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko

    2015-01-01

    Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711

  12. Volatilisation and competing processes computed for a pesticide applied to plants in a wind tunnel system.

    PubMed

    Leistra, Minze; Wolters, André; van den Berg, Frederik

    2008-06-01

    Volatilisation of pesticides from crop canopies can be an important emission pathway. In addition to pesticide properties, competing processes in the canopy and environmental conditions play a part. A computation model is being developed to simulate the processes, but only some of the input data can be obtained directly from the literature. Three well-defined experiments on the volatilisation of radiolabelled parathion-methyl (as example compound) from plants in a wind tunnel system were simulated with the computation model. Missing parameter values were estimated by calibration against the experimental results. The resulting thickness of the air boundary layer, rate of plant penetation and rate of phototransformation were compared with a diversity of literature data. The sequence of importance of the canopy processes was: volatilisation > plant penetration > phototransformation. Computer simulation of wind tunnel experiments, with radiolabelled pesticide sprayed on plants, yields values for the rate coefficients of processes at the plant surface. As some input data for simulations are not required in the framework of registration procedures, attempts to estimate missing parameter values on the basis of divergent experimental results have to be continued. Copyright (c) 2008 Society of Chemical Industry.

  13. Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P.

    PubMed Central

    Mariotti Lippi, Marta; Foggi, Bruno; Aranguren, Biancamaria; Ronchitelli, Annamaria; Revedin, Anna

    2015-01-01

    Residue analyses on a grinding tool recovered at Grotta Paglicci sublayer 23A [32,614 ± 429 calibrated (cal) B.P.], Southern Italy, have demonstrated that early modern humans collected and processed various plants. The recording of starch grains attributable to Avena (oat) caryopses expands our information about the food plants used for producing flour in Europe during the Paleolithic and about the origins of a food tradition persisting up to the present in the Mediterranean basin. The quantitative distribution of the starch grains on the surface of the grinding stone furnished information about the tool handling, confirming its use as a pestle-grinder, as suggested by the wear-trace analysis. The particular state of preservation of the starch grains suggests the use of a thermal treatment before grinding, possibly to accelerate drying of the plants, making the following process easier and faster. The study clearly indicates that the exploitation of plant resources was very important for hunter–gatherer populations, to the point that the Early Gravettian inhabitants of Paglicci were able to process food plants and already possessed a wealth of knowledge that was to become widespread after the dawn of agriculture. PMID:26351674

  14. Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P.

    PubMed

    Mariotti Lippi, Marta; Foggi, Bruno; Aranguren, Biancamaria; Ronchitelli, Annamaria; Revedin, Anna

    2015-09-29

    Residue analyses on a grinding tool recovered at Grotta Paglicci sublayer 23A [32,614 ± 429 calibrated (cal) B.P.], Southern Italy, have demonstrated that early modern humans collected and processed various plants. The recording of starch grains attributable to Avena (oat) caryopses expands our information about the food plants used for producing flour in Europe during the Paleolithic and about the origins of a food tradition persisting up to the present in the Mediterranean basin. The quantitative distribution of the starch grains on the surface of the grinding stone furnished information about the tool handling, confirming its use as a pestle-grinder, as suggested by the wear-trace analysis. The particular state of preservation of the starch grains suggests the use of a thermal treatment before grinding, possibly to accelerate drying of the plants, making the following process easier and faster. The study clearly indicates that the exploitation of plant resources was very important for hunter-gatherer populations, to the point that the Early Gravettian inhabitants of Paglicci were able to process food plants and already possessed a wealth of knowledge that was to become widespread after the dawn of agriculture.

  15. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    PubMed

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ribotype diversity of Listeria monocytogenes isolates from two salmon processing plants in Norway.

    PubMed

    Klaeboe, Halvdan; Rosef, Olav; Fortes, Esther; Wiedmann, Martin

    2006-10-01

    The purpose of this study was to use automated ribotyping procedure to track Listeria monocytogenes transmission in the cold smoked fish production chain and to characterize L. monocytogenes subtypes associated with the salmon processing industry. A total of 104 isolates, which had previously been obtained from a raw fish slaughter and processing plant (plant B) and an adjacent, downstream, salmon smoking operation (plant A), were characterized. These isolates had been obtained through a longitudinal study on Listeria presence, which covered a 31-week period, in both plants. Isolates had been obtained from samples taken from different machinery used throughout the production process. In addition, six isolates obtained from products produced in plant A two years after the initial study were included, so that a total of 110 isolates were characterized. Automated ribotyping was performed using both the restriction enzymes EcoRI and PvuII to increase the discriminatory power. The 110 L. monocytogenes isolates could be divided into 11 EcoRI ribotypes; PvuII ribotype data yielded multiple subtypes within 7 EcoRI ribotypes for a total of 21 subtypes based on both EcoRI and PvuII ribotyping. A total of three EcoRI ribotypes (DUP-1023C, DUP-1045B, and DUP-1053E) were isolated at multiple sampling times from both plants. In addition, one subtype (DUP-1053B) was isolated at multiple sampling times in only plant A, the salmon smoking operation. These data not only support that L. monocytogenes can persist throughout the salmon production system, but also showed that L. monocytogenes may be transmitted between slaughter and smoking operations or may be unique to smoking operations. While the majority of subtypes isolated have been rarely or never linked to human listeriosis cases, some subtypes have previously caused human listeriosis outbreaks and cases. Molecular subtyping thus is critical to identify L. monocytogenes transmission and niches in order to allow design and

  17. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âTransporting [such] products to the mill, processing plant... EMPLOYED § 788.11 “Transporting [such] products to the mill, processing plant, railroad, or other transportation terminal.” The transportation or movement of logs or other forestry products to a “mill processing...

  18. Confirmation of conjugation processes during TNT metabolism by axenic plant roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadra, R.; Wayment, D.G.; Hughes, J.B.

    1999-02-01

    This paper examines processes in plants for the formation of fate products of TNT beyond its animated reduction products, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene. TNT metabolites were isolated and characterized in combination with temporal analyses of production profiles and {sup 14}C distribution, in microbe-free, axenic root cultures of Catharanthus roseus. Four unique TNT-derived compounds were isolated. Using evidence from {sup 1}H NMR, mass spectroscopy, HPLC, acid hydrolysis, and enzymatic hydrolysis with {beta}-glucuronidase and {beta}-glucosidase, they were established as conjugates formed by reactions of the amine groups of 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene. From the mass spectral evidence, at least a six-carbon unit from themore » plant intracellular milleu was involved in conjugate formation. Mass balance analysis indicated that, by 75 h after TNT amendment of the initial TNT radiolabel, extractable conjugates comprised 22%, bound residues comprised another 29%, 2-amino-4,6-dinitrotoluene was 4%, and the rest remained unidentified. Isolates from TNT-amended roots versus monoamino-dinitrotoluene-amended roots were not identical, suggesting numerous possible outcomes for the plant-based conjugation of 2-amino-2,6-dinitrotoluene or 4-amino-2,6-dinitrotoluene. This study is the first direct evidence for the involvement of the primary reduction products of TNT--2-amino-4,6-dinitrotoluene ad 4-amino--2,6-dinitrotoluene--in conjugation process in plant detoxification of TNT.« less

  19. Investigation of Natural Radioactivity in a Monazite Processing Plant in Japan.

    PubMed

    Iwaoka, Kazuki; Yajima, Kazuaki; Suzuki, Toshikazu; Yonehara, Hidenori; Hosoda, Masahiro; Tokonami, Shinji; Kanda, Reiko

    2017-09-01

    Monazite is a naturally occurring radioactive material that is processed for use in a variety of domestic applications. At present, there is little information available on potential radiation doses experienced by people working with monazite. The ambient dose rate and activity concentration of natural radionuclides in raw materials, products, and dust in work sites as well as the Rn and Rn concentrations in work sites were measured in a monazite processing plant in Japan. Dose estimations for plant workers were also conducted. The activity concentration of the U series in raw materials and products for the monazite processing plant was found to be higher than the relevant values described in the International Atomic Energy Agency Safety Standards. The ambient dose rates in the raw material yard were higher than those in other work sites. Moreover, the activity concentrations of dust in the milling site were higher than those in other work sites. The Rn concentrations in all work sites were almost the same as those in regular indoor environments in Japan. The Rn concentrations in all work sites were much higher than those in regular indoor environments in Japan. The maximum value of the effective dose for workers was 0.62 mSv y, which is lower than the reference level range (1-20 mSv y) for abnormally high levels of natural background radiation published in the International Commission of Radiological Protection Publication 103.

  20. Processed vs. non-processed biowastes for agriculture: effects of post-harvest tomato plants and biochar on radish growth, chlorophyll content and protein production.

    PubMed

    Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle

    2015-04-21

    The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed.

  1. Processed vs. Non-Processed Biowastes for Agriculture: Effects of Post-Harvest Tomato Plants and Biochar on Radish Growth, Chlorophyll Content and Protein Production

    PubMed Central

    Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle

    2015-01-01

    The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed. PMID:25906472

  2. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  3. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas-Ubach, Albert; Hódar, José A.; Sardans, Jordi

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P.more » nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.« less

  4. Assessment of working conditions in a modern Russian milk processing plant from the aspect of occupational medicine.

    PubMed

    Belova, L V; Mishkich, I A; Kresova, G A; Liubomudrova, T A

    1999-03-01

    Assessment of harmful industrial factors caused by work conditions in a modern milk processing plant. Work conditions, rest, nutrition, medical service, and subjective health indices among the employees in a new milk processing plant were studied. We used a specially formed questionnaire; instrumental measurements of microclimate parameters, noise, and illumination at workplace; laboratory physical and chemical evaluation of air pollution with aerosols and gases in the plant premises; chronometric studies determining the workers' activity during the working day location, and physical and psychological body exertion at the time of industrial activities; and assessment of design and operating documents of the plant. Laboratory studies included 157 workers, 1,724 tests, 26 chronometric studies, and analysis of 11 plant's documents. Unfavorable microclimatic conditions, noise, inadequate illumination, air pollution with dust and toxic substances, physical workload, increased demand for concentration, and monotony of labor in mass production professions were found. A great proportion of workers was dissatisfied with their working conditions and many suffered from occupational diseases and work-related diseases. The conditions of work in the studied milk processing plant may be classified as harmful and dangerous. The flaws in technological process, omissions in design and construction of the plant, as well as its improper exploitation aggravated industrial harmful factors. In combination with unsatisfactory organization of rest, nutrition, and medical services in the plant these factors may affect the workers' health and cause general and occupational diseases.

  5. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    ERIC Educational Resources Information Center

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  6. Effects of Planting and Processing Modes on the Degradation of Dithianon and Pyraclostrobin in Chinese Yam (Dioscorea spp.).

    PubMed

    Shi, Kaiwei; Wu, Xujin; Ma, Jingwei; Zhang, Junfeng; Zhou, Ling; Wang, Hong; Li, Li

    2017-12-06

    The yam (Dioscorea spp.) is widely cultivated in China. The degradation of dithianon and pyraclostrobin in yams with different planting and processing treatments was investigated in this article. An analytical method for two pesticides in yam and yam plant was developed, and recoveries were between 77% and 93%, with relative standard deviations from 0.8% to 7.4%, respectively. On the basis of this method, half-lives for plants grown on stakes versus plants grown without stakes were compared. The results indicated that the half-life for pesticide residues for plants grown on stakes versus plants grown without stakes differed as 6.7 versus 3.1 days for dithianon and 5.4 versus 5.2 days for pyraclostrobin. Dithianon was significantly influenced by planting mode because of its low stability under sunlight. The processing factors of various processing treatments (hot air-drying, vacuum freeze-drying, microwave vacuum-drying, infrared-drying, steaming, and boiling) were all <1, indicating that those processes can reduce residues of two pesticides at different levels. Significant amounts of residues were removed during the boiling treatment, whereas the others showed less effect.

  7. A Largely Unsatisfied Need: Continuing Professional Development for Process and Process Plant Industries. A Summary. FEU/PICKUP Project Report.

    ERIC Educational Resources Information Center

    Geldhart, D.; Brown, A. S.

    This summary report outlines the aims of a project that focused on provision of short courses for technical professionals in the chemical and allied process industry and the process plant industry. Continuing education needs of both companies and individuals, as well as corporate policies and attitudes toward continuing education and constraints…

  8. Distribution and prevalence of airborne microorganisms in three commercial poultry processing plants.

    PubMed

    Whyte, P; Collins, J D; McGill, K; Monahan, C; O'Mahony, H

    2001-03-01

    Airborne microbial contaminants and indicator organisms were monitored within three poultry processing plants (plants A, B, and C). In total, 15 cubic feet (c.f.) of air was sampled per location during 15 visits to each plant and quantitatively analyzed for total mesophilic and psychrophilic aerobic counts, thermophilic campylobacters, Escherichia coli, and Enterobacteriaceae. The prevalence of Salmonella spp. in air samples was also evaluated. Significant reductions in total aerobic counts were observed between defeathering and evisceration areas of the three plants (P < 0.05). Mesophilic plate counts were highest in the defeathering areas of all plants compared to equivalent psychrophilic plate counts. Enterobacteriaceae counts were highest in the defeathering areas of all three plants with counts of log10 1.63, 1.53, and 1.18 CFU/15 c.f. recovered in plants A, B, and C, respectively. E. coli enumerated from air samples in the defeathering areas exhibited a similar trend to those obtained for Enterobacteriaceae with log10 1.67, 1.58, and 1.18 CFU for plants A, B, and C, respectively. Thermophilic campylobacters were most frequently isolated from samples in the defeathering areas followed by the evisceration areas. The highest mean counts of the organism were observed in plant A at 21 CFU/15 c.f. sample with plants B and C at 9 and 8 CFU/sample, respectively. With the exception of low levels of Enterobacteriaceae recovered from samples in the on-line air chill in plant A, E. coli, Enterobacteriaceae, or Campylobacter spp. were not isolated from samples in postevisceration sites in any of the plants examined. Salmonella spp. were not recovered from any samples during the course of the investigation.

  9. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process.

    PubMed

    Volcke, E I P; Gernaey, K V; Vrecko, D; Jeppsson, U; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).

  10. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Merkel; Karl Amo; Richard Baker

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plantmore » energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.« less

  11. Water and Nitrogen Limitations of Ecosystem Processes Across Three Dryland Plant Communities

    NASA Astrophysics Data System (ADS)

    Beltz, C.; Lauenroth, W. K.; Burke, I. C.

    2017-12-01

    The availability of water and nitrogen (N) play a major role in controlling the distribution of ecosystem types and the rates of ecosystem processes across the globe. Both these resources are being altered by human activity. Anthropogenic fixation of N has increased inputs into the biosphere from 0.5 kg N ha-1 yr-1 to upwards of 10 kg N ha-1 yr-1, while the amount and seasonality of precipitation are expected to continue to change. Within dryland environments, the relationships between increasingly available N and ecosystem processes are especially complex due to dryland's characteristic strong limitation by low and highly variable precipitation. Other experiments have shown that this interplay between N and water can cause temporally complex co-limitation and spatially complex responses with variable effects on ecosystems, such as those to net primary productivity, soil respiration, and plant community composition. Research spanning multiple dryland plant communities is critical for generalizing findings to the 40% of the Earth's terrestrial surface covered in dryland ecosystems. Given IPCC projections in which both N availability and precipitation are altered, examining their interactive effect across multiple plant communities is critical to increasing our understanding of the limitations to ecosystem process in drylands. We are studying a gradient of three plant communities representing a C4 grassland (shortgrass steppe), a C3/C4 grassland (mixed grass prairie), and a shrub-dominated ecosystem with C3 and C4 grasses (sagebrush steppe). We added two levels of N (10 kg N ha-1 and 100 kg N ha-1) and increased summer monthly precipitation by 20%. Sites responded differently to treatments, with the scale of effect varying by treatment. The high-level nitrogen increased soil N availability and soil respiration, while decreasing soil carbon in the labile pool in the upper soil layers. These results will allow for better understanding of increased N in combination with

  12. Control of Boreal Forest Soil Microbial Communities and Processes by Plant Secondary Compounds

    NASA Astrophysics Data System (ADS)

    Leewis, M. C.; Leigh, M. B.

    2016-12-01

    Plants release an array of secondary plant metabolites (SPMEs), which vary widely between plant species/progenies and may drive shifts in soil microbial community structure and function. We hypothesize that SPMEs released through litterfall and root turnover in the boreal forest control ecosystem carbon cycling by inhibiting microbial decomposition processes, which are overcome partially by increased aromatic biodegradation of microbial communities that also fortuitously prime soils for accelerated biodegradation of contaminants. Soils and litter (stems, roots, senescing leaves) were collected from 3 different birch progenies from Iceland, Finland, and Siberia that have been reported to contain different SPME content (low, medium, high, respectively) due to differences in herbivory pressure over their natural history, as well as black spruce, all growing in a long-term common tree garden at the Kevo Subarctic Field Research Institute, Finland. We characterized the SPME content of these plant progenies and used a variety of traditional microbiological techniques (e.g., enzyme assays, litter decomposition and contaminant biodegradation rates) and molecular techniques (e.g., high-throughput amplicon sequencing for bacteria and fungi) to assess how different levels of SPMEs may correlate to shifts in microbial community structure and function. Microbial communities (bacterial and fungal) significantly varied in composition as well as leaf litter and diesel biodegradation rates, in accordance with the phytochemistry of the trees present. This study offers novel, fundamental information about phytochemical controls on ecosystem processes, resilience to contaminants, and microbial decomposition processes.

  13. Eco-evolutionary processes affecting plant-herbivore interactions during early community succession.

    PubMed

    Howard, Mia M; Kalske, Aino; Kessler, André

    2018-06-01

    The quality and outcome of organismal interactions are not only a function of genotypic composition of the interacting species, but also the surrounding environment. Both the strength and direction of natural selection on interacting populations vary with the community context, which itself is changed by these interactions. Here, we test for the role of interacting evolutionary and ecological processes in plant-herbivore interactions during early community succession in the tall goldenrod, Solidago altissima. We use surveys in a large-scale field experiment with repeated plots representing 6 years of early oldfield succession and reciprocal transplant common garden experiments to test for the relative importance of rapid evolution (genetic) and environmental changes (soil quality) in affecting mean plant resistance and growth phenotypes during community succession. While plant growth varied strongly with soil quality over the first 5 years of agricultural abandonment, plant secondary metabolism, and herbivore resistance varied minimally with the soil environment. Instead, mean composition and abundance of plant secondary compound bouquets differed between S. altissima plants from populations collected in communities in the first ("early") and sixth ("intermediate") years of oldfield succession, which was reflected in the feeding preference of the specialist herbivore, Trirhabda virgata, for early succession lines. Moreover, this preference was most pronounced on poorer quality, early succession soils. Overall, our data demonstrate that plant quality varies for insect herbivores during the course of early succession and this change is a combination of altered genotypic composition of the population and phenotypic plasticity in different soil environments.

  14. Atomic Energy Division plant capacity manual Savannah River Plant and Dana Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1960-05-01

    This report is a summary of plant service capacities at the Savannah River Plant and the Dana Plant. The report is divided into different areas of the plants, and includes information on services such as process steam, clarified water, deionized water, electric distribution systems, electric generating capacity, filtered water, process water, river water, well water, etc.

  15. Monitoring of staphylococcal starters in two French processing plants manufacturing dry fermented sausages.

    PubMed

    Corbiere Morot-Bizot, S; Leroy, S; Talon, R

    2007-01-01

    The growth and survival of Staphylococcus xylosus and Staphylococcus carnosus were monitored during sausage manufacture in two processing plants. The gram-positive, catalase-positive cocci isolated from the processing plants F10 and F11 were identified by Staphylococcus-specific PCR and species-specific oligonucleotide array. In the inoculated products with starter cultures, 90% of staphylococcal strains isolated in F10 were identified as S. xylosus and 10% as S. carnosus. In F11, 77% were identified as S. xylosus and 20% as S. carnosus. Staphylococcus xylosus dominated the staphylococcal microbiota while S. carnosus survived during the process. The pulse-field gel electrophoresis analysis revealed that all S. xylosus and S. carnosus strains isolated corresponded to the starter strains inoculated. The two starter strains of S. xylosus co-dominated in the isolates from sausages of F11, whereas the strain with pattern A1 was dominant in the isolates from sausages of F10. In the environments, no S. carnosus and S. xylosus were found, whereas Staphylococcus equorum and Staphylococcus saprophyticus were the main species isolated. This work highlighted the domination of S. xylosus starter strains, which showed a strong capacity to grow during sausage process, while S. carnosus survived during the process. Successful implantation of starter cultures is obviously a prerequisite for their contribution to sensorial qualities. Thus, the monitoring of the growth and the survival of S. xylosus and S. carnosus are required to guarantee a well-adapted starter culture. This study revealed that the two Staphylococcus species are suitable for manufacturing sausages in processing plants with very different capacities of production.

  16. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  17. Linking Soil Moisture Variation and Abundance of Plants to Geomorphic Processes: A Generalized Model for Erosion-Uplifting Landscapes

    NASA Astrophysics Data System (ADS)

    Ding, Junyan; Johnson, Edward A.; Martin, Yvonne E.

    2018-03-01

    The diffusive and advective erosion-created landscapes have similar structure (hillslopes and channels) across different scales regardless of variations in drivers and controls. The relative magnitude of diffusive erosion to advective erosion (D/K ratio) in a landscape development model controls hillslope length, shape, and drainage density, which regulate soil moisture variation, one of the critical resources of plants, through the contributing area (A) and local slope (S) represented by a topographic index (TI). Here we explore the theoretical relation between geomorphic processes, TI, and the abundance and distribution of plants. We derived an analytical model that expresses the TI with D, K, and A. This gives us the relation between soil moisture variation and geomorphic processes. Plant tolerance curves are used to link plant performance to soil moisture. Using the hypothetical tolerance curves of three plants, we show that the abundance and distribution of xeric, mesic, and hydric plants on the landscape are regulated by the D/K ratio. Where diffusive erosion is the major erosion process (large D/K ratio), mesic plants have higher abundance relative to xeric and hydric plants and the landscape has longer and convex-upward hillslope and low channel density. Increasing the dominance of advective erosion increases relative abundance of xeric and hydric plants dominance, and the landscape has short and concave hillslope and high channel density.

  18. Foodborne Pathogens Prevention and Sensory Attributes Enhancement in Processed Cheese via Flavoring with Plant Extracts.

    PubMed

    Tayel, Ahmed A; Hussein, Heba; Sorour, Noha M; El-Tras, Wael F

    2015-12-01

    Cheese contaminations with foodborne bacterial pathogens, and their health outbreaks, are serious worldwide problems that could happen from diverse sources during cheese production or storage. Plants, and their derivatives, were always regarded as the potential natural and safe antimicrobial alternatives for food preservation and improvement. The extracts from many plants, which are commonly used as spices and flavoring agents, were evaluated as antibacterial agents against serious foodborne pathogens, for example Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Escherichia coli O157:H7, using qualitative and quantitative assaying methods. Dairy-based media were also used for evaluating the practical application of plant extracts as antimicrobial agents. Most of the examined plant extracts exhibited remarkable antibacterial activity; the extracts of cinnamon, cloves, garden cress, and lemon grass were the most powerful, either in synthetic or in dairy-based media. Flavoring processed cheese with plant extracts resulted in the enhancement of cheese sensory attributes, for example odor, taste, color, and overall quality, especially in flavored samples with cinnamon, lemon grass, and oregano. It can be concluded that plant extracts are strongly recommended, as powerful and safe antibacterial and flavoring agents, for the preservation and sensory enhancement of processed cheese. © 2015 Institute of Food Technologists®

  19. Harnessing Biomedical Natural Language Processing Tools to Identify Medicinal Plant Knowledge from Historical Texts.

    PubMed

    Sharma, Vivekanand; Law, Wayne; Balick, Michael J; Sarkar, Indra Neil

    2017-01-01

    The growing amount of data describing historical medicinal uses of plants from digitization efforts provides the opportunity to develop systematic approaches for identifying potential plant-based therapies. However, the task of cataloguing plant use information from natural language text is a challenging task for ethnobotanists. To date, there have been only limited adoption of informatics approaches used for supporting the identification of ethnobotanical information associated with medicinal uses. This study explored the feasibility of using biomedical terminologies and natural language processing approaches for extracting relevant plant-associated therapeutic use information from historical biodiversity literature collection available from the Biodiversity Heritage Library. The results from this preliminary study suggest that there is potential utility of informatics methods to identify medicinal plant knowledge from digitized resources as well as highlight opportunities for improvement.

  20. Harnessing Biomedical Natural Language Processing Tools to Identify Medicinal Plant Knowledge from Historical Texts

    PubMed Central

    Sharma, Vivekanand; Law, Wayne; Balick, Michael J.; Sarkar, Indra Neil

    2017-01-01

    The growing amount of data describing historical medicinal uses of plants from digitization efforts provides the opportunity to develop systematic approaches for identifying potential plant-based therapies. However, the task of cataloguing plant use information from natural language text is a challenging task for ethnobotanists. To date, there have been only limited adoption of informatics approaches used for supporting the identification of ethnobotanical information associated with medicinal uses. This study explored the feasibility of using biomedical terminologies and natural language processing approaches for extracting relevant plant-associated therapeutic use information from historical biodiversity literature collection available from the Biodiversity Heritage Library. The results from this preliminary study suggest that there is potential utility of informatics methods to identify medicinal plant knowledge from digitized resources as well as highlight opportunities for improvement. PMID:29854223

  1. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  2. Śodhana: An Ayurvedic process for detoxification and modification of therapeutic activities of poisonous medicinal plants

    PubMed Central

    Maurya, Santosh Kumar; Seth, Ankit; Laloo, Damiki; Singh, Narendra Kumar; Gautam, Dev Nath Singh; Singh, Anil Kumar

    2015-01-01

    Ayurveda involves the use of drugs obtained from plants, animals, and mineral origin. All the three sources of drugs can be divided under poisonous and nonpoisonous category. There are various crude drugs, which generally possess unwanted impurities and toxic substances, which can lead to harmful health problems. Many authors have reported that not all medicinal plants are safe to use since they can bear many toxic and harmful phytoconstituents in them. Śodhana (detoxification/purification) is the process, which involves the conversion of any poisonous drug into beneficial, nonpoisonous/nontoxic ones. Vatsanābha (Aconitum species), Semecarpus anacardium, Strychnos nux-vomica, Acorus calamus, Abrus precatorius etc., are some of the interesting examples of toxic plants, which are still used in the Indian system of medicine. Aconite, bhilawanols, strychnine, β–asarone, abrin are some of the toxic components present in these plants and are relatively toxic in nature. Śodhana process involves the purification as well as reduction in the levels of toxic principles which sometimes results in an enhanced therapeutic efficacy. The present review is designed to extensively discuss and understand the scientific basis of the alternative use of toxic plants as a medicine after their purification process. PMID:26283803

  3. Evaluation of potential site for mineral processing plant

    NASA Astrophysics Data System (ADS)

    Izwan Ishak, Muhamad Noor; Sipaun, Susan Maria; Mustapha, Ismail; Fahmi Engku Chik, Engku Mohd; Abdullah, Nurliyana; Affandi Mahmood, Airwan

    2018-01-01

    Nuclear moisture-density gauge is a type of instrument for measuring density and moisture of the material in a relatively thin zone beneath a surface of the material by using low activity of neutron and gamma radiation source. Density and moisture content data of the compacted layers are needed to determine the degree of compaction of soils, aggregate, concrete, asphalt or other materials used in civil engineering works. A gamma radiation source is mounted inside gauge housing with the source rod vertically extended to various depth positions. Direct transmission gamma radiation technique is used to obtain the count reading for the number of photons emitted before it is converted into density reading by microprocessor. This paper presents the inspection technique and results for the measurement of soil moisture and density carried out at potential site for mineral processing plant, Malaysian Nuclear Agency. Primarily, the experiment was conducted to ensure the compaction of ground is suitable for the plant construction. From the calculation, the percentages of soil wet density compaction (%WD Compact) are within acceptable limits with respect to the standard compacted wet soil density measured in the laboratory.

  4. W-007H B Plant Process Condensate Treatment Facility. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rippy, G.L.

    1995-01-20

    B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into themore » soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.« less

  5. Wetland eco-engineering: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-09-01

    Interest is growing in using soft sediment as a foundation in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here, dredging some of the clay-rich lake-bed sediment and using it to construct wetland will soon begin. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling and yellowing of foliage. The N : P ratios of the plant tissue were low, and these were affected not by hampered uptake of N but by enhanced uptake of P. Subsequent analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose the use of Fe-tolerant species rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the situated sediment and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  6. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?

    PubMed

    Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R

    2006-03-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.

  7. Burlington Northern Taconite Transshipment Facility, Duluth-Superior Harbor, Superior Wisconsin. Environmental Assessment Report.

    DTIC Science & Technology

    1975-03-01

    bunchberry, wintergreen, blueberry and twinflower are common ground plants. The boreal forest vestiges and dunes cover on the points will be dis...both cit ies Iu:11bers IA:,,’ It ,, u0 is Ui 197 ), with mn m k in.; u p 60.6 percent adl wof !enl 39.4 per’eNt 0i the work i n); populati)n. Inem 1) Io n...include dogwood, sumac, arrowwood, blueberry , highbush cranberry, elderberry, wild grape, buttonbrush, snowberry and partridgeberry. Aquatic and

  8. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  9. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  11. Inhibition of processing of plant N-linked oligosaccharides by castanospermine.

    PubMed

    Hori, H; Pan, Y T; Molyneux, R J; Elbein, A D

    1984-02-01

    Castanospermine (1,6,7,8-tetrahydroxyoctahydroindolizine) is a plant alkaloid that inhibits lysosomal alpha- and beta-glucosidase. It also inhibits processing of influenza viral glycoproteins by inhibiting glucosidase I and leads to altered glycoproteins with Glc3Man7GlcNAc2 structures. Castanospermine was tested as an inhibitor of glycoprotein processing in suspension-cultured soybean cells. Soybean cells were pulse-labeled with [2-3H]mannose and chased for varying periods in unlabeled medium. In normal cells, the initial glycopeptides contained oligosaccharides having Glc3Man9GlcNAc2 to Glc1Man9GlcNAc2 structures and these were trimmed during the chase to Man9GlcNac2 to Man7GlcNAc2 structures. In the presence of castanospermine, no trimming of glucose residues occurred although some mannose residues were apparently still removed. Thus, the major oligosaccharide in the glycopeptides of castanospermine-incubated cells after a 90-min chase was a Glc3Man7GlcNAc2 structure. Smaller amounts of Glc3Man6GlcNAc2 and Glc3Man5GlcNAc2 were also identified. Thus, in plant cells, castanospermine also prevents the removal of the outermost glucose residue.

