Science.gov

Sample records for tacstd2 mutation identified

  1. Novel TACSTD2 mutation in gelatinous drop-like corneal dystrophy

    PubMed Central

    Jongkhajornpong, Passara; Lekhanont, Kaevalin; Ueta, Mayumi; Kitazawa, Koji; Kawasaki, Satoshi; Kinoshita, Shigeru

    2015-01-01

    We identified a novel mutation in the tumor-associated calcium signal transducer 2 (TACSTD2) gene in a consanguineous Thai family with gelatinous drop-like corneal dystrophy (GDLD). All affected family members presented with an intense amyloid substance deposited on the cornea, which required surgical management. Genetic analysis of these individuals revealed a homozygous mutation c.79delC, in the TACSTD2 gene. Both parents of these individuals were unaffected and showed heterozygous mutations in the TACSTD2 gene. The mutation produced a truncated protein sequence that might be the cause of GDLD.

  2. Establishment of a Human Conjunctival Epithelial Cell Line Lacking the Functional Tacstd2 Gene (An American Ophthalmological Society Thesis)

    PubMed Central

    Kinoshita, Shigeru; Kawasaki, Satoshi; Kitazawa, Koji; Shinomiya, Katsuhiko

    2012-01-01

    Purpose: To report the establishment of a human conjunctival epithelial cell line lacking the functional tumor-associated calcium signal transducer 2 (TACSTD2) gene to be used as an in vitro model of gelatinous drop-like corneal dystrophy (GDLD), a rare disease in which the corneal epithelial barrier function is significantly compromized by the loss of function mutation of the TACSTD2 gene. Methods: A small piece of conjunctival tissue was obtained from a GDLD patient. The conjunctival epithelial cells were enzymatically separated and dissociated from the tissue and immortalized by the lentiviral introduction of the SV40 large T antigen and human telomerase reverse transcriptase (hTERT) genes. Population doubling, protein expression, and transepithelial resistance (TER) analyses were performed to assess the appropriateness of the established cell line as an in vitro model for GDLD. Results: The life span of the established cell line was found to be significantly elongated compared to nontransfected conjunctival epithelial cells. The SV40 large T antigen and hTERT genes were stably expressed in the established cell line. The protein expression level of the tight junction–related proteins was significantly low compared to the immortalized normal conjunctival epithelial cell line. TER of the established cell line was found to be significantly low compared to the immortalized normal conjunctival epithelial cell line. Conclusions: Our conjunctival epithelial cell line was successfully immortalized and well mimicked several features of GDLD corneas. This cell line may be useful for the elucidation of the pathogenesis of GDLD and for the development of novel treatments for GDLD. PMID:23818740

  3. STK11 Mutation Identified in Thyroid Carcinoma.

    PubMed

    Wei, Shuanzeng; LiVolsi, Virginia A; Brose, Marcia S; Montone, Kathleen T; Morrissette, Jennifer J D; Baloch, Zubair W

    2016-03-01

    Peutz-Jeghers syndrome (PJS) is an autosomal-dominant disorder, in which germline mutation of serine threonine-protein kinase 11 (STK11) is identified in up to 90 % of the patients who meet clinical criteria for PJS. Hematoxylin and eosin (H&E) slides of the tumor were reviewed to confirm areas with at least 25 % of tumor cellularity. Then, the designated area was extracted for genomic DNA. Targeted next-generation sequencing analysis was performed using a 47-gene panel. Case 1 is a 71-year-old man with high grade follicular thyroid carcinoma with clear cell and oncocytic features. The carcinoma showed a missense mutation in TP53 (p.R342G, c.1024C > G) and a 16-nucleotide intronic deletion started next to the 3' of exon 6 (involving the canonical +1 and +2 bases of the splice donor site) in STK11 (p.?, c.862 + 1_862 + 16delGTGGGAGCCTCATCCC). Case 2 is a 76-year-old woman with tall cell variant papillary thyroid carcinoma. The carcinoma demonstrated a missense mutation in BRAF (p.V600E, c.1799T > A) and a missense mutation in STK11 (p.F354L, c.1062C > G). In summary, we present two elderly patients with thyroid carcinoma harboring STK11 mutation without clinical manifestation of PJS. The findings suggest that STK11 may play a role in thyroid carcinoma development. PMID:26662608

  4. Identifying environmental chemicals causing mutations and cancer.

    PubMed

    Ames, B N

    1979-05-11

    Damage to DNA appears to be the major cause of most cancer and genetic birth defects and may contribute to aging and heart disease as well. The agents that cause this damage must be identified. Many of these agents are natural chemicals present in the human diet as complex mixtures. The tens of thousands of man-made chemicals that have been introduced into the environment in the last few decades must also be tested for their ability to damage DNA. Existing animal tests and human epidemiology alone are inadequate for this task because of time, expense, and the difficulty of dealing with complex mixtures, Newly developed short-term tests, most of them assaying for mutagenicity, are discussed as key tools in identifying environmental mutagens and carcinogens. PMID:373122

  5. Key clinical features to identify girls with CDKL5 mutations.

    PubMed

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydeé; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothée; Afenjar, Alexandra; Rio, Marlène; Héron, Delphine; N'guyen Morel, Marie Ange; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-10-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of CDKL5-associated encephalopathy. We screened the entire coding region of CDKL5 for mutations in 183 females with encephalopathy with early seizures by denaturing high liquid performance chromatography and direct sequencing, and we identified in 20 unrelated girls, 18 different mutations including 7 novel mutations. These mutations were identified in eight patients with encephalopathy with RTT-like features, five with infantile spasms and seven with encephalopathy with refractory epilepsy. Early epilepsy with normal interictal EEG and severe hypotonia are the key clinical features in identifying patients likely to have CDKL5 mutations. Our study also indicates that these patients clearly exhibit some RTT features such as deceleration of head growth, stereotypies and hand apraxia and that these RTT features become more evident in older and ambulatory patients. However, some RTT signs are clearly absent such as the so called RTT disease profile (period of nearly normal development followed by regression with loss of acquired fine finger skill in early childhood and characteristic intensive eye communication) and the characteristic evolution of the RTT electroencephalogram. Interestingly, in addition to the overall stereotypical symptomatology (age of onset and evolution of the disease) resulting from CDKL5 mutations, atypical forms of CDKL5-related conditions have also been observed. Our data suggest that phenotypic heterogeneity does not correlate with the nature or the position of the mutations or with the pattern of X-chromosome inactivation, but most probably with the functional transcriptional and/or translational consequences of CDKL5 mutations. In conclusion, our report show that search for mutations in CDKL5 is indicated in girls with early onset of a severe intractable seizure disorder or infantile spasms with severe hypotonia, and in girls with RTT-like phenotype and early onset seizures, though, in our cohort, mutations in CDKL5 account for about 10% of the girls affected by these disorders. PMID:18790821

  6. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    SciTech Connect

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak; Evans, Perry; Bacchiocchi, Antonella; McCusker, James P.; Cheng, Elaine; Davis, Matthew J.; Goh, Gerald; Choi, Murim; Ariyan, Stephan; Narayan, Deepak; Dutton-Regester, Ken; Capatana, Ana; Holman, Edna C.; Bosenberg, Marcus; Sznol, Mario; Kluger, Harriet M.; Brash, Douglas E.; Stern, David F.; Materin, Miguel A.; Lo, Roger S.; Mane, Shrikant; Ma, Shuangge; Kidd, Kenneth K.; Hayward, Nicholas K.; Lifton, Richard P.; Schlessinger, Joseph; Boggon, Titus J.; Halaban, Ruth

    2012-10-11

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

  7. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups

    PubMed Central

    Mafficini, Andrea; Wood, Laura D.; Corbo, Vincenzo; Melisi, Davide; Malleo, Giuseppe; Vicentini, Caterina; Malpeli, Giorgio; Antonello, Davide; Sperandio, Nicola; Capelli, Paola; Tomezzoli, Anna; Iacono, Calogero; Lawlor, Rita T.; Bassi, Claudio; Hruban, Ralph H.; Guglielmi, Alfredo; Tortora, Giampaolo; de Braud, Filippo; Scarpa, Aldo

    2014-01-01

    One-hundred-fifty-three biliary cancers, including 70 intrahepatic cholangiocarcinomas (ICC), 57 extrahepatic cholangiocarcinomas (ECC) and 26 gallbladder carcinomas (GBC) were assessed for mutations in 56 genes using multigene next-generation sequencing. Expression of EGFR and mTOR pathway genes was investigated by immunohistochemistry. At least one mutated gene was observed in 118/153 (77%) cancers. The genes most frequently involved were KRAS (28%), TP53 (18%), ARID1A (12%), IDH1/2 (9%), PBRM1 (9%), BAP1 (7%), and PIK3CA (7%). IDH1/2 (p=0.0005) and BAP1 (p=0.0097) mutations were characteristic of ICC, while KRAS (p=0.0019) and TP53 (p=0.0019) were more frequent in ECC and GBC. Multivariate analysis identified tumour stage and TP53 mutations as independent predictors of survival. Alterations in chromatin remodeling genes (ARID1A, BAP1, PBRM1, SMARCB1) were seen in 31% of cases. Potentially actionable mutations were seen in 104/153 (68%) cancers: i) KRAS/NRAS/BRAF mutations were found in 34% of cancers; ii) mTOR pathway activation was documented by immunohistochemistry in 51% of cases and by mutations in mTOR pathway genes in 19% of cancers; iii) TGF-ß/Smad signaling was altered in 10.5% cancers; iv) mutations in tyrosine kinase receptors were found in 9% cases. Our study identified molecular subgroups of cholangiocarcinomas that can be explored for specific drug targeting in clinical trials. PMID:24867389

  8. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups.

    PubMed

    Simbolo, Michele; Fassan, Matteo; Ruzzenente, Andrea; Mafficini, Andrea; Wood, Laura D; Corbo, Vincenzo; Melisi, Davide; Malleo, Giuseppe; Vicentini, Caterina; Malpeli, Giorgio; Antonello, Davide; Sperandio, Nicola; Capelli, Paola; Tomezzoli, Anna; Iacono, Calogero; Lawlor, Rita T; Bassi, Claudio; Hruban, Ralph H; Guglielmi, Alfredo; Tortora, Giampaolo; de Braud, Filippo; Scarpa, Aldo

    2014-05-15

    One-hundred-fifty-three biliary cancers, including 70 intrahepatic cholangiocarcinomas (ICC), 57 extrahepatic cholangiocarcinomas (ECC) and 26 gallbladder carcinomas (GBC) were assessed for mutations in 56 genes using multigene next-generation sequencing. Expression of EGFR and mTOR pathway genes was investigated by immunohistochemistry. At least one mutated gene was observed in 118/153 (77%) cancers. The genes most frequently involved were KRAS (28%), TP53 (18%), ARID1A (12%), IDH1/2 (9%), PBRM1 (9%), BAP1 (7%), and PIK3CA (7%). IDH1/2 (p=0.0005) and BAP1 (p=0.0097) mutations were characteristic of ICC, while KRAS (p=0.0019) and TP53 (p=0.0019) were more frequent in ECC and GBC. Multivariate analysis identified tumour stage and TP53 mutations as independent predictors of survival. Alterations in chromatin remodeling genes (ARID1A, BAP1, PBRM1, SMARCB1) were seen in 31% of cases. Potentially actionable mutations were seen in 104/153 (68%) cancers: i) KRAS/NRAS/BRAF mutations were found in 34% of cancers; ii) mTOR pathway activation was documented by immunohistochemistry in 51% of cases and by mutations in mTOR pathway genes in 19% of cancers; iii) TGF-ß/Smad signaling was altered in 10.5% cancers; iv) mutations in tyrosine kinase receptors were found in 9% cases. Our study identified molecular subgroups of cholangiocarcinomas that can be explored for specific drug targeting in clinical trials. PMID:24867389

  9. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas.

    PubMed

    Brastianos, Priscilla K; Taylor-Weiner, Amaro; Manley, Peter E; Jones, Robert T; Dias-Santagata, Dora; Thorner, Aaron R; Lawrence, Michael S; Rodriguez, Fausto J; Bernardo, Lindsay A; Schubert, Laura; Sunkavalli, Ashwini; Shillingford, Nick; Calicchio, Monica L; Lidov, Hart G W; Taha, Hala; Martinez-Lage, Maria; Santi, Mariarita; Storm, Phillip B; Lee, John Y K; Palmer, James N; Adappa, Nithin D; Scott, R Michael; Dunn, Ian F; Laws, Edward R; Stewart, Chip; Ligon, Keith L; Hoang, Mai P; Van Hummelen, Paul; Hahn, William C; Louis, David N; Resnick, Adam C; Kieran, Mark W; Getz, Gad; Santagata, Sandro

    2014-02-01

    Craniopharyngiomas are epithelial tumors that typically arise in the suprasellar region of the brain. Patients experience substantial clinical sequelae from both extension of the tumors and therapeutic interventions that damage the optic chiasm, the pituitary stalk and the hypothalamic area. Using whole-exome sequencing, we identified mutations in CTNNB1 (β-catenin) in nearly all adamantinomatous craniopharyngiomas examined (11/12, 92%) and recurrent mutations in BRAF (resulting in p.Val600Glu) in all papillary craniopharyngiomas (3/3, 100%). Targeted genotyping revealed BRAF p.Val600Glu in 95% of papillary craniopharyngiomas (36 of 39 tumors) and mutation of CTNNB1 in 96% of adamantinomatous craniopharyngiomas (51 of 53 tumors). The CTNNB1 and BRAF mutations were clonal in each tumor subtype, and we detected no other recurrent mutations or genomic aberrations in either subtype. Adamantinomatous and papillary craniopharyngiomas harbor mutations that are mutually exclusive and clonal. These findings have important implications for the diagnosis and treatment of these neoplasms. PMID:24413733

  10. Exome Sequencing Identifies PDE4D Mutations in Acrodysostosis

    PubMed Central

    Lee, Hane; Graham, John M.; Rimoin, David L.; Lachman, Ralph S.; Krejci, Pavel; Tompson, Stuart W.; Nelson, Stanley F.; Krakow, Deborah; Cohn, Daniel H.

    2012-01-01

    Acrodysostosis is a dominantly-inherited, multisystem disorder characterized by skeletal, endocrine, and neurological abnormalities. To identify the molecular basis of acrodysostosis, we performed exome sequencing on five genetically independent cases. Three different missense mutations in PDE4D, which encodes cyclic AMP (cAMP)-specific phosphodiesterase 4D, were found to be heterozygous in three of the cases. Two of the mutations were demonstrated to have occurred de novo, providing strong genetic evidence of causation. Two additional cases were heterozygous for de novo missense mutations in PRKAR1A, which encodes the cAMP-dependent regulatory subunit of protein kinase A and which has been recently reported to be the cause of a form of acrodysostosis resistant to multiple hormones. These findings demonstrate that acrodysostosis is genetically heterogeneous and underscore the exquisite sensitivity of many tissues to alterations in cAMP homeostasis. PMID:22464252

  11. Two novel mutations identified in familial cases with Donohue syndrome

    PubMed Central

    Falik Zaccai, Tzipora C; Kalfon, Limor; Klar, Aharon; Elisha, Mordechai Ben; Hurvitz, Haggit; Weingarten, Galina; Chechik, Emelia; Fleisher Sheffer, Vered; Haj Yahya, Raid; Meidan, Gal; Gross-Kieselstein, Eva; Bauman, Dvora; Hershkovitz, Sylvia; Yaron, Yuval; Orr-Urtreger, Avi; Wertheimer, Efrat

    2014-01-01

    Donohue syndrome (DS) is a rare and lethal autosomal recessive disease caused by mutations in the insulin receptor (INSR) gene, manifesting marked insulin resistance, severe growth retardation, hypertrichosis, and characteristic dysmorphic features. We report the clinical, molecular, and biochemical characterization of three new patients with DS, and address genotype–phenotype issues playing a role in the pathophysiology of DS. A female infant born to first-degree cousins Muslim Arab parents and two brothers born to first-degree cousins Druze parents presented classical features of DS with hypertrophic cardiomyopathy and died in infancy. Each patient was found homozygous for one missense mutation within the extracellular domain of the INSR gene. Western blot analysis identified the proreceptor of INSR, but not its mature subunits alpha and beta. Of 95 healthy Muslims, no heterozygous was found and of 52 healthy Druze from the same village, one was heterozygous. This study presents two novel familial mutations in the alpha subunit of the INSR which appear to impair post-translational processing of the INSR, resulting loss of its function. Both mutations cause DS with hypertrophic cardiomyopathy and early death. Identification of the causative mutation enables prevention of this devastating disease. PMID:24498630

  12. Using Aspergillus nidulans to identify antifungal drug resistance mutations.

    PubMed

    He, Xiaoxiao; Li, Shengnan; Kaminskyj, Susan G W

    2014-02-01

    Systemic fungal infections contribute to at least 10% of deaths in hospital settings. Most antifungal drugs target ergosterol (polyenes) or its biosynthetic pathway (azoles and allylamines), or beta-glucan synthesis (echinocandins). Antifungal drugs that target proteins are prone to the emergence of resistant strains. Identification of genes whose mutations lead to targeted resistance can provide new information on those pathways. We used Aspergillus nidulans as a model system to exploit its tractable sexual cycle and calcofluor white as a model antifungal agent to cross-reference our results with other studies. Within 2 weeks from inoculation on sublethal doses of calcofluor white, we isolated 24 A. nidulans adaptive strains from sectoring colonies. Meiotic analysis showed that these strains had single-gene mutations. In each case, the resistance was specific to calcofluor white, since there was no cross-resistance to caspofungin (echinocandin). Mutation sites were identified in two mutants by next-generation sequencing. These were confirmed by reengineering the mutation in a wild-type strain using a gene replacement strategy. One of these mutated genes was related to cell wall synthesis, and the other one was related to drug metabolism. Our strategy has wide application for many fungal species, for antifungal compounds used in agriculture as well as health care, and potentially during protracted drug therapy once drug resistance arises. We suggest that our strategy will be useful for keeping ahead in the drug resistance arms race. PMID:24363365

  13. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma

    PubMed Central

    Kan, Zhengyan; Zheng, Hancheng; Liu, Xiao; Li, Shuyu; Barber, Thomas D.; Gong, Zhuolin; Gao, Huan; Hao, Ke; Willard, Melinda D.; Xu, Jiangchun; Hauptschein, Robert; Rejto, Paul A.; Fernandez, Julio; Wang, Guan; Zhang, Qinghui; Wang, Bo; Chen, Ronghua; Wang, Jian; Lee, Nikki P.; Zhou, Wei; Lin, Zhao; Peng, Zhiyu; Yi, Kang; Chen, Shengpei; Li, Lin; Fan, Xiaomei; Yang, Jie; Ye, Rui; Ju, Jia; Wang, Kai; Estrella, Heather; Deng, Shibing; Wei, Ping; Qiu, Ming; Wulur, Isabella H.; Liu, Jiangang; Ehsani, Mariam E.; Zhang, Chunsheng; Loboda, Andrey; Sung, Wing Kin; Aggarwal, Amit; Poon, Ronnie T.; Fan, Sheung Tat; Wang, Jun; Hardwick, James; Reinhard, Christoph; Dai, Hongyue; Li, Yingrui; Luk, John M.; Mao, Mao

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 (JAK1), in 9.1% of patients and provides a path toward therapeutic intervention of the disease. PMID:23788652

  14. SERPINA1 Full-Gene Sequencing Identifies Rare Mutations Not Detected in Targeted Mutation Analysis.

    PubMed

    Graham, Rondell P; Dina, Michelle A; Howe, Sarah C; Butz, Malinda L; Willkomm, Kurt S; Murray, David L; Snyder, Melissa R; Rumilla, Kandelaria M; Halling, Kevin C; Highsmith, W Edward

    2015-11-01

    Genetic α-1 antitrypsin (AAT) deficiency is characterized by low serum AAT levels and the identification of causal mutations or an abnormal protein. It needs to be distinguished from deficiency because of nongenetic causes, and diagnostic delay may contribute to worse patient outcome. Current routine clinical testing assesses for only the most common mutations. We wanted to determine the proportion of unexplained cases of AAT deficiency that harbor causal mutations not identified through current standard allele-specific genotyping and isoelectric focusing (IEF). All prospective cases from December 1, 2013, to October 1, 2014, with a low serum AAT level not explained by allele-specific genotyping and IEF were assessed through full-gene sequencing with a direct sequencing method for pathogenic mutations. We reviewed the results using American Council of Medical Genetics criteria. Of 3523 cases, 42 (1.2%) met study inclusion criteria. Pathogenic or likely pathogenic mutations not identified through clinical testing were detected through full-gene sequencing in 16 (38%) of the 42 cases. Rare mutations not detected with current allele-specific testing and IEF underlie a substantial proportion of genetic AAT deficiency. Full-gene sequencing, therefore, has the ability to improve accuracy in the diagnosis of AAT deficiency. PMID:26321041

  15. Exome sequencing identified new mutations in a Marfan syndrome family

    PubMed Central

    2014-01-01

    Marfan syndrome is a common autosomal dominant hereditary connective tissue disorder. There is no cure for Marfan syndrome currently. Next-generation sequencing (NGS) technology is efficient to identify genetic lesions at the exome level. Here we carried out exome sequencing of two Marfan syndrome patients. Further Sanger sequencing validation in other five members from the same family was also implemented to confirm new variants which may contribute to the pathogenesis of the disease. Two new variants, including one nonsense SNP in the Marfan syndrome gene FBN1 and one missense mutation in exon 15 of LRP1, which may be related to the phenotype of the patients were identified. The exome sequencing analysis provides us a new insight into the molecular events governing pathogenesis of Marfan syndrome. Virtual slide http://www.diagnosticpathology.diagnomx.eu/vs/1229110069114125. PMID:24484584

  16. Exome sequencing identifies SUCO mutations in mesial temporal lobe epilepsy.

    PubMed

    Sha, Zhiqiang; Sha, Longze; Li, Wenting; Dou, Wanchen; Shen, Yan; Wu, Liwen; Xu, Qi

    2015-03-30

    Mesial temporal lobe epilepsy (mTLE) is the main type and most common medically intractable form of epilepsy. Severity of disease-based stratified samples may help identify new disease-associated mutant genes. We analyzed mRNA expression profiles from patient hippocampal tissue. Three of the seven patients had severe mTLE with generalized-onset convulsions and consciousness loss that occurred over many years. We found that compared with other groups, patients with severe mTLE were classified into a distinct group. Whole-exome sequencing and Sanger sequencing validation in all seven patients identified three novel SUN domain-containing ossification factor (SUCO) mutations in severely affected patients. Furthermore, SUCO knock down significantly reduced dendritic length in vitro. Our results indicate that mTLE defects may affect neuronal development, and suggest that neurons have abnormal development due to lack of SUCO, which may be a generalized-onset epilepsy-related gene. PMID:25668491

  17. Newly identified CHO ERCC3/XPB mutations and phenotype characterization.

    PubMed

    Rybanská, Ivana; Gursky, Ján; Fasková, Miriam; Salazar, Edmund P; Kimlícková-Polakovicová, Erika; Kleibl, Karol; Thompson, Larry H; Pirsel, Miroslav

    2010-03-01

    Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron-exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5' incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages approximately 8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596

  18. Hyperplastic Polyposis Syndrome Identified with a BRAF Mutation

    PubMed Central

    Ahn, Hyung Su; Kim, Hee Kyung; Yoo, Hee Yong; Kim, Hwa Jong; Ko, Bong Min; Lee, Moon Sung

    2012-01-01

    Hyperplastic polyposis syndrome (HPS) is a rare condition characterized by the presence of numerous hyperplastic polyps (HPs) in the colon and rectum. Patients with HPS have an increased risk of colorectal cancer. This link is associated with gene mutations, especially B type Raf kinase (BRAF). However, a case of HPS associated with gene mutations has seldom been reported in Korea. Here, we describe a case of HPS in which a BRAF mutation was present in a 34-year-old woman. She had more than 110 HPs in the stomach and colorectum, which we removed. All of the polyps were diagnosed histologically as HPs, and no adenomatous or malignant changes were noted. We performed a BRAF and K-ras mutation analysis as well as a microsatellite analysis on the resected colon polyps. BRAF mutations were found in the resected colon polyps, but there was no evidence of K-RAS mutation or microsatellite instability. PMID:22570761

  19. Key Clinical Features to Identify Girls with "CDKL5" Mutations

    ERIC Educational Resources Information Center

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydee; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothee; Afenjar, Alexandra; Rio, Marlene; Heron, Delphine; Morel, Marie Ange N'Guyen; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-01-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 ("CDKL5") gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of

  20. Key Clinical Features to Identify Girls with "CDKL5" Mutations

    ERIC Educational Resources Information Center

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydee; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothee; Afenjar, Alexandra; Rio, Marlene; Heron, Delphine; Morel, Marie Ange N'Guyen; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-01-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 ("CDKL5") gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of…

  1. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer

    PubMed Central

    Leder, Kevin; Riester, Markus; Iwasa, Yoh; Lengauer, Christoph; Michor, Franziska

    2015-01-01

    The traditional view of cancer as a genetic disease that can successfully be treated with drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in many human cancer types. However, only a subset of mutations found within the genomic landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such “driver” mutations from innocuous “passenger” events is critical for prioritizing the validation of candidate mutations in disease-relevant models. We design a novel statistical index, called the Hitchhiking Index, which reflects the probability that any observed candidate gene is a passenger alteration, given the frequency of alterations in a cross-sectional cancer sample set, and apply it to a mutational data set in colorectal cancer. Our methodology is based upon a population dynamics model of mutation accumulation and selection in colorectal tissue prior to cancer initiation as well as during tumorigenesis. This methodology can be used to aid in the prioritization of candidate mutations for functional validation and contributes to the process of drug discovery. PMID:26379039

  2. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4.

    PubMed

    Johansson, Peter; Aoude, Lauren G; Wadt, Karin; Glasson, William J; Warrier, Sunil K; Hewitt, Alex W; Kiilgaard, Jens Folke; Heegaard, Steffen; Isaacs, Tim; Franchina, Maria; Ingvar, Christian; Vermeulen, Tersia; Whitehead, Kevin J; Schmidt, Christopher W; Palmer, Jane M; Symmons, Judith; Gerdes, Anne-Marie; Jönsson, Göran; Hayward, Nicholas K

    2016-01-26

    Next generation sequencing of uveal melanoma (UM) samples has identified a number of recurrent oncogenic or loss-of-function mutations in key driver genes including: GNAQ, GNA11, EIF1AX, SF3B1 and BAP1. To search for additional driver mutations in this tumor type we carried out whole-genome or whole-exome sequencing of 28 tumors or primary cell lines. These samples have a low mutation burden, with a mean of 10.6 protein changing mutations per sample (range 0 to 53). As expected for these sun-shielded melanomas the mutation spectrum was not consistent with an ultraviolet radiation signature, instead, a BRCA mutation signature predominated. In addition to mutations in the known UM driver genes, we found a recurrent mutation in PLCB4 (c.G1888T, p.D630Y, NM_000933), which was validated using Sanger sequencing. The identical mutation was also found in published UM sequence data (1 of 56 tumors), supporting its role as a novel driver mutation in UM. PLCB4 p.D630Y mutations are mutually exclusive with mutations in GNA11 and GNAQ, consistent with PLCB4 being the canonical downstream target of the former gene products. Taken together these data suggest that the PLCB4 hotspot mutation is similarly a gain-of-function mutation leading to activation of the same signaling pathway, promoting UM tumorigenesis. PMID:26683228

  3. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4

    PubMed Central

    Johansson, Peter; Aoude, Lauren G.; Wadt, Karin; Glasson, William J.; Warrier, Sunil K.; Hewitt, Alex W.; Kiilgaard, Jens Folke; Heegaard, Steffen; Isaacs, Tim; Franchina, Maria; Ingvar, Christian; Vermeulen, Tersia; Whitehead, Kevin J.; Schmidt, Christopher W.; Palmer, Jane M.; Symmons, Judith; Gerdes, Anne-Marie; Jönsson, Göran; Hayward, Nicholas K.

    2016-01-01

    Next generation sequencing of uveal melanoma (UM) samples has identified a number of recurrent oncogenic or loss-of-function mutations in key driver genes including: GNAQ, GNA11, EIF1AX, SF3B1 and BAP1. To search for additional driver mutations in this tumor type we carried out whole-genome or whole-exome sequencing of 28 tumors or primary cell lines. These samples have a low mutation burden, with a mean of 10.6 protein changing mutations per sample (range 0 to 53). As expected for these sun-shielded melanomas the mutation spectrum was not consistent with an ultraviolet radiation signature, instead, a BRCA mutation signature predominated. In addition to mutations in the known UM driver genes, we found a recurrent mutation in PLCB4 (c.G1888T, p.D630Y, NM_000933), which was validated using Sanger sequencing. The identical mutation was also found in published UM sequence data (1 of 56 tumors), supporting its role as a novel driver mutation in UM. PLCB4 p.D630Y mutations are mutually exclusive with mutations in GNA11 and GNAQ, consistent with PLCB4 being the canonical downstream target of the former gene products. Taken together these data suggest that the PLCB4 hotspot mutation is similarly a gain-of-function mutation leading to activation of the same signaling pathway, promoting UM tumorigenesis. PMID:26683228

  4. Identifying DNA Mutations in Purified Hematopoietic Stem/Progenitor Cells

    PubMed Central

    Cheng, Ziming; Zhou, Ting; Merchant, Azhar; Prihoda, Thomas J.; Wickes, Brian L.; Xu, Guogang; Walter, Christi A.; Rebel, Vivienne I.

    2014-01-01

    In recent years, it has become apparent that genomic instability is tightly related to many developmental disorders, cancers, and aging. Given that stem cells are responsible for ensuring tissue homeostasis and repair throughout life, it is reasonable to hypothesize that the stem cell population is critical for preserving genomic integrity of tissues. Therefore, significant interest has arisen in assessing the impact of endogenous and environmental factors on genomic integrity in stem cells and their progeny, aiming to understand the etiology of stem-cell based diseases. LacI transgenic mice carry a recoverable ?phage vector encoding the LacI reporter system, in which the LacI gene serves as the mutation reporter. The result of a mutated LacI gene is the production of ?-galactosidase that cleaves a chromogenic substrate, turning it blue. The LacI reporter system is carried in all cells, including stem/progenitor cells and can easily be recovered and used to subsequently infect E. coli. After incubating infected E. coli on agarose that contains the correct substrate, plaques can be scored; blue plaques indicate a mutant LacI gene, while clear plaques harbor wild-type. The frequency of blue (among clear) plaques indicates the mutant frequency in the original cell population the DNA was extracted from. Sequencing the mutant LacI gene will show the location of the mutations in the gene and the type of mutation. The LacI transgenic mouse model is well-established as an in vivo mutagenesis assay. Moreover, the mice and the reagents for the assay are commercially available. Here we describe in detail how this model can be adapted to measure the frequency of spontaneously occurring DNA mutants in stem cell-enriched Lin-IL7R-Sca-1+cKit++(LSK) cells and other subpopulations of the hematopoietic system. PMID:24637843

  5. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history.

    PubMed

    Seidman, Christine E; Seidman, J G

    2011-03-18

    This review provides an historical and personal perspective on the discovery of genetic causes for hypertrophic cardiomyopathy (HCM). Extraordinary insights by physicians who initially detailed remarkable and varied manifestations of the disorder, collaboration among multidisciplinary teams with skills in clinical diagnostics and molecular genetics, and hard work by scores of trainees solved the etiologic riddle of HCM and unexpectedly demonstrated mutations in sarcomere protein genes as the cause of disease. In addition to celebrating 20 years of genetic research in HCM, this article serves as an introductory overview to a thematic review series that will present contemporary advances in the field of hypertrophic heart disease. Through the continued application of advances in genetic methodologies, combined with biochemical and biophysical analyses of the consequences of human mutations, fundamental knowledge about HCM and sarcomere biology has emerged. Expanding research to elucidate the mechanisms by which subtle genetic variation in contractile proteins remodel the human heart remains an exciting opportunity, one with considerable promise to provide new strategies to limit or even prevent HCM pathogenesis. PMID:21415408

  6. Identifying Sarcomere Gene Mutations in HCM: A Personal History

    PubMed Central

    Seidman, Christine E.; Seidman, J.G.

    2011-01-01

    This article provides an historical and personal perspective on the discovery of genetic causes for hypertrophic cardiomyopathy (HCM). Extraordinary insights of physicians who initially detailed remarkable and varied manifestations of the disorder, collaboration among multidisciplinary teams with skills in clinical diagnostics and molecular genetics, and hard work by scores of trainees, solved the etiologic riddle of HCM, and unexpectedly demonstrated mutations in sarcomere protein genes as the cause of disease. In addition to celebrating 20 years of genetic research in HCM, this article serves as an introductory overview to a thematic review series that will present contemporary advances in the field of hypertrophic heart disease. Through the continued application of advances in genetic methodologies, combined with biochemical and biophysical analyses of the consequences of human mutations, fundamental knowledge about HCM and sarcomere biology has emerged. Expanding research to elucidate the mechanisms by which subtle genetic variation in contractile proteins remodel the human heart remains an exciting opportunity, one with considerable promise to provide new strategies to limit or even prevent HCM pathogenesis. PMID:21415408

  7. Next-generation sequencing as a tool to quickly identify causative EMS-generated mutations.

    PubMed

    Thole, J M; Strader, L C

    2015-01-01

    The advent of next generation sequencing has influenced every aspect of biological research. Many labs are now using whole genome sequencing in Arabidopsis thaliana as a means to quickly identify EMS-generated mutations present in isolated mutants. Following identification of these mutations, examination of T-DNA insertional alleles defective in candidate genes or complementation of the mutant phenotype with a wild type copy of candidate genes can be used to verify which mutation is causative for the phenotype of interest. Here, we discuss the benefits and pitfalls of using this method to identify mutations underlying phenotypes. PMID:26039464

  8. Next-generation sequencing as a tool to quickly identify causative EMS-generated mutations

    PubMed Central

    Thole, J. M.; Strader, L. C.

    2015-01-01

    The advent of next generation sequencing has influenced every aspect of biological research. Many labs are now using whole genome sequencing in Arabidopsis thaliana as a means to quickly identify EMS-generated mutations present in isolated mutants. Following identification of these mutations, examination of T-DNA insertional alleles defective in candidate genes or complementation of the mutant phenotype with a wild type copy of candidate genes can be used to verify which mutation is causative for the phenotype of interest. Here, we discuss the benefits and pitfalls of using this method to identify mutations underlying phenotypes. PMID:26039464

  9. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway.

    PubMed

    Shain, A Hunter; Garrido, Maria; Botton, Thomas; Talevich, Eric; Yeh, Iwei; Sanborn, J Zachary; Chung, Jongsuk; Wang, Nicholas J; Kakavand, Hojabr; Mann, Graham J; Thompson, John F; Wiesner, Thomas; Roy, Ritu; Olshen, Adam B; Gagnon, Alexander; Gray, Joe W; Huh, Nam; Hur, Joe S; Busam, Klaus J; Scolyer, Richard A; Cho, Raymond J; Murali, Rajmohan; Bastian, Boris C

    2015-10-01

    Desmoplastic melanoma is an uncommon variant of melanoma with sarcomatous histology, distinct clinical behavior and unknown pathogenesis. We performed low-coverage genome and high-coverage exome sequencing of 20 desmoplastic melanomas, followed by targeted sequencing of 293 genes in a validation cohort of 42 cases. A high mutation burden (median of 62 mutations/Mb) ranked desmoplastic melanoma among the most highly mutated cancers. Mutation patterns strongly implicate ultraviolet radiation as the dominant mutagen, indicating a superficially located cell of origin. Newly identified alterations included recurrent promoter mutations of NFKBIE, encoding NF-κB inhibitor ɛ (IκBɛ), in 14.5% of samples. Common oncogenic mutations in melanomas, in particular in BRAF (encoding p.Val600Glu) and NRAS (encoding p.Gln61Lys or p.Gln61Arg), were absent. Instead, other genetic alterations known to activate the MAPK and PI3K signaling cascades were identified in 73% of samples, affecting NF1, CBL, ERBB2, MAP2K1, MAP3K1, BRAF, EGFR, PTPN11, MET, RAC1, SOS2, NRAS and PIK3CA, some of which are candidates for targeted therapies. PMID:26343386

  10. Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice

    PubMed Central

    Segditsas, Stefania; Sieber, Oliver; Deheragoda, Maesha; East, Phil; Rowan, Andrew; Jeffery, Rosemary; Nye, Emma; Clark, Susan; Spencer-Dene, Bradley; Stamp, Gordon; Poulsom, Richard; Suraweera, Nirosha; Silver, Andrew; Ilyas, Mohammad; Tomlinson, Ian

    2008-01-01

    In order to identify new genes with differential expression in early intestinal tumours, we performed mRNA (messenger ribonucleic acid) expression profiling of 16 human and 63 mouse adenomas. All individuals had germline APC mutations to ensure that tumorigenesis was driven by ‘second hits’ at APC. Using stringent filtering to identify changes consistent between humans and mice, we identified 60 genes up-regulated and 151 down-regulated in tumours. For 22 selected genes—including known Wnt targets—expression differences were confirmed by qRT–PCR (quantitative reverse transcription polymerase chain reaction). Most, but not all, differences were also present in colorectal carcinomas. In situ analysis showed a complex picture. Expression of up-regulated genes in adenomas was usually uniform/diffuse (e.g. ITGA6) or prominent in the tumour core (e.g. LGR5); in normal tissue, these genes were expressed at crypt bases or the transit amplifying zone. Down-regulated genes were often undetectable in adenomas, but in normal tissue were expressed in mesenchyme (e.g. GREM1/2) or differentiated cells towards crypt tops (e.g. SGK1). In silico analysis of TCF4-binding motifs showed that some of our genes were probably direct Wnt targets. Previous studies, mostly focused on human tumours, showed partial overlap with our ‘expression signature’, but 37 genes were unique to our study, including TACSTD2, SEMA3F, HOXA9 and IER3 (up-regulated), and TAGLN, GREM1, GREM2, MAB21L2 and RARRES2 (down-regulated). Combined analysis of our and published human data identified additional genes differentially expressed in adenomas, including decreased BMPs (bone morphogenetic proteins) and increased BUB1/BUB1B. Several of the newly identified, differentially expressed genes represent potential diagnostic or therapeutic targets for intestinal tumours. PMID:18782851

  11. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  12. Whole-Exome Sequencing Identifies Novel Somatic Mutations in Chinese Breast Cancer Patients

    PubMed Central

    Zhang, Yanfeng; Cai, Qiuyin; Shu, Xiao-Ou; Gao, Yu-Tang; Li, Chun; Zheng, Wei; Long, Jirong

    2016-01-01

    Most breast cancer genomes harbor complex mutational landscapes. Somatic alterations have been predominantly discovered in breast cancer patients of European ancestry; however, little is known about somatic aberration in patients of other ethnic groups including Asians. In the present study, whole-exome sequencing (WES) was conducted in DNA extracted from tumor and matched adjacent normal tissue samples from eleven early onset breast cancer patients who were included in the Shanghai Breast Cancer Study. We discovered 159 somatic missense and ten nonsense mutations distributed among 167 genes. The most frequent 50 somatic mutations identified by WES were selected for validation using Sequenom MassARRAY system in the eleven breast cancer patients and an additional 433 tumor and 921 normal tissue/blood samples from the Shanghai Breast Cancer Study. Among these 50 mutations selected for validation, 32 were technically validated. Within the validated mutations, somatic mutations in the TRPM6, HYDIN, ENTHD1, and NDUFB10 genes were found in two or more tumor samples in the replication stage. Mutations in the ADRA1B, CBFB, KIAA2022, and RBM25 genes were observed once in the replication stage. To summarize, this study identified some novel somatic mutations for breast cancer. Future studies will need to be conducted to determine the function of these mutations/genes in the breast carcinogenesis. PMID:26870154

  13. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    PubMed Central

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  14. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2.

    PubMed

    Maksemous, Neven; Roy, Bishakha; Smith, Robert A; Griffiths, Lyn R

    2016-03-01

    Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo, and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type 1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilized next-generation sequencing (NGS) to screen the coding sequence, exon-intron boundaries, and Untranslated Regions (UTRs) of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which nine were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening. PMID:27066515

  15. Simulated annealing based algorithm for identifying mutated driver pathways in cancer.

    PubMed

    Li, Hai-Tao; Zhang, Yu-Lang; Zheng, Chun-Hou; Wang, Hong-Qiang

    2014-01-01

    With the development of next-generation DNA sequencing technologies, large-scale cancer genomics projects can be implemented to help researchers to identify driver genes, driver mutations, and driver pathways, which promote cancer proliferation in large numbers of cancer patients. Hence, one of the remaining challenges is to distinguish functional mutations vital for cancer development, and filter out the unfunctional and random "passenger mutations." In this study, we introduce a modified method to solve the so-called maximum weight submatrix problem which is used to identify mutated driver pathways in cancer. The problem is based on two combinatorial properties, that is, coverage and exclusivity. Particularly, we enhance an integrative model which combines gene mutation and expression data. The experimental results on simulated data show that, compared with the other methods, our method is more efficient. Finally, we apply the proposed method on two real biological datasets. The results show that our proposed method is also applicable in real practice. PMID:24982873

  16. Molecular Testing of 163 Patients with Morquio A (Mucopolysaccharidosis IVA) Identifies 39 Novel GALNS Mutations

    PubMed Central

    Morrone, A; Tylee, K.L.; Al-Sayed, M; Brusius-Facchin, A.C.; Caciotti, A.; Church, H.J.; Coll, M.J.; Davidson, K.; Fietz, M.J.; Gort, L.; Hegde, M.; Kubaski, F.; Lacerda, L.; Laranjeira, F.; Leistner-Segal, S.; Mooney, S.; Pajares, S.; Pollard, L.; Riberio, I.; Wang, R.Y.; Miller, N.

    2014-01-01

    Morquio A (Mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by partial or total deficiency of the enzyme galactosamine-6-sulfate sulfatase (GALNS; also known as N-acetylgalactosamine-6-sulfate sulfatase) encoded by the GALNS gene. Patients who inherit two mutated GALNS gene alleles produce protein with decreased ability to degrade the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate, thereby causing GAG accumulation within lysosomes and consequently pleiotropic disease. GALNS mutations occur throughout the gene and many mutations are identified only in single patients or families, causing difficulties both in mutation detection and interpretation. In this study, molecular analysis of 163 patients with Morquio A identified 99 unique mutations in the GALNS gene believed to negatively impact GALNS protein function, of which 39 are previously unpublished, together with 26 single-nucleotide polymorphisms. Recommendations for the molecular testing of patients, clear reporting of sequence findings, and interpretation of sequencing data are provided. PMID:24726177

  17. Gelatinous drop-like corneal dystrophy.

    PubMed

    Tsujikawa, Motokazu

    2012-11-01

    Gelatinous drop-like corneal dystrophy (GDLD) is a rare autosomal recessive disorder, clinically characterized by grayish corneal deposits of amyloid and by severely impaired visual acuity. Most patients require corneal transplantation. We identified the gene responsible for GDLD, tumor-associated calcium signal transducer 2 (TACSTD2), by positional cloning and detected 4 disease-causing mutations in Japanese patients with GDLD. During the positional cloning process, strong linkage disequilibrium was observed between GDLD and some markers in the critical region. More than 90% of GDLD patients possessed the same haplotype with a Q118X mutation in TACSTD2. This may be the result of a founder effect and reflects that most GDLD patients are Japanese. TACSTD2 deleterious mutations resulted in destabilized tight junction proteins, including claudins, ZO-1, and occludin. These findings may explain why the corneal epithelium barrier function is impaired in GDLD patients. PMID:23038033

  18. Exome sequencing identified null mutations in LOXL3 associated with early-onset high myopia

    PubMed Central

    Li, Jiali; Gao, Bei; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Sun, Wenmin; Guo, Xiangming

    2016-01-01

    Purpose To identify null mutations in novel genes associated with early-onset high myopia using whole exome sequencing. Methods Null mutations, including homozygous and compound heterozygous truncations, were selected from whole exome sequencing data for 298 probands with early-onset high myopia. These data were compared with those of 507 probands with other forms of eye diseases. Null mutations specific to early-onset high myopia were considered potential candidates. Candidate mutations were confirmed with Sanger sequencing and were subsequently evaluated in available family members and 480 healthy controls. Results A homozygous frameshift mutation (c.39dup; p.L14Afs*21) and a compound heterozygous frameshift mutation (c.39dup; p.L14Afs*21 and c.594delG; p.Q199Kfs*35) in LOXL3 were separately identified in two of the 298 probands with early-onset high myopia. These mutations were confirmed with Sanger sequencing and were not detected in 1,974 alleles of the controls from the same region (507 individuals with other conditions and 480 healthy control individuals). These two probands were singleton cases, and their parents had only heterozygous mutations. A homozygous missense mutation in LOXL3 was recently reported in a consanguineous family with Stickler syndrome. Conclusions Our results suggest that null mutations in LOXL3 are likely associated with autosomal recessive early-onset high myopia. LOXL3 is a potential candidate gene for high myopia, but this possibility should be confirmed in additional studies. LOXL3 null mutations in human beings are not lethal, providing a phenotype contrary to that in mice. PMID:26957899

  19. Mutation and evolutionary analyses identify NR2E1-candidate-regulatory mutations in humans with severe cortical malformations

    PubMed Central

    Kumar, R A; Leach, S; Bonaguro, R; Chen, J; Yokom, D W; Abrahams, B S; Seaver, L; Schwartz, C E; Dobyns, W; Brooks-Wilson, A; Simpson, E M

    2007-01-01

    Nuclear receptor 2E1 (NR2E1) is expressed in human fetal and adult brains; however, its role in human brain–behavior development is unknown. Previously, we have corrected the cortical hypoplasia and behavioral abnormalities in Nr2e1−/− mice using a genomic clone spanning human NR2E1, which bolsters the hypothesis that NR2E1 may similarly play a role in human cortical and behavioral development. To test the hypothesis that humans with abnormal brain–behavior development may have null or hypomorphic NR2E1 mutations, we undertook the first candidate mutation screen of NR2E1 by sequencing its entire coding region, untranslated, splice site, proximal promoter and evolutionarily conserved non-coding regions in 56 unrelated patients with cortical disorders, namely microcephaly. We then genotyped the candidate mutations in 325 unrelated control subjects and 15 relatives. We did not detect any coding region changes in NR2E1; however, we identified seven novel candidate regulatory mutations that were absent from control subjects. We used in silico tools to predict the effects of these candidate mutations on neural transcription factor binding sites (TFBS). Four candidate mutations were predicted to alter TFBS. To facilitate the present and future studies of NR2E1, we also elucidated its molecular evolution, genetic diversity, haplotype structure and linkage disequilibrium by sequencing an additional 94 unaffected humans representing Africa, the Americas, Asia, Europe, the Middle East and Oceania, as well as great apes and monkeys. We detected strong purifying selection, low genetic diversity, 21 novel polymorphisms and five common haplotypes at NR2E1. We conclude that protein-coding changes in NR2E1 do not contribute to cortical and behavioral abnormalities in the patients examined here, but that regulatory mutations may play a role. PMID:17054721

  20. Whole Exome Sequencing Identifies de Novo Mutations in GATA6 Associated with Congenital Diaphragmatic Hernia

    PubMed Central

    Yu, Lan; Bennett, James T.; Wynn, Julia; Carvill, Gemma L.; Cheung, Yee Him; Shen, Yufeng; Mychaliska, George B.; Azarow, Kenneth S.; Crombleholme, Timothy M.; Chung, Dai H.; Potoka, Douglas; Warner, Brad W.; Bucher, Brian; Lim, Foong-Yen; Pietsch, John; Stolar, Charles; Aspelund, Gudrun; Arkovitz, Marc S.; Mefford, Heather; Chung, Wendy K.

    2014-01-01

    Background Congenital diaphragmatic hernia (CDH) is a common birth defect affecting 1 in 3,000 births. It is characterized by herniation of abdominal viscera through an incompletely formed diaphragm. Although chromosomal anomalies and mutations in several genes have been implicated, the cause for most patients is unknown. Methods We used whole exome sequencing in two families with CDH and congenital heart disease, and identified mutations in GATA6 in both. Results In the first family, we identified a de novo missense mutation (c.1366C>T, p.R456C) in a sporadic CDH patient with tetralogy of Fallot. In the second, a nonsense mutation (c.712G>T, p.G238*) was identified in two siblings with CDH and a large ventricular septal defect. The G238* mutation was inherited from their mother, who was clinically affected with congenital absence of the pericardium, patent ductus arteriosus, and intestinal malrotation. Deep sequencing of blood and saliva derived DNA from the mother suggested somatic mosaicism as an explanation for her milder phenotype, with only approximately 15% mutant alleles. To determine the frequency of GATA6 mutations in CDH, we sequenced the gene in 378 patients with CDH. We identified one additional de novo mutation (c.1071delG, p.V358Cfs34*). Conclusions Mutations in GATA6 have been previously associated with pancreatic agenesis and congenital heart disease. We conclude that, in addition to the heart and the pancreas, GATA6 is involved in development of two additional organs, the diaphragm and the pericardium. In addition we have shown that de novo mutations can contribute to the development of CDH, a common birth defect. PMID:24385578

  1. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome

    PubMed Central

    Kulasekararaj, Austin G.; Jiang, Jie; Smith, Alexander E.; Mohamedali, Azim M.; Mian, Syed; Gandhi, Shreyans; Gaken, Joop; Czepulkowski, Barbara; Marsh, Judith C. W.