  12. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    PubMed

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Process strengths determine the forms of the relationship between plant species richness and primary productivity

    PubMed Central

    Wang, Zhenhong

    2017-01-01

    The current rates of biodiversity loss have exceeded the rates observed during the earth’s major extinction events, which spurs the studies of the ecological relationships between biodiversity and ecosystem functions, stability, and services to determine the consequences of biodiversity loss. Plant species richness-productivity relationship (SRPR) is crucial to the understanding of these relationships in plants. Most ecologists have reached a widespread consensus that the loss of plant diversity undoubtedly impairs ecosystem functions, and have proposed many processes to explain the SRPR. However, none of the available studies has satisfactorily described the forms and mechanisms clarifying the SRPR. Observed results of the SRPR forms are inconsistent, and studies have long debated the ecological processes explaining the SRPR. Here, I have developed a simple model that combines the positive and/or negative effects of sixteen ecological processes on the SRPR and models that describe the dynamics of complementary-selection effect, density effect, and the interspecific competitive stress influenced by other ecological processes. I can regulate the strengths of the effects of these ecological processes to derive the asymptotic, positive, humped, negative, and irregular forms of the SRPR, and verify these forms using the observed data. The results demonstrated that the different strengths of the ecological processes determine the forms of the SRPR. The forms of the SRPR can change with variations in the strengths of the ecological processes. The dynamic characteristics of the complementary-selection effect, density effect, and the interspecific competitive stress on the SRPR are diverse, and are dependent on the strengths and variation of the ecological processes. This report explains the diverse forms of the SRPR, clarifies the integrative effects of the different ecological processes on the SRPR, and deepens our understanding of the interactions that occur among

  14. Plant growth and arbuscular mycorrhizae development in oil sands processing by-products.

    PubMed

    Boldt-Burisch, Katja; Naeth, M Anne; Schneider, Uwe; Schneider, Beate; Hüttl, Reinhard F

    2018-04-15

    Soil pollutants such as hydrocarbons can induce toxic effects in plants and associated arbuscular mycorrhizal fungi (AMF). This study was conducted to evaluate if the legume Lotus corniculatus and the grass Elymus trachycaulus and arbuscular mycorrhizal fungi could grow in two oil sands processing by-products after bitumen extraction from the oil sands in northern Alberta, Canada. Substrate treatments were coarse tailings sand (CTS), a mix of dry mature fine tailings (MFT) with CTS (1:1) and Pleistocene sandy soil (hydrocarbon free); microbial treatments were without AMF, with AMF and AMF plus soil bacteria isolated from oil sands reclamation sites. Plant biomass, root morphology, leaf water content, shoot tissue phosphorus content and mycorrhizal colonization were evaluated. Both plant species had reduced growth in CTS and tailings mix relative to sandy soil. AMF frequency and intensity in roots of E. trachycaulus was not influenced by soil hydrocarbons; however, it decreased significantly over time in roots of L. corniculatus without bacteria in CTS. Mycorrhizal inoculation alone did not significantly improve plant growth in CTS and tailings mix; however, inoculation with mycorrhizae plus bacteria led to a significantly positive response of both plant species in CTS. Thus, combined inoculation with selected mycorrhizae and bacteria led to synergistic effects. Such combinations may be used in future to improve plant growth in reclamation of CTS and tailings mix. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Genome plasticity in filamentous plant pathogens contributes to the emergence of novel effectors and their cellular processes in the host.

    PubMed

    Dong, Yanhan; Li, Ying; Qi, Zhongqiang; Zheng, Xiaobo; Zhang, Zhengguang

    2016-02-01

    Plant diseases cause extensive yield loss of crops worldwide, and secretory 'warfare' occurs between plants and pathogenic organisms all the time. Filamentous plant pathogens have evolved the ability to manipulate host processes and facilitate colonization through secreting effectors inside plant cells. The stresses from hosts and environment can drive the genome dynamics of plant pathogens. Remarkable advances in plant pathology have been made owing to these adaptable genome regions of several lineages of filamentous phytopathogens. Characterization new effectors and interaction analyses between pathogens and plants have provided molecular insights into the plant pathways perturbed during the infection process. In this mini-review, we highlight promising approaches of identifying novel effectors based on the genome plasticity. We also discuss the interaction mechanisms between plants and their filamentous pathogens and outline the possibilities of effector gene expression under epigenetic control that will be future directions for research.

  16. Optimization of urban wastewater treatment plants process with low C/N ratio

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Xu, G. M.; Chen, J.; Chen, B.; Lv, Z.; Yang, Y. A.

    2016-08-01

    In southern China, the inflow of water to wastewater treatment plants has a lower concentration of organic matter. This causes treatment plants to face issues in the denitrification and phosphorus removal processes such as deficient carbon sources, high energy consumption, and unstable nitrogen removal. To resolve these issues, we propose the reconstruction of the internal reflux port, improvement of the internal reflux ratio to 200%, the addition of carbon source to anoxic zone, and the addition of phosphorus removal agents in secondary settling tank. The results of study show significantly improved efficiency of nitrogen and phosphorus removal, which ensures the stability of subsequent supply of reused water.

  17. Canyon Day Sand and Gravel Wash Process Plant: Draft NPDES Permit AZ0024511

    EPA Pesticide Factsheets

    EPA is issuing a notice of proposed action under the Clean Water Act to issue NPDES Permit No.permit renewal (No. AZ0024511) to White Mountain Apache Tribe Canyon Day Sand and Gravel Wash Process Plant, Greer, Arizona.

  18. Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Ansarinasab, Hojat; Moftakhari Sharifzadeh, Mohammad Mehdi; Rosen, Marc A.

    2017-10-01

    An integrated power plant with a net electrical power output of 3.71 × 105 kW is developed and investigated. The electrical efficiency of the process is found to be 60.1%. The process includes three main sub-systems: molten carbonate fuel cell system, heat recovery section and cryogenic carbon dioxide capturing process. Conventional and advanced exergoeconomic methods are used for analyzing the process. Advanced exergoeconomic analysis is a comprehensive evaluation tool which combines an exergetic approach with economic analysis procedures. With this method, investment and exergy destruction costs of the process components are divided into endogenous/exogenous and avoidable/unavoidable parts. Results of the conventional exergoeconomic analyses demonstrate that the combustion chamber has the largest exergy destruction rate (182 MW) and cost rate (13,100 /h). Also, the total process cost rate can be decreased by reducing the cost rate of the fuel cell and improving the efficiency of the combustion chamber and heat recovery steam generator. Based on the total avoidable endogenous cost rate, the priority for modification is the heat recovery steam generator, a compressor and a turbine of the power plant, in rank order. A sensitivity analysis is done to investigate the exergoeconomic factor parameters through changing the effective parameter variations.

  19. Relationship between Listeria monocytogenes and Listeria spp. in seafood processing plants.

    PubMed

    Alali, Walid Q; Schaffner, Donald W

    2013-07-01

    The objective of this study was to evaluate the relationship between prevalence of Listeria monocytogenes as an outcome and Listeria spp. as an explanatory variable by food products, food contact surfaces, and nonfood contact surfaces in seafood processing plants by using peer-reviewed published data. Nine sets of prevalence data of L. monocytogenes and Listeria spp. were collected from published studies and used for the analyses. Based on our analysis, the relationship between L. monocytogenes prevalence and Listeria spp. prevalence in food products (incoming raw materials and finish products) was significant (P = 0.04) with (low) R² = 0.36. Furthermore, Listeria spp. were not a good indicator for L. monocytogenes when testing food contact surfaces (R² = 0.10). Listeria spp. were a good indicator for L. monocytogenes only on nonfood contact surfaces (R² = 0.90). On the other hand, the presence of Listeria spp. on food contact surfaces (R² = 0.002) and nonfood contact surfaces (R² = 0.03) was not a good indicator for L. monocytogenes presence in food products. In general, prevalence of Listeria spp. does not seem to be a good indicator for L. monocytogenes prevalence in seafood processing plants.

  20. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    NASA Technical Reports Server (NTRS)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  1. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials.

    PubMed

    Jun, Xi

    2013-01-01

    High-pressure processing is a food processing technique that has shown great potentials in the food industry. Recently, it was developed to extract bioactive ingredients from plant materials, known as ultrahigh pressure extraction (UPE), taking advantages of time saving, higher extraction yields, fewer impurities in the extraction solution, minimal heat and can avoid thermal degradation on the activity and structure of bioactive components, and so on. This review provides an overview of the developments in the UPE of bioactive ingredients from plant material. Apart from a brief presentation of the theories of UPE and extraction equipment systems, the principal parameters that influence the extraction efficiency to be optimized in the UPE (e.g., solvent, pressure, temperature, extraction time, and the number of cycle) were discussed in detail, and finally the more recent applications of UPE for the extraction of active compounds from plant materials were summarized.

  2. Investigating New Paths in the Teaching of Plant Processes in Elementary Schools

    ERIC Educational Resources Information Center

    Nanni, Eftychia; Plakitsi, Katerina

    2013-01-01

    The purpose of this researching study was to develop a teaching proposal and investigate the conceptualizations that children make about the processes of plants (photosynthesis, respiration, transpiration). We undertook an innovative implementation on teaching living things to students of 10 to 11 years old (5th grade). The theoretical framework…

  3. Quantifying Ecological Memory of Plant and Ecosystem Processes in Variable Environments

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Barron-Gafford, G. A.; Bentley, L.; Cable, J.; Lucas, R.; Huxman, T. E.; Loik, M. E.; Smith, S. D.; Tissue, D.

    2010-12-01

    Precipitation, soil water, and other factors affect plant and ecosystem processes at multiple time scales. A common assumption is that water availability at a given time directly affects processes at that time. Recent work, especially in pulse-driven, semiarid systems, shows that antecedent water availability, averaged over several days to a couple weeks, can be just as or more important than current water status. Precipitation patterns of previous seasons or past years can also impact plant and ecosystem functioning in many systems. However, we lack an analytical framework for quantifying the importance of and time-scale over which past conditions affect current processes. This study explores the ecological memory of a variety of plant and ecosystem processes. We use memory as a metaphor to describe the time-scale over which antecedent conditions affect the current process. Existing approaches for incorporating antecedent effects arbitrarily select the antecedent integration period (e.g., the past 2 weeks) and the relative importance of past conditions (e.g., assign equal or linearly decreasing weights to past events). In contrast, we utilize a hierarchical Bayesian approach to integrate field data with process-based models, yielding posterior distributions for model parameters, including the duration of the ecological memory (integration period) and the relative importance of past events (weights) to this memory. We apply our approach to data spanning diverse temporal scales and four semiarid sites in the western US: leaf-level stomatal conductance (gs, sub-hourly scale), soil respiration (Rs, hourly to daily scale), and net primary productivity (NPP) and tree-ring widths (annual scale). For gs, antecedent factors (daily rainfall and temperature, hourly vapor pressure deficit) and current soil water explained up to 72% of the variation in gs in the Chihuahuan Desert, with a memory of 10 hours for a grass and 4 days for a shrub. Antecedent factors (past soil water

  4. Prevalence of Salmonella in broilers at retail outlets, processing plants and farms in Malaysia.

    PubMed

    Rusul, G; Khair, J; Radu, S; Cheah, C T; Yassin, R M

    1996-12-01

    A study was conducted to estimate the prevalence of Salmonella among broilers retailed at wet-markets and processing plants. Litter and feed samples obtained from both broiler and breeder farms were also examined for Salmonella. A total of 158 out of 445 (35.5%) and 52 out of 104 (50.0%) broiler carcasses obtained from wet-markets and processing plants were contaminated with Salmonella, respectively. Salmonella was isolated from 14 out of 98 (14.3%) samples of intestinal content. Litter samples from broiler and breeder farms were positive for Salmonella, 8/40 (20%) and 2/10 (20%), respectively. Salmonella isolates (230) belonging to 15 different serovars were isolated. Predominant serovars were S. enteritidis, S. muenchen, S. kentucky and S. blockley.

  5. Effects of plant roots on the hydraulic performance during the clogging process in mesocosm vertical flow constructed wetlands.

    PubMed

    Hua, G F; Zhao, Z W; Kong, J; Guo, R; Zeng, Y T; Zhao, L F; Zhu, Q D

    2014-11-01

    The aim of this study was to evaluate the effects of plant roots (Typha angustifolia roots) on the hydraulic performance during the clogging process from the perspective of time and space distributions in mesocosm vertical flow-constructed wetlands with coarse sand matrix. For this purpose, a pair of lab-scale experiments was conducted to compare planted and unplanted systems by measuring the effective porosity and hydraulic conductivity of the substrate within different operation periods. Furthermore, the flow pattern of the clogging process in the planted and unplanted wetland systems were evaluated by their hydraulic performance (e.g., mean residence time, short circuiting, volumetric efficiency, number of continuously stirred tank reactors, and hydraulic efficiency factor) in salt tracer experiments. The results showed that the flow conditions would change in different clogging stages, which indicated that plants played different roles related to time and space. In the early clogging stages, plant roots restricted the flow of water, while in the middle and later clogging stages, especially the later stage, growing roots opened new pore spaces in the substrate. The roots played an important role in affecting the hydraulic performance in the upper layer (0-30 cm) where the sand matrix had a larger root volume fraction. Finally, the causes of the controversy over plant roots' effects on clogging were discussed. The results helped further understand the effects of plant roots on hydraulic performance during the clogging process.

  6. Rendering plant emissions of volatile organic compounds during sterilization and cooking processes.

    PubMed

    Bhatti, Z A; Maqbool, F; Langenhove, H V

    2014-01-01

    The rendering process emits odorous volatile compounds in the atmosphere; if these volatile organic compounds (VOCs) are not handled properly they can cause a serious environmental problem. During this process not all emitted compounds are odorous and hazardous but some of them have been found associated with health problems. Samples were collected in the plastic bags from the Arnout rendering plant. In this study, VOCs emission from two different processes (cooking and sterilization) was compared. For the analysis of various emitted compounds, gas chromatograph and mass spectrophotometer were used. A sterilization process was added in the rendering plant to inactivate the prion protein from meat bone meal prepared during the rendering process. The identification of mass spectrum was performed by using a mass spectral database system. The most odorous classes of compounds identified were aliphatic hydrocarbons (HCs) (29.24%), furans (28.74%), aromatic HCs (18.32%), most important sulphur-containing compounds (12.15%), aldehyde (10.91%) and ketones (0.60%). Emissions released during cooking and sterilization were 32.73 x 10(2) and 36.85 x 10(2) mg m(-3), respectively. In this study, it was observed that after the addition of the sterilization process VOCs' emissions were increased. A total of 87 mg m(-3) dimethyl disulphide (DMS) was detected only during the cooking process, whereas dimethly trisulphide (DMTS) was detected in both cooking (300 mg m(-3)) and sterilization (301 mg m(-3)) processes. About 11 mg m3 of DMS was detected during the cooking process, which was a small concentration compared with 299 mg m(-3) found during the sterilization process. At high temperature and pressure, DMTS and DMS were released more than any other sulphur-containing compounds. A condenser was applied to control the combined emission and it was successful in the reduction of VOCs to 22.83 x 10(2) mg m(-3) (67% reduction).

  7. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.

    PubMed

    Philip, Anna; Ferro, Valerie A; Tate, Rothwelle J

    2015-10-01

    The "dietary xenomiR hypothesis" proposes that microRNAs (miRNAs) in foodstuffs survive transit through the mammalian gastrointestinal tract and pass into cells intact to affect gene regulation. However, debate continues as to whether dietary intake poses a feasible route for such exogenous gene regulators. Understanding on miRNA levels during pretreatments of human diet is essential to test their bioavailability during digestion. This study makes the novel first use of an in vitro method to eliminate the inherent complexities and variability of in vivo approaches used to test this hypothesis. Plant miRNA levels in soybean and rice were measured during storage, processing, cooking, and early digestion using real-time PCR. We have demonstrated for the first time that storage, processing, and cooking does not abolish the plant miRNAs present in the foodstuffs. In addition, utilizing a simulated human digestion system revealed significant plant miRNA bioavailability after early stage digestion for 75 min. Attenuation of plant messenger RNA and synthetic miRNA was observed under these conditions. Even after an extensive pretreatment, plant-derived miRNA, delivered by typical dietary ingestion, has a robustness that could make them bioavailable for uptake during early digestion. The potential benefit of these regulatory molecules in pharma nutrition could be explored further. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Listeria Monocytogenes Persistence in Ready-to-Eat Sausages and in Processing Plants

    PubMed Central

    Mureddu, Anna; Mazza, Roberta; Fois, Federica; Meloni, Domenico; Bacciu, Roberto; Piras, Francesca

    2014-01-01

    Listeria monocytogenes is of major concern in the fermented meat products and is able to persist in their processing environments. The aim of the present work was to evaluate the virulence profile and the persistence capacity of L. monocytogenes strains isolated in Sardinian fermented sausages processing plants. Food (ground meat, sausages at the end of acidification and ripening stage) and environmental samples (a total of n. 385), collected from 4 meat processing plants located in Sardinia (Italy), were examined to detect L. monocytogenes presence. All the L. monocytogenes isolates were identified by polymerase chain reaction (PCR) method. A subset of strains was also characterised by multiplex PCR-based serogrouping, using the lmo0737, lmo1118, ORF2819 and ORF2110 genes. Three different multiplex PCRs were used to obtain the virulence profiles by the rrn, hlyA, actA, prfA, inlA, inlB, iap, plcA, plcB and mpl marker genes. Furthermore, in vitro biofilm forming ability and resistance to disinfectants were carried out on microtiter plate. The overall prevalence was 31.5% in food, and 68.5% in environmental samples. The prevalent serotype resulted 1/2c (43%), followed by 1/2a (40%), 4b (8.6%), and 1/2b (8.6%). The amplification products of the virulence genes were found in all the isolates with the following prevalence: 77.1% hlyA; 100% rrn; 100% prfA; 97.1% iap; 65.7% inlB; 88.6% inlA; 100% plcA; 100% plcB and 74.3% mpl. As for biofilm forming ability, 37.1% of the strains were positive and resulted weak producer, but all the isolates were sensible to disinfectants showing a reduction of L. monocytogenes growth after each incubation time. More appropriate technologies and application of measures of hygienic control should be implemented to prevent the L. monocytogenes growth and cross-contamination in salsiccia sarda processing plants. PMID:27800316

  9. Listeria Monocytogenes Persistence in Ready-to-Eat Sausages and in Processing Plants.

    PubMed

    Mureddu, Anna; Mazza, Roberta; Fois, Federica; Meloni, Domenico; Bacciu, Roberto; Piras, Francesca; Mazzette, Rina

    2014-01-21

    Listeria monocytogenes is of major concern in the fermented meat products and is able to persist in their processing environments. The aim of the present work was to evaluate the virulence profile and the persistence capacity of L. monocytogenes strains isolated in Sardinian fermented sausages processing plants. Food (ground meat, sausages at the end of acidification and ripening stage) and environmental samples (a total of n. 385), collected from 4 meat processing plants located in Sardinia (Italy), were examined to detect L. monocytogenes presence. All the L. monocytogenes isolates were identified by polymerase chain reaction (PCR) method. A subset of strains was also characterised by multiplex PCR-based serogrouping, using the lmo0737 , lmo1118 , ORF2819 and ORF2110 genes. Three different multiplex PCRs were used to obtain the virulence profiles by the rrn , hlyA , actA , prfA , inlA , inlB , iap , plcA , plcB and mpl marker genes. Furthermore, in vitro biofilm forming ability and resistance to disinfectants were carried out on microtiter plate. The overall prevalence was 31.5% in food, and 68.5% in environmental samples. The prevalent serotype resulted 1/2c (43%), followed by 1/2a (40%), 4b (8.6%), and 1/2b (8.6%). The amplification products of the virulence genes were found in all the isolates with the following prevalence: 77.1% hlyA ; 100% rrn ; 100% prfA ; 97.1% iap ; 65.7% inlB ; 88.6% inlA ; 100% plcA ; 100% plcB and 74.3% mpl . As for biofilm forming ability, 37.1% of the strains were positive and resulted weak producer, but all the isolates were sensible to disinfectants showing a reduction of L. monocytogenes growth after each incubation time. More appropriate technologies and application of measures of hygienic control should be implemented to prevent the L. monocytogenes growth and cross-contamination in salsiccia sarda processing plants.

  10. The Stability of Medicinal Plant microRNAs in the Herb Preparation Process.

    PubMed

    Xie, Wenyan; Melzig, Matthias F

    2018-04-16

    Herbal medicine is now globally accepted as a valid alternative system of pharmaceutical therapies. Various studies around the world have been initiated to develop scientific evidence-based herbal therapies. Recently, the therapeutic potential of medicinal plant derived miRNAs has attracted great attraction. MicroRNAs have been indicated as new bioactive ingredients in medicinal plants. However, the stability of miRNAs during the herbal preparation process and their bioavailability in humans remain unclear. Viscum album L. (European mistletoe) has been widely used in folk medicine for the treatment of cancer and cardiovascular diseases. Our previous study has indicated the therapeutic potential of mistletoe miRNAs by using bioinformatics tools. To evaluate the stability of these miRNAs, various mistletoe extracts that mimic the clinical medicinal use as well as traditional folk medicinal use were prepared. The mistletoe miRNAs including miR166a-3p, miR159a, miR831-5p, val-miR218 and val-miR11 were quantified by stem-loop qRT-PCR. As a result, miRNAs were detectable in the majority of the extracts, indicating that consumption of medicinal plant preparations might introduce miRNAs into mammals. The factors that might cause miRNA degradation include ultrasonic treatment, extreme heat, especially RNase treatment, while to be associated with plant molecules (e.g., proteins, exosomes) might be an efficient way to protect miRNAs against degradation. Our study confirmed the stability of plant derived miRNAs during herb preparations, suggesting the possibility of functionally intact medicinal plant miRNAs in mammals.

  11. Process for producing ethanol from plant biomass using the fungus paecilomyces sp.

    DOEpatents

    Wu, Jung Fu

    1989-01-01

    A process for producing ethanol from plant biomass is disclosed. The process in cludes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces, which has the ability to ferment both cellobiose and xylose to ethanol, is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate.

  12. Process auditing and performance improvement in a mixed wastewater-aqueous waste treatment plant.

    PubMed

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Damiani, Silvestro

    2018-02-01

    The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.

  13. Effects of Plant Traits on Ecosystem and Regional Processes: a Conceptual Framework for Predicting the Consequences of Global Change

    PubMed Central

    CHAPIN, F. STUART

    2003-01-01

    Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. PMID:12588725

  14. Revisiting the Holy Grail: using plant functional traits to understand ecological processes.

    PubMed

    Funk, Jennifer L; Larson, Julie E; Ames, Gregory M; Butterfield, Bradley J; Cavender-Bares, Jeannine; Firn, Jennifer; Laughlin, Daniel C; Sutton-Grier, Ariana E; Williams, Laura; Wright, Justin

    2017-05-01

    One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a 'Holy Grail' in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community- and ecosystem-level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait-based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta-analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized. © 2016 Cambridge Philosophical Society.

  15. Understanding knowledge transfer in an ergonomics intervention at a poultry processing plant.

    PubMed

    Antle, David M; MacKinnon, Scott N; Molgaard, John; Vézina, Nicole; Parent, Robert; Bornstein, Stephen; Leclerc, Louise

    2011-01-01

    This case study reviews the knowledge transfer (KT) process of implementing a knife sharpening and steeling program into a poultry processing plant via a participatory ergonomics intervention. This ergonomics intervention required stakeholder participation at the company level to move a 'train-the-trainer' program, developed in Québec, Canada, into action on the plant's deboning line. Communications and exchanges with key stakeholders, as well as changes in steeling and production behaviours were recorded. The intervention was assumed to be at least partially successful because positive changes in work operations occurred. Ergonomic-related changes such as those documented have been cited in the academic literature as beneficial to worker health. However, several components cited in literature that are associated with a successful participatory ergonomics intervention were not attained during the project. A Dynamic Knowledge Transfer Model was used to identify KT issues that impacted on the success of train-the-trainer program. A debriefing analysis reveals that a failure to consider key participatory ergonomics factors necessary for success were related to capacity deficits in the knowledge dissemination strategy.

  16. The role of female search behaviour in determining host plant range in plant feeding insects: a test of the information processing hypothesis

    PubMed Central

    Janz, N.; Nylin, S.

    1997-01-01

    Recent theoretical studies have suggested that host range in herbivorous insects may be more restricted by constraints on information processing on the ovipositing females than by trade-offs in larval feeding efficiency. We have investigated if females from polyphagous species have to pay for their ability to localize and evaluate plants from different species with a lower ability to discriminate between conspecific host plants with differences in quality. Females of the monophagous butterflies Polygonia satyrus, Vanessa indica and Inachis io and the polyphagous P. c-album and Cynthia cardui (all in Lepidoptera, Nymphalidae) were given a simultaneous choice of stinging nettles (Urtica dioica) of different quality. In addition, the same choice trial was given to females from two populations of P. c-album with different degrees of specificity. As predicted from the information processing hypothesis, all specialists discriminated significantly against the bad quality nettle, whereas the generalists laid an equal amount of eggs on both types of nettle. There were no corresponding differences between specialist and generalist larvae in their ability to utilize poor quality leaves. Our study therefore suggests that female host-searching behaviour plays an important role in determining host plant range.

  17. The Role of Female Search Behaviour in Determining Host Plant Range in Plant Feeding Insects: A Test of the Information Processing Hypothesis

    NASA Astrophysics Data System (ADS)

    Janz, Niklas; Nylin, Soren

    1997-05-01

    Recent theoretical studies have suggested that host range in herbivorous insects may be more restricted by constraints on information processing on the ovipositing females than by trade-offs in larval feeding efficiency. We have investigated if females from polyphagous species have to pay for their ability to localize and evaluate plants from different species with a lower ability to discriminate between conspecific host plants with differences in quality. Females of the monophagous butterflies Polygonia satyrus, Vanessa indica and Inachis io and the polyphagous P. c-album and Cynthia cardui (all in Lepidoptera, Nymphalidae) were given a simultaneous choice of stinging nettles (Urtica dioica) of different quality. In addition, the same choice trial was given to females from two populations of P. c-album with different degrees of specificity. As predicted from the information processing hypothesis, all specialists discriminated significantly against the bad quality nettle, whereas the generalists laid an equal amount of eggs on both types of nettle. There were no corresponding differences between specialist and generalist larvae in their ability to utilize poor quality leaves. Our study therefore suggests that female host-searching behaviour plays an important role in determining host plant range.

  18. Process design and economic analysis of a hypothetical bioethanol production plant using carob pod as feedstock.

    PubMed

    Sánchez-Segado, S; Lozano, L J; de Los Ríos, A P; Hernández-Fernández, F J; Godínez, C; Juan, D

    2012-01-01

    A process for the production of ethanol from carob (Ceratonia siliqua) pods was designed and an economic analysis was carried out for a hypothetical plant. The plant was assumed to perform an aqueous extraction of sugars from the pods followed by fermentation and distillation to produce ethanol. The total fixed capital investment for a base case process with a capacity to transform 68,000 t/year carob pod was calculated as 39.61 millon euros (€) with a minimum bioethanol production cost of 0.51 €/L and an internal rate of return of 7%. The plant was found to be profitable at carob pod prices lower than 0.188 €/kg. An increase in the transformation capacity of the plant from 33,880 to 135,450 t/year was calculated to result in an increase in the internal rate of return from 5.50% to 13.61%. The obtained results show that carob pod is a promising alternative source for bioethanol production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Firmicutes dominate the bacterial taxa within sugar-cane processing plants

    PubMed Central

    Sharmin, Farhana; Wakelin, Steve; Huygens, Flavia; Hargreaves, Megan

    2013-01-01

    Sugar cane processing sites are characterised by high sugar/hemicellulose levels, available moisture and warm conditions, and are relatively unexplored unique microbial environments. The PhyloChip microarray was used to investigate bacterial diversity and community composition in three Australian sugar cane processing plants. These ecosystems were highly complex and dominated by four main Phyla, Firmicutes (the most dominant), followed by Proteobacteria, Bacteroidetes, and Chloroflexi. Significant variation (p < 0.05) in community structure occurred between samples collected from ‘floor dump sediment’, ‘cooling tower water’, and ‘bagasse leachate’. Many bacterial Classes contributed to these differences, however most were of low numerical abundance. Separation in community composition was also linked to Classes of Firmicutes, particularly Bacillales, Lactobacillales and Clostridiales, whose dominance is likely to be linked to their physiology as ‘lactic acid bacteria’, capable of fermenting the sugars present. This process may help displace other bacterial taxa, providing a competitive advantage for Firmicutes bacteria. PMID:24177592

  20. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... a chemical in any units within the same plant through chemical reaction, including any associated... plant sites that produce, process or consume Schedule 2 chemicals in excess of specified thresholds. 713... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...

  1. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... a chemical in any units within the same plant through chemical reaction, including any associated... plant sites that produce, process or consume Schedule 2 chemicals in excess of specified thresholds. 713... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...

  2. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... a chemical in any units within the same plant through chemical reaction, including any associated... plant sites that produce, process or consume Schedule 2 chemicals in excess of specified thresholds. 713... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...

  3. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a chemical in any units within the same plant through chemical reaction, including any associated... plant sites that produce, process or consume Schedule 2 chemicals in excess of specified thresholds. 713... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...

  4. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    PubMed

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  5. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    DOEpatents

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.

  6. Characterizing Salmonella Contamination in Two Rendering Processing Plants.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2017-02-01

    A microbiological investigation on Salmonella contamination was conducted in two U.S. rendering plants to investigate the potential cross-contamination of Salmonella in the rendering processing environment. Sampling locations were predetermined at the areas where Salmonella contamination may potentially occur, including raw materials receiving, crax (rendered materials before grinding process) grinding, and finished meal loading-out areas. Salmonella was either enumerated directly on xylose lysine Tergitol 4 agar plates or enriched in Rappaport-Vassiliadis and tetrathionate broths. The presumptive Salmonella isolates were confirmed using CHROMagar plating and latex agglutination testing and then characterized using pulsed-field gel electrophoresis, serotyping, and biofilm-forming determination. Among 108 samples analyzed, 79 (73%) samples were Salmonella positive after enrichment. Selected Salmonella isolates (n = 65) were assigned to 31 unique pulsed-field gel electrophoresis patterns, with 16 Salmonella serotypes, including Typhimurium and Mbandaka, identified as predominant serotypes and 10 Salmonella strains determined as strong biofilm formers. Our results indicated that the raw materials receiving area was the primary source of Salmonella and that the surfaces surrounding crax grinding and finished meal loading-out areas harbor Salmonella in biofilms that may recontaminate the finished meals. The same Salmonella serotypes found in both raw materials receiving and the finished meal loading-out areas suggested a potential of cross-contamination between different areas in the rendering processing environment.

  7. The role of plant processing for the cancer preventive potential of Ethiopian kale (Brassica carinata).

    PubMed

    Odongo, Grace Akinyi; Schlotz, Nina; Herz, Corinna; Hanschen, Franziska S; Baldermann, Susanne; Neugart, Susanne; Trierweiler, Bernhard; Frommherz, Lara; Franz, Charles M A P; Ngwene, Benard; Luvonga, Abraham Wahid; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn

    2017-01-01

    Background : Ethiopian kale ( Brassica carinata ) is a horticulturally important crop used as leafy vegetable in large parts of East and Southern Africa. The leaves are reported to contain high concentrations of health-promoting secondary plant metabolites. However, scientific knowledge on their health benefits is scarce. Objective : This study aimed to determine the cancer preventive potential of B. carinata using a human liver in vitro model focusing on processing effects on the pattern of secondary plant metabolites and bioactivity. Design : B. carinata was cultivated under controlled conditions and differentially processed (raw, fermented, or cooked) after harvesting. Human liver cancer cells (HepG2) were treated with ethanolic extracts of raw or processed B. carinata leaves and analyzed for their anti-genotoxic, anti-oxidant, and cytostatic potential. Chemical analyses were carried out on glucosinolates including breakdown products, phenolic compounds, carotenoids, and chlorophyll content. Results : Pre-treatment with B. carinata extracts concentration dependently reduced aflatoxin-induced DNA damage in the Comet assay, reduced the production of reactive oxygen species as determined by electron paramagnetic resonance spectroscopy, and induced Nrf2-mediated gene expression. Increasing extract concentrations also promoted cytostasis. Processing had a significant effect on the content of secondary plant metabolites. However, different processing methodologies did not dramatically decrease bioactivity, but enhanced the protective effect in some of the endpoints studied. Conclusion : Our findings highlight the cancer preventive potential of B. carinata as indicated by the protection of human liver cells against aflatoxin in vitro . In general, consumption of B. carinata should be encouraged as part of chemopreventive measures to combat prevalence of aflatoxin-induced diseases.

  8. Thermal, High Pressure, and Electric Field Processing Effects on Plant Cell Membrane Integrity and Relevance to Fruit and Vegetable Quality

    PubMed Central

    Gonzalez, Maria E; Barrett, Diane M

    2010-01-01

    Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan. Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEF. Our research group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP, or PEF, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton nuclear magnetic resonance (1H-NMR). PMID:20492210

  9. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality.

    PubMed

    Gonzalez, Maria E; Barrett, Diane M

    2010-09-01

    Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan. Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEF. Our research group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP, or PEF, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton nuclear magnetic resonance (¹H-NMR).

  10. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    PubMed

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  11. 76 FR 48862 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... by United Taconite, LLC, Docket No. LAKE 2010-128-M. (Issues include whether an agent of a limited liability company can be liable for a civil penalty under section 110(c) of the Federal Mine Safety and...

  12. [Work process and working conditions in poultry processing plants: report of a survey on occupational health surveillance].

    PubMed

    Oliveira, Paulo Antonio Barros; Mendes, Jussara Maria Rosa

    2014-12-01

    This article presents the report of a survey on health surveillance activities performed in poultry processing plants in the south of Brazil. It aims to contribute to an understanding of the work process developed, the growth of the sector, the organization of labor and the confrontation with the economic model of this sector, which has been exposing employees to working conditions that undermine their health. The working conditions identified are considered largely incompatible with health and human dignity. The study supports interinstitutional intervention, especially with the Public Ministry of Labor, criticizes the weak implementation of specific government interventions in health conditions in the industry and introduces the new Regulatory Standard 36 as a positive perspective for the near future.

  13. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    PubMed

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  14. Side Streams of Plant Food Processing As a Source of Valuable Compounds: Selected Examples.

    PubMed

    Schieber, Andreas

    2017-02-28

    Industrial processing of plant-derived raw materials generates enormous amounts of by-products. On one hand, these by-products constitute a serious disposal issue because they often emerge seasonally and are prone to microbial decay. On the other hand, they are an abundant source of valuable compounds, in particular secondary plant metabolites and cell wall materials, which may be recovered and used to functionalize foods and replace synthetic additives with ingredients of natural origin. This review covers 150 references and presents select studies performed between 2001 and 2016 on the recovery, characterization, and application of valuable constituents from grape pomace, apple pomace, potato peels, tomato pomace, carrot pomace, onion peels, by-products of citrus, mango, banana, and pineapple processing, side streams of olive oil production, and cereal by-products. The criteria used were economic importance, amounts generated, relevance of side streams as a source of valuable compounds, and reviews already published. Despite a plethora of studies carried out on the utilization of side streams, relatively few processes have yet found industrial application.

  15. On The Cusp of the New Spatial Challenges - The Thermal Waste Processing Plant as an Element of Urban Space

    NASA Astrophysics Data System (ADS)

    Wójtowicz-Wróbel, Agnieszka

    2017-10-01

    The goal of this paper is to answer the question about the current importance of structures associated with the thermal processing of waste within the space of Polish cities and what status can they have in the functional and spatial structure of Polish cities in the future. The construction of thermal waste processing plants in Poland is currently a new and important problem, with numerous structures of this type being built due to increasing care for the natural environment, with the introduction of legal regulations, as well as due to the possibility of obtaining large external funding for the purposes of undertaking pro-environmental spatial initiatives, etc. For this reason, the paper contains research on the increase in the number of thermal waste processing plants in Poland in recent years. The abovementioned data was compared with similar information from other European Union member states. In the group containing Polish thermal waste processing plants, research was performed regarding the stage of the construction of a plant (operating plant, plant under construction, design in a construction phase, etc.). The paper also contains a listing of the functions other than the basic form of use, which is the incineration of waste - similarly to numerous foreign examples - that the environmentally friendly waste incineration plants fulfil in Poland, dividing the additional forms of use into "hard" elements (at the design level, requiring the expansion of a building featuring new elements that are not directly associated with the basic purpose of waste processing) and soft (social, educational, promotional actions, as well as other endeavours that require human involvement, but that do not entail significant design work on the buildings itself, expanding its form of use, etc.) as well as mixed activity, which required design work, but on a relatively small scale. Research was also conducted regarding the placement of thermal waste processing plants within the

  16. The role of plant processing for the cancer preventive potential of Ethiopian kale (Brassica carinata)

    PubMed Central

    Odongo, Grace Akinyi; Schlotz, Nina; Herz, Corinna; Hanschen, Franziska S.; Baldermann, Susanne; Neugart, Susanne; Trierweiler, Bernhard; Frommherz, Lara; Franz, Charles M. A. P.; Ngwene, Benard; Luvonga, Abraham Wahid; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn

    2017-01-01

    ABSTRACT Background: Ethiopian kale (Brassica carinata) is a horticulturally important crop used as leafy vegetable in large parts of East and Southern Africa. The leaves are reported to contain high concentrations of health-promoting secondary plant metabolites. However, scientific knowledge on their health benefits is scarce. Objective: This study aimed to determine the cancer preventive potential of B. carinata using a human liver in vitro model focusing on processing effects on the pattern of secondary plant metabolites and bioactivity. Design: B. carinata was cultivated under controlled conditions and differentially processed (raw, fermented, or cooked) after harvesting. Human liver cancer cells (HepG2) were treated with ethanolic extracts of raw or processed B. carinata leaves and analyzed for their anti-genotoxic, anti-oxidant, and cytostatic potential. Chemical analyses were carried out on glucosinolates including breakdown products, phenolic compounds, carotenoids, and chlorophyll content. Results: Pre-treatment with B. carinata extracts concentration dependently reduced aflatoxin-induced DNA damage in the Comet assay, reduced the production of reactive oxygen species as determined by electron paramagnetic resonance spectroscopy, and induced Nrf2-mediated gene expression. Increasing extract concentrations also promoted cytostasis. Processing had a significant effect on the content of secondary plant metabolites. However, different processing methodologies did not dramatically decrease bioactivity, but enhanced the protective effect in some of the endpoints studied. Conclusion: Our findings highlight the cancer preventive potential of B. carinata as indicated by the protection of human liver cells against aflatoxin in vitro. In general, consumption of B. carinata should be encouraged as part of chemopreventive measures to combat prevalence of aflatoxin-induced diseases. PMID:28326001

  17. Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant.

    PubMed

    Kreiss, K; Mroz, M M; Zhen, B; Wiedemann, H; Barna, B

    1997-08-01

    To describe relative hazards in sectors of the beryllium industry, risk factors of beryllium disease and sensitisation related to work process were sought in a beryllium manufacturing plant producing pure metal, oxide, alloys, and ceramics. All 646 active employees were interviewed; beryllium sensitisation was ascertained with the beryllium lymphocyte proliferation blood test on 627 employees; clinical evaluation and bronchoscopy were offered to people with abnormal test results; and industrial hygiene measurements related to work processes taken in 1984-93 were reviewed. 59 employees (9.4%) had abnormal blood tests, 47 of whom underwent bronchoscopy. 24 new cases of beryllium disease were identified, resulting in a beryllium disease prevalence of 4.6%, including five known cases (29/632). Employees who had worked in ceramics had the highest prevalence of beryllium disease (9.0%). Employees in the pebble plant (producing beryllium metal) who had been employed after 1983 also had increased risk, with a prevalence of beryllium disease of 6.4%, compared with 1.3% of other workers hired in the same period, and a prevalence of abnormal blood tests of 19.2%. Logistic regression modelling confirmed these two risk factors for beryllium disease related to work processes and the dependence on time of the risk at the pebble plant. The pebble plant was not associated with the highest gravimetric industrial hygiene measurements available since 1984. Further characterisation of exposures in beryllium metal production may be important to understanding how beryllium exposures confer high contemporary risk of beryllium disease.

  18. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-08-01

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979,more » while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)« less

  19. Comparison of the incidence of Listeria on equipment versus environmental sites within dairy processing plants.

    PubMed

    Pritchard, T J; Flanders, K J; Donnelly, C W

    1995-08-01

    This study was undertaken to compare the incidence of Listeria contamination of processing equipment with that of the general dairy processing environment. A total of 378 sponge samples obtained from 21 dairy plants were analyzed for Listeria using three different enrichment media. Use of extended microbiological analysis allowed us to identify 26 Listeria positive sites which would have not been identified had a single test format been employed. Eighty (80) of 378 sites (21.2%) were identified as Listeria positive. Listeria innocua was isolated from 59 of the 80 (73.8%) positive samples, L. monocytogenes was identified in 35 (43.8%) of the positive samples, and L. seeligeri was isolated from 5 (6.3%) of the Listeria positive samples. Positive equipment samples were obtained from 6 of the 21 (28.6%) plants and 19 of the 21 (90.5%) plants had positive environmental sites. Seventeen of the 215 (7.9%) samples from equipment were positive for Listeria species. Eleven of these sites, including 3 holding tanks, 2 table tops, 3 conveyor/chain systems, a pasta filata wheel, a pint milk filler and a brine pre-filter machine, were positive for L. monocytogenes. Nineteen of the 21 (90.5%) plants had positive environmental sites. Sixty-three of the 163 (41.1%) samples from environmental sites were Listeria positive and 24 were positive for L. monocytogenes. Two-tailed student t-test analysis of the mean frequencies indicated that the level of contamination was significantly higher (p < 0.001) in 'environmental' (49.7%) as opposed to 'equipment' samples (7.0%). Our study indicates that environmental contamination with Listeria does not necessarily translate into contamination of equipment within the same plant, and that greater emphasis needs to be placed on the cleaning and sanitizing of the plant environment.

  20. Polonium-210 in the environment around a radioactive waste disposal area and phosphate ore processing plant.

    PubMed

    Arthur, W J; Markham, O D

    1984-04-01

    Polonium-210 concentrations were determined for soil, vegetation and small mammal tissues collected at a solid radioactive waste disposal area, near a phosphate ore processing plant and at two rural areas in southeastern Idaho. Polonium concentrations in media sampled near the radioactive waste disposal facility were equal to or less than values from rural area samples, indicating that disposal of solid radioactive waste at the Idaho National Engineering Laboratory Site has not resulted in increased environmental levels of polonium. Concentrations of 210Po in soils, deer mice hide and carcass samples collected near the phosphate processing plant were statistically (P less than or equal to 0.05) greater than the other sampling locations; however, the mean 210Po concentration in soils and small mammal tissues from sampling areas near the phosphate plant were only four and three times greater, respectively, than control values. No statistical (P greater than 0.05) difference was observed for 210Po concentrations in vegetation among any of the sampling locations.

  1. Arbuscule mycorrhizae: A linkage between erosion and plant processes in a southwest grassland

    Treesearch

    Mary O' Dea; D. Phillip Guertin; C. P. P. Reid

    2000-01-01

    Plant and soil processes within a natural ecosystem interact with surface hydrology through their influence on surface roughness, soil structure, and evaporation, and through their relation with soil biota. In the Southwest, decreases in perennial grass cover and erosion on uplands and stream channels can initiate a decline in watershed condition. Agronomic literature...

  2. A Thermodynamic Approach to Soil-Plant-Atmosphere Modeling: From Metabolic Biochemical Processes to Water-Carbon-Nitrogen Balance

    NASA Astrophysics Data System (ADS)

    Clavijo, H. W.

    2016-12-01

    Modeling the soil-plant-atmosphere continuum has been central part of understanding interrelationships among biogeochemical and hydrological processes. Theory behind of couplings Land Surface Models (LSM) and Dynamical Global Vegetation Models (DGVM) are based on physical and physiological processes connected by input-output interactions mainly. This modeling framework could be improved by the application of non-equilibrium thermodynamic basis that could encompass the majority of biophysical processes in a standard fashion. This study presents an alternative model for plant-water-atmosphere based on energy-mass thermodynamics. The system of dynamic equations derived is based on the total entropy, the total energy balance for the plant, the biomass dynamics at metabolic level and the water-carbon-nitrogen fluxes and balances. One advantage of this formulation is the capability to describe adaptation and evolution of dynamics of plant as a bio-system coupled to the environment. Second, it opens a window for applications on specific conditions from individual plant scale, to watershed scale, to global scale. Third, it enhances the possibility of analyzing anthropogenic impacts on the system, benefiting from the mathematical formulation and its non-linearity. This non-linear model formulation is analyzed under the concepts of qualitative system dynamics theory, for different state-space phase portraits. The attractors and sources are pointed out with its stability analysis. Possibility of bifurcations are explored and reported. Simulations for the system dynamics under different conditions are presented. These results show strong consistency and applicability that validates the use of the non-equilibrium thermodynamic theory.

  3. Agricultural recycling of treatment-plant sludge: a case study for a vegetable-processing factory.

    PubMed

    Dolgen, Deniz; Alpaslan, M Necdet; Delen, Nafiz

    2007-08-01

    The present study evaluated the possibility of using the sludge produced by a vegetable-processing factory in agriculture. The sludge was amended with a soil mixture (i.e., a mixture of sand, soil, and manure) and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of cucumbers. The effects of various sludge loadings on plant growth were assessed by counting plants and leaves, measuring stem lengths, and weighing the green parts and roots of the plants. We also compared heavy metal uptake by the plants for sludge loadings of 330, 495, and 660 t/ha with various recommended standards for vegetables. Our results showed that plant growth patterns were influenced to some extent by the sludge loadings. In general, the number of leaves, stem length, and dry weight of green parts exhibited a pronounced positive growth response compared with an unfertilized control, and root growth showed a lesser but still significant response at sludge loadings of 165 and 330 t/ha. The sludge application caused no significant increase in heavy metal concentrations in the leaves, though zinc (Zn) and iron (Fe) were found at elevated concentrations. However, despite the Zn and Fe accumulation, we observed no toxicity symptoms in the plants. This may be a result of cucumber's tolerance of high metal levels.

  4. Making Plant-Support Structures From Waste Plant Fiber

    NASA Technical Reports Server (NTRS)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  5. IDAHO CHEMICAL PROCESSING PLANT TECHNICAL PROGRESS REPORT FOR APRIL THROUGH JUNE 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, C.E.

    1958-11-01

    Processing of uranium -aluminum alloy was continued with slight process modifications. Means for recovering rare gases from dissolver off-gas are described. Results of extensive decontamination procedures required to enable entrance to the continuous dissolver cell are also indicated. Pilot plant studies of dissolving aluminum continuously showed that rates of dissolution were decreased by factors of 2 to 4 as the concentration of nitric acid fed was increased from 5.4 to 11N. The rate of aluminum dissolution was found to be proportional to initial area exposed for pieces of different shape. It was found possible to produce a highly basic aluminummore » nitrate solution at a reasonable rate by dissolving to low concentration in dilute acid, followed by evaporation to the desired level. Uranium exchange rate measurements for the TBP extraction process are described. A canned rotor pump under test with graphite bearings operated 6000 hours with nominal wear. Difficulties were experienced in testing a nutating disc pump. Measurements of the potential of zirconium in hydrofluoric acid as a function of pH confirmed the predicted equation. In teflon vessels, zirconium dissolves a little more rapidly in nitric-hydrofluoric acid mixtures than in glass vessels, presumably due to reaction of fluoride with silica. Titunium alloy Types 55A and 75A were found to resist corrosion by certain boiling nitric-hydrochloric acid mixtures. Initial tests have commenced with a NaK-heated 100 liter/hour pilot plant aluminum nitrate calciner to continue process demonstration. In tests in the smaller pilot plant unit, increasing feed spray air ratio was found to increase particle loading in the cyclone effluent. Laboratory studies indicated that a venturi scrubber using dilute nitric acid at 80 C should remove ruthenium effectively from calciner off-gas. In a pilot plant test in which a significant fraction of ruthenium feed was retained by the alumina, substantial absorption of

  6. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    NASA Astrophysics Data System (ADS)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was

  7. Insect herbivores change the outcome of plant competition through both inter- and intraspecific processes.

    PubMed

    Kim, Tania N; Underwood, Nora; Inouye, Brian D

    2013-08-01

    Insect herbivores can affect plant abundance and community composition, and theory suggests that herbivores influence plant communities by altering interspecific interactions among plants. Because the outcome of interspecific interactions is influenced by the per capita competitive ability of plants, density dependence, and intrinsic rates of increase, measuring herbivore effects on all these processes is necessary to understand the mechanisms by which herbivores influence plant communities. We fit alternative competition models to data from a response surface experiment conducted over four years to examine how herbivores affected the outcome of competition between two perennial plants, Solidago altissima and Solanum carolinense. Within a growing season, herbivores reduced S. carolinense plant size but did not affect the size of S. altissima, which exhibited compensatory growth. Across seasons, herbivores did not affect S. carolinense density or biomass but reduced both the density and population growth of S. altissima. The best-fit models indicated that the effects of herbivores varied with year. In some years, herbivores increased the per capita competitive effect of S. altissima on S. carolinense; in other years, herbivores influenced the intrinsic rate of increase of S. altissima. We examined possible herbivore effects on the longer-term outcome of competition (over the time scale of a typical old-field habitat), using simulations based on the best-fit models. In the absence of herbivores, plant coexistence was observed. In the presence of herbivores, S. carolinense was excluded by S. altissima in 72.3% of the simulations. We demonstrate that herbivores can influence the outcome of competition through changes in both per capita competitive effects and intrinsic rates of increase. We discuss the implications of these results for ecological succession and biocontrol.

  8. ENZYMATIC PROCESSES USED BY PLANTS TO DEGRADE ORGANIC COMPOUNDS

    EPA Science Inventory

    This is a review of recent plant enzyme systems that have been studied in uptake and transformation of organic contaminants. General procedures of plant preparation and enzyme isolation are covered. Six plant enzyme systems have been investigated for activity with selected pollut...

  9. The development of plant food processing in the Levant: insights from use-wear analysis of Early Epipalaeolithic ground stone tools

    PubMed Central

    Dubreuil, Laure; Nadel, Dani

    2015-01-01

    In recent years, the study of percussive, pounding and grinding tools has provided new insights into human evolution, more particularly regarding the development of technology enabling the processing and exploitation of plant resources. Some of these studies focus on early evidence for flour production, an activity frequently perceived as an important step in the evolution of plant exploitation. The present paper investigates plant food preparation in mobile hunter-gatherer societies from the Southern Levant. The analysis consists of a use-wear study of 18 tools recovered from Ohalo II, a 23 000-year-old site in Israel showing an exceptional level of preservation. Our sample includes a slab previously interpreted as a lower implement used for producing flour, based on the presence of cereal starch residues. The use-wear data we have obtained provide crucial information about the function of this and other percussive tools at Ohalo II, as well as on investment in tool manufacture, discard strategies and evidence for plant processing in the Late Pleistocene. The use-wear analysis indicates that the production of flour was a sporadic activity at Ohalo II, predating by thousands of years the onset of routine processing of plant foods. PMID:26483535

  10. Natural antioxidant activity of commonly consumed plant foods in India: effect of domestic processing.

    PubMed

    Sreeramulu, D; Reddy, C V K; Chauhan, Anitha; Balakrishna, N; Raghunath, M

    2013-01-01

    Phytochemicals protect against oxidative stress which in turn helps in maintaining the balance between oxidants and antioxidants. In recent times natural antioxidants are gaining considerable interest among nutritionists, food manufacturers, and consumers because of their perceived safety, potential therapeutic value, and long shelf life. Plant foods are known to protect against degenerative diseases and ageing due to their antioxidant activity (AOA) attributed to their high polyphenolic content (PC). Data on AOA and PC of Indian plant foods is scanty. Therefore we have determined the antioxidant activity in 107 commonly consumed Indian plant foods and assessed their relation to their PC. Antioxidant activity is presented as the range of values for each of the food groups. The foods studied had good amounts of PC and AOA although they belonged to different food groups. Interestingly, significant correlation was observed between AOA (DPPH and FRAP) and PC in most of the foods, corroborating the literature that polyphenols are potent antioxidants and that they may be important contributors to the AOA of the plant foods. We have also observed that common domestic methods of processing may not affect the PC and AOA of the foods studied in general. To the best of our knowledge, these are the first results of the kind in commonly consumed Indian plant foods.

  11. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    PubMed

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A study of poultry processing plant noise control techniques

    NASA Technical Reports Server (NTRS)

    Wyvill, J. C.; Morrison, W. G., Jr.

    1981-01-01

    A number of techniques can be used to reduce noise in poultry processing plants. In general, covering the ceiling with a noise-absorbing medium is a practical first step. Once the reflected noise levels are abated, treatment of specific identifiable noise courses can take place. The development, flammability, and mechanical properties of acoustic panels to be vertically suspended from the ceiling are discussed as well as the covers need to comply with USDA cleanability requirements. The isolation of drive motors and pumps from large expansive areas, the muffling of pneumatic devices, and the insulation of ice chutes are methods of source quieting. Proper maintenance of machinery and vibration monitoring are also needed to reduce hearing damage risk and to improve worker productivity and employee/supervisor relations.

  13. "Plantas con madre": plants that teach and guide in the shamanic initiation process in the East-Central Peruvian Amazon.

    PubMed

    Jauregui, X; Clavo, Z M; Jovel, E M; Pardo-de-Santayana, M

    2011-04-12

    We present and discuss a particular group of plants used by a diversity of healers in the initiation process and apprenticeship of traditional medicine, as practiced by Amazonian societies in East-Central Peru. Often, these plants are locally called plantas con madre (plants with a mother), and are thought to guide initiates in the process of seeking sacred knowledge, learning about plant usage, and understanding traditional medicine practices. We illustrate the diversity of plants used in the apprenticeship and practice of traditional medicine, and nurture the discussion to better understand the terminology used by Indigenous healers to describe plant uses and their practices. The study was conducted between 2003 and 2008 with the participation of 29 curanderos (healers; 23 men, 6 women), 3 apprentices and 4 herbalists. The participants belonged to four ethnic groups: 17 Mestizos, 15 Shipibo-Konibo, 1 Ashaninka, and 1 Matsiguenga; a Spanish apprentice and an Italian herbalist were also included in the study. The field data were collected using semi-structured interviews, participant observation, and the witnessing of numerous healing sessions. Oral informed consent was obtained from each participant. We identified 55 plant species belonging to 26 botanical families, which are used in initiation processes and apprenticeships of traditional medicine. This group of plants is administered under strict conditions during training and healing sessions called dietas (shamanic diets), with the supervision of one or more maestros curanderos (master healers). We observed that during the shamanic diets, maestros curanderos administered plants depending on the teachings or tools he/she was passing on, and were based on a particular sequence during the initiation process: (I) purification and cleansing species; (II) sensitivity and intuition; (III) strengthening; and (IV) protection and defence. Traditional healers continue to be a primary source of health care for the majority

  14. Estimating drought induced tree mortality in the Amazon rainforest: A simulation study with a focus on plant hydraulic processes

    NASA Astrophysics Data System (ADS)

    Papastefanou, P.; Fleischer, K.; Hickler, T.; Grams, T.; Lapola, D.; Quesada, C. A.; Zang, C.; Rammig, A.

    2017-12-01

    The Amazon basin was recently hit by severe drought events that were unprecedented in their severity and spatial extent, e.g. during 2005, 2010 and 2015/2016. Significant amounts of biomass were lost, turning large parts of the rainforest from a carbon sink into a carbon source. It is assumed that drought-induced tree mortality from hydraulic failure played an important role during these events and may become more frequent in the Amazon region in the future. Many state-of-the-art dynamic vegetation models do not include plant hydraulic processes and fail to reproduce observed rainforest responses to drought events, such as e.g. increased tree mortality. We address this research gap by developing a simple plant-hydraulic module for the dynamic vegetation model LPJ-GUESS. This plant-hydraulic module uses leaf water potential and cavitation as baseline processes to simulate tree mortality under drought stress. Furthermore, we introduce different plant strategies in the model, which describe e.g. differences in the stomatal regulation under drought stress. To parameterize and evaluate our hydraulic module, we use a set of available observational data from the Amazon region. We apply our model to the Amazon Basin and highlight similarities and differences across other measured and predicted drought responses, e.g. extrapolated observations and data derived from satellite measurements. Our results highlight the importance of including plant hydraulic processes in dynamic vegetation models to correctly predict vegetation dynamics under drought stress and show major differences on the vegetation dynamics depending on the selected plant strategies. We also identify gaps in process understanding of the triggering factors, the extent and the consequences of drought responses that hampers our ability to predict potential impact of future drought events on the Amazon rainforest.

  15. Optimization of controlled processes in combined-cycle plant (new developments and researches)

    NASA Astrophysics Data System (ADS)

    Tverskoy, Yu S.; Muravev, I. K.

    2017-11-01

    All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.

  16. Salmonella spp. on chicken carcasses in processing plants in Poland.

    PubMed

    Mikołajczyk, Anita; Radkowski, Mieczysław

    2002-09-01

    Chickens at selected points in the slaughter process and after slaughter on the dressing line in poultry plants were sampled and analyzed for Salmonella. These chickens came from the northeast part of Poland. The examinations were carried out in quarters I, II, III, and IV of 1999. All the birds were determined to be healthy by a veterinary inspection. Swab samples were taken from the cloaca after stunning and from the skin surface and body cavity of the whole bird after evisceration, after rinsing at the final rinse station but before chilling in the spin-chiller, and after cooling in the continuous cooling plant at the end of the production day. In 1999, 400 whole chickens were examined. The percentage of these 400 chickens from which Salmonella spp. were isolated was relatively high (23.75%; Salmonella-positive results were observed in 95 cases). Salmonella spp. were found after stunning in 6% of the chickens (6 of 100 samples), after evisceration in 24% (24 of 100), before cooling in 52% (52 of 100), and after cooling in 13% (13 of 100). These results show that Salmonella spp. were found more often at some processing points than at others. The lowest Salmonella spp. contamination rate (6%) for slaughter birds was found after stunning, and the highest contamination rate was found before chilling (52%). The serological types of Salmonella spp. isolated from whole chickens were Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Saintpaul, Salmonella Agona, and Salmonella Infantis. The results of these investigations indicate that Salmonella Enteritidis is the dominant serological type in infections of slaughter chickens, as it is in many countries.

  17. Methodological aspects of fuel performance system analysis at raw hydrocarbon processing plants

    NASA Astrophysics Data System (ADS)

    Kulbjakina, A. V.; Dolotovskij, I. V.

    2018-01-01

    The article discusses the methodological aspects of fuel performance system analysis at raw hydrocarbon (RH) processing plants. Modern RH processing facilities are the major consumers of energy resources (ER) for their own needs. To reduce ER, including fuel consumption, and to develop rational fuel system structure are complex and relevant scientific tasks that can only be done using system analysis and complex system synthesis. In accordance with the principles of system analysis, the hierarchical structure of the fuel system, the block scheme for the synthesis of the most efficient alternative of the fuel system using mathematical models and the set of performance criteria have been developed on the main stages of the study. The results from the introduction of specific engineering solutions to develop their own energy supply sources for RH processing facilities have been provided.

  18. An Analysis of Occupational Titles and Competencies Needed in Agricultural Food Products Processing Plants.

    ERIC Educational Resources Information Center

    Smeltz, LeRoy C.

    To identify, rate, and cluster groups of competencies and occupational titles at entry and advance levels for occupations in five food products commodity areas, data were collected by interviews with personnel managers in 25 Pennsylvania food processing plants. Some findings were: (1) There were meaningful competency factor and occupational title…

  19. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging

    PubMed Central

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil

    2015-01-01

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486

  20. Quantitative risk assessment integrated with process simulator for a new technology of methanol production plant using recycled CO₂.

    PubMed

    Di Domenico, Julia; Vaz, Carlos André; de Souza, Maurício Bezerra

    2014-06-15

    The use of process simulators can contribute with quantitative risk assessment (QRA) by minimizing expert time and large volume of data, being mandatory in the case of a future plant. This work illustrates the advantages of this association by integrating UNISIM DESIGN simulation and QRA to investigate the acceptability of a new technology of a Methanol Production Plant in a region. The simulated process was based on the hydrogenation of chemically sequestered carbon dioxide, demanding stringent operational conditions (high pressures and temperatures) and involving the production of hazardous materials. The estimation of the consequences was performed using the PHAST software, version 6.51. QRA results were expressed in terms of individual and social risks. Compared to existing tolerance levels, the risks were considered tolerable in nominal conditions of operation of the plant. The use of the simulator in association with the QRA also allowed testing the risk in new operating conditions in order to delimit safe regions for the plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Characterization of Antimicrobial Resistance of Listeria monocytogenes Strains Isolated from a Pork Processing Plant and Its Respective Meat Markets in Southern China.