    2014-01-01

    The distinction between acquired aplastic anemia (AA) and hypocellular myelodysplastic syndrome (hMDS) is often difficult, especially nonsevere AA. We postulated that somatic mutations are present in a subset of AA, and predict malignant transformation. From our database, we identified 150 AA patients with no morphological evidence of MDS, who had stored bone marrow (BM) and constitutional DNA. We excluded Fanconi anemia, mutations of telomere maintenance, and a family history of BM failure (BMF) or cancer. The initial cohort of 57 patients was screened for 835 known genes associated with BMF and myeloid cancer; a second cohort of 93 patients was screened for mutations in ASXL1, DNMT3A, BCOR, TET2, and MPL. Somatic mutations were detected in 19% of AA, and included ASXL1 (n = 12), DNMT3A (n = 8) and BCOR (n = 6). Patients with somatic mutations had a longer disease duration (37 vs 8 months, P < .04), and shorter telomere lengths (median length, 0.9 vs 1.1, P < .001), compared with patients without mutations. Somatic mutations in AA patients with a disease duration of >6 months were associated with a 40% risk of transformation to MDS (P < .0002). Nearly one-fifth of AA patients harbor mutations in genes typically seen in myeloid malignancies that predicted for later transformation to MDS. PMID:25139356

  2. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.

    PubMed

    Leiserson, Mark D M; Vandin, Fabio; Wu, Hsin-Ta; Dobson, Jason R; Eldridge, Jonathan V; Thomas, Jacob L; Papoutsaki, Alexandra; Kim, Younhun; Niu, Beifang; McLellan, Michael; Lawrence, Michael S; Gonzalez-Perez, Abel; Tamborero, David; Cheng, Yuwei; Ryslik, Gregory A; Lopez-Bigas, Nuria; Getz, Gad; Ding, Li; Raphael, Benjamin J

    2015-02-01

    Cancers exhibit extensive mutational heterogeneity, and the resulting long-tail phenomenon complicates the discovery of genes and pathways that are significantly mutated in cancer. We perform a pan-cancer analysis of mutated networks in 3,281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a new algorithm to find mutated subnetworks that overcomes the limitations of existing single-gene, pathway and network approaches. We identify 16 significantly mutated subnetworks that comprise well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer, including cohesin, condensin and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, pan-cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types. PMID:25501392

  3. Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes

    PubMed Central

    Leiserson, Mark D.M.; Vandin, Fabio; Wu, Hsin-Ta; Dobson, Jason R.; Eldridge, Jonathan V.; Thomas, Jacob L.; Papoutsaki, Alexandra; Kim, Younhun; Niu, Beifang; McLellan, Michael; Lawrence, Michael S.; Gonzalez-Perez, Abel; Tamborero, David; Cheng, Yuwei; Ryslik, Gregory A.; Lopez-Bigas, Nuria; Getz, Gad; Ding, Li; Raphael, Benjamin J.

    2014-01-01

    Cancers exhibit extensive mutational heterogeneity and the resulting long tail phenomenon complicates the discovery of the genes and pathways that are significantly mutated in cancer. We perform a Pan-Cancer analysis of mutated networks in 3281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a novel algorithm to find mutated subnetworks that overcomes limitations of existing single gene and pathway/network approaches.. We identify 14 significantly mutated subnetworks that include well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer including cohesin, condensin, and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, Pan-Cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types. PMID:25501392

  4. A novel PCCB mutation in a Thai patient with propionic acidemia identified by exome sequencing

    PubMed Central

    Porntaveetus, Thantrira; Srichomthong, Chalurmpon; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2015-01-01

    Propionic acidemia (PA) is an inborn error of metabolism, caused by mutations in either the PCCA or PCCB gene, leading to mitochondrial accumulation of propionyl-CoA and its by-products. Here we report a 6-year-old Thai boy with PA who was born to consanguineous parents. Exome sequencing identified a novel homozygous frameshift insertion (c.379_380insA; p.T127NfsX160) in the PCCB gene, expanding its mutational spectrum.

  5. Point Mutations within and outside the Homeodomain Identify Sequences Required for Proboscipedia Homeotic Function in Drosophila

    PubMed Central

    Benassayag, C.; Boube, M.; Seroude, L.; Cribbs, D. L.

    1997-01-01

    The Drosophila homeotic gene proboscipedia (pb) encodes a homeodomain protein homologous to vertebrate HoxA2/B2 required for adult mouthparts formation. A transgenic Hsp70-pb (HSPB) element that rescues pb mutations also induces the dominant transformation of antennae to maxillary palps. To identify sequences essential to PB protein function, we screened for EMS-induced HSPB mutations leading to phenotypic reversion of the HSPB transformation. Ten revertants harbor identified point mutations in HSPB coding sequences. The point mutations that remove all detectable phenotypes in vivo reside either within the homeodomain or, more unexpectedly, in evolutionarily nonconserved regions outside the homeodomain. Two independent homeodomain mutations that change the highly conserved Arginine-5 in the N-terminal hinge show effects on adult eye development, suggesting a previously unsuspected role for Arg5 in functional specificity. Three additional revertant mutations outside the homeodomain reduce but do not abolish PB(+) activity, identifying protein elements that contribute quantitatively to pb function. This in vivo analysis shows that apart from the conserved motifs of PB, other elements throughout the protein make important contributions to homeotic function. PMID:9215898

  6. Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma

    PubMed Central

    Wong, Stephen Q.; Behren, Andreas; Mar, Victoria J.; Woods, Katherine; Li, Jason; Martin, Claire; Sheppard, Karen E.; Wolfe, Rory; Kelly, John; Cebon, Jonathan; Dobrovic, Alexander; McArthur, Grant A.

    2015-01-01

    Melanoma is often caused by mutations due to exposure to ultraviolet radiation. This study reports a recurrent somatic C > T change causing a P131L mutation in the RQCD1 (Required for Cell Differentiation1 Homolog) gene identified through whole exome sequencing of 20 metastatic melanomas. Screening in 715 additional primary melanomas revealed a prevalence of ~4%. This represents the first reported recurrent mutation in a member of the CCR4-NOT complex in cancer. Compared to tumors without the mutation, the P131L mutant positive tumors were associated with increased thickness (p = 0.02), head and neck (p = 0.009) and upper limb (p = 0.03) location, lentigo maligna melanoma subtype (p = 0.02) and BRAF V600K (p = 0.04) but not V600E or NRAS codon 61 mutations. There was no association with nodal disease (p = 0.3). Mutually exclusive mutations of other members of the CCR4-NOT complex were found in ~20% of the TCGA melanoma dataset suggesting the complex may play an important role in melanoma biology. Mutant RQCD1 was predicted to bind strongly to HLA-A0201 and HLA-Cw3 MHC1 complexes. From thirteen patients with mutant RQCD1, an anti-tumor CD8+ T cell response was observed from a single patient's peripheral blood mononuclear cell population stimulated with mutated peptide compared to wildtype indicating a neoantigen may be formed. PMID:25544760

  7. A systematic screening to identify de novo mutations causing sporadic early-onset Parkinson's disease

    PubMed Central

    Kun-Rodrigues, Celia; Ganos, Christos; Guerreiro, Rita; Schneider, Susanne A.; Schulte, Claudia; Lesage, Suzanne; Darwent, Lee; Holmans, Peter; Singleton, Andrew; Bhatia, Kailash; Bras, Jose

    2015-01-01

    Despite the many advances in our understanding of the genetic basis of Mendelian forms of Parkinson's disease (PD), a large number of early-onset cases still remain to be explained. Many of these cases, present with a form of disease that is identical to that underlined by genetic causes, but do not have mutations in any of the currently known disease-causing genes. Here, we hypothesized that de novo mutations may account for a proportion of these early-onset, sporadic cases. We performed exome sequencing in full parent–child trios where the proband presents with typical PD to unequivocally identify de novo mutations. This approach allows us to test all genes in the genome in an unbiased manner. We have identified and confirmed 20 coding de novo mutations in 21 trios. We have used publicly available population genetic data to compare variant frequencies and our independent in-house dataset of exome sequencing in PD (with over 1200 cases) to identify additional variants in the same genes. Of the genes identified to carry de novo mutations, PTEN, VAPB and ASNA1 are supported by various sources of data to be involved in PD. We show that these genes are reported to be within a protein–protein interaction network with PD genes and that they contain additional rare, case-specific, mutations in our independent cohort of PD cases. Our results support the involvement of these three genes in PD and suggest that testing for de novo mutations in sporadic disease may aid in the identification of novel disease-causing genes. PMID:26362251

  8. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma

    PubMed Central

    Kiel, Mark J.; Velusamy, Thirunavukkarasu; Betz, Bryan L.; Zhao, Lili; Weigelin, Helmut G.; Chiang, Mark Y.; Huebner-Chan, David R.; Bailey, Nathanael G.; Yang, David T.; Bhagat, Govind; Miranda, Roberto N.; Bahler, David W.; Medeiros, L. Jeffrey; Lim, Megan S.

    2012-01-01

    Splenic marginal zone lymphoma (SMZL), the most common primary lymphoma of spleen, is poorly understood at the genetic level. In this study, using whole-genome DNA sequencing (WGS) and confirmation by Sanger sequencing, we observed mutations identified in several genes not previously known to be recurrently altered in SMZL. In particular, we identified recurrent somatic gain-of-function mutations in NOTCH2, a gene encoding a protein required for marginal zone B cell development, in 25 of 99 (∼25%) cases of SMZL and in 1 of 19 (∼5%) cases of nonsplenic MZLs. These mutations clustered near the C-terminal proline/glutamate/serine/threonine (PEST)-rich domain, resulting in protein truncation or, rarely, were nonsynonymous substitutions affecting the extracellular heterodimerization domain (HD). NOTCH2 mutations were not present in other B cell lymphomas and leukemias, such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; n = 15), mantle cell lymphoma (MCL; n = 15), low-grade follicular lymphoma (FL; n = 44), hairy cell leukemia (HCL; n = 15), and reactive lymphoid hyperplasia (n = 14). NOTCH2 mutations were associated with adverse clinical outcomes (relapse, histological transformation, and/or death) among SMZL patients (P = 0.002). These results suggest that NOTCH2 mutations play a role in the pathogenesis and progression of SMZL and are associated with a poor prognosis. PMID:22891276

  9. Improved mutation tagging with gene identifiers applied to membrane protein stability prediction

    PubMed Central

    Winnenburg, Rainer; Plake, Conrad; Schroeder, Michael

    2009-01-01

    Background The automated retrieval and integration of information about protein point mutations in combination with structure, domain and interaction data from literature and databases promises to be a valuable approach to study structure-function relationships in biomedical data sets. Results We developed a rule- and regular expression-based protein point mutation retrieval pipeline for PubMed abstracts, which shows an F-measure of 87% for the mutation retrieval task on a benchmark dataset. In order to link mutations to their proteins, we utilize a named entity recognition algorithm for the identification of gene names co-occurring in the abstract, and establish links based on sequence checks. Vice versa, we could show that gene recognition improved from 77% to 91% F-measure when considering mutation information given in the text. To demonstrate practical relevance, we utilize mutation information from text to evaluate a novel solvation energy based model for the prediction of stabilizing regions in membrane proteins. For five G protein-coupled receptors we identified 35 relevant single mutations and associated phenotypes, of which none had been annotated in the UniProt or PDB database. In 71% reported phenotypes were in compliance with the model predictions, supporting a relation between mutations and stability issues in membrane proteins. Conclusion We present a reliable approach for the retrieval of protein mutations from PubMed abstracts for any set of genes or proteins of interest. We further demonstrate how amino acid substitution information from text can be utilized for protein structure stability studies on the basis of a novel energy model. PMID:19758467

  10. Characterization of three XPG-defective patients identifies three missense mutations that impair repair and transcription.

    PubMed

    Schäfer, Annika; Schubert, Steffen; Gratchev, Alexei; Seebode, Christina; Apel, Antje; Laspe, Petra; Hofmann, Lars; Ohlenbusch, Andreas; Mori, Toshio; Kobayashi, Nobuhiko; Schürer, Anke; Schön, Michael P; Emmert, Steffen

    2013-07-01

    Only 16 XPG-defective patients with 20 different mutations have been described. The current hypothesis is that missense mutations impair repair (xeroderma pigmentosum (XP) symptoms), whereas truncating mutations impair both repair and transcription (XP and Cockayne syndrome (CS) symptoms). We identified three cell lines of XPG-defective patients (XP40GO, XP72MA, and XP165MA). Patients' fibroblasts showed a reduced post-UVC cell survival. The reduced repair capability, assessed by host cell reactivation, could be complemented by XPG cDNA. XPG mRNA expression of XP165MA, XP72MA, and XP40GO was 83%, 97%, and 82.5%, respectively, compared with normal fibroblasts. XP165MA was homozygous for a p.G805R mutation; XP72MA and XP40GO were both compound heterozygous (p.W814S and p.E727X, and p.L778P and p.Q150X, respectively). Allele-specific complementation analysis of these five mutations revealed that p.L778P and p.W814S retained considerable residual repair activity. In line with the severe XP/CS phenotypes of XP72MA and XP165MA, even the missense mutations failed to interact with the transcription factor IIH subunits XPD and to some extent cdk7 in coimmunoprecipitation assays. Immunofluorescence techniques revealed that the mutations destabilized early recruitment of XP proteins to localized photodamage and delayed their redistribution in vivo. Thus, we identified three XPG missense mutations in the I-region of XPG that impaired repair and transcription and resulted in severe XP/CS. PMID:23370536

  11. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity.

    PubMed

    Dulak, Austin M; Stojanov, Petar; Peng, Shouyong; Lawrence, Michael S; Fox, Cameron; Stewart, Chip; Bandla, Santhoshi; Imamura, Yu; Schumacher, Steven E; Shefler, Erica; McKenna, Aaron; Carter, Scott L; Cibulskis, Kristian; Sivachenko, Andrey; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Auclair, Daniel; Thompson, Kristin; Sougnez, Carrie; Onofrio, Robert C; Guiducci, Candace; Beroukhim, Rameen; Zhou, Zhongren; Lin, Lin; Lin, Jules; Reddy, Rishindra; Chang, Andrew; Landrenau, Rodney; Pennathur, Arjun; Ogino, Shuji; Luketich, James D; Golub, Todd R; Gabriel, Stacey B; Lander, Eric S; Beer, David G; Godfrey, Tony E; Getz, Gad; Bass, Adam J

    2013-05-01

    The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a 5-year survival rate of ~15%, the identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole-exome sequencing of 149 EAC tumor-normal pairs, 15 of which have also been subjected to whole-genome sequencing. We identify a mutational signature defined by a high prevalence of A>C transversions at AA dinucleotides. Statistical analysis of exome data identified 26 significantly mutated genes. Of these genes, five (TP53, CDKN2A, SMAD4, ARID1A and PIK3CA) have previously been implicated in EAC. The new significantly mutated genes include chromatin-modifying factors and candidate contributors SPG20, TLR4, ELMO1 and DOCK2. Functional analyses of EAC-derived mutations in ELMO1 identifies increased cellular invasion. Therefore, we suggest the potential activation of the RAC1 pathway as a contributor to EAC tumorigenesis. PMID:23525077

  12. Mutation in ST6GALNAC5 identified in family with coronary artery disease

    PubMed Central

    InanlooRahatloo, Kolsoum; Parsa, Amir Farhang Zand; Huse, Klaus; Rasooli, Paniz; Davaran, Saeid; Platzer, Matthias; Kramer, Marcel; Fan, Jian-Bing; Turk, Casey; Amini, Sasan; Steemers, Frank; Gunderson, Kevin; Ronaghi, Mostafa; Elahi, Elahe

    2014-01-01

    We aimed to identify the genetic cause of coronary artery disease (CAD) in an Iranian pedigree. Genetic linkage analysis identified three loci with an LOD score of 2.2. Twelve sequence variations identified by exome sequencing were tested for segregation with disease. A p.Val99Met causing mutation in ST6GALNAC5 was considered the likely cause of CAD. ST6GALNAC5 encodes sialyltransferase 7e. The variation affects a highly conserved amino acid, was absent in 800 controls, and was predicted to damage protein function. ST6GALNAC5 is positioned within loci previously linked to CAD-associated parameters. While hypercholesterolemia was a prominent feature in the family, clinical and genetic data suggest that this condition is not caused by the mutation in ST6GALNAC5. Sequencing of ST6GALNAC5 in 160 Iranian patients revealed a candidate causative stop-loss mutation in two other patients. The p.Val99Met and stop-loss mutations both caused increased sialyltransferase activity. Sequence data from combined Iranian and US controls and CAD affected individuals provided evidence consistent with potential role of ST6GALNAC5 in CAD. We conclude that ST6GALNAC5 mutations can cause CAD. There is substantial literature suggesting a relation between sialyltransferase and sialic acid levels and coronary disease. Our findings provide strong evidence for the existence of this relation. PMID:24399302

  13. A novel protocol to identify mutations in patients with wiskott-Aldrich syndrome.

    PubMed

    Jones, L N; Lutskiy, M I; Cooley, J; Kenney, D M; Rosen, F S; Remold-O'Donnell, E

    2002-01-01

    Mutations of WASP (Wiskott-Aldrich syndrome protein) underlie the severe immunodeficiency/platelet disorder Wiskott-Aldrich syndrome (WAS) and its milder variant X-linked thrombocytopenia (XLT). The affected gene, a 12-exon structure on the X-chromosome, is expressed exclusively in blood cells. The encoded product WASP is a 502-amino-acid scaffolding protein that functions in stimulus-induced nucleation of actin filaments to form dynamic cell surface projections. To date, more than 150 mutations have been identified in 300 WAS/XLT kindred worldwide, generally through methodologies that include sophisticated exon screening steps such as single-strand conformation analysis. We report here a simpler protocol, which was designed for use in clinical settings to identify the mutations of newly diagnosed patients. The approach relies on directly sequencing amplified exons according to a staggered schedule based on statistical evaluation of previous cases. In a 2 1/2-year trial, samples from 28 consecutive patients were analyzed; these included 3 "blindly labeled" previously studied cases. The mutations that were identified include a broad spectrum (8 missense, 3 nonsense, 5 splice site mutations, 11 small insertion/deletions, 1 large deletion) and were broadly distributed (in 10 of the 12 exons). All mutations were verified and no discrepancies were encountered. Per patient, a mean of six DNA sequencing reactions and 6-7 h of staff effort sufficed for mutation identification and verification, indicating that the protocol is cost-effective. This cumulative experience demonstrates the suitability, reliability, and versatility of the new protocol. PMID:12367583

  14. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    SciTech Connect

    Schulze, Kornelius; Imbeaud, Sandrine; Letouz, Eric; Alexandrov, Ludmil B.; Calderaro, Julien; Rebouissou, Sandra; Couchy, Gabrielle; Meiller, Clment; Shinde, Jayendra; Soysouvanh, Frederic; Calatayud, Anna-Line; Pinyol, Roser; Pelletier, Laura; Balabaud, Charles; Laurent, Alexis; Blanc, Jean-Frederic; Mazzaferro, Vincenzo; Calvo, Fabien; Villanueva, Augusto; Nault, Jean-Charles; Bioulac-Sage, Paulette; Stratton, Michael R.; Llovet, Josep M.; Zucman-Rossi, Jessica

    2015-03-30

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1 amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)approved drugs. Finally, we identified risk factorspecific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.

  15. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    DOE PAGESBeta

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric; Alexandrov, Ludmil B.; Calderaro, Julien; Rebouissou, Sandra; Couchy, Gabrielle; Meiller, Clément; Shinde, Jayendra; Soysouvanh, Frederic; et al

    2015-03-30

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1more » amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.« less

  16. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    SciTech Connect

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric; Alexandrov, Ludmil B.; Calderaro, Julien; Rebouissou, Sandra; Couchy, Gabrielle; Meiller, Clément; Shinde, Jayendra; Soysouvanh, Frederic; Calatayud, Anna-Line; Pinyol, Roser; Pelletier, Laura; Balabaud, Charles; Laurent, Alexis; Blanc, Jean-Frederic; Mazzaferro, Vincenzo; Calvo, Fabien; Villanueva, Augusto; Nault, Jean-Charles; Bioulac-Sage, Paulette; Stratton, Michael R.; Llovet, Josep M.; Zucman-Rossi, Jessica

    2015-03-30

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1 amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.

  17. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  18. Exome Sequencing Identifies PDE4D Mutations as Another Cause of Acrodysostosis

    PubMed Central

    Michot, Caroline; Le Goff, Carine; Goldenberg, Alice; Abhyankar, Avinash; Klein, Céline; Kinning, Esther; Guerrot, Anne-Marie; Flahaut, Philippe; Duncombe, Alice; Baujat, Genevieve; Lyonnet, Stanislas; Thalassinos, Caroline; Nitschke, Patrick; Casanova, Jean-Laurent; Le Merrer, Martine; Munnich, Arnold; Cormier-Daire, Valérie

    2012-01-01

    Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368∗]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368∗] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis. PMID:22464250

  19. A Mononucleotide Markers Panel to Identify hMLH1/hMSH2 Germline Mutations

    PubMed Central

    Pedroni, M.; Roncari, B.; Maffei, S.; Losi, L.; Scarselli, A.; Di Gregorio, C.; Marino, M.; Roncucci, L.; Benatti, P.; Ponti, G.; Rossi, G.; Menigatti, M.; Viel, A.; Genuardi, M.; de Leon, M. Ponz

    2007-01-01

    Hereditary NonPolyposis Colorectal Cancer (Lynch syndrome) is an autosomal dominant disease caused by germline mutations in a class of genes deputed to maintain genomic integrity during cell replication, mutations result in a generalized genomic instability, particularly evident at microsatellite loci (Microsatellite Instability, MSI). MSI is present in 85–90% of colorectal cancers that occur in Lynch Syndrome. To standardize the molecular diagnosis of MSI, a panel of 5 microsatellite markers was proposed (known as the “Bethesda panel”). Aim of our study is to evaluate if MSI testing with two mononucleotide markers, such as BAT25 and BAT26, was sufficient to identify patients with hMLH1/hMSH2 germline mutations. We tested 105 tumours for MSI using both the Bethesda markers and the two mononucleotide markers BAT25 and BAT26. Moreover, immunohistochemical evaluation of MLH1 and MSH2 proteins was executed on the tumours with at least one unstable microsatellite, whereas germline hMLH1/hMSH2 mutations were searched for all cases showing two or more unstable microsatellites. The Bethesda panel detected more MSI(+) tumors than the mononucleotide panel (49.5% and 28.6%, respectively). However, the mononucleotide panel was more efficient to detect MSI(+) tumours with lack of expression of Mismatch Repair proteins (93% vs 54%). Germline mutations were detected in almost all patients whose tumours showed MSI and no expression of MLH1/MSH2 proteins. No germline mutations were found in patients with MSI(+) tumour defined only through dinucleotide markers. In conclusion, the proposed mononucleotide markers panel seems to have a higher predictive value to identify hMLH1 and hMSH2 mutation-positive patients with Lynch syndrome. Moreover, this panel showed increased specificity, thus improving the cost/effectiveness ratio of the biomolecular analyses. PMID:17473388

  20. A mononucleotide markers panel to identify hMLH1/hMSH2 germline mutations.

    PubMed

    Pedroni, M; Roncari, B; Maffei, S; Losi, L; Scarselli, A; Di Gregorio, C; Marino, M; Roncucci, L; Benatti, P; Ponti, G; Rossi, G; Menigatti, M; Viel, A; Genuardi, M; de Leon, M Ponz

    2007-01-01

    Hereditary NonPolyposis Colorectal Cancer (Lynch syndrome) is an autosomal dominant disease caused by germline mutations in a class of genes deputed to maintain genomic integrity during cell replication, mutations result in a generalized genomic instability, particularly evident at microsatellite loci (Microsatellite Instability, MSI). MSI is present in 85-90% of colorectal cancers that occur in Lynch Syndrome. To standardize the molecular diagnosis of MSI, a panel of 5 microsatellite markers was proposed (known as the "Bethesda panel"). Aim of our study is to evaluate if MSI testing with two mononucleotide markers, such as BAT25 and BAT26, was sufficient to identify patients with hMLH1/hMSH2 germline mutations. We tested 105 tumours for MSI using both the Bethesda markers and the two mononucleotide markers BAT25 and BAT26. Moreover, immunohistochemical evaluation of MLH1 and MSH2 proteins was executed on the tumours with at least one unstable microsatellite, whereas germline hMLH1/hMSH2 mutations were searched for all cases showing two or more unstable microsatellites. The Bethesda panel detected more MSI(+) tumors than the mononucleotide panel (49.5% and 28.6%, respectively). However, the mononucleotide panel was more efficient to detect MSI(+) tumours with lack of expression of Mismatch Repair proteins (93% vs 54%). Germline mutations were detected in almost all patients whose tumours showed MSI and no expression of MLH1/MSH2 proteins. No germline mutations were found in patients with MSI(+) tumour defined only through dinucleotide markers. In conclusion, the proposed mononucleotide markers panel seems to have a higher predictive value to identify hMLH1 and hMSH2 mutation-positive patients with Lynch syndrome. Moreover, this panel showed increased specificity, thus improving the cost/effectiveness ratio of the biomolecular analyses. PMID:17473388

  1. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma.

    PubMed

    Comino-Méndez, Iñaki; Gracia-Aznárez, Francisco J; Schiavi, Francesca; Landa, Iñigo; Leandro-García, Luis J; Letón, Rocío; Honrado, Emiliano; Ramos-Medina, Rocío; Caronia, Daniela; Pita, Guillermo; Gómez-Graña, Alvaro; de Cubas, Aguirre A; Inglada-Pérez, Lucía; Maliszewska, Agnieszka; Taschin, Elisa; Bobisse, Sara; Pica, Giuseppe; Loli, Paola; Hernández-Lavado, Rafael; Díaz, José A; Gómez-Morales, Mercedes; González-Neira, Anna; Roncador, Giovanna; Rodríguez-Antona, Cristina; Benítez, Javier; Mannelli, Massimo; Opocher, Giuseppe; Robledo, Mercedes; Cascón, Alberto

    2011-07-01

    Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential. PMID:21685915

  2. Mudi, a web tool for identifying mutations by bioinformatics analysis of whole-genome sequence.

    PubMed

    Iida, Naoko; Yamao, Fumiaki; Nakamura, Yasukazu; Iida, Tetsushi

    2014-06-01

    In forward genetics, identification of mutations is a time-consuming and laborious process. Modern whole-genome sequencing, coupled with bioinformatics analysis, has enabled fast and cost-effective mutation identification. However, for many experimental researchers, bioinformatics analysis is still a difficult aspect of whole-genome sequencing. To address this issue, we developed a browser-accessible and easy-to-use bioinformatics tool called Mutation discovery (Mudi; http://naoii.nig.ac.jp/mudi_top.html), which enables 'one-click' identification of causative mutations from whole-genome sequence data. In this study, we optimized Mudi for pooled-linkage analysis aimed at identifying mutants in yeast model systems. After raw sequencing data are uploaded, Mudi performs sequential analysis, including mapping, detection of variant alleles, filtering and removal of background polymorphisms, prioritization, and annotation. In an example study of suppressor mutants of ptr1-1 in the fission yeast Schizosaccharomyces pombe, pooled-linkage analysis with Mudi identified mip1(+) , a component of Target of Rapamycin Complex 1 (TORC1), as a novel component involved in RNA interference (RNAi)-related cell-cycle control. The accessibility of Mudi will accelerate systematic mutation analysis in forward genetics. PMID:24766403

  3. Simulated Annealing Based Algorithm for Identifying Mutated Driver Pathways in Cancer

    PubMed Central

    Li, Hai-Tao; Zhang, Yu-Lang; Zheng, Chun-Hou; Wang, Hong-Qiang

    2014-01-01

    With the development of next-generation DNA sequencing technologies, large-scale cancer genomics projects can be implemented to help researchers to identify driver genes, driver mutations, and driver pathways, which promote cancer proliferation in large numbers of cancer patients. Hence, one of the remaining challenges is to distinguish functional mutations vital for cancer development, and filter out the unfunctional and random “passenger mutations.” In this study, we introduce a modified method to solve the so-called maximum weight submatrix problem which is used to identify mutated driver pathways in cancer. The problem is based on two combinatorial properties, that is, coverage and exclusivity. Particularly, we enhance an integrative model which combines gene mutation and expression data. The experimental results on simulated data show that, compared with the other methods, our method is more efficient. Finally, we apply the proposed method on two real biological datasets. The results show that our proposed method is also applicable in real practice. PMID:24982873

  4. Identify mutation in amyotrophic lateral sclerosis cases using HaloPlex target enrichment system.

    PubMed

    Liu, Zhi-Jun; Li, Hong-Fu; Tan, Guo-He; Tao, Qing-Qing; Ni, Wang; Cheng, Xue-Wen; Xiong, Zhi-Qi; Wu, Zhi-Ying

    2014-12-01

    To date, at least 18 causative genes have been identified in amyotrophic lateral sclerosis (ALS). Because of the clinical and genetic heterogeneity, molecular diagnosis for ALS faces great challenges. HaloPlex target enrichment system is a new targeted sequencing approach, which can detect already known mutations or candidate genes. We performed this approach to screen 18 causative genes of ALS, including SOD1, SETX, FUS, ANG, TARDBP, ALS2, FIG4, VAPB, OPTN, DAO, VCP, UBQLN2, SPG11, SIGMAR1, DCTN1, SQSTM1, PFN1, and CHMP2B in 8 ALS probands. Using this approach, we got an average of 9.5 synonymous or missense mutations per sample. After validation by Sanger sequencing, we identified 3 documented SOD1 mutations (p.F21C, p.G148D, and p.C147R) and 1 novel DCTN1 p.G59R mutation in 4 probands. The novel DCTN1 mutation appeared to segregate with the disease in the pedigree and was absent in 200 control subjects. The high throughput and efficiency of this approach indicated that it could be applied to diagnose ALS and other inherited diseases with multiple causative genes in clinical practice. PMID:25109764

  5. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    PubMed Central

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.; Hallström, Björn M.; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N.; Andersson-Svahn, Helene; Nielsen, Jens

    2015-01-01

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories. PMID:26261321

  6. Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis.

    PubMed

    Chiang, Pei-Wen; Wang, Juan; Chen, Yang; Fu, Quan; Zhong, Jing; Chen, Yanhua; Yi, Xin; Wu, Renhua; Gan, Haixue; Shi, Yong; Chen, Yanling; Barnett, Christopher; Wheaton, Dianna; Day, Megan; Sutherland, Joanne; Heon, Elise; Weleber, Richard G; Gabriel, Luis Alexandre Rassi; Cong, Peikuan; Chuang, KuangHsiang; Ye, Sheng; Sallum, Juliana Maria Ferraz; Qi, Ming

    2012-09-01

    Leber congenital amaurosis (LCA) is an autosomal recessive retinal dystrophy that manifests with genetic heterogeneity. We sequenced the exome of an individual with LCA and identified nonsense (c.507G>A, p.Trp169*) and missense (c.769G>A, p.Glu257Lys) mutations in NMNAT1, which encodes an enzyme in the nicotinamide adenine dinucleotide (NAD) biosynthesis pathway implicated in protection against axonal degeneration. We also found NMNAT1 mutations in ten other individuals with LCA, all of whom carry the p.Glu257Lys variant. PMID:22842231

  7. Whole-exome Sequencing Analysis Identifies Mutations in the EYS Gene in Retinitis Pigmentosa in the Indian Population.

    PubMed

    Di, Yanan; Huang, Lulin; Sundaresan, Periasamy; Li, Shujin; Kim, Ramasamy; Ballav Saikia, Bibhuti; Qu, Chao; Zhu, Xiong; Zhou, Yu; Jiang, Zhilin; Zhang, Lin; Lin, Ying; Zhang, Dingding; Li, Yuanfen; Zhang, Houbin; Yin, Yibing; Lu, Fang; Zhu, Xianjun; Yang, Zhenglin

    2016-01-01

    Retinitis pigmentosa (RP) is a rare heterogeneous genetic retinal dystrophy disease, and despite years of research, known genetic mutations can explain only approximately 60% of RP cases. We sought to identify the underlying genetic mutations in a cohort of fourteen Indian autosomal recessive retinitis pigmentosa (arRP) families and 100 Indian sporadic RP cases. Whole-exome sequencing (WES) was performed on the probands of the arRP families and sporadic RP patients, and direct Sanger sequencing was used to confirm the causal mutations identified by WES. We found that the mutations of EYS are likely pathogenic mutations in two arRP families and eight sporadic patients. Specifically, we found a novel pair of compound heterozygous mutations and a novel homozygous mutation in two separate arRP families, and found two novel heterozygous mutations in two sporadic RP patients, whereas we found six novel homozygous mutations in six sporadic RP patients. Of these, one was a frameshift mutation, two were stop-gain mutations, one was a splicing mutation, and the others were missense mutations. In conclusion, our findings expand the spectrum of EYS mutations in RP in the Indian population and provide further support for the role of EYS in the pathogenesis and clinical diagnosis of RP. PMID:26787102

  8. Whole-exome Sequencing Analysis Identifies Mutations in the EYS Gene in Retinitis Pigmentosa in the Indian Population

    PubMed Central

    Di, Yanan; Huang, Lulin; Sundaresan, Periasamy; Li, Shujin; Kim, Ramasamy; Ballav Saikia, Bibhuti; Qu, Chao; Zhu, Xiong; Zhou, Yu; Jiang, Zhilin; Zhang, Lin; Lin, Ying; Zhang, Dingding; Li, Yuanfen; Zhang, Houbin; Yin, Yibing; Lu, Fang; Zhu, Xianjun; Yang, Zhenglin

    2016-01-01

    Retinitis pigmentosa (RP) is a rare heterogeneous genetic retinal dystrophy disease, and despite years of research, known genetic mutations can explain only approximately 60% of RP cases. We sought to identify the underlying genetic mutations in a cohort of fourteen Indian autosomal recessive retinitis pigmentosa (arRP) families and 100 Indian sporadic RP cases. Whole-exome sequencing (WES) was performed on the probands of the arRP families and sporadic RP patients, and direct Sanger sequencing was used to confirm the causal mutations identified by WES. We found that the mutations of EYS are likely pathogenic mutations in two arRP families and eight sporadic patients. Specifically, we found a novel pair of compound heterozygous mutations and a novel homozygous mutation in two separate arRP families, and found two novel heterozygous mutations in two sporadic RP patients, whereas we found six novel homozygous mutations in six sporadic RP patients. Of these, one was a frameshift mutation, two were stop-gain mutations, one was a splicing mutation, and the others were missense mutations. In conclusion, our findings expand the spectrum of EYS mutations in RP in the Indian population and provide further support for the role of EYS in the pathogenesis and clinical diagnosis of RP. PMID:26787102

  9. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    PubMed

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:26847489

  10. Exome sequencing identified a missense mutation of EPS8L3 in Marie Unna hereditary hypotrichosis

    PubMed Central

    Zhang, Xin; Guo, Bi-Rong; Cai, Li-Qiong; Jiang, Tao; Sun, Liang-Dan; Cui, Yong; Hu, Jing-Chu; Zhu, Jun; Chen, Gang; Tang, Xian-Fa; Sun, Guang-Qing; Tang, Hua-Yang; Liu, Yuan; Li, Min; Li, Qi-Bin; Cheng, Hui; Gao, Min; Li, Ping; Yang, Xu; Zuo, Xian-Bo; Zheng, Xiao-Dong; Wang, Pei-Guang; Wang, Jian; Wang, Jun; Liu, Jian-Jun; Yang, Sen; Li, Ying-Rui; Zhang, Xue-Jun

    2012-01-01

    Background Marie Unna hereditary hypotrichosis (MUHH) is an autosomal dominant disorder characterised by coarse, wiry, twisted hair developed in early childhood and subsequent progressive hair loss. MUHH is a genetically heterogeneous disorder. No gene in 1p21.11q21.3 region responsible for MUHH has been identified. Methods Exome sequencing was performed on two affected subjects, who had normal vertex hair and modest alopecia, and one unaffected individual from a four-generation MUHH family of which our previous linkage study mapped the MUHH locus on chromosome 1p21.11q21.3. Results We identified a missense mutation in EPS8L3 (NM_024526.3: exon2: c.22G->A:p.Ala8Thr) within 1p21.11q21.3. Sanger sequencing confirmed the cosegregation of this mutation with the disease phenotype in the family by demonstrating the presence of the heterozygous mutation in all the eight affected and absence in all the seven unaffected individuals. This mutation was found to be absent in 676 unrelated healthy controls and 781 patients of other disease from another unpublished project of our group. Conclusions Taken together, our results suggest that EPS8L3 is a causative gene for MUHH, which was helpful for advancing us on understanding of the pathogenesis of MUHH. Our study also has further demonstrated the effectiveness of combining exome sequencing with linkage information for identifying Mendelian disease genes. PMID:23099647

  11. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    PubMed Central

    Alexandrov, Ludmil B; Calderaro, Julien; Rebouissou, Sandra; Couchy, Gabrielle; Meiller, Clément; Shinde, Jayendra; Soysouvanh, Frederic; Calatayud, Anna-Line; Pinyol, Roser; Pelletier, Laura; Balabaud, Charles; Laurent, Alexis; Blanc, Jean-Frederic; Mazzaferro, Vincenzo; Calvo, Fabien; Villanueva, Augusto; Nault, Jean-Charles; Bioulac-Sage, Paulette; Stratton, Michael R; Llovet, Josep M; Zucman-Rossi, Jessica

    2015-01-01

    Genomic analyses promise to improve tumor characterization in order to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors revealed mutational signatures associated with specific risk factors, mainly combined alcohol/tobacco consumption, and aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrent pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (HBV), and AXIN1. Analyses according to tumor stage progression revealed TERT promoter mutation as an early event whereas FGF3, FGF4, FGF19/CCND1 amplification, TP53 and CDKN2A alterations, appeared at more advanced stages in aggressive tumors. In 28% of the tumors we identified genetic alterations potentially targetable by FDA-approved drugs. In conclusion, we identified risk factor-specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC which will be useful to design clinical trials for targeted therapy. PMID:25822088

  12. The establishment of a predictive mutational model of the forkhead domain through the analyses of FOXC2 missense mutations identified in patients with hereditary lymphedema with distichiasis.

    PubMed

    Berry, Fred B; Tamimi, Yahya; Carle, Michelle V; Lehmann, Ordan J; Walter, Michael A

    2005-09-15

    The FOX family of transcription factor genes is an evolutionary conserved, yet functionally diverse class of transcription factors that are important for regulation of energy homeostasis, development and oncogenesis. The proteins encoded by FOX genes are characterized by a conserved DNA-binding domain known as the forkhead domain (FHD). To date, disease-causing mutations have been identified in eight human FOX genes. Many of these mutations result in single amino acid substitutions in the FHD. We analyzed the molecular consequences of two disease-causing missense mutations (R121H and S125L) occurring in the FHD of the FOXC2 gene that were identified in patients with hereditary lymphedema with distichiasis (LD) to test the predictive capacity of a FHD structure/function model. On the basis of the FOXC2 solution structure, both FOXC2 missense mutations are located on the DNA-recognition helix of the FHD. A mutation model based on the parologous FOXC1 protein predicts that these FOXC2 missense mutations will impair the DNA-binding and transcriptional activation ability of the FOXC2 protein. When these mutations were analyzed biochemically, we found that both mutations did indeed reduce the DNA binding and transcriptional capacity. In addition, the R121H mutation affected nuclear localization of FOXC2. Together, these data indicate that these FOXC2 missense mutations are functional nulls and that FOXC2 haploinsufficiency underlies hereditary LD and validates the predictive ability of the FOXC1-based FHD mutational model. PMID:16081467

  13. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome.

    PubMed

    Martínez-Trillos, Alejandra; Pinyol, Magda; Navarro, Alba; Aymerich, Marta; Jares, Pedro; Juan, Manel; Rozman, María; Colomer, Dolors; Delgado, Julio; Giné, Eva; González-Díaz, Marcos; Hernández-Rivas, Jesús M; Colado, Enrique; Rayón, Consolación; Payer, Angel R; Terol, Maria José; Navarro, Blanca; Quesada, Victor; Puente, Xosé S; Rozman, Ciril; López-Otín, Carlos; Campo, Elías; López-Guillermo, Armando; Villamor, Neus

    2014-06-12

    Mutations in Toll-like receptor (TLR) and myeloid differentiation primary response 88 (MYD88) genes have been found in chronic lymphocytic leukemia (CLL) at low frequency. We analyzed the incidence, clinicobiological characteristics, and outcome of patients with TLR/MYD88 mutations in 587 CLL patients. Twenty-three patients (3.9%) had mutations, 19 in MYD88 (one with concurrent IRAK1 mutation), 2 TLR2 (one with concomitant TLR6 mutation), 1 IRAK1, and 1 TLR5. No mutations were found in IRAK2 and IRAK4. TLR/MYD88-mutated CLL overexpressed genes of the nuclear factor κB pathway. Patients with TLR/MYD88 mutations were significantly younger (83% age ≤50 years) than those with no mutations. TLR/MYD88 mutations were the most frequent in young patients. Patients with mutated TLR/MYD88 CLL had a higher frequency of mutated IGHV and low expression of CD38 and ZAP-70. Overall survival (OS) was better in TLR/MYD88-mutated than unmutated patients in the whole series (10-year OS, 100% vs 62%; P = .002), and in the subset of patients age ≤50 years (100% vs 70%; P = .02). In addition, relative OS of TLR/MYD88-mutated patients was similar to that in the age- and gender-matched population. In summary, TLR/MYD88 mutations identify a population of young CLL patients with favorable outcome. PMID:24782504

  14. Novel carboxypeptidase A6 (CPA6) mutations identified in patients with juvenile myoclonic and generalized epilepsy.

    PubMed

    Sapio, Matthew R; Vessaz, Monique; Thomas, Pierre; Genton, Pierre; Fricker, Lloyd D; Salzmann, Annick

    2015-01-01

    Carboxypeptidase A6 (CPA6) is a peptidase that removes C-terminal hydrophobic amino acids from peptides and proteins. The CPA6 gene is expressed in the brains of humans and animals, with high levels of expression during development. It is translated with a prodomain (as proCPA6), which is removed before secretion. The active form of CPA6 binds tightly to the extracellular matrix (ECM) where it is thought to function in the processing of peptides and proteins. Mutations in the CPA6 gene have been identified in patients with temporal lobe epilepsy and febrile seizures. In the present study, we screened for CPA6 mutations in patients with juvenile myoclonic epilepsy and identified two novel missense mutations: Arg36His and Asn271Ser. Patients harboring these mutations also presented with generalized epilepsy. Neither of the novel mutations was found in a control population. Asn271 is highly conserved in CPA6 and other related metallocarboxypeptidases. Arg36 is present in the prodomain and is not highly conserved. To assess structural consequences of the amino acid substitutions, both mutants were modeled within the predicted structure of the enzyme. To examine the effects of these mutations on enzyme expression and activity, we expressed the mutated enzymes in human embryonic kidney 293T cells. These analyses revealed that Asn271Ser abolished enzymatic activity, while Arg36His led to a ~50% reduction in CPA6 levels in the ECM. Pulse-chase using radio-labeled amino acids was performed to follow secretion. Newly-synthesized CPA6 appeared in the ECM with peak levels between 2-8 hours. There was no major difference in time course between wild-type and mutant forms, although the amount of radiolabeled CPA6 in the ECM was lower for the mutants. Our experiments demonstrate that these mutations in CPA6 are deleterious and provide further evidence for the involvement of CPA6 mutations in the predisposition for several types of epilepsy. PMID:25875328

  15. Novel Carboxypeptidase A6 (CPA6) Mutations Identified in Patients with Juvenile Myoclonic and Generalized Epilepsy

    PubMed Central

    Sapio, Matthew R.; Vessaz, Monique; Thomas, Pierre; Genton, Pierre; Fricker, Lloyd D.; Salzmann, Annick

    2015-01-01

    Carboxypeptidase A6 (CPA6) is a peptidase that removes C-terminal hydrophobic amino acids from peptides and proteins. The CPA6 gene is expressed in the brains of humans and animals, with high levels of expression during development. It is translated with a prodomain (as proCPA6), which is removed before secretion. The active form of CPA6 binds tightly to the extracellular matrix (ECM) where it is thought to function in the processing of peptides and proteins. Mutations in the CPA6 gene have been identified in patients with temporal lobe epilepsy and febrile seizures. In the present study, we screened for CPA6 mutations in patients with juvenile myoclonic epilepsy and identified two novel missense mutations: Arg36His and Asn271Ser. Patients harboring these mutations also presented with generalized epilepsy. Neither of the novel mutations was found in a control population. Asn271 is highly conserved in CPA6 and other related metallocarboxypeptidases. Arg36 is present in the prodomain and is not highly conserved. To assess structural consequences of the amino acid substitutions, both mutants were modeled within the predicted structure of the enzyme. To examine the effects of these mutations on enzyme expression and activity, we expressed the mutated enzymes in human embryonic kidney 293T cells. These analyses revealed that Asn271Ser abolished enzymatic activity, while Arg36His led to a ~50% reduction in CPA6 levels in the ECM. Pulse-chase using radio-labeled amino acids was performed to follow secretion. Newly-synthesized CPA6 appeared in the ECM with peak levels between 2-8 hours. There was no major difference in time course between wild-type and mutant forms, although the amount of radiolabeled CPA6 in the ECM was lower for the mutants. Our experiments demonstrate that these mutations in CPA6 are deleterious and provide further evidence for the involvement of CPA6 mutations in the predisposition for several types of epilepsy. PMID:25875328

  16. First identified Korean family with Sotos syndrome caused by a novel intragenic mutation in NSD1.

    PubMed

    Park, So Hyun; Lee, Ji Eun; Sohn, Young Bae; Ko, Jung Min

    2014-01-01

    Sotos syndrome (SS) is a congenital overgrowth syndrome. NSD1 mutations are identifiable in most SS patients. There have been a few reports of familial inheritance of SS worldwide, but no familial cases have been reported in Korea. A 6-month-old girl had tall stature and macrocephaly with mild ventricular enlargement, and showed mild delay in motor and language development. Her mother also had tall stature and a long narrow face. The baby and her mother were suspected of having familial SS. Chromosome 5q35 microdeletion was first ruled out by fluorescence in situ hybridization analysis, and direct sequencing of NSD1 revealed a novel heterozygous mutation in exon 22 (c.6356delA; p.Asp2119Valfs*31). This report describes, for the first time, a Korean family with two generations of SS resulting from a novel intragenic NSD1 mutation. PMID:24795065

  17. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  18. Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2

    PubMed Central

    Mitsuhashi, Satomi; Boyden, Steven E; Estrella, Elicia A; Jones, Takako I; Rahimov, Fedik; Yu, Timothy W; Darras, Basil T; Amato, Anthony A; Folkerth, Rebecca D; Jones, Peter L; Kunkel, Louis M; Kang, Peter B

    2013-01-01

    FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family. PMID:24128691

  19. Targeted Next Generation Sequencing Identifies Clinically Actionable Mutations in Patients with Melanoma

    PubMed Central

    Jeck, William R.; Parker, Joel; Carson, Craig C.; Shields, Janiel M.; Sambade, Maria J.; Peters, Eldon C.; Burd, Christin E.; Thomas, Nancy E.; Chiang, Derek Y.; Liu, Wenjin; Eberhard, David A.; Ollila, David; Grilley-Olson, Juneko; Moschos, Stergios; Hayes, D. Neil; Sharpless, Norman E.

    2014-01-01

    Somatic sequencing of cancers has produced new insight into tumorigenesis, tumor heterogeneity, and disease progression, but the vast majority of genetic events identified are of indeterminate clinical significance. Here we describe a NextGen sequencing approach to fully analyze 248 genes, including all those of known clinical significance in melanoma. This strategy features solution capture of DNA followed by multiplexed, high-throughput sequencing, and was evaluated in 31 melanoma cell lines and 18 tumor tissues from patients with metastatic melanoma. Mutations in melanoma cell lines correlated with their sensitivity to corresponding small molecule inhibitors, confirming, for example, lapatinib sensitivity in ERBB4 mutant lines and identifying a novel activating mutation of BRAF. The latter event would not have been identified by clinical sequencing and was associated with responsiveness to a BRAF kinase inhibitor. This approach identified focal copy number changes of PTEN not found by standard methods, such as comparative genomic hybridization (CGH). Actionable mutations were found in 89% of the tumor tissues analyzed, 56% of which would not be identified by standard-of-care approaches. This work shows that targeted sequencing is an attractive approach for clinical use in melanoma. PMID:24628946

  20. dHPLC screening of the NSD1 gene identifies nine novel mutations--summary of the first 100 Sotos syndrome mutations.

    PubMed

    Melchior, Linea; Schwartz, Marianne; Duno, Morten

    2005-03-01

    Sotos syndrome belongs to the family of overgrowth syndromes and is characterized by large head circumference, craniofacial anomalies, advanced bone age and mental retardation. The syndrome is due to haploinsufficiency of the NSD1 gene, consisting of 23 exons with an open reading frame of 8088bp, which makes mutation screening by direct sequencing quite a laborious and expensive task. We have developed a dHPLC screening protocol for mutation detection in NSD1 and identified 9 novel mutations among 33 patients, thus achieving a mutation detection efficiency comparable to direct sequencing. A real-time quantitative PCR approach identified two patients with NSD1 deletions. Our mutation screen is compared to other studies and all published mutations and polymorphisms are summarized. PMID:15720303

  1. Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy.

    PubMed

    Zhang, Zhen; Alpert, Deanne; Francis, Richard; Chatterjee, Bishwanath; Yu, Qing; Tansey, Terry; Sabol, Steven L; Cui, Cheng; Bai, Yongli; Koriabine, Maxim; Yoshinaga, Yuko; Cheng, Jan-Fang; Chen, Feng; Martin, Joel; Schackwitz, Wendy; Gunn, Teresa M; Kramer, Kenneth L; De Jong, Pieter J; Pennacchio, Len A; Lo, Cecilia W

    2009-03-01

    Forward genetic screens with ENU (N-ethyl-N-nitrosourea) mutagenesis can facilitate gene discovery, but mutation identification is often difficult. We present the first study in which an ENU-induced mutation was identified by massively parallel DNA sequencing. This mutation causes heterotaxy and complex congenital heart defects and was mapped to a 2.2-Mb interval on mouse chromosome 7. Massively parallel sequencing of the entire 2.2-Mb interval identified 2 single-base substitutions, one in an intergenic region and a second causing replacement of a highly conserved cysteine with arginine (C193R) in the gene Megf8. Megf8 is evolutionarily conserved from human to fruit fly, and is observed to be ubiquitously expressed. Morpholino knockdown of Megf8 in zebrafish embryos resulted in a high incidence of heterotaxy, indicating a conserved role in laterality specification. Megf8(C193R) mouse mutants show normal breaking of symmetry at the node, but Nodal signaling failed to be propagated to the left lateral plate mesoderm. Videomicroscopy showed nodal cilia motility, which is required for left-right patterning, is unaffected. Although this protein is predicted to have receptor function based on its amino acid sequence, surprisingly confocal imaging showed it is translocated into the nucleus, where it is colocalized with Gfi1b and Baf60C, two proteins involved in chromatin remodeling. Overall, through the recovery of an ENU-induced mutation, we uncovered Megf8 as an essential regulator of left-right patterning. PMID:19218456

  2. Phenotypic population screen identifies a new mutation in bovine DGAT1 responsible for unsaturated milk fat

    PubMed Central

    Lehnert, Klaus; Ward, Hamish; Berry, Sarah D.; Ankersmit-Udy, Alex; Burrett, Alayna; Beattie, Elizabeth M.; Thomas, Natalie L.; Harris, Bevin; Ford, Christine A.; Browning, Sharon R.; Rawson, Pisana; Verkerk, Gwyneth A.; van der Does, Yvonne; Adams, Linda F.; Davis, Stephen R.; Jordan, T. William; MacGibbon, Alastair K. H.; Spelman, Richard J.; Snell, Russell G.

    2015-01-01

    Selective breeding has strongly reduced the genetic diversity in livestock species, and contemporary breeding practices exclude potentially beneficial rare genetic variation from the future gene pool. Here we test whether important traits arising by new mutations can be identified and rescued in highly selected populations. We screened milks from 2.5 million cows to identify an exceptional individual which produced milk with reduced saturated fat content, and improved unsaturated and omega-3 fatty acid concentrations. The milk traits were transmitted dominantly to her offspring, and genetic mapping and genome sequencing revealed a new mutation in a previously unknown splice enhancer of the DGAT1 gene. Homozygous carriers show features of human diarrheal disorders, and may be useful for the development of therapeutic strategies. Our study demonstrates that high-throughput phenotypic screening can uncover rich genetic diversity even in inbred populations, and introduces a novel strategy to develop novel milks with improved nutritional properties. PMID:25719731

  3. Targeted parallel sequencing of large genetically-defined genomic regions for identifying mutations in Arabidopsis

    PubMed Central

    2012-01-01

    Large-scale genetic screens in Arabidopsis are a powerful approach for molecular dissection of complex signaling networks. However, map-based cloning can be time-consuming or even hampered due to low chromosomal recombination. Current strategies using next generation sequencing for molecular identification of mutations require whole genome sequencing and advanced computational devises and skills, which are not readily accessible or affordable to every laboratory. We have developed a streamlined method using parallel massive sequencing for mutant identification in which only targeted regions are sequenced. This targeted parallel sequencing (TPSeq) method is more cost-effective, straightforward enough to be easily done without specialized bioinformatics expertise, and reliable for identifying multiple mutations simultaneously. Here, we demonstrate its use by identifying three novel nitrate-signaling mutants in Arabidopsis. PMID:22462410

  4. Mitochondrial cardiomyopathies: how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny

    PubMed Central

    Zaragoza, Michael V; Brandon, Martin C; Diegoli, Marta; Arbustini, Eloisa; Wallace, Douglas C

    2011-01-01

    Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause cardiomyopathy and heart failure. Owing to a high mutation rate, mtDNA defects may occur at any nucleotide in its 16 569 bp sequence. Complete mtDNA sequencing may detect pathogenic mutations, which can be difficult to interpret because of normal ethnic/geographic-associated haplogroup variation. Our goal is to show how to identify candidate mtDNA mutations by sorting out polymorphisms using readily available online tools. The purpose of this approach is to help investigators in prioritizing mtDNA variants for functional analysis to establish pathogenicity. We analyzed complete mtDNA sequences from 29 Italian patients with mitochondrial cardiomyopathy or suspected disease. Using MITOMASTER and PhyloTree, we characterized 593 substitution variants by haplogroup and allele frequencies to identify all novel, non-haplogroup-associated variants. MITOMASTER permitted determination of each variant's location, amino acid change and evolutionary conservation. We found that 98% of variants were common or rare, haplogroup-associated variants, and thus unlikely to be primary cause in 80% of cases. Six variants were novel, non-haplogroup variants and thus possible contributors to disease etiology. Two with the greatest pathogenic potential were heteroplasmic, nonsynonymous variants: m.15132T>C in MT-CYB for a patient with hypertrophic dilated cardiomyopathy and m.6570G>T in MT-CO1 for a patient with myopathy. In summary, we have used our automated information system, MITOMASTER, to make a preliminary distinction between normal mtDNA variation and pathogenic mutations in patient samples; this fast and easy approach allowed us to select the variants for traditional analysis to establish pathogenicity. PMID:20978534

  5. Whole-exome sequencing identifies novel LEPR mutations in individuals with severe early onset obesity

    PubMed Central

    Gill, Richard; Cheung, Yee Him; Shen, Yufeng; Lanzano, Patricia; Mirza, Nazrat M.; Ten, Svetlana; Maclaren, Noel K.; Motaghedi, Roja; Han, Joan C.; Yanovski, Jack A.; Leibel, Rudolph L.; Chung, Wendy K.

    2013-01-01

    Objective Obesity is a major public health problem that increases risk for a broad spectrum of co-morbid conditions. Despite evidence for a strong genetic contribution to susceptibility to obesity, previous efforts to discover the relevant genes using positional cloning have failed to account for most of the apparent genetic risk variance. Design and Methods Deploying a strategy combining analysis of exome sequencing data in extremely obese members of four consanguineous families with segregation analysis, we screened for causal genetic variants. Filter-based analysis and homozygosity mapping were used to identify and prioritize putative functional variants. Results We identified two novel frameshift mutations in the Leptin Receptor (LEPR) in two of the families. Conclusions These results provide proof-of-principle that whole-exome sequencing of families segregating for extreme obesity can identify causal pathogenic mutations. The methods described here can be extended to additional families segregating for extreme obesity and should enable the identification of mutations in novel genes that predispose to obesity. PMID:23616257

  6. Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis

    PubMed Central

    Starita, Lea M.; Pruneda, Jonathan N.; Lo, Russell S.; Fowler, Douglas M.; Kim, Helen J.; Hiatt, Joseph B.; Shendure, Jay; Brzovic, Peter S.; Fields, Stanley; Klevit, Rachel E.

    2013-01-01

    Although ubiquitination plays a critical role in virtually all cellular processes, mechanistic details of ubiquitin (Ub) transfer are still being defined. To identify the molecular determinants within E3 ligases that modulate activity, we scored each member of a library of nearly 100,000 protein variants of the murine ubiquitination factor E4B (Ube4b) U-box domain for auto-ubiquitination activity in the presence of the E2 UbcH5c. This assay identified mutations that enhance activity both in vitro and in cellular p53 degradation assays. The activity-enhancing mutations fall into two distinct mechanistic classes: One increases the U-box:E2-binding affinity, and the other allosterically stimulates the formation of catalytically active conformations of the E2∼Ub conjugate. The same mutations enhance E3 activity in the presence of another E2, Ube2w, implying a common allosteric mechanism, and therefore the general applicability of our observations to other E3s. A comparison of the E3 activity with the two different E2s identified an additional variant that exhibits E3:E2 specificity. Our results highlight the general utility of high-throughput mutagenesis in delineating the molecular basis of enzyme activity. PMID:23509263

  7. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer

    PubMed Central

    Barbieri, Christopher E.; Baca, Sylvan C.; Lawrence, Michael S.; Demichelis, Francesca; Blattner, Mirjam; Theurillat, Jean-Philippe; White, Thomas A.; Stojanov, Petar; Van Allen, Eliezer; Stransky, Nicolas; Nickerson, Elizabeth; Chae, Sung-Suk; Boysen, Gunther; Auclair, Daniel; Onofrio, Robert; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y.; Sheikh, Karen; Vuong, Terry; Guiducci, Candace; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L.; Saksena, Gordon; Voet, Douglas; Hussain, Wasay M.; Ramos, Alex H.; Winckler, Wendy; Redman, Michelle C.; Ardlie, Kristin; Tewari, Ashutosh K.; Mosquera, Juan Miguel; Rupp, Niels; Wild, Peter J.; Moch, Holger; Morrissey, Colm; Nelson, Peter S.; Kantoff, Philip W.; Gabriel, Stacey B.; Golub, Todd R.; Meyerson, Matthew; Lander, Eric S.; Getz, Gad; Rubin, Mark A.; Garraway, Levi A.

    2013-01-01

    Prostate cancer is the second most common cancer in men worldwide and causes over 250,000 deaths each year1. Overtreatment of indolent disease also results in significant morbidity2. Common genetic alterations in prostate cancer include losses of NKX3.1 (8p21)3,4 and PTEN (10q23)5,6, gains of the androgen receptor gene (AR)7,8 and fusion of ETS-family transcription factor genes with androgen-responsive promoters9–11. Recurrent somatic base-pair substitutions are believed to be less contributory in prostate tumorigenesis12,13 but have not been systematically analyzed in large cohorts. Here we sequenced the exomes of 112 prostate tumor/normal pairs. Novel recurrent mutations were identified in multiple genes, including MED12 and FOXA1. SPOP was the most frequently mutated gene, with mutations involving the SPOP substrate binding cleft in 6–15% of tumors across multiple independent cohorts. SPOP-mutant prostate cancers lacked ETS rearrangements and exhibited a distinct pattern of genomic alterations. Thus, SPOP mutations may define a new molecular subtype of prostate cancer. PMID:22610119

  8. Genetic testing for sporadic hearing loss using targeted massively parallel sequencing identifies 10 novel mutations.

    PubMed

    Gu, X; Guo, L; Ji, H; Sun, S; Chai, R; Wang, L; Li, H

    2015-06-01

    The genetic heterogeneity of non-syndromic hearing loss (NSHL) has hampered the identification of its pathogenic mutations. Several recent studies applied targeted genome enrichment (TGE) and massively parallel sequencing (MPS) to simultaneously screen a large set of known hearing loss (HL) genes. However, most of these studies were focused on familial cases. To evaluate the effectiveness of TGE and MPS on screening sporadic NSHL patients, we recruited 63 unrelated sporadic NSHL probands, who had various levels of HL and were excluded for mutations in GJB2, MT-RNR1, and SLC26A4 genes. TGE and MPS were performed on 131 known HL genes using the Human Deafness Panel oto-DA3 (Otogenetics Corporation., Norcross, GA). We identified 14 pathogenic variants in STRC, CATSPER2, USH2A, TRIOBP, MYO15A, GPR98, and TMPRSS3 genes in eight patients (diagnostic rate = 12.7%). Among these variants, 10 were novel compound heterozygous mutations. The identification of pathogenic mutations could predict the progression of HL, and guide diagnosis and treatment of the disease. PMID:24853665

  9. Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing.

    PubMed

    Tyburczy, Magdalena E; Dies, Kira A; Glass, Jennifer; Camposano, Susana; Chekaluk, Yvonne; Thorner, Aaron R; Lin, Ling; Krueger, Darcy; Franz, David N; Thiele, Elizabeth A; Sahin, Mustafa; Kwiatkowski, David J

    2015-11-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor gene syndrome due to germline mutations in either TSC1 or TSC2. 10-15% of TSC individuals have no mutation identified (NMI) after thorough conventional molecular diagnostic assessment. 53 TSC subjects who were NMI were studied using next generation sequencing to search for mutations in these genes. Blood/saliva DNA including parental samples were available from all subjects, and skin tumor biopsy DNA was available from six subjects. We identified mutations in 45 of 53 subjects (85%). Mosaicism was observed in the majority (26 of 45, 58%), and intronic mutations were also unusually common, seen in 18 of 45 subjects (40%). Seventeen (38%) mutations were seen at an allele frequency < 5%, five at an allele frequency < 1%, and two were identified in skin tumor biopsies only, and were not seen at appreciable frequency in blood or saliva DNA. These findings illuminate the extent of mosaicism in TSC, indicate the importance of full gene coverage and next generation sequencing for mutation detection, show that analysis of TSC-related tumors can increase the mutation detection rate, indicate that it is not likely that a third TSC gene exists, and enable provision of genetic counseling to the substantial population of TSC individuals who are currently NMI. PMID:26540169

  10. Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing

    PubMed Central

    Tyburczy, Magdalena E.; Dies, Kira A.; Glass, Jennifer; Camposano, Susana; Chekaluk, Yvonne; Thorner, Aaron R.; Lin, Ling; Krueger, Darcy; Franz, David N.; Thiele, Elizabeth A.; Sahin, Mustafa; Kwiatkowski, David J.

    2015-01-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor gene syndrome due to germline mutations in either TSC1 or TSC2. 10–15% of TSC individuals have no mutation identified (NMI) after thorough conventional molecular diagnostic assessment. 53 TSC subjects who were NMI were studied using next generation sequencing to search for mutations in these genes. Blood/saliva DNA including parental samples were available from all subjects, and skin tumor biopsy DNA was available from six subjects. We identified mutations in 45 of 53 subjects (85%). Mosaicism was observed in the majority (26 of 45, 58%), and intronic mutations were also unusually common, seen in 18 of 45 subjects (40%). Seventeen (38%) mutations were seen at an allele frequency < 5%, five at an allele frequency < 1%, and two were identified in skin tumor biopsies only, and were not seen at appreciable frequency in blood or saliva DNA. These findings illuminate the extent of mosaicism in TSC, indicate the importance of full gene coverage and next generation sequencing for mutation detection, show that analysis of TSC-related tumors can increase the mutation detection rate, indicate that it is not likely that a third TSC gene exists, and enable provision of genetic counseling to the substantial population of TSC individuals who are currently NMI. PMID:26540169

  11. DDOST Mutations Identified by Whole-Exome Sequencing Are Implicated in Congenital Disorders of Glycosylation

    PubMed Central

    Jones, Melanie A.; Ng, Bobby G.; Bhide, Shruti; Chin, Ephrem; Rhodenizer, Devin; He, Ping; Losfeld, Marie-Estelle; He, Miao; Raymond, Kimiyo; Berry, Gerard; Freeze, Hudson H.; Hegde, Madhuri R.

    2012-01-01

    Congenital disorders of glycosylation (CDG) are inherited autosomal-recessive diseases that impair N-glycosylation. Approximately 20% of patients do not survive beyond the age of 5 years old as a result of widespread organ dysfunction. Although most patients receive a CDG diagnosis based on abnormal glycosylation of transferrin, this test cannot provide a genetic diagnosis; indeed, many patients with abnormal transferrin do not have mutations in any known CDG genes. Here, we combined biochemical analysis with whole-exome sequencing (WES) to identify the genetic defect in an untyped CDG patient, and we found a 22 bp deletion and a missense mutation in DDOST, whose product is a component of the oligosaccharyltransferase complex that transfers the glycan chain from a lipid carrier to nascent proteins in the endoplasmic reticulum lumen. Biochemical analysis with three biomarkers revealed that N-glycosylation was decreased in the patient's fibroblasts. Complementation with wild-type-DDOST cDNA in patient fibroblasts restored glycosylation, indicating that the mutations were pathological. Our results highlight the power of combining WES and biochemical studies, including a glyco-complementation system, for identifying and confirming the defective gene in an untyped CDG patient. This approach will be very useful for uncovering other types of CDG as well. PMID:22305527

  12. CCDC141 Mutation Identified in Anosmic Hypogonadotropic Hypogonadism (Kallmann Syndrome) Alters GnRH Neuronal Migration.

    PubMed

    Hutchins, B Ian; Kotan, L Damla; Taylor-Burds, Carol; Ozkan, Yusuf; Cheng, Paul J; Gurbuz, Fatih; Tiong, Jean D R; Mengen, Eda; Yuksel, Bilgin; Topaloglu, A Kemal; Wray, Susan

    2016-05-01

    The first mutation in a gene associated with a neuronal migration disorder was identified in patients with Kallmann Syndrome, characterized by hypogonadotropic hypogonadism and anosmia. This pathophysiological association results from a defect in the development of the GnRH and the olfactory system. A recent genetic screening of Kallmann Syndrome patients revealed a novel mutation in CCDC141. Little is known about CCDC141, which encodes a coiled-coil domain containing protein. Here, we show that Ccdc141 is expressed in GnRH neurons and olfactory fibers and that knockdown of Ccdc141 reduces GnRH neuronal migration. Our findings in human patients and mouse models predict that CCDC141 takes part in embryonic migration of GnRH neurons enabling them to form a hypothalamic neuronal network to initiate pulsatile GnRH secretion and reproductive function. PMID:27014940

  13. Kinetic and stability analysis of PKU mutations identified in BH4-responsive patients.

    PubMed

    Pérez, Belén; Desviat, Lourdes R; Gómez-Puertas, Paulino; Martínez, Aurora; Stevens, Rymond C; Ugarte, Magdalena

    2005-12-01

    From all the different molecular mechanisms put forward to explain the basis of BH4 responsiveness in PKU patients, a clear picture is now emerging based on the results from expression studies performed with a number of missense mutations identified in patients with a positive response in BH4 loading tests. Two of the proposed mechanisms, namely decreased binding affinity of the mutant proteins for the natural cofactor and stabilization effect of BH4, have been confirmed for several PKU mutations and the results are reviewed here. The actual view supports a multifactorial basis of the response, highlighting the necessity of detailed in vitro characterization of each mutant PAH protein. Several of the confirmed molecular mechanisms may be operating simultaneously, as exemplified in the data presented, and this may result in different degrees of BH4 responsiveness. PMID:16091306

  14. Multiple gene mutations identified in patients infected with influenza A (H7N9) virus.

    PubMed

    Chen, Cuicui; Wang, Mingbang; Zhu, Zhaoqin; Qu, Jieming; Xi, Xiuhong; Tang, Xinjun; Lao, Xiangda; Seeley, Eric; Li, Tao; Fan, Xiaomei; Du, Chunling; Wang, Qin; Yang, Lin; Hu, Yunwen; Bai, Chunxue; Zhang, Zhiyong; Lu, Shuihua; Song, Yuanlin; Zhou, Wenhao

    2016-01-01

    Influenza A (H7N9) virus induced high mortality since 2013. It is important to elucidate the potential genetic variations that contribute to virus infection susceptibilities. In order to identify genetic mutations that might increase host susceptibility to infection, we performed exon sequencing and validated the SNPS by Sanger sequencing on 18 H7N9 patients. Blood samples were collected from 18 confirmed H7N9 patients. The genomic DNA was captured with the Agilent SureSelect Human All Exon kit, sequenced on the Illumina Hiseq 2000, and the resulting data processed and annotated with Genome analysis Tool. SNPs were verified by independent Sanger sequencing. The DAVID database and the DAPPLE database were used to do bioinformatics analysis. Through exon sequencing and Sanger sequencing, we identified 21 genes that were highly associated with H7N9 influenza infection. Protein-protein interaction analysis showed that direct interactions among genetic products were significantly higher than expected (p = 0.004), and DAVID analysis confirmed the defense-related functions of these genes. Gene mutation profiles of survived and non-survived patients were similar, suggesting some of genes identified in this study may be associated with H7N9 influenza susceptibility. Host specific genetic determinants of disease severity identified by this approach may provide new targets for the treatment of H7N9 influenza. PMID:27156515

  15. Multiple gene mutations identified in patients infected with influenza A (H7N9) virus

    PubMed Central

    Chen, Cuicui; Wang, Mingbang; Zhu, Zhaoqin; Qu, Jieming; Xi, Xiuhong; Tang, Xinjun; Lao, Xiangda; Seeley, Eric; Li, Tao; Fan, Xiaomei; Du, Chunling; Wang, Qin; Yang, Lin; Hu, Yunwen; Bai, Chunxue; Zhang, Zhiyong; Lu, Shuihua; Song, Yuanlin; Zhou, Wenhao

    2016-01-01

    Influenza A (H7N9) virus induced high mortality since 2013. It is important to elucidate the potential genetic variations that contribute to virus infection susceptibilities. In order to identify genetic mutations that might increase host susceptibility to infection, we performed exon sequencing and validated the SNPS by Sanger sequencing on 18 H7N9 patients. Blood samples were collected from 18 confirmed H7N9 patients. The genomic DNA was captured with the Agilent SureSelect Human All Exon kit, sequenced on the Illumina Hiseq 2000, and the resulting data processed and annotated with Genome analysis Tool. SNPs were verified by independent Sanger sequencing. The DAVID database and the DAPPLE database were used to do bioinformatics analysis. Through exon sequencing and Sanger sequencing, we identified 21 genes that were highly associated with H7N9 influenza infection. Protein-protein interaction analysis showed that direct interactions among genetic products were significantly higher than expected (p = 0.004), and DAVID analysis confirmed the defense-related functions of these genes. Gene mutation profiles of survived and non-survived patients were similar, suggesting some of genes identified in this study may be associated with H7N9 influenza susceptibility. Host specific genetic determinants of disease severity identified by this approach may provide new targets for the treatment of H7N9 influenza. PMID:27156515

  16. A novel missense NMNAT1 mutation identified in a consanguineous family with Leber congenital amaurosis by targeted next generation sequencing.

    PubMed

    Deng, Ying; Huang, Hui; Wang, Yanping; Liu, Zhen; Li, Nana; Chen, Yanhua; Li, Xin; Li, Mingrong; Zhou, Xiaobo; Mu, Dezhi; Zhong, Jing; Wu, Jing; Su, Yan; Yi, Xin; Zhu, Jun

    2015-09-10

    Leber congenital amaurosis is the earliest onset and most severe inherited retinal dystrophy. Mutations in 21 genes have been identified to be responsible for LCA. To detect the causative variants, we performed targeted next generation sequencing in two affected siblings of a consanguineous Chinese family with suspected LCA. A novel homozygous missense mutation (c.721C>T, p. Pro241Ser) of NMNAT1 has been identified. The mutation was inherited from their consanguineous parents who were heterozygous and was absent in 300 unrelated healthy individuals. NMNAT1, which encodes the nicotinamide mononucleotide adenylyltransferase 1, has been recently identified to be one of the LCA-causing genes. Our results expanded the spectrum of mutations in NMNAT1. In this study, targeted next generation sequencing provides an accurate and efficient method for identifying mutations in hereditary diseases with highly genetic and clinical heterogeneity. PMID:25988908

  17. Mutation analysis with random DNA identifiers (MARDI) catalogs Pig-a mutations in heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats.

    PubMed

    Revollo, Javier R; Crabtree, Nathaniel M; Pearce, Mason G; Pacheco-Martinez, M Monserrat; Dobrovolsky, Vasily N

    2016-03-01

    Identification of mutations induced by xenotoxins is a common task in the field of genetic toxicology. Mutations are often detected by clonally expanding potential mutant cells and genotyping each viable clone by Sanger sequencing. Such a "clone-by-clone" approach requires significant time and effort, and sometimes is even impossible to implement. Alternative techniques for efficient mutation identification would greatly benefit both basic and regulatory genetic toxicology research. Here, we report the development of Mutation Analysis with Random DNA Identifiers (MARDI), a novel high-fidelity Next Generation Sequencing (NGS) approach that circumvents clonal expansion and directly catalogs mutations in pools of mutant cells. MARDI uses oligonucleotides carrying Random DNA Identifiers (RDIs) to tag progenitor DNA molecules before PCR amplification, enabling clustering of descendant DNA molecules and eliminating NGS- and PCR-induced sequencing artifacts. When applied to the Pig-a cDNA analysis of heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats, MARDI detected nearly all Pig-a mutations that were previously identified by conventional clone-by-clone analysis and discovered many additional ones consistent with DMBA exposure: mostly A to T transversions, with the mutated A located on the non-transcribed DNA strand. Environ. Mol. Mutagen. 57:114-124, 2016. © 2015 Wiley Periodicals, Inc. PMID:26683280

  18. A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma.

    PubMed

    Shao, Di; Lin, Yongping; Liu, Jilong; Wan, Liang; Liu, Zu; Cheng, Shaomin; Fei, Lingna; Deng, Rongqing; Wang, Jian; Chen, Xi; Liu, Liping; Gu, Xia; Liang, Wenhua; He, Ping; Wang, Jun; Ye, Mingzhi; He, Jianxing

    2016-01-01

    Molecular profiling of lung cancer has become essential for prediction of an individual's response to targeted therapies. Next-generation sequencing (NGS) is a promising technique for routine diagnostics, but has not been sufficiently evaluated in terms of feasibility, reliability, cost and capacity with routine diagnostic formalin-fixed, paraffin-embedded (FFPE) materials. Here, we report the validation and application of a test based on Ion Proton technology for the rapid characterisation of single nucleotide variations (SNVs), short insertions and deletions (InDels), copy number variations (CNVs), and gene rearrangements in 145 genes with FFPE clinical specimens. The validation study, using 61 previously profiled clinical tumour samples, showed a concordance rate of 100% between results obtained by NGS and conventional test platforms. Analysis of tumour cell lines indicated reliable mutation detection in samples with 5% tumour content. Furthermore, application of the panel to 58 clinical cases, identified at least one actionable mutation in 43 cases, 1.4 times the number of actionable alterations detected by current diagnostic tests. We demonstrated that targeted NGS is a cost-effective and rapid platform to detect multiple mutations simultaneously in various genes with high reproducibility and sensitivity. PMID:26936516

  19. A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma

    PubMed Central

    Shao, Di; Lin, Yongping; Liu, Jilong; Wan, Liang; Liu, Zu; Cheng, Shaomin; Fei, Lingna; Deng, Rongqing; Wang, Jian; Chen, Xi; Liu, Liping; Gu, Xia; Liang, Wenhua; He, Ping; Wang, Jun; Ye, Mingzhi; He, Jianxing

    2016-01-01

    Molecular profiling of lung cancer has become essential for prediction of an individual’s response to targeted therapies. Next-generation sequencing (NGS) is a promising technique for routine diagnostics, but has not been sufficiently evaluated in terms of feasibility, reliability, cost and capacity with routine diagnostic formalin-fixed, paraffin-embedded (FFPE) materials. Here, we report the validation and application of a test based on Ion Proton technology for the rapid characterisation of single nucleotide variations (SNVs), short insertions and deletions (InDels), copy number variations (CNVs), and gene rearrangements in 145 genes with FFPE clinical specimens. The validation study, using 61 previously profiled clinical tumour samples, showed a concordance rate of 100% between results obtained by NGS and conventional test platforms. Analysis of tumour cell lines indicated reliable mutation detection in samples with 5% tumour content. Furthermore, application of the panel to 58 clinical cases, identified at least one actionable mutation in 43 cases, 1.4 times the number of actionable alterations detected by current diagnostic tests. We demonstrated that targeted NGS is a cost-effective and rapid platform to detect multiple mutations simultaneously in various genes with high reproducibility and sensitivity. PMID:26936516

  20. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma.

    PubMed

    Jiang, Lu; Gu, Zhao-Hui; Yan, Zi-Xun; Zhao, Xia; Xie, Yin-Yin; Zhang, Zi-Guan; Pan, Chun-Ming; Hu, Yuan; Cai, Chang-Ping; Dong, Ying; Huang, Jin-Yan; Wang, Li; Shen, Yang; Meng, Guoyu; Zhou, Jian-Feng; Hu, Jian-Da; Wang, Jin-Fen; Liu, Yuan-Hua; Yang, Lin-Hua; Zhang, Feng; Wang, Jian-Min; Wang, Zhao; Peng, Zhi-Gang; Chen, Fang-Yuan; Sun, Zi-Min; Ding, Hao; Shi, Ju-Mei; Hou, Jian; Yan, Jin-Song; Shi, Jing-Yi; Xu, Lan; Li, Yang; Lu, Jing; Zheng, Zhong; Xue, Wen; Zhao, Wei-Li; Chen, Zhu; Chen, Sai-Juan

    2015-09-01

    Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56(+) and cytoCD3(+) lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL. PMID:26192917

  1. Whole Exome Sequencing Identifies RAI1 Mutation in a Morbidly Obese Child Diagnosed With ROHHAD Syndrome

    PubMed Central

    Esteves, Kristyn M.; Towne, Meghan C.; Brownstein, Catherine A.; James, Philip M.; Crowley, Laura; Hirschhorn, Joel N.; Elsea, Sarah H.; Beggs, Alan H.; Picker, Jonathan

    2015-01-01

    Context: The current obesity epidemic is attributed to complex interactions between genetic and environmental factors. However, a limited number of cases, especially those with early-onset severe obesity, are linked to single gene defects. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) is one of the syndromes that presents with abrupt-onset extreme weight gain with an unknown genetic basis. Objective: To identify the underlying genetic etiology in a child with morbid early-onset obesity, hypoventilation, and autonomic and behavioral disturbances who was clinically diagnosed with ROHHAD syndrome. Design/Setting/Intervention: The index patient was evaluated at an academic medical center. Whole-exome sequencing was performed on the proband and his parents. Genetic variants were validated by Sanger sequencing. Results: We identified a novel de novo nonsense mutation, c.3265 C>T (p.R1089X), in the retinoic acid-induced 1 (RAI1) gene in the proband. Mutations in the RAI1 gene are known to cause Smith-Magenis syndrome (SMS). On further evaluation, his clinical features were not typical of either SMS or ROHHAD syndrome. Conclusions: This study identifies a de novo RAI1 mutation in a child with morbid obesity and a clinical diagnosis of ROHHAD syndrome. Although extreme early-onset obesity, autonomic disturbances, and hypoventilation are present in ROHHAD, several of the clinical findings are consistent with SMS. This case highlights the challenges in the diagnosis of ROHHAD syndrome and its potential overlap with SMS. We also propose RAI1 as a candidate gene for children with morbid obesity. PMID:25781356

  2. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome.

    PubMed

    Roosing, Susanne; Hofree, Matan; Kim, Sehyun; Scott, Eric; Copeland, Brett; Romani, Marta; Silhavy, Jennifer L; Rosti, Rasim O; Schroth, Jana; Mazza, Tommaso; Miccinilli, Elide; Zaki, Maha S; Swoboda, Kathryn J; Milisa-Drautz, Joanne; Dobyns, William B; Mikati, Mohamed A; İncecik, Faruk; Azam, Matloob; Borgatti, Renato; Romaniello, Romina; Boustany, Rose-Mary; Clericuzio, Carol L; D'Arrigo, Stefano; Strømme, Petter; Boltshauser, Eugen; Stanzial, Franco; Mirabelli-Badenier, Marisol; Moroni, Isabella; Bertini, Enrico; Emma, Francesco; Steinlin, Maja; Hildebrandt, Friedhelm; Johnson, Colin A; Freilinger, Michael; Vaux, Keith K; Gabriel, Stacey B; Aza-Blanc, Pedro; Heynen-Genel, Susanne; Ideker, Trey; Dynlacht, Brian D; Lee, Ji Eun; Valente, Enza Maria; Kim, Joon; Gleeson, Joseph G

    2015-01-01

    Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. PMID:26026149

  3. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations.

    PubMed

    Bueno, Raphael; Stawiski, Eric W; Goldstein, Leonard D; Durinck, Steffen; De Rienzo, Assunta; Modrusan, Zora; Gnad, Florian; Nguyen, Thong T; Jaiswal, Bijay S; Chirieac, Lucian R; Sciaranghella, Daniele; Dao, Nhien; Gustafson, Corinne E; Munir, Kiara J; Hackney, Jason A; Chaudhuri, Amitabha; Gupta, Ravi; Guillory, Joseph; Toy, Karen; Ha, Connie; Chen, Ying-Jiun; Stinson, Jeremy; Chaudhuri, Subhra; Zhang, Na; Wu, Thomas D; Sugarbaker, David J; de Sauvage, Frederic J; Richards, William G; Seshagiri, Somasekar

    2016-04-01

    We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score ≥ 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (∼2%; 4/216) and TRAF7 (∼2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2, BAP1 and SETD2. Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs. PMID:26928227

  4. Carrier and prenatal diagnostic strategy and newly identified mutations in Hungarian haemophilia A and B families.

    PubMed

    Bors, András; Andrikovics, Hajnalka; Illés, Zsuzsanna; Jáger, Rita; Kardos, Mária; Marosi, Anikó; Nemes, László; Tordai, Attila

    2015-03-01

    Deficiencies of blood coagulation factors VIII and IX (haemophilia A and haemophilia B) represent the most common inherited bleeding disorders with a wide range of causative mutations. Carrier and prenatal diagnostics are preferably performed by direct mutation detection; however, in certain situations, indirect family studies may also be useful. We aimed to utilize a combination of direct and indirect techniques for carrier and prenatal diagnostics in both haemophilias in a single national centre. Two hundred and eleven haemophilia A families were investigated by screening for inversions of introns 1 and 22, and by family studies using polymorphic markers. Twenty-eight haemophilia A and 39 haemophilia B families were investigated by Sanger-sequencing of the coding regions. Among severe haemophilia A families, frequencies of intron 22 and 1 inversions were 82 out of 145 (57%) and two out of 145 (1.4%). Sequencing of the entire coding region of the respective factor gene was performed and 12 (haemophilia A) and 5 (haemophilia B) previously unpublished disease-causing mutations were identified. For genetic markers used for haemophilia A indirect family testing, heterozygosity rates varied between 137 out of 327 [42% intragenic BclI restriction fragment length polymorphism (RFLP], 168 out of 254 (66% intragenic F8Civs13CA) and 202 out of 261 (77% extragenic DXS15CA) with a combined rate of 92% (intragenic markers) and 97% (all three markers). For male fetuses, prenatal diagnostics was provided to 43 haemophilia A families (n = 22 with direct mutation detection and n = 21 by indirect family testing) and to three haemophilia B families. The combination of direct and indirect molecular genetics approaches is a successful and cost-effective approach to provide carrier and prenatal diagnostics and risk assessment for inhibitor formation. PMID:25255241

  5. Mutational analysis of the Notch2 negative regulatory region identifies key structural elements for mechanical stability

    PubMed Central

    Stephenson, Natalie L.; Avis, Johanna M.

    2015-01-01

    The Notch signalling pathway is fundamental to cell differentiation in developing and self-renewing tissues. Notch is activated upon ligand-induced conformational change of the Notch negative regulatory region (NRR), unmasking a key proteolytic site (S2) and facilitating downstream events. The favoured model requires endocytosis of a tightly bound ligand to transmit force to the NRR region, sufficient to cause a structural change that exposes the S2 site. We have previously shown, using atomic force microscopy and molecular dynamics simulations, that application of force to the N-terminus of the Notch2 NRR facilitates metalloprotease cleavage at an early stage in the unfolding process. Here, mutations are made within the heterodimerization (HD) domain of the NRR that are known to cause constitutive activation of Notch1 whilst having no effect on the chemical stability of Notch2. Comparison of the mechanical stability and simulated forced unfolding of recombinant Notch2 NRR proteins demonstrates a reduced stability following mutation and identifies two critical structural elements of the NRR in its response to force the linker region between Lin12-Notch repeats LNRA and LNRB and the ?3 helix within the HD domain both of which mask the S2 cleavage site prior to Notch activation. In two mutated proteins, the LNRC:HD domain interaction is also reduced in stability. The observed changes to mechanical stability following these HD domain mutations highlight key regions of the Notch2 NRR that are important for mechanical, but not chemical, stability. This research could also help determine the fundamental differences in the NRRs of Notch1 and Notch2. PMID:26288744

  6. Exome Sequencing in a Family Identifies RECQL5 Mutation Resulting in Early Myocardial Infarction

    PubMed Central

    Xie, Xiang; Zheng, Ying-Ying; Adi, Dilare; Yang, Yi-Ning; Ma, Yi-Tong; Li, Xiao-Mei; Fu, Zhen-Yan; Ma, Xiang; Liu, Fen; Yu, Zi-Xiang; Chen, You; Huang, Ying

    2016-01-01

    Abstract Coronary artery disease (CAD) including myocardial infarction (MI) is the leading cause of death worldwide and is commonly caused by the interaction between genetic factors and environmental risks. Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multigenerational early CAD /MI predisposition is unknown. In this study, we used whole-exome sequencing of 10 individuals from 1 early MI family, in which 4 siblings were diagnosed with MI before the age of 55, to identify potential predisposing genes. We identified a mutation in the RECQL5 gene, 1 of the 5 members of the RECQ family which are involved in the maintenance of genomic stability. This novel mutation, which is a TG insert at position 73,626,918 on the 13 chromosome and occurs before the last nucleotide of the introns 11 acceptor splice site affecting splicing of RECQL5. RT-PCR suggested the control subject had a full-length mRNA including exon 12, but the patients with RECQL5 mutation had a shorter mRNA form involving splicing of exons 11 to 13 directly, with skipping of exon 12. Quantitative RT-PCR analysis of RECQL5 exon 12 demonstrated that individuals whose genotype is mutant homozygote had only trace amounts of mRNA containing this exon and the family members who carry the heterozygous genotype had a level at 48% to 55% of the control's level. These findings provide insight into both the pathogenesis of MI and the role of RECQL5 gene in human disease. PMID:26844521

  7. A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression.

    PubMed

    Giotopoulos, George; van der Weyden, Louise; Osaki, Hikari; Rust, Alistair G; Gallipoli, Paolo; Meduri, Eshwar; Horton, Sarah J; Chan, Wai-In; Foster, Donna; Prinjha, Rab K; Pimanda, John E; Tenen, Daniel G; Vassiliou, George S; Koschmieder, Steffen; Adams, David J; Huntly, Brian J P

    2015-09-21

    The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease. PMID:26304963

  8. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome.

    PubMed

    Villamor, N; Conde, L; Martínez-Trillos, A; Cazorla, M; Navarro, A; Beà, S; López, C; Colomer, D; Pinyol, M; Aymerich, M; Rozman, M; Abrisqueta, P; Baumann, T; Delgado, J; Giné, E; González-Díaz, M; Hernández, J M; Colado, E; Payer, A R; Rayon, C; Navarro, B; José Terol, M; Bosch, F; Quesada, V; Puente, X S; López-Otín, C; Jares, P; Pereira, A; Campo, E; López-Guillermo, A

    2013-04-01

    NOTCH1 has been found recurrently mutated in a subset of patients with chronic lymphocytic leukemia (CLL). To analyze biological features and clinical impact of NOTCH1 mutations in CLL, we sequenced this gene in 565 patients. NOTCH1 mutations, found in 63 patients (11%), were associated with unmutated IGHV, high expression of CD38 and ZAP-70, trisomy 12, advanced stage and elevated lactate dehydrogenase. Sequential analysis in 200 patients demonstrated acquisition of mutation in one case (0.5%) and disappearance after treatment in two. Binet A and B patients with NOTCH1-mutated had a shorter time to treatment. NOTCH1-mutated patients were more frequently refractory to therapy and showed shorter progression-free and overall survival after complete remission. Overall survival was shorter in NOTCH1-mutated patients, although not independently from IGHV. NOTCH1 mutation increased the risk of transformation to diffuse large B-cell lymphoma independently from IGHV, with this being validated in resampling tests of replicability. In summary, NOTCH1 mutational status, that was rarely acquired during the course of the disease, identify a genetic subgroup with high risk of transformation and poor outcome. This recently identified genetic subgroup of CLL patients deserves prospective studies to define their best management. PMID:23295735

  9. Identifying Essential Streptococcus sanguinis Genes Using Genome-Wide Deletion Mutation

    PubMed Central

    Chen, Lei; Ge, Xiuchun; Xu, Ping

    2016-01-01

    Essential genes in pathogens are important for the development of antibacterial drugs. In this report, we described a protocol to identify essential genes in the Streptococcus sanguinis SK36 strain using genome-wide deletion mutation. A fusion PCR-based method is used to construct gene deletion fragments, which contain kanamycin resistance cassettes with two flanking arms of DNA upstream and downstream of the target gene. The linear fused PCR amplicons were transformed into S. sanguinis SK36 cells. No kanamycin-resistant transformants suggested the gene essentiality because the deletion of the essential gene renders a lethal phenotype of the transformants. The putative essential genes were further confirmed by independent transformations up to five attempts. The false nonessential genes were also identified by removing double-band mutants. PMID:25636610

  10. Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy.

    PubMed

    Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D

    2014-05-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D. PMID:24594375

  11. Exome Sequencing Identifies a DNAJB6 Mutation in a Family with Dominantly-Inherited Limb-Girdle Muscular Dystrophy

    PubMed Central

    Couthouis, Julien; Raphael, Alya R.; Siskind, Carly; Findlay, Andrew R.; Buenrostro, Jason D.; Greenleaf, William J.; Vogel, Hannes; Day, John W.; Flanigan, Kevin M.; Gitler, Aaron D.

    2014-01-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the “limb-girdle” muscles), although it is a heterogeneous disorder that can present with varying symptoms; there is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D. PMID:24594375

  12. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets.

    PubMed

    Anoosha, P; Sakthivel, R; Michael Gromiha, M

    2016-02-01

    Somatic mutations developed with missense, silent, insertions and deletions have varying effects on the resulting protein and are one of the important reasons for cancer development. In this study, we have systematically analysed the effect of these mutations at protein level in 41 different cancer types from COSMIC database on different perspectives: (i) Preference of residues at the mutant positions, (ii) probability of substitutions, (iii) influence of neighbouring residues in driver and passenger mutations, (iv) distribution of driver and passenger mutations around hotspot site in five typical genes and (v) distribution of silent and missense substitutions. We observed that R→H substitution is dominant in drivers followed by R→Q and R→C whereas E→K has the highest preference in passenger mutations. A set of 17 mutations including R→Y, W→A and V→R are specific to driver mutations and 31 preferred substitutions are observed only in passenger mutations. These frequencies of driver mutations vary across different cancer types and are selective to specific tissues. Further, driver missense mutations are mainly surrounded with silent driver mutations whereas the passenger missense mutations are surrounded with silent passenger mutations. This study reveals the variation of mutations at protein level in different cancer types and their preferences in cancer genes and provides new insights for understanding cancer mutations and drug development. PMID:26581171

  13. Characteristics of Women with Ovarian Carcinoma who have BRCA1 and BRCA2 Mutations not Identified by Clinical Testing

    PubMed Central

    Norquist, Barbara M.; Pennington, Kathryn P.; Agnew, Kathy J.; Harrell, Maria I.; Pennil, Christopher C.; Lee, Ming K.; Casadei, Silvia; Thornton, Anne M.; Garcia, Rochelle L.; Walsh, Tom; Swisher, Elizabeth M.

    2014-01-01

    Goals Few studies have comprehensively tested all ovarian cancer patients for BRCA1 and BRCA2 (BRCA1/2) mutations. We sought to determine if clinically identified mutation carriers differed in clinical characteristics and outcomes from mutation carriers not identified during routine clinical care. Methods We included women with ovarian, tubal or peritoneal carcinoma. BROCA, an assay using targeted capture and massively parallel sequencing was used to identify mutations in BRCA1/2 and 19 other tumor suppressor genes. We identified subjects with BRCA1/2 mutations using BROCA that had not previously received standard genetic testing (BROCA, n = 37) and compared them to subjects with BRCA1/2 mutations identified during routine clinical care (known, n = 70), and to those wildtype for 21 genes using BROCA (wildtype, n = 291). Results BROCA mutation carriers were older than known carriers, median age of 58 (range 41 - 77), vs. 51 (range 33-76, p=0.003, Mann-Whitney). 58/70 (82.9%) of known carriers had a strong family history, compared with 15/37 (40.5%) of BROCA carriers, p<0.0001, (Fisher's Exact). Median overall survival was significantly worse for BROCA mutation carriers compared to known mutation carriers, (45 vs. 93 months, p < 0.0001, HR 3.47 (1.79 6.72), Log-rank test). The improved survival for BRCA1/2 mutation carriers (known and BROCA) compared with wildtype cases (69 vs. 44 months, p=0.0001, HR 0.58 (0.43 0.77), Log-rank test) was driven by known mutation carriers. Conclusions Older age, absence of a strong family history, and poor survival are all associated with decreased clinical identification of inherited BRCA1/2 mutations in women with ovarian cancer. Using age and family history to direct genetic testing will miss a significant percentage of mutation carriers. Testing should be initiated at the time of diagnosis to maximize identification of mutations and minimize survival bias. PMID:23262210

  14. Phenotypes of Recessive Pediatric Cataract in a Cohort of Children with Identified Homozygous Gene Mutations (An American Ophthalmological Society Thesis)

    PubMed Central

    Khan, Arif O.; Aldahmesh, Mohammed A.; Alkuraya, Fowzan S.

    2015-01-01

    Purpose: To assess for phenotype-genotype correlations in families with recessive pediatric cataract and identified gene mutations. Methods: Retrospective review (2004 through 2013) of 26 Saudi Arabian apparently nonsyndromic pediatric cataract families referred to one of the authors (A.O.K.) and for which recessive gene mutations were identified. Results: Fifteen different homozygous recessive gene mutations were identified in the 26 consanguineous families; two genes and five families are novel to this study. Ten families had a founder CRYBB1 deletion (all with bilateral central pulverulent cataract), two had the same missense mutation in CRYAB (both with bilateral juvenile cataract with marked variable expressivity), and two had different mutations in FYCO1 (both with bilateral posterior capsular abnormality). The remaining 12 families each had mutations in 12 different genes (CRYAA, CRYBA1, AKR1E2, AGK, BFSP2, CYP27A1, CYP51A1, EPHA2, GCNT2, LONP1, RNLS, WDR87) with unique phenotypes noted for CYP27A1 (bilateral juvenile fleck with anterior and/or posterior capsular cataract and later cerebrotendinous xanthomatosis), EPHA2 (bilateral anterior persistent fetal vasculature), and BFSP2 (bilateral flecklike with cloudy cortex). Potential carrier signs were documented for several families. Conclusions: In this recessive pediatric cataract case series most identified genes are noncrystallin. Recessive pediatric cataract phenotypes are generally nonspecific, but some notable phenotypes are distinct and associated with specific gene mutations. Marked variable expressivity can occur from a recessive missense CRYAB mutation. Genetic analysis of apparently isolated pediatric cataract can sometimes uncover mutations in a syndromic gene. Some gene mutations seem to be associated with apparent heterozygous carrier signs.