    PubMed

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei; Wang, Wenyan; Shi, Lei; Yan, He; Meng, Hecheng

    2016-05-01

    A total of 78 Listeria monocytogenes isolates from a pork processing plant and the respective meat markets in southern China were examined. This number includes 60 isolates from pork at markets, 5 from cooked pork products at markets, 10 from pork at a processing plant, and 3 from food-contact surfaces at the processing plant. All isolates were subjected to serotyping, antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), and molecular basis of antibiotic resistance. Four serogroups were identified among the 78 tested isolates, with serogroup I (serotypes: 1/2a and 3a) being predominant (42.3%, 33/78). Antimicrobial resistance was most frequently observed for tetracycline (20.5%, 16/78), streptomycin (9.0%, 7/78), cefotaxime (7.7%, 6/78), and gentamicin (6.4%, 5/78). Multiple resistances occurred among 10.2% (8/78) isolates. All strains were sensitive to ampicillin, ampicillin/sulbactam, imipenem, ciprofloxacin, levofloxacin, trimethoprim/sulfamethoxazole, and vancomycin. Two isolates were resistant to five antimicrobials. Twelve strains carried tet(M) and located on Tn916. PFGE analysis revealed genetic heterogeneity among individual serotypes. Two predominant PFGE types were found persistent from the processing plant to markets indicating that these two types of isolates were able to survive under environmental adverse conditions from the processing plant to markets, which need to be monitored. Compared to samples from the pork processing plant, the prevalence of L. monocytogenes in meat market samples tended to be higher, serovar was more variable, and the antibiotic resistance range was wider, probably due to secondary contamination. Therefore, stringent hygiene measures and bacteriological controls should be observed to reduce the risk of transmission of L. monocytogenes from food to humans.

  2. Plant responses to elevated atmospheric CO/sub 2/ with emphasis on belowground processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R.J.; Luxmoore, R.J.; O'Neill, E.G.

    1984-12-01

    Consideration of the interrelationships between carbon, water, and nutrient pathways in soil-plant systems has led to the hypothesis that stimulation of root and rhizosphere processes by elevated levels of CO/sub 2/ will increase nutrient availability and lead to an increase in plant growth. Several experiments were conducted to investigate the effects of CO/sub 2/ concentration on carbon allocation, root exudation, nitrogen utilization, and microbial responses, as well as overall plant growth and nutrient utilization. Increases in the growth of yellow-poplar (Liriodendron tulipifera L.) seedlings in response to elevated CO/sub 2/ were demonstrated even when the plants were under apparent nutrientmore » limitation in a forest soil. The proportion of photosynthetically fixed carbon that was allocated to the roots of yellow-poplar and hazel alder (Alnus serrulata (Ait.) Willd.) seedlings was greater at 700 ppM CO/sub 2/ than at ambient CO/sub 2/. Exudation of carbon from yellow-poplar roots also tended to be higher in elevated CO/sub 2/. Responses of rhizosphere microbial populations to elevated CO/sub 2/ were inconsistent, but there was a trend toward relatively fewer ammonium oxidizers, nitrite oxidizers, and phosphate solubilizers in the rhizosphere population of yellow-poplar seedlings grown in 700 ppM CO/sub 2/ compared to that of seedlings grown in ambient CO/sub 2/. Other observed trends included increased nodulation and nitrogenase activity and decreased nitrate reductase activity in hazel alder seedlings in elevated CO/sub 2/. Net uptake of some essential plant nutrients, aluminum, and other trace metals by Virginia pine (Pinus virginiana Mill.) increased with increasing CO/sub 2/ concentration. There was less leaching of some nutrients from soil-plant systems with Virginia pine and yellow-poplar seedlings but increased leaching of zinc. 123 references, 16 figures, 17 tables.« less

  3. The development of plant food processing in the Levant: insights from use-wear analysis of Early Epipalaeolithic ground stone tools.

    PubMed

    Dubreuil, Laure; Nadel, Dani

    2015-11-19

    In recent years, the study of percussive, pounding and grinding tools has provided new insights into human evolution, more particularly regarding the development of technology enabling the processing and exploitation of plant resources. Some of these studies focus on early evidence for flour production, an activity frequently perceived as an important step in the evolution of plant exploitation. The present paper investigates plant food preparation in mobile hunter-gatherer societies from the Southern Levant. The analysis consists of a use-wear study of 18 tools recovered from Ohalo II, a 23 000-year-old site in Israel showing an exceptional level of preservation. Our sample includes a slab previously interpreted as a lower implement used for producing flour, based on the presence of cereal starch residues. The use-wear data we have obtained provide crucial information about the function of this and other percussive tools at Ohalo II, as well as on investment in tool manufacture, discard strategies and evidence for plant processing in the Late Pleistocene. The use-wear analysis indicates that the production of flour was a sporadic activity at Ohalo II, predating by thousands of years the onset of routine processing of plant foods. © 2015 The Author(s).

  4. Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance.

    PubMed

    Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang

    2018-03-15

    To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.

  5. Environmental issues and process risks for operation of carbon capture plant

    NASA Astrophysics Data System (ADS)

    Lajnert, Radosław; Nowak, Martyna; Telenga-Kopyczyńska, Jolanta

    2018-01-01

    The scope of this publication is a presentation of environmental issues and process risks connected with operation an installation for carbon capture from waste gas. General technological assumptions, typical for demonstration plant for carbon capture from waste gas (DCCP) with application of two different solutions - 30% water solution of monoethanoloamine (MEA) and water solution with 30% AMP (2-amino-2-methyl-1-propanol) and 10% piperazine have been described. The concept of DCCP installation was made for Łaziska Power Plant in Łaziska Górne owned by TAURON Wytwarzanie S.A. Main hazardous substances, typical for such installation, which can be dangerous for human life and health or for the environment have been presented. Pollution emission to the air, noise emission, waste water and solid waste management have been described. The environmental impact of the released substances has been stated. Reference to emission standards specified in regulations for considered substances has been done. Principles of risk analysis have been presented and main hazards in carbon dioxide absorption node and regeneration node have been evaluated.

  6. Evaluating best practices for Campylobacter and Salmonella reduction in poultry processing plants.

    PubMed

    Wideman, N; Bailey, M; Bilgili, S F; Thippareddi, H; Wang, L; Bratcher, C; Sanchez-Plata, M; Singh, M

    2016-02-01

    Poultry processing plants in the United States were surveyed on their current Campylobacter and Salmonella control practices. Following surveys, data were collected to develop a baseline for prevalence rates of Salmonella and Campylobacter; then changes in practices were implemented and evaluated for improvements in pathogen control. Surveys were sent to the plant Quality Assurance managers to determine production levels, antimicrobial interventions, and current pathogen testing practices. Initial sampling was performed at 6 plants with similar production volumes, at sites that included carcass samples before any pre-evisceration intervention, after exiting the inside-outside bird washer (IOBW), after exiting the pre-chiller, after exiting the primary chiller, and after exiting any post-chill intervention, as well as a water sample from each scalder, pre-chiller, primary chiller, and post-chill dip tank or finishing chiller. Enumerations and enrichments were performed for Campylobacter and Salmonella. Following the baseline sampling, changes in practices were suggested for each plant and a second sampling was conducted to determine their effectiveness. Results demonstrated that peracetic acid (PAA) was the most effective (P < 0.05) antimicrobial currently in use. The use of a post-chill antimicrobial immersion tank and/or use of a cetylpyridinium chloride (CPC) spray cabinet also displayed a further reduction in microbial levels (P < 0.05) when the primary chiller was not sufficient (P > 0.05). Microbial buildup in the immersion tanks demonstrates the need for effective cleaning, sanitation practices, and chiller maintenance to reduce contamination of poultry with Campylobacter and Salmonella. © 2015 Poultry Science Association Inc.

  7. Risk exposures for human ornithosis in a poultry processing plant modified by use of personal protective equipment: an analytical outbreak study.

    PubMed

    Williams, C J; Sillis, M; Fearne, V; Pezzoli, L; Beasley, G; Bracebridge, S; Reacher, M; Nair, P

    2013-09-01

    Ornithosis outbreaks in poultry processing plants are well-described, but evidence for preventive measures is currently lacking. This study describes a case-control study into an outbreak of ornithosis at a poultry processing plant in the East of England, identified following three employees being admitted to hospital. Workers at the affected plant were recruited via their employer, with exposures assessed using a self-completed questionnaire. Cases were ascertained using serological methods or direct antigen detection in sputum. 63/225 (28%) staff participated, with 10% of participants showing evidence of recent infection. Exposure to the killing/defeathering and automated evisceration areas, and contact with viscera or blood were the main risk factors for infection. Personal protective equipment (goggles and FFP3 masks) reduced the effect of exposure to risk areas and to self-contamination with potentially infectious material. Our study provides some evidence of effectiveness for respiratory protective equipment in poultry processing plants where there is a known and current risk of ornithosis. Further studies are required to confirm this tentative finding, but in the meantime respiratory protective equipment is recommended as a precautionary measure in plants where outbreaks of ornithosis occur.

  8. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  9. Comparative analyses of ubiquitin-like ATG8 and cysteine protease ATG4 autophagy genes in the plant lineage and cross-kingdom processing of ATG8 by ATG4.

    PubMed

    Seo, Eunyoung; Woo, Jongchan; Park, Eunsook; Bertolani, Steven J; Siegel, Justin B; Choi, Doil; Dinesh-Kumar, Savithramma P

    2016-11-01

    Autophagy is important for degradation and recycling of intracellular components. In a diversity of genera and species, orthologs and paralogs of the yeast Atg4 and Atg8 proteins are crucial in the biogenesis of double-membrane autophagosomes that carry the cellular cargoes to vacuoles and lysosomes. Although many plant genome sequences are available, the ATG4 and ATG8 sequence analysis is limited to some model plants. We identified 28 ATG4 and 116 ATG8 genes from the available 18 different plant genome sequences. Gene structures and protein domain sequences of ATG4 and ATG8 are conserved in plant lineages. Phylogenetic analyses classified ATG8s into 3 subgroups suggesting divergence from the common ancestor. The ATG8 expansion in plants might be attributed to whole genome duplication, segmental and dispersed duplication, and purifying selection. Our results revealed that the yeast Atg4 processes Arabidopsis ATG8 but not human LC3A (HsLC3A). In contrast, HsATG4B can process yeast and plant ATG8s in vitro but yeast and plant ATG4s cannot process HsLC3A. Interestingly, in Nicotiana benthamiana plants the yeast Atg8 is processed compared to HsLC3A. However, HsLC3A is processed when coexpressed with HsATG4B in plants. Molecular modeling indicates that lack of processing of HsLC3A by plant and yeast ATG4 is not due to lack of interaction with HsLC3A. Our in-depth analyses of ATG4 and ATG8 in the plant lineage combined with results of cross-kingdom ATG8 processing by ATG4 further support the evolutionarily conserved maturation of ATG8. Broad ATG8 processing by HsATG4B and lack of processing of HsLC3A by yeast and plant ATG4s suggest that the cross-kingdom ATG8 processing is determined by ATG8 sequence rather than ATG4.

  10. Technical assessment of processing plants as exemplified by the sorting of beverage cartons from lightweight packaging wastes.

    PubMed

    Feil, A; Thoden van Velzen, E U; Jansen, M; Vitz, P; Go, N; Pretz, T

    2016-02-01

    The recovery of beverage cartons (BC) in three lightweight packaging waste processing plants (LP) was analyzed with different input materials and input masses in the area of 21-50Mg. The data was generated by gravimetric determination of the sorting products, sampling and sorting analysis. Since the particle size of beverage cartons is larger than 120mm, a modified sampling plan was implemented and targeted multiple sampling (3-11 individual samplings) and a total sample size of respectively 1200l (ca. 60kg) for the BC-products and of about 2400l (ca. 120kg) for material-heterogeneous mixed plastics (MP) and sorting residue products. The results infer that the quantification of the beverage carton yield in the process, i.e., by including all product-containing material streams, can be specified only with considerable fluctuation ranges. Consequently, the total assessment, regarding all product streams, is rather qualitative than quantitative. Irregular operation conditions as well as unfavorable sampling conditions and capacity overloads are likely causes for high confidence intervals. From the results of the current study, recommendations can basically be derived for a better sampling in LP-processing plants. Despite of the suboptimal statistical results, the results indicate very clear that the plants show definite optimisation potentials with regard to the yield of beverage cartons as well as the required product purity. Due to the test character of the sorting trials the plant parameterization was not ideal for this sorting task and consequently the results should be interpreted with care. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Process analysis of a molten carbonate fuel cell power plant fed with a biomass syngas

    NASA Astrophysics Data System (ADS)

    Tomasi, C.; Baratieri, M.; Bosio, B.; Arato, E.; Baggio, P.

    The coupling of renewable energy sources and innovative power generation technologies is of topical interest to meet demands for increased power generation and cleaner environmental performance. Accordingly, biomass is receiving considerable attention as a partial substitute for fossil fuels, as it is more environmentally friendly and provides a profitable way of disposing of waste. In addition, fuel cells are perceived as most promising electrical power generation systems. Today, many plants combining these two concepts are under study; they differ in terms of biomass type and/or power plant configuration. Even if the general feasibility of such applications has been demonstrated, there are still many associated problems to be resolved. This study examines a plant configuration based on a molten carbonate fuel cell (MCFC) and a recirculated fluidized-bed reactor which has been applied to the thermal conversion of many types of biomass. Process analysis is conducted by simulating the entire plant using a commercial code. In particular, an energy assessment is studied by taking account of the energy requirements of auxiliary equipment and the possibility of utilizing the exhaust gases for cogeneration.

  12. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    PubMed Central

    Meyer, Katja; Koester, Tino; Staiger, Dorothee

    2015-01-01

    Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance. PMID:26213982

  13. Comparative qualitative phosphoproteomics analysis identifies shared phosphorylation motifs and associated biological processes in evolutionary divergent plants.

    PubMed

    Al-Momani, Shireen; Qi, Da; Ren, Zhe; Jones, Andrew R

    2018-06-15

    Phosphorylation is one of the most prevalent post-translational modifications and plays a key role in regulating cellular processes. We carried out a bioinformatics analysis of pre-existing phosphoproteomics data, to profile two model species representing the largest subclasses in flowering plants the dicot Arabidopsis thaliana and the monocot Oryza sativa, to understand the extent to which phosphorylation signaling and function is conserved across evolutionary divergent plants. We identified 6537 phosphopeptides from 3189 phosphoproteins in Arabidopsis and 2307 phosphopeptides from 1613 phosphoproteins in rice. We identified phosphorylation motifs, finding nineteen pS motifs and two pT motifs shared in rice and Arabidopsis. The majority of shared motif-containing proteins were mapped to the same biological processes with similar patterns of fold enrichment, indicating high functional conservation. We also identified shared patterns of crosstalk between phosphoserines with enrichment for motifs pSXpS, pSXXpS and pSXXXpS, where X is any amino acid. Lastly, our results identified several pairs of motifs that are significantly enriched to co-occur in Arabidopsis proteins, indicating cross-talk between different sites, but this was not observed in rice. Our results demonstrate that there are evolutionary conserved mechanisms of phosphorylation-mediated signaling in plants, via analysis of high-throughput phosphorylation proteomics data from key monocot and dicot species: rice and Arabidposis thaliana. The results also suggest that there is increased crosstalk between phosphorylation sites in A. thaliana compared with rice. The results are important for our general understanding of cell signaling in plants, and the ability to use A. thaliana as a general model for plant biology. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Native and exotic plants of fragments of sagebrush steppe produced by geomorphic processes versus land use

    USGS Publications Warehouse

    Huntly, N.; Bangert, R.; Hanser, S.E.

    2011-01-01

    Habitat fragmentation and invasion by exotic species are regarded as major threats to the biodiversity of many ecosystems. We surveyed the plant communities of two types of remnant sagebrush-steppe fragments from nearby areas on the Snake River Plain of southeastern Idaho, USA. One type resulted from land use (conversion to dryland agriculture; hereafter AG Islands) and the other from geomorphic processes (Holocene volcanism; hereafter kipukas). We assessed two predictions for the variation in native plant species richness of these fragments, using structural equation models (SEM). First, we predicted that the species richness of native plants would follow the MacArthur-Wilson (M-W) hypothesis of island biogeography, as often is expected for the communities of habitat fragments. Second, we predicted a negative relationship between native and exotic plants, as would be expected if exotic plants are decreasing the diversity of native plants. Finally, we assessed whether exotic species were more strongly associated with the fragments embedded in the agricultural landscape, as would be expected if agriculture had facilitated the introduction and naturalization of non-native species, and whether the communities of the two types of fragments were distinct. Species richness of native plants was not strongly correlated with M-W characteristics for either the AG Islands or the **kipukas. The AG Islands had more species and higher cover of exotics than the kipukas, and exotic plants were good predictors of native plant species richness. Our results support the hypothesis that proximity to agriculture can increase the diversity and abundance of exotic plants in native habitat. In combination with other information, the results also suggest that agriculture and exotic species have caused loss of native diversity and reorganization of the sagebrush-steppe plant community. ?? 2011 Springer Science+Business Media B.V.

  15. Process design and economics of a flexible ethanol-butanol plant annexed to a eucalyptus kraft pulp mill.

    PubMed

    Pereira, Guilherme C Q; Braz, Danilo S; Hamaguchi, Marcelo; Ezeji, Thaddeus C; Maciel Filho, Rubens; Mariano, Adriano P

    2018-02-01

    This work proposes a strategy, from a process design standpoint, for pulp companies to enter the Brazilian ethanol market. The flexible plant converts eucalyptus-derived glucose to either ethanol or butanol (according to market conditions) and xylose only to butanol production. Depending on the biomass pretreatment technology, Monte Carlo simulations showed that the Net Present Value (NPV) of the flexible plant increases by 20-28% in relation to an ethanol-dedicated plant. Whereas the lower costs of the steam explosion technology turns the investment more attractive (NPV = 184 MMUSD; IRR = 29%), the organosolv technology provides better flexibility to the plant. This work also shows that excessive power consumption is a hurdle in the development of flash fermentation technology chosen for the flexible plant. These results indicate that conventional batch fermentation is preferable if the enzymatic hydrolysis step operates with solids loading up to 20 wt%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microscopic processes ruling the bioavailability of Zn to roots of Euphorbia pithyusa L. pioneer plant.

    PubMed

    Medas, Daniela; De Giudici, Giovanni; Casu, Maria Antonietta; Musu, Elodia; Gianoncelli, Alessandra; Iadecola, Antonella; Meneghini, Carlo; Tamburini, Elena; Sprocati, Anna Rosa; Turnau, Katarzyna; Lattanzi, Pierfranco

    2015-02-03

    Euphorbia pithyusa L. was used in a plant growth-promoting assisted field trial experiment. To unravel the microscopic processes at the interface, thin slices of E. pithyusa roots were investigated by micro-X-ray fluorescence mapping. Roots and rhizosphere materials were examined by X-ray absorption spectroscopy at the Zn K-edge, X-ray diffraction, and scanning electron microscopy. Results indicate some features common to all the investigated samples. (i) In the rhizosphere of E. pithyusa, Zn was found to exist in different phases. (ii) Si and Al are mainly concentrated in a rim at the epidermis of the roots. (iii) Zn is mostly stored in root epidermis and does not appear to be coordinated to organic molecules but mainly occurs in mineral phases such as Zn silicates. We interpreted that roots of E. pithyusa significantly promote mineral evolution in the rhizosphere. Concomitantly, the plant uses Si and Al extracted by soil minerals to build a biomineralization rim, which can capture Zn. This Zn silicate biomineralization has relevant implications for phytoremediation techniques and for further biotechnology development, which can be better designed and developed after specific knowledge of molecular processes ruling mineral evolution and biomineralization processes has been gained.

  17. Prevalence, characterization and sources of Listeria monocytogenes in blue crab (Callinectus sapidus) meat and blue crab processing plants.

    PubMed

    Pagadala, Sivaranjani; Parveen, Salina; Rippen, Thomas; Luchansky, John B; Call, Jeffrey E; Tamplin, Mark L; Porto-Fett, Anna C S

    2012-09-01

    Seven blue crab processing plants were sampled to determine the prevalence and sources of Listeria spp. and Listeria monocytogenes for two years (2006-2007). A total of 488 raw crabs, 624 cooked crab meat (crab meat) and 624 environmental samples were tested by standard methods. Presumptive Listeria spp. were isolated from 19.5% of raw crabs, 10.8% of crab meat, and 69.5% of environmental samples. L. monocytogenes was isolated from 4.5% of raw crabs, 0.2% of crab meat, and 2.1% of environmental samples. Ninety-seven percent of the isolates were resistant to at least one of the ten antibiotics tested. Eight different serotypes were found among 76 L. monocytogenes isolates tested with the most common being 4b, 1/2b and 1/2a. Automated EcoRI ribotyping differentiated 11 ribotypes among the 106 L. monocytogenes isolates. Based on ribotyping analysis, the distribution of the ribotypes in each processing plant had a unique contamination pattern. A total of 92 ApaI and 88 AscI pulsotypes among the 106 L. monocytogenes isolates were found and distinct pulsotypes were observed in raw crab, crab meat and environmental samples. Ribotypes and serotypes recovered from crab processing plants included subtypes that have been associated with listeriosis cases in other food outbreaks. Our findings suggest that molecular methods may provide critical information about sources of L. monocytogenes in crab processing plants and will augment efforts to improve food safety control strategies such as targeting specific sources of contamination and use of aggressive detergents prior to sanitizing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process.

    PubMed

    Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen

    2016-04-01

    A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process. Copyright © 2016. Published by Elsevier Ltd.

  19. Plant leaf traits, canopy processes, and global atmospheric chemistry interactions.

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2017-12-01

    Plants produce and emit a diverse array of volatile metabolites into the atmosphere that participate in chemical reactions that influence distributions of air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. It is now widely accepted that accurate estimates of these emissions are required as inputs for regional air quality and global climate models. Predicting these emissions is complicated by the large number of volatile organic compounds, driving variables (e.g., temperature, solar radiation, abiotic and biotic stresses) and processes operating across a range of scales. Modeling efforts to characterize emission magnitude and variations will be described along with an assessment of the observations available for parameterizing and evaluating these models including discussion of the limitations and challenges associated with existing model approaches. A new approach for simulating canopy scale organic emissions on regional to global scales will be described and compared with leaf, canopy and regional scale flux measurements. The importance of including additional compounds and processes as well as improving estimates of existing ones will also be discussed.

  20. Process, pattern and scale: hydrogeomorphology and plant diversity in forested wetlands across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Alexander, L.; Hupp, C. R.; Forman, R. T.

    2002-12-01

    Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site

  1. Modernization of the automation control system of technological processes at the preparation plant in the conditions of technical re-equipment

    NASA Astrophysics Data System (ADS)

    Lyakhovets, M. V.; Wenger, K. G.; Myshlyaev, L. P.; Shipunov, M. V.; Grachev, V. V.; Melkozerov, M. Yu; Fairoshin, Sh A.

    2018-05-01

    The experience of modernization of the automation control system of technological processes at the preparation plant under the conditions of technical re-equipment of the preparation plant “Barzasskoye Tovarischestvo” LLC (Berezovsky) is considered. The automated process control systems (APCS), the modernization goals and the ways to achieve them are indicated, the main subsystems of the integrated APCS are presented, the enlarged functional and technical structure of the upgraded system is given. The procedure for commissioning an upgraded system is described.

  2. A highly stable minimally processed plant-derived recombinant acetylcholinesterase for nerve agent detection in adverse conditions

    PubMed Central

    Rosenberg, Yvonne J.; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori

    2015-01-01

    Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1–2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product. PMID:26268538

  3. A highly stable minimally processed plant-derived recombinant acetylcholinesterase for nerve agent detection in adverse conditions.

    PubMed

    Rosenberg, Yvonne J; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori

    2015-08-13

    Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1-2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product.

  4. Calcium Signals: The Lead Currency of Plant Information Processing

    PubMed Central

    Kudla, Jörg; Batistič, Oliver; Hashimoto, Kenji

    2010-01-01

    Ca2+ signals are core transducers and regulators in many adaptation and developmental processes of plants. Ca2+ signals are represented by stimulus-specific signatures that result from the concerted action of channels, pumps, and carriers that shape temporally and spatially defined Ca2+ elevations. Cellular Ca2+ signals are decoded and transmitted by a toolkit of Ca2+ binding proteins that relay this information into downstream responses. Major transduction routes of Ca2+ signaling involve Ca2+-regulated kinases mediating phosphorylation events that orchestrate downstream responses or comprise regulation of gene expression via Ca2+-regulated transcription factors and Ca2+-responsive promoter elements. Here, we review some of the remarkable progress that has been made in recent years, especially in identifying critical components functioning in Ca2+ signal transduction, both at the single-cell and multicellular level. Despite impressive progress in our understanding of the processing of Ca2+ signals during the past years, the elucidation of the exact mechanistic principles that underlie the specific recognition and conversion of the cellular Ca2+ currency into defined changes in protein–protein interaction, protein phosphorylation, and gene expression and thereby establish the specificity in stimulus response coupling remain to be explored. PMID:20354197

  5. Toxicity testing of sediment collected in the vicinity of effluent discharges from seafood processing plants in the maritimes.

    PubMed

    Lalonde, Benoit A; Jackman, Paula; Doe, Ken; Garron, Christine; Aubé, Jamie

    2009-04-01

    There are over 1100 fish-processing plants in Canada and the majority of them discharge untreated effluents directly to marine or estuarine receiving environments. The purpose of this study was to evaluate chemical and toxicological characteristics of sediments near fish-processing plant effluent discharges to assess potential impacts of seafood-processing effluents on receiving environments. Eighteen sediment samples were collected near effluent discharges of six seafood-processing plant outfalls in New Brunswick, Canada in the winter of 2006. Ammonia levels ranged from <0.2 to 3480 microg/g, sulfide levels ranged from <0.4 to 6970 microg/g, and redox ranged from -255 to 443 mV. Only one sample had a Microtox Solid-Phase Test IC(50) value below 1000 mg/kg, whereas three samples caused greater than 30% reduction to amphipod survival. Redox, sulfide, and ammonia concentrations were all found to be significantly related to both Eohaustorius estuarius survival and Microto (Vibrio fischeri) IC(50). An increase in sulfide (R (2) = 0.584; 0.750) and ammonia (R (2) = 0.478; 0.552) and a decrease in redox (R (2) = 0.485; 0.651) were associated with an increase in toxicity to E. estuarius and Microtox, respectively. The highest toxicity to both test organisms, and the most contaminated sediments based on physical/chemical characteristics measured, was observed in samples from Blacks Harbour.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brush, Adrian; Masanet, Eric; Worrell, Ernst

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented atmore » the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.« less

  7. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas-liquid metal contactor

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effect of pilot-plant scale, non-thermal supercritical carbon dioxide (SCCO2) processing on the safety and the quality of orange juice (OJ), SCCO2 processed juice was compared with untreated fresh juice and equivalently thermal processed juice in terms of lethality. SCCO2 processing ...

  8. Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Vagt, Nicole; Braun, Markus

    With the ability to sense gravity plants possess a powerful tool to adapt to a great variety of environmental conditions and to respond to environmental changes in a most beneficial way. Gravity is the only constant factor that provides organisms with reliable information for their orientation since billions of years. Any deviation of the genetically determined set-point angle of the plants organs from the vector of gravity is sensed by specialized cells, the statocytes of roots and shoots in higher plants. Dense particles, so-called statoliths, sediment in the direction of gravity and activate membrane-bound gravireceptors. A physiological signalling-cascade is initiated that eventually results in the gravitropic curvature response, namely, the readjust-ment of the growth direction. Experiments under microgravity conditions have significantly contributed to our understanding of plant gravity-sensing and gravitropic reorientation. For a gravity-sensing lower plant cell type, the rhizoid of the green alga Chara, and for statocytes of higher plant roots, it was shown that the interactions between statoliths and the actomyosin system consisting of the actin cytoskeleton and motor proteins (myosins) are the basis for highly efficient gravity-sensing processes. In Chara rhizoids, the actomyosin represents a guid-ing system that directs sedimenting statoliths to a specific graviperception site. Parabolic flight experiments aboard the airbus A300 Zero-G have provided evidence that lower and higher plant cells use principally the same statolith-mediated gravireceptor-activation mechanism. Graviper-ception is not dependent on mechanical pressure mediated through the weight of the sedimented statoliths, but on direct interactions between the statoliths's surface and yet unknown gravire-ceptor molecules. In contrast to Chara rhizoids, in the gravity-sensing cells of higher plants, the actin cytoskeleton is not essentially involved in the early phases of gravity sensing. Dis

  9. Use of Brassica Plants in the Phytoremediation and Biofumigation Processes

    PubMed Central

    Szczygłowska, Marzena; Piekarska, Anna; Konieczka, Piotr; Namieśnik, Jacek

    2011-01-01

    In recent decades, serious contamination of soils by heavy metals has been reported. It is therefore a matter of urgency to develop a new and efficient technology for removing contaminants from soil. Another aspect to this problem is that environmental pollution decreases the biological quality of soil, which is why pesticides and fertilizers are being used in ever-larger quantities. The environmentally friendly solutions to these problems are phytoremediation, which is a technology that cleanses the soil of heavy metals, and biofumigation, a process that helps to protect crops using natural plant compounds. So far, these methods have only been used separately; however, research on a technology that combines them both using white cabbage has been carried out. PMID:22174630

  10. Antibody degradation in tobacco plants: a predominantly apoplastic process

    PubMed Central

    2011-01-01

    Background Interest in using plants for production of recombinant proteins such as monoclonal antibodies is growing, but proteolytic degradation, leading to a loss of functionality and complications in downstream purification, is still a serious problem. Results In this study, we investigated the dynamics of the assembly and breakdown of a human IgG1κ antibody expressed in plants. Initial studies in a human IgG transgenic plant line suggested that IgG fragments were present prior to extraction. Indeed, when the proteolytic activity of non-transgenic Nicotiana tabacum leaf extracts was tested against a human IgG1 substrate, little activity was detectable in extraction buffers with pH > 5. Significant degradation was only observed when the plant extract was buffered below pH 5, but this proteolysis could be abrogated by addition of protease inhibitors. Pulse-chase analysis of IgG MAb transgenic plants also demonstrated that IgG assembly intermediates are present intracellularly and are not secreted, and indicates that the majority of proteolytic degradation occurs following secretion into the apoplastic space. Conclusions The results provide evidence that proteolytic fragments derived from antibodies of the IgG subtype expressed in tobacco plants do not accumulate within the cell, and are instead likely to occur in the apoplastic space. Furthermore, any proteolytic activity due to the release of proteases from subcellular compartments during tissue disruption and extraction is not a major consideration under most commonly used extraction conditions. PMID:22208820

  11. Risk-based design of process plants with regard to domino effects and land use planning.

    PubMed

    Khakzad, Nima; Reniers, Genserik

    2015-12-15

    Land use planning (LUP) as an effective and crucial safety measure has widely been employed by safety experts and decision makers to mitigate off-site risks posed by major accidents. Accordingly, the concept of LUP in chemical plants has traditionally been considered from two perspectives: (i) land developments around existing chemical plants considering potential off-site risks posed by major accidents and (ii) development of existing chemical plants considering nearby land developments and the level of additional off-site risks the land developments would be exposed to. However, the attempts made to design chemical plants with regard to LUP requirements have been few, most of which have neglected the role of domino effects in risk analysis of major accidents. To overcome the limitations of previous work, first, we developed a Bayesian network methodology to calculate both on-site and off-site risks of major accidents while taking domino effects into account. Second, we combined the results of risk analysis with Analytic Hierarchical Process to design an optimal layout for which the levels of on-site and off-site risks would be minimum. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    PubMed Central

    Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony

    2017-01-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576

  13. PlantCV v2: Image analysis software for high-throughput plant phenotyping.

    PubMed

    Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony

    2017-01-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

  14. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less

  15. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    DOE PAGES

    Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...