  15. Cytotoxic T-lymphocyte escape mutations identified by HLA association favor those which escape and revert rapidly.

    PubMed

    Fryer, Helen R; Frater, John; Duda, Anna; Palmer, Duncan; Phillips, Rodney E; McLean, Angela R

    2012-08-01

    Identifying human immunodeficiency virus (HIV) immune escape mutations has implications for understanding the impact of host immunity on pathogen evolution and guiding the choice of vaccine antigens. One means of identifying cytotoxic-T-lymphocyte (CTL) escape mutations is to search for statistical associations between mutations and host human leukocyte antigen (HLA) class I alleles at the population level. The impact of evolutionary rates on the strength of such associations is not well defined. Here, we address this topic using a mathematical model of within-host evolution and between-host transmission of CTL escape mutants that predicts the prevalence of escape mutants at the population level. We ask how the rates at which an escape mutation emerges in a host who bears the restricting HLA and reverts when transmitted to a host who does not bear the HLA affect the strength of an association. We consider the impact of these factors when using a standard statistical method to test for an association and when using an adaptation of that method that corrects for phylogenetic relationships. We show that with both methods, the average sample size required to identify an escape mutation is smaller if the mutation escapes and reverts quickly. Thus, escape mutations identified as HLA associated systematically favor those that escape and revert rapidly. We also present expressions that can be used to infer escape and reversion rates from cross-sectional escape prevalence data. PMID:22674992

  16. Novel R634W c-kit mutation identified in familial mastocytosis.

    PubMed

    Pollard, Whitney L; Beachkofsky, Thomas M; Kobayashi, Todd T

    2015-01-01

    Familial mastocytosis is a well-documented but rare entity, with fewer than 100 cases reported in the literature. The etiology has most commonly been linked to activating c-kit mutations, with several mutations reported to date. We present a novel familial mastocytosis-associated c-kit mutation (R634W) in three siblings with urticaria pigmentosa. This mutation has been previously described in mucosal melanoma, chronic myelomonocytic leukemia, and acute myeloid leukemia. Because this is a rare mutation, it is unclear whether screening for other disease states associated with the mutation would be of benefit. PMID:25243845

  17. Identifying Highly Penetrant Disease Causal Mutations Using Next Generation Sequencing: Guide to Whole Process

    PubMed Central

    Erzurumluoglu, A. Mesut; Shihab, Hashem A.; Baird, Denis; Richardson, Tom G.; Day, Ian N. M.; Gaunt, Tom R.

    2015-01-01

    Recent technological advances have created challenges for geneticists and a need to adapt to a wide range of new bioinformatics tools and an expanding wealth of publicly available data (e.g., mutation databases, and software). This wide range of methods and a diversity of file formats used in sequence analysis is a significant issue, with a considerable amount of time spent before anyone can even attempt to analyse the genetic basis of human disorders. Another point to consider that is although many possess “just enough” knowledge to analyse their data, they do not make full use of the tools and databases that are available and also do not fully understand how their data was created. The primary aim of this review is to document some of the key approaches and provide an analysis schema to make the analysis process more efficient and reliable in the context of discovering highly penetrant causal mutations/genes. This review will also compare the methods used to identify highly penetrant variants when data is obtained from consanguineous individuals as opposed to nonconsanguineous; and when Mendelian disorders are analysed as opposed to common-complex disorders. PMID:26106619

  18. Exome Sequencing Identifies a Novel MYH7 p.G407C Mutation Responsible for Familial Hypertrophic Cardiomyopathy

    PubMed Central

    Guo, Qianqian; Xu, Yuejuan; Wang, Xike; Guo, Ying; Xu, Rang

    2014-01-01

    Hypertrophic cardiomyopathy (HCM), characterized by myocardial hypertrophy, is the most common cause of sudden cardiac arrest in young individuals. More than 270 mutations have been found to be responsible for familial HCM to date; mutations in MYH7, which encodes the β-myosin heavy chain (β-MHC) and MYBPC3, which encodes the myosin binding protein C, are seen most often. This study aimed to screen a pathogenic mutation causing HCM in a large family and assess its possible impact on the function of the specific protein. Exome sequencing was applied in the proband for searching a novel mutation; segments bearing the specific mutation were analyzed by polymerase chain reaction and direct sequencing. A novel p.G407C mutation in the β-MHC gene (MYH7) was identified to be responsible for familial HCM in this family. The mutation may cause damage to the second structure of the protein despite the fact that patients bearing the mutation may have a relatively benign prognosis in this family. The clinical details of the p.G407C mutation are described for the first time in this study. Our report shows a good genotype–phenotype consistency and makes it possible for genetic counseling in this family. PMID:24963656

  19. Is BRCA1-5083del19, identified in breast cancer patients of Sicilian origin, a Calabrian founder mutation?

    PubMed

    Russo, Antonio; Cal, Valentina; Bruno, Loredana; Schir, Valentina; Agnese, Valentina; Cascio, Sandra; Foddai, Elena; Fanale, Daniele; Rizzo, Sergio; Di Gaudio, Francesca; Gulotta, Eliana; Surmacz, Eva; Di Fede, Gaetana; Bazan, Viviana

    2009-01-01

    Various studies have been published in Italy regarding the different BRCA1 mutations, but only the BRCA1-5083del19 mutation is recurrent and specific to individuals of Italian descent with a founder effect on the Calabrian population. In our previous study, BRCA1-5083del19 mutation carriers were found in four index cases of 106 Sicilian patients selected for familial and/or hereditary breast/ovarian cancers. The high frequency rate of this mutation identified in the Sicilian population led us to perform haplotype analysis in all family carriers. Five highly polymorphic microsatellite markers were used (D17S1320, D17S932, D17S1323, D17S1326, D17S1325) to establish whether or not all these families had a common ancestor. This analysis showed that all mutation carriers of these families had a common allele. None of the non-carriers of the mutation or of the 50 healthy Sicilian controls showed this haplotype. This allelotype analysis highlighted the presence of a common allele (ancestor), thus suggesting the presence of a founder effect in the Sicilian population. Our results are in contrast with other studies but only the allelotype analysis of all the BRCA1-5083del19 mutation carriers of two neighboring regions of the south of Italy (Calabria and Sicily) will make it possible to identify the real ancestor of this mutation. PMID:18228134

  20. Targeted next-generation sequencing of cancer genes identified frequent TP53 and ATRX mutations in leiomyosarcoma

    PubMed Central

    Yang, Ching-Yao; Liau, Jau-Yu; Huang, Wei-Ju; Chang, Yu-Ting; Chang, Ming-Chu; Lee, Jen-Chieh; Tsai, Jia-Huei; Su, Yi-Ning; Hung, Chia-Cheng; Jeng, Yung-Ming

    2015-01-01

    Leiomyosarcoma is an aggressive soft tissue sarcoma with poor patient survival. The genetic changes of leiomyosarcoma remain to be discovered. In this study, we analyzed the genetic changes of 44 cancer-related genes by using next-generation sequencing in 54 leiomyosarcomas. We identified TP53 mutations in 19 of the 54 tumors (35%) and ATRX mutations in 9 of the 54 tumors (17%). The TP53-mutated leiomyosarcomas were limited to female patients (P = 0.006). All but 2 of the TP53-mutated leiomyosarcomas were located in the uterus (n = 11) or retroperitoneum (n = 6). The ATRX mutations were associated with poorly differentiated leiomyosarcomas (P = 0.028) and the presence of tumor necrosis (P = 0.015). Kaplan-Meier survival analysis showed that patients with ATRX-mutated leiomyosarcomas had worse overall survival than did patients with ATRX-wild-type leiomyosarcomas. All of the ATRX-mutated leiomyosarcomas showed the alternative lengthening of telomere phenotype. The ATRX mutations did not correlate with ATRX protein expression, as detected using immunohistochemistry. In conclusion, we identified loss of function of the p53 and ATRX pathways being the main mechanisms for leiomyosarcomas. The molecular mechanisms may provide new opportunities to treat these aggressive neoplasms. PMID:26692951

  1. Zygotic Lethal Mutations with Maternal Effect Phenotypes in Drosophila Melanogaster. II. Loci on the Second and Third Chromosomes Identified by P-Element-Induced Mutations

    PubMed Central

    Perrimon, N.; Lanjuin, A.; Arnold, C.; Noll, E.

    1996-01-01

    Screens for zygotic lethal mutations that are associated with specific maternal effect lethal phenotypes have only been conducted for the X chromosome. To identify loci on the autosomes, which represent four-fifths of the Drosophila genome, we have used the autosomal ``FLP-DFS'' technique to screen a collection of 496 P element-induced mutations established by the Berkeley Drosophila Genome Project. We have identified 64 new loci whose gene products are required for proper egg formation or normal embryonic development. PMID:8978055

  2. Whole-exome sequencing identifies a novel homozygous frameshift mutation in the PROM1 gene as a causative mutation in two patients with sporadic retinitis pigmentosa

    PubMed Central

    LIU, SANMEI; XIE, LAN; YUE, JUN; MA, TAO; PENG, CHUNYAN; QIU, BIYUAN; YANG, ZHENGLIN; YANG, JIYUN

    2016-01-01

    Retinitis pigmentosa (RP) refers to a heterogeneous group of inherited retinal diseases caused by the loss of photoreceptors. The present study aimed to identify the gene mutations responsible for RP in two patients diagnosed with sporadic RP using next-generation sequencing technology. For this purpose, two patients with sporadic RP and family members (namely parents and siblings) were recruited into this study and underwent a complete ophthalmological assessment. Whole-exome sequencing (WES) was performed on genomic DNA samples isolated from peripheral leukocytes which had been obtained from the two patients diagnosed with sporadic RP. WES data were annotated and filtered against four public databases and one in-house database. Subsequently, Sanger sequencing was performed in order to determine whether any of the candidate variants co-segregated with the disease phenotype in the families. A homozygous frameshift mutation, c.1445dupT (p.F482fs) in exon 12 of the PROM1 gene (MIM: 604365), satisfied a recessive inheritance model and showed complete co-segregation of the mutation with the disease phenotype in the families. The same mutation was not detected in the 200 ethnically-matched control samples by Sanger sequencing. The novel homozygous mutation c.1445dupT (p.F482fs) in the PROM1 gene was identified as a causative mutation for RP. Thus, the identification of this mutation has further expanded the existing spectrum of PROM1 mutations in patients with RP, thereby assisting in the molecular diagnosis of RP and enhancing our understanding of genotype-phenotype correlations in order to provide effective genetic counseling. PMID:27082927

  3. Whole-exome sequencing identifies a novel homozygous frameshift mutation in the PROM1 gene as a causative mutation in two patients with sporadic retinitis pigmentosa.

    PubMed

    Liu, Sanmei; Xie, Lan; Yue, Jun; Ma, Tao; Peng, Chunyan; Qiu, Biyuan; Yang, Zhenglin; Yang, Jiyun

    2016-06-01

    Retinitis pigmentosa (RP) refers to a heterogeneous group of inherited retinal diseases caused by the loss of photoreceptors. The present study aimed to identify the gene mutations responsible for RP in two patients diagnosed with sporadic RP using next-generation sequencing technology. For this purpose, two patients with sporadic RP and family members (namely parents and siblings) were recruited into this study and underwent a complete ophthalmological assessment. Whole-exome sequencing (WES) was performed on genomic DNA samples isolated from peripheral leukocytes which had been obtained from the two patients diagnosed with sporadic RP. WES data were annotated and filtered against four public databases and one in-house database. Subsequently, Sanger sequencing was performed in order to determine whether any of the candidate variants co-segregated with the disease phenotype in the families. A homozygous frameshift mutation, c.1445dupT (p.F482fs) in exon 12 of the PROM1 gene (MIM: 604365), satisfied a recessive inheritance model and showed complete co-segregation of the mutation with the disease phenotype in the families. The same mutation was not detected in the 200 ethnically-matched control samples by Sanger sequencing. The novel homozygous mutation c.1445dupT (p.F482fs) in the PROM1 gene was identified as a causative mutation for RP. Thus, the identification of this mutation has further expanded the existing spectrum of PROM1 mutations in patients with RP, thereby assisting in the molecular diagnosis of RP and enhancing our understanding of genotype-phenotype correlations in order to provide effective genetic counseling. PMID:27082927

  4. Mapping and Exome Sequencing Identifies a Mutation in the IARS Gene as the Cause of Hereditary Perinatal Weak Calf Syndrome

    PubMed Central

    Hirano, Takashi; Kobayashi, Naohiko; Matsuhashi, Tamako; Watanabe, Daisaku; Watanabe, Toshio; Takasuga, Akiko; Sugimoto, Mayumi; Sugimoto, Yoshikazu

    2013-01-01

    We identified an IARS (isoleucyl-tRNA synthetase) c.235G>C (p.Val79Leu) substitution as the causative mutation for neonatal weakness with intrauterine growth retardation (perinatal weak calf syndrome). In Japanese Black cattle, the syndrome was frequently found in calves sired by Bull A. Hence, we employed homozygosity mapping and linkage analysis. In order to identify the perinatal weak calf syndrome locus in a 4.04-Mb region of BTA 8, we analysed a paternal half-sibling family with a BovineSNP50 BeadChip and microsatellites. In this critical region, we performed exome sequencing to identify a causative mutation. Three variants were detected as possible candidates for causative mutations that were predicted to disrupt the protein function, including a G>C (p.Val79Leu) mutation in IARS c.235. The IARS c.235G>C mutation was not a homozygous risk allele in the 36 healthy offspring of Bull A. Moreover, the IARS Val79 residue and its flanking regions were evolutionarily and highly conserved. The IARS mutant (Leu79) had decreased aminoacylation activity. Additionally, the homozygous mutation was not found in any of 1526 healthy cattle. Therefore, we concluded that the IARS c.235G>C mutation was the cause of hereditary perinatal weak calf syndrome. PMID:23700453

  5. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.

    PubMed

    Healey, Kelley R; Zhao, Yanan; Perez, Winder B; Lockhart, Shawn R; Sobel, Jack D; Farmakiotis, Dimitrios; Kontoyiannis, Dimitrios P; Sanglard, Dominique; Taj-Aldeen, Saad J; Alexander, Barbara D; Jimenez-Ortigosa, Cristina; Shor, Erika; Perlin, David S

    2016-01-01

    The fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy. PMID:27020939

  6. Whole-exome sequencing identifies novel ECHS1 mutations in Leigh syndrome.

    PubMed

    Tetreault, Martine; Fahiminiya, Somayyeh; Antonicka, Hana; Mitchell, Grant A; Geraghty, Michael T; Lines, Matthew; Boycott, Kym M; Shoubridge, Eric A; Mitchell, John J; Michaud, Jacques L; Majewski, Jacek

    2015-09-01

    Leigh syndrome (LS) is a rare heterogeneous progressive neurodegenerative disorder usually presenting in infancy or early childhood. Clinical presentation is variable and includes psychomotor delay or regression, acute neurological or acidotic episodes, hypotonia, ataxia, spasticity, movement disorders, and corresponding anomalies of the basal ganglia and brain stem on magnetic resonance imaging. To date, 35 genes have been associated with LS, mostly involved in mitochondrial respiratory chain function and encoded in either nuclear or mitochondrial DNA. We used whole-exome sequencing to identify disease-causing variants in four patients with basal ganglia abnormalities and clinical presentations consistent with LS. Compound heterozygote variants in ECHS1, encoding the enzyme enoyl-CoA hydratase were identified. One missense variant (p.Thr180Ala) was common to all four patients and the haplotype surrounding this variant was also shared, suggesting a common ancestor of French-Canadian origin. Rare mutations in ECHS1 as well as in HIBCH, the enzyme downstream in the valine degradation pathway, have been associated with LS or LS-like disorders. A clear clinical overlap is observed between our patients and the reported cases with ECHS1 or HIBCH deficiency. The main clinical features observed in our cohort are T2-hyperintense signal in the globus pallidus and putamen, failure to thrive, developmental delay or regression, and nystagmus. Respiratory chain studies are not strikingly abnormal in our patients: one patient had a mild reduction of complex I and III and another of complex IV. The identification of four additional patients with mutations in ECHS1 highlights the emerging importance of this pathway in LS. PMID:26099313

  7. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis

    PubMed Central

    Soler, Vincent José; Tran-Viet, Khanh-Nhat; Galiacy, Stéphane D; Limviphuvadh, Vachiranee; Klemm, Thomas Patrick; St Germain, Elizabeth; Fournié, Pierre R; Guillaud, Céline; Maurer-Stroh, Sebastian; Hawthorne, Felicia; Suarez, Cyrielle; Kantelip, Bernadette; Afshari, Natalie A; Creveaux, Isabelle; Luo, Xiaoyan; Meng, Weihua; Calvas, Patrick; Cassagne, Myriam; Arné, Jean-Louis; Rozen, Steven G; Malecaze, François; Young, Terri L

    2014-01-01

    Background Corneal intraepithelial dyskeratosis is an extremely rare condition. The classical form, affecting Native American Haliwa-Saponi tribe members, is called hereditary benign intraepithelial dyskeratosis (HBID). Herein, we present a new form of corneal intraepithelial dyskeratosis for which we identified the causative gene by using deep sequencing technology. Methods and results A seven member Caucasian French family with two corneal intraepithelial dyskeratosis affected individuals (6-year-old proband and his mother) was ascertained. The proband presented with bilateral complete corneal opacification and dyskeratosis. Palmoplantar hyperkeratosis and laryngeal dyskeratosis were associated with the phenotype. Histopathology studies of cornea and vocal cord biopsies showed dyskeratotic keratinisation. Quantitative PCR ruled out 4q35 duplication, classically described in HBID cases. Next generation sequencing with mean coverage of 50× using the Illumina Hi Seq and whole exome capture processing was performed. Sequence reads were aligned, and screened for single nucleotide variants and insertion/deletion calls. In-house pipeline filtering analyses and comparisons with available databases were performed. A novel missense mutation M77T was discovered for the gene NLRP1 which maps to chromosome 17p13.2. This was a de novo mutation in the proband’s mother, following segregation in the family, and not found in 738 control DNA samples. NLRP1 expression was determined in adult corneal epithelium. The amino acid change was found to destabilise significantly the protein structure. Conclusions We describe a new corneal intraepithelial dyskeratosis and how we identified its causative gene. The NLRP1 gene product is implicated in inflammation, autoimmune disorders, and caspase mediated apoptosis. NLRP1 polymorphisms are associated with various diseases. PMID:23349227

  8. Mutations in GRM6 identified in consanguineous Pakistani families with congenital stationary night blindness

    PubMed Central

    Naeem, Muhammad Asif; Gottsch, Alexander D. H.; Ullah, Inayat; Khan, Shaheen N.; Husnain, Tayyab; Butt, Nadeem H.; Qazi, Zaheeruddin A.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2015-01-01

    Purpose This study was undertaken to investigate the causal mutations responsible for autosomal recessive congenital stationary night blindness (CSNB) in consanguineous Pakistani families. Methods Two consanguineous families with multiple individuals manifesting symptoms of stationary night blindness were recruited. Affected individuals underwent a detailed ophthalmological examination, including fundus examination and electroretinography. Blood samples were collected and genomic DNA was extracted. Exclusion analyses were completed by genotyping closely spaced microsatellite markers, and two-point logarithm of odds (LOD) scores were calculated. All coding exons, along with the exon–intron boundaries of GRM6, were sequenced bidirectionally. Results According to the medical history available to us, affected individuals in both families had experienced night blindness from the early years of their lives. Fundus photographs of affected individuals in both the families appeared normal, with no signs of attenuated arteries or bone spicule pigmentation. The scotopic electroretinogram (ERG) response were absent in all of the affected individuals, while the photopic measurements show reduced b-waves. During exclusion analyses, both families localized to a region on chromosome 5q that harbors GRM6, a gene previously associated with autosomal recessive CSNB. Bidirectional sequencing of GRM6 identified homozygous single base pair changes, specifically c.1336C>T (p.R446X) and c.2267G>A (p.G756D) in families PKRP170 and PKRP172, respectively. Conclusions We identified a novel nonsense and a previously reported missense mutation in GRM6 that were responsible for autosomal recessive CSNB in patients of Pakistani decent. PMID:26628857

  9. Failure to Identify Somatic Mutations in Monozygotic Twins Discordant for Schizophrenia by Whole Exome Sequencing

    PubMed Central

    Lyu, Nan; Guan, Li-Li; Ma, Hong; Wang, Xi-Jin; Wu, Bao-Ming; Shang, Fan-Hong; Wang, Dan; Wen, Hong; Yu, Xin

    2016-01-01

    Background: Schizophrenia (SCZ) is a severe, debilitating, and complex psychiatric disorder with multiple causative factors. An increasing number of studies have determined that rare variations play an important role in its etiology. A somatic mutation is a rare form of genetic variation that occurs at an early stage of embryonic development and is thought to contribute substantially to the development of SCZ. The aim of the study was to explore the novel pathogenic somatic single nucleotide variations (SNVs) and somatic insertions and deletions (indels) of SCZ. Methods: One Chinese family with a monozygotic (MZ) twin pair discordant for SCZ was included. Whole exome sequencing was performed in the co-twin and their parents. Rigorous filtering processes were conducted to prioritize pathogenic somatic variations, and all identified SNVs and indels were further confirmed by Sanger sequencing. Results: One somatic SNV and two somatic indels were identified after rigorous selection processes. However, none was validated by Sanger sequencing. Conclusions: This study is not alone in the failure to identify pathogenic somatic variations in MZ twins, suggesting that exonic somatic variations are extremely rare. Further efforts are warranted to explore the potential genetic mechanism of SCZ. PMID:26960372

  10. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  11. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms

    PubMed Central

    Milosevic Feenstra, Jelena D.; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N.; Cazzola, Mario

    2016-01-01

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed “triple negative.” We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  12. Whole Genome Sequencing in Autism Identifies Hotspots for De Novo Germline Mutation

    PubMed Central

    Michaelson, Jacob J.; Shi, Yujian; Gujral, Madhusudan; Zheng, Hancheng; Malhotra, Dheeraj; Jin, Xin; Minghan, Jian; Liu, Guangming; Greer, Douglas; Bhandari, Abhishek; Wu, Wenting; Corominas, Roser; Peoples, Áine; Koren, Amnon; Gore, Athurva; Kang, Shuli; Lin, Guan Ning; Estabillo, Jasper; Gadomski, Therese; Singh, Balvindar; Zhang, Kun; Akshoomoff, Natacha; Corsello, Christina; McCarroll, Steven; Iakoucheva, Lilia M.; Li, Yingrui; Wang, Jun; Sebat, Jonathan

    2013-01-01

    Summary De novo mutation plays an important role in Autism Spectrum Disorders (ASDs). Notably, pathogenic copy number variants (CNVs) are characterized by high mutation rates. We hypothesize that hypermutability is a property of ASD genes, and may also include nucleotide-substitution hotspots. We investigated global patterns of germline mutation by whole genome sequencing of monozygotic twins concordant for ASD and their parents. Mutation rates varied widely throughout the genome (by 100-fold) and could be explained by intrinsic characteristics of DNA sequence and chromatin structure. Dense clusters of mutations within individual genomes were attributable to compound mutation or gene conversion. Hypermutability was a characteristic of genes involved in ASD and other diseases. In addition, genes impacted by mutations in this study were associated with ASD in independent exome-sequencing datasets. Our findings suggest that regional hypermutation is a significant factor shaping patterns of genetic variation and disease risk in humans. PMID:23260136

  13. Mutation analysis of TMC1 identifies four new mutations and suggests an additional deafness gene at locus DFNA36-DFNB7/11

    PubMed Central

    Hilgert, Nele; Alasti, Fatemeh; Dieltjens, Nele; Pawlik, Barbara; Wollnik, Bernd; Uyguner, Oya; Delmaghani, Sedigheh; Weil, Dominique; Petit, Christine; Danis, Evi; Yang, Tao; Pandelia, Efthimia; Petersen, Michael B.; Goossens, Dirk; Favero, Jurgen Del; Sanati, Mohammad Hossein; Smith, Richard JH; Van Camp, Guy

    2016-01-01

    Hearing loss is the most frequent sensorineural disorder, affecting 1 in 1000 newborns. In more than half of these babies, the hearing loss is inherited. Hereditary hearing loss is a very heterogeneous trait, with about 100 gene localizations and 44 gene identifications for nonsyndromic hearing loss. TMC1 has been identified as the disease-causing gene for autosomal dominant and autosomal recessive nonsyndromic hearing loss at the DFNA36 and DFNB7/11 loci, respectively. To date, two dominant and 18 recessive TMC1 mutations have been reported as the cause of hearing loss in 34 families. In this report, we describe linkage to DFNA36 and DFNB7/11 in one family with dominant and 10 families with recessive nonsyndromic sensorineural hearing loss. In addition, mutation analysis of TMC1 was performed in 51 familial Turkish patients with autosomal recessive hearing loss. TMC1 mutations were identified in seven of the families segregating recessive hearing loss. The pathogenic variants we found included two known mutations, c.100C>T and c.1165C>T, and four new mutations, c.2350C>T, c.776+1G>A, c.767_768del and c.1166G>A. The absence of TMC1 mutations in the remaining six linked families implies the presence of mutations outside the coding region of this gene, or alternatively, at least one additional deafness-causing gene in this region. The analysis of copy number variations in TMC1 as well as DNA sequencing of 15 additional candidate genes did not reveal any proven pathogenic changes, leaving both hypotheses open. PMID:18616530

  14. Exome sequencing identifies a mutation in OFD1 in a male with Joubert syndrome, orofaciodigital spectrum anomalies and complex polydactyly.

    PubMed

    Wentzensen, Ingrid M; Johnston, Jennifer J; Patton, John H; Graham, John M; Sapp, Julie C; Biesecker, Leslie G

    2016-01-01

    Orofaciodigital syndrome type 1 or oral-facial-digital syndrome type 1 (OFDS1, OMIM #311200) is an X-linked malformation syndrome caused by hemizygous mutations in the OFD1 (OMIM #300170) gene with presumed male lethality. Recently males with OFDS1 and mutations in OFD1 have been described. We report a 17-year-old male with molar tooth sign, small cerebellum with absence of the cerebellar vermis, complex polydactyly with a Y-shaped metacarpal, renal failure and craniofacial anomalies caused by a novel splice-mutation (c.1129+4A>T) in the OFD1 gene identified by exome sequencing. PMID:27081566

  15. Exome sequencing identifies a mutation in OFD1 in a male with Joubert syndrome, orofaciodigital spectrum anomalies and complex polydactyly

    PubMed Central

    Wentzensen, Ingrid M; Johnston, Jennifer J; Patton, John H; Graham, John M; Sapp, Julie C; Biesecker, Leslie G

    2016-01-01

    Orofaciodigital syndrome type 1 or oral–facial–digital syndrome type 1 (OFDS1, OMIM #311200) is an X-linked malformation syndrome caused by hemizygous mutations in the OFD1 (OMIM #300170) gene with presumed male lethality. Recently males with OFDS1 and mutations in OFD1 have been described. We report a 17-year-old male with molar tooth sign, small cerebellum with absence of the cerebellar vermis, complex polydactyly with a Y-shaped metacarpal, renal failure and craniofacial anomalies caused by a novel splice-mutation (c.1129+4A>T) in the OFD1 gene identified by exome sequencing. PMID:27081566

  16. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas.

    PubMed

    Jiao, Yuchen; Pawlik, Timothy M; Anders, Robert A; Selaru, Florin M; Streppel, Mirte M; Lucas, Donald J; Niknafs, Noushin; Guthrie, Violeta Beleva; Maitra, Anirban; Argani, Pedram; Offerhaus, G Johan A; Roa, Juan Carlos; Roberts, Lewis R; Gores, Gregory J; Popescu, Irinel; Alexandrescu, Sorin T; Dima, Simona; Fassan, Matteo; Simbolo, Michele; Mafficini, Andrea; Capelli, Paola; Lawlor, Rita T; Ruzzenente, Andrea; Guglielmi, Alfredo; Tortora, Giampaolo; de Braud, Filippo; Scarpa, Aldo; Jarnagin, William; Klimstra, David; Karchin, Rachel; Velculescu, Victor E; Hruban, Ralph H; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Wood, Laura D

    2013-12-01

    Through exomic sequencing of 32 intrahepatic cholangiocarcinomas, we discovered frequent inactivating mutations in multiple chromatin-remodeling genes (including BAP1, ARID1A and PBRM1), and mutation in one of these genes occurred in almost half of the carcinomas sequenced. We also identified frequent mutations at previously reported hotspots in the IDH1 and IDH2 genes encoding metabolic enzymes in intrahepatic cholangiocarcinomas. In contrast, TP53 was the most frequently altered gene in a series of nine gallbladder carcinomas. These discoveries highlight the key role of dysregulated chromatin remodeling in intrahepatic cholangiocarcinomas. PMID:24185509

  17. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas

    PubMed Central

    Selaru, Florin M; Streppel, Mirte M; Lucas, Donald J; Niknafs, Noushin; Guthrie, Violeta Beleva; Maitra, Anirban; Argani, Pedram; Offerhaus, G Johan A; Roa, Juan Carlos; Roberts, Lewis R; Gores, Gregory J; Popescu, Irinel; Alexandrescu, Sorin T; Dima, Simona; Fassan, Matteo; Simbolo, Michele; Mafficini, Andrea; Capelli, Paola; Lawlor, Rita T; Ruzzenente, Andrea; Guglielmi, Alfredo; Tortora, Giampaolo; de Braud, Filippo; Scarpa, Aldo; Jarnagin, William; Klimstra, David; Karchin, Rachel; Velculescu, Victor E; Hruban, Ralph H; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Wood, Laura D

    2014-01-01

    Through exomic sequencing of 32 intrahepatic cholangiocarcinomas, we discovered frequent inactivating mutations in multiple chromatin-remodeling genes (including BAP1, ARID1A and PBRM1), and mutation in one of these genes occurred in almost half of the carcinomas sequenced. We also identified frequent mutations at previously reported hotspots in the IDH1 and IDH2 genes encoding metabolic enzymes in intrahepatic cholangiocarcinomas. In contrast, TP53 was the most frequently altered gene in a series of nine gallbladder carcinomas. These discoveries highlight the key role of dysregulated chromatin remodeling in intrahepatic cholangiocarcinomas. PMID:24185509

  18. Characterization of Novel MSX1 Mutations Identified in Japanese Patients with Nonsyndromic Tooth Agenesis

    PubMed Central

    Yamaguchi, Seishi; Machida, Junichiro; Kamamoto, Munefumi; Kimura, Masashi; Shibata, Akio; Tatematsu, Tadashi; Miyachi, Hitoshi; Higashi, Yujiro; Jezewski, Peter; Nakayama, Atsuo; Shimozato, Kazuo; Tokita, Yoshihito

    2014-01-01

    Since MSX1 and PAX9 are linked to the pathogenesis of nonsyndromic tooth agenesis, we performed detailed mutational analysis of these two genes sampled from Japanese patients. We identified two novel MSX1 variants with an amino acid substitution within the homeodomain; Thr174Ile (T174I) from a sporadic hypodontia case and Leu205Arg (L205R) from a familial oligodontia case. Both the Thr174 and Leu205 residues in the MSX1 homeodomain are highly conserved among different species. To define possible roles of mutations at these amino acids in the pathogenesis of nonsyndromic tooth agenesis, we performed several functional analyses. It has been demonstrated that MSX1 plays a pivotal role in hard tissue development as a suppressor for mesenchymal cell differentiation. To evaluate the suppression activity of the variants in mesenchymal cells, we used the myoD-promoter, which is one of convenient reporter assay system for MSX1. Although the gene products of these MSX1 variants are stable and capable of normal nuclear localization, they do not suppress myoD-promoter activity in differentiated C2C12 cells. To clarify the molecular mechanisms underlying our results, we performed further analyses including electrophoretic mobility shift assays, and co-immunoprecipitation assays to survey the molecular interactions between the mutant MSX1 proteins and the oligonucleotide DNA with MSX1 consensus binding motif or EZH2 methyltransferase. Since EZH2 is reported to interact with MSX1 and regulate MSX1 mediated gene suppression, we hypothesized that the T174I and L205R substitutions would impair this interaction. We conclude from the results of our experiments that the DNA binding ability of MSX1 is abolished by these two amino acid substitutions. This illustrates a causative role of the T174I and L205R MSX1 homeodomain mutations in tooth agenesis, and suggests that they may influence cell proliferation and differentiation resulting in lesser tooth germ formation in vivo. PMID:25101640

  19. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome.

    PubMed

    Krawitz, Peter M; Schweiger, Michal R; Rdelsperger, Christian; Marcelis, Carlo; Klsch, Uwe; Meisel, Christian; Stephani, Friederike; Kinoshita, Taroh; Murakami, Yoshiko; Bauer, Sebastian; Isau, Melanie; Fischer, Axel; Dahl, Andreas; Kerick, Martin; Hecht, Jochen; Khler, Sebastian; Jger, Marten; Grnhagen, Johannes; de Condor, Birgit Jonske; Doelken, Sandra; Brunner, Han G; Meinecke, Peter; Passarge, Eberhard; Thompson, Miles D; Cole, David E; Horn, Denise; Roscioli, Tony; Mundlos, Stefan; Robinson, Peter N

    2010-10-01

    Hyperphosphatasia mental retardation (HPMR) syndrome is an autosomal recessive form of mental retardation with distinct facial features and elevated serum alkaline phosphatase. We performed whole-exome sequencing in three siblings of a nonconsanguineous union with HPMR and performed computational inference of regions identical by descent in all siblings to establish PIGV, encoding a member of the GPI-anchor biosynthesis pathway, as the gene mutated in HPMR. We identified homozygous or compound heterozygous mutations in PIGV in three additional families. PMID:20802478

  20. Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus.

    PubMed

    Tarpey, Patrick; Thomas, Shery; Sarvananthan, Nagini; Mallya, Uma; Lisgo, Steven; Talbot, Chris J; Roberts, Eryl O; Awan, Musarat; Surendran, Mylvaganam; McLean, Rebecca J; Reinecke, Robert D; Langmann, Andrea; Lindner, Susanne; Koch, Martina; Jain, Sunila; Woodruff, Geoffrey; Gale, Richard P; Bastawrous, Andrew; Degg, Chris; Droutsas, Konstantinos; Asproudis, Ioannis; Zubcov, Alina A; Pieh, Christina; Veal, Colin D; Machado, Rajiv D; Backhouse, Oliver C; Baumber, Laura; Constantinescu, Cris S; Brodsky, Michael C; Hunter, David G; Hertle, Richard W; Read, Randy J; Edkins, Sarah; O'Meara, Sarah; Parker, Adrian; Stevens, Claire; Teague, Jon; Wooster, Richard; Futreal, P Andrew; Trembath, Richard C; Stratton, Michael R; Raymond, F Lucy; Gottlob, Irene

    2006-11-01

    Idiopathic congenital nystagmus is characterized by involuntary, periodic, predominantly horizontal oscillations of both eyes. We identified 22 mutations in FRMD7 in 26 families with X-linked idiopathic congenital nystagmus. Screening of 42 singleton cases of idiopathic congenital nystagmus (28 male, 14 females) yielded three mutations (7%). We found restricted expression of FRMD7 in human embryonic brain and developing neural retina, suggesting a specific role in the control of eye movement and gaze stability. PMID:17013395

  1. A high frequent BRCA1 founder mutation identified in the Greenlandic population.

    PubMed

    Harboe, Theresa Larriba; Eiberg, Hans; Kern, Peder; Ejlertsen, Bent; Nedergaard, Lotte; Timmermans-Wielenga, Vera; Nielsen, Inge-Merete; Bisgaard, Marie Luise

    2009-01-01

    Approximately 10% of all breast and ovarian cancers are dominantly inherited and mutations are mainly found in the BRCA 1 and 2 genes. The penetrance of BRCA1 mutations is reported to be between 68 and 92% and confers a 36-92% life time risk of breast cancer. Most mutations in BRCA1 are uniquely occurring mutations, but founder mutations have been described. In this study we describe a founder mutation with wide spread presence in the Inuit population. We have screened 2,869 persons from Greenland for the presence of a BRCA1 mutation (p.Cys39Gly) only found in the Inuit population. The overall carrier frequency was 1.6% in the general population, but the frequency differs geographically from 0.6% on the West coast to 9.7% in the previously isolated population of the East coast. This is to our knowledge the highest population frequency of a BRCA1 mutation ever to be described. To determine the clinical relevance of the mutation, we have examined ten breast cancer patients and nine ovarian cancer patients from Greenland for the presence of the p.Cys39Gly mutation. We found three ovarian cancer patients (33%) and one breast cancer patient (10%) carrying the mutation. The high number of women carrying a BRCA1 mutation known to trigger the development of potentially lethal diseases leads us to recommend an offer of genetic counselling and test for the mutation to all females of Inuit origin, thereby hopefully preventing a number of breast and ovarian cancer deaths. PMID:19504351

  2. Mutation skew in genes identified by genome-wide association study of hypertriglyceridemia

    PubMed Central

    Johansen, Christopher T.; Wang, Jian; Lanktree, Matthew B.; Cao, Henian; McIntyre, Adam D.; Ban, Matthew R.; Martins, Rebecca A.; Kennedy, Brooke A.; Hassell, Reina G.; Visser, Maartje E.; Schwartz, Stephen M.; Voight, Benjamin F.; Elosua, Roberto; Salomaa, Veikko; O'Donnell, Christopher J.; Dallinga-Thie, Geesje M.; Anand, Sonia S.; Yusuf, Salim; Huff, Murray W.; Kathiresan, Sekar; Hegele, Robert A.

    2010-01-01

    Genome-wide association studies (GWAS) have replicably identified multiple loci associated with population-based plasma lipid concentrations1-5. Common genetic variants at these loci together explain <10% of the total variation of each lipid trait4,5. Rare variants of individually large effect may contribute additionally to the missing heritability of lipid traits6,7, however it remains to be shown to what extent rare variants will affect lipid phenotypes. Here, we demonstrate a significant accumulation of rare variants in GWAS-identified genes in patients with an extreme phenotype of abnormal plasma triglyceride (TG) metabolism. A GWAS of hypertriglyceridemia (HTG) patients revealed that common variants in APOA5, GCKR, LPL and APOB genes were associated with the HTG phenotype at genome-wide significance. We subsequently resequenced protein coding regions of these genes and found a significant burden of 154 rare missense or nonsense variants in 438 HTG patients, in contrast to 53 variants in 327 controls (P=6.2X10-8); this corresponds to a carrier frequency of 28.1% of HTG patients and 15.3% of controls (P=2.6X10-5). Many rare variants were predicted in silico to have compromised function; additionally some had previously demonstrated dysfunctionality in vitro. Rare variants in these 4 genes explained 1.1% of total variation in HTG diagnoses. Our study demonstrates a marked mutation skew that likely contributes to disease pathophysiology in patients with HTG. PMID:20657596

  3. Amplicon Resequencing Identified Parental Mosaicism for Approximately 10% of "de novo" SCN1A Mutations in Children with Dravet Syndrome.

    PubMed

    Xu, Xiaojing; Yang, Xiaoxu; Wu, Qixi; Liu, Aijie; Yang, Xiaoling; Ye, Adam Yongxin; Huang, August Yue; Li, Jiarui; Wang, Meng; Yu, Zhe; Wang, Sheng; Zhang, Zhichao; Wu, Xiru; Wei, Liping; Zhang, Yuehua

    2015-09-01

    The majority of children with Dravet syndrome (DS) are caused by de novo SCN1A mutations. To investigate the origin of the mutations, we developed and applied a new method that combined deep amplicon resequencing with a Bayesian model to detect and quantify allelic fractions with improved sensitivity. Of 174 SCN1A mutations in DS probands which were considered "de novo" by Sanger sequencing, we identified 15 cases (8.6%) of parental mosaicism. We identified another five cases of parental mosaicism that were also detectable by Sanger sequencing. Fraction of mutant alleles in the 20 cases of parental mosaicism ranged from 1.1% to 32.6%. Thirteen (65% of 20) mutations originated paternally and seven (35% of 20) maternally. Twelve (60% of 20) mosaic parents did not have any epileptic symptoms. Their mutant allelic fractions were significantly lower than those in mosaic parents with epileptic symptoms (P = 0.016). We identified mosaicism with varied allelic fractions in blood, saliva, urine, hair follicle, oral epithelium, and semen, demonstrating that postzygotic mutations could affect multiple somatic cells as well as germ cells. Our results suggest that more sensitive tools for detecting low-level mosaicism in parents of families with seemingly "de novo" mutations will allow for better informed genetic counseling. PMID:26096185

  4. IDENTIFYING MUTATION SPECIFIC CANCER PATHWAYS USING A STRUCTURALLY RESOLVED PROTEIN INTERACTION NETWORK

    PubMed Central

    ENGIN, H. BILLUR; HOFREE, MATAN; CARTER, HANNAH

    2014-01-01

    Here we present a method for extracting candidate cancer pathways from tumor ‘omics data while explicitly accounting for diverse consequences of mutations for protein interactions. Disease-causing mutations are frequently observed at either core or interface residues mediating protein interactions. Mutations at core residues frequently destabilize protein structure while mutations at interface residues can specifically affect the binding energies of protein-protein interactions. As a result, mutations in a protein may result in distinct interaction profiles and thus have different phenotypic consequences. We describe a protein structure-guided pipeline for extracting interacting protein sets specific to a particular mutation. Of 59 cancer genes with 3D co-complexed structures in the Protein Data Bank, 43 showed evidence of mutations with different functional consequences. Literature survey reciprocated functional predictions specific to distinct mutations on APC, ATRX, BRCA1, CBL and HRAS. Our analysis suggests that accounting for mutation-specific perturbations to cancer pathways will be essential for personalized cancer therapy. PMID:25592571

  5. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO

    PubMed Central

    Evans, D; Eccles, D; Rahman, N; Young, K; Bulman, M; Amir, E; Shenton, A; Howell, A; Lalloo, F

    2004-01-01

    Methods: DNA samples from affected subjects from 422 non-Jewish families with a history of breast and/or ovarian cancer were screened for BRCA1 mutations and a subset of 318 was screened for BRCA2 by whole gene screening techniques. Using a combination of results from screening and the family history of mutation negative and positive kindreds, a simple scoring system (Manchester scoring system) was devised to predict pathogenic mutations and particularly to discriminate at the 10% likelihood level. A second separate dataset of 192 samples was subsequently used to test the model's predictive value. This was further validated on a third set of 258 samples and compared against existing models. Results: The scoring system includes a cut-off at 10 points for each gene. This equates to >10% probability of a pathogenic mutation in BRCA1 and BRCA2 individually. The Manchester scoring system had the best trade-off between sensitivity and specificity at 10% prediction for the presence of mutations as shown by its highest C-statistic and was far superior to BRCAPRO. Conclusion: The scoring system is useful in identifying mutations particularly in BRCA2. The algorithm may need modifying to include pathological data when calculating whether to screen for BRCA1 mutations. It is considerably less time-consuming for clinicians than using computer models and if implemented routinely in clinical practice will aid in selecting families most suitable for DNA sampling for diagnostic testing. PMID:15173236

  6. A novel insertion mutation identified in exon 10 of the MEFV gene associated with Familial Mediterranean Fever

    PubMed Central

    2014-01-01

    Background Familial Mediterranean Fever (FMF), characterized by recurrent fever and inflammation of serous membranes, is an autosomal recessive disease caused by mutations in the Mediterranean fever (MEFV) gene. Around 296 mutations have been reported to date. Methods Two two-generation Turkish families with a total of four members diagnosed with FMF clinically were screened with DNA sequencing performed on exon 2 and exon 10 of the MEFV genes. Then, complete exome sequencing analysis of MEFV gene was done for four patients in whom novel mutation was detected. Results A novel single base Guanine (G) insertion mutation in the coding region of MEFV gene, named c.2330dupG (p.Gln778Serfs*4 or Q778SfsX4) resulting in a mutated Pyrin/Marenostrin protein was identified. Conclusions This is the first report of a new mutation in exon 10 of the MEFV gene in two Turkish families. This novel pattern of insertion mutation may provide important information for further studies on FMF pathogenesis. PMID:24980720

  7. Whole-exome sequencing identifies OR2W3 mutation as a cause of autosomal dominant retinitis pigmentosa

    PubMed Central

    Ma, Xiangyu; Guan, Liping; Wu, Wei; Zhang, Yao; Zheng, Wei; Gao, Yu-Tang; Long, Jirong; Wu, Na; Wu, Long; Xiang, Ying; Xu, Bin; Shen, Miaozhong; Chen, Yanhua; Wang, Yuewen; Yin, Ye; Li, Yingrui; Xu, Haiwei; Xu, Xun; Li, Yafei

    2015-01-01

    Retinitis pigmentosa (RP), a heterogeneous group of inherited ocular diseases, is a genetic condition that causes retinal degeneration and eventual vision loss. Though some genes have been identified to be associated with RP, still a large part of the clinical cases could not be explained. Here we reported a four-generation Chinese family with RP, during which 6 from 9 members of the second generation affected the disease. To identify the genetic defect in this family, whole-exome sequencing together with validation analysis by Sanger sequencing were performed to find possible pathogenic mutations. After a pipeline of database filtering, including public databases and in-house databases, a novel missense mutation, c. 424 C > T transition (p.R142W) in OR2W3 gene, was identified as a potentially causative mutation for autosomal dominant RP. The mutation co-segregated with the disease phenotype over four generations. This mutation was validated in another independent three-generation family. RT-PCR analysis also identified that OR2W3 gene was expressed in HESC-RPE cell line. The results will not only enhance our current understanding of the genetic basis of RP, but also provide helpful clues for designing future studies to further investigate genetic factors for familial RP. PMID:25783483

  8. Exome Sequencing Identifies a Novel Homozygous Mutation in the Phosphate Transporter SLC34A1 in Hypophosphatemia and Nephrocalcinosis

    PubMed Central

    Rajagopal, Abbhirami; Braslavsky, Débora; Lu, James T.; Kleppe, Soledad; Clément, Florencia; Cassinelli, Hamilton; Liu, David S.; Liern, Jose Miguel; Vallejo, Graciela; Bergadá, Ignacio; Gibbs, Richard A.; Campeau, Phillipe M.

    2014-01-01

    Context: Two Argentinean siblings (a boy and a girl) from a nonconsanguineous family presented with hypercalcemia, hypercalciuria, hypophosphatemia, low parathyroid hormone (PTH), and nephrocalcinosis. Objective: The goal of this study was to identify genetic causes of the clinical findings in the two siblings. Design: Whole exome sequencing was performed to identify disease-causing mutations in the youngest sibling, and a candidate variant was screened in other family members by Sanger sequencing. In vitro experiments were conducted to determine the effects of the mutation that was identified. Patients and Other Participants: Affected siblings (2 y.o. female and 10 y.o male) and their parents were included in the study. Informed consent was obtained for genetic studies. Results: A novel homozygous mutation in the gene encoding the renal sodium-dependent phosphate transporter SLC34A1 was identified in both siblings (c.1484G>A, p.Arg495His). In vitro studies showed that the p.Arg495His mutation resulted in decreased phosphate uptake when compared to wild-type SLC34A1. Conclusions: The homozygous G>A transition that results in the substitution of histidine for arginine at position 495 of the renal sodium-dependent phosphate transporter, SLC34A1, is involved in disease pathogenesis in these patients. Our report of the second family with two mutated SLC34A1 alleles expands the known phenotype of this rare condition. PMID:25050900

  9. Whole exome analysis identifies dominant COL4A1 mutations in patients with complex ocular phenotypes involving microphthalmia

    PubMed Central

    Deml, Brett; Reis, Linda M.; Maheshwari, Mohit; Griffis, Cristin; Bick, David; Semina, Elena V.

    2014-01-01

    Anophthalmia/microphthalmia (A/M) is a developmental ocular malformation defined as complete absence or reduction in size of the eye. A/M is a heterogeneous disorder with numerous causative genes identified; however, about half the cases lack a molecular diagnosis. We undertook whole exome sequencing in an A/M family with two affected siblings, two unaffected siblings, and unaffected parents; the ocular phenotype was isolated with only mild developmental delay/learning difficulties reported and a normal brain MRI in the proband at 16 months. No pathogenic mutations were identified in 71 known A/M genes. Further analysis identified a shared heterozygous mutation in COL4A1, c.2317G>A, p.(Gly773Arg) that was not seen in the unaffected parents and siblings. Analysis of twenty-four unrelated A/M exomes identified a novel c.2122G>A, p.(Gly708Arg) mutation in an additional patient with unilateral microphthalmia, bilateral microcornea, glaucoma and Peters anomaly; the mutation was absent in the unaffected mother and the unaffected father was not available. Mutations in COL4A1 have been linked to a spectrum of human disorders; the most consistent feature is cerebrovascular disease with variable ocular anomalies, kidney and muscle defects. This study expands the spectrum of COL4A1 phenotypes and indicates screening in patients with A/M regardless of MRI findings or presumed inheritance pattern. PMID:24628545

  10. Whole exome analysis identifies dominant COL4A1 mutations in patients with complex ocular phenotypes involving microphthalmia.