    2017-12-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less

  16. Memory Processes in the Response of Plants to Environmental Signals

    PubMed Central

    Tafforeau, M; Verdus, M C; Norris, V; Ripoll, C

    2006-01-01

    Plants are sensitive to stimuli from the environment (e.g., wind, rain, contact, pricking, wounding). They usually respond to such stimuli by metabolic or morphogenetic changes. Sometimes the information corresponding to a stimulus may be “stored” in the plant where it remains inactive until a second stimulus “recalls” this information and finally allows it to take effect. Two experimental systems have proved especially useful in unravelling the main features of these memory-like processes. In the system based on Bidens seedlings, an asymmetrical treatment (e.g., pricking, or gently rubbing one of the seedling cotyledons) causes the cotyledonary buds to grow asymmetrically after release of apical dominance by decapitation of the seedlings. This information may be stored within the seedlings, without taking effect, for at least two weeks; then the information may be recalled by subjecting the seedlings to a second, appropriate, treatment that permits transduction of the signal into the final response (differential growth of the buds). Whilst storage is an irreversible, all-or-nothing process, recall is sensitive to a number of factors, including the intensity of these factors, and can readily be enabled or disabled. In consequence, it is possible to recall the stored message several times successively. In the system based on flax seedlings, stimulation such as manipulation stimulus, drought, wind, cold shock and radiation from a GSM telephone or from a 105 GHz Gunn oscillator, has no apparent effect. If, however, the seedlings are subjected at the same time to transient calcium depletion, numerous epidermal meristems form in their hypocotyls. When the calcium depletion treatment is applied a few days after the mechanical treatment, the time taken for the meristems to appear is increased by a number of days exactly equal to that between the application of the mechanical treatment and the beginning of the calcium depletion treatment. This means that a meristem

  17. Uptake of heavy metals by Typha capensis from wetland sites polluted by effluent from mineral processing plants: implications of metal-metal interactions.

    PubMed

    Zaranyika, M F; Nyati, W

    2017-10-01

    The aim of the present work was to demonstrate the existence of metal-metal interactions in plants and their implications for the absorption of toxic elements like Cr. Typha capensis , a good accumulator of heavy metals, was chosen for the study. Levels of Fe, Cr, Ni, Cd, Pb, Cu and Zn were determined in the soil and roots, rhizomes, stems and leaves of T. capensis from three Sites A, B and C polluted by effluent from a chrome ore processing plant, a gold ore processing plant, and a nickel ore processing plant, respectively. The levels of Cr were extremely high at Site A at 5415 and 786-16,047 μg g -1 dry weight in the soil and the plant, respectively, while the levels of Ni were high at Site C at 176 and 24-891 μg g -1 in the soil and the plant, respectively. The levels of Fe were high at all three sites at 2502-7500 and 906-13,833 μg g -1 in the soil and plant, respectively. For the rest of the metals, levels were modest at 8.5-148 and 2-264 μg g -1 in the soil and plant, respectively. Pearson's correlation analysis confirmed mutual synergistic metal-metal interactions in the uptake of Zn, Cu, Co, Ni, Fe, and Cr, which are attributed to the similarity in the radii and coordination geometry of the cations of these elements. The implications of such metal-metal interactions (or effects of one metal on the behaviour of another) on the uptake of Cr, a toxic element, and possible Cr detoxification mechanism within the plant, are discussed.

  18. Conflict minerals from the Democratic Republic of the Congo—Tin processing plants, a critical part of the tin supply chain

    USGS Publications Warehouse

    Anderson, Charles

    2015-03-24

    Post-beneficiation processing plants (generally called smelters and refineries) for 3TG mineral ores and concentrates were identified by company and industry association representatives as being a link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine). The determination of the source of origin is critical to the development of a complete and transparent conflict-free mineral supply chain. Tungsten processing plants were the subject of the first fact sheet in this series published by the USGS NMIC in August 2014. Background information about historical conditions and multinational stakeholders’ voluntary due diligence guidance for minerals from conflict-affected and high-risk areas was presented in the tungsten fact sheet. Tantalum processing plants were the subject of the second fact sheet in this series published by the USGS NMIC in December 2014. This fact sheet, the third in the series about 3TG minerals, focuses on the tin supply chain by listing selected processors that produced tin materials commercially worldwide during 2013–14. It does not provide any information regarding the sources of the material processed in these facilities.

  19. Method of identifying plant pathogen tolerance

    DOEpatents

    Ecker, Joseph R.; Staskawicz, Brian J.; Bent, Andrew F.; Innes, Roger W.

    1997-10-07

    A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

  20. [Effect of high intensity magnetic field on the processes of early growth in plant seeds and development of honeybees].

    PubMed

    Es'kov, E K; Darkov, A V

    2003-01-01

    The influence of magnetic field on the early growth processes in plant seeds and the postembryonic development of honeybees was studied. Some general trends in the effects of magnetic field and differences in the tolerance of plant seeds and developing honeybees to its action were revealed. Some factors that may be responsible for a low reproducibility of magneto-biological effects are discussed.

  1. A Game-Theoretical Model to Improve Process Plant Protection from Terrorist Attacks.

    PubMed

    Zhang, Laobing; Reniers, Genserik

    2016-12-01

    The New York City 9/11 terrorist attacks urged people from academia as well as from industry to pay more attention to operational security research. The required focus in this type of research is human intention. Unlike safety-related accidents, security-related accidents have a deliberate nature, and one has to face intelligent adversaries with characteristics that traditional probabilistic risk assessment techniques are not capable of dealing with. In recent years, the mathematical tool of game theory, being capable to handle intelligent players, has been used in a variety of ways in terrorism risk assessment. In this article, we analyze the general intrusion detection system in process plants, and propose a game-theoretical model for security management in such plants. Players in our model are assumed to be rational and they play the game with complete information. Both the pure strategy and the mixed strategy solutions are explored and explained. We illustrate our model by an illustrative case, and find that in our case, no pure strategy but, instead, a mixed strategy Nash equilibrium exists. © 2016 Society for Risk Analysis.

  2. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE).more » Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests

  3. Method of identifying plant pathogen tolerance

    DOEpatents

    Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

    1997-10-07

    A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

  4. Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants.

    PubMed

    Langsrud, S; Moen, B; Møretrø, T; Løype, M; Heir, E

    2016-02-01

    The microbiota surviving sanitation of salmon-processing conveyor belts was identified and its growth dynamics further investigated in a model mimicking processing surfaces in such plants. A diverse microbiota dominated by Gram-negative bacteria was isolated after regular sanitation in three salmon processing plants. A cocktail of 14 bacterial isolates representing all genera isolated from conveyor belts (Listeria, Pseudomonas, Stenotrophomonas, Brochothrix, Serratia, Acinetobacter, Rhodococcus and Chryseobacterium) formed stable biofilms on steel coupons (12°C, salmon broth) of about 10(9) CFU cm(-2) after 2 days. High-throughput sequencing showed that Listeria monocytogenes represented 0·1-0·01% of the biofilm population and that Pseudomonas spp dominated. Interestingly, both Brochothrix sp. and a Pseudomonas sp. dominated in the surrounding suspension. The microbiota surviving sanitation is dominated by Pseudomonas spp. The background microbiota in biofilms inhibit, but do not eliminate L. monocytogenes. The results highlights that sanitation procedures have to been improved in the salmon-processing industry, as high numbers of a diverse microbiota survived practical sanitation. High-throughput sequencing enables strain level studies of population dynamics in biofilm. © 2015 The Society for Applied Microbiology.

  5. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  6. Sulfur flows and biosolids processing: Using Material Flux Analysis (MFA) principles at wastewater treatment plants.

    PubMed

    Fisher, R M; Alvarez-Gaitan, J P; Stuetz, R M; Moore, S J

    2017-08-01

    High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The People's Lake

    ERIC Educational Resources Information Center

    Carlson, Karen Townsend

    1975-01-01

    Citizen action to stop the disposal of taconite tailings into Lake Superior was unsuccessful when the courts settled in the favor of industry. Although citizen research revealed a form of asbestos, as well as other toxic chemicals in the discharged wastes, company representatives stated that there were no health hazards. (MA)

  8. The Educational Needs of Dislocated Workers in Minnesota.

    ERIC Educational Resources Information Center

    Park, Rosemarie J.; And Others

    A study was conducted to determine if dislocated workers in Minnesota felt they had sufficient reading and mathematics skills to obtain new employment or enter retraining programs. A representative group of 168 dislocated workers who had been employed in manufacturing, taconite mining, lumber, and farming were interviewed from June through…

  9. 78 FR 59825 - Approval and Promulgation of Air Quality Implementation Plans; States of Michigan and Minnesota...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Order Reviews I. What is the background for this action? Minnesota submitted its regional haze SIP on... thousands of pages lacked, among other things, actual NO X emission limits for taconite facilities. The... necessarily employing GCP when they were later required by Administrative Order (AO) to conduct NO X testing...

  10. Online biochemical oxygen demand monitoring for wastewater process control--full-scale studies at Los Angeles Glendale wastewater plant, California.

    PubMed

    Iranpour, Reza; Zermeno, Miguel

    2008-04-01

    The main objective of this investigation is to determine whether or not it would be feasible to use the measured values of biochemical oxygen demand (BOD) of wastewater obtained by an online instrument at the Los Angeles/Glendale Water Reclamation Plant (California) for controlling its activated sludge process. This investigation is part of a project to develop online BOD monitoring for process control in the City of Los Angeles wastewater treatment plants. Tests studied the Siepmann und Teutscher GmbH (ISCO-STIP Inc., Lincoln, Nebraska) BIOX-1010, which uses a bioreactor containing a culture of microbes from the wastewater to measure soluble BOD in 2 minutes. This rapid approximation to the operation of secondary treatment allows anticipation of system response. Calibration measurements allow the operators to find a conversion factor for the instrument's microprocessor to compute values of BOD that agree well with the standard 5-day BOD (BOD5) measurement, despite the differences in the details of the two testing methods. This instrument has recently been used at other wastewater treatment plants, at a number of airports in Europe and the United States to monitor runway runoff, and is also being used on waste streams at an increasing number of food processing plants. A comparison was made between the plant influent BOD values obtained by the BIOX-1010 online monitor from the end of August, 2000, to late January, 2001, and the individual and average values obtained for the same period using the standard BOD5, 20 degrees C test, to determine the effectiveness of the Biox-1010 to identify shock loads and their duration. Individual BOD estimates and averages over periods of overly high biological loads (shock loads) were compared, and the instrument readings were evaluated for their effectiveness in detecting shock loads. The results were highly satisfactory, so the instrument was used to trigger a shock-load warning alarm since late September, 2000. This allowed flow

  11. Generic process design and control strategies used to develop a dynamic model and training software for an IGCC plant with CO2 sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provost, G.; Stone, H.; McClintock, M.

    2008-01-01

    To meet the growing demand for education and experience with the analysis, operation, and control of commercial-scale Integrated Gasification Combined Cycle (IGCC) plants, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is leading a collaborative R&D project with participants from government, academia, and industry. One of the goals of this project is to develop a generic, full-scope, real-time generic IGCC dynamic plant simulator for use in establishing a world-class research and training center, as well as to promote and demonstrate the technology to power industry personnel. The NETL IGCC dynamic plant simulator will combine for the first timemore » a process/gasification simulator and a power/combined-cycle simulator together in a single dynamic simulation framework for use in training applications as well as engineering studies. As envisioned, the simulator will have the following features and capabilities: A high-fidelity, real-time, dynamic model of process-side (gasification and gas cleaning with CO2 capture) and power-block-side (combined cycle) for a generic IGCC plant fueled by coal and/or petroleum coke Full-scope training simulator capabilities including startup, shutdown, load following and shedding, response to fuel and ambient condition variations, control strategy analysis (turbine vs. gasifier lead, etc.), representative malfunctions/trips, alarms, scenarios, trending, snapshots, data historian, and trainee performance monitoring The ability to enhance and modify the plant model to facilitate studies of changes in plant configuration and equipment and to support future R&D efforts To support this effort, process descriptions and control strategies were developed for key sections of the plant as part of the detailed functional specification, which will form the basis of the simulator development. These plant sections include: Slurry Preparation Air Separation Unit Gasifiers Syngas Scrubbers Shift Reactors Gas

  12. Silver nanoparticles uptake by salt marsh plants - Implications for phytoremediation processes and effects in microbial community dynamics.

    PubMed

    Fernandes, Joana P; Mucha, Ana P; Francisco, Telmo; Gomes, Carlos Rocha; Almeida, C Marisa R

    2017-06-15

    This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. PLANT - An experimental task for the study of human problem solving in process control. [Production Levels and Network Troubleshooting

    NASA Technical Reports Server (NTRS)

    Morris, N. M.; Rouse, W. B.; Fath, J. L.

    1985-01-01

    An experimental tool for the investigation of human problem-solving behavior is introduced. Production Levels and Network Troubleshooting (PLANT) is a computer-based process-control task which may be used to provide opportunities for subjects to control a dynamic system and diagnose, repair, and compensate for system failures. The task is described in detail, and experiments which have been conducted using PLANT are briefly discussed.

  14. Role of plant hormones in plant defence responses.

    PubMed

    Bari, Rajendra; Jones, Jonathan D G

    2009-03-01

    Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.

  15. The effectiveness of flocculants on inorganic and metallic species removal during aerobic digestion of wastewater from poultry processing plant

    USDA-ARS?s Scientific Manuscript database

    : Large amount of water is used for processing of our food supplies, especially in meat processing plants. The resulting amount of wastewater cannot be discarded freely back into natural settings due to regulatory mandates, whether the sinks would be rivers, ponds, or other natural systems. These wa...

  16. The effectiveness of flocculants on inorganic and metallic species removal during aerobic digestion of wastewater from poultry processing plant

    USDA-ARS?s Scientific Manuscript database

    Large amount of water is used for processing of our food supplies, especially in meat processing plants. The resulting amount of wastewater cannot be discarded freely back into natural settings due to regulatory mandates, whether the sinks would be rivers, ponds, or other natural systems. These wast...

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implementedmore » at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different

  18. Carbon-Flow-Based Modeling of Ecophysiological Processes and Biomass Dynamics of Submersed Aquatic Plants

    DTIC Science & Technology

    2007-09-01

    simulation modeling approach to describing carbon- flow-based, ecophysiological processes and biomass dynamics of fresh- water submersed aquatic plant...the distribution and abundance of SAV. In aquatic systems a small part of the irradiance can be reflected by the water surface, and further...to the fact that water temperatures in the lake were relatively low compared to air tem- peratures because of the large inflow of groundwater (Titus

  19. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  20. On the structure-bounded growth processes in plant populations.

    PubMed

    Kilian, H G; Kazda, M; Király, F; Kaufmann, D; Kemkemer, R; Bartkowiak, D

    2010-07-01

    If growing cells in plants are considered to be composed of increments (ICs) an extended version of the law of mass action can be formulated. It evidences that growth of plants runs optimal if the reaction-entropy term (entropy times the absolute temperature) matches the contact energy of ICs. Since these energies are small, thermal molecular movements facilitate via relaxation the removal of structure disturbances. Stem diameter distributions exhibit extra fluctuations likely to be caused by permanent constraints. Since the signal-response system enables in principle perfect optimization only within finite-sized cell ensembles, plants comprising relatively large cell numbers form a network of size-limited subsystems. The maximal number of these constituents depends both on genetic and environmental factors. Accounting for logistical structure-dynamics interrelations, equations can be formulated to describe the bimodal growth curves of very different plants. The reproduction of the S-bended growth curves verifies that the relaxation modes with a broad structure-controlled distribution freeze successively until finally growth is fully blocked thus bringing about "continuous solidification".

  1. Forest health in the Blue Mountains: an plant ecologist's perspective on ecosystem processes and biological diversity.

    Treesearch

    Charles G. Johnson

    1994-01-01

    Natural disturbances are important to ecosystem processes. Disturbances historically have occurred in the vegetation of the Blue Mountain area of northeastern Oregon and southeastern Washington. The primary modifying events that historically have cycled through most of its plant communities are fire, grazing and browsing, insect and disease epidemics, windthrow,...

  2. Northwest range-plant symbols adapted to automatic data processing.

    Treesearch

    George A. Garrison; Jon M. Skovlin

    1960-01-01

    Many range technicians, agronomists, foresters, biologists, and botanists of various educational institutions and government agencies in the Northwest have been using a four-letter symbol list or code compiled 12 years ago from records of plants collected by the U.S. Forest Service in Oregon and Washington, This code has served well as a means of entering plant names...

  3. Linking Belowground Plant Traits With Ecosystem Processes: A Multi-Biome Perspective

    NASA Astrophysics Data System (ADS)

    Iversen, C. M.; Norby, R. J.; Childs, J.; McCormack, M. L.; Walker, A. P.; Hanson, P. J.; Warren, J.; Sloan, V. L.; Sullivan, P. F.; Wullschleger, S.; Powell, A. S.

    2015-12-01

    Fine plant roots are short-lived, narrow-diameter roots that play an important role in ecosystem carbon, water, and nutrient cycling in biomes ranging from the tundra to the tropics. Root ecologists make measurements at a millimeter scale to answer a question with global implications: In response to a changing climate, how do fine roots modulate the exchange of carbon between soils and the atmosphere and how will this response affect our future climate? In a Free-Air CO2 Enrichment experiment in Oak Ridge, TN, elevated [CO2] caused fine roots to dive deeper into the soil profile in search of limiting nitrogen, which led to increased soil C storage in deep soils. In contrast, the fine roots of trees and shrubs in an ombrotrophic bog are constrained to nutrient-poor, oxic soils above the average summer water table depth, though this may change with warmer, drier conditions. Tundra plant species are similarly constrained to surface organic soils by permafrost or waterlogged soils, but have many adaptations that alter ecosystem C fluxes, including aerenchyma that oxygenate the rhizosphere but also allow direct methane flux to the atmosphere. FRED, a global root trait database, will allow terrestrial biosphere models to represent the complexity of root traits across the globe, informing both model representation of ecosystem C and nutrient fluxes, but also the gaps where measurements are needed on plant-soil interactions (for example, in the tropical biome). While the complexity of mm-scale measurements may never have a place in large-scale global models, close collaboration between empiricists and modelers can help to guide the scaling of important, yet small-scale, processes to quantify their important roles in larger-scale ecosystem fluxes.

  4. Minnesota Measures: 2008 Report on Higher Education Performance

    ERIC Educational Resources Information Center

    Minnesota Office of Higher Education, 2008

    2008-01-01

    For most of Minnesota's 150 years of statehood, its distinctive economic advantages were largely a function of its natural resources, such as timber, taconite and tourism. Today, while these and other resources remain cornerstones of the state economy, it is clear that the intellectual capacity of Minnesota's people is emerging as a promising…

  5. Fact Sheet - Final Air Toxics Rule for Steel Pickling and HCI Process Facilities and Hydrochloric Acid Regeneration Plants

    EPA Pesticide Factsheets

    Fact Sheet summarizing the main points of the national emssions standard for hazaradous air pollutants (NESHAP) for Steel Pickling— HCl Process Facilities and Hydrochloric Acid Regeneration Plants as promulgated on June 22, 1999.

  6. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less

  7. Plant immunity induced by COS-OGA elicitor is a cumulative process that involves salicylic acid.

    PubMed

    van Aubel, Géraldine; Cambier, Pierre; Dieu, Marc; Van Cutsem, Pierre

    2016-06-01

    Plant innate immunity offers considerable opportunities for plant protection but beside flagellin and chitin, not many molecules and their receptors have been extensively characterized and very few have successfully reached the field. COS-OGA, an elicitor that combines cationic chitosan oligomers (COS) with anionic pectin oligomers (OGA), efficiently protected tomato (Solanum lycopersicum) grown in greenhouse against powdery mildew (Leveillula taurica). Leaf proteomic analysis of plants sprayed with COS-OGA showed accumulation of Pathogenesis-Related proteins (PR), especially subtilisin-like proteases. qRT-PCR confirmed upregulation of PR-proteins and salicylic acid (SA)-related genes while expression of jasmonic acid/ethylene-associated genes was not modified. SA concentration and class III peroxidase activity were increased in leaves and appeared to be a cumulative process dependent on the number of sprayings with the elicitor. These results suggest a systemic acquired resistance (SAR) mechanism of action of the COS-OGA elicitor and highlight the importance of repeated applications to ensure efficient protection against disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    PubMed

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes

    PubMed Central

    Li, Shaoli; Ren, Yuhang; Fu, Yingying; Gao, Xingsheng; Jiang, Cong; Wu, Gang; Ren, Hongqiang

    2018-01-01

    Five full-scale wastewater treatment plants (WWTPs) in China using typical biodegradation processes (SBR, oxidation ditch, A2/O) were selected to assess the removal of four popular artificial sweeteners (ASs). All four ASs (acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC)) were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11–50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC) and magnetic resin) and ultraviolet radiation-based advanced oxidation processes (UV/AOPs) were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33–18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic. PMID:29293534

  10. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes.

    PubMed

    Li, Shaoli; Ren, Yuhang; Fu, Yingying; Gao, Xingsheng; Jiang, Cong; Wu, Gang; Ren, Hongqiang; Geng, Jinju

    2018-01-01

    Five full-scale wastewater treatment plants (WWTPs) in China using typical biodegradation processes (SBR, oxidation ditch, A2/O) were selected to assess the removal of four popular artificial sweeteners (ASs). All four ASs (acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC)) were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11-50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC) and magnetic resin) and ultraviolet radiation-based advanced oxidation processes (UV/AOPs) were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33-18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic.

  11. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.

    PubMed

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R

    2015-01-01

    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.

  12. Mathematical modeling of heat treatment processes conserving biological activity of plant bioresources

    NASA Astrophysics Data System (ADS)

    Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.

    2018-05-01

    The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the

  13. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, research scientists prepare the science carrier, or base, of the Advanced Plant Habitat (APH) for planting of Arabidopsis seeds, commonly known as thale cress, on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  14. Enumeration of Salmonella and Campylobacter spp. in environmental farm samples and processing plant carcass rinses from commercial broiler chicken flocks.

    PubMed

    Berghaus, Roy D; Thayer, Stephan G; Law, Bibiana F; Mild, Rita M; Hofacre, Charles L; Singer, Randall S

    2013-07-01

    A prospective cohort study was performed to evaluate the prevalences and loads of Salmonella and Campylobacter spp. in farm and processing plant samples collected from 55 commercial broiler chicken flocks. Environmental samples were collected from broiler houses within 48 h before slaughter, and carcass rinses were performed on birds from the same flocks at 4 different stages of processing. Salmonella was detected in farm samples of 50 (90.9%) flocks and in processing samples of 52 (94.5%) flocks. Campylobacter was detected in farm samples of 35 (63.6%) flocks and in processing samples of 48 (87.3%) flocks. There was a significant positive relationship between environmental farm samples and processing plant carcass rinses with respect to both Salmonella and Campylobacter prevalences and loads. Campylobacter loads were significantly higher than Salmonella loads, and the correlations between samples collected from the same flocks were higher for Campylobacter than they were for Salmonella. Boot socks were the most sensitive sample type for detection of Salmonella on the farm, whereas litter samples had the strongest association with Salmonella loads in pre- and postchill carcass rinses. Boot socks, drag swabs, and fecal samples all had similar sensitivities for detecting Campylobacter on the farm, and all were more strongly associated with Campylobacter loads in carcass rinses than were litter samples. Farm samples explained a greater proportion of the variability in carcass rinse prevalences and loads for Campylobacter than they did for Salmonella. Salmonella and Campylobacter prevalences and loads both decreased significantly as birds progressed through the processing plant.

  15. Enumeration of Salmonella and Campylobacter spp. in Environmental Farm Samples and Processing Plant Carcass Rinses from Commercial Broiler Chicken Flocks

    PubMed Central

    Thayer, Stephan G.; Law, Bibiana F.; Mild, Rita M.; Hofacre, Charles L.; Singer, Randall S.

    2013-01-01

    A prospective cohort study was performed to evaluate the prevalences and loads of Salmonella and Campylobacter spp. in farm and processing plant samples collected from 55 commercial broiler chicken flocks. Environmental samples were collected from broiler houses within 48 h before slaughter, and carcass rinses were performed on birds from the same flocks at 4 different stages of processing. Salmonella was detected in farm samples of 50 (90.9%) flocks and in processing samples of 52 (94.5%) flocks. Campylobacter was detected in farm samples of 35 (63.6%) flocks and in processing samples of 48 (87.3%) flocks. There was a significant positive relationship between environmental farm samples and processing plant carcass rinses with respect to both Salmonella and Campylobacter prevalences and loads. Campylobacter loads were significantly higher than Salmonella loads, and the correlations between samples collected from the same flocks were higher for Campylobacter than they were for Salmonella. Boot socks were the most sensitive sample type for detection of Salmonella on the farm, whereas litter samples had the strongest association with Salmonella loads in pre- and postchill carcass rinses. Boot socks, drag swabs, and fecal samples all had similar sensitivities for detecting Campylobacter on the farm, and all were more strongly associated with Campylobacter loads in carcass rinses than were litter samples. Farm samples explained a greater proportion of the variability in carcass rinse prevalences and loads for Campylobacter than they did for Salmonella. Salmonella and Campylobacter prevalences and loads both decreased significantly as birds progressed through the processing plant. PMID:23624481

  16. Sources of Listeria monocytogenes Contamination in a Cold-Smoked Rainbow Trout Processing Plant Detected by Pulsed-Field Gel Electrophoresis Typing

    PubMed Central

    Autio, Tiina; Hielm, Sebastian; Miettinen, Maria; Sjöberg, Anna-Maija; Aarnisalo, Kaarina; Björkroth, Johanna; Mattila-Sandholm, Tiina; Korkeala, Hannu

    1999-01-01

    Sites of Listeria monocytogenes contamination in a cold-smoked rainbow trout (Oncorhynchus mykiss) processing plant were detected by sampling the production line, environment, and fish at different production stages. Two lots were monitored. The frequency of raw fish samples containing L. monocytogenes was low. During processing, the frequency of fish contaminated with L. monocytogenes clearly rose after brining, and the most contaminated sites of the processing plant were the brining and postbrining areas. A total of 303 isolates from the raw fish, product, and the environment were characterized by pulsed-field gel electrophoresis (PFGE). PFGE yielded nine pulsotypes, which formed four clusters. The predominating L. monocytogenes pulsotypes of the final product were associated with brining and slicing, whereas contaminants of raw fish were not detected in the final product. Air-mediated contamination in the plant could not be proved. In accordance with these results, an L. monocytogenes eradication program was planned. The use of hot steam, hot air, and hot water seemed to be useful in eliminating L. monocytogenes. None of the control samples taken in the 5 months after the eradication program was implemented contained L. monocytogenes. PMID:9872773

  17. Effect of process parameters on greenhouse gas generation by wastewater treatment plants.

    PubMed

    Yerushalmi, L; Shahabadi, M Bani; Haghighat, F

    2011-05-01

    The effect of key process parameters on greenhouse gas (GHG) emission by wastewater treatment plants was evaluated, and the governing parameters that exhibited major effects on the overall on- and off-site GHG emissions were identified. This evaluation used aerobic, anaerobic, and hybrid anaerobic/aerobic treatment systems with food processing industry wastewater. The operating temperature of anaerobic sludge digester was identified to have the highest effect on GHG generation in the aerobic treatment system. The total GHG emissions of 2694 kg CO2e/d were increased by 72.5% with the increase of anaerobic sludge digester temperature from 20 to 40 degrees C. The operating temperature of the anaerobic reactor was the dominant controlling parameter in the anaerobic and hybrid treatment systems. Raising the anaerobic reactor's temperature from 25 to 40 degrees C increased the total GHG emissions from 5822 and 6617 kg CO2e/d by 105.6 and 96.5% in the anaerobic and hybrid treatment systems, respectively.

  18. Plant traits related to nitrogen uptake influence plant-microbe competition.

    PubMed

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  19. Driver development of IFE power plant in Japan Collaborative process with industry and industrial applications

    NASA Astrophysics Data System (ADS)

    Nakai, S.; Yamanaka, M.; Kitagawa, Y.; Fujita, K.; Heya, M.; Mima, K.; Izawa, Y.; Nakatsuka, M.; Murakami, M.; Ueda, K.; Sasaki, T.; Mori, Y.; Kanabe, T.; Hiruma, T.; Kan, H.; Kawashima, T.

    2006-06-01

    The typical specifications of the laser driver for a commercial IFE power plant are (1) total energy (MJ/pulse) with a tailored 20-40 ns pulse, (2) repetition operation (˜ 10 Hz), (3) efficiency (˜ 10%) with enough robustness and low cost. The key elements of the DPSSL driver technology are under development with HALNA. The HALNA 10 (High Average-power Laser for Nuclear-fusion Application) demonstrated 10 J × 10 Hz operation and the HALNA 100 (100 J × 10 Hz) is now under construction. By using the high average power and high intensity lasers, new industrial applications are being proceeded. The collaborative process for the development of high power laser with industry and for the industrial applications is effective and essential in the development of the laser driver for IFE power plant.

  20. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  1. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, pours a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  2. Techno-Economic analysis of solar photovoltaic power plant for small scale fish processing in Kota Langsa - a case study

    NASA Astrophysics Data System (ADS)

    Widodo, S. B.; Hamdani; Rizal, T. A.; Pambudi, N. A.

    2018-02-01

    In Langsa, fisheries are the sector leaders by fulfilling a capacity of about 6,050 tons per year and on the other hand, fish-aquaculture reaches 1,200 tons per year on average. The fish processing is conducted through catches and aquaculture. The facilities on which this processing takes place are divided into an ice factory unit, a gutting and cutting unit, a drying unit and a curing unit. However, the energy and electricity costs during the production process has become major constraint because of the increase in the fishermen’s production and income. In this study, the potential and cost-effectiveness of photovoltaic solar power plant to meet the energy demands of fish processing units have been analysed. The energy requirements of fish processing units have reached an estimate of 130 kW, while the proposed design of solar photovoltaic electricity generation is of 200 kW in an area of 0,75 hectares. In this analysis, given the closeness between the location of the processing units and the fish supply auctions, the assumption is made that the photovoltaic plants (OTR) were installed on the roof of the building as compared to the solar power plants (OTL) installed on the outside of the location. The results shows that the levelized cost of OTR instalation is IDR 1.115 per kWh, considering 25 years of plant life-span at 10% of discount rate, with a simple payback period of 13.2 years. OTL levelized energy, on the other hand, is at IDR 997.5 per kWh with a simple payback period of 9.6 years. Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used

  3. Plant growth modelling and applications: the increasing importance of plant architecture in growth models.

    PubMed

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-05-01

    Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional-structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06: This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13-17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic processes have

  4. From broadscale patterns to fine-scale processes: habitat structure influences genetic differentiation in the pitcher plant midge across multiple spatial scales.

    PubMed

    Rasic, Gordana; Keyghobadi, Nusha

    2012-01-01

    The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge's habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual-based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full-sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species. © 2011 Blackwell Publishing Ltd.

  5. Plants' essential chemical elements

    Treesearch

    Kevin T. Smith

    2007-01-01

    Every garden center and hardware store sells fertilizer guaranteed to "feed" plants. In a strict sense, we can't feed plants. Food contains an energy source. Green plants capture solar energy and make their own food through photosynthesis! Photosynthesis and other metabolic processes require chemical elements in appropriate doses for plants to survive...

  6. One plant, two plants, three plants, four: does soil carbon respond to diversifying by one plant more? (Invited)

    NASA Astrophysics Data System (ADS)

    Grandy, S.

    2013-12-01

    Plant diversity is known to strongly influence aboveground ecosystem functions, but our understanding of its effects on belowground carbon (C) cycling has not kept pace. We know in broad terms that the belowground implications of reducing plant diversity include changes in soil nutrient cycling and biological communities, but remain uncertain about the specific links between plant diversity, soil microbial communities, and soil C cycling. Our knowledge gap is especially wide in agricultural systems, which comprise ~50% of the contiguous U.S. and differ from non-managed systems because diversity: (1) occurs primarily over time (i.e. crop rotations) rather than in space (i.e. inter-cropping); (2) exists as one of multiple management factors that potentially regulates soil C dynamics; and (3) is almost always low, with the addition or subtraction of a single plant species often representing a substantial change in diversity. I have been addressing the uncertain relationships between agricultural plant diversity and soil C cycling with a multi-tiered approach that includes a global meta-analysis, site-specific field manipulations, and intensive laboratory analyses. The meta-analysis using 122 studies shows that compared to single-crop monocultures, rotations increased soil microbial biomass C by 20.7% and microbial biomass N by 26.1% as well as total soil C and N. In a complimentary field study at the W.K. Kellogg Biological Station LTER Cropping Biodiversity Gradient Experiment we examined microbial communities, C cycling processes, and trace gas emissions in five rotation sequences varying in complexity from continuous corn monoculture to a five crop three-year rotation. Finding striking differences between monocultures and systems with more complex plant communities, these results confirm our meta-analysis, and highlight the strong effects of diversifying plant communities in agricultural systems. A complimentary lab study examining decomposition processes in

  7. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  8. Detecting Plant Stress

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through an exclusive patent license from NASA Stennis Space Center, Spectrum Technologies, Inc., has developed a hand-held tool that helps farmers, foresters and other growers detect unhealthy crops before the human eye can see the damage. Developed by two NASA researchers, the Observer,TM shows the viewer which plants are under stress through multispectral imaging, a process that uses specific wavelengths of the light spectrum to obtain information about objects-in this case, plants. With this device, several wavelengths of light collect information about the plant and results are immediately processed and displayed. NASA research found that previsible signs of stress, such as such as a lack of nutrients, insufficient water, disease, or insect damage, can be detected by measuring the chlorophyll content based on light energy reflected from the plant. The Observer detects stress up to 16 days before deterioration is visible to the eye. Early detection provides an opportunity to reverse stress and save the plant. The hand-held, easily operated unit works in both natural and artificial light, making it suitable for outdoor or indoor planting.

  9. Macro-Process of Past Plant Subsistence from the Upper Paleolithic to Middle Neolithic in China: A Quantitative Analysis of Multi-Archaeobotanical Data.

    PubMed

    Wang, Can; Lu, Houyuan; Zhang, Jianping; He, Keyang; Huan, Xiujia

    2016-01-01

    Detailed studies of the long-term development of plant use strategies indicate that plant subsistence patterns have noticeably changed since the Upper Paleolithic, when humans underwent a transitional process from foraging to agriculture. This transition was best recorded in west Asia; however, information about how plant subsistence changed during this transition remains limited in China. This lack of information is mainly due to a limited availability of sufficiently large, quantified archaeobotanical datasets and a paucity of related synthetic analyses. Here, we present a compilation of extensive archaeobotanical data derived from interdisciplinary approaches, and use quantitative analysis methods to reconstruct past plant use from the Upper Paleolithic to Middle Neolithic in China. Our results show that intentional exploitation for certain targeted plants, particularly grass seeds, may be traced back to about 30,000 years ago during the Upper Paleolithic. Subsequently, the gathering of wild plants dominated the subsistence system; however, this practice gradually diminished in dominance until about 6~5 ka cal BP during the Middle Neolithic. At this point, farming based on the domestication of cereals became the major subsistence practice. Interestingly, differences in plant use strategies were detected between north and south China, with respect to (1) the proportion of certain plant taxa in assemblages, (2) the domestication rate of cereals, and (3) the type of plant subsistence practiced after the establishment of full farming. In conclusion, the transition from foraging to rice and millet agriculture in China was a slow and long-term process spanning 10s of 1000s of years, which may be analogous to the developmental paths of wheat and barley farming in west Asia.

  10. Macro-Process of Past Plant Subsistence from the Upper Paleolithic to Middle Neolithic in China: A Quantitative Analysis of Multi-Archaeobotanical Data

    PubMed Central

    Wang, Can; Lu, Houyuan; Zhang, Jianping; He, Keyang; Huan, Xiujia

    2016-01-01

    Detailed studies of the long-term development of plant use strategies indicate that plant subsistence patterns have noticeably changed since the Upper Paleolithic, when humans underwent a transitional process from foraging to agriculture. This transition was best recorded in west Asia; however, information about how plant subsistence changed during this transition remains limited in China. This lack of information is mainly due to a limited availability of sufficiently large, quantified archaeobotanical datasets and a paucity of related synthetic analyses. Here, we present a compilation of extensive archaeobotanical data derived from interdisciplinary approaches, and use quantitative analysis methods to reconstruct past plant use from the Upper Paleolithic to Middle Neolithic in China. Our results show that intentional exploitation for certain targeted plants, particularly grass seeds, may be traced back to about 30,000 years ago during the Upper Paleolithic. Subsequently, the gathering of wild plants dominated the subsistence system; however, this practice gradually diminished in dominance until about 6~5 ka cal BP during the Middle Neolithic. At this point, farming based on the domestication of cereals became the major subsistence practice. Interestingly, differences in plant use strategies were detected between north and south China, with respect to (1) the proportion of certain plant taxa in assemblages, (2) the domestication rate of cereals, and (3) the type of plant subsistence practiced after the establishment of full farming. In conclusion, the transition from foraging to rice and millet agriculture in China was a slow and long-term process spanning 10s of 1000s of years, which may be analogous to the developmental paths of wheat and barley farming in west Asia. PMID:26840560

  11. Development of cement solidification process for sodium borate waste generated from PWR plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirofumi Okabe; Tatsuaki Sato; Yuichi Shoji

    2013-07-01

    A cement solidification process for treating sodium borate waste produced in pressurized water reactor (PWR) plants was studied. To obtain high volume reduction and high mechanical strength of the waste, simulated concentrated borate liquid waste with a sodium / boron (Na/B) mole ratio of 0.27 was dehydrated and powdered by using a wiped film evaporator. To investigate the effect of the Na/B mole ratio on the solidification process, a sodium tetraborate decahydrate reagent with a Na/B mole ratio of 0.5 was also used. Ordinary portland cement (OPC) and some additives were used for the solidification. Solidified cement prepared from powderedmore » waste with a Na/B mole ratio 0.24 and having a high silica sand content (silica sand/cement>2) showed to improved uniaxial compressive strength. (authors)« less

  12. Hormone Profiling in Plant Tissues.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  13. Diagnosing plant problems

    Treesearch

    Cheryl A. Smith

    2008-01-01

    Diagnosing Christmas tree problems can be a challenge, requiring a basic knowledge of plant culture and physiology, the effect of environmental influences on plant health, and the ability to identify the possible causes of plant problems. Developing a solution or remedy to the problem depends on a proper diagnosis, a process that requires recognition of a problem and...

  14. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    PubMed Central

    Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly (P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree. PMID:29808161

  15. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya.

    PubMed

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly ( P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly ( P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log 10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  16. Prevalence, Seasonal Occurrence, and Antimicrobial Resistance of Salmonella spp. Isolates Recovered from Chicken Carcasses Sampled at Major Poultry Processing Plants of South Korea.

    PubMed

    Lee, Soo-Kyoung; Choi, Dasom; Kim, Hong-Seok; Kim, Dong-Hyeon; Seo, Kun-Ho

    2016-10-01

    The current study was conducted to assess Salmonella spp. contamination in chicken carcasses produced at major poultry processing plants in South Korea. In total, 120 chicken carcasses were collected through 12 individual trials (10 chickens per trial) from six poultry processing plants in the summer of 2014 and the winter of 2015. Eighteen chicken samples (15%) were contaminated with Salmonella, with a higher rate of contamination observed during summer (14 isolates, 11.7%) than during winter (four isolates, 3.3%). Salmonella enterica serotype Typhimurium was the most prevalent, followed by Salmonella Hadar, Salmonella Rissen, Salmonella Bareilly, and Salmonella Virchow. Among five multidrug resistant isolates, a single strain was resistant to 10 antibiotics, including third-generation cephalosporins. This cephalosporin-resistant strain exhibited the extended-spectrum β-lactamase (ESBL) phenotype and harbored the gene encoding CTX-M-15, the most prevalent ESBL enzyme worldwide. Herein, repetitive-sequence-based polymerase chain reaction (rep-PCR) subtyping was conducted to discriminate the isolated Salmonella spp. and the ESBL-producing Salmonella isolate was distinguished by rep-PCR molecular subtyping, showing low genetic similarity in their rep-PCR-banding patterns. Given that poultry processing plants are the last stage in the chicken-production chain, the occurrence of Salmonella spp. including ESBL-producing strain in individually packaged chicken products highlights the necessity for regular monitoring for Salmonella in poultry processing plants.

  17. Recycling plant, human and animal wastes to plant nutrients in a closed ecological system

    NASA Technical Reports Server (NTRS)

    Meissner, H. P.; Modell, M.

    1979-01-01

    The essential minerals for plant growth are nitrogen, phosphorous, potassium (macronutrients), calcium, magnesium, sulfur (secondary nutrients), iron, manganese, boron, copper, zinc, chlorine, sodium, and molybdenum (micronutrients). The first step in recycling wastes will undoubtedly be oxidation of carbon and hydrogen to CO2 and H2O. Transformation of minerals to plant nutrients depends upon the mode of oxidation to define the state of the nutrients. For the purpose of illustrating the type of processing required, ash and off-gas compositions of an incineration process were assumed and subsequent processing requirements were identified. Several processing schemes are described for separating out sodium chloride from the ash, leading to reformulation of a nutrient solution which should be acceptable to plants.

  18. Differences in how rice plants processes arsenic in their cells

    USDA-ARS?s Scientific Manuscript database

    Arsenic (As), a carcinogenic heavy metal, is a problem in some drinking water and staple food supplies around the world. Rice plants readily uptake arsenic and transport a portion of it into the grain. Arsenic is also toxic to plants; therefore mechanisms that reduce toxicity or accumulation have ev...

  19. Soil and plant factors influencing the accumulation of heavy metals by plants.

    PubMed Central

    Cataldo, D A; Wildung, R E

    1978-01-01

    The use of plants to monitor heavy metal pollution in the terrestrial environment must be based on a cognizance of the complicated, integrated effects of pollutant source and soil-plant variables. To be detectable in plants, pollutant sources must significantly increase the plant available metal concentration in soil. The major factor governing metal availability to plants in soils is the solubility of the metal associated with the solid phase, since in order for root uptake to occur, a soluble species must exist adjacent to the root membrane for some finite period. The rate of release and form of this soluble species will have a strong influence on the rate and extent of uptake and, perhaps, mobility and toxicity in the plant and consuming animals. The factors influencing solubility and form of available metal species in soil vary widely geographically and include the concentration and chemical form of the element entering soil, soil properties (endogenous metal concentration, mineralogy, particle size distribution), and soil processes (e.g., mineral weathering, microbial activity), as these influence the kinetics of sorption reactions, metal concentration in solution and the form of soluble and insoluble chemical species. The plant root represents the first barrier to the selective accumulation of ions present in soil solution. Uptake and kinetic data for nutrient ions and chemically related nonnutrient analogs suggest that metabolic processes associated with root absorption of nutrients regulate both the affinity and rate of absorption of specific nonnutrient ions. Detailed kinetic studies of Ni, Cd, and Tl uptake by intact plants demonstrate multiphasic root absorption processes over a broad concentration range, and the use of transport mechanisms in place for the nutrient ions Cu, Zn, and K. Advantages and limitations of higher plants as indicators of increased levels of metal pollution are discussed in terms of these soil and plant phenomena. PMID:367766

  20. Autophagy in plant pathogenic fungi.

    PubMed

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Process and mechanism of plants in overcoming acid soil aluminum stress].

    PubMed

    Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi

    2013-10-01

    Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.

  2. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Waste receiving and processing plant control system; system design description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed asmore » separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.« less

  4. Downstream processing of biopharmaceutical proteins produced in plants: the pros and cons of flocculants.

    PubMed

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-01

    All biological platforms for the manufacture of biopharmaceutical proteins produce an initially turbid extract that must be clarified to avoid fouling sensitive media such as chromatography resins. Clarification is more challenging if the feed stream contains large amounts of dispersed particles, because these rapidly clog the filter media typically used to remove suspended solids. Charged polymers (flocculants) can increase the apparent size of the dispersed particles by aggregation, facilitating the separation of solids and liquids, and thus reducing process costs. However, many different factors can affect the behavior of flocculants, including the pH and conductivity of the medium, the size and charge distribution of the particulates, and the charge density and molecular mass of the polymer. Importantly, these properties can also affect the recovery of the target protein and the overall safety profile of the process. We therefore used a design of experiments approach to establish reliable predictive models that characterize the impact of flocculants during the downstream processing of biopharmaceutical proteins. We highlight strategies for the selection of flocculants during process optimization. These strategies will contribute to the quality by design aspects of process development and facilitate the development of safe and efficient downstream processes for plant-derived pharmaceutical proteins.

  5. [Processes of plant colonization by Methylobacterium strains and some bacterial properties ].

    PubMed

    Romanovskaia, V A; Stoliar, S M; Malashenko, Iu R; Dodatko, T N

    2001-01-01

    The pink-pigmented facultative methylotrophic bacteria (PPFMB) of the genus Methylobacterium are indespensible inhabitants of the plant phyllosphere. Using maize Zea mays as a model, the ways of plant colonization by PPFMB and some properties of the latter that might be beneficial to plants were studied. A marked strain, Methylobacterium mesophilicum APR-8 (pULB113), was generated to facilitate the detection of the methylotrophic bacteria inoculated into the soil or applied to the maize leaves. Colonization of maize leaves by M. mesophilicum APR-8 (pULB113) occurred only after the bacteria were applied onto the leaf surface. In this case, the number of PPFMB cells on inoculated leaves increased with plant growth. During seed germination, no colonization of maize leaves with M. mesophilicum cells occurred immediately from the soil inoculated with the marked strain. Thus, under natural conditions, colonization of plant leaves with PPFMB seems to occur via soil particle transfer to the leaves by air. PPFMB monocultures were not antagonistic to phytopathogenic bacteria. However, mixed cultures of epiphytic bacteria containing Methylobacterium mesophilicum or M. extorquens did exhibit an antagonistic effect against the phytopathogenic bacteria studied (Xanthomonas camprestris, Pseudomonas syringae, Erwinia carotovora, Clavibacter michiganense, and Agrobacterium tumifaciens). Neither epiphytic and soil strains of Methylobacterium extorquens, M. organophillum, M. mesophilicum, and M. fujisawaense catalyzed ice nucleation. Hence, they cause no frost injury to plants. Thus, the results indicate that the strains of the genus Methylobacterium can protect plants against adverse environmental factors.

  6. Multidrug-Resistant and Methicillin-Resistant Staphylococcus aureus (MRSA) in Hog Slaughter and Processing Plant Workers and Their Community in North Carolina (USA)

    PubMed Central

    Neyra, Ricardo Castillo; Frisancho, Jose Augusto; Rinsky, Jessica L.; Resnick, Carol; Carroll, Karen Colleen; Rule, Ana Maria; Ross, Tracy; You, Yaqi; Price, Lance B.

    2014-01-01

    Background: Use of antimicrobials in industrial food-animal production is associated with the presence of antimicrobial-resistant Staphylococcus aureus (S. aureus) among animals and humans. Hog slaughter/processing plants process large numbers of animals from industrial animal operations and are environments conducive to the exchange of bacteria between animals and workers. Objectives: We compared the prevalence of multidrug-resistant S. aureus (MDRSA) and methicillin-resistant S. aureus (MRSA) carriage among processing plant workers, their household members, and community residents. Methods: We conducted a cross-sectional study of hog slaughter/processing plant workers, their household members, and community residents in North Carolina. Participants responded to a questionnaire and provided a nasal swab. Swabs were tested for S. aureus, and isolates were tested for antimicrobial susceptibility and subjected to multilocus sequence typing. Results: The prevalence of S. aureus was 21.6%, 30.2%, and 22.5% among 162 workers, 63 household members, and 111 community residents, respectively. The overall prevalence of MDRSA and MRSA tested by disk diffusion was 6.9% and 4.8%, respectively. The adjusted prevalence of MDRSA among workers was 1.96 times (95% CI: 0.71, 5.45) the prevalence in community residents. The adjusted average number of antimicrobial classes to which S. aureus isolates from workers were resistant was 2.54 times (95% CI: 1.16, 5.56) the number among isolates from community residents. We identified two MDRSA isolates and one MRSA isolate from workers as sequence type 398, a type associated with exposure to livestock. Conclusions: Although the prevalence of S. aureus and MRSA was similar in hog slaughter/processing plant workers and their household and community members, S. aureus isolates from workers were resistant to a greater number of antimicrobial classes. These findings may be related to the nontherapeutic use of antimicrobials in food

  7. Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types

    PubMed Central

    Jing, Panpan; Wang, Dan; Zhu, Chunwu; Chen, Jiquan

    2016-01-01

    Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT) and low night temperature (LNT) on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs) have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C3, C4, and CAM), growth forms (herbaceous, woody), and economic purposes (crop, non-crop). We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are critical for

  8. Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stermer, D.L.; Gale, L.G.

    1989-03-01

    Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less

  9. Hydrogen production by the solar-powered hybrid sulfur process: Analysis of the integration of the CSP and chemical plants in selected scenarios

    NASA Astrophysics Data System (ADS)

    Liberatore, Raffaele; Lanchi, Michela; Turchetti, Luca

    2016-05-01

    The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). A significant part of the project activities are devoted to the analysis and optimization of the integration of the solar power plant with the chemical, hydrogen production plant. This work reports a part of the results obtained in such research activity. The analysis presented in this work builds on previous process simulations used to determine the energy requirements of the hydrogen production plant in terms of electric power, medium (<550°C) and high (>550°C) temperature heat. For the supply of medium temperature (MT) heat, a parabolic trough CSP plant using molten salts as heat transfer and storage medium is considered. A central receiver CSP (Concentrated Solar Power) plant is considered to provide high temperature (HT) heat, which is only needed for sulfuric acid decomposition. Finally, electric power is provided by a power block included in the MT solar plant and/or drawn from the grid, depending on the scenario considered. In particular, the analysis presented here focuses on the medium temperature CSP plant, possibly combined with a power block. Different scenarios were analysed by considering plants with different combinations of geographical location and sizing criteria.

  10. Asbestos related diseases among workers of asbestos processing plants in relation to type of production and asbestos use.

    PubMed

    Szeszenia-Dąbrowska, Neonila; Świątkowska, Beata; Sobala, Wojciech; Szubert, Zuzanna; Wilczyńska, Urszula

    2015-01-01

    Asbestos dust is one of the most dangerous pneumoconiotic and carcinogenic agents. The aim of this study was to assess the occurrence of asbestosis and pleural mesothelioma, depending on asbestos consumption and the type of manufactured products, among former asbestos workers in Poland. The study subjects included employees of 18 large state-owned asbestos processing enterprises operating in the Polish market in 1945-1998. The study is based on data obtained from asbestos company records and the Central Register of Occupational Diseases data on the cases of asbestosis and mesothelioma for the period from 1970 till 2012 as well as data from Amiantus Programme. The analysis was performed for 5 sectors comprising plants classified according to the products manufactured and applied production technology. In the study period, 2160 cases of asbestosis and 138 cases of mesothelioma were reported. The plants processed a total of about 2 million tons of asbestos, including about 7.5% of crocidolite. Total asbestosis consumption was a strong predictor of the rate of asbestosis incidence (R2 = 0.68, p = 0.055). The highest risk occurrence of asbestosis was observed in the production of textiles and sealing products. Mesothelioma occurred only in plants where crocidolite had been ever processed. Total asbestos consumption was a strong predictor of the rate of asbestosis incidence. The observation confirms the relationship between exposure to crocidolite and the occurrence of mesothelioma, regardless of the manufactured products, and suggests the absence of such a link for the total volume of asbestos consumption.

  11. The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants.

    PubMed

    Schlegelová, J; Babák, V; Holasová, M; Dendis, M

    2008-01-01

    Isolates from the "farm to fork" samples (182 isolates from 2779 samples) were examined genotypically (icaAB genes) and phenotypically (in vitro biofilm formation, typical growth on Congo red agar; CRA) with the aim to assess the risk of penetration of virulent strains of Staphylococcus epidermidis into the food chain. The contamination of meat and milk products was significantly higher in comparison with raw materials. Contamination of contact surfaces in the meat-processing plants was significantly lower than that of contact surfaces in the dairy plants. The ica genes (which precondition the biofilm formation) were concurrently detected in 20 isolates that also showed a typical growth on CRA. Two ica operon-negative isolates produced biofilm in vitro but perhaps by an ica-independent mechanism. The surfaces in the dairy plants and the milk products were more frequently contaminated with ica operon-positive strains (2.3 and 1.2 % samples) than the other sample types (0-0.6 % samples).

  12. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases.

    PubMed

    Tomecki, Rafal; Sikorski, Pawel J; Zakrzewska-Placzek, Monika

    2017-07-01

    Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans. © 2017 Federation of European Biochemical Societies.

  13. Design and operation of a pilot-plant for the processing of sugarcane juice into sugar at the Southern Regional Research Center in Louisiana

    USDA-ARS?s Scientific Manuscript database

    A pilot-plant facility to process sugarcane juice into sugar and molasses has been developed under a limited budget at the Southern Regional Research Center of the United States Department of Agriculture in New Orleans, Louisiana. The batch plant (27.9 m2) includes juice heating, clarification, eva...

  14. Microbiological hazard analysis of ready-to-eat meats processed at a food plant in Trinidad, West Indies.

    PubMed

    Syne, Stacey-Marie; Ramsubhag, Adash; Adesiyun, Abiodun A

    2013-01-01

    A bacteriological assessment of the environment and food products at different stages of processing was conducted during the manufacture of ready-to-eat (RTE) chicken franks, chicken bologna and bacon at a large meat processing plant in Trinidad, West Indies. Samples of air, surfaces (swabs), raw materials, and in-process and finished food products were collected during two separate visits for each product type and subjected to qualitative or quantitative analysis for bacterial zoonotic pathogens and fecal indicator organisms. Staphylococcus aureus was the most common pathogen detected in pre-cooked products (mean counts = 0.66, 1.98, and 1.95 log10CFU/g for franks, bologna, and bacon, respectively). This pathogen was also found in unacceptable levels in 4 (16.7%) of 24 post-cooked samples. Fifty percent (10 of 20) of pre-cooked mixtures of bacon and bologna were contaminated with Listeria spp., including four with L. monocytogenes. Pre-cooked mixtures of franks and bologna also contained E. coli (35 and 0.72 log10 CFU/g, respectively) while 5 (12.5%) of 40 pre-cooked mixtures of chicken franks had Salmonella spp. Aerobic bacteria exceeded acceptable international standards in 46 (82.1%) of 56 pre-cooked and 6 (16.7%) of 36 post-cooked samples. Both pre-and post-cooking air and surfaces had relatively high levels of aerobic bacteria, Staphylococcus aureus and coliforms, including equipment and gloves of employees. A drastic decrease in aerobic counts and Staphylococcus aureus levels following heat treatment and subsequent increase in counts of these bacteria are suggestive of post-cooking contamination. A relatively high level of risk exists for microbial contamination of RTE meats at the food plant investigated and there is a need for enhancing the quality assurance programs to ensure the safety of consumers of products manufactured at this plant.

  15. Microbiological hazard analysis of ready-to-eat meats processed at a food plant in Trinidad, West Indies

    PubMed Central

    Syne, Stacey-Marie; Ramsubhag, Adash; Adesiyun, Abiodun A.

    2013-01-01

    Background A bacteriological assessment of the environment and food products at different stages of processing was conducted during the manufacture of ready-to-eat (RTE) chicken franks, chicken bologna and bacon at a large meat processing plant in Trinidad, West Indies. Methods Samples of air, surfaces (swabs), raw materials, and in-process and finished food products were collected during two separate visits for each product type and subjected to qualitative or quantitative analysis for bacterial zoonotic pathogens and fecal indicator organisms. Results Staphylococcus aureus was the most common pathogen detected in pre-cooked products (mean counts = 0.66, 1.98, and 1.95 log10CFU/g for franks, bologna, and bacon, respectively). This pathogen was also found in unacceptable levels in 4 (16.7%) of 24 post-cooked samples. Fifty percent (10 of 20) of pre-cooked mixtures of bacon and bologna were contaminated with Listeria spp., including four with L. monocytogenes. Pre-cooked mixtures of franks and bologna also contained E. coli (35 and 0.72 log10 CFU/g, respectively) while 5 (12.5%) of 40 pre-cooked mixtures of chicken franks had Salmonella spp. Aerobic bacteria exceeded acceptable international standards in 46 (82.1%) of 56 pre-cooked and 6 (16.7%) of 36 post-cooked samples. Both pre-and post-cooking air and surfaces had relatively high levels of aerobic bacteria, Staphylococcus aureus and coliforms, including equipment and gloves of employees. A drastic decrease in aerobic counts and Staphylococcus aureus levels following heat treatment and subsequent increase in counts of these bacteria are suggestive of post-cooking contamination. Conclusion A relatively high level of risk exists for microbial contamination of RTE meats at the food plant investigated and there is a need for enhancing the quality assurance programs to ensure the safety of consumers of products manufactured at this plant. PMID:23878681

  16. 7 CFR 1000.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows: (a...

  17. 7 CFR 1000.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows: (a...

  18. 7 CFR 1000.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows: (a...

  19. 7 CFR 1000.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows: (a...

  20. Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics.

    PubMed

    Popescu, George V; Noutsos, Christos; Popescu, Sorina C

    2016-01-01

    In modern plant biology, progress is increasingly defined by the scientists' ability to gather and analyze data sets of high volume and complexity, otherwise known as "big data". Arguably, the largest increase in the volume of plant data sets over the last decade is a consequence of the application of the next-generation sequencing and mass-spectrometry technologies to the study of experimental model and crop plants. The increase in quantity and complexity of biological data brings challenges, mostly associated with data acquisition, processing, and sharing within the scientific community. Nonetheless, big data in plant science create unique opportunities in advancing our understanding of complex biological processes at a level of accuracy without precedence, and establish a base for the plant systems biology. In this chapter, we summarize the major drivers of big data in plant science and big data initiatives in life sciences with a focus on the scope and impact of iPlant, a representative cyberinfrastructure platform for plant science.

  1. Methods of saccharification of polysaccharides in plants

    DOEpatents

    Howard, John; Fake, Gina

    2014-04-29

    Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.

  2. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a scientist inserts Apogee wheat seeds into the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  3. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepare Apogee wheat seeds for the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  4. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists are preparing the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite has been packed down in the base and coverings are being secured to seal the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  5. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepared the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  6. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Seated at right is Susan Manning-Roach, a quality assurance specialist on the Engineering Services Contract. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  7. Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant 'Zinke' effects.