    PubMed

    Deml, B; Reis, L M; Maheshwari, M; Griffis, C; Bick, D; Semina, E V

    2014-11-01

    Anophthalmia/microphthalmia (A/M) is a developmental ocular malformation defined as complete absence or reduction in size of the eye. A/M is a heterogenous disorder with numerous causative genes identified; however, about half the cases lack a molecular diagnosis. We undertook whole exome sequencing in an A/M family with two affected siblings, two unaffected siblings, and unaffected parents; the ocular phenotype was isolated with only mild developmental delay/learning difficulties reported and a normal brain magnetic resonance imaging (MRI) in the proband at 16 months. No pathogenic mutations were identified in 71 known A/M genes. Further analysis identified a shared heterozygous mutation in COL4A1, c.2317G>A, p.(Gly773Arg) that was not seen in the unaffected parents and siblings. Analysis of 24 unrelated A/M exomes identified a novel c.2122G>A, p.(Gly708Arg) mutation in an additional patient with unilateral microphthalmia, bilateral microcornea and Peters anomaly; the mutation was absent in the unaffected mother and the unaffected father was not available. Mutations in COL4A1 have been linked to a spectrum of human disorders; the most consistent feature is cerebrovascular disease with variable ocular anomalies, kidney and muscle defects. This study expands the spectrum of COL4A1 phenotypes and indicates screening in patients with A/M regardless of MRI findings or presumed inheritance pattern. PMID:24628545

  11. A novel common large genomic deletion and two new missense mutations identified in the Romanian phenylketonuria population.

    PubMed

    Gemperle-Britschgi, Corinne; Iorgulescu, Daniela; Mager, Monica Alina; Anton-Paduraru, Dana; Vulturar, Romana; Thöny, Beat

    2016-01-15

    The mutation spectrum for the phenylalanine hydroxylase (PAH) gene was investigated in a cohort of 84 hyperphenylalaninemia (HPA) patients from Romania identified through newborn screening or neurometabolic investigations. Differential diagnosis identified 81 patients with classic PAH deficiency while 3 had tetrahydropterin-cofactor deficiency and/or remained uncertain due to insufficient specimen. PAH-genetic analysis included a combination of Sanger sequencing of exons and exon–intron boundaries, MLPA and NGS with genomic DNA, and cDNA analysis from immortalized lymphoblasts. A diagnostic efficiency of 99.4% was achieved, as for one allele (out of a total of 162 alleles) no mutation could be identified. The most prevalent mutation was p.Arg408Trp which was found in ~ 38% of all PKU alleles. Three novel mutations were identified, including the two missense mutations p.Gln226Lys and p.Tyr268Cys that were both disease causing by prediction algorithms, and the large genomic deletion EX6del7831 (c.509 + 4140_706 + 510del7831) that resulted in skipping of exon 6 based on PAH-cDNA analysis in immortalized lymphocytes. The genomic deletion was present in a heterozygous state in 12 patients, i.e. in ~ 8% of all the analyzed PKU alleles, and might have originated from a Romanian founder. PMID:26481238

  12. Exome Sequencing Identifies a Mutation in EYA4 as a Novel Cause of Autosomal Dominant Non-Syndromic Hearing Loss

    PubMed Central

    Xia, Wenjun; Hao, Lili; Ma, Jing; Ma, Duan; Ma, Zhaoxin

    2015-01-01

    Autosomal dominant non-syndromic hearing loss is highly heterogeneous, and eyes absent 4 (EYA4) is a disease-causing gene. Most EYA4 mutations founded in the Eya-homologous region, however, no deafness causative missense mutation in variable region of EYA4 have previously been found. In this study, we identified a pathogenic missense mutation located in the variable region of the EYA4 gene for the first time in a four-generation Chinese family with 57 members. Whole-exome sequencing (WES) was performed on samples from one unaffected and two affected individuals to systematically search for deafness susceptibility genes, and the candidate mutations and the co-segregation of the phenotype were verified by polymerase chain reaction amplification and by Sanger sequencing in all of the family members. Then, we identified a novel EYA4 mutation in exon 8, c.511G>C; p.G171R, which segregated with postlingual and progressive autosomal dominant sensorineural hearing loss (SNHL). This report is the first to describe a missense mutation in the variable region domain of the EYA4 gene, which is not highly conserved in many species, indicating that the potential unconserved role of 171G>R in human EYA4 function is extremely important. PMID:25961296

  13. STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model

    PubMed Central

    Couronné, Lucile; Scourzic, Laurianne; Pilati, Camilla; Valle, Véronique Della; Duffourd, Yannis; Solary, Eric; Vainchenker, William; Merlio, Jean-Philippe; Beylot-Barry, Marie; Damm, Frederik; Stern, Marc-Henri; Gaulard, Philippe; Lamant, Laurence; Delabesse, Eric; Merle-Beral, Hélène; Nguyen-Khac, Florence; Fontenay, Michaëla; Tilly, Hervé; Bastard, Christian; Zucman-Rossi, Jessica; Bernard, Olivier A.; Mercher, Thomas

    2013-01-01

    STAT3 protein phosphorylation is a frequent event in various hematologic malignancies and solid tumors. Acquired STAT3 mutations have been recently identified in 40% of patients with T-cell large granular lymphocytic leukemia, a rare T-cell disorder. In this study, we investigated the mutational status of STAT3 in a large series of patients with lymphoid and myeloid diseases. STAT3 mutations were identified in 1.6% (4 of 258) of patients with T-cell neoplasms, in 2.5% (2 of 79) of patients with diffuse large B-cell lymphoma but in no other B-cell lymphoma patients (0 of 104) or patients with myeloid malignancies (0 of 96). Functional in vitro assays indicated that the STAT3Y640F mutation leads to a constitutive phosphorylation of the protein. STA21, a STAT3 small molecule inhibitor, inhibited the proliferation of two distinct STAT3 mutated cell lines. Using a mouse bone marrow transplantation assay, we observed that STAT3Y640F expression leads to the development of myeloproliferative neoplasms with expansion of either myeloid cells or megakaryocytes. Together, these data indicate that the STAT3Y640F mutation leads to constitutive activation of STAT3, induces malignant hematopoiesis in vivo, and may represent a novel therapeutic target in some lymphoid malignancies. PMID:23872306

  14. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations

    PubMed Central

    2011-01-01

    The recent publication of the draft genome sequences of the Neanderthal and a ~50,000-year-old archaic hominin from Denisova Cave in southern Siberia has ushered in a new age in molecular archaeology. We previously cross-compared the human, chimpanzee and Neanderthal genome sequences with respect to a set of disease-causing/disease-associated missense and regulatory mutations (Human Gene Mutation Database) and succeeded in identifying genetic variants which, although apparently pathogenic in humans, may represent a 'compensated' wild-type state in at least one of the other two species. Here, in an attempt to identify further 'potentially compensated mutations' (PCMs) of interest, we have compared our dataset of disease-causing/disease-associated mutations with their corresponding nucleotide positions in the Denisovan hominin, Neanderthal and chimpanzee genomes. Of the 15 human putatively disease-causing mutations that were found to be compensated in chimpanzee, Denisovan or Neanderthal, only a solitary F5 variant (Val1736Met) was specific to the Denisovan. In humans, this missense mutation is associated with activated protein C resistance and an increased risk of thromboembolism and recurrent miscarriage. It is unclear at this juncture whether this variant was indeed a PCM in the Denisovan or whether it could instead have been associated with disease in this ancient hominin. PMID:21807602

  15. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation.

    PubMed

    Li, Minghui; Kales, Stephen C; Ma, Ke; Shoemaker, Benjamin A; Crespo-Barreto, Juan; Cangelosi, Andrew L; Lipkowitz, Stanley; Panchenko, Anna R

    2016-02-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved, depicting the protein at different stages of its activation cycle and thus providing mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins-may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than random noncancer mutations. We further tested the ability of these computational models, assessing the changes in CBL stability and its binding to ubiquitin-conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. Cancer Res; 76(3); 561-71. ©2015 AACR. PMID:26676746

  16. Frameshift mutation hotspot identified in Smith-Magenis syndrome: case report and review of literature.

    PubMed

    Truong, Hoa T; Dudding, Tracy; Blanchard, Christopher L; Elsea, Sarah H

    2010-01-01

    Smith-Magenis syndrome (SMS) is a complex syndrome involving intellectual disabilities, sleep disturbance, behavioural problems, and a variety of craniofacial, skeletal, and visceral anomalies. While the majority of SMS cases harbor an ~3.5 Mb common deletion on 17p11.2 that encompasses the retinoic acid induced-1 (RAI1) gene, some patients carry small intragenic deletions or point mutations in RAI1. We present data on two cases of Smith-Magenis syndrome with mutation of RAI1. Both cases are phenotypically consistent with SMS and RAI1 mutation but also have other anomalies not previously reported in SMS, including spontaneous pneumothoraces. These cases also illustrate variability in the SMS phenotype not previously shown for RAI1 mutation cases, including hearing loss, absence of self-abusive behaviours, and mild global delays. Sequencing of RAI1 revealed mutation of the same heptameric C-tract (CCCCCCC) in exon 3 in both cases (c.3103delC one case and and c.3103insC in the other), resulting in frameshift mutations. Of the seven reported frameshift mutations occurring in poly C-tracts in RAI1, four cases (~57%) occur at this heptameric C-tract. Collectively, these results indicate that this heptameric C-tract is a preferential hotspot for single nucleotide insertion/deletions (SNindels) and therefore, should be considered a primary target for analysis in patients suspected for mutations in RAI1. We expect that as more patients are sequenced for mutations in RAI1, the incidence of frameshift mutations in this hotspot will become more evident. PMID:20932317

  17. Novel somatic mutations identified by whole-exome sequencing in muscle-invasive transitional cell carcinoma of the bladder

    PubMed Central

    PAN, HUIXING; XU, XIAOJIAN; WU, DEYAO; QIU, QIAOCHENG; ZHOU, SHOUJUN; HE, XUEFENG; ZHOU, YUNFENG; QU, PING; HOU, JIANQUAN; HE, JUN; ZHOU, JIAN

    2016-01-01

    Transitional cell carcinoma (TCC) is the one of the most commonly observed types of cancer globally. The identification of novel disease-associated genes in TCC has had a significant effect on the diagnosis and treatment of bladder cancer; however, there may be a large number of novel genes that have not been identified. In the present study, the exomes of two individuals who were diagnosed with muscle-invasive TCC (MI-TCC) were sequenced to investigate potential variants. Subsequently, following algorithm and filter analysis, Sanger sequencing was used to validate the results of deep sequencing. Immunohistochemistry (IHC) was employed to observe the differences in HECT, C2 and WW domain-containing E3 ubiquitin protein ligase 1 (HECW1) protein expression between tumor tissues and para-carcinoma tissues. A total of 6 nonsynonymous mutation genes were identified in MI-TCC, identified as copine VII, RNA binding motif protein, X-linked-like 3, acyl-CoA synthetase medium-chain family member 2A, HECW1, zinc finger protein 273 and trichohyalin. Furthermore, 5 cases were identified to possess a HECW1 gene mutation in 61 MI-TCC specimens, and all of these were point mutations located at exon 11 on chromosome 7. The mutation categories of HECW1 had 4 missense mutations and 1 nonsense mutation. IHC revealed that HECW1 protein was expressed at significantly increased levels in MI-TCC compared with normal bladder urothelium (P<0.001). The present study provided a novel approach for investigating genetic changes in the MI-TCC exome, and identified the novel mutant gene HECW1, which may possess a significant role in the pathogenesis of TCC. PMID:26893765

  18. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia[S

    PubMed Central

    Mendoza-Barber, Elena; Julve, Josep; Nilsson, Stefan K.; Lookene, Aivar; Martn-Campos, Jess M.; Roig, Rosa; Lechuga-Sancho, Alfonso M.; Sloan, John H.; Fuentes-Prior, Pablo; Blanco-Vaca, Francisco

    2013-01-01

    During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia. PMID:23307945

  19. TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers.

    PubMed

    Győrffy, Balázs; Bottai, Giulia; Lehmann-Che, Jacqueline; Kéri, György; Orfi, László; Iwamoto, Takayuki; Desmedt, Christine; Bianchini, Giampaolo; Turner, Nicholas C; de Thè, Hugues; André, Fabrice; Sotiriou, Christos; Hortobagyi, Gabriel N; Di Leo, Angelo; Pusztai, Lajos; Santarpia, Libero

    2014-05-01

    Breast cancers (BC) carry a complex set of gene mutations that can influence their gene expression and clinical behavior. We aimed to identify genes driven by the TP53 mutation status and assess their clinical relevance in estrogen receptor (ER)-positive and ER-negative BC, and their potential as targets for patients with TP53 mutated tumors. Separate ROC analyses of each gene expression according to TP53 mutation status were performed. The prognostic value of genes with the highest AUC were assessed in a large dataset of untreated, and neoadjuvant chemotherapy treated patients. The mitotic checkpoint gene MPS1 was the most significant gene correlated with TP53 status, and the most significant prognostic marker in all ER-positive BC datasets. MPS1 retained its prognostic value independently from the type of treatment administered. The biological functions of MPS1 were investigated in different BC cell lines. We also assessed the effects of a potent small molecule inhibitor of MPS1, SP600125, alone and in combination with chemotherapy. Consistent with the gene expression profiling and siRNA assays, the inhibition of MPS1 by SP600125 led to a reduction in cell viability and a significant increase in cell death, selectively in TP53-mutated BC cells. Furthermore, the chemical inhibition of MPS1 sensitized BC cells to conventional chemotherapy, particularly taxanes. Our results collectively demonstrate that TP53-correlated kinase MPS1, is a potential therapeutic target in BC patients with TP53 mutated tumors, and that SP600125 warrant further development in future clinical trials. PMID:24462521

  20. Functional mutations in 5′UTR of the BMPR2 gene identified in Chinese families with pulmonary arterial hypertension

    PubMed Central

    Zhang, Chenting; Liu, Chunli; Wang, Wei; Zhang, Nuofu; Hadadi, Cyrus; Huang, Junyi; Zhong, Nanshan; Lu, Wenju

    2016-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a progressive pulmonary vasculopathy with significant morbidity and mortality. Bone morphogenetic protein receptor type 2 (BMPR2) has been well recognized as the principal gene responsible for heritable and sporadic PAH. Four unrelated Chinese patients with PAH and their family members, both symptomatic and asymptomatic, were genetically evaluated by sequencing all exons and the flanking regions of BMPR2. Functionality of the aberrant mutations at the 5′ untranslated region (UTR) of BMPR2 in the families with PAH was determined by site mutation, transient transfection, and promoter-reporter assays. Four individual mutations in the BMPR2 gene were identified in the 4 families, respectively: 10-GGC repeats, 13-GGC repeats, 4-AGC repeats in 5′UTR, and a novel missense mutation in exon 7 (c.961C>T; p.Arg321X). Moreover, we demonstrated that (1) these 5′UTR mutations decreased the transcription of BMPR2 and (2) the GGC repeats and AGC repeats in BMPR2 5′UTR bore functional binding sites of EGR-1 and MYF5, respectively. This is the first report demonstrating the presence of functional BMPR2 5′UTR mutations in familial patients with PAH and further indicating that EGR-1 and MYF5 are potential targets for correcting these genetic abnormalities for PAH therapy. PMID:27162618

  1. Mutations in RASA1 and GDF2 identified in patients with clinical features of hereditary hemorrhagic telangiectasia

    PubMed Central

    Hernandez, Felicia; Huether, Robert; Carter, Lester; Johnston, Tami; Thompson, Jennifer; Gossage, James R; Chao, Elizabeth; Elliott, Aaron M

    2015-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder caused by mutations in ENG, ACVRL1 and SMAD4, which function in regulating the transforming growth factor beta and bone morphogenetic protein signaling pathways. Symptoms of HHT can be present in individuals who test negative for mutations in these three genes indicating other genes may be involved. In this study, we tested for mutations in two genes, RASA1 and GDF2, which were recently reported to be involved in vascular disorders. To determine whether RASA1 and GDF2 have phenotypic overlap with HHT and should be included in diagnostic testing, we developed a next-generation sequencing assay to detect mutations in 93 unrelated individuals who previously tested negative for mutations in ENG, ACVRL1 and SMAD4, but were clinically suspected to have HHT. Pathogenic mutations in RASA1 were identified in two samples (2.15%) and a variant of unknown significance in GDF2 was detected in one sample. All three individuals experienced epistaxis with dermal lesions described in medical records as telangiectases. These results indicate that the inclusion of RASA1 and GDF2 screening in individuals suspected to have HHT will increase the detection rate and aid clinicians in making an accurate diagnosis. PMID:27081547

  2. Exome Sequencing on Malignant Meningiomas Identified Mutations in Neurofibromatosis Type 2 (NF2) and Meningioma 1 (MN1) Genes

    PubMed Central

    Dong, Chengliang; Hou, Jinghui; Wang, Zheng; Wang, Feng; Zhong, Hongbin; Wang, Lin; Wang, Kai

    2016-01-01

    Background Meningiomas are tumors originating from the membranous layers surrounding the central nervous system, and are generally regarded as “benign” tumors of the brain. Malignant meningiomas are rare and are typically associated with a higher risk of local tumor recurrence and a poorer prognosis (median survival time <2 years). Previous genome-wide association studies and exome sequencing studies have identified genes that play a role in susceptibility to meningiomas, but these studies did not focus specifically on malignant tumors. Methods We performed exome sequencing on five malignant meningiomas on the Illumina HiSeq2000 platform using Agilent SureSelect Human All Exon kits. We used wANNOVAR web server to annotate and prioritize variants, identified candidate genes with recurrent mutations, and validated selected mutations by Sanger sequencing. We next designed custom NimbleGen targeted region arrays on five candidate genes, and sequenced four additional malignant meningiomas. Results From exome sequencing data, we identified several frequently mutated genes including NF2, MN1, ARID1B, SEMA4D, and MUC2, with private mutations in tumors. We sequenced these genes in four additional samples and identified potential driver mutations in NF2 (neurofibromatosis type 2) and MN1 (meningioma 1). Conclusions We confirmed that mutations in NF2 may play a role in progression of meningiomas, and nominated MN1 as a candidate gene for malignant transformation of meningiomas. Our sample size is limited by the extreme rarity of malignant meningiomas, but our study represents one of the first sequencing studies focusing on the malignant subtype. [Discovery Medicine 18(101):301-311, December 2014] PMID:25549701

  3. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas.

    PubMed

    Krauthammer, Michael; Kong, Yong; Bacchiocchi, Antonella; Evans, Perry; Pornputtapong, Natapol; Wu, Cen; McCusker, James P; Ma, Shuangge; Cheng, Elaine; Straub, Robert; Serin, Merdan; Bosenberg, Marcus; Ariyan, Stephan; Narayan, Deepak; Sznol, Mario; Kluger, Harriet M; Mane, Shrikant; Schlessinger, Joseph; Lifton, Richard P; Halaban, Ruth

    2015-09-01

    We report on whole-exome sequencing (WES) of 213 melanomas. Our analysis established NF1, encoding a negative regulator of RAS, as the third most frequently mutated gene in melanoma, after BRAF and NRAS. Inactivating NF1 mutations were present in 46% of melanomas expressing wild-type BRAF and RAS, occurred in older patients and showed a distinct pattern of co-mutation with other RASopathy genes, particularly RASA2. Functional studies showed that NF1 suppression led to increased RAS activation in most, but not all, melanoma cases. In addition, loss of NF1 did not predict sensitivity to MEK or ERK inhibitors. The rebound pathway, as seen by the induction of phosphorylated MEK, occurred in cells both sensitive and resistant to the studied drugs. We conclude that NF1 is a key tumor suppressor lost in melanomas, and that concurrent RASopathy gene mutations may enhance its role in melanomagenesis. PMID:26214590

  4. Patients with Griscelli syndrome and normal pigmentation identify RAB27A mutations that selectively disrupt MUNC13-4 binding

    PubMed Central

    Cetica, Valentina; Hackmann, Yvonne; Grieve, Samantha; Sieni, Elena; Ciambotti, Benedetta; Coniglio, Maria Luisa; Pende, Daniela; Gilmour, Kimberly; Romagnoli, Paolo; Griffiths, Gillian M.; Aricò, Maurizio

    2015-01-01

    Background Familial hemophagocytic lymphohistiocytosis (FHL) is a rare and often fatal disorder characterized by defective cellular cytotoxicity and hyperinflammation, and the only cure known to date is hematopoietic stem cell transplantation. Mutations in RAB27A, LYST, and AP3B1 give rise to FHL associated with oculocutaneous albinism, and patients with FHL are usually only screened for mutations in these genes when albinism is observed. A number of patients with FHL and normal pigmentation remain without a genetic diagnosis. Objective We asked whether patients with FHL with immunodeficiency but with normal pigmentation might sometimes have mutations that affected cellular cytotoxicity without affecting pigmentation. Methods We carried out mutation analysis of RAB27A, LYST, and AP3B1 in patients with FHL with pigment dilution, as well as a cohort with no clinical evidence of pigment dilution but no mutations in the other known FHL-related genes (PRF1, STXBP2, and UNC13D). Results We identify patients with Griscelli syndrome type 2 with biallelic mutations in RAB27A in the absence of albinism. All 6 patients carried mutations at amino acids R141, Y159, or S163 of Rab27a that disrupt the interaction of Rab27a with Munc13-4, without impairing the interaction between melanophilin and Rab27a. Conclusion These studies highlight the need for RAB27A sequencing in patients with FHL with normal pigmentation and identify a critical binding site for Munc13-4 on Rab27a, revealing the molecular basis of this interaction. PMID:25312756

  5. FUNCTIONAL ANALYSIS OF BRCA1 C-TERMINAL MISSENSE MUTATIONS IDENTIFIED IN BREAST AND OVARIAN CANCER FAMILIES

    PubMed Central

    Vallon-Christersson, Johan; Cayanan, Charmagne; Haraldsson, Karin; Loman, Niklas; Bergthorsson, Jon Thor; Brøndum-Nielsen, Karen; Gerdes, Anne-Marie; Møller, Pål; Kristoffersson, Ulf; Olsson, Håkan; Borg, Åke; Monteiro, Alvaro N.A.

    2016-01-01

    Germ line mutations in the breast and ovarian cancer susceptibility gene BRCA1 are responsible for the majority of cases involving hereditary breast and ovarian cancer. While all truncating mutations are considered as functionally deleterious, most of the missense variants identified to date cannot be readily distinguished either as disease-associated mutations or as benign polymorphisms. The C-terminal domain of BRCA1 displays an intrinsic transactivation activity and mutations linked to disease predisposition have been shown to confer loss of such activity in yeast and mammalian cells. In an attempt to clarify the functional importance of the BRCA1 C-terminus as a transcription activator in cancer predisposition, we have characterized the effect of C-terminal germ-line variants identified in Scandinavian breast and ovarian cancer families. Missense variants A1669S, C1697R, R1699W, R1699Q, A1708E, S1715R, G1738E and a truncating mutation, W1837X, were characterized using yeast- and mammalian-based transcription assays. In addition, four additional missense variants (V1665M, D1692N, S1715N, and D1733G) and one in-frame deletion (V1688del) were included in the study. Our findings demonstrate that transactivation activity may reflect a tumor suppressing function of BRCA1 and further support the role of BRCA1 missense mutations in disease predisposition. We also report a discrepancy between results from yeast- and mammalian-based assays indicating that it might not be possible to unambiguously characterize variants with the yeast assay alone. We show that transcription-based assays can aid in the characterization of deleterious mutations in the C-terminal part of BRCA1 and may form the basis of a functional assay. PMID:11157798

  6. Multigene panel analysis identified germline mutations of DNA repair genes in breast and ovarian cancer.

    PubMed

    Hirotsu, Yosuke; Nakagomi, Hiroshi; Sakamoto, Ikuko; Amemiya, Kenji; Oyama, Toshio; Mochizuki, Hitoshi; Omata, Masao

    2015-09-01

    Approximately 5-10% of all breast and/or ovarian cancer cases are considered as inherited. BRCA1 and BRCA2 tumor suppressor genes account for a high penetrance of hereditary cases, but familial cases without mutations in these genes can also occur. Despite their low penetrance, other hereditary cancer-related genes are known to be associated with breast and ovarian cancer risk. However, the extent to which these genes prevail in breast and ovarian cancer remains to be elucidated. To estimate the frequency of mutations in these predisposition genes, we analyzed the germline mutations of 25 hereditary cancer-related genes in 155 patients using targeted next-generation sequencing. These subjects included 11 BRCA1/2 mutation-positive cases and 144 negative cases. Of these, three patients (1.9%) had pathogenic mutations in ATM, MRE11A, or MSH6, all of which have a central role in DNA repair and the mismatch repair pathway. The MSH6 splice-site mutation (IVS6+1G>T) was predicted to be pathogenic, as demonstrated by invitro and immunohistochemical analyses. These results suggested deficiencies in cellular DNA repair functions result in the development of breast and ovarian cancer. PMID:26436112

  7. Targeted Next-Generation Sequencing Identifies a Recurrent Mutation in MCPH1 Associating with Hereditary Breast Cancer Susceptibility

    PubMed Central

    Mantere, Tuomo; Winqvist, Robert; Kauppila, Saila; Grip, Mervi; Jukkola-Vuorinen, Arja; Tervasmäki, Anna; Rapakko, Katrin; Pylkäs, Katri

    2016-01-01

    Breast cancer is strongly influenced by hereditary risk factors, a majority of which still remain unknown. Here, we performed a targeted next-generation sequencing of 796 genes implicated in DNA repair in 189 Finnish breast cancer cases with indication of hereditary disease susceptibility and focused the analysis on protein truncating mutations. A recurrent heterozygous mutation (c.904_916del, p.Arg304ValfsTer3) was identified in early DNA damage response gene, MCPH1, significantly associating with breast cancer susceptibility both in familial (5/145, 3.4%, P = 0.003, OR 8.3) and unselected cases (16/1150, 1.4%, P = 0.016, OR 3.3). A total of 21 mutation positive families were identified, of which one-third exhibited also brain tumors and/or sarcomas (P = 0.0007). Mutation carriers exhibited significant increase in genomic instability assessed by cytogenetic analysis for spontaneous chromosomal rearrangements in peripheral blood lymphocytes (P = 0.0007), suggesting an effect for MCPH1 haploinsufficiency on cancer susceptibility. Furthermore, 40% of the mutation carrier tumors exhibited loss of the wild-type allele. These findings collectively provide strong evidence for MCHP1 being a novel breast cancer susceptibility gene, which warrants further investigations in other populations. PMID:26820313

  8. Broadening of cohesinopathies: exome sequencing identifies mutations in ANKRD11 in two patients with Cornelia de Lange-overlapping phenotype.

    PubMed

    Parenti, I; Gervasini, C; Pozojevic, J; Graul-Neumann, L; Azzollini, J; Braunholz, D; Watrin, E; Wendt, K S; Cereda, A; Cittaro, D; Gillessen-Kaesbach, G; Lazarevic, D; Mariani, M; Russo, S; Werner, R; Krawitz, P; Larizza, L; Selicorni, A; Kaiser, F J

    2016-01-01

    Cornelia de Lange syndrome (CdLS) and KBG syndrome are two distinct developmental pathologies sharing common features such as intellectual disability, psychomotor delay, and some craniofacial and limb abnormalities. Mutations in one of the five genes NIPBL, SMC1A, SMC3, HDAC8 or RAD21, were identified in at least 70% of the patients with CdLS. Consequently, additional causative genes, either unknown or responsible of partially merging entities, possibly account for the remaining 30% of the patients. In contrast, KBG has only been associated with mutations in ANKRD11. By exome sequencing we could identify heterozygous loss-of-function mutations in ANKRD11 in two patients with the clinical diagnosis of CdLS. Both patients show features reminiscent of CdLS such as characteristic facies as well as a small head circumference which is not described for KBG syndrome. Patient A, who carries the mutation in a mosaic state, is a 4-year-old girl with features reminiscent of CdLS. Patient B, a 15-year-old boy, shows a complex phenotype which resembled CdLS during infancy, but has developed to a more KBG overlapping phenotype during childhood. These findings point out the importance of screening ANKRD11 in young CdLS patients who were found to be negative for mutations in the five known CdLS genes. PMID:25652421

  9. A new point mutation in the ND1 mitochondrial gene identified in a type II diabetic patient

    SciTech Connect

    Kalinin, V.N.; Schmidt, W.; Olek, K.

    1995-08-01

    A novel mutation in a mitochondrial gene was identified in a patient with type II diabetes mellitus. G-to-A transition was localized at the nt3316 position of gene ND1 and resulted in alanine threonine replacement at position 4 of mitochondrial NAD-H-dehydrogenase. 6 refs., 2 figs.

  10. Mutations in the ?-subunit of rod phosphodiesterase identified in consanguineous Pakistani families with autosomal recessive retinitis pigmentosa

    PubMed Central

    Ali, Shahbaz; Riazuddin, S. Amer; Shahzadi, Amber; Nasir, Idrees A.; Khan, Shaheen N.; Husnain, Tayyab; Akram, Javed; Sieving, Paul A.; Hejtmancik, J. Fielding

    2011-01-01

    Purpose This study was designed to identify pathogenic mutations causing autosomal recessive retinitis pigmentosa (RP) in consanguineous Pakistani families. Methods Two consanguineous families affected with autosomal recessive RP were identified from the Punjab Province of Pakistan. All affected individuals underwent a thorough ophthalmologic examination. Blood samples were collected, and genomic DNAs were extracted. Exclusion analysis was completed, and two-point LOD scores were calculated. Bidirectional sequencing of the ? subunit of phosphodiesterase 6 (PDE6?) was completed. Results During exclusion analyses both families localized to chromosome 4p, harboring PDE6?, a gene previously associated with autosomal recessive RP. Sequencing of PDE6? identified missense mutations: c.1655G>A (p.R552Q) and c.1160C>T (p.P387L) in families PKRP161 and PKRP183, respectively. Bioinformatic analyses suggested that both mutations are deleterious for the native three-dimensional structure of the PDE6? protein. Conclusions These results strongly suggest that mutations in PDE6? are responsible for the disease phenotype in the consanguineous Pakistani families. PMID:21655355

  11. Mutations in a translation initiation factor identify target of a memory-enhancing compound

    PubMed Central

    Sekine, Yusuke; Zyryanova, Alisa; Crespillo-Casado, Ana; Fischer, Peter M.; Harding, Heather P.; Ron, David

    2015-01-01

    The integrated stress response (ISR) modulates mRNA translation to regulate the mammalian unfolded protein response (UPR), immunity and memory formation. A chemical ISR inhibitor, ISRIB, enhances cognitive function and modulates the UPR in vivo. To explore mechanisms involved in ISRIB action we screened cultured mammalian cells for somatic mutations that reversed its effect on the ISR. Clustered missense mutations were found at the N-terminal portion of the delta subunit of guanine nucleotide exchange factor (GEF) eIF2B. When reintroduced by CRISPR-Cas9 gene editing of wildtype cells, these mutations reversed both ISRIB-mediated inhibition of the ISR and its stimulatory effect on eIF2B GEF activity towards its substrate, eIF2, in vitro. Thus ISRIB targets an interaction between eIF2 and eIF2B that lies at the core of the ISR. PMID:25858979

  12. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12.

    PubMed

    Mkinen, Netta; Aavikko, Mervi; Heikkinen, Tuomas; Taipale, Minna; Taipale, Jussi; Koivisto-Korander, Riitta; Btzow, Ralf; Vahteristo, Pia

    2016-02-01

    Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS. PMID:26891131

  13. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12

    PubMed Central

    Mäkinen, Netta; Aavikko, Mervi; Heikkinen, Tuomas; Taipale, Minna; Taipale, Jussi; Koivisto-Korander, Riitta; Bützow, Ralf; Vahteristo, Pia

    2016-01-01

    Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS. PMID:26891131

  14. Fabry_CEP: a tool to identify Fabry mutations responsive to pharmacological chaperones.

    PubMed

    Cammisa, Marco; Correra, Antonella; Andreotti, Giuseppina; Cubellis, Maria Vittoria

    2013-01-01

    Fabry_CEP is a user-friendly web-application designed to help clinicians Choose Eligible Patients for the therapy with pharmacological chaperones. It provides a database and a predictive tool to evaluate the responsiveness of lysosomal alpha-galactosidase mutants to a small molecule drug, namely 1-Deoxy-galactonojirimycin. The user can introduce any missense/nonsense mutation in the coding sequence, learn whether it is has been tested and gain access to appropriate reference literature. In the absence of experimental data structural, functional and evolutionary analysis provides a prediction and the probability that a given mutation is responsive to the drug. PMID:23883437

  15. Fabry_CEP: a tool to identify Fabry mutations responsive to pharmacological chaperones

    PubMed Central

    2013-01-01

    Fabry_CEP is a user-friendly web-application designed to help clinicians Choose Eligible Patients for the therapy with pharmacological chaperones. It provides a database and a predictive tool to evaluate the responsiveness of lysosomal alpha-galactosidase mutants to a small molecule drug, namely 1-Deoxy-galactonojirimycin. The user can introduce any missense/nonsense mutation in the coding sequence, learn whether it is has been tested and gain access to appropriate reference literature. In the absence of experimental data structural, functional and evolutionary analysis provides a prediction and the probability that a given mutation is responsive to the drug. PMID:23883437

  16. HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery

    PubMed Central

    Leung, Alvin; Bader, Gary D.; Reimand, Jüri

    2014-01-01

    Summary: Correlating disease mutations with clinical and phenotypic information such as drug response or patient survival is an important goal of personalized cancer genomics and a first step in biomarker discovery. HyperModules is a network search algorithm that finds frequently mutated gene modules with significant clinical or phenotypic signatures from biomolecular interaction networks. Availability and implementation: HyperModules is available in Cytoscape App Store and as a command line tool at www.baderlab.org/Sofware/HyperModules. Contact: Juri.Reimand@utoronto.ca or Gary.Bader@utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online PMID:24713437

  17. A de novo mutation of the LDL receptor gene as the cause of familial hypercholesterolemia identified using whole exome sequencing.

    PubMed

    Tada, Hayato; Hosomichi, Kazuyoshi; Okada, Hirofumi; Kawashiri, Masa-Aki; Nohara, Atsushi; Inazu, Akihiro; Tomizawa, Shigeru; Tajima, Atsushi; Mabuchi, Hiroshi; Hayashi, Kenshi

    2016-01-30

    We report a rare case of heterozygous familial hypercholesterolemia (FH) caused by a de novo mutation in LDL receptor (LDLR) gene identified using whole exome sequencing. An 11-year-old female without any family histories of hypercholesterolemia was referred to our hospital to make clinical as well as molecular diagnoses. She was first diagnosed as hypercholesterolemia at the age of 3 (initial total cholesterol=381mg/dl) without any secondary causes. Because of her lipid profile, heterozygous FH was initially suspected, however; the lipid levels of her parents were normal. Accordingly, she was suspected as a recessive form of hypercholesterolemia, such as sitosterolemia or autosomal recessive hypercholesterolemia. Whole exome sequencing was performed on 4 individuals, including the proband, her parents, and her unaffected younger sister. The initial analysis assuming a recessive inheritance was unsuccessful, leaving a few candidate genes without any evidence supporting cholesterol metabolism. However, we found only one de novo mutation in LDLR gene across her whole exome region, assuming de novo mutation occurrence (c.1136G>A or p.Cys379Tyr). This mutation has already been reported to cause FH, including Japanese, and finally, she was diagnosed as heterozygous FH caused by a de novo mutation in LDLR gene. Comprehensive genetic analysis is quite useful to make a correct diagnosis in such cases. PMID:26721317

  18. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers

    PubMed Central

    Kumar, Akash; White, Thomas A.; MacKenzie, Alexandra P.; Clegg, Nigel; Lee, Choli; Dumpit, Ruth F.; Coleman, Ilsa; Ng, Sarah B.; Salipante, Stephen J.; Rieder, Mark J.; Nickerson, Deborah A.; Corey, Eva; Lange, Paul H.; Morrissey, Colm; Vessella, Robert L.; Nelson, Peter S.; Shendure, Jay

    2011-01-01

    To catalog protein-altering mutations that may drive the development of prostate cancers and their progression to metastatic disease systematically, we performed whole-exome sequencing of 23 prostate cancers derived from 16 different lethal metastatic tumors and three high-grade primary carcinomas. All tumors were propagated in mice as xenografts, designated the LuCaP series, to model phenotypic variation, such as responses to cancer-directed therapeutics. Although corresponding normal tissue was not available for most tumors, we were able to take advantage of increasingly deep catalogs of human genetic variation to remove most germline variants. On average, each tumor genome contained ∼200 novel nonsynonymous variants, of which the vast majority was specific to individual carcinomas. A subset of genes was recurrently altered across tumors derived from different individuals, including TP53, DLK2, GPC6, and SDF4. Unexpectedly, three prostate cancer genomes exhibited substantially higher mutation frequencies, with 2,000–4,000 novel coding variants per exome. A comparison of castration-resistant and castration-sensitive pairs of tumor lines derived from the same prostate cancer highlights mutations in the Wnt pathway as potentially contributing to the development of castration resistance. Collectively, our results indicate that point mutations arising in coding regions of advanced prostate cancers are common but, with notable exceptions, very few genes are mutated in a substantial fraction of tumors. We also report a previously undescribed subtype of prostate cancers exhibiting “hypermutated” genomes, with potential implications for resistance to cancer therapeutics. Our results also suggest that increasingly deep catalogs of human germline variation may challenge the necessity of sequencing matched tumor-normal pairs. PMID:21949389

  19. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration

    PubMed Central

    Koenekoop, Robert K.; Wang, Hui; Majewski, Jacek; Wang, Xia; Lopez, Irma; Ren, Huanan; Chen, Yiyun; Li, Yumei; Fishman, Gerald A.; Genead, Mohammed; Schwartzentruber, Jeremy; Solanki, Naimesh; Traboulsi, Elias I.; Cheng, Jingliang; Logan, Clare V.; McKibbin, Martin; Hayward, Bruce E.; Parry, David A.; Johnson, Colin A.; Nageeb, Mohammed; Poulter, James A.; Mohamed, Moin D.; Jafri, Hussain; Rashid, Yasmin; Taylor, Graham R.; Keser, Vafa; Mardon, Graeme; Xu, Huidan; Inglehearn, Chris F.; Fu, Qing; Toomes, Carmel; Chen, Rui

    2013-01-01

    Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wlds) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder. PMID:22842230

  20. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration.

    PubMed

    Koenekoop, Robert K; Wang, Hui; Majewski, Jacek; Wang, Xia; Lopez, Irma; Ren, Huanan; Chen, Yiyun; Li, Yumei; Fishman, Gerald A; Genead, Mohammed; Schwartzentruber, Jeremy; Solanki, Naimesh; Traboulsi, Elias I; Cheng, Jingliang; Logan, Clare V; McKibbin, Martin; Hayward, Bruce E; Parry, David A; Johnson, Colin A; Nageeb, Mohammed; Poulter, James A; Mohamed, Moin D; Jafri, Hussain; Rashid, Yasmin; Taylor, Graham R; Keser, Vafa; Mardon, Graeme; Xu, Huidan; Inglehearn, Chris F; Fu, Qing; Toomes, Carmel; Chen, Rui

    2012-09-01

    Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wld(s)) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder. PMID:22842230

  1. Multimodal fundus imaging in fundus albipunctatus with RDH5 mutation: a newly identified compound heterozygous mutation and review of the literature.

    PubMed

    Wang, Nan-Kai; Chuang, Lan-Hsin; Lai, Chi-Chun; Chou, Chai Lin; Chu, Hsueh-Yen; Yeung, Ling; Chen, Yen-Po; Chen, Kuan-Jen; Wu, Wei-Chi; Chen, Tun-Lu; Chao, An-Ning; Hwang, Yih-Shiou

    2012-08-01

    The aim of this study was to describe multimodal retinal imaging of fundus albipunctatus (FA) with the newly identified compound heterozygous RDH5 mutation and to review the relevant literature. Five family members were examined, and the RDH5 gene was analyzed by direct sequencing. The clinical features and genetic study of FA are reviewed. The proband had a compound heterozygotic missense mutation of Cys59Ser (TGC → AGC) and a nonsense mutation of Trp95ter (TGG → TGA) in the RDH5 gene. Fundus examination revealed diffuse yellow flecks with foveal sparing. Infrared reflectance (IR) imaging showed multiple discrete round lesions, and fundus autofluorescence (FAF) imaging showed decreased autofluorescence. In spectral domain optical coherence tomography (SD-OCT), the lesions spanned across the retinal pigment epithelium complex and the photoreceptor inner segment ellipsoid band. The outer nuclear layer thickness is decreased compared to normal control. Electroretinography (ERG) showed improved dark-adapted responses after a prolonged 2.5-h dark adaptation. The fundi of the patient's son and daughter both appeared unremarkable. The clinical findings, differential diagnosis, and genetic studies of these features are reviewed. This is the first time that IR imaging of this disease has been reported; IR imaging showed more detail than did FAF imaging. Although retinal imaging (fundus photographs, FAF, IR, SD-OCT) of FA showed characteristic findings, ERG and genetic study remain the most reliable tests for making the diagnosis. PMID:22669287

  2. Identifying overlapping mutated driver pathways by constructing gene networks in cancer

    PubMed Central

    2015-01-01

    Background Large-scale cancer genomic projects are providing lots of data on genomic, epigenomic and gene expression aberrations in many cancer types. One key challenge is to detect functional driver pathways and to filter out nonfunctional passenger genes in cancer genomics. Vandin et al. introduced the Maximum Weight Sub-matrix Problem to find driver pathways and showed that it is an NP-hard problem. Methods To find a better solution and solve the problem more efficiently, we present a network-based method (NBM) to detect overlapping driver pathways automatically. This algorithm can directly find driver pathways or gene sets de novo from somatic mutation data utilizing two combinatorial properties, high coverage and high exclusivity, without any prior information. We firstly construct gene networks based on the approximate exclusivity between each pair of genes using somatic mutation data from many cancer patients. Secondly, we present a new greedy strategy to add or remove genes for obtaining overlapping gene sets with driver mutations according to the properties of high exclusivity and high coverage. Results To assess the efficiency of the proposed NBM, we apply the method on simulated data and compare results obtained from the NBM, RME, Dendrix and Multi-Dendrix. NBM obtains optimal results in less than nine seconds on a conventional computer and the time complexity is much less than the three other methods. To further verify the performance of NBM, we apply the method to analyze somatic mutation data from five real biological data sets such as the mutation profiles of 90 glioblastoma tumor samples and 163 lung carcinoma samples. NBM detects groups of genes which overlap with known pathways, including P53, RB and RTK/RAS/PI(3)K signaling pathways. New gene sets with p-value less than 1e-3 are found from the somatic mutation data. Conclusions NBM can detect more biologically relevant gene sets. Results show that NBM outperforms other algorithms for detecting driver pathways or gene sets. Further research will be conducted with the use of novel machine learning techniques. PMID:25859819

  3. A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation.

    PubMed

    Kumar, Rajesh; Wallis, James G; Skidmore, Chris; Browse, John

    2006-12-01

    As a model for analyzing the production of novel fatty acids in oilseeds, we used the genetic and molecular techniques available for Arabidopsis to characterize modifying mutations affecting the accumulation of hydroxy fatty acids in the seeds of Arabidopsis plants that express a transgene for the castor bean fatty acid hydroxylase, FAH12. We developed a high-throughput analytical system and used it to identify three complementation classes of mutations with reduced hydroxy fatty acid accumulation from among Arabidopsis M3 seed samples derived from chemical mutagenesis. We identified one of the mutations by positional cloning as a single base pair change in a gene encoding NADH:cytochrome b5 reductase (CBR1, At5g17770). When expressed in yeast, the mutant form of the enzyme was less active and less stable than the wild-type enzyme. Characterization of homozygous mutant lines with and without the FAH12 transgene (FAH12 cbr1-1 and cbr1-1, respectively) indicated that the only detectable consequence of the cbr1-1 mutation was on desaturase and hydroxylase reactions in the developing seed. The leaf and root fatty compositions, as well as the growth, development and seed production of mutant plants were indistinguishable from wild type. Interestingly, while the cbr1-1 mutation reduced the accumulation of hydroxy fatty acids in seeds by 85%, the effects on 18:1 and 18:2 desaturation reactions were much less (<25% and <60%, respectively). These results suggest that there is competition in developing seeds among the several reactions that utilize reduced cytochrome b5. PMID:17227547

  4. Exome Sequencing Identifies GNB4 Mutations as a Cause of Dominant Intermediate Charcot-Marie-Tooth Disease

    PubMed Central

    Soong, Bing-Wen; Huang, Yen-Hua; Tsai, Pei-Chien; Huang, Chien-Chang; Pan, Hung-Chuan; Lu, Yi-Chun; Chien, Hsin-Ju; Liu, Tze-Tze; Chang, Ming-Hong; Lin, Kon-Ping; Tu, Pang-Hsien; Kao, Lung-Sen; Lee, Yi-Chung

    2013-01-01

    Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of inherited neuropathies. Mutations in approximately 45 genes have been identified as being associated with CMT. Nevertheless, the genetic etiologies of at least 30% of CMTs have yet to be elucidated. Using a genome-wide linkage study, we previously mapped a dominant intermediate CMT to chromosomal region 3q28–q29. Subsequent exome sequencing of two affected first cousins revealed heterozygous mutation c.158G>A (p.Gly53Asp) in GNB4, encoding guanine-nucleotide-binding protein subunit beta-4 (Gβ4), to cosegregate with the CMT phenotype in the family. Further analysis of GNB4 in an additional 88 unrelated CMT individuals uncovered another de novo mutation, c.265A>G (p.Lys89Glu), in this gene in one individual. Immunohistochemistry studies revealed that Gβ4 was abundant in the axons and Schwann cells of peripheral nerves and that expression of Gβ4 was significantly reduced in the sural nerve of the two individuals carrying the c.158G>A (p.Gly53Asp) mutation. In vitro studies demonstrated that both the p.Gly53Asp and p.Lys89Glu altered proteins impaired bradykinin-induced G-protein-coupled-receptor (GPCR) signaling, which was facilitated by the wild-type Gβ4. This study identifies GNB4 mutations as a cause of CMT and highlights the importance of Gβ4-related GPCR signaling in peripheral-nerve function in humans. PMID:23434117

  5. Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients Identifies Clinically Actionable Mutations Distinct from Primary Disease

    PubMed Central

    Butler, Timothy M.; Johnson-Camacho, Katherine; Peto, Myron; Wang, Nicholas J.; Macey, Tara A.; Korkola, James E.; Koppie, Theresa M.; Corless, Christopher L.; Gray, Joe W.; Spellman, Paul T.

    2015-01-01

    The identification of the molecular drivers of cancer by sequencing is the backbone of precision medicine and the basis of personalized therapy; however, biopsies of primary tumors provide only a snapshot of the evolution of the disease and may miss potential therapeutic targets, especially in the metastatic setting. A liquid biopsy, in the form of cell-free DNA (cfDNA) sequencing, has the potential to capture the inter- and intra-tumoral heterogeneity present in metastatic disease, and, through serial blood draws, track the evolution of the tumor genome. In order to determine the clinical utility of cfDNA sequencing we performed whole-exome sequencing on cfDNA and tumor DNA from two patients with metastatic disease; only minor modifications to our sequencing and analysis pipelines were required for sequencing and mutation calling of cfDNA. The first patient had metastatic sarcoma and 47 of 48 mutations present in the primary tumor were also found in the cell-free DNA. The second patient had metastatic breast cancer and sequencing identified an ESR1 mutation in the cfDNA and metastatic site, but not in the primary tumor. This likely explains tumor progression on Anastrozole. Significant heterogeneity between the primary and metastatic tumors, with cfDNA reflecting the metastases, suggested separation from the primary lesion early in tumor evolution. This is best illustrated by an activating PIK3CA mutation (H1047R) which was clonal in the primary tumor, but completely absent from either the metastasis or cfDNA. Here we show that cfDNA sequencing supplies clinically actionable information with minimal risks compared to metastatic biopsies. This study demonstrates the utility of whole-exome sequencing of cell-free DNA from patients with metastatic disease. cfDNA sequencing identified an ESR1 mutation, potentially explaining a patient’s resistance to aromatase inhibition, and gave insight into how metastatic lesions differ from the primary tumor. PMID:26317216

  6. A Novel Locus Harbouring a Functional CD164 Nonsense Mutation Identified in a Large Danish Family with Nonsyndromic Hearing Impairment.

    PubMed

    Nyegaard, Mette; Rendtorff, Nanna D; Nielsen, Morten S; Corydon, Thomas J; Demontis, Ditte; Starnawska, Anna; Hedemand, Anne; Buniello, Annalisa; Niola, Francesco; Overgaard, Michael T; Leal, Suzanne M; Ahmad, Wasim; Wikman, Friedrik P; Petersen, Kirsten B; Crüger, Dorthe G; Oostrik, Jaap; Kremer, Hannie; Tommerup, Niels; Frödin, Morten; Steel, Karen P; Tranebjærg, Lisbeth; Børglum, Anders D

    2015-07-01

    Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192*) in CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endolyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migration. The mutation segregated with the phenotype and was absent in 1200 Danish control individuals and in databases with whole-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXXФ). In whole blood from an affected individual, we found by RT-PCR both the wild-type and the mutated transcript suggesting that the mutant transcript escapes nonsense mediated decay. Functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclusion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated CD164 as a novel gene for hearing impairment. PMID:26197441

  7. A Novel Locus Harbouring a Functional CD164 Nonsense Mutation Identified in a Large Danish Family with Nonsyndromic Hearing Impairment

    PubMed Central

    Nielsen, Morten S.; Corydon, Thomas J.; Demontis, Ditte; Starnawska, Anna; Hedemand, Anne; Buniello, Annalisa; Niola, Francesco; Overgaard, Michael T.; Leal, Suzanne M.; Ahmad, Wasim; Wikman, Friedrik P.; Petersen, Kirsten B.; Crüger, Dorthe G.; Oostrik, Jaap; Kremer, Hannie; Tommerup, Niels; Frödin, Morten; Steel, Karen P.; Tranebjærg, Lisbeth; Børglum, Anders D.

    2015-01-01

    Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192*) in CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endolyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migration. The mutation segregated with the phenotype and was absent in 1200 Danish control individuals and in databases with whole-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXXФ). In whole blood from an affected individual, we found by RT-PCR both the wild-type and the mutated transcript suggesting that the mutant transcript escapes nonsense mediated decay. Functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclusion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated CD164 as a novel gene for hearing impairment. PMID:26197441

  8. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype.

    PubMed

    Clipson, A; Wang, M; de Leval, L; Ashton-Key, M; Wotherspoon, A; Vassiliou, G; Bolli, N; Grove, C; Moody, S; Escudero-Ibarz, L; Gundem, G; Brugger, K; Xue, X; Mi, E; Bench, A; Scott, M; Liu, H; Follows, G; Robles, E F; Martinez-Climent, J A; Oscier, D; Watkins, A J; Du, M-Q

    2015-05-01

    To characterise the genetics of splenic marginal zone lymphoma (SMZL), we performed whole exome sequencing of 16 cases and identified novel recurrent inactivating mutations in Kruppel-like factor 2 (KLF2), a gene whose deficiency was previously shown to cause splenic marginal zone hyperplasia in mice. KLF2 mutation was found in 40 (42%) of 96 SMZLs, but rarely in other B-cell lymphomas. The majority of KLF2 mutations were frameshift indels or nonsense changes, with missense mutations clustered in the C-terminal zinc finger domains. Functional assays showed that these mutations inactivated the ability of KLF2 to suppress NF-κB activation by TLR, BCR, BAFFR and TNFR signalling. Further extensive investigations revealed common and distinct genetic changes between SMZL with and without KLF2 mutation. IGHV1-2 rearrangement and 7q deletion were primarily seen in SMZL with KLF2 mutation, while MYD88 and TP53 mutations were nearly exclusively found in those without KLF2 mutation. NOTCH2, TRAF3, TNFAIP3 and CARD11 mutations were observed in SMZL both with and without KLF2 mutation. Taken together, KLF2 mutation is the most common genetic change in SMZL and identifies a subset with a distinct genotype characterised by multi-genetic changes. These different genetic changes may deregulate various signalling pathways and generate cooperative oncogenic properties, thereby contributing to lymphomagenesis. PMID:25428260

  9. Massively Parallel DNA Sequencing Successfully Identifies New Causative Mutations in Deafness Genes in Patients with Cochlear Implantation and EAS

    PubMed Central

    Miyagawa, Maiko; Nishio, Shin-ya; Ikeda, Takuo; Fukushima, Kunihiro; Usami, Shin-ichi

    2013-01-01

    Genetic factors, the most common etiology in severe to profound hearing loss, are one of the key determinants of Cochlear Implantation (CI) and Electric Acoustic Stimulation (EAS) outcomes. Satisfactory auditory performance after receiving a CI/EAS in patients with certain deafness gene mutations indicates that genetic testing would be helpful in predicting CI/EAS outcomes and deciding treatment choices. However, because of the extreme genetic heterogeneity of deafness, clinical application of genetic information still entails difficulties. Target exon sequencing using massively parallel DNA sequencing is a new powerful strategy to discover rare causative genes in Mendelian disorders such as deafness. We used massive sequencing of the exons of 58 target candidate genes to analyze 8 (4 early-onset, 4 late-onset) Japanese CI/EAS patients, who did not have mutations in commonly found genes including GJB2, SLC26A4, or mitochondrial 1555A>G or 3243A>G mutations. We successfully identified four rare causative mutations in the MYO15A, TECTA, TMPRSS3, and ACTG1 genes in four patients who showed relatively good auditory performance with CI including EAS, suggesting that genetic testing may be able to predict the performance after implantation. PMID:24130743

  10. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    PubMed

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  11. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    PubMed Central

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  12. Use of the promoter fusion transposon Tn5 lac to identify mutations in Bordetella pertussis vir-regulated genes.

    PubMed Central

    Weiss, A A; Melton, A R; Walker, K E; Andraos-Selim, C; Meidl, J J

    1989-01-01

    Mutants of Bordetella pertussis deficient in virulence-associated factors were identified by using the transposon Tn5 lac. Tn5 lac is a derivative of Tn5 which generates promoter fusions for beta-galactosidase. Tn5 lac insertions in the vir-regulated genes of B. pertussis were identified by selecting for kanamycin-resistant mutants that expressed beta-galactosidase when the vir-regulated genes were expressed but not when the vir-regulated genes were turned off. Fourteen different mutations in vir-regulated genes were identified. Two mutants were deficient in the production of the filamentous hemagglutinin, two mutants were deficient in the production of adenylate cyclase toxin and hemolysin, and one mutant was deficient in the production of dermonecrotic toxin. One insertion mapped adjacent to the pertussis toxin gene, but the mutant produced pertussis toxin. The phenotypes of the remaining eight mutants were not determined, but the mutants did not appear to be deficient in the production of the 69,000-dalton outer membrane protein (agglutinogen 3) or the capsule. Screening for mutations in either of the fimbrial genes proved to be problematic since the parental strain was found to switch from a fimbriated to a nonfimbriated state at a high frequency, which was suggestive of the metastable expression of pili in other bacteria. We used Southern blot analysis with a 30-mer specific for the fimbrial sequences. No bands with the predicted increase in size due to the 12 kilobases from Tn5 lac were observed, which suggests that none of these genes were mutated. Southern blot analysis also revealed that seven of the eight unidentified mutations mapped to different restriction fragments, which suggests that they could be deficient in as many as seven different genes. Images PMID:2569447

  13. Use of the promoter fusion transposon Tn5 lac to identify mutations in Bordetella pertussis vir-regulated genes.

    PubMed

    Weiss, A A; Melton, A R; Walker, K E; Andraos-Selim, C; Meidl, J J

    1989-09-01

    Mutants of Bordetella pertussis deficient in virulence-associated factors were identified by using the transposon Tn5 lac. Tn5 lac is a derivative of Tn5 which generates promoter fusions for beta-galactosidase. Tn5 lac insertions in the vir-regulated genes of B. pertussis were identified by selecting for kanamycin-resistant mutants that expressed beta-galactosidase when the vir-regulated genes were expressed but not when the vir-regulated genes were turned off. Fourteen different mutations in vir-regulated genes were identified. Two mutants were deficient in the production of the filamentous hemagglutinin, two mutants were deficient in the production of adenylate cyclase toxin and hemolysin, and one mutant was deficient in the production of dermonecrotic toxin. One insertion mapped adjacent to the pertussis toxin gene, but the mutant produced pertussis toxin. The phenotypes of the remaining eight mutants were not determined, but the mutants did not appear to be deficient in the production of the 69,000-dalton outer membrane protein (agglutinogen 3) or the capsule. Screening for mutations in either of the fimbrial genes proved to be problematic since the parental strain was found to switch from a fimbriated to a nonfimbriated state at a high frequency, which was suggestive of the metastable expression of pili in other bacteria. We used Southern blot analysis with a 30-mer specific for the fimbrial sequences. No bands with the predicted increase in size due to the 12 kilobases from Tn5 lac were observed, which suggests that none of these genes were mutated. Southern blot analysis also revealed that seven of the eight unidentified mutations mapped to different restriction fragments, which suggests that they could be deficient in as many as seven different genes. PMID:2569447

  14. Splice-site mutations identified in PDE6A responsible for retinitis pigmentosa in consanguineous Pakistani families

    PubMed Central

    Khan, Shahid Y.; Ali, Shahbaz; Naeem, Muhammad Asif; Khan, Shaheen N.; Husnain, Tayyab; Butt, Nadeem H.; Qazi, Zaheeruddin A.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2015-01-01

    Purpose This study was conducted to localize and identify causal mutations associated with autosomal recessive retinitis pigmentosa (RP) in consanguineous familial cases of Pakistani origin. Methods Ophthalmic examinations that included funduscopy and electroretinography (ERG) were performed to confirm the affectation status. Blood samples were collected from all participating individuals, and genomic DNA was extracted. A genome-wide scan was performed, and two-point logarithm of odds (LOD) scores were calculated. Sanger sequencing was performed to identify the causative variants. Subsequently, we performed whole exome sequencing to rule out the possibility of a second causal variant within the linkage interval. Sequence conservation was performed with alignment analyses of PDE6A orthologs, and in silico splicing analysis was completed with Human Splicing Finder version 2.4.1. Results A large multigenerational consanguineous family diagnosed with early-onset RP was ascertained. An ophthalmic clinical examination consisting of fundus photography and electroretinography confirmed the diagnosis of RP. A genome-wide scan was performed, and suggestive two-point LOD scores were observed with markers on chromosome 5q. Haplotype analyses identified the region; however, the region did not segregate with the disease phenotype in the family. Subsequently, we performed a second genome-wide scan that excluded the entire genome except the chromosome 5q region harboring PDE6A. Next-generation whole exome sequencing identified a splice acceptor site mutation in intron 16: c.2028–1G>A, which was completely conserved in PDE6A orthologs and was absent in ethnically matched 350 control chromosomes, the 1000 Genomes database, and the NHLBI Exome Sequencing Project. Subsequently, we investigated our entire cohort of RP familial cases and identified a second family who harbored a splice acceptor site mutation in intron 10: c.1408–2A>G. In silico analysis suggested that these mutations will result in the elimination of wild-type splice acceptor sites that would result in either skipping of the respective exon or the creation of a new cryptic splice acceptor site; both possibilities would result in retinal photoreceptor cells that lack PDE6A wild-type protein. Conclusions we report two splice acceptor site variations in PDE6A in consanguineous Pakistani families who manifested cardinal symptoms of RP. Taken together with our previously published work, our data suggest that mutations in PDE6A account for about 2% of the total genetic load of RP in our cohort and possibly in the Pakistani population as well. PMID:26321862

  15. Functional and Structural Analysis of Five Mutations Identified in Methylmalonic Aciduria cbIB Type

    PubMed Central

    Jorge-Finnigan, Ana; Aguado, Cristina; Sánchez-Alcudia, Rocio; Abia, David; Richard, Eva; Merinero, Begoña; Gámez, Alejandra; Banerjee, Ruma; Desviat, Lourdes R.; Ugarte, Magdalena; Pérez, Belen

    2010-01-01

    ATP cob(I)alamin adenosyltransferase (ATR, E.C.2.5.1.17) converts reduced cob(I)alamin to the adenosylcobalamin cofactor. Mutations in the MMAB gene encoding ATR are responsible for the cblB type methylmalonic aciduria. Here we report the functional analysis of five cblB mutations to determine the underlying molecular basis of the dysfunction. The transcriptional profile along with minigenes analysis revealed that c.584G>A, c.349-1G>C and c.290G>A affect the splicing process. Wild-type ATR and the p.I96T (c.287T>C) and p.R191W (c.571C>T) mutant proteins were expressed in a prokaryote and a eukaryotic expression systems. The p.I96T protein was enzymatically active with a KM for ATP and KD for cob(I)alamin similar to wild-type enzyme, but exhibited a 40% reduction in specific activity. Both p.I96T and p.R191W mutant proteins are less stable than the wild-type protein, with increased stability when expressed under permissive folding conditions. Analysis of the oligomeric state of both mutants showed a structural defect for p.I96T and also a significant impact on the amount of recovered mutant protein that was more pronounced for p.R191W that, along with the structural analysis, suggest they might be misfolded. These results could serve as a basis for the implementation of pharmacological therapies aimed at increasing the residual activity of this type of mutations. PMID:20556797

  16. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma.

    PubMed

    Okosun, Jessica; Bödör, Csaba; Wang, Jun; Araf, Shamzah; Yang, Cheng-Yuan; Pan, Chenyi; Boller, Sören; Cittaro, Davide; Bozek, Monika; Iqbal, Sameena; Matthews, Janet; Wrench, David; Marzec, Jacek; Tawana, Kiran; Popov, Nikolay; O'Riain, Ciaran; O'Shea, Derville; Carlotti, Emanuela; Davies, Andrew; Lawrie, Charles H; Matolcsy, András; Calaminici, Maria; Norton, Andrew; Byers, Richard J; Mein, Charles; Stupka, Elia; Lister, T Andrew; Lenz, Georg; Montoto, Silvia; Gribben, John G; Fan, Yuhong; Grosschedl, Rudolf; Chelala, Claude; Fitzgibbon, Jude

    2014-02-01

    Follicular lymphoma is an incurable malignancy, with transformation to an aggressive subtype representing a critical event during disease progression. Here we performed whole-genome or whole-exome sequencing on 10 follicular lymphoma-transformed follicular lymphoma pairs followed by deep sequencing of 28 genes in an extension cohort, and we report the key events and evolutionary processes governing tumor initiation and transformation. Tumor evolution occurred through either a 'rich' or 'sparse' ancestral common progenitor clone (CPC). We identified recurrent mutations in linker histone, JAK-STAT signaling, NF-κB signaling and B cell developmental genes. Longitudinal analyses identified early driver mutations in chromatin regulator genes (CREBBP, EZH2 and KMT2D (MLL2)), whereas mutations in EBF1 and regulators of NF-κB signaling (MYD88 and TNFAIP3) were gained at transformation. Collectively, this study provides new insights into the genetic basis of follicular lymphoma and the clonal dynamics of transformation and suggests that personalizing therapies to target key genetic alterations in the CPC represents an attractive therapeutic strategy. PMID:24362818

  17. Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance

    PubMed Central

    Burkitt Wright, EmmaM.M.; Spencer, HelenL.; Daly, SarahB.; Manson, ForbesD.C.; Zeef, LeoA.H.; Urquhart, Jill; Zoppi, Nicoletta; Bonshek, Richard; Tosounidis, Ioannis; Mohan, Meyyammai; Madden, Colm; Dodds, Annabel; Chandler, KateE.; Banka, Siddharth; Au, Leon; Clayton-Smith, Jill; Khan, Naz; Biesecker, LeslieG.; Wilson, Meredith; Rohrbach, Marianne; Colombi, Marina; Giunta, Cecilia; Black, GraemeC.M.

    2011-01-01

    Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resulting in blindness and psychosocial distress. Even when the cornea remains grossly intact, visual function could also be impaired by a high degree of myopia and keratoconus. Deafness is another common feature and results in combined sensory deprivation. Using autozygosity mapping, we identified mutations in PRDM5 in families with BCS. We demonstrate that regulation of expression of extracellular matrix components, particularly fibrillar collagens, by PRDM5 is a key molecular mechanism that underlies corneal fragility in BCS and controls normal corneal development and maintenance. ZNF469, encoding a zinc finger protein of hitherto undefined function, has been identified as a quantitative trait locus for central corneal thickness, and mutations in this gene have been demonstrated in Tunisian Jewish and Palestinian kindreds with BCS. We show that ZNF469 and PRDM5, two genes that when mutated cause BCS, participate in the same regulatory pathway. PMID:21664999

  18. Exome sequencing identifies a missense mutation in Isl1 associated with low penetrance otitis media in dearisch mice

    PubMed Central

    2011-01-01

    Background Inflammation of the middle ear (otitis media) is very common and can lead to serious complications if not resolved. Genetic studies suggest an inherited component, but few of the genes that contribute to this condition are known. Mouse mutants have contributed significantly to the identification of genes predisposing to otitis media Results The dearisch mouse mutant is an ENU-induced mutant detected by its impaired Preyer reflex (ear flick in response to sound). Auditory brainstem responses revealed raised thresholds from as early as three weeks old. Pedigree analysis suggested a dominant but partially penetrant mode of inheritance. The middle ear of dearisch mutants shows a thickened mucosa and cellular effusion suggesting chronic otitis media with effusion with superimposed acute infection. The inner ear, including the sensory hair cells, appears normal. Due to the low penetrance of the phenotype, normal backcross mapping of the mutation was not possible. Exome sequencing was therefore employed to identify a non-conservative tyrosine to cysteine (Y71C) missense mutation in the Islet1 gene, Isl1Drsh. Isl1 is expressed in the normal middle ear mucosa. The findings suggest the Isl1Drshmutation is likely to predispose carriers to otitis media. Conclusions Dearisch, Isl1Drsh, represents the first point mutation in the mouse Isl1 gene and suggests a previously unrecognized role for this gene. It is also the first recorded exome sequencing of the C3HeB/FeJ background relevant to many ENU-induced mutants. Most importantly, the power of exome resequencing to identify ENU-induced mutations without a mapped gene locus is illustrated. PMID:21936904

  19. Fine Mapping of the 1p36 Deletion Syndrome Identifies Mutation of PRDM16 as a Cause of Cardiomyopathy

    PubMed Central

    Arndt, Anne-Karin; Schafer, Sebastian; Drenckhahn, Jorg-Detlef; Sabeh, M.Khaled; Plovie, EvaR.; Caliebe, Almuth; Klopocki, Eva; Musso, Gabriel; Werdich, AndreasA.; Kalwa, Hermann; Heinig, Matthias; Padera, RobertF.; Wassilew, Katharina; Bluhm, Julia; Harnack, Christine; Martitz, Janine; Barton, PaulJ.; Greutmann, Matthias; Berger, Felix; Hubner, Norbert; Siebert, Reiner; Kramer, Hans-Heiner; Cook, StuartA.; MacRae, CalumA.; Klaassen, Sabine

    2013-01-01

    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM. PMID:23768516

  20. A new visualization approach for identifying mutations that affect differentiation and organization of the Drosophila ommatidia.

    PubMed

    Pichaud, F; Desplan, C

    2001-03-01

    The Drosophila eye is widely used as a model system to study neuronal differentiation, survival and axon projection. Photoreceptor differentiation starts with the specification of a founder cell R8, which sequentially recruits other photoreceptor neurons to the ommatidium. The eight photoreceptors that compose each ommatidium exist in two chiral forms organized along two axes of symmetry and this pattern represents a paradigm to study tissue polarity. We have developed a method of fluoroscopy to visualize the different types of photoreceptors and the organization of the ommatidia in living animals. This allowed us to perform an F(1) genetic screen to isolate mutants affecting photoreceptor differentiation, survival or planar polarity. We illustrate the power of this detection system using known genetic backgrounds and new mutations that affect ommatidial differentiation, morphology or chirality. PMID:11222137

  1. A new visualization approach for identifying mutations that affect differentiation and organization of the Drosophila ommatidia.

    TOXLINE Toxicology Bibliographic Information

    Pichaud F; Desplan C

    2001-03-01

    The Drosophila eye is widely used as a model system to study neuronal differentiation, survival and axon projection. Photoreceptor differentiation starts with the specification of a founder cell R8, which sequentially recruits other photoreceptor neurons to the ommatidium. The eight photoreceptors that compose each ommatidium exist in two chiral forms organized along two axes of symmetry and this pattern represents a paradigm to study tissue polarity. We have developed a method of fluoroscopy to visualize the different types of photoreceptors and the organization of the ommatidia in living animals. This allowed us to perform an F(1) genetic screen to isolate mutants affecting photoreceptor differentiation, survival or planar polarity. We illustrate the power of this detection system using known genetic backgrounds and new mutations that affect ommatidial differentiation, morphology or chirality.

  2. Assessment of canine BEST1 variations identifies new mutations and establishes an independent bestrophinopathy model (cmr3)

    PubMed Central

    Wickström, Kaisa; Slavik, Julianna; Lindauer, Sarah J.; Ahonen, Saija; Schelling, Claude; Lohi, Hannes; Guziewicz, Karina E.; Aguirre, Gustavo D.

    2010-01-01

    Purpose Mutations in bestrophin 1 (BEST1) are associated with a group of retinal disorders known as bestrophinopathies in man and canine multifocal retinopathies (cmr) in the dog. To date, the dog is the only large animal model suitable for the complex characterization and in-depth studies of Best-related disorders. In the first report of cmr, the disease was described in a group of mastiff-related breeds (cmr1) and the Coton de Tulear (cmr2). Additional breeds, e.g., the Lapponian herder (LH) and others, subsequently were recognized with similar phenotypes, but linked loci are unknown. Analysis of the BEST1 gene aimed to identify mutations in these additional populations and extend our understanding of genotype–phenotype associations. Methods Animals were subjected to routine eye exams, phenotypically characterized, and samples were collected for molecular studies. Known BEST1 mutations were assessed, and the canine BEST1 coding exons were amplified and sequenced in selected individuals that exhibited a cmr compatible phenotype but that did not carry known mutations. Resulting sequence changes were genotyped in several different breeds and evaluated in the context of the phenotype. Results Seven novel coding variants were identified in exon 10 of cBEST1. Two linked mutations were associated with cmr exclusive to the LH breed (cmr3). Two individuals of Jämthund and Norfolk terrier breeds were heterozygous for two conservative changes, but these were unlikely to have disease-causing potential. Another three substitutions were found in the Bernese mountain dog that were predicted to have a deleterious effect on protein function. Previously reported mutations were excluded from segregation in these populations, but cmr1 was confirmed in another mastiff-related breed, the Italian cane corso. Conclusions A third independent canine model for human bestrophinopathies has been established in the LH breed. While exhibiting a phenotype comparable to cmr1 and cmr2, the novel cmr3 mutation is predicted to be based on a distinctly different molecular mechanism. So far cmr2 and cmr3 are exclusive to a single dog breed each. In contrast, cmr1 is found in multiple related breeds. Additional sequence alterations identified in exon 10 of cBEST1 in other breeds exhibit potential disease-causing features. The inherent genetic and phenotypic variation observed with retinal disorders in canines is complicated further by cmr3 being one of four distinct genetic retinal traits found to segregate in LH. Thus, a combination of phenotypic, molecular, and population analysis is required to establish a strong phenotype–genotype association. These results indicate that cmr has a larger impact on the general dog population than was initially suspected. The complexity of these models further confirms the similarity to human bestrophinopathies. Moreover, analyses of multiple canine models will provide additional insight into the molecular basis underlying diseases caused by mutations in BEST1. PMID:21197113

  3. Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara Syndrome and unique neuropathological findings

    PubMed Central

    Touma, Marlin; Joshi, Mugdha; Connolly, Meghan C.; Grant, P. Ellen; Hansen, Anne R.; Khwaja, Omar; Berry, Gerard T.; Kinney, Hannah C.; Poduri, Annapurna; Agrawal, Pankaj B.

    2013-01-01

    Mutations in SCN2A gene cause a variety of epilepsy syndromes. We report a novel SCN2A-associated epilepsy phenotype in monozygotic twins with tonic seizures soon after birth and a suppression-burst EEG pattern. We reviewed the medical records, EEG tracings, MRI, neuropathological findings, and performed whole genome sequencing (WGS) on Twin B’s DNA and Sanger sequencing (SS) on candidate gene mutations. Extensive neurometabolic evaluation and early neuroimaging studies were normal. Twin A died of an iatrogenic cause at 2 weeks of life. His neuropathologic examination was remarkable for dentato-olivary dysplasia and granule cell dispersion of the dentate gyrus. Twin B became seizure-free at 8 months and was off anti-epileptic drugs by 2 years. His brain MRI, normal at 2 months, revealed evolving brainstem and basal ganglia abnormalities at 8 and 15 months that resolved by 20 months. At 2.5 years, Twin B demonstrated significant developmental delay. Twin B’s WGS revealed a heterozygous variant c.788C>T predicted to cause p.Ala263Val change in SCN2A and confirmed to be de novo in both twins by SS. In conclusion, we have identified a de novo SCN2A mutation as the etiology for Ohtahara syndrome in monozygotic twins associated with a unique dentate-olivary dysplasia in the deceased twin. PMID:23550958

  4. Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara syndrome and unique neuropathologic findings.

    PubMed

    Touma, Marlin; Joshi, Mugdha; Connolly, Meghan C; Grant, P Ellen; Hansen, Anne R; Khwaja, Omar; Berry, Gerard T; Kinney, Hannah C; Poduri, Annapurna; Agrawal, Pankaj B

    2013-05-01

    Mutations in SCN2A gene cause a variety of epilepsy syndromes. We report a novel SCN2A-associated epilepsy phenotype in monozygotic twins with tonic seizures soon after birth and a suppression-burst electroencephalography (EEG) pattern. We reviewed the medical records, EEG tracings, magnetic resonance imaging (MRI), and neuropathologic findings, and performed whole genome sequencing (WGS) on Twin B's DNA and Sanger sequencing (SS) on candidate gene mutations. Extensive neurometabolic evaluation and early neuroimaging studies were normal. Twin A died of an iatrogenic cause at 2 weeks of life. His neuropathologic examination was remarkable for dentate-olivary dysplasia and granule cell dispersion of the dentate gyrus. Twin B became seizure free at 8 months and was off antiepileptic drugs by 2 years. His brain MRI, normal at 2 months, revealed evolving brainstem and basal ganglia abnormalities at 8 and 15 months that resolved by 20 months. At 2.5 years, Twin B demonstrated significant developmental delay. Twin B's WGS revealed a heterozygous variant c.788C>T predicted to cause p.Ala263Val change in SCN2A and confirmed to be de novo in both twins by SS. In conclusion, we have identified a de novo SCN2A mutation as the etiology for Ohtahara syndrome in monozygotic twins associated with a unique dentate-olivary dysplasia in the deceased twin. PMID:23550958

  5. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis

    PubMed Central

    Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick; Somerville, Chris; Lukowitz, Wolfgang

    2016-01-01

    Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms. PMID:26745275

  6. Tri-allelic pattern of short tandem repeats identifies the murderer among identical twins and suggests an embryonic mutational origin.

    PubMed

    Wang, Li-Feng; Yang, Ying; Zhang, Xiao-Nan; Quan, Xiao-Liang; Wu, Yuan-Ming

    2015-05-01

    Monozygotic twins can be co-identified by genotyping of short tandem repeats (STRs); however, for distinguishing them, STR genotyping is ineffective, especially in the case of murder. Here, a rarely occurring tri-allelic pattern in the vWA locus (16, 18, 19) was identified only in the DNA of one identical twin, which could help to exonerate the innocent twin in a murder charge. This mutation was defined as primary through genotyping of the family and could be detected in blood, buccal and semen samples from the individual; however, two alternative allele-balanced di-allelic patterns (16, 18 or 16, 19) were detected in hair root sheath cells. Such a kind of segregation indicates a one-step mutation occurs in cell mitosis, which is after embryonic zygote formation and during the early development of the individual after the division of the blastocyte. Sequencing revealed the insertion between the allele 18 and 19 is a repeat unit of TAGA/TCTA (plus/minus strand), which belongs to "AGAT/ATCT"-based core repeats identified from all tri-allelic pattern reports recorded in the STR base and a detailed model was proposed for STR repeat length variation caused by false priming during DNA synthesis. Our model illustrates the possible origination of allele-balanced and unbalanced tri-allelic pattern, clarifies that the genotypes of parent-child mismatches, aberrant di-allelic patterns, and type 1 or 2 tri-allelic patterns should be considered as independent, but interconnected forms of STR mutation. PMID:25732248

  7. Linkage analysis and exome sequencing identify a novel mutation in KCTD7 in patients with progressive myoclonus epilepsy with ataxia.

    PubMed

    Farhan, Sali M K; Murphy, Lisa M; Robinson, John F; Wang, Jian; Siu, Victoria M; Rupar, C Anthony; Prasad, Asuri N; Hegele, Robert A

    2014-09-01

    Epilepsy affects approximately 1% of the world's population. Genetic factors and acquired etiologies, as well as a range of environmental triggers, together contribute to epileptogenesis. We have identified a family with three daughters affected with progressive myoclonus epilepsy with ataxia. Clinical details of the onset and progression of the neurologic presentation, epileptic seizures, and the natural history of progression over a 10-year period are described. Using autozygosity genetic mapping, we identified a high likelihood homozygous region on chromosome 7p12.1-7q11.22. We subsequently applied whole-exome sequencing and employed a rare variant prioritization analysis within the homozygous region. We identified p.Tyr276Cys in the potassium channel tetramerization domain-containing seven gene, KCTD7, which is expressed predominantly in the brain. Mutations in this gene have been implicated previously in epileptic phenotypes due to disturbances in potassium channel conductance. Pathogenicity of the mutation was supported by bioinformatic predictive analyses and variant cosegregation within the family. Further biologic validation is necessary to fully characterize the pathogenic mechanisms that explain the phenotypic causes of epilepsy with ataxia in these patients. PMID:25060828

  8. Whole-Exome Sequencing Identifies LRIT3 Mutations as a Cause of Autosomal-Recessive Complete Congenital Stationary Night Blindness

    PubMed Central

    Zeitz, Christina; Jacobson, Samuel G.; Hamel, Christian P.; Bujakowska, Kinga; Neuillé, Marion; Orhan, Elise; Zanlonghi, Xavier; Lancelot, Marie-Elise; Michiels, Christelle; Schwartz, Sharon B.; Bocquet, Béatrice; Antonio, Aline; Audier, Claire; Letexier, Mélanie; Saraiva, Jean-Paul; Luu, Tien D.; Sennlaub, Florian; Nguyen, Hoan; Poch, Olivier; Dollfus, Hélène; Lecompte, Odile; Kohl, Susanne; Sahel, José-Alain; Bhattacharya, Shomi S.; Audo, Isabelle

    2013-01-01

    Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440∗]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384∗]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs∗59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated. PMID:23246293

  9. Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions.

    PubMed

    DeTure, M; Ko, L W; Yen, S; Nacharaju, P; Easson, C; Lewis, J; van Slegtenhorst, M; Hutton, M; Yen, S H

    2000-01-17

    Frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) is a group of related disorders frequently characterized by the formation of tau inclusions in neurons and glial cells. To determine whether the formation of tau inclusions in FTDP-17 results from an alteration in the ability of mutant tau to maintain the microtubule (MT) system, we compared wild type four-repeat tau with three FTDP-17 mutants (P301L, V337M and R406W) for their ability to bind MT, promote MT assembly and bundling. According to in vitro binding and assembly assays, P301L is the only mutant that demonstrates a small, yet significant reduction, in its affinity for MT while both P301L and R406W have a small reduction in their ability to promote tubulin assembly. Based on studies of neuroblastoma and CHO cells transfected with GFP-tagged tau DNA constructs, both mutant and wild type tau transfectants were indistinguishable in the distribution pattern of tau in terms of co-localization with MT and generation of MT bundles. These results suggest that missense mutation of tau gene do not have an immediate impact on the integrity of MT system, and that exposure of affected neurons to additional insults or factors (e.g., aging) may be needed to initiate the formation of tau inclusions in FTDP-17. PMID:10627302

  10. Exome Sequencing Identifies a Recurrent De Novo ZSWIM6 Mutation Associated with Acromelic Frontonasal Dysostosis

    PubMed Central

    Smith, Joshua D.; Hing, Anne V.; Clarke, Christine M.; Johnson, Nathan M.; Perez, Francisco A.; Park, Sarah S.; Horst, Jeremy A.; Mecham, Brig; Maves, Lisa; Nickerson, Deborah A.; Cunningham, Michael L.

    2014-01-01

    Acromelic frontonasal dysostosis (AFND) is a rare disorder characterized by distinct craniofacial, brain, and limb malformations, including frontonasal dysplasia, interhemispheric lipoma, agenesis of the corpus callosum, tibial hemimelia, preaxial polydactyly of the feet, and intellectual disability. Exome sequencing of one trio and two unrelated probands revealed the same heterozygous variant (c.3487C>T [p. Arg1163Trp]) in a highly conserved protein domain of ZSWIM6; this variant has not been seen in the 1000 Genomes data, dbSNP, or the Exome Sequencing Project. Sanger validation of the three trios confirmed that the variant was de novo and was also present in a fourth isolated proband. In situ hybridization of early zebrafish embryos at 24 hr postfertilization (hpf) demonstrated telencephalic expression of zswim6 and onset of midbrain, hindbrain, and retinal expression at 48 hpf. Immunohistochemistry of later-stage mouse embryos demonstrated tissue-specific expression in the derivatives of all three germ layers. qRT-PCR expression analysis of osteoblast and fibroblast cell lines available from two probands was suggestive of Hedgehog pathway activation, indicating that the ZSWIM6 mutation associated with AFND may lead to the craniofacial, brain and limb malformations through the disruption of Hedgehog signaling. PMID:25105228

  11. Identifying disease mutations in genomic medicine settings: current challenges and how to accelerate progress

    PubMed Central

    2012-01-01

    The pace of exome and genome sequencing is accelerating, with the identification of many new disease-causing mutations in research settings, and it is likely that whole exome or genome sequencing could have a major impact in the clinical arena in the relatively near future. However, the human genomics community is currently facing several challenges, including phenotyping, sample collection, sequencing strategies, bioinformatics analysis, biological validation of variant function, clinical interpretation and validity of variant data, and delivery of genomic information to various constituents. Here we review these challenges and summarize the bottlenecks for the clinical application of exome and genome sequencing, and we discuss ways for moving the field forward. In particular, we urge the need for clinical-grade sample collection, high-quality sequencing data acquisition, digitalized phenotyping, rigorous generation of variant calls, and comprehensive functional annotation of variants. Additionally, we suggest that a 'networking of science' model that encourages much more collaboration and online sharing of medical history, genomic data and biological knowledge, including among research participants and consumers/patients, will help establish causation and penetrance for disease causal variants and genes. As we enter this new era of genomic medicine, we envision that consumer-driven and consumer-oriented efforts will take center stage, thus allowing insights from the human genome project to translate directly back into individualized medicine. PMID:22830651

  12. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    PubMed Central

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  13. QTL Analysis Identifies a Modifier Locus of Aganglionosis in the Rat Model of Hirschsprung Disease Carrying Ednrbsl Mutations

    PubMed Central

    Dang, Ruihua; Torigoe, Daisuke; Sasaki, Nobuya; Agui, Takashi

    2011-01-01

    Hirschsprung disease (HSCR) exhibits complex genetics with incomplete penetrance and variable severity thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. As reported previously, when the same null mutation of the Ednrb gene, Ednrbsl, was introgressed into the F344 strain, almost 60% of F344-Ednrbsl/sl pups did not show any symptoms of aganglionosis, appearing healthy and normally fertile. These findings strongly suggested that the severity of HSCR was affected by strain-specific genetic factor (s). In this study, the genetic basis of such large strain differences in the severity of aganglionosis in the rat model was studied by whole-genome scanning for quantitative trait loci (QTLs) using an intercross of (AGH-Ednrbsl×F344-Ednrbsl) F1 with the varying severity of aganglionosis. Genome linkage analysis identified one significant QTL on chromosome 2 for the severity of aganglionosis. Our QTL analyses using rat models of HSCR revealed that multiple genetic factors regulated the severity of aganglionosis. Moreover, a known HSCR susceptibility gene, Gdnf, was found in QTL that suggested a novel non-coding sequence mutation in GDNF that modifies the penetrance and severity of the aganglionosis phenotype in EDNRB-deficient rats. A further identification and analysis of responsible genes located on the identified QTL could lead to the richer understanding of the genetic basis of HSCR development. PMID:22132166

  14. An extended set of yeast-based functional assays accurately identifies human disease mutations

    PubMed Central

    Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L.; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E.; Vidal, Marc; Andrews, Brenda J.; Boone, Charles; Dolinski, Kara; Roth, Frederick P.

    2016-01-01

    We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778

  15. Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia.

    PubMed

    Wang, RuNan; Yoshida, Kenichi; Toki, Tsutomu; Sawada, Takafumi; Uechi, Tamayo; Okuno, Yusuke; Sato-Otsubo, Aiko; Kudo, Kazuko; Kamimaki, Isamu; Kanezaki, Rika; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Terui, Kiminori; Sato, Tomohiko; Iribe, Yuji; Ohga, Shouichi; Kuramitsu, Madoka; Hamaguchi, Isao; Ohara, Akira; Hara, Junichi; Goi, Kumiko; Matsubara, Kousaku; Koike, Kenichi; Ishiguro, Akira; Okamoto, Yasuhiro; Watanabe, Kenichiro; Kanno, Hitoshi; Kojima, Seiji; Miyano, Satoru; Kenmochi, Naoya; Ogawa, Seishi; Ito, Etsuro

    2015-03-01

    Diamond-Blackfan anaemia is a congenital bone marrow failure syndrome that is characterized by red blood cell aplasia. The disease has been associated with mutations or large deletions in 11 ribosomal protein genes including RPS7, RPS10, RPS17, RPS19, RPS24, RPS26, RPS29, RPL5, RPL11, RPL26 and RPL35A as well as GATA1 in more than 50% of patients. However, the molecular aetiology of many Diamond-Blackfan anaemia cases remains to be uncovered. To identify new mutations responsible for Diamond-Blackfan anaemia, we performed whole-exome sequencing analysis of 48 patients with no documented mutations/deletions involving known Diamond-Blackfan anaemia genes except for RPS7, RPL26, RPS29 and GATA1. Here, we identified a de novo splicing error mutation in RPL27 and frameshift deletion in RPS27 in sporadic patients with Diamond-Blackfan anaemia. In vitro knockdown of gene expression disturbed pre-ribosomal RNA processing. Zebrafish models of rpl27 and rps27 mutations showed impairments of erythrocyte production and tail and/or brain development. Additional novel mutations were found in eight patients, including RPL3L, RPL6, RPL7L1T, RPL8, RPL13, RPL14, RPL18A and RPL31. In conclusion, we identified novel germline mutations of two ribosomal protein genes responsible for Diamond-Blackfan anaemia, further confirming the concept that mutations in ribosomal protein genes lead to Diamond-Blackfan anaemia. PMID:25424902

  16. Novel prognostic gene mutations identified in chronic lymphocytic leukemia and their impact on clinical practice.

    PubMed

    Campregher, Paulo Vidal; Hamerschlak, Nelson

    2014-08-01

    Chronic lymphocytic leukemia (CLL) is a lymphoid malignancy characterized by progressive accumulation of mature lymphocytes in the peripheral blood, bone marrow, liver, and lymphoid organs. Although most patients with CLL have an insidious clinical course, a subset of cases present with fast evolution and chemotherapy resistance, leading to high morbidity and mortality. Few clinically validated prognostic markers, such as TP53, are available for use in clinical practice to guide treatment decisions. Recently, several novel prognostically relevant molecular markers have been identified in CLL. We conducted a narrative literature review of the latest findings to evaluate the potential inclusion of these markers in the management of CLL cases. PMID:24548608

  17. Mutation in KERA Identified by Linkage Analysis and Targeted Resequencing in a Pedigree with Premature Atherosclerosis

    PubMed Central

    van Capelleveen, Julian C.; Bot, Ilze; de Jager, Saskia C.; van Eck, Miranda; Jolley, Jennifer; Kuiper, Johan; Stephens, Jonathon; Albers, Cornelius A.; Vosmeer, C. Ruben; Kruize, Heleen; Geerke, Daan P.; van der Wal, Allard C.; van der Loos, Chris M.; Kastelein, John J. P.; Trip, Mieke D.

    2014-01-01

    Aims Genetic factors explain a proportion of the inter-individual variation in the risk for atherosclerotic events, but the genetic basis of atherosclerosis and atherothrombosis in families with Mendelian forms of premature atherosclerosis is incompletely understood. We set out to unravel the molecular pathology in a large kindred with an autosomal dominant inherited form of premature atherosclerosis. Methods and Results Parametric linkage analysis was performed in a pedigree comprising 4 generations, of which a total of 11 members suffered from premature vascular events. A parametric LOD-score of 3.31 was observed for a 4.4 Mb interval on chromosome 12. Upon sequencing, a non-synonymous variant in KERA (c.920C>G; p.Ser307Cys) was identified. The variant was absent from nearly 28,000 individuals, including 2,571 patients with premature atherosclerosis. KERA, a proteoglycan protein, was expressed in lipid-rich areas of human atherosclerotic lesions, but not in healthy arterial specimens. Moreover, KERA expression in plaques was significantly associated with plaque size in a carotid-collar Apoe−/− mice (r2 = 0.69; p<0.0001). Conclusion A rare variant in KERA was identified in a large kindred with premature atherosclerosis. The identification of KERA in atherosclerotic plaque specimen in humans and mice lends support to its potential role in atherosclerosis. PMID:24879339

  18. Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia

    PubMed Central

    Samuels, Mark E; Majewski, Jacek; Alirezaie, Najmeh; Fernandez, Isabel; Casals, Ferran; Patey, Natalie; Decaluwe, Hélène; Gosselin, Isabelle; Haddad, Elie; Hodgkinson, Alan; Idaghdour, Youssef; Marchand, Valerie; Michaud, Jacques L; Rodrigue, Marc-André; Desjardins, Sylvie; Dubois, Stéphane; Le Deist, Francoise; Awadalla, Philip; Raymond, Vincent; Maranda, Bruno

    2013-01-01

    Background Congenital multiple intestinal atresia (MIA) is a severe, fatal neonatal disorder, involving the occurrence of obstructions in the small and large intestines ultimately leading to organ failure. Surgical interventions are palliative but do not provide long-term survival. Severe immunodeficiency may be associated with the phenotype. A genetic basis for MIA is likely. We had previously ascertained a cohort of patients of French-Canadian origin, most of whom were deceased as infants or in utero. The goal of the study was to identify the molecular basis for the disease in the patients of this cohort. Methods We performed whole exome sequencing on samples from five patients of four families. Validation of mutations and familial segregation was performed using standard Sanger sequencing in these and three additional families with deceased cases. Exon skipping was assessed by reverse transcription-PCR and Sanger sequencing. Results Five patients from four different families were each homozygous for a four base intronic deletion in the gene TTC7A, immediately adjacent to a consensus GT splice donor site. The deletion was demonstrated to have deleterious effects on splicing causing the skipping of the attendant upstream coding exon, thereby leading to a predicted severe protein truncation. Parents were heterozygous carriers of the deletion in these families and in two additional families segregating affected cases. In a seventh family, an affected case was compound heterozygous for the same 4bp deletion and a second missense mutation p.L823P, also predicted as pathogenic. No other sequenced genes possessed deleterious variants explanatory for all patients in the cohort. Neither mutation was seen in a large set of control chromosomes. Conclusions Based on our genetic results, TTC7A is the likely causal gene for MIA. PMID:23423984

  19. Generating and identifying axolotls with targeted mutations using Cas9 RNA-guided nuclease.

    PubMed

    Flowers, G Parker; Crews, Craig M

    2015-01-01

    The CRISPR/Cas9 RNA-guided nuclease now enables a reverse genetics approach to investigate the function of genes of interest during regeneration in the axolotl. The process of generating the constructs necessary for targeting a gene of interest is considerably less labor intensive than for other methods of targeted mutagenesis such as Zinc finger nucleases or Transcription activator-like effector nucleases. Here, we describe the identification of targetable sequences in the gene of interest, the construction of unique guide RNAs, the microinjection of these RNAs with Cas9-encoding mRNA, the selection of well-injected animals, and an inexpensive, PCR-based method for identifying highly mutagenized animals. PMID:25740494

  20. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations.

    PubMed Central

    Elrod-Erickson, M J; Kaiser, C A

    1996-01-01

    Although convergent evidence suggests that proteins destined for export from the endoplasmic reticulum (ER) are separated from resident ER proteins and are concentrated into transport vesicles, the proteins that regulate this process have remained largely unknown. In a screen for suppressors of mutations in the essential COPII gene SEC13, we identified three genes (BST1, BST2/EMP24, and BST3) that negatively regulate COPII vesicle formation, preventing the production of vesicles with defective or missing subunits. Mutations in these genes slow the secretion of some secretory proteins and cause the resident ER proteins Kar2p and Pdi1p to leak more rapidly from the ER, indicating that these genes are also required for proper discrimination between resident ER proteins and Golgi-bound cargo molecules. The BST1 and BST2/EMP24 genes code for integral membrane proteins that reside predominantly in the ER. Our data suggest that the BST gene products represent a novel class of ER proteins that link the regulation of vesicle coat assembly to cargo sorting. Images PMID:8862519

  1. Combined NGS Approaches Identify Mutations in the Intraflagellar Transport Gene IFT140 in Skeletal Ciliopathies with Early Progressive Kidney Disease

    PubMed Central

    Schmidts, Miriam; Frank, Valeska; Eisenberger, Tobias; al Turki, Saeed; Bizet, Albane A.; Antony, Dinu; Rix, Suzanne; Decker, Christian; Bachmann, Nadine; Bald, Martin; Vinke, Tobias; Toenshoff, Burkhard; Donato, Natalia Di; Neuhann, Theresa; Hartley, Jane L.; Maher, Eamonn R.; Bogdanović, Radovan; Peco-Antić, Amira; Mache, Christoph; Hurles, Matthew E.; Joksić, Ivana; Guć-Šćekić, Marija; Dobricic, Jelena; Brankovic-Magic, Mirjana; Bolz, Hanno J.; Pazour, Gregory J.; Beales, Philip L.; Scambler, Peter J.; Saunier, Sophie; Mitchison, Hannah M.; Bergmann, Carsten

    2014-01-01

    Ciliopathies are genetically heterogeneous disorders characterized by variable expressivity and overlaps between different disease entities. This is exemplified by the short rib-polydactyly syndromes, Jeune, Sensenbrenner, and Mainzer-Saldino chondrodysplasia syndromes. These three syndromes are frequently caused by mutations in intraflagellar transport (IFT) genes affecting the primary cilia, which play a crucial role in skeletal and chondral development. Here, we identified mutations in IFT140, an IFT complex A gene, in five Jeune asphyxiating thoracic dystrophy (JATD) and two Mainzer-Saldino syndrome (MSS) families, by screening a cohort of 66 JATD/MSS patients using whole exome sequencing and targeted resequencing of a customized ciliopathy gene panel. We also found an enrichment of rare IFT140 alleles in JATD compared with nonciliopathy diseases, implying putative modifier effects for certain alleles. IFT140 patients presented with mild chest narrowing, but all had end-stage renal failure under 13 years of age and retinal dystrophy when examined for ocular dysfunction. This is consistent with the severe cystic phenotype of Ift140 conditional knockout mice, and the higher level of Ift140 expression in kidney and retina compared with the skeleton at E15.5 in the mouse. IFT140 is therefore a major cause of cono-renal syndromes (JATD and MSS). The present study strengthens the rationale for IFT140 screening in skeletal ciliopathy spectrum patients that have kidney disease and/or retinal dystrophy. PMID:23418020

  2. Next generation sequencing identifies mutations in Atonal homolog 7 (ATOH7) in families with global eye developmental defects

    PubMed Central

    Khan, Kamron; Logan, Clare V.; McKibbin, Martin; Sheridan, Eamonn; Elçioglu, Nursel H.; Yenice, Ozlem; Parry, David A.; Fernandez-Fuentes, Narcis; Abdelhamed, Zakia I.A.; Al-Maskari, Ahmed; Poulter, James A.; Mohamed, Moin D.; Carr, Ian M.; Morgan, Joanne E.; Jafri, Hussain; Raashid, Yasmin; Taylor, Graham R.; Johnson, Colin A.; Inglehearn, Chris F.; Toomes, Carmel; Ali, Manir

    2012-01-01

    The atonal homolog 7 (ATOH7) gene encodes a transcription factor involved in determining the fate of retinal progenitor cells and is particularly required for optic nerve and ganglion cell development. Using a combination of autozygosity mapping and next generation sequencing, we have identified homozygous mutations in this gene, p.E49V and p.P18RfsX69, in two consanguineous families diagnosed with multiple ocular developmental defects, including severe vitreoretinal dysplasia, optic nerve hypoplasia, persistent fetal vasculature, microphthalmia, congenital cataracts, microcornea, corneal opacity and nystagmus. Most of these clinical features overlap with defects in the Norrin/β-catenin signalling pathway that is characterized by dysgenesis of the retinal and hyaloid vasculature. Our findings document Mendelian mutations within ATOH7 and imply a role for this molecule in the development of structures at the front as well as the back of the eye. This work also provides further insights into the function of ATOH7, especially its importance in retinal vascular development and hyaloid regression. PMID:22068589

  3. Germline mutation in BRAF codon 600 is compatible with human development: de novo p.V600G mutation identified in a patient with CFC syndrome.