    PubMed

    Waring, Bonnie G; Álvarez-Cansino, Leonor; Barry, Kathryn E; Becklund, Kristen K; Dale, Sarah; Gei, Maria G; Keller, Adrienne B; Lopez, Omar R; Markesteijn, Lars; Mangan, Scott; Riggs, Charlotte E; Rodríguez-Ronderos, María Elizabeth; Segnitz, R Max; Schnitzer, Stefan A; Powers, Jennifer S

    2015-08-07

    Plant species leave a chemical signature in the soils below them, generating fine-scale spatial variation that drives ecological processes. Since the publication of a seminal paper on plant-mediated soil heterogeneity by Paul Zinke in 1962, a robust literature has developed examining effects of individual plants on their local environments (individual plant effects). Here, we synthesize this work using meta-analysis to show that plant effects are strong and pervasive across ecosystems on six continents. Overall, soil properties beneath individual plants differ from those of neighbours by an average of 41%. Although the magnitudes of individual plant effects exhibit weak relationships with climate and latitude, they are significantly stronger in deserts and tundra than forests, and weaker in intensively managed ecosystems. The ubiquitous effects of plant individuals and species on local soil properties imply that individual plant effects have a role in plant-soil feedbacks, linking individual plants with biogeochemical processes at the ecosystem scale. © 2015 The Author(s).

  8. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs.

    PubMed

    Barber, Jonathan L; Thomas, Gareth O; Kerstiens, Gerhard; Jones, Kevin C

    2004-01-01

    Air-vegetation exchange of POPs is an important process controlling the entry of POPs into terrestrial food chains, and may also have a significant effect on the global movement of these compounds. Many factors affect the air-vegetation transfer including: the physicochemical properties of the compounds of interest; environmental factors such as temperature, wind speed, humidity and light conditions; and plant characteristics such as functional type, leaf surface area, cuticular structure, and leaf longevity. The purpose of this review is to quantify the effects these differences might have on air/plant exchange of POPs, and to point out the major gaps in the knowledge of this subject that require further research. Uptake mechanisms are complicated, with the role of each factor in controlling partitioning, fate and behaviour process still not fully understood. Consequently, current models of air-vegetation exchange do not incorporate variability in these factors, with the exception of temperature. These models instead rely on using average values for a number of environmental factors (e.g. plant lipid content, surface area), ignoring the large variations in these values. The available models suggest that boundary layer conductance is of key importance in the uptake of POPs, although large uncertainties in the cuticular pathway prevents confirmation of this with any degree of certainty, and experimental data seems to show plant-side resistance to be important. Models are usually based on the assumption that POP uptake occurs through the lipophilic cuticle which covers aerial surfaces of plants. However, some authors have recently attached greater importance to the stomatal route of entry into the leaf for gas phase compounds. There is a need for greater mechanistic understanding of air-plant exchange and the 'scaling' of factors affecting it. The review also suggests a number of key variables that researchers should measure in their experiments to allow comparisons

  9. Modeling Production Plant Forming Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, M; Becker, R; Couch, R

    2004-09-22

    Engineering has simulation tools and experience in modeling forming processes. Y-12 personnel have expressed interest in validating our tools and experience against their manufacturing process activities such as rolling, casting, and forging etc. We have demonstrated numerical capabilities in a collaborative DOE/OIT project with ALCOA that is nearing successful completion. The goal was to use ALE3D to model Alcoa's slab rolling process in order to demonstrate a computational tool that would allow Alcoa to define a rolling schedule that would minimize the probability of ingot fracture, thus reducing waste and energy consumption. It is intended to lead to long-term collaborationmore » with Y-12 and perhaps involvement with other components of the weapons production complex. Using simulations to aid in design of forming processes can: decrease time to production; reduce forming trials and associated expenses; and guide development of products with greater uniformity and less scrap.« less

  10. Global pattern of plant utilization across different organisms: Does plant apparency or plant phylogeny matter?

    PubMed

    Dai, Xiaohua; Zhang, Wei; Xu, Jiasheng; Duffy, Kevin J; Guo, Qingyun

    2017-04-01

    The present study is the first to consider human and nonhuman consumers together to reveal several general patterns of plant utilization. We provide evidence that at a global scale, plant apparency and phylogenetic isolation can be important predictors of plant utilization and consumer diversity. Using the number of species or genera or the distribution area of each plant family as the island "area" and the minimum phylogenetic distance to common plant families as the island "distance", we fitted presence-area relationships and presence-distance relationships with a binomial GLM (generalized linear model) with a logit link. The presence-absence of consumers among each plant family strongly depended on plant apparency (family size and distribution area); the diversity of consumers increased with plant apparency but decreased with phylogenetic isolation. When consumers extended their host breadth, unapparent plants became more likely to be used. Common uses occurred more often on common plants and their relatives, showing higher host phylogenetic clustering than uncommon uses. On the contrary, highly specialized uses might be related to the rarity of plant chemicals and were therefore very species-specific. In summary, our results provide a global illustration of plant-consumer combinations and reveal several general patterns of plant utilization across humans, insects and microbes. First, plant apparency and plant phylogenetic isolation generally govern plant utilization value, with uncommon and isolated plants suffering fewer parasites. Second, extension of the breadth of utilized hosts helps explain the presence of consumers on unapparent plants. Finally, the phylogenetic clustering structure of host plants is different between common uses and uncommon uses. The strength of such consistent plant utilization patterns across a diverse set of usage types suggests that the persistence and accumulation of consumer diversity and use value for plant species are

  11. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation

    PubMed Central

    De Vos, Dirk; Dzhurakhalov, Abdiravuf; Stijven, Sean; Klosiewicz, Przemyslaw; Beemster, Gerrit T. S.; Broeckhove, Jan

    2017-01-01

    Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io. PMID:28523006

  12. Poultry Plant Noise Control

    NASA Astrophysics Data System (ADS)

    1982-01-01

    A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.

  13. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, several varieties of Arabidopsis seeds, commonly known as thale cress, are being prepared for securing in the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  14. Machine vision extracted plant movement for early detection of plant water stress.

    PubMed

    Kacira, M; Ling, P P; Short, T H

    2002-01-01

    A methodology was established for early, non-contact, and quantitative detection of plant water stress with machine vision extracted plant features. Top-projected canopy area (TPCA) of the plants was extracted from plant images using image-processing techniques. Water stress induced plant movement was decoupled from plant diurnal movement and plant growth using coefficient of relative variation of TPCA (CRV[TPCA)] and was found to be an effective marker for water stress detection. Threshold value of CRV(TPCA) as an indicator of water stress was determined by a parametric approach. The effectiveness of the sensing technique was evaluated against the timing of stress detection by an operator. Results of this study suggested that plant water stress detection using projected canopy area based features of the plants was feasible.

  15. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.

    PubMed

    Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan

    2018-01-01

    A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.

  16. Automated production of plant-based vaccines and pharmaceuticals.

    PubMed

    Wirz, Holger; Sauer-Budge, Alexis F; Briggs, John; Sharpe, Aaron; Shu, Sudong; Sharon, Andre

    2012-12-01

    A fully automated "factory" was developed that uses tobacco plants to produce large quantities of vaccines and other therapeutic biologics within weeks. This first-of-a-kind factory takes advantage of a plant viral vector technology to produce specific proteins within the leaves of rapidly growing plant biomass. The factory's custom-designed robotic machines plant seeds, nurture the growing plants, introduce a viral vector that directs the plant to produce a target protein, and harvest the biomass once the target protein has accumulated in the plants-all in compliance with Food and Drug Administration (FDA) guidelines (e.g., current Good Manufacturing Practices). The factory was designed to be time, cost, and space efficient. The plants are grown in custom multiplant trays. Robots ride up and down a track, servicing the plants and delivering the trays from the lighted, irrigated growth modules to each processing station as needed. Using preprogrammed robots and processing equipment eliminates the need for human contact, preventing potential contamination of the process and economizing the operation. To quickly produce large quantities of protein-based medicines, we transformed a laboratory-based biological process and scaled it into an industrial process. This enables quick, safe, and cost-effective vaccine production that would be required in case of a pandemic.

  17. TCP three-way handshake: linking developmental processes with plant immunity.

    PubMed

    Lopez, Jessica A; Sun, Yali; Blair, Peter B; Mukhtar, M Shahid

    2015-04-01

    The TCP gene family encodes plant-specific transcription factors involved in growth and development. Equally important are the interactions between TCP factors and other pathways extending far beyond development, as they have been found to regulate a variety of hormonal pathways and signaling cascades. Recent advances reveal that TCP factors are targets of pathogenic effectors and are likely to play a vital role in plant immunity. Our focus is on reviewing the involvement of TCP in known pathways and shedding light on other linkages in the nexus of plant immunity centered around TCP factors with an emphasis on the convergence of effectors, interconnected hormonal networks, utility of the circadian clock, and the potential mechanisms by which pathogen defense may occur. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Quo vadis plant hormone analysis?

    PubMed

    Tarkowská, Danuše; Novák, Ondřej; Floková, Kristýna; Tarkowski, Petr; Turečková, Veronika; Grúz, Jiří; Rolčík, Jakub; Strnad, Miroslav

    2014-07-01

    Plant hormones act as chemical messengers in the regulation of myriads of physiological processes that occur in plants. To date, nine groups of plant hormones have been identified and more will probably be discovered. Furthermore, members of each group may participate in the regulation of physiological responses in planta both alone and in concert with members of either the same group or other groups. The ideal way to study biochemical processes involving these signalling molecules is 'hormone profiling', i.e. quantification of not only the hormones themselves, but also their biosynthetic precursors and metabolites in plant tissues. However, this is highly challenging since trace amounts of all of these substances are present in highly complex plant matrices. Here, we review advances, current trends and future perspectives in the analysis of all currently known plant hormones and the associated problems of extracting them from plant tissues and separating them from the numerous potentially interfering compounds.

  19. Campylobacter jejuni survival in a poultry processing plant environment.

    PubMed

    García-Sánchez, Lourdes; Melero, Beatriz; Jaime, Isabel; Hänninen, Marja-Liisa; Rossi, Mirko; Rovira, Jordi

    2017-08-01

    Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Consumption of poultry, especially chicken's meat is considered the most common route for human infection. The aim of this study was to determine if Campylobacter spp. might persist in the poultry plant environment before and after cleaning and disinfection procedures and the distribution and their genetic relatedness. During one month from a poultry plant were analyzed a total of 494 samples -defeathering machine, evisceration machine, floor, sink, conveyor belt, shackles and broiler meat- in order to isolate C. jejuni and C. coli. Results showed that C. jejuni and C. coli prevalence was 94.5% and 5.5% respectively. Different typing techniques as PFGE, MLST established seven C. jejuni genotypes. Whole genome MLST strongly suggest that highly clonal populations of C. jejuni can survive in adverse environmental conditions, even after cleaning and disinfection, and persist for longer periods than previous thought (at least 21 days) in the poultry plant environment. Even so, it might act as a source of contamination independently of the contamination level of the flock entering the slaughter line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria

    PubMed Central

    Balmer, Yves; Vensel, William H.; Tanaka, Charlene K.; Hurkman, William J.; Gelhaye, Eric; Rouhier, Nicolas; Jacquot, Jean-Pierre; Manieri, Wanda; Schürmann, Peter; Droux, Michel; Buchanan, Bob B.

    2004-01-01

    Mitochondria contain thioredoxin (Trx), a regulatory disulfide protein, and an associated flavoenzyme, NADP/Trx reductase, which provide a link to NADPH in the organelle. Unlike animal and yeast counterparts, the function of Trx in plant mitochondria is largely unknown. Accordingly, we have applied recently devised proteomic approaches to identify soluble Trx-linked proteins in mitochondria isolated from photosynthetic (pea and spinach leaves) and heterotrophic (potato tubers) sources. Application of the mitochondrial extracts to mutant Trx affinity columns in conjunction with proteomics led to the identification of 50 potential Trx-linked proteins functional in 12 processes: photorespiration, citric acid cycle and associated reactions, lipid metabolism, electron transport, ATP synthesis/transformation, membrane transport, translation, protein assembly/folding, nitrogen metabolism, sulfur metabolism, hormone synthesis, and stress-related reactions. Almost all of these targets were also identified by a fluorescent gel electrophoresis procedure in which reduction by Trx can be observed directly. In some cases, the processes targeted by Trx depended on the source of the mitochondria. The results support the view that Trx acts as a sensor and enables mitochondria to adjust key reactions in accord with prevailing redox state. These and earlier findings further suggest that, by sensing redox in chloroplasts and mitochondria, Trx enables the two organelles of photosynthetic tissues to communicate by means of a network of transportable metabolites such as dihydroxyacetone phosphate, malate, and glycolate. In this way, light absorbed and processed by means of chlorophyll can be perceived and function in regulating fundamental mitochondrial processes akin to its mode of action in chloroplasts. PMID:14983062

  1. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria.

    PubMed

    Balmer, Yves; Vensel, William H; Tanaka, Charlene K; Hurkman, William J; Gelhaye, Eric; Rouhier, Nicolas; Jacquot, Jean-Pierre; Manieri, Wanda; Schürmann, Peter; Droux, Michel; Buchanan, Bob B

    2004-02-24

    Mitochondria contain thioredoxin (Trx), a regulatory disulfide protein, and an associated flavoenzyme, NADP/Trx reductase, which provide a link to NADPH in the organelle. Unlike animal and yeast counterparts, the function of Trx in plant mitochondria is largely unknown. Accordingly, we have applied recently devised proteomic approaches to identify soluble Trx-linked proteins in mitochondria isolated from photosynthetic (pea and spinach leaves) and heterotrophic (potato tubers) sources. Application of the mitochondrial extracts to mutant Trx affinity columns in conjunction with proteomics led to the identification of 50 potential Trx-linked proteins functional in 12 processes: photorespiration, citric acid cycle and associated reactions, lipid metabolism, electron transport, ATP synthesis/transformation, membrane transport, translation, protein assembly/folding, nitrogen metabolism, sulfur metabolism, hormone synthesis, and stress-related reactions. Almost all of these targets were also identified by a fluorescent gel electrophoresis procedure in which reduction by Trx can be observed directly. In some cases, the processes targeted by Trx depended on the source of the mitochondria. The results support the view that Trx acts as a sensor and enables mitochondria to adjust key reactions in accord with prevailing redox state. These and earlier findings further suggest that, by sensing redox in chloroplasts and mitochondria, Trx enables the two organelles of photosynthetic tissues to communicate by means of a network of transportable metabolites such as dihydroxyacetone phosphate, malate, and glycolate. In this way, light absorbed and processed by means of chlorophyll can be perceived and function in regulating fundamental mitochondrial processes akin to its mode of action in chloroplasts.

  2. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less

  3. Plant features measurements for robotics

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1989-01-01

    Initial studies of the technical feasibility of using machine vision and color image processing to measure plant health were performed. Wheat plants were grown in nutrient solutions deficient in nitrogen, potassium, and iron. An additional treatment imposed water stress on wheat plants which received a full complement of nutrients. The results for juvenile (less than 2 weeks old) wheat plants show that imaging technology can be used to detect nutrient deficiencies. The relative amount of green color in a leaf declined with increased water stress. The absolute amount of green was higher for nitrogen deficient leaves compared to the control plants. Relative greenness was lower for iron deficient leaves, but the absolute green values were higher. The data showed patterns across the leaf consistent with visual symptons. The development of additional color image processing routines to recognize these patterns would improve the performance of this sensor of plant health.

  4. Plant succession and approaches to community restoration

    Treesearch

    Bruce A. Roundy

    2005-01-01

    The processes of vegetation change over time, or plant succession, are also the processes involved in plant community restoration. Restoration efforts attempt to use designed disturbance, seedbed preparation and sowing methods, and selection of adapted and compatible native plant materials to enhance ecological function. The large scale of wildfires and weed invasion...

  5. Higher Plants in life support systems: design of a model and plant experimental compartment

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles

    The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi

  6. Hydrothermal processing of biomass from invasive aquatic plants

    Treesearch

    W. James Catallo; Todd F. Shupe; Thomas L. Eberhardt

    2008-01-01

    The purpose of this study was to examine the hydrothermal (HT) treatment of three invasive aquatic plants (i.e., Lemna sp., Hydrilla sp., and Eichhornia sp.) with respect to the generation of semi-volatile hydrocarbon product mixtures and biomass volume reduction. Identical HT treatments yielded similar semi-...

  7. Plant-mycorrhizal interactions mediate plant community coexistence by altering resource demand.

    PubMed

    Jiang, Jiang; Moore, Jessica A M; Priyadarshi, Anupam; Classen, Aimée T

    2017-01-01

    As the diversity of plants increases in an ecosystem, so does resource competition for soil nutrients, a process that mycorrhizal fungi can mediate. The influence of mycorrhizal fungi on plant biodiversity likely depends on the strength of the symbiosis between the plant and fungi, the differential plant growth responses to mycorrhizal inoculation, and the transfer rate of nutrients from the fungus to plant. However, our current understanding of how nutrient-plant-mycorrhizal interactions influence plant coexistence is conceptual and thus lacks a unified quantitative framework. To quantify the conditions of plant coexistence mediated by mycorrhizal fungi, we developed a mechanistic resource competition model that explicitly included plant-mycorrhizal symbioses. We found that plant-mycorrhizal interactions shape plant coexistence patterns by creating a tradeoff in resource competition. Especially, a tradeoff in resource competition was caused by differential payback in the carbon resources that plants invested in the fungal symbiosis and/or by the stoichiometric constraints on plants that required additional, less-beneficial, resources to sustain growth. Our results suggested that resource availability and the variation in plant-mycorrhizal interactions act in concert to drive plant coexistence patterns. Applying our framework, future empirical studies should investigate plant-mycorrhizal interactions under multiple levels of resource availability. © 2016 by the Ecological Society of America.

  8. BEAP profiles as rapid test system for status analysis and early detection of process incidents in biogas plants.

    PubMed

    Refai, Sarah; Berger, Stefanie; Wassmann, Kati; Hecht, Melanie; Dickhaus, Thomas; Deppenmeier, Uwe

    2017-03-01

    A method was developed to quantify the performance of microorganisms involved in different digestion levels in biogas plants. The test system was based on the addition of butyrate (BCON), ethanol (ECON), acetate (ACON) or propionate (PCON) to biogas sludge samples and the subsequent analysis of CH 4 formation in comparison to control samples. The combination of the four values was referred to as BEAP profile. Determination of BEAP profiles enabled rapid testing of a biogas plant's metabolic state within 24 h and an accurate mapping of all degradation levels in a lab-scale experimental setup. Furthermore, it was possible to distinguish between specific BEAP profiles for standard biogas plants and for biogas reactors with process incidents (beginning of NH 4 + -N inhibition, start of acidification, insufficient hydrolysis and potential mycotoxin effects). Finally, BEAP profiles also functioned as a warning system for the early prediction of critical NH 4 + -N concentrations leading to a drop of CH 4 formation.

  9. Process optimization of helium cryo plant operation for SST-1 superconducting magnet system

    NASA Astrophysics Data System (ADS)

    Panchal, P.; Panchal, R.; Patel, R.; Mahesuriya, G.; Sonara, D.; Srikanth G, L. N.; Garg, A.; Christian, D.; Bairagi, N.; Sharma, R.; Patel, K.; Shah, P.; Nimavat, H.; Purwar, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-02-01

    Several plasma discharge campaigns have been carried out in steady state superconducting tokamak (SST-1). SST-1 has toroidal field (TF) and poloidal field (PF) superconducting magnet system (SCMS). The TF coils system is cooled to 4.5 - 4.8 K at 1.5 - 1.7 bar(a) under two phase flow condition using 1.3 kW helium cryo plant. Experience revealed that the PF coils demand higher pressure heads even at lower temperatures in comparison to TF coils because of its longer hydraulic path lengths. Thermal run away are observed within PF coils because of single common control valve for all PF coils in distribution system having non-uniform lengths. Thus it is routine practice to stop the cooling of PF path and continue only TF cooling at SCMS inlet temperature of ˜ 14 K. In order to achieve uniform cool down, different control logic is adopted to make cryo stable system. In adopted control logic, the SCMS are cooled down to 80 K at constant inlet pressure of 9 bar(a). After authorization of turbine A/B, the SCMS inlet pressure is gradually controlled by refrigeration J-T valve to achieve stable operation window for cryo system. This paper presents process optimization for cryo plant operation for SST-1 SCMS.

  10. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Jeffrey Richards, at left, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  11. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Jeffrey Richards, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  12. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a research scientist prepares a fixative which will be used to secure Arabidopsis seeds, commonly known as thale cress, inside the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  13. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Jeffrey Richards, a project science coordinator with URS Federal Services, uses a fixative to secure Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  14. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners

    PubMed Central

    Toruño, Tania Y.; Stergiopoulos, Ioannis; Coaker, Gitta

    2017-01-01

    Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks. PMID:27359369

  15. Chemical signaling involved in plant-microbe interactions.

    PubMed

    Chagas, Fernanda Oliveira; Pessotti, Rita de Cassia; Caraballo-Rodríguez, Andrés Mauricio; Pupo, Mônica Tallarico

    2018-03-05

    Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.

  16. Altered hydrologic and geomorphic processes and bottomland hardwood plant communities of the lower White River Basin

    USGS Publications Warehouse

    King, Sammy L.; Keim, Richard F.; Hupp, Cliff R.; Edwards, Brandon L.; Kroschel, Whitney A.; Johnson, Erin L.; Cochran, J. Wesley

    2016-09-12

    Determine stand establishment patterns of bottomland hardwoods within selected plant communities along three sections of the floodplain. This study provides baseline information on the current geomorphic and hydrologic conditions of the river and can assist in the interpretation of forest responses to past hydrologic and geomorphic processes. Understanding the implications for floodplain forests of geomorphic adjustment in the Lower Mississippi Alluvial Valley is key to managing the region’s valuable resources for a sustainable future.

  17. 76 FR 31171 - Importation of Plants for Planting; Establishing a Category of Plants for Planting Not Authorized...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ...We are amending the regulations to establish a new category of regulated articles in the regulations governing the importation of nursery stock, also known as plants for planting. This category will list taxa of plants for planting whose importation is not authorized pending pest risk analysis. If scientific evidence indicates that a taxon of plants for planting is a quarantine pest or a host of a quarantine pest, we will publish a notice that will announce our determination that the taxon is a quarantine pest or a host of a quarantine pest, cite the scientific evidence we considered in making this determination, and give the public an opportunity to comment on our determination. If we receive no comments that change our determination, the taxon will subsequently be added to the new category. We will allow any person to petition for a pest risk analysis to be conducted to consider whether to remove a taxon that has been added to the new category. After the pest risk analysis is completed, we will remove the taxon from the category and allow its importation subject to general requirements, allow its importation subject to specific restrictions, or prohibit its importation. We will consider applications for permits to import small quantities of germplasm from taxa whose importation is not authorized pending pest risk analysis, for experimental or scientific purposes under controlled conditions. This new category will allow us to take prompt action on evidence that the importation of a taxon of plants for planting poses a risk while continuing to allow for public participation in the process.

  18. Plant Study Guide.

    ERIC Educational Resources Information Center

    Brynildson, Inga

    Appropriate for secondary school botany instruction, this study guide focuses on the important roles of plants in human lives. Following a rationale for learning the basic skills of a botanist, separate sections discuss the process sunlight undergoes during photosynthesis, the flow of energy in the food chain, alternative plant lifestyles, plant…

  19. Modeling of solar polygeneration plant

    NASA Astrophysics Data System (ADS)

    Leiva, Roberto; Escobar, Rodrigo; Cardemil, José

    2017-06-01

    In this work, a exergoeconomic analysis of the joint production of electricity, fresh water, cooling and process heat for a simulated concentrated solar power (CSP) based on parabolic trough collector (PTC) with thermal energy storage (TES) and backup energy system (BS), a multi-effect distillation (MED) module, a refrigeration absorption module, and process heat module is carried out. Polygeneration plant is simulated in northern Chile in Crucero with a yearly total DNI of 3,389 kWh/m2/year. The methodology includes designing and modeling a polygeneration plant and applying exergoeconomic evaluations and calculating levelized cost. Solar polygeneration plant is simulated hourly, in a typical meteorological year, for different solar multiple and hour of storage. This study reveals that the total exergy cost rate of products (sum of exergy cost rate of electricity, water, cooling and heat process) is an alternative method to optimize a solar polygeneration plant.

  20. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    PubMed

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  1. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  2. Conflict minerals from the Democratic Republic of the Congo: global tantalum processing plants, a critical part of the tantalum supply chain

    USGS Publications Warehouse

    Papp, John F.

    2014-01-01

    Post-beneficiation processing plants (generally called smelters and refineries) for 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine). The determination of the source of origin is critical to the development of a complete and transparent conflict-free mineral supply chain. Tungsten processing plants were the subject of the first fact sheet in this series published by USGS NMIC in August 2014. Background information about historical conditions and multinational stakeholders’ voluntary due diligence guidance for minerals from conflict-affected and high-risk areas is presented in the tungsten fact sheet. This fact sheet, the second in a series about 3TG minerals, focuses on the tantalum supply chain by listing selected processors that produced tantalum materials commercially worldwide during 2013–14. It does not provide any information regarding the sources of material processed in these facilities.

  3. Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation.

    PubMed

    Rai, Krishna Kumar; Rai, Nagendra; Rai, Shashi Pandey

    2018-07-01

    Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  5. The Plant Phenology Ontology: A New Informatics Resource for Large-Scale Integration of Plant Phenology Data.

    PubMed

    Stucky, Brian J; Guralnick, Rob; Deck, John; Denny, Ellen G; Bolmgren, Kjell; Walls, Ramona

    2018-01-01

    Plant phenology - the timing of plant life-cycle events, such as flowering or leafing out - plays a fundamental role in the functioning of terrestrial ecosystems, including human agricultural systems. Because plant phenology is often linked with climatic variables, there is widespread interest in developing a deeper understanding of global plant phenology patterns and trends. Although phenology data from around the world are currently available, truly global analyses of plant phenology have so far been difficult because the organizations producing large-scale phenology data are using non-standardized terminologies and metrics during data collection and data processing. To address this problem, we have developed the Plant Phenology Ontology (PPO). The PPO provides the standardized vocabulary and semantic framework that is needed for large-scale integration of heterogeneous plant phenology data. Here, we describe the PPO, and we also report preliminary results of using the PPO and a new data processing pipeline to build a large dataset of phenology information from North America and Europe.

  6. 37 CFR 1.165 - Plant drawings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Plant drawings. 1.165 Section... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Plant Patents § 1.165 Plant drawings. (a) Plant patent drawings should be artistically and competently executed and must...

  7. 37 CFR 1.165 - Plant drawings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Plant drawings. 1.165 Section... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Plant Patents § 1.165 Plant drawings. (a) Plant patent drawings should be artistically and competently executed and must...

  8. 37 CFR 1.165 - Plant drawings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Plant drawings. 1.165 Section... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Plant Patents § 1.165 Plant drawings. (a) Plant patent drawings should be artistically and competently executed and must...

  9. 37 CFR 1.165 - Plant drawings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Plant drawings. 1.165 Section... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Plant Patents § 1.165 Plant drawings. (a) Plant patent drawings should be artistically and competently executed and must...

  10. 37 CFR 1.165 - Plant drawings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Plant drawings. 1.165 Section... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions Plant Patents § 1.165 Plant drawings. (a) Plant patent drawings should be artistically and competently executed and must...

  11. The role of plant hormones during grafting.

    PubMed

    Nanda, Amrit K; Melnyk, Charles W

    2018-01-01

    For millennia, people have cut and joined different plant tissues together through a process known as grafting. By creating a chimeric organism, desirable properties from two plants combine to enhance disease resistance, abiotic stress tolerance, vigour or facilitate the asexual propagation of plants. In addition, grafting has been extremely informative in science for studying and identifying the long-distance movement of molecules. Despite its increasing use in horticulture and science, how plants undertake the process of grafting remains elusive. Here, we discuss specifically the role of eight major plant hormones during the wound healing and vascular formation process, two phenomena involved in grafting. We furthermore present the roles of these hormones during graft formation and highlight knowledge gaps and future areas of interest for the field of grafting biology.

  12. Characterization of Salmonella enterica isolates from turkeys in commercial processing plants for resistance to antibiotics, disinfectants, and a growth promoter

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovars isolated from turkeys in commercial processing plants were characterized for susceptibility to antibiotics, disinfectants, disinfectant components, and the organoarsenical growth promotant 4-hydroxy-3-nitrophenylarsonic acid (3-NHPAA) and its metabolites NaAsO2 (As[III])...

  13. Carotenoid metabolism in plants

    USDA-ARS?s Scientific Manuscript database

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  14. A review for identification of initiating events in event tree development process on nuclear power plants

    NASA Astrophysics Data System (ADS)

    Riyadi, Eko H.

    2014-09-01

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  15. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages.

    PubMed

    Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K Johanna

    2015-10-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages

    PubMed Central

    Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K. Johanna

    2015-01-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2% ± 5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces. PMID:26231646

  17. Advanced Plant Habitat (APH)

    NASA Image and Video Library

    2017-03-16

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) with its first initial grow test in the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The taller plants pictured are dwarf wheat and the smaller plants are Arabidopsis. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  18. The prevalence of Salmonella from cheek meat and head trim in a pork processing plant in the United States

    USDA-ARS?s Scientific Manuscript database

    In a preliminary survey, a large pork processing plant in the United States was sampled bimonthly from January to July of 2015 to determine the prevalence, seasonality, and serotype diversity of Salmonella enterica (SE) isolated from cheek meat and head trim of swine carcasses. Each cheek meat and ...

  19. Methods of producing compounds from plant material

    DOEpatents

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  20. Methods of producing compounds from plant materials

    DOEpatents

    Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  1. Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny

    PubMed Central

    Barthélémy, Daniel; Caraglio, Yves

    2007-01-01

    Background and Aims The architecture of a plant depends on the nature and relative arrangement of each of its parts; it is, at any given time, the expression of an equilibrium between endogenous growth processes and exogenous constraints exerted by the environment. The aim of architectural analysis is, by means of observation and sometimes experimentation, to identify and understand these endogenous processes and to separate them from the plasticity of their expression resulting from external influences. Scope Using the identification of several morphological criteria and considering the plant as a whole, from germination to death, architectural analysis is essentially a detailed, multilevel, comprehensive and dynamic approach to plant development. Despite their recent origin, architectural concepts and analysis methods provide a powerful tool for studying plant form and ontogeny. Completed by precise morphological observations and appropriated quantitative methods of analysis, recent researches in this field have greatly increased our understanding of plant structure and development and have led to the establishment of a real conceptual and methodological framework for plant form and structure analysis and representation. This paper is a summarized update of current knowledge on plant architecture and morphology; its implication and possible role in various aspects of modern plant biology is also discussed. PMID:17218346

  2. Exo-metabolites of mycelial fungi isolated in production premises of cheese-making and meat-processing plants.

    PubMed

    Kozlovsky, A G; Zhelifonova, V P; Antipova, T V; Baskunov, B P; Ivanushkina, N E; Ozerskaya, S M

    2014-01-01

    Data were obtained on the species composition of mycelial fungi isolated from the air of workrooms and production premises in cheese-making and meat-processing plants. The strains studied were shown to be capable of producing various low molecular weight compounds. Many of them are mycotoxins such as α-cyclopiazonic acid (CPA), mycophenolic acid (MPA), citrinin, cladosporin, roquefortine and ergot alkaloids. The profiles of the secondary metabolites were used to elucidate the species' names of the isolated strains.