    PubMed

    Champion, K J; Bunag, C; Estep, A L; Jones, J R; Bolt, C H; Rogers, R C; Rauen, K A; Everman, D B

    2011-05-01

    BRAF, the protein product of BRAF, is a serine/threonine protein kinase and one of the direct downstream effectors of Ras. Somatic mutations in BRAF occur in numerous human cancers, whereas germline BRAF mutations cause cardio-facio-cutaneous (CFC) syndrome. One recurrent somatic mutation, p.V600E, is frequently found in several tumor types, such as melanoma, papillary thyroid carcinoma, colon cancer, and ovarian cancer. However, a germline mutation affecting codon 600 has never been described. Here, we present a patient with CFC syndrome and a de novo germline mutation involving codon 600 of BRAF, thus providing the first evidence that a pathogenic germline mutation involving this critical codon is not only compatible with development but can also cause the CFC phenotype. In vitro functional analysis shows that this mutation, which replaces a valine with a glycine at codon 600 (p.V600G), leads to increased ERK and ELK phosphorylation compared to wild-type BRAF but is less strongly activating than the cancer-associated p.V600E mutation. PMID:20735442

  4. Molecular profiling of myeloid progenitor cells in multi-mutated advanced systemic mastocytosis identifies KIT D816V as a distinct and late event.

    PubMed

    Jawhar, M; Schwaab, J; Schnittger, S; Sotlar, K; Horny, H-P; Metzgeroth, G; Müller, N; Schneider, S; Naumann, N; Walz, C; Haferlach, T; Valent, P; Hofmann, W-K; Cross, N C P; Fabarius, A; Reiter, A

    2015-05-01

    To explore the molecular profile and its prognostic implication in systemic mastocytosis (SM), we analyzed the mutation status of granulocyte-macrophage colony-forming progenitor cells (CFU-GM) in patients with KIT D816V(+) indolent SM (ISM, n=4), smoldering SM (SSM, n=2), aggressive SM (ASM, n=1), SM with associated clonal hematologic non-mast cell lineage disorder (SM-AHNMD, n=5) and ASM-AHNMD (n=7). All patients with (A)SM-AHNMD (n=12) carried 1-4 (median 3) additional mutations in 11 genes tested, most frequently TET2, SRSF2, ASXL1, CBL and EZH2. In multi-mutated (A)SM-AHNMD, KIT D816V(+) single-cell-derived CFU-GM colonies were identified in 8/12 patients (median 60%, range 0-95). Additional mutations were identified in CFU-GM colonies in all patients, and logical hierarchy analysis indicated that mutations in TET2, SRSF2 and ASXL1 preceded KIT D816V. In ISM/SSM, no additional mutations were detected and CFU-GM colonies were exclusively KIT D816V(-). These data indicate that (a) (A)SM-AHNMD is a multi-mutated neoplasm, (b) mutations in TET2, SRSF2 or ASXL1 precede KIT D816V in ASM-AHNMD, PMID:25567135

  5. Characterization of mutations in the CPO gene in British patients demonstrates absence of genotype-phenotype correlation and identifies relationship between hereditary coproporphyria and harderoporphyria.

    PubMed

    Lamoril, J; Puy, H; Whatley, S D; Martin, C; Woolf, J R; Da Silva, V; Deybach, J C; Elder, G H

    2001-05-01

    Hereditary coproporphyria (HCP) is the least common of the autosomal dominant acute hepatic porphyrias. It results from mutations in the CPO gene that encodes the mitochondrial enzyme, coproporphyrinogen oxidase. A few patients have also been reported who are homoallellic or heteroallelic for CPO mutations and are clinically distinct from those with HCP. In such patients the presence of a specific mutation (K404E) on one or both alleles produces a neonatal hemolytic anemia that is known as "harderoporphyria"; mutations on both alleles elsewhere in the gene give rise to the "homozygous" variant of HCP. The molecular relationship between these disorders and HCP has not been defined. We describe the molecular investigation and clinical features of 17 unrelated British patients with HCP. Ten novel and four previously reported CPO mutations, together with three previously unrecognized single-nucleotide polymorphisms, were identified in 15 of the 17 patients. HCP is more heterogeneous than other acute porphyrias, with all but one mutation being restricted to a single family, with a predominance of missense mutations (10 missense, 2 nonsense, 1 frameshift, and 1 splice site). Of the four known mutations, one (R331W) has previously been reported to cause disease only in homozygotes. Heterologous expression of another mutation (R401W) demonstrated functional properties similar to those of the K404E harderoporphyria mutation. In all patients, clinical presentation was uniform, in spite of the wide range (1%-64%) of residual coproporphyrinogen oxidase activity, as determined by heterologous expression. Our findings add substantially to knowledge of the molecular epidemiology of HCP, show that single copies of CPO mutations that are known or predicted to cause "homozygous" HCP or harderoporphyria can produce typical HCP in adults, and demonstrate that the severity of the phenotype does not correlate with the degree of inactivation by mutation of coproporphyrinogen oxidase. PMID:11309681

  6. Characterization of Mutations in the CPO Gene in British Patients Demonstrates Absence of Genotype-Phenotype Correlation and Identifies Relationship between Hereditary Coproporphyria and Harderoporphyria

    PubMed Central

    Lamoril, Jérôme; Puy, Hervé; Whatley, Sharon D.; Martin, Caroline; Woolf, Jacqueline R.; Da Silva, Vasco; Deybach, Jean-Charles; Elder, George H.

    2001-01-01

    Hereditary coproporphyria (HCP) is the least common of the autosomal dominant acute hepatic porphyrias. It results from mutations in the CPO gene that encodes the mitochondrial enzyme, coproporphyrinogen oxidase. A few patients have also been reported who are homoallellic or heteroallelic for CPO mutations and are clinically distinct from those with HCP. In such patients the presence of a specific mutation (K404E) on one or both alleles produces a neonatal hemolytic anemia that is known as “harderoporphyria”; mutations on both alleles elsewhere in the gene give rise to the “homozygous” variant of HCP. The molecular relationship between these disorders and HCP has not been defined. We describe the molecular investigation and clinical features of 17 unrelated British patients with HCP. Ten novel and four previously reported CPO mutations, together with three previously unrecognized single-nucleotide polymorphisms, were identified in 15 of the 17 patients. HCP is more heterogeneous than other acute porphyrias, with all but one mutation being restricted to a single family, with a predominance of missense mutations (10 missense, 2 nonsense, 1 frameshift, and 1 splice site). Of the four known mutations, one (R331W) has previously been reported to cause disease only in homozygotes. Heterologous expression of another mutation (R401W) demonstrated functional properties similar to those of the K404E harderoporphyria mutation. In all patients, clinical presentation was uniform, in spite of the wide range (1%–64%) of residual coproporphyrinogen oxidase activity, as determined by heterologous expression. Our findings add substantially to knowledge of the molecular epidemiology of HCP, show that single copies of CPO mutations that are known or predicted to cause “homozygous” HCP or harderoporphyria can produce typical HCP in adults, and demonstrate that the severity of the phenotype does not correlate with the degree of inactivation by mutation of coproporphyrinogen oxidase. PMID:11309681

  7. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3

    PubMed Central

    Martin, Marcel; Mahfer, Lars; Temming, Petra; Rahmann, Sven; Metz, Claudia; Bornfeld, Norbert; van de Nes, Johannes; Klein-Hitpass, Ludger; Hinnebusch, Alan G; Horsthemke, Bernhard; Lohmann, Dietmar R; Zeschnigk, Michael

    2014-01-01

    Gene expression profiles and chromosome 3 copy number divide uveal melanomas into two distinct classes correlating with prognosis13. Using exome sequencing, we identified recurrent somatic mutations in EIF1AX and SF3B1, specifically occurring in uveal melanomas with disomy 3, which rarely metastasize. Targeted resequencing showed that 24 of 31 tumors with disomy 3 (77%) had mutations in either EIF1AX (15; 48%) or SF3B1 (9; 29%). Mutations were infrequent (2/35; 5.7%) in uveal melanomas with monosomy 3, which are associated with poor prognosis2. Resequencing of 13 uveal melanomas with partial monosomy 3 identified 8 tumors with a mutation in either SF3B1 (7; 54%) or EIF1AX (1; 8%). All EIF1AX mutations caused in-frame changes affecting the N terminus of the protein, whereas 17 of 19 SF3B1 mutations encoded an alteration of Arg625. Resequencing of ten uveal melanomas with disomy 3 that developed metastases identified SF3B1 mutations in three tumors, none of which targeted Arg625. PMID:23793026

  8. Whole Exome Sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome

    PubMed Central

    Martinez, Fernando; Lee, Jeong Ho; Lee, Ji Eun; Blanco, Sandra; Nickerson, Elizabeth; Gabriel, Stacey; Frye, Michaela; Al-Gazali, Lihadh; Gleeson, Joseph G.

    2016-01-01

    Dubowitz Syndrome is an autosomal recessive disorder characterized by the constellation of mild microcephaly, growth and mental retardation, eczema and peculiar facies, but causes are still unknown. We studied a multiplex consanguineous family with many features of Dubowitz syndrome using whole exome sequencing and identified a splice mutation in NSUN2, encoding a conserved RNA methyltransferase. NSUN2 has been implicated in Myc-induced cell proliferation and mitotic spindle stability, which might help explain the varied clinical presentations that can include chromosomal instability and immunological defects. Patient cells displayed loss of NSUN2-specific methylation at two residues of the aspartate tRNA. Our findings establish NSUN2 as the first causal gene with relationship to the Dubowitz syndrome spectrum phenotype. PMID:22577224

  9. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation.

    PubMed

    Jiang, Pingping; Jin, Xiaofen; Peng, Yanyan; Wang, Meng; Liu, Hao; Liu, Xiaoling; Zhang, Zengjun; Ji, Yanchun; Zhang, Juanjuan; Liang, Min; Zhao, Fuxin; Sun, Yan-Hong; Zhang, Minglian; Zhou, Xiangtian; Chen, Ye; Mo, Jun Qin; Huang, Taosheng; Qu, Jia; Guan, Min-Xin

    2016-02-01

    Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disorder. Nuclear modifier genes are proposed to modify the phenotypic expression of LHON-associated mitochondrial DNA (mtDNA) mutations. By using an exome sequencing approach, we identified a LHON susceptibility allele (c.572G>T, p.191Gly>Val) in YARS2 gene encoding mitochondrial tyrosyl-tRNA synthetase, which interacts with m.11778G>A mutation to cause visual failure. We performed functional assays by using lymphoblastoid cell lines derived from members of Chinese families (asymptomatic individuals carrying m.11778G>A mutation, or both m.11778G>A and heterozygous p.191Gly>Val mutations and symptomatic subjects harboring m.11778G>A and homozygous p.191Gly>Val mutations) and controls lacking these mutations. The 191Gly>Val mutation reduced the YARS2 protein level in the mutant cells. The aminoacylated efficiency and steady-state level of tRNA(Tyr) were markedly decreased in the cell lines derived from patients both carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The failure in tRNA(Tyr) metabolism impaired mitochondrial translation, especially for polypeptides with high content of tyrosine codon such as ND4, ND5, ND6 and COX2 in cells lines carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The YARS2 p.191Gly>Val mutation worsened the respiratory phenotypes associated with m.11778G>A mutation, especially reducing activities of complexes I and IV. The respiratory deficiency altered the efficiency of mitochondrial ATP synthesis and increased the production of reactive oxygen species. Thus, mutated YARS2 aggravates mitochondrial dysfunctions associated with the m.11778G>A mutation, exceeding the threshold for the expression of blindness phenotype. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutation and mutated nuclear-modifier YARS2. PMID:26647310

  10. A founder AGL mutation causing glycogen storage disease type IIIa in Inuit identified through whole-exome sequencing: a case series

    PubMed Central

    Rousseau-Nepton, Isabelle; Okubo, Minoru; Grabs, Rosemarie; Mitchell, John; Polychronakos, Constantin; Rodd, Celia

    2015-01-01

    Background: Glycogen storage disease type III is caused by mutations in both alleles of the AGL gene, which leads to reduced activity of glycogen-debranching enzyme. The clinical picture encompasses hypoglycemia, with glycogen accumulation leading to hepatomegaly and muscle involvement (skeletal and cardiac). We sought to identify the genetic cause of this disease within the Inuit community of Nunavik, in whom previous DNA sequencing had not identified such mutations. Methods: Five Inuit children with a clinical and biochemical diagnosis of glycogen storage disease type IIIa were recruited to undergo genetic testing: 2 underwent whole-exome sequencing and all 5 underwent Sanger sequencing to confirm the identified mutation. Selected DNA regions near the AGL gene were also sequenced to identify a potential founder effect in the community. In addition, control samples from 4 adults of European descent and 7 family members of the affected children were analyzed for the specific mutation by Sanger sequencing. Results: We identified a homozygous frame-shift deletion, c.4456delT, in exon 33 of the AGL gene in 2 children by whole-exome sequencing. Confirmation by Sanger sequencing showed the same mutation in all 5 patients, and 5 family members were found to be carriers. With the identification of this mutation in 5 probands, the estimated prevalence of genetically confirmed glycogen storage disease type IIIa in this region is among the highest worldwide (1:2500). Despite identical mutations, we saw variations in clinical features of the disease. Interpretation: Our detection of a homozygous frameshift mutation in 5 Inuit children determines the cause of glycogen storage disease type IIIa and confirms a founder effect. PMID:25602008

  11. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma.

    PubMed

    Nikolaev, Sergey I; Rimoldi, Donata; Iseli, Christian; Valsesia, Armand; Robyr, Daniel; Gehrig, Corinne; Harshman, Keith; Guipponi, Michel; Bukach, Olesya; Zoete, Vincent; Michielin, Olivier; Muehlethaler, Katja; Speiser, Daniel; Beckmann, Jacques S; Xenarios, Ioannis; Halazonetis, Thanos D; Jongeneel, C Victor; Stevenson, Brian J; Antonarakis, Stylianos E

    2012-02-01

    We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample-specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1. PMID:22197931

  12. Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V(+) advanced systemic mastocytosis.

    PubMed

    Jawhar, M; Schwaab, J; Schnittger, S; Meggendorfer, M; Pfirrmann, M; Sotlar, K; Horny, H-P; Metzgeroth, G; Kluger, S; Naumann, N; Haferlach, C; Haferlach, T; Valent, P; Hofmann, W-K; Fabarius, A; Cross, N C P; Reiter, A

    2016-01-01

    Most patients with KIT D816V(+) advanced systemic mastocytosis (SM) are characterized by somatic mutations in additional genes. We sought to clarify the prognostic impact of such mutations. Genotype and clinical characteristics of 70 multi-mutated KIT D816V(+) advanced SM patients were included in univariate and multivariate analyses. The most frequently identified mutated genes were TET2 (n=33 of 70 patients), SRSF2 (n=30), ASXL1 (n=20), RUNX1 (n=16) and JAK2 (n=11). In univariate analysis, overall survival (OS) was adversely influenced by mutations in SRSF2 (P<0.0001), ASXL1 (P=0.002) and RUNX1 (P=0.03), but was not influenced by mutations in TET2 or JAK2. In multivariate analysis, SRSF2 and ASXL1 remained the most predictive adverse indicators concerning OS. Furthermore, we found that inferior OS and adverse clinical characteristics were significantly influenced by the number of mutated genes in the SRSF2/ASXL1/RUNX1 (S/A/R) panel (P<0.0001). In conclusion, the presence and number of mutated genes within the S/A/R panel are adversely associated with advanced disease and poor survival in KIT D816V(+) SM. On the basis of these findings, inclusion of molecular markers should be considered in upcoming prognostic scoring systems for patients with SM. PMID:26464169

  13. Exome sequencing identifies a de novo SCN2A mutation in a patient with intractable seizures, severe intellectual disability, optic atrophy, muscular hypotonia, and brain abnormalities.

    PubMed

    Baasch, Anna-Lena; Hüning, Irina; Gilissen, Christian; Klepper, Joerg; Veltman, Joris A; Gillessen-Kaesbach, Gabriele; Hoischen, Alexander; Lohmann, Katja

    2014-04-01

    Epilepsy is a phenotypically and genetically highly heterogeneous disorder with >200 genes linked to inherited forms of the disease. To identify the underlying genetic cause in a patient with intractable seizures, optic atrophy, severe intellectual disability (ID), brain abnormalities, and muscular hypotonia, we performed exome sequencing in a 5-year-old girl and her unaffected parents. In the patient, we detected a novel, de novo missense mutation in the SCN2A (c.5645G>T; p.R1882L) gene encoding the αII -subunit of the voltage-gated sodium channel Nav 1.2. A literature review revealed 33 different SCN2A mutations in 14 families with benign forms of epilepsy and in 21 cases with severe phenotypes. Although almost all benign mutations were inherited, the majority of severe mutations occurred de novo. Of interest, de novo SCN2A mutations have also been reported in five patients without seizures but with ID (n = 3) and/or autism (n = 3). In the present study, we successfully used exome sequencing to detect a de novo mutation in a genetically heterogeneous disorder with epilepsy and ID. Using this approach, we expand the phenotypic spectrum of SCN2A mutations. Our own and literature data indicate that SCN2A-linked severe phenotypes are more likely to be caused by de novo mutations. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here. PMID:24579881

  14. Whole exome sequencing identifies a novel splice-site mutation in ADAMTS17 in an Indian family with Weill-Marchesani syndrome

    PubMed Central

    Shah, Mohd Hussain; Bhat, Vishwanath; Shetty, Jyoti S.

    2014-01-01

    Purpose Weill-Marchesani syndrome (WMS) is a rare connective tissue disorder, characterized by short stature, microspherophakic lens, and stubby hands and feet (brachydactyly). WMS is caused by mutations in the FBN1, ADAMTS10, and LTBP2 genes. Mutations in the LTBP2 and ADAMTS17 genes cause a WMS-like syndrome, in which the affected individuals show major features of WMS but do not display brachydactyly and joint stiffness. The main purpose of our study was to determine the genetic cause of WMS in an Indian family. Methods Whole exome sequencing (WES) was used to identify the genetic cause of WMS in the family. The cosegregation of the mutation was determined with Sanger sequencing. Reverse transcription (RT)–PCR analysis was used to assess the effect of a splice-site mutation on splicing of the ADAMTS17 transcript. Results The WES analysis identified a homozygous novel splice-site mutation c.873+1G>T in a known WMS-like syndrome gene, ADAMTS17, in the family. RT–PCR analysis in the patient showed that exon 5 was skipped, which resulted in the deletion of 28 amino acids in the ADAMTS17 protein. Conclusions The mutation in the WMS-like syndrome gene ADAMTS17 also causes WMS in an Indian family. The present study will be helpful in genetic diagnosis of this family and increases the number of mutations of this gene to six. PMID:24940034

  15. 20 ans après: a second mutation in MAOA identified by targeted high-throughput sequencing in a family with altered behavior and cognition.

    PubMed

    Piton, Amélie; Poquet, Hélène; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlène; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis

    2014-06-01

    Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene-environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients. PMID:24169519

  16. Whole-exome sequencing identifies a de novo TUBA1A mutation in a patient with sporadic malformations of cortical development: a case report

    PubMed Central

    2014-01-01

    Background Owing to the number of genetic mutations that contribute to malformations of cortical development, identification of causative mutations in candidate genes is challenging. To overcome these challenges, we performed whole-exome sequencing in this study. Case presentation A Japanese patient presented with microcephaly and severe developmental delay. Brain magnetic resonance imaging showed the presence of colpocephaly associated with lateral ventricle dilatation and the presence of a simplified gyral pattern. Hypoplasia of the corpus callosum and cerebellar vermis were also noted. Because Sanger sequencing is expensive, laborious, and time-consuming, whole-exome sequencing was performed and a de novo missense mutation in TUBA1A (E27Q) was identified. Conclusion The novel mutation identified in this study was located in the genetic region that encodes the N-terminal domain of TUBA1A, a region of TUBA1A with few reported mutations. Retrospective assessment of the clinical and radiological features of this patient―i.e., microcephaly, lissencephaly (pachygyria) with cerebellar hypoplasia, and corpus callosum hypoplasia―indicated that the TUBA1A mutation did not lead to any contradictions. Because rapid and comprehensive mutation analysis by whole-exome sequencing is time- and cost-effective, it might be useful for genetic counseling of patients with sporadic malformations of cortical development. PMID:25053001

  17. 20 ans après: a second mutation in MAOA identified by targeted high-throughput sequencing in a family with altered behavior and cognition

    PubMed Central

    Piton, Amélie; Poquet, Hélène; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlène; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis

    2014-01-01

    Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene–environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients. PMID:24169519

  18. Novel A219P mutation of hydroxymethylbilane synthase identified in a Chinese woman with acute intermittent porphyria and syndrome of inappropriate antidiuretic hormone.

    PubMed

    Li, Yingjie; Qu, Hua; Wang, Hang; Deng, Huacong; Liu, Ziyan

    2015-07-01

    Acute intermittent porphyria (AIP) is an autosomal dominant metabolic disorder caused by deficiency of the heme biosynthetic enzyme hydroxymethylbilane synthase (approved gene symbol HMBS), also known as porphobilinogen deaminase (PBGD). AIP is characterised by intermittent attacks of abdominal pain, vomiting, and neurological complaints. The highly variable symptomatic presentation of AIP causes confusion with other diseases and results in a high misdiagnosis rate (68% in China) and delayed effective treatments. Based on biochemical and genetic analysis of two Chinese families, a new and a previously reported HMBS mutation were identified in patients with AIP and syndrome of inappropriate antidiuretic hormone (SIADH). The novel HMBS mutation is the 655G>C point mutation (A219P). In addition, the 973C>T point mutation (R325X), which had been previously reported in two Danish families, was identified. PMID:25787008

  19. Identifying potential functional impact of mutations and polymorphisms: linking heart failure, increased risk of arrhythmias and sudden cardiac death

    PubMed Central

    Jagu, Benoît; Charpentier, Flavien; Toumaniantz, Gilles

    2013-01-01

    Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure, and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behavior has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction, or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis, and the degradation of ion channel a-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking. The aim of this review is to inventory, through the description of few representative examples, the role of these different biogenic mechanisms in arrhythmogenesis, HF and SCD in order to help the researcher to identify all the processes that could lead to arrhythmias. Identification of novel targets for drug intervention should result from further understanding of these fundamental mechanisms. PMID:24065925

  20. Next generation massively parallel sequencing of targeted exomes to identify genetic mutations in primary ciliary dyskinesia: implications for application to clinical testing

    PubMed Central

    Berg, Jonathan S.; Evans, James P.; Leigh, Margaret W.; Omran, Heymut; Bizon, Chris; Mane, Ketan; Knowles, Michael R.; Weck, Karen E.; Zariwala, Maimoona A.

    2013-01-01

    PURPOSE Advances in genetic sequencing technology have the potential to enhance testing for genes associated with genetically heterogeneous clinical syndromes, such as primary ciliary dyskinesia (PCD). The objective of this study was to investigate the performance characteristics of exon-capture technology coupled with massively parallel sequencing for clinical diagnostic evaluation. METHODS We performed a pilot study of four individuals with a variety of previously identified PCD mutations. We designed a custom array (NimbleGen) to capture 2089 exons from 79 genes associated with PCD or ciliary function and sequenced the enriched material using the GS FLX Titanium (Roche 454) platform. Bioinformatics analysis was performed in a blinded fashion in an attempt to detect the previously identified mutations and validate the process. RESULTS Three of three substitution mutations and one of three small insertion/deletion mutations were readily identified using this methodology. One small insertion mutation was clearly observed after adjusting the bioinformatics handling of previously described SNPs. This process failed to detect two known mutations: one single nucleotide insertion and a whole exon deletion. Additional retrospective bioinformatics analysis revealed strong sequence-based evidence for the insertion but failed to detect the whole exon deletion. Numerous other variants were also detected, which may represent potential genetic modifiers of the PCD phenotype. CONCLUSIONS We conclude that massively parallel sequencing has considerable potential for both research and clinical diagnostics, but further development is required before widespread adoption in a clinical setting. PMID:21270641

  1. Use of in silico tools for classification of novel missense mutations identified in dystrophin gene in developing countries.

    PubMed

    Nouri, Narges; Fazel-Najafabadi, Esmat; Behnam, Mahdieh; Nouri, Nayereh; Aryani, Omid; Ghasemi, Majid; Nasiri, Jafar; Sedghi, Maryam

    2014-02-10

    DMD gene which is composed of 79 exons is the largest known gene located on X chromosome (Xp21). Point mutations in the dystrophin gene are responsible for 30-35% of cases with DMD/BMD. Mutation analysis of all the exons of the DMD gene is costly in developing countries, therefore, a few of the exons are selected to be analyzed routinely in clinical laboratories. In this study, direct sequencing was used for detection of point mutations in 10 exons of dystrophin gene in patients affected with DMD without detectable large rearrangements. Freely available programs were used to predict the damaging effects of the mutations. Point mutations were successfully detected in three patients. Three novel mutations, two missense mutations located on nonconservative domains and a single nucleotide deletion, were detected. Missense mutations were predicted to change splicing efficiency. Detection of point mutations by DNA analysis followed by prediction of the pathogenecity by using bioinformatic tool might be an asset to provide proper diagnosis or genetic counseling to patients and their family. PMID:24274981

  2. Integrating Transcriptome and Genome Re-Sequencing Data to Identify Key Genes and Mutations Affecting Chicken Eggshell Qualities

    PubMed Central

    Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as reveled by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  3. Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways

    PubMed Central

    Cappi, C; Brentani, H; Lima, L; Sanders, S J; Zai, G; Diniz, B J; Reis, V N S; Hounie, A G; Conceição do Rosário, M; Mariani, D; Requena, G L; Puga, R; Souza-Duran, F L; Shavitt, R G; Pauls, D L; Miguel, E C; Fernandez, T V

    2016-01-01

    Studies of rare genetic variation have identified molecular pathways conferring risk for developmental neuropsychiatric disorders. To date, no published whole-exome sequencing studies have been reported in obsessive-compulsive disorder (OCD). We sequenced all the genome coding regions in 20 sporadic OCD cases and their unaffected parents to identify rare de novo (DN) single-nucleotide variants (SNVs). The primary aim of this pilot study was to determine whether DN variation contributes to OCD risk. To this aim, we evaluated whether there is an elevated rate of DN mutations in OCD, which would justify this approach toward gene discovery in larger studies of the disorder. Furthermore, to explore functional molecular correlations among genes with nonsynonymous DN SNVs in OCD probands, a protein–protein interaction (PPI) network was generated based on databases of direct molecular interactions. We applied Degree-Aware Disease Gene Prioritization (DADA) to rank the PPI network genes based on their relatedness to a set of OCD candidate genes from two OCD genome-wide association studies (Stewart et al., 2013; Mattheisen et al., 2014). In addition, we performed a pathway analysis with genes from the PPI network. The rate of DN SNVs in OCD was 2.51 × 10−8 per base per generation, significantly higher than a previous estimated rate in unaffected subjects using the same sequencing platform and analytic pipeline. Several genes harboring DN SNVs in OCD were highly interconnected in the PPI network and ranked high in the DADA analysis. Nearly all the DN SNVs in this study are in genes expressed in the human brain, and a pathway analysis revealed enrichment in immunological and central nervous system functioning and development. The results of this pilot study indicate that further investigation of DN variation in larger OCD cohorts is warranted to identify specific risk genes and to confirm our preliminary finding with regard to PPI network enrichment for particular biological pathways and functions. PMID:27023170

  4. Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways.

    PubMed

    Cappi, C; Brentani, H; Lima, L; Sanders, S J; Zai, G; Diniz, B J; Reis, V N S; Hounie, A G; Conceição do Rosário, M; Mariani, D; Requena, G L; Puga, R; Souza-Duran, F L; Shavitt, R G; Pauls, D L; Miguel, E C; Fernandez, T V

    2016-01-01

    Studies of rare genetic variation have identified molecular pathways conferring risk for developmental neuropsychiatric disorders. To date, no published whole-exome sequencing studies have been reported in obsessive-compulsive disorder (OCD). We sequenced all the genome coding regions in 20 sporadic OCD cases and their unaffected parents to identify rare de novo (DN) single-nucleotide variants (SNVs). The primary aim of this pilot study was to determine whether DN variation contributes to OCD risk. To this aim, we evaluated whether there is an elevated rate of DN mutations in OCD, which would justify this approach toward gene discovery in larger studies of the disorder. Furthermore, to explore functional molecular correlations among genes with nonsynonymous DN SNVs in OCD probands, a protein-protein interaction (PPI) network was generated based on databases of direct molecular interactions. We applied Degree-Aware Disease Gene Prioritization (DADA) to rank the PPI network genes based on their relatedness to a set of OCD candidate genes from two OCD genome-wide association studies (Stewart et al., 2013; Mattheisen et al., 2014). In addition, we performed a pathway analysis with genes from the PPI network. The rate of DN SNVs in OCD was 2.51 × 10(-8) per base per generation, significantly higher than a previous estimated rate in unaffected subjects using the same sequencing platform and analytic pipeline. Several genes harboring DN SNVs in OCD were highly interconnected in the PPI network and ranked high in the DADA analysis. Nearly all the DN SNVs in this study are in genes expressed in the human brain, and a pathway analysis revealed enrichment in immunological and central nervous system functioning and development. The results of this pilot study indicate that further investigation of DN variation in larger OCD cohorts is warranted to identify specific risk genes and to confirm our preliminary finding with regard to PPI network enrichment for particular biological pathways and functions. PMID:27023170

  5. Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families.

    PubMed

    Mirabello, Lisa; Macari, Elizabeth R; Jessop, Lea; Ellis, Steven R; Myers, Timothy; Giri, Neelam; Taylor, Alison M; McGrath, Katherine E; Humphries, Jessica M; Ballew, Bari J; Yeager, Meredith; Boland, Joseph F; He, Ji; Hicks, Belynda D; Burdett, Laurie; Alter, Blanche P; Zon, Leonard; Savage, Sharon A

    2014-07-01

    Diamond-Blackfan anemia (DBA) is a cancer-prone inherited bone marrow failure syndrome. Approximately half of DBA patients have a germ-line mutation in a ribosomal protein gene. We used whole-exome sequencing to identify disease-causing genes in 2 large DBA families. After filtering, 1 nonsynonymous mutation (p.I31F) in the ribosomal protein S29 (RPS29[AUQ1]) gene was present in all 5 DBA-affected individuals and the obligate carrier, and absent from the unaffected noncarrier parent in 1 DBA family. A second DBA family was found to have a different nonsynonymous mutation (p.I50T) in RPS29. Both mutations are amino acid substitutions in exon 2 predicted to be deleterious and resulted in haploinsufficiency of RPS29 expression compared with wild-type RPS29 expression from an unaffected control. The DBA proband with the p.I31F RPS29 mutation had a pre-ribosomal RNA (rRNA) processing defect compared with the healthy control. We demonstrated that both RPS29 mutations failed to rescue the defective erythropoiesis in the rps29(-/-) mutant zebra fish DBA model. RPS29 is a component of the small 40S ribosomal subunit and essential for rRNA processing and ribosome biogenesis. We uncovered a novel DBA causative gene, RPS29, and showed that germ-line mutations in RPS29 can cause a defective erythropoiesis phenotype using a zebra fish model. PMID:24829207

  6. Whole Exome Sequencing Identifies Frequent Somatic Mutations in Cell-Cell Adhesion Genes in Chinese Patients with Lung Squamous Cell Carcinoma.

    PubMed

    Li, Chenguang; Gao, Zhibo; Li, Fei; Li, Xiangchun; Sun, Yihua; Wang, Mengyun; Li, Dan; Wang, Rui; Li, Fuming; Fang, Rong; Pan, Yunjian; Luo, Xiaoyang; He, Jing; Zheng, Liangtao; Xia, Jufeng; Qiu, Lixin; He, Jun; Ye, Ting; Zhang, Ruoxin; He, Minghui; Zhu, Meiling; Hu, Haichuan; Shi, Tingyan; Zhou, Xiaoyan; Sun, Menghong; Tian, Shilin; Zhou, Yong; Wang, Qiaoxiu; Chen, Longyun; Yin, Guangliang; Lu, Jingya; Wu, Renhua; Guo, Guangwu; Li, Yingrui; Hu, Xueda; Li, Lin; Asan; Wang, Qin; Yin, Ye; Feng, Qiang; Wang, Bin; Wang, Hang; Wang, Mingbang; Yang, Xiaonan; Zhang, Xiuqing; Yang, Huanming; Jin, Li; Wang, Cun-Yu; Ji, Hongbin; Chen, Haiquan; Wang, Jun; Wei, Qingyi

    2015-01-01

    Lung squamous cell carcinoma (SQCC) accounts for about 30% of all lung cancer cases. Understanding of mutational landscape for this subtype of lung cancer in Chinese patients is currently limited. We performed whole exome sequencing in samples from 100 patients with lung SQCCs to search for somatic mutations and the subsequent target capture sequencing in another 98 samples for validation. We identified 20 significantly mutated genes, including TP53, CDH10, NFE2L2 and PTEN. Pathways with frequently mutated genes included those of cell-cell adhesion/Wnt/Hippo in 76%, oxidative stress response in 21%, and phosphatidylinositol-3-OH kinase in 36% of the tested tumor samples. Mutations of Chromatin regulatory factor genes were identified at a lower frequency. In functional assays, we observed that knockdown of CDH10 promoted cell proliferation, soft-agar colony formation, cell migration and cell invasion, and overexpression of CDH10 inhibited cell proliferation. This mutational landscape of lung SQCC in Chinese patients improves our current understanding of lung carcinogenesis, early diagnosis and personalized therapy. PMID:26503331

  7. Fifteen Novel EIF2B1-5 Mutations Identified in Chinese Children with Leukoencephalopathy with Vanishing White Matter and a Long Term Follow-Up

    PubMed Central

    Zhang, Haihua; Dai, Lifang; Chen, Na; Zang, Lili; Leng, Xuerong; Du, Li; Wang, Jingmin; Jiang, Yuwu; Zhang, Feng; Wu, Xiru; Wu, Ye

    2015-01-01

    Leukoencephalopathy with vanishing white matter (VWM) is one of the most prevalent inherited childhood white matter disorders, which caused by mutations in each of the five subunits of eukaryotic translation initiation factor 2B (EIF2B1-5). In our study, 34 out of the 36 clinically diagnosed children (94%) were identified to have EIF2B1-5 mutations by sequencing. 15 novel mutations were identified. CNVs were not detected in patients with only one mutant allele and mutation-negative determined by gene sequencing. There is a significantly higher incidence of patients with EIF2B3 mutations compared with Caucasian patients (32% vs. 4%). c.1037T>C (p.Ile346Thr) in EIF2B3 was confirmed to be a founder mutation in Chinese, which probably one of the causes of the genotypic differences between ethnicities. Our average 4.4 years-follow-up on infantile, early childhood and juvenile VWM children suggested a rapid deterioration in motor function. Episodic aggravation was presented in 90% of infantile cases and 71.4% of childhood cases. 10 patients died during the follow-up. The Kaplan-Meier curve showed that the median survival time is 8.83 ± 1.51 years. This is the largest sample of children in a VWM follow-up study, which is helpful for a more depth understanding about the natural course. PMID:25761052

  8. Whole Exome Sequencing Identifies Frequent Somatic Mutations in Cell-Cell Adhesion Genes in Chinese Patients with Lung Squamous Cell Carcinoma

    PubMed Central

    Li, Chenguang; Gao, Zhibo; Li, Fei; Li, Xiangchun; Sun, Yihua; Wang, Mengyun; Li, Dan; Wang, Rui; Li, Fuming; Fang, Rong; Pan, Yunjian; Luo, Xiaoyang; He, Jing; Zheng, Liangtao; Xia, Jufeng; Qiu, Lixin; He, Jun; Ye, Ting; Zhang, Ruoxin; He, Minghui; Zhu, Meiling; Hu, Haichuan; Shi, Tingyan; Zhou, Xiaoyan; Sun, Menghong; Tian, Shilin; Zhou, Yong; Wang, Qiaoxiu; Chen, Longyun; Yin, Guangliang; Lu, Jingya; Wu, Renhua; Guo, Guangwu; Li, Yingrui; Hu, Xueda; Li, Lin; Asan, A; Wang, Qin; Yin, Ye; Feng, Qiang; Wang, Bin; Wang, Hang; Wang, Mingbang; Yang, Xiaonan; Zhang, Xiuqing; Yang, Huanming; Jin, Li; Wang, Cun-Yu; Ji, Hongbin; Chen, Haiquan; Wang, Jun; Wei, Qingyi

    2015-01-01

    Lung squamous cell carcinoma (SQCC) accounts for about 30% of all lung cancer cases. Understanding of mutational landscape for this subtype of lung cancer in Chinese patients is currently limited. We performed whole exome sequencing in samples from 100 patients with lung SQCCs to search for somatic mutations and the subsequent target capture sequencing in another 98 samples for validation. We identified 20 significantly mutated genes, including TP53, CDH10, NFE2L2 and PTEN. Pathways with frequently mutated genes included those of cell-cell adhesion/Wnt/Hippo in 76%, oxidative stress response in 21%, and phosphatidylinositol-3-OH kinase in 36% of the tested tumor samples. Mutations of Chromatin regulatory factor genes were identified at a lower frequency. In functional assays, we observed that knockdown of CDH10 promoted cell proliferation, soft-agar colony formation, cell migration and cell invasion, and overexpression of CDH10 inhibited cell proliferation. This mutational landscape of lung SQCC in Chinese patients improves our current understanding of lung carcinogenesis, early diagnosis and personalized therapy. PMID:26503331

  9. Suppressors of the arabidopsis lsd5 cell death mutation identify genes involved in regulating disease resistance responses.

    PubMed Central

    Morel, J B; Dangl, J L

    1999-01-01

    Cell death is associated with the development of the plant disease resistance hypersensitive reaction (HR). Arabidopsis lsd mutants that spontaneously exhibit cell death reminiscent of the HR were identified previously. To study further the regulatory context in which cell death acts during disease resistance, one of these mutants, lsd5, was used to isolate new mutations that suppress its cell death phenotype. Using a simple lethal screen, nine lsd5 cell death suppressors, designated phx (for the mythological bird Phoenix that rises from its ashes), were isolated. These mutants were characterized with respect to their response to a bacterial pathogen and oomycete parasite. The strongest suppressors-phx2, 3, 6, and 11-1-showed complex, differential patterns of disease resistance modifications. These suppressors attenuated disease resistance to avirulent isolates of the biotrophic Peronospora parasitica pathogen, but only phx2 and phx3 altered disease resistance to avirulent strains of Pseudomonas syringae pv tomato. Therefore, some of these phx mutants define common regulators of cell death and disease resistance. In addition, phx2 and phx3 exhibited enhanced disease susceptibility to different virulent pathogens, confirming probable links between the disease resistance and susceptibility pathways. PMID:9872969

  10. Genetic analysis of wild-isolated Neurospora crassa strains identified as dominant suppressors of repeat-induced point mutation.

    PubMed Central

    Bhat, Ashwin; Noubissi, Felicite K; Vyas, Meenal; Kasbekar, Durgadas P

    2003-01-01

    Repeat-induced point mutation (RIP) in Neurospora results in inactivation of duplicated DNA sequences. RIP is thought to provide protection against foreign elements such as retrotransposons, only one of which has been found in N. crassa. To examine the role of RIP in nature, we have examined seven N. crassa strains, identified among 446 wild isolates scored for dominant suppression of RIP. The test system involved a small duplication that targets RIP to the easily scorable gene erg-3. We previously showed that RIP in a small duplication is suppressed if another, larger duplication is present in the cross, as expected if the large duplication competes for the RIP machinery. In two of the strains, RIP suppression was associated with a barren phenotype--a characteristic of Neurospora duplications that is thought to result in part from a gene-silencing process called meiotic silencing by unpaired DNA (MSUD). A suppressor of MSUD (Sad-1) was shown not to prevent known large duplications from impairing RIP. Single-gene duplications also can be barren but are too short to suppress RIP. RIP suppression in strains that were not barren showed inheritance that was either simple Mendelian or complex. Adding copies of the LINE-like retrotransposon Tad did not affect RIP efficiency. PMID:12871906

  11. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism

    PubMed Central

    Miraoui, Hichem; Dwyer, Andrew A.; Sykiotis, Gerasimos P.; Plummer, Lacey; Chung, Wilson; Feng, Bihua; Beenken, Andrew; Clarke, Jeff; Pers, Tune H.; Dworzynski, Piotr; Keefe, Kimberley; Niedziela, Marek; Raivio, Taneli; Crowley, William F.; Seminara, Stephanie B.; Quinton, Richard; Hughes, Virginia A.; Kumanov, Philip; Young, Jacques; Yialamas, Maria A.; Hall, Janet E.; Van Vliet, Guy; Chanoine, Jean-Pierre; Rubenstein, John; Mohammadi, Moosa; Tsai, Pei-San; Sidis, Yisrael; Lage, Kasper; Pitteloud, Nelly

    2013-01-01

    Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ∼12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called “FGF8 synexpression” group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH. PMID:23643382

  12. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism.

    PubMed

    Miraoui, Hichem; Dwyer, Andrew A; Sykiotis, Gerasimos P; Plummer, Lacey; Chung, Wilson; Feng, Bihua; Beenken, Andrew; Clarke, Jeff; Pers, Tune H; Dworzynski, Piotr; Keefe, Kimberley; Niedziela, Marek; Raivio, Taneli; Crowley, William F; Seminara, Stephanie B; Quinton, Richard; Hughes, Virginia A; Kumanov, Philip; Young, Jacques; Yialamas, Maria A; Hall, Janet E; Van Vliet, Guy; Chanoine, Jean-Pierre; Rubenstein, John; Mohammadi, Moosa; Tsai, Pei-San; Sidis, Yisrael; Lage, Kasper; Pitteloud, Nelly

    2013-05-01

    Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ~12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called "FGF8 synexpression" group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH. PMID:23643382

  13. High-Throughput Genotyping in Metastatic Esophageal Squamous Cell Carcinoma Identifies Phosphoinositide-3-Kinase and BRAF Mutations

    PubMed Central

    Maeng, Chi Hoon; Lee, Jeeyun; van Hummelen, Paul; Park, Se Hoon; Palescandolo, Emanuele; Jang, Jiryeon; Park, Ha Young; Kang, So Young; MacConaill, Laura; Kim, Kyoung-Mee; Shim, Young-Mog

    2012-01-01

    Background Given the high incidence of metastatic esophageal squamous cell carcinoma, especially in Asia, we screened for the presence of somatic mutations using OncoMap platform with the aim of defining subsets of patients who may be potential candidate for targeted therapy. Methods and Materials We analyzed 87 tissue specimens obtained from 80 patients who were pathologically confirmed with esophageal squamous cell carcinoma and received 5-fluoropyrimidine/platinum-based chemotherapy. OncoMap 4.0, a mass-spectrometry based assay, was used to interrogate 471 oncogenic mutations in 41 commonly mutated genes. Tumor specimens were prepared from primary cancer sites in 70 patients and from metastatic sites in 17 patients. In order to test the concordance between primary and metastatic sites from the patient for mutations, we analyzed 7 paired (primary-metastatic) specimens. All specimens were formalin-fixed paraffin embedded tissues and tumor content was >70%. Results In total, we have detected 20 hotspot mutations out of 80 patients screened. The most frequent mutation was PIK3CA mutation (four E545K, five H1047R and one H1047L) (N = 10, 11.5%) followed by MLH1 V384D (N = 7, 8.0%), TP53 (R306, R175H and R273C) (N = 3, 3.5%), BRAF V600E (N = 1, 1.2%), CTNNB1 D32N (N = 1, 1.2%), and EGFR P733L (N = 1, 1.2%). Distributions of somatic mutations were not different according to anatomic sites of esophageal cancer (cervical/upper, mid, lower). In addition, there was no difference in frequency of mutations between primary-metastasis paired samples. Conclusions Our study led to the detection of potentially druggable mutations in esophageal SCC which may guide novel therapies in small subsets of esophageal cancer patients. PMID:22870241

  14. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway.

    PubMed

    Li, Maolan; Zhang, Zhou; Li, Xiaoguang; Ye, Junyi; Wu, Xiangsong; Tan, Zhujun; Liu, Chang; Shen, Baiyong; Wang, Xu-An; Wu, Wenguang; Zhou, Daizhan; Zhang, Di; Wang, Ting; Liu, Bingya; Qu, Kai; Ding, Qichen; Weng, Hao; Ding, Qian; Mu, Jiasheng; Shu, Yijun; Bao, Runfa; Cao, Yang; Chen, Peizhan; Liu, Tianyu; Jiang, Lin; Hu, Yunping; Dong, Ping; Gu, Jun; Lu, Wei; Shi, Weibin; Lu, Jianhua; Gong, Wei; Tang, Zhaohui; Zhang, Yong; Wang, Xuefeng; Chin, Y Eugene; Weng, Xiaoling; Zhang, Hong; Tang, Wei; Zheng, Yonglan; He, Lin; Wang, Hui; Liu, Yun; Liu, Yingbin

    2014-08-01

    Individuals with gallbladder carcinoma (GBC), the most aggressive malignancy of the biliary tract, have a poor prognosis. Here we report the identification of somatic mutations for GBC in 57 tumor-normal pairs through a combination of exome sequencing and ultra-deep sequencing of cancer-related genes. The mutation pattern is defined by a dominant prevalence of C>T mutations at TCN sites. Genes with a significant frequency (false discovery rate (FDR)<0.05) of non-silent mutations include TP53 (47.1%), KRAS (7.8%) and ERBB3 (11.8%). Moreover, ErbB signaling (including EGFR, ERBB2, ERBB3, ERBB4 and their downstream genes) is the most extensively mutated pathway, affecting 36.8% (21/57) of the GBC samples. Multivariate analyses further show that cases with ErbB pathway mutations have a worse outcome (P=0.001). These findings provide insight into the somatic mutational landscape in GBC and highlight the key role of the ErbB signaling pathway in GBC pathogenesis. PMID:24997986

  15. Whole exome sequencing identifies a novel NRL mutation in a Chinese family with autosomal dominant retinitis pigmentosa

    PubMed Central

    Gao, Meng; Zhang, Su; Liu, Chunjie; Qin, Yayun; Archacki, Stephen; Jin, Ling; Wang, Yong; Liu, Fei; Chen, Jiaxiang; Liu, Ying; Wang, Jiuxiang; Huang, Mi; Liao, Shengjie; Tang, Zhaohui; Guo, An Yuan; Liu, Mugen

    2016-01-01

    Purpose To investigate the genetic basis and its relationship to the clinical manifestations in a four generation Chinese family with autosomal dominant retinitis pigmentosa. Methods Ophthalmologic examinations including fundus photography, fundus autofluorescence imaging, fundus fluorescein angiography, optical coherence tomography, and a best-corrected visual acuity test were performed to define the clinical features of the patients. We extracted the genomic DNA from peripheral blood samples. The proband’s genomic DNA was submitted to the whole exome sequencing. Results Whole exome sequencing and the subsequent data analysis detected six candidate mutations in the proband of this pedigree. The novel c.146 C>T mutation in NRL was found to be the only mutation that co-segregated with the disease in this pedigree. This mutation resulted in a substitution of proline by a leucine at position 49 of NRL protein (p.P49L). Most importantly, the proline residue at position 49 of NRL is highly conserved from zebrafish to humans. The c.146 C>T mutation was not observed in 200 control individuals. What’s more, we performed the luciferase activity assay to prove that this mutation we detected alters the NRL protein function. Conclusions The c.146 C>T mutation in NRL gene causes autosomal dominant retinitis pigmentosa for this family. Our finding not only expands the mutation spectrum of NRL, but also demonstrates that whole-exome sequencing is a powerful strategy to detect causative genes and mutations in RP patients. This technique may provide a precise diagnosis for rare heterogeneous monogenic disorders such as RP. PMID:27081294

  16. Novel DDR2 mutation identified by whole exome sequencing in a Moroccan patient with spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type.