  3. Plants Study Guide.

    ERIC Educational Resources Information Center

    Brynildson, Inga

    This study quide is intended to provide students with information about the types and functions of plants, along with some individual learning activities. The guide contains sections about: (1) the contributions of plants to life on earth and the benefits they afford to humanity; (2) the processes of photosynthesis and respiration; (3) the flow of…

  4. Reduction of Iron-Oxide-Carbon Composites: Part II. Rates of Reduction of Composite Pellets in a Rotary Hearth Furnace Simulator

    NASA Astrophysics Data System (ADS)

    Halder, S.; Fruehan, R. J.

    2008-12-01

    A new ironmaking concept is being proposed that involves the combination of a rotary hearth furnace (RHF) with an iron-bath smelter. The RHF makes use of iron-oxide-carbon composite pellets as the charge material and the final product is direct-reduced iron (DRI) in the solid or molten state. This part of the research includes the development of a reactor that simulated the heat transfer in an RHF. The external heat-transport and high heating rates were simulated by means of infrared (IR) emitting lamps. The reaction rates were measured by analyzing the off-gas and computing both the amount of CO and CO2 generated and the degree of reduction. The reduction times were found to be comparable to the residence times observed in industrial RHFs. Both artificial ferric oxide (PAH) and naturally occurring hematite and taconite ores were used as the sources of iron oxide. Coal char and devolatilized wood charcoal were the reductants. Wood charcoal appeared to be a faster reductant than coal char. However, in the PAH-containing pellets, the reverse was found to be true because of heat-transfer limitations. For the same type of reductant, hematite-containing pellets were observed to reduce faster than taconite-containing pellets because of the development of internal porosity due to cracking and fissure formation during the Fe2O3-to-Fe3O4 transition. This is, however, absent during the reduction of taconite, which is primarily Fe3O4. The PAH-wood-charcoal pellets were found to undergo a significant amount of swelling at low-temperature conditions, which impeded the external heat transport to the lower layers. If the average degree of reduction targeted in an RHF is reduced from 95 to approximately 70 pct by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced 1.5 to 2 times. The use of a two- or three-layer bed was found to be superior to that of a single layer, for higher productivities.

  5. Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell.

    PubMed

    Schuhmann, Holger; Adamska, Iwona

    2012-05-01

    Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent serine endopeptidases found in almost every organism. Database searches revealed that 16 Deg paralogues are encoded by the genome of Arabidopsis thaliana, six of which were experimentally shown to be located in chloroplasts, one in peroxisomes, one in mitochondria and one in the nucleus. Two more Deg proteases are predicted to reside in chloroplasts, five in mitochondria (one of them with a dual chloroplastidial/mitochondrial localization) and the subcellular location of one protein is uncertain. This review summarizes the current knowledge on the role of Deg proteases in maintaining protein homeostasis and protein processing in various subcompartments of the plant cell. The chloroplast Deg proteases are the best examined so far, especially with respect to their role in the degradation of photodamaged photosynthetic proteins and in biogenesis of photosystem II (PSII). A combined action of thylakoid lumen and stroma Deg proteases in the primary cleavage of photodamaged D1 protein from PSII reaction centre is discussed on the basis of a recently resolved crystal structure of plant Deg1. The peroxisomal Deg protease is a processing enzyme responsible for the cleavage of N-terminal peroxisomal targeting signals (PTSs). A. thaliana mutants lacking this enzyme show reduced peroxisomal β-oxidation, indicating for the first time the impact of protein processing on peroxisomal functions in plants. Much less data is available for mitochondrial and nuclear Deg proteases. Based on the available expression data we hypothesize a role in general protein quality control and during acquired heat resistance. Copyright © Physiologia Plantarum 2011.

  6. Process identification of the SCR system of coal-fired power plant for de-NOx based on historical operation data.

    PubMed

    Li, Jian; Shi, Raoqiao; Xu, Chuanlong; Wang, Shimin

    2018-05-08

    The selective catalytic reduction (SCR) system, as one principal flue gas treatment method employed for the NO x emission control of the coal-fired power plant, is nonlinear and time-varying with great inertia and large time delay. It is difficult for the present SCR control system to achieve satisfactory performance with the traditional feedback and feedforward control strategies. Although some improved control strategies, such as the Smith predictor control and the model predictive control, have been proposed for this issue, a well-matched identification model is essentially required to realize a superior control of the SCR system. Industrial field experiment is an alternative way to identify the SCR system model in the coal-fired power plant. But it undesirably disturbs the operation system and is costly in time and manpower. In this paper, a process identification model of the SCR system is proposed and developed by applying the asymptotic method to the sufficiently excited data, selected from the original historical operation database of a 350 MW coal-fired power plant according to the condition number of the Fisher information matrix. Numerical simulations are carried out based on the practical historical operation data to evaluate the performance of the proposed model. Results show that the proposed model can efficiently achieve the process identification of the SCR system.

  7. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun

    2013-09-01

    Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.

  8. On-line condition monitoring applications in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastiemian, H. M.; Feltus, M. A.

    2006-07-01

    Existing signals from process instruments in nuclear power plants can be sampled while the plant is operating and analyzed to verify the static and dynamic performance of process sensors, identify process-to-sensor problems, detect instrument anomalies such as venturi fouling, measure the vibration of the reactor vessel and its internals, or detect thermal hydraulic anomalies within the reactor coolant system. These applications are important in nuclear plants to satisfy a variety of objectives such as: 1) meeting the plant technical specification requirements; 2) complying with regulatory regulations; 3) guarding against equipment and process degradation; 4) providing a means for incipient failuremore » detection and predictive maintenance; or 5) identifying the root cause of anomalies in equipment and plant processes. The technologies that are used to achieve these objectives are collectively referred to as 'on-line condition monitoring.' This paper presents a review of key elements of these technologies, provides examples of their use in nuclear power plants, and illustrates how they can be integrated into an on-line condition monitoring system for nuclear power plants. (authors)« less

  9. Modeling plant growth and development.

    PubMed

    Prusinkiewicz, Przemyslaw

    2004-02-01

    Computational plant models or 'virtual plants' are increasingly seen as a useful tool for comprehending complex relationships between gene function, plant physiology, plant development, and the resulting plant form. The theory of L-systems, which was introduced by Lindemayer in 1968, has led to a well-established methodology for simulating the branching architecture of plants. Many current architectural models provide insights into the mechanisms of plant development by incorporating physiological processes, such as the transport and allocation of carbon. Other models aim at elucidating the geometry of plant organs, including flower petals and apical meristems, and are beginning to address the relationship between patterns of gene expression and the resulting plant form.

  10. Cyber-physical system for a water reclamation plant: Balancing aeration, energy, and water quality to maintain process resilience

    NASA Astrophysics Data System (ADS)

    Zhu, Junjie

    Aeration accounts for a large fraction of energy consumption in conventional water reclamation plants (WRPs). Although process operations at older WRPs can satisfy effluent permit requirements, they typically operate with excess aeration. More effective process controls at older WRPs can be challenging as operators work to balance higher energy costs and more stringent effluent limitations while managing fluctuating loads. Therefore, understandings of process resilience or ability to quickly return to original operation conditions at a WRP are important. A state-of-art WRP should maintain process resilience to deal with different kinds of perturbations even after optimization of energy demands. This work was to evaluate the applicability and feasibility of cyber-physical system (CPS) for improving operation at Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) Calumet WRP. In this work, a process model was developed and used to better understand the conditions of current Calumet WRP, with additional valuable information from two dissolved oxygen field measurements. Meanwhile, a classification system was developed to reveal the pattern of historical influent scenario based on cluster analysis and cross-tabulation analysis. Based on the results from the classification, typical process control options were investigated. To ensure the feasibility of information acquisition, the reliability and flexibility of soft sensors were assessed to typical influent conditions. Finally, the process resilience was investigated to better balance influent perturbations, energy demands, and effluent quality for long-term operations. These investigations and evaluations show that although the energy demands change as the influent conditions and process controls. In general, aeration savings could be up to 50% from the level of current consumption; with a more complex process controls, the saving could be up to 70% in relatively steady-state conditions and at least 40

  11. Towards programmable plant genetic circuits.

    PubMed

    Medford, June I; Prasad, Ashok

    2016-07-01

    Synthetic biology enables the construction of genetic circuits with predictable gene functions in plants. Detailed quantitative descriptions of the transfer function or input-output function for genetic parts (promoters, 5' and 3' untranslated regions, etc.) are collected. These data are then used in computational simulations to determine their robustness and desired properties, thereby enabling the best components to be selected for experimental testing in plants. In addition, the process forms an iterative workflow which allows vast improvement to validated elements with sub-optimal function. These processes enable computational functions such as digital logic in living plants and follow the pathway of technological advances which took us from vacuum tubes to cell phones. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Assessing green-processing technologies for wet milling freshly hulled and germinated brown rice, leading to naturally fortified plant-based beverages

    USDA-ARS?s Scientific Manuscript database

    Rice milk beverages can well balanced nutrition. With healthier nutrition in consumer’s minds, national. Worldwide consumption/production of plant-based milk beverages are increasing. Much past research and invention was based on enzymatic conversion processes for starch that were uncomplicated be...

  13. Detection of Escherichia coli O157:H7 and Salmonella enterica in air and droplets at three U.S. commercial beef processing plants

    USDA-ARS?s Scientific Manuscript database

    Bacteria are known to be present in air at beef processing plants but published data regarding the prevalences of airborne Escherichia coli O157:H7 and Salmonella enterica are very limited. To determine if airborne pathogens were present in beef processing facilities, we placed sedimentation sponges...

  14. Diversity of microbiota found in coffee processing wastewater treatment plant.

    PubMed

    Pires, Josiane Ferreira; Cardoso, Larissa de Souza; Schwan, Rosane Freitas; Silva, Cristina Ferreira

    2017-11-13

    Cultivable microbiota presents in a coffee semi-dry processing wastewater treatment plant (WTP) was identified. Thirty-two operational taxonomic units (OTUs) were detected, these being 16 bacteria, 11 yeasts and 4 filamentous fungi. Bacteria dominated the microbial population (11.61 log CFU mL - 1 ), and presented the highest total diversity index when observed in the WTP aerobic stage (Shannon = 1.94 and Simpson = 0.81). The most frequent bacterial species were Enterobacter asburiae, Sphingobacterium griseoflavum, Chryseobacterium bovis, Serratia marcescens, Corynebacterium flavescens, Acetobacter orientalis and Acetobacter indonesiensis; these showed the largest total bacteria populations in the WTP, with approximately 10 log CFU mL - 1 . Yeasts were present at 7 log CFU mL - 1 of viable cells, with Hanseniaspora uvarum, Wickerhamomyces anomalus, Torulaspora delbrueckii, Saturnispora gosingensis, and Kazachstania gamospora being the prevalent species. Filamentous fungi were found at 6 log CFU mL - 1 , with Fusarium oxysporum the most populous species. The identified species have the potential to act as a biological treatment in the WTP, and the application of them for this purpose must be better studied.

  15. Exotic plant species attack revegetation plants in post-coal mining areas

    NASA Astrophysics Data System (ADS)

    Yusuf, Muhammad; Arisoesilaningsih, Endang

    2017-11-01

    This study aimed to explore some invasive exotic plant species that have the potential to disrupt the growth of revegetation plants in post-coal mining areas. This research was conducted in a revegetation area of PT, Amanah Anugerah Adi Mulia (A3M) Kintap site, South Borneo. Direct observation was carried out on some revegetation areas by observing the growth of revegetation plants disturbed by exotic plant species and the spread of exotic plant species. Based on observation, several invasive exotic plant species were identified including Mikania cordata, Centrosema pubescence, Calopogonium mucunoides, Mimosa pudica, Ageratum conyzoides, and Chromolaena odorata. These five plant species grew wild in the revegetation area and showed ability to disrupt the growth of other plants. In some tree species, such as Acacia mangium, Paraserianthes falcataria, M. cordata could inhibit the growth and even kill the trees through covering the tree canopy. So, the trees could not receive optimum sun light for photosynthesis processes. M. cordata was also observed to have the most widespread distribution. Several exotic plant species such as C. mucunoides, M. pudica, and A. conyzoides were observed to have deep root systems compared with plant species used for revegetation. This growth characteristic allowed exotic plant species to win the competition for nutrient absorption with other plant species.

  16. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process.

    PubMed

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2018-01-01

    Phytoremediation is a low cost technology based on the use of plants to remove a wide range of pollutants from the environment, including the insecticide DDT. However, some pollutants are known to enhance generation of reactive oxygen species (ROS), which can generate toxic effects on plants affecting the phytoremediation efficiency. This study aims to analyze the potential use of antioxidant responses as a measure of tolerance to select plants for phytoremediation purposes. Tomato and zucchini plants were grown for 15 days in soils contaminated with DDTs (DDT + DDE + DDD). Protein content, glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were measured in plant tissues. Exposure to DDTs did not affect protein content or CAT activity in any of the species. GST, GR and GPx activity showed different responses in exposed and control tomato plants. After DDTs exposure, tomato showed increased GR and GPX activity in stems and leaves, respectively, and a decrease in the GST activity in roots. As no effects were observed in zucchini, results suggest different susceptibility and/or defense mechanisms involved after pesticide exposure. Finally, both species differed also in terms of DDTs uptake and translocation. The knowledge about antioxidant responses induced by pesticides exposure could be helpful for planning phytoremediation strategies and for the selection of tolerant species according to particular scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Development Program of IS Process Pilot Test Plant for Hydrogen Production With High-Temperature Gas-Cooled Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Iwatsuki; Atsuhiko Terada; Hiroyuki Noguchi

    2006-07-01

    , continuous hydrogen production was demonstrated with the hydrogen production rate of about 30 NL/hr for one week using a bench-scale test apparatus made of glass. Based on the test results and know-how obtained through the bench-scale tests, a pilot test plant that can produce hydrogen of about 30 Nm{sup 3}/hr is being designed. The test plant will be fabricated with industrial materials such as glass coated steel, SiC ceramics etc, and operated under high pressure condition up to 2 MPa. The test plant will consist of a IS process plant and a helium gas (He) circulation facility (He loop). The He loop can simulate HTTR operation conditions, which consists of a 400 kW-electric heater for He hating, a He circulator and a steam generator working as a He cooler. In parallel to the design study, key components of the IS process such as the sulfuric acid (H{sub 2}SO{sub 4}) and the sulfur trioxide (SO{sub 3}) decomposers working under-high temperature corrosive environments have been designed and test-fabricated to confirm their fabricability. Also, other R and D's are under way such as corrosion, processing of HIx solutions. This paper describes present status of these activities. (authors)« less

  18. APC implementation in Chandra Asri - ethylene plant

    NASA Astrophysics Data System (ADS)

    Sidiq, Mochamad; Mustofa, Ali

    2017-05-01

    Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer

  19. Integration and scaling of UV-B radiation effects on plants: from molecular interactions to whole plant responses.

    PubMed

    Suchar, Vasile Alexandru; Robberecht, Ronald

    2016-07-01

    A process based model integrating the effects of UV-B radiation to molecular level processes and their consequences to whole plant growth and development was developed from key parameters in the published literature. Model simulations showed that UV-B radiation induced changes in plant metabolic and/or photosynthesis rates can result in plant growth inhibitions. The costs of effective epidermal UV-B radiation absorptive compounds did not result in any significant changes in plant growth, but any associated metabolic costs effectively reduced the potential plant biomass. The model showed significant interactions between UV-B radiation effects and temperature and any factor leading to inhibition of photosynthetic production or plant growth during the midday, but the effects were not cumulative for all factors. Vegetative growth were significantly delayed in species that do not exhibit reproductive cycles during a growing season, but vegetative growth and reproductive yield in species completing their life cycle in one growing season did not appear to be delayed more than 2-5 days, probably within the natural variability of the life cycles for many species. This is the first model to integrate the effects of increased UV-B radiation through molecular level processes and their consequences to whole plant growth and development.

  20. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, (far right) a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Assisting him is Jeffrey Richards, project science coordinator with SGT on the Engineering Services Contract (ESC). Seated in the foreground is Susan Manning-Roach, a quality assurance specialist, also with ESC. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  1. Two LNG plants slated for Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R.F.; Phannenstiel, L.L.

    1975-06-09

    Two large LNG plants are in the planning stage for Indonesia. The Badak field in East Kalimantan, Borneo, will have a 450 million ft/sup 3//day plant with a projected 20-y life. Gas will be liquefied in a 2-train plant employing the propane-MCR process, then stored in double-wall tanks having a total capacity of 2.4 million bbl. Arun field in North Sumatra will have an LNG plant capable of liquefying 1.2 billion ft/sup 3//day of gas in 6 trains, also using the propane-MCR process. LNG storage capacity at Arun will total 3.2 million bbl.

  2. Processing Pipeline of Sugarcane Spectral Response to Characterize the Fallen Plants Phenomenon

    NASA Astrophysics Data System (ADS)

    Solano, Agustín; Kemerer, Alejandra; Hadad, Alejandro

    2016-04-01

    Nowadays, in agronomic systems it is possible to make a variable management of inputs to improve the efficiency of agronomic industry and optimize the logistics of the harvesting process. In this way, it was proposed for sugarcane culture the use of remote sensing tools and computational methods to identify useful areas in the cultivated lands. The objective was to use these areas to make variable management of the crop. When at the moment of harvesting the sugarcane there are fallen stalks, together with them some strange material (vegetal or mineral) is collected. This strange material is not millable and when it enters onto the sugar mill it causes important looses of efficiency in the sugar extraction processes and affects its quality. Considering this issue, the spectral response of sugarcane plants in aerial multispectral images was studied. The spectral response was analyzed in different bands of the electromagnetic spectrum. Then, the aerial images were segmented to obtain homogeneous regions useful for producers to make decisions related to the use of inputs and resources according to the variability of the system (existence of fallen cane and standing cane). The obtained segmentation results were satisfactory. It was possible to identify regions with fallen cane and regions with standing cane with high precision rates.

  3. Bioassay of Plant Growth Regulator Activity on Aquatic Plants

    DTIC Science & Technology

    1990-07-01

    natural plant hormonal processes. Certain substi- tuted pyrimidine and triazole compounds have been found to inhibit the syn- thesis of gibberellin in...drove down the pH to levels that were injurious to the plants. For this reason, the bicarbonate buffer was added to both stock and experimental media...digital pH meter (Orion Model 701A/Digital, Orion Research, Inc., Cambridge, MA) equipped with a dis- solved oxygen (DO) electrode (Orion Model 97-08

  4. A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1.

    PubMed

    Yocgo, Rosita E; Geza, Ephifania; Chimusa, Emile R; Mazandu, Gaston K

    2017-11-23

    Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration. We developed a post-gene silencing bioinformatics (post-GSB) protocol which accounts for potential biases related to the disease phenotype datasets in assessing the contribution of the gene target to the plant defence response. The post-GSB protocol uses Gene Ontology semantic similarity and pathway dataset to generate enriched process regulatory network based on the functional degeneracy of the plant proteome to help understand the induced plant defence response. We applied this protocol to investigate the effect of the NPR1 gene silencing to changes in Arabidopsis thaliana plants following Pseudomonas syringae pathovar tomato strain DC3000 infection. Results indicated that the presence of a functionally active NPR1 reduced the plant's susceptibility to the infection, with about 99% of variability in Pseudomonas spore growth between npr1 mutant and wild-type samples. Moreover, the post-GSB protocol has revealed the coordinate action of target-associated genes and pathways through an enriched process regulatory network, summarizing the potential target-based induced disease resistance mechanism. This protocol can improve the characterization of the gene target and, potentially, elucidate induced defence response

  5. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  6. Efficacy of the core DNA barcodes in identifying processed and poorly conserved plant materials commonly used in South African traditional medicine

    PubMed Central

    Mankga, Ledile T.; Yessoufou, Kowiyou; Moteetee, Annah M.; Daru, Barnabas H.; van der Bank, Michelle

    2013-01-01

    Abstract Medicinal plants cover a broad range of taxa, which may be phylogenetically less related but morphologically very similar. Such morphological similarity between species may lead to misidentification and inappropriate use. Also the substitution of a medicinal plant by a cheaper alternative (e.g. other non-medicinal plant species), either due to misidentification, or deliberately to cheat consumers, is an issue of growing concern. In this study, we used DNA barcoding to identify commonly used medicinal plants in South Africa. Using the core plant barcodes, matK and rbcLa, obtained from processed and poorly conserved materials sold at the muthi traditional medicine market, we tested efficacy of the barcodes in species discrimination. Based on genetic divergence, PCR amplification efficiency and BLAST algorithm, we revealed varied discriminatory potentials for the DNA barcodes. In general, the barcodes exhibited high discriminatory power, indicating their effectiveness in verifying the identity of the most common plant species traded in South African medicinal markets. BLAST algorithm successfully matched 61% of the queries against a reference database, suggesting that most of the information supplied by sellers at traditional medicinal markets in South Africa is correct. Our findings reinforce the utility of DNA barcoding technique in limiting false identification that can harm public health. PMID:24453559

  7. Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2008-10-01

    SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types

  8. Minimising toxicity of cadmium in plants--role of plant growth regulators.

    PubMed

    Asgher, Mohd; Khan, M Iqbal R; Anjum, Naser A; Khan, Nafees A

    2015-03-01

    A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.

  9. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.

    PubMed

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a 'Gene Set Analysis' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/.

  10. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductionsmore » of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.« less

  11. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. The unit is being prepared for engineering development tests to see how the science will integrate with the various systems of the plant habitat. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  12. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. The base of the APH is being prepared for engineering development tests to see how the science will integrate with the various systems of the plant habitat. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  13. In-Situ Quantification of Microbial Processes Controlling Methane Emissions From Rice Plants

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Cho, R.; Zeyer, J. A.

    2011-12-01

    Methane is an important greenhouse gas contributing to global warming. Among other sources, rice (paddy) soils represent a major nonpoint source of biogenic methane. In flooded paddy soils methane is produced under anaerobic conditions. Conversely, methanotrophic microorganisms oxidize methane to carbon dioxide in the root zone of rice plants, thus reducing overall methane emissions to the atmosphere. We present a novel combination of methods to quantify methanogenesis and methane oxidation in paddy soils and to link methane turnover to net emissions of rice plants. To quantify methane turnover in the presence of high methane background concentrations, small-scale push-pull tests (PPTs) were conducted in paddy soils using stable isotope-labeled substrates. Deuterated acetate and 13-C bicarbonate were employed to discern and quantify acetoclastic and hydrogenotrophic methanogenesis, while 13-C methane was employed to quantify methane oxidation. During 2.5 hr-long PPTs, 140 mL of a test solution containing labeled substrates and nonreactive tracers (Ar, Br-) was injected into paddy soils of potted rice plants. After a short rest period, 480 mL of test solution/pore water mixture was extracted from the same location. Methane turnover was then computed from extraction-phase breakthrough curves of substrates and/or products, and nonreactive tracers. To link methane turnover to net emissions, methane emissions from paddy soils and rice plants were individually determined immediately preceding PPTs using static flux chambers. We will present results of a series of experiments conducted in four different potted rice plants. Preliminary results indicate substantial variability in methane turnover and net emission between different rice plants. The employed combination of methods appears to provide a robust means to quantitatively link methane turnover in paddy soils to net emissions from rice plants.

  14. Incidence and properties of Staphylococcus aureus associated with turkeys during processing and further-processing operations.

    PubMed

    Adams, B W; Mead, G C

    1983-12-01

    The incidence of Staphylococcus aureus on turkeys sampled at various stages of processing and further-processing was determined on four occasions at each of three different processing plants. For freshly-slaughtered birds, counts from neck skin varied from plant to plant over the range less than 10(2) to greater than 10(5)/g but in all cases the corresponding counts obtained from carcasses sampled after chilling rarely exceeded 10(3)/g and the same was true for samples of mechanically recovered meat (MRM), the final raw product examined. Despite the limited susceptibility of isolates from the different factories to typing by means of either standard human or poultry bacteriophages (55-94% untypable), evidence was obtained with the aid of biotyping for the presence of both human and animal-derived strains. However, some biotypes isolated from MRM were not detected at earlier stages of processing. At one processing plant, an "indigenous' type of S. aureus was clearly demonstrated. It occurred in high numbers in the defeathering machines (up to 10(5)/swab), was found on carcasses at all subsequent stages of processing over the survey period and was shown to survive routine cleaning and disinfection procedures. Isolates of this type produced unusually large amounts of extracellular "slime' in artificial culture. Two of the three processing plants yielded isolates which were enterotoxigenic. Of 55 strains from Plant 1, 60% produced enterotoxin C and all were of the "indigenous' type. In the case of Plant 2, only two type D- and one type F-producing strain were found.

  15. Incidence and properties of Staphylococcus aureus associated with turkeys during processing and further-processing operations.

    PubMed Central

    Adams, B. W.; Mead, G. C.

    1983-01-01

    The incidence of Staphylococcus aureus on turkeys sampled at various stages of processing and further-processing was determined on four occasions at each of three different processing plants. For freshly-slaughtered birds, counts from neck skin varied from plant to plant over the range less than 10(2) to greater than 10(5)/g but in all cases the corresponding counts obtained from carcasses sampled after chilling rarely exceeded 10(3)/g and the same was true for samples of mechanically recovered meat (MRM), the final raw product examined. Despite the limited susceptibility of isolates from the different factories to typing by means of either standard human or poultry bacteriophages (55-94% untypable), evidence was obtained with the aid of biotyping for the presence of both human and animal-derived strains. However, some biotypes isolated from MRM were not detected at earlier stages of processing. At one processing plant, an "indigenous' type of S. aureus was clearly demonstrated. It occurred in high numbers in the defeathering machines (up to 10(5)/swab), was found on carcasses at all subsequent stages of processing over the survey period and was shown to survive routine cleaning and disinfection procedures. Isolates of this type produced unusually large amounts of extracellular "slime' in artificial culture. Two of the three processing plants yielded isolates which were enterotoxigenic. Of 55 strains from Plant 1, 60% produced enterotoxin C and all were of the "indigenous' type. In the case of Plant 2, only two type D- and one type F-producing strain were found. PMID:6663063

  16. Improving Plant Nitrogen Use Efficiency through Alteration of Amino Acid Transport Processes1[OPEN

    PubMed Central

    Perchlik, Molly

    2017-01-01

    Improving the efficiency of nitrogen (N) uptake and utilization in plants could potentially increase crop yields while reducing N fertilization and, subsequently, environmental pollution. Within most plants, N is transported primarily as amino acids. In this study, pea (Pisum sativum) plants overexpressing AMINO ACID PERMEASE1 (AAP1) were used to determine if and how genetic manipulation of amino acid transport from source to sink affects plant N use efficiency. The modified plants were grown under low, moderate, or high N fertilization regimes. The results showed that, independent of the N nutrition, the engineered plants allocate more N via the vasculature to the shoot and seeds and produce more biomass and higher seed yields than wild-type plants. Dependent on the amount of N supplied, the AAP1-overexpressing plants displayed improved N uptake or utilization efficiency, or a combination of the two. They also showed significantly increased N use efficiency in N-deficient as well as in N-rich soils and, impressively, required half the amount of N to produce as many fruits and seeds as control plants. Together, these data support that engineering N allocation from source to sink presents an effective strategy to produce crop plants with improved productivity as well as N use efficiency in a range of N environments. PMID:28733388

  17. Alternative splicing in plant immunity.

    PubMed

    Yang, Shengming; Tang, Fang; Zhu, Hongyan

    2014-06-10

    Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.

  18. How To Produce and Characterize Transgenic Plants.

    ERIC Educational Resources Information Center

    Savka, Michael A.; Wang, Shu-Yi; Wilson, Mark

    2002-01-01

    Explains the process of establishing transgenic plants which is a very important tool in plant biology and modern agriculture. Produces transgenic plants with the ability to synthesize opines. (Contains 17 references.) (YDS)

  19. Impact of liquid fertilizers on plant growth, yield, fruit quality and fertigation management in an organic processing blackberry production system

    USDA-ARS?s Scientific Manuscript database

    The impact of organic fertilizer source on the growth, fruit quality, and yield of blackberry cultivars (‘Marion’ and ‘Black Diamond’) grown in machine-harvested, organic production systems for the processed market was evaluated from 2011-13. The planting was established in spring 2010 using approve...

  20. The Role of Endogenous Strigolactones and Their Interaction with ABA during the Infection Process of the Parasitic Weed Phelipanche ramosa in Tomato Plants

    PubMed Central

    Cheng, Xi; Floková, Kristýna; Bouwmeester, Harro; Ruyter-Spira, Carolien

    2017-01-01

    The root parasitic plant species Phelipanche ramosa, branched broomrape, causes severe damage to economically important crops such as tomato. Its seed germination is triggered by host-derived signals upon which it invades the host root. In tomato, strigolactones (SLs) are the main germination stimulants for P. ramosa. Therefore, the development of low SL-producing lines may be an approach to combat the parasitic weed problem. However, since SLs are also a plant hormone controlling many aspects of plant development, SL deficiency may also have an effect on post-germination stages of the infection process, during the parasite-host interaction. In this study, we show that SL-deficient tomato plants (Solanum lycopersicum; SlCCD8 RNAi lines), infected with pre-germinated P. ramosa seeds, display an increased infection level and faster development of the parasite, which suggests a positive role for SLs in the host defense against parasitic plant invasion. Furthermore, we show that SL-deficient tomato plants lose their characteristic SL-deficient phenotype during an infection with P. ramosa through a reduction in the number of internodes and the number and length of secondary branches. Infection with P. ramosa resulted in increased levels of abscisic acid (ABA) in the leaves and roots of both wild type and SL-deficient lines. Upon parasite infection, the level of the conjugate ABA-glucose ester (ABA-GE) also increased in leaves of both wild type and SL-deficient lines and in roots of one SL-deficient line. The uninfected SL-deficient lines had a higher leaf ABA-GE level than the wild type. Despite the high levels of ABA, stomatal aperture and water loss rate were not affected by parasite infection in the SL-deficient line, while in wild type tomato stomatal aperture and water loss increased upon infection. Future studies are needed to further underpin the role that SLs play in the interaction of hosts with parasitic plants and which other plant hormones interact with the