    PubMed

    Mansouri, Maria; Kayserili, Hülya; Elalaoui, Siham Chafai; Nishimura, Gen; Iida, Aritoshi; Lyahyai, Jaber; Miyake, Noriko; Matsumoto, Naomichi; Sefiani, Abdelaziz; Ikegawa, Shiro

    2016-02-01

    Spondylo-meta-epiphyseal dysplasia (SMED), short limb-abnormal calcification type (SMED, SL-AC), is a very rare autosomal recessive disorder with various skeletal changes characterized by premature calcification leading to severe disproportionate short stature. Twenty-two patients have been reported until now, but only five mutations (four missense and one splice-site) in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene has been identified. We report here a novel DDR2 missense mutation, c.370C > T (p.Arg124Trp) in a Moroccan girl with SMED, SL-AC, identified by whole exome sequencing. Our study has expanded the mutational spectrum of this rare disease and it has shown that exome sequencing is a powerful and cost-effective tool for the diagnosis of clinically heterogeneous disorders such as SMED. © 2015 Wiley Periodicals, Inc. PMID:26463668

  17. A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids.

    PubMed

    Hu, Zhaonong; Du, Yuzhe; Nomura, Yoshiko; Dong, Ke

    2011-01-01

    Voltage-gated sodium channels are the primary target of pyrethroid insecticides. Numerous point mutations in sodium channel genes have been identified in pyrethroid-resistant insect species, and many have been confirmed to reduce or abolish sensitivity of channels expressed in Xenopus oocytes to pyrethroids. Recently, several novel mutations were reported in sodium channel genes of pyrethroid-resistant Aedes mosquito populations. One of the mutations is a phenylalanine (F) to cysteine (C) change in segment 6 of domain III (IIIS6) of the Aedes mosquito sodium channel. Curiously, a previous study showed that alanine substitution of this F did not alter the action of deltamethrin, a type II pyrethroid, on a cockroach sodium channel. In this study, we changed this F to C in a pyrethroid-sensitive cockroach sodium channel and examined mutant channel sensitivity to permethrin as well as five other type I or type II pyrethroids in Xenopus oocytes. Interestingly, the F to C mutation drastically reduced channel sensitivity to three type I pyrethroids, permethrin, NRDC 157 (a deltamethrin analogue lacking the α-cyano group) and bioresemthrin, but not to three type II pyrethroids, cypermethrin, deltamethrin and cyhalothrin. These results confirm the involvement of the F to C mutation in permethrin resistance, and raise the possibility that rotation of type I and type II pyrethroids might be considered in the control of insect pest populations where this particular mutation is present. PMID:20869441

  18. A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids

    PubMed Central

    Hu, Zhaonong; Du, Yuzhe; Nomura, Yoshiko; Dong, Ke

    2010-01-01

    Voltage-gated sodium channels are the primary target of pyrethroid insecticides. Numerous point mutations in sodium channel genes have been identified in pyrethroid-resistant insect species, and many have been confirmed to reduce or abolish sensitivity of channels expressed in Xenopus oocytes to pyrethroids. Recently, several novel mutations were reported in sodium channel genes of pyrethroid-resistant Aedes mosquito populations. One of the mutations is a phenylalanine (F) to cysteine (C) change in segment 6 of domain III (IIIS6) of the Aedes mosquito sodium channel. Curiously, a previous study showed that alanine substitution of this F did not alter the action of deltamethrin, a type II pyrethroid, on a cockroach sodium channel. In this study, we changed this F to C in a pyrethroid-sensitive cockroach sodium channel and examined mutant channel sensitivity to permethrin as well as five other type I or type II pyrethroids in Xenopus oocytes. Interestingly, the F to C mutation drastically reduced channel sensitivity to three type I pyrethroids, permethrin, NRDC 157 (a deltamethrin analogue lacking the α-cyano group) and bioresemthrin, but not to three type II pyrethroids, cypermethrin, deltamethrin and cyhalothrin. These results confirm the involvement of the F to C mutation in permethrin resistance, and raise the possibility that rotation of type I and type II pyrethroids might be considered in the control of insect pest populations where this particular mutation is present. PMID:20869441

  19. Genotyping cancer-associated genes in chordoma identifies mutations in oncogenes and areas of chromosomal loss involving CDKN2A, PTEN, and SMARCB1.

    PubMed

    Choy, Edwin; MacConaill, Laura E; Cote, Gregory M; Le, Long P; Shen, Jacson K; Nielsen, Gunnlaugur P; Iafrate, Anthony J; Garraway, Levi A; Hornicek, Francis J; Duan, Zhenfeng

    2014-01-01

    The molecular mechanisms underlying chordoma pathogenesis are unknown. We therefore sought to identify novel mutations to better understand chordoma biology and to potentially identify therapeutic targets. Given the relatively high costs of whole genome sequencing, we performed a focused genetic analysis using matrix-assisted laser desorption/ionization-time of flight mass spectrometer (Sequenom iPLEX genotyping). We tested 865 hotspot mutations in 111 oncogenes and selected tumor suppressor genes (OncoMap v. 3.0) of 45 human chordoma tumor samples. Of the analyzed samples, seven were identified with at least one mutation. Six of these were from fresh frozen samples, and one was from a paraffin embedded sample. These observations were validated using an independent platform using homogeneous mass extend MALDI-TOF (Sequenom hME Genotyping). These genetic alterations include: ALK (A877S), CTNNB1 (T41A), NRAS (Q61R), PIK3CA (E545K), PTEN (R130), CDKN2A (R58*), and SMARCB1 (R40*). This study reports on the largest comprehensive mutational analysis of chordomas performed to date. To focus on mutations that have the greatest chance of clinical relevance, we tested only oncogenes and tumor suppressor genes that have been previously implicated in the tumorigenesis of more common malignancies. We identified rare genetic changes that may have functional significance to the underlying biology and potential therapeutics for chordomas. Mutations in CDKN2A and PTEN occurred in areas of chromosomal copy loss. When this data is paired with the studies showing 18 of 21 chordoma samples displaying copy loss at the locus for CDKN2A, 17 of 21 chordoma samples displaying copy loss at PTEN, and 3 of 4 chordoma samples displaying deletion at the SMARCB1 locus, we can infer that a loss of heterozygosity at these three loci may play a significant role in chordoma pathogenesis. PMID:24983247

  20. Chemical chaperones protect from effects of apoptosis-inducing mutation in carbonic anhydrase IV identified in retinitis pigmentosa 17.

    PubMed

    Bonapace, Giuseppe; Waheed, Abdul; Shah, Gul N; Sly, William S

    2004-08-17

    Carbonic anhydrase (CA) IV is a glycosylphosphotidylinositol-anchored enzyme highly expressed on the plasma face of microcapillaries and especially strongly expressed in the choriocapillaris of the human eye. In collaboration with scientists at the University of Cape Town (Rondebosch, South Africa), we recently showed that the R14W mutation in the signal sequence of CA IV, which they identified in patients with the retinitis pigmentosa (RP) 17 form of autosomal dominant RP, results in accumulation of unfolded protein in the endoplasmic reticulum (ER), leading to ER stress, the unfolded protein response, and apoptosis in a large fraction of transfected COS-7 cells expressing mutant, but not wild-type, CA IV. Here we present experiments showing that several well characterized CA inhibitors largely prevent the adverse effects of expressing R14W CA IV in transfected COS-7 cells. Specifically, CA inhibitors prevent the accelerated turnover of the mutant protein, the up-regulation of Ig-binding protein, double-stranded RNA-regulated protein kinase-like ER kinase, and CCAAT/enhancer-binding protein homologous protein (markers of the unfolded protein response and ER stress), the inhibition of production of other secretory proteins expressed from COS-7-transfecting plasmids, and the induction of apoptosis, all characteristics of transfected cells expressing R14W CA IV. Furthermore, treatment with 4-phenylbutyric acid, a nonspecific chemical chaperone used in other protein-folding disorders, also dramatically reduces the apoptosis-inducing effect of expressing R14W CA IV cDNA in transfected COS-7 cells. These experiments suggest a promising approach to treatment of RP17 that might delay the onset or possibly prevent this autosomal dominant form of RP. PMID:15295099

  1. A scalable method for molecular network reconstruction identifies properties of targets and mutations in acute myeloid leukemia.

    PubMed

    Ong, Edison; Szedlak, Anthony; Kang, Yunyi; Smith, Peyton; Smith, Nicholas; McBride, Madison; Finlay, Darren; Vuori, Kristiina; Mason, James; Ball, Edward D; Piermarocchi, Carlo; Paternostro, Giovanni

    2015-04-01

    A key aim of systems biology is the reconstruction of molecular networks. We do not yet, however, have networks that integrate information from all datasets available for a particular clinical condition. This is in part due to the limited scalability, in terms of required computational time and power, of existing algorithms. Network reconstruction methods should also be scalable in the sense of allowing scientists from different backgrounds to efficiently integrate additional data. We present a network model of acute myeloid leukemia (AML). In the current version (AML 2.1), we have used gene expression data (both microarray and RNA-seq) from 5 different studies comprising a total of 771 AML samples and a protein-protein interactions dataset. Our scalable network reconstruction method is in part based on the well-known property of gene expression correlation among interacting molecules. The difficulty of distinguishing between direct and indirect interactions is addressed by optimizing the coefficient of variation of gene expression, using a validated gold-standard dataset of direct interactions. Computational time is much reduced compared to other network reconstruction methods. A key feature is the study of the reproducibility of interactions found in independent clinical datasets. An analysis of the most significant clusters, and of the network properties (intraset efficiency, degree, betweenness centrality, and PageRank) of common AML mutations demonstrated the biological significance of the network. A statistical analysis of the response of blast cells from 11 AML patients to a library of kinase inhibitors provided an experimental validation of the network. A combination of network and experimental data identified CDK1, CDK2, CDK4, and CDK6 and other kinases as potential therapeutic targets in AML. PMID:25844667

  2. Exome Sequencing Identifies a Novel FOXP3 Mutation in a 2-Generation Family With Inflammatory Bowel Disease

    PubMed Central

    Okou, David T.; Mondal, Kajari; Faubion, William A.; Kobrynski, Lisa J.; Denson, Lee A.; Mulle, Jennifer G.; Ramachandran, Dhanya; Xiong, Yuning; Svingen, Phyllis; Patel, Viren; Bose, Promita; Waters, Jon P.; Prahalad, Sampath; Cutler, David J.; Zwick, Michael E.; Kugathasan, Subra

    2014-01-01

    Objectives Inflammatory bowel disease (IBD) is heritable, but a total of 163 variants commonly implicated in IBD pathogenesis account for only 25% of the heritability. Rare, highly penetrant genetic variants may also explain mendelian forms of IBD and some of the missing heritability. To test the hypothesis that rare loss-of-function mutations can be causative, we performed whole exome sequencing (WES) on 5 members of a 2-generation family of European ancestry presenting with an early-onset and atypical form of IBD. Methods WES was performed for all of the 5 family members; the mother and 3 male offspring were affected, whereas the father was unaffected. Mapping, annotation, and filtering criteria were used to reduce candidate variants. For functional testing we performed forkhead box P3 (FOXP3) staining and a T-cell suppression assay. Results We identified a novel missense variant in exon 6 of the X-linked FOXP3 gene. The c.694A>C substitution in FOXP3 results in a cysteine-toglycine change at the protein position 232 that is completely conserved among all vertebrates. This variant (heterozygous in the mother and hemizygous in all 3 affected sons) did not impair FOXP3 protein expression, but significantly reduced the ability of the host's T regulatory cells to suppress an inappropriate autoimmune response. The variant results in a milder immune dysregulation, polyendocrinopathy, enteropathy, and X-linked phenotype with early-onset IBD. Conclusions Our study illustrates the successful application of WES for making a definitive molecular diagnosis in a case of multiply affected families, with atypical IBD-like phenotype. Our results also have important implications for disease biology and disease-directed therapeutic development. PMID:24792626

  3. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains

    PubMed Central

    Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-01-01

    Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction. PMID:26984760

  4. Imaging-genomic pipeline for identifying gene mutations using three-dimensional intra-tumor heterogeneity features.

    PubMed

    Ghosh, Payel; Tamboli, Pheroze; Vikram, Raghu; Rao, Arvind

    2015-10-01

    This paper presents an imaging-genomic pipeline to derive three-dimensional intra-tumor heterogeneity features from contrast-enhanced CT images and correlates them with gene mutation status. The pipeline has been demonstrated using CT scans of patients with clear cell renal cell carcinoma (ccRCC) from The Cancer Genome Atlas. About 15% of ccRCC cases reported have BRCA1-associated protein 1 (BAP1) gene alterations that are associated with high tumor grade and poor prognosis. We hypothesized that BAP1 mutation status can be detected using computationally derived image features. The molecular data pertaining to gene mutation status were obtained from the cBioPortal. Correlation of the image features with gene mutation status was assessed using the Mann-Whitney-Wilcoxon rank-sum test. We also used the random forests classifier in the Waikato Environment for Knowledge Analysis software to assess the predictive ability of the computationally derived image features to discriminate cases with BAP1 mutations for ccRCC. Receiver operating characteristics were obtained using a leave-one-out-cross-validation procedure. Our results show that our model can predict BAP1 mutation status with a high degree of sensitivity and specificity. This framework demonstrates a methodology for noninvasive disease biomarker detection from contrast-enhanced CT images. PMID:26839909

  5. A Novel COL4A4 Mutation Identified in a Chinese Family with Thin Basement Membrane Nephropathy

    PubMed Central

    Xu, Yan; Guo, Min; Dong, Hui; Jiang, Wei; Ma, Ruixia; Liu, Shiguo; Li, Shenqian

    2016-01-01

    Thin basement membrane nephropathy (TBMN) is often attributable to mutations in the COL4A3 or COL4A4 genes that encode the α3 and α4 chains of type IV collagen, respectively, a major structural protein in the glomerular basement membrane. The aim of this study was to explore a new disease-related genetic mutation associated with the clinical phenotype observed in a Chinese Han family with autosomal dominant TBMN. We conducted a clinical and genetic study comprising seven members of this TBMN family. Mutation screening for COL4A3 and COL4A4 was carried out by direct sequencing. The RNA sequences associated with both proteins were also analyzed with reverse transcription PCR and TA cloning. The result showed that every affected patient had a novel heterozygous splicing mutation in COL4A4 (c.1459 + 1G > A), which led to the elimination of the entire exon 21 from the COL4A4 cDNA and resulted in the direct splicing of exons 20 and 22. This in turn caused a frameshift mutation after exon 20 in the open reading frame of COL4A4. In conclusion, we describe a novel splicing mutation in COL4A4 that results in TBMN. This analysis increases our understanding of TBMN phenotype-genotype correlations, which should facilitate more accurate diagnosis and prenatal diagnosis of TBMN. PMID:26833262

  6. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.

    PubMed

    Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-01-01

    Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction. PMID:26984760

  7. Wide mutation spectrum and frequent variant Ala27Thr of FBN1 identified in a large cohort of Chinese patients with sporadic TAAD

    PubMed Central

    Guo, Jun; Cai, Lun; Jia, Lixin; Li, Xiaoyan; Xi, Xin; Zheng, Shuai; Liu, Xuxia; Piao, Chunmei; Liu, Tingting; Sun, Zhongsheng; Cai, Tao; Du, Jie

    2015-01-01

    Genetic etiology in majority of patients with sporadic thoracic aortic aneurysm and dissections (STAAD) remains unknown. Recent GWAS study suggested common variant(s) in FBN1 is associated with STAAD. The present study aims to test this hypothesis and to identify mutation spectrum by targeted exome sequencing of the FBN1 gene in 146 unrelated patients with STAAD. Totally, 15.75% of FBN1 variants in STAAD were identified, including 5 disruptive and 18 missense mutations. Most of the variants were novel. Genotype-phenotype correlation analysis suggested that the maximum aortic diameter in the disruptive mutation group was significantly larger than that in the non-Cys missense mutation group. Interestingly, the variant Ala27Thr at ?1 position, which is predicted to change the cleavage site of the signal peptidase of fibrillin-1, was detected in two unrelated patients. Furthermore, genotyping analysis of this variant detected 10 heterozygous Ala27Thr from additional 666 unrelated patients (1.50%), versus 7 from 1500 controls (0.47%), indicating a significant association of this variant with STAAD. Collectively, the identification of the variant Ala27Thr may represent a relatively common genetic predisposition and a novel pathogenetic mechanism for STAAD. Also, expansion of the mutation spectrum in FBN1 will be helpful in genetic counselling for Chinese patients with STAAD. PMID:26272055

  8. Targeted Next Generation Sequencing Identifies Novel Mutations in RP1 as a Relatively Common Cause of Autosomal Recessive Rod-Cone Dystrophy

    PubMed Central

    El Shamieh, Said; Boulanger-Scemama, Elise; Lancelot, Marie-Elise; Antonio, Aline; Dmontant, Vanessa; Condroyer, Christel; Letexier, Mlanie; Saraiva, Jean-Paul; Mohand-Sad, Saddek; Sahel, Jos-Alain; Audo, Isabelle; Zeitz, Christina

    2015-01-01

    We report ophthalmic and genetic findings in families with autosomal recessive rod-cone dystrophy (arRCD) and RP1 mutations. Detailed ophthalmic examination was performed in 242 sporadic and arRCD subjects. Genomic DNA was investigated using our customized next generation sequencing panel targeting up to 123 genes implicated in inherited retinal disorders. Stringent filtering coupled with Sanger sequencing and followed by cosegregation analysis was performed to confirm biallelism and the implication of the most likely disease causing variants. Sequencing identified 9 RP1 mutations in 7 index cases. Eight of the mutations were novel, and all cosegregated with severe arRCD phenotype, found associated with additional macular changes. Among the identified mutations, 4 belong to a region, previously associated with arRCD, and 5 others in a region previously associated with adRCD. Our prevalence studies showed that RP1 mutations account for up to 2.5% of arRCD. These results point out for the necessity of sequencing RP1 when genetically investigating sporadic and arRCD. It further highlights the interest of unbiased sequencing technique, which allows investigating the implication of the same gene in different modes of inheritance. Finally, it reports that different regions of RP1 can also lead to arRCD. PMID:25692139

  9. SNP Linkage Analysis and Whole Exome Sequencing Identify a Novel POU4F3 Mutation in Autosomal Dominant Late-Onset Nonsyndromic Hearing Loss (DFNA15)

    PubMed Central

    Park, Kyoung-Jin; Hong, Sung Hwa; Ki, Chang-Seok; Cho, Sang Sun; Venselaar, Hanka; Vriend, Gert; Kim, Jong-Won

    2013-01-01

    Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3rd alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL. PMID:24260153

  10. Wide mutation spectrum and frequent variant Ala27Thr of FBN1 identified in a large cohort of Chinese patients with sporadic TAAD.

    PubMed

    Guo, Jun; Cai, Lun; Jia, Lixin; Li, Xiaoyan; Xi, Xin; Zheng, Shuai; Liu, Xuxia; Piao, Chunmei; Liu, Tingting; Sun, Zhongsheng; Cai, Tao; Du, Jie

    2015-01-01

    Genetic etiology in majority of patients with sporadic thoracic aortic aneurysm and dissections (STAAD) remains unknown. Recent GWAS study suggested common variant(s) in FBN1 is associated with STAAD. The present study aims to test this hypothesis and to identify mutation spectrum by targeted exome sequencing of the FBN1 gene in 146 unrelated patients with STAAD. Totally, 15.75% of FBN1 variants in STAAD were identified, including 5 disruptive and 18 missense mutations. Most of the variants were novel. Genotype-phenotype correlation analysis suggested that the maximum aortic diameter in the disruptive mutation group was significantly larger than that in the non-Cys missense mutation group. Interestingly, the variant Ala27Thr at -1 position, which is predicted to change the cleavage site of the signal peptidase of fibrillin-1, was detected in two unrelated patients. Furthermore, genotyping analysis of this variant detected 10 heterozygous Ala27Thr from additional 666 unrelated patients (1.50%), versus 7 from 1500 controls (0.47%), indicating a significant association of this variant with STAAD. Collectively, the identification of the variant Ala27Thr may represent a relatively common genetic predisposition and a novel pathogenetic mechanism for STAAD. Also, expansion of the mutation spectrum in FBN1 will be helpful in genetic counselling for Chinese patients with STAAD. PMID:26272055

  11. Complete direct sequencing of the entire AR gene in 45 unrelated patients with androgen insensitivity syndrome: Mutations identified in 32 patients (18 novel mutations), no mutation detected in 13 other patients (29%)

    SciTech Connect

    Mebarki, F.; Forest, M.G.; Josso, N.

    1994-09-01

    The androgen insensivity syndrome (AIS) is a recessive X-linked disorder resulting from a deficient function of the androgen receptor (AR). The human AR gene has 3 functional domains: N-terminal encoded by exon 1, DNA-binding domain encoded by exons 2 and 3, and androgen-binding domain encoded by exons 4 to 8. In order to characterize the molecular defects of the AR gene in AIS, the entire coding regions and the intronic bording sequences of the AR gene were amplified by PCR before automatic direct sequencing in 45 patients. Twenty seven different point mutations were found in 32 unrelated AIS patients: 18 with a complete form (CAIS), 14 with a partial form (PAIS); 18 of these mutations are novel mutations, not published to date. Only 3 mutations were repeatedly found: R804H in 3 families; M780I in 3 families and R774C in 2 families. For 26 patients out of the 32 found to have a mutation, maternal DNA was collected and sequenced: 6 de novo mutations were detected (i.e. 23% of the cases). Finally, no mutation was detected in 13 patients (29%): 7 with CAIS and 6 familial severe PAIS. The latter all presented with perineal hypospadias, micropenis, 4 out of 6 being raised as girl. Diagnosis of AIS in these 13 families in whom no mutation was detected is supported by the following criteria: clinical data, familial history (2 or 3 index cases in the same family), familial segregation of the polymorphic CAG repeat of the AR gene. Mutations in intronic regions or the promoter of the AR gene could not explain all cases of AIS without mutations in the AR coding regions, because AR binding (performed in 9 out of 13) was normal in 6, suggesting the synthesis of an AR protein. This situation led us to speculate that another X-linked factor associated with the AR could be implicated in some cases of AIS.

  12. Whole-exome sequencing identifies a somatic missense mutation of NBN in clear cell sarcoma of the salivary gland.

    PubMed

    Zhang, Lei; Jia, Zhen; Mao, Fengbiao; Shi, Yueyi; Bu, Rong Fa; Zhang, Baorong

    2016-06-01

    Clear cell sarcoma (CCS) is a rare, low-grade carcinoma commonly located in the distal extremities of young adults involving tendons and aponeuroses. CCS is characterized by its poor prognosis due to late diagnosis, multiple local recurrence, propensity to late metastases, and a high rate of tumor-related mortality. The genetic cause for CCS is thought to be EWSR1 gene translocation. However, CCS lacking a translocation may have other, as yet uncharacterized, genetic mutations that can cause the same pathological effect. A combination of whole‑exome sequencing and Sanger sequencing of cancer tissue and venous blood from a patient diagnosed with CCS of the salivary gland revealed a somatic missense mutation, c.1061C>T (p.P354L), in exon 9 of the Nibrin gene (NBN). This somatic missense mutation led to the conversion of proline to leucine (p.P354L), resulting in deleterious effects for the NBN protein. Multiple-sequence alignments showed that codon 354, where the mutation (c.1061C>T) occurs, is located within a phylogenetically conserved region. In conclusion, we here report a somatic missense mutation c.1061C>T (p.P354L) in the NBN gene in a patient with CCS lacking an EWSR1-ATF1 fusion. Our findings broaden the genotypic spectrum of CCS and provide new molecular insight that should prove useful in the future clinical genetic diagnosis of CCS. PMID:27109316

  13. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes.

    PubMed

    Comas, Iñaki; Borrell, Sonia; Roetzer, Andreas; Rose, Graham; Malla, Bijaya; Kato-Maeda, Midori; Galagan, James; Niemann, Stefan; Gagneux, Sebastien

    2012-01-01

    Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts. Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations. Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant M. tuberculosis, the etiologic agent of human tuberculosis (TB). M. tuberculosis strains harboring these compensatory mutations showed a high competitive fitness in vitro. Moreover, these mutations were associated with high fitness in vivo, as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB, more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB. PMID:22179134

  14. Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia

    PubMed Central

    Austin-Tse, Christina; Halbritter, Jan; Zariwala, Maimoona A.; Gilberti, Renée M.; Gee, Heon Yung; Hellman, Nathan; Pathak, Narendra; Liu, Yan; Panizzi, Jennifer R.; Patel-King, Ramila S.; Tritschler, Douglas; Bower, Raqual; O’Toole, Eileen; Porath, Jonathan D.; Hurd, Toby W.; Chaki, Moumita; Diaz, Katrina A.; Kohl, Stefan; Lovric, Svjetlana; Hwang, Daw-Yang; Braun, Daniela A.; Schueler, Markus; Airik, Rannar; Otto, Edgar A.; Leigh, Margaret W.; Noone, Peadar G.; Carson, Johnny L.; Davis, Stephanie D.; Pittman, Jessica E.; Ferkol, Thomas W.; Atkinson, Jeffry J.; Olivier, Kenneth N.; Sagel, Scott D.; Dell, Sharon D.; Rosenfeld, Margaret; Milla, Carlos E.; Loges, Niki T.; Omran, Heymut; Porter, Mary E.; King, Stephen M.; Knowles, Michael R.; Drummond, Iain A.; Hildebrandt, Friedhelm

    2013-01-01

    Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65. PMID:24094744

  15. Lampe1: An ENU-Germline Mutation Causing Spontaneous Hepatosteatosis Identified through Targeted Exon-Enrichment and Next-Generation Sequencing

    PubMed Central

    Shanmukhappa, Shiva Kumar; Putnam, Patrick; Keddache, Mehdi; Divanovic, Senad; Bezerra, Jorge; Hoebe, Kasper

    2011-01-01

    Using a small scale ENU mutagenesis approach we identified a recessive germline mutant, designated Lampe1 that exhibited growth retardation and spontaneous hepatosteatosis. Low resolution mapping based on 20 intercrossed Lampe1 mice revealed linkage to a ∼14 Mb interval on the distal site of chromosome 11 containing a total of 285 genes. Exons and 50 bp flanking sequences within the critical region were enriched with sequence capture microarrays and subsequently analyzed by next-generation sequencing. Using this approach 98.1 percent of the targeted DNA was covered with a depth of 10 or more reads per nucleotide and 3 homozygote mutations were identified. Two mutations represented intronic nucleotide changes whereas one mutation affected a splice donor site in intron 11–12 of Palmitoyl Acetyl-coenzyme A oxygenase-1 (Acox1), causing skipping of exon 12. Phenotyping of Acox1Lampe1 mutants revealed a progression from hepatosteatosis to steatohepatitis, and ultimately hepatocellular carcinoma. The current approach provides a highly efficient and affordable method to identify causative mutations induced by ENU mutagenesis and animal models relevant to human pathology. PMID:21760938

  16. A novel hemizygous SACS mutation identified by whole exome sequencing and SNP array analysis in a Chinese ARSACS patient.

    PubMed

    Liu, L; Li, X B; Zi, X H; Shen, L; Hu, Zh M; Huang, Sh X; Yu, D L; Li, H B; Xia, K; Tang, B S; Zhang, R X

    2016-03-15

    The array of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) has expanded worldwide after the first description in the Charlevoix-Saguenay region of Québec. Here, we report a Chinese ARSACS patient presenting progressive peripheral neuropathy (CMTNS2=15) with horizontal gaze nystagmus and mild spastic gait. Genetic studies including whole exome sequencing (WES), Sanger sequencing and single nucleotide polymorphism (SNP) array analysis revealed a novel hemizygous nonsense mutation (c.11803C>T, p.Gln3935X) of SACS and a 1.33Mb deletion involved in SACS on chromosome 13q12.12 in the patient. Our findings highlight the necessity of SACS mutation screening in the gene panel of inherited peripheral neuropathies, and stress the need of testing copy number variation (CNV) in SACS mutation screening. PMID:26944128

  17. Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound.

    PubMed

    Sekine, Yusuke; Zyryanova, Alisa; Crespillo-Casado, Ana; Fischer, Peter M; Harding, Heather P; Ron, David

    2015-05-29

    The integrated stress response (ISR) modulates messenger RNA translation to regulate the mammalian unfolded protein response (UPR), immunity, and memory formation. A chemical ISR inhibitor, ISRIB, enhances cognitive function and modulates the UPR in vivo. To explore mechanisms involved in ISRIB action, we screened cultured mammalian cells for somatic mutations that reversed its effect on the ISR. Clustered missense mutations were found at the amino-terminal portion of the delta subunit of guanine nucleotide exchange factor (GEF) eIF2B. When reintroduced by CRISPR-Cas9 gene editing of wild-type cells, these mutations reversed both ISRIB-mediated inhibition of the ISR and its stimulatory effect on eIF2B GEF activity toward its substrate, the translation initiation factor eIF2, in vitro. Thus, ISRIB targets an interaction between eIF2 and eIF2B that lies at the core of the ISR. PMID:25858979

  18. A novel homozygous splice site mutation in NALCN identified in siblings with cachexia, strabismus, severe intellectual disability, epilepsy and abnormal respiratory rhythm.

    PubMed

    Gal, Moran; Magen, Daniella; Zahran, Younan; Ravid, Sarit; Eran, Ayelet; Khayat, Morad; Gafni, Chen; Levanon, Erez Y; Mandel, Hanna

    2016-04-01

    We studied three siblings, born to consanguineous parents who presented with severe intellectual disability, cachexia, strabismus, seizures and episodes of abnormal respiratory rhythm. Whole exome sequencing led to identification of a novel homozygous splice site mutation, IVS29-1G > A in the NALCN gene, that resulted in aberrant transcript in the patients. NALCN encodes a voltage-independent cation channel, involved in regulation of neuronal excitability. Three homozygous mutations in the NALCN gene were previously identified in only eight patients with severe hypotonia, speech impairment, cognitive delay, constipation and Infantile-Neuroaxonal-dystrophy- like symptoms. Our patients broaden the clinical spectrum associated with recessive mutations in NALCN, featuring also disrupted respiratory rhythm mimicking homozygous Nalcn knockout mice. PMID:26923739

  19. Secondary Variants in Individuals Undergoing Exome Sequencing: Screening of 572 Individuals Identifies High-Penetrance Mutations in Cancer-Susceptibility Genes

    PubMed Central

    Johnston, Jennifer J.; Rubinstein, Wendy S.; Facio, Flavia M.; Ng, David; Singh, Larry N.; Teer, Jamie K.; Mullikin, James C.; Biesecker, Leslie G.

    2012-01-01

    Genome- and exome-sequencing costs are continuing to fall, and many individuals are undergoing these assessments as research participants and patients. The issue of secondary (so-called incidental) findings in exome analysis is controversial, and data are needed on methods of detection and their frequency. We piloted secondary variant detection by analyzing exomes for mutations in cancer-susceptibility syndromes in subjects ascertained for atherosclerosis phenotypes. We performed exome sequencing on 572 ClinSeq participants, and in 37 genes, we interpreted variants that cause high-penetrance cancer syndromes by using an algorithm that filtered results on the basis of mutation type, quality, and frequency and that filtered mutation-database entries on the basis of defined categories of causation. We identified 454 sequence variants that differed from the human reference. Exclusions were made on the basis of sequence quality (26 variants) and high frequency in the cohort (77 variants) or dbSNP (17 variants), leaving 334 variants of potential clinical importance. These were further filtered on the basis of curation of literature reports. Seven participants, four of whom were of Ashkenazi Jewish descent and three of whom did not meet family-history-based referral criteria, had deleterious BRCA1 or BRCA2 mutations. One participant had a deleterious SDHC mutation, which causes paragangliomas. Exome sequencing, coupled with multidisciplinary interpretation, detected clinically important mutations in cancer-susceptibility genes; four of such mutations were in individuals without a significant family history of disease. We conclude that secondary variants of high clinical importance will be detected at an appreciable frequency in exomes, and we suggest that priority be given to the development of more efficient modes of interpretation with trials in larger patient groups. PMID:22703879

  20. G-protein alpha o subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity.

    PubMed Central

    Thomas, T C; Schmidt, C J; Neer, E J

    1993-01-01

    The reversible association of alpha and beta gamma subunits of GTP-binding proteins is important for signal transmission from a variety of cell-surface receptors to intracellular effectors. Previous work showed that 1,6-bis(maleimido)hexane, which crosslinks cysteine residues, crosslinks alpha o and alpha i-1 to beta gamma. These crosslinks are likely to form through a conserved cysteine because 1,6-bis(maleimido)hexane can also crosslink alpha i-2, alpha 1, alpha s and Drosophila alpha 1 to give products of the same apparent molecular weight as crosslinked alpha o beta gamma and alpha i-1 beta gamma. These proteins have only two cysteines in common. Therefore, we mutated each of the two conserved cysteines of alpha o to alanines. Mutation of Cys215 prevents crosslinking to beta gamma, but does not affect binding of guanosine 5'-[gamma-thio]triphosphate or the ability of the mutated alpha subunit to bind beta gamma. In models of the alpha subunit based on the crystal structure of p21ras, Cys215 is located on the face opposite to the GTP-binding site and near an area that changes conformation depending on the nucleotide bound. This surface on the alpha subunit overlaps a putative effector binding region, raising important questions about the spatial organization of the proteins as they form ternary complexes. Mutation of Cys325 has no effect on crosslinking but, surprisingly, decreases by a factor of 10 the affinity of the mutated protein for GDP, relative to wild type, without changing the affinity for guanosine 5'-[gamma-thio]triphosphate. This mutation falls within a region thought to contact receptors and may represent a site through which receptors enhance the release of GDP. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8234290

  1. STK11/LKB1 germline mutations in the first Peutz-Jeghers syndrome patients identified in Slovakia.

    PubMed

    Bartosova, Z; Zavodna, K; Krivulcik, T; Usak, J; Mlkva, I; Kruzliak, T; Hromec, J; Usakova, V; Kopecka, I; Veres, P; Bartosova, Z; Bujalkova, M

    2007-01-01

    Peutz-Jeghers syndrome (PJS) is characterized by number of hamartomatous polyps in the gastrointestinal tract and by mucocutaneous hypermelanocytic lesions at different sites. Older patients have an increased risk of the cancers of small intestine, stomach, pancreas, colon, esophagus, ovary, testis, uterus, breast and lung. In majority of PJS cases, the germline mutations in serine/threonine kinase STK11/LKB1 gene were found to be associated with disease. Here we report the results of a first mutational screen of STK11/LKB1 in PJS patients characterized in Slovak population. The first patient with unusual carcinoma of duodenum was a sporadic case and carried c.842delC change residing in a mutational C6 repeat hotspot. Neither the polyp nor the tumor of the patient displayed the loss of heterozygosity at the site of mutation suggesting different mechanism involved in the formation of polyp and tumor in this case. The second patient belonged to a three-generation family with typical PJS features but not cancers. Interestingly, the patient displayed concomitant occurrence of adenomatous and hamartomatous polyps. Molecular analysis revealed an IVS2+1A>G mutation that alters the second intron 5' splice site and was shown to lead to aberrant splicing mediated by the U12-dependent spliceosome. The same mutation was present in the 9 affected members of the family but in none of their normal relatives. We also observed novel c. IVS2+61G>A unclassified variant, and recurrent IVS2+24G>T and 3UTR+129C>T polymorphisms. Based on the achieved results, we could offer predictive genetic testing and counseling to other members of the patient's families. PMID:17319781

  2. Positive Selection for Loss-of-Function tat Mutations Identifies Critical Residues Required for TatA Activity

    PubMed Central

    Hicks, Matthew G.; Lee, Philip A.; Georgiou, George; Berks, Ben C.; Palmer, Tracy

    2005-01-01

    The Tat system, found in the cytoplasmic membrane of many bacteria, is a general export pathway for folded proteins. Here we describe the development of a method, based on the transport of chloramphenicol acetyltransferase, that allows positive selection of mutants defective in Tat function. We have demonstrated the utility of this method by selecting novel loss-of-function alleles of tatA from a pool of random tatA mutations. Most of the mutations that were isolated fall in the amphipathic region of TatA, emphasizing the pivotal role that this part of the protein plays in TatA function. PMID:15805540

  3. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations.

    PubMed

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes. PMID:23991204

  4. Candidate Gene Analysis of Tooth Agenesis Identifies Novel Mutations in Six Genes and Suggests Significant Role for WNT and EDA Signaling and Allele Combinations

    PubMed Central

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes. PMID:23991204

  5. Whole-exome and targeted sequencing identify ROBO1 and ROBO2 mutations as progression-related drivers in myelodysplastic syndromes

    PubMed Central

    Xu, Feng; Wu, Ling-Yun; Chang, Chun-Kang; He, Qi; Zhang, Zheng; Liu, Li; Shi, Wen-Hui; Guo, Juan; Zhu, Yang; Zhao, You-Shan; Gu, Shu-Cheng; Fei, Cheng-Ming; Wu, Dong; Zhou, Li-Yu; Su, Ji-Ying; Song, Lu-Xi; Xiao, Chao; Li, Xiao

    2015-01-01

    The progressive mechanism underlying myelodysplastic syndrome remains unknown. Here we identify ROBO1 and ROBO2 as novel progression-related somatic mutations using whole-exome and targeted sequencing in 6 of 16 (37.5%) paired MDS patients with disease progression. Further deep sequencing detects 20 (10.4%) patients with ROBO mutations in a cohort of 193 MDS patients. In addition, copy number loss and loss of heterogeneity (LOH) of ROBO1 and ROBO2 are frequently observed in patients with progression or carrying ROBO mutations. In in vitro experiments, overexpression of ROBO1 or ROBO2 produces anti-proliferative and pro-apoptotic effects in leukaemia cells. However, this effect was lost in ROBO mutants and ROBO-SLIT2 signalling is impaired. Multivariate analysis shows that ROBO mutations are independent factors for predicting poor survival. These findings demonstrate a novel contribution of ROBO mutations to the pathogenesis of MDS and highlight a key role for ROBO-SLIT2 signalling in MDS disease progression. PMID:26608094

  6. GLYCOSYLATION OF THE OCTN2 CARNITINE TRANSPORTER: STUDY OF NATURAL MUTATIONS IDENTIFIED IN PATIENTS WITH PRIMARY CARNITINE DEFICIENCY

    PubMed Central

    di San Filippo, Cristina Amat; Ardon, Orly; Longo, Nicola

    2010-01-01

    Primary carnitine deficiency is caused by impaired activity of the Na+-dependent OCTN2 carnitine/organic cation transporter. Carnitine is essential for entry of long-chain fatty acids into mitochondria and its deficiency impairs fatty acid oxidation. Most missense mutations identified in patients with primary carnitine deficiency affect putative transmembrane or intracellular domains of the transporter. Exceptions are the substitutions P46S and R83L located in an extracellular loop close to putative glycosylation sites (N57, N64, and N91) of OCTN2. P46S and R83L impaired glycosylation and maturation of OCTN2 transporters to the plasma membrane. We tested whether glycosylation was essential for the maturation of OCTN2 transporters to the plasma membrane. Substitution of each of the 3 asparagine (N) glycosylation sites with glutamine (Q) decreased carnitine transport. Substitution of two sites at a time caused a further decline in carnitine transport that was fully abolished when all three glycosylation sites were substituted by glutamine (N57Q/N64Q/N91Q). Kinetic analysis of carnitine and sodium-stimulated carnitine transport indicated that all substitutions decreased the Vmax for carnitine transport, but N64Q/N91Q also significantly increased the Km toward carnitine, indicating that these two substitutions affected regions of the transporter important for substrate recognition. Western blot analysis confirmed increased mobility of OCTN2 transporters with progressive substitutions of asparagines 57, 64 and/or 91 with glutamine. Confocal microscopy indicated that glutamine substitutions caused progressive retention of OCTN2 transporters in the cytoplasm, up to full retention (such as that observed with R83L) when all 3 glycosylation sites were substituted. Tunicamycin prevented OCTN2 glycosylation, but it did not impair maturation to the plasma membrane. These results indicate that OCTN2 is physiologically glycosylated and that the P46S and R83L substitutions impair this process. Glycosylation does not affect maturation of OCTN2 transporters to the plasma membrane, but the 3 asparagines that are normally glycosylated are located in a region important for substrate recognition and turnover rate. PMID:21126579

  7. Glycosylation of the OCTN2 carnitine transporter: study of natural mutations identified in patients with primary carnitine deficiency.

    PubMed

    Filippo, Cristina Amat di San; Ardon, Orly; Longo, Nicola

    2011-03-01

    Primary carnitine deficiency is caused by impaired activity of the Na(+)-dependent OCTN2 carnitine/organic cation transporter. Carnitine is essential for entry of long-chain fatty acids into mitochondria and its deficiency impairs fatty acid oxidation. Most missense mutations identified in patients with primary carnitine deficiency affect putative transmembrane or intracellular domains of the transporter. Exceptions are the substitutions P46S and R83L located in an extracellular loop close to putative glycosylation sites (N57, N64, and N91) of OCTN2. P46S and R83L impaired glycosylation and maturation of OCTN2 transporters to the plasma membrane. We tested whether glycosylation was essential for the maturation of OCTN2 transporters to the plasma membrane. Substitution of each of the three asparagine (N) glycosylation sites with glutamine (Q) decreased carnitine transport. Substitution of two sites at a time caused a further decline in carnitine transport that was fully abolished when all three glycosylation sites were substituted by glutamine (N57Q/N64Q/N91Q). Kinetic analysis of carnitine and sodium-stimulated carnitine transport indicated that all substitutions decreased the Vmax for carnitine transport, but N64Q/N91Q also significantly increased the Km toward carnitine, indicating that these two substitutions affected regions of the transporter important for substrate recognition. Western blot analysis confirmed increased mobility of OCTN2 transporters with progressive substitutions of asparagines 57, 64 and/or 91 with glutamine. Confocal microscopy indicated that glutamine substitutions caused progressive retention of OCTN2 transporters in the cytoplasm, up to full retention (such as that observed with R83L) when all three glycosylation sites were substituted. Tunicamycin prevented OCTN2 glycosylation, but it did not impair maturation to the plasma membrane. These results indicate that OCTN2 is physiologically glycosylated and that the P46S and R83L substitutions impair this process. Glycosylation does not affect maturation of OCTN2 transporters to the plasma membrane, but the 3 asparagines that are normally glycosylated are located in a region important for substrate recognition and turnover rate. PMID:21126579

  8. Glycosylation of the OCTN2 carnitine transporter: study of natural mutations identified in patients with primary carnitine deficiency.

    TOXLINE Toxicology Bibliographic Information

    Filippo CA; Ardon O; Longo N

    2011-03-01

    Primary carnitine deficiency is caused by impaired activity of the Na(+)-dependent OCTN2 carnitine/organic cation transporter. Carnitine is essential for entry of long-chain fatty acids into mitochondria and its deficiency impairs fatty acid oxidation. Most missense mutations identified in patients with primary carnitine deficiency affect putative transmembrane or intracellular domains of the transporter. Exceptions are the substitutions P46S and R83L located in an extracellular loop close to putative glycosylation sites (N57, N64, and N91) of OCTN2. P46S and R83L impaired glycosylation and maturation of OCTN2 transporters to the plasma membrane. We tested whether glycosylation was essential for the maturation of OCTN2 transporters to the plasma membrane. Substitution of each of the three asparagine (N) glycosylation sites with glutamine (Q) decreased carnitine transport. Substitution of two sites at a time caused a further decline in carnitine transport that was fully abolished when all three glycosylation sites were substituted by glutamine (N57Q/N64Q/N91Q). Kinetic analysis of carnitine and sodium-stimulated carnitine transport indicated that all substitutions decreased the Vmax for carnitine transport, but N64Q/N91Q also significantly increased the Km toward carnitine, indicating that these two substitutions affected regions of the transporter important for substrate recognition. Western blot analysis confirmed increased mobility of OCTN2 transporters with progressive substitutions of asparagines 57, 64 and/or 91 with glutamine. Confocal microscopy indicated that glutamine substitutions caused progressive retention of OCTN2 transporters in the cytoplasm, up to full retention (such as that observed with R83L) when all three glycosylation sites were substituted. Tunicamycin prevented OCTN2 glycosylation, but it did not impair maturation to the plasma membrane. These results indicate that OCTN2 is physiologically glycosylated and that the P46S and R83L substitutions impair this process. Glycosylation does not affect maturation of OCTN2 transporters to the plasma membrane, but the 3 asparagines that are normally glycosylated are located in a region important for substrate recognition and turnover rate.

  9. Next-generation sequencing to dissect hereditary nephrotic syndrome in mice identifies a hypomorphic mutation in Lamb2 and models Pierson’s syndrome

    PubMed Central

    Bull, Katherine R; Mason, Thomas; Rimmer, Andrew J; Crockford, Tanya L; Silver, Karlee L; Bouriez-Jones, Tiphaine; Hough, Tertius A; Chaudhry, Shirine; Roberts, Ian SD; Goodnow, Christopher C; Cornall, Richard J

    2013-01-01

    The study of mutations causing the steroid-resistant nephrotic syndrome in children has greatly advanced our understanding of the kidney filtration barrier. In particular, these genetic variants have illuminated the roles of the podocyte, glomerular basement membrane and endothelial cell in glomerular filtration. However, in a significant number of familial and early onset cases, an underlying mutation cannot be identified, indicating that there are likely to be multiple unknown genes with roles in glomerular permeability. We now show how the combination of N-ethyl-N-nitrosourea mutagenesis and next-generation sequencing could be used to identify the range of mutations affecting these pathways. Using this approach, we isolated a novel mouse strain with a viable nephrotic phenotype and used whole-genome sequencing to isolate a causative hypomorphic mutation in Lamb2. This discovery generated a model for one part of the spectrum of human Pierson’s syndrome and provides a powerful proof of principle for accelerating gene discovery and improving our understanding of inherited forms of renal disease. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd PMID:24293254

  10. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive parkinsonism with generalized seizures

    PubMed Central

    Krebs, Catharine E.; Karkheiran, Siamak; Powell, James C.; Cao, Mian; Makarov, Vladimir; Darvish, Hossein; Di Paolo, Gilbert; Walker, Ruth H.; Shahidi, Gholam Ali; Buxbaum, Joseph D.; De Camilli, Pietro; Yue, Zhenyu; Paisán-Ruiz, Coro

    2013-01-01

    This study aimed to elucidate the genetic causes underlying early-onset parkinsonism (EOP) in a consanguineous Iranian family. To attain this, homozygosity mapping and whole-exome sequencing were performed. As a result, a homozygous mutation (c.773G>A; p.Arg258Gln) lying within the NH2-terminal Sac1-like inositol phosphatase domain of polyphosphoinositide phosphatase synaptojanin 1 (SYNJ1), which has been implicated in the regulation of endocytic traffic at synapses, was identified as the disease-segregating mutation. This mutation impaired the phosphatase activity SYNJ1 against its Sac1 domain substrates in vitro. We concluded that the SYNJ1 mutation identified here is responsible for the EOP phenotype seen in our patients probably due to deficiencies in its phosphatase activity and consequent impairment of its synaptic functions. Our finding not only opens new avenues of investigation in the synaptic dysfunction mechanisms associated with parkinsonism, but also suggests phosphoinositide metabolism as a novel therapeutic target for parkinsonism. PMID:23804563

  11. Newly identified mutations at the CSN1S1 gene in Ethiopian goats affect casein content and coagulation properties of their milk.

    PubMed

    Mestawet, T A; Girma, A; Adny, T; Devold, T G; Vegarud, G E

    2013-08-01

    Very high casein content and good coagulation properties previously observed in some Ethiopian goat breeds led to investigating the ?s1-casein (CSN1S1) gene in these breeds. Selected regions of the CSN1S1 gene were sequenced in 115 goats from 5 breeds (2 indigenous: Arsi-Bale and Somali, 1 exotic: Boer, and 2 crossbreeds: Boer Arsi-Bale and Boer Somali). The DNA analysis resulted in 35 new mutations: 3 in exons, 3 in the 5' untranslated region (UTR), and 29 in the introns. The mutations in exons that resulted in an amino acid shift were then picked to evaluate their influence on individual casein content (?s1-, ?s2-, ?-, and ?-CN), micellar size, and coagulation properties in the milk from the 5 goat breeds. A mutation at nucleotide 10657 (exon 10) involved a transversion: CAG?CCG, resulting in an amino acid exchange Gln77?Pro77. This mutation was associated with the indigenous breeds only. Two new mutations, at nucleotide 6072 (exon 4) and 12165 (exon 12), revealed synonymous transitions: GTC?GTT in Val15 and AGA?AGG in Arg100 of the mature protein. Transitions G?A and C?T at nucleotides 1374 and 1866, respectively, occurred in the 5' UTR, whereas the third mutation involved a transversion T?G at nucleotide location 1592. The goats were grouped into homozygote new (CC), homozygote reference (AA), and heterozygote (CA) based on the nucleotide that involved the transversion. The content of ?s1-CN (15.32g/kg) in milk samples of goats homozygous (CC) for this newly identified mutation, Gln77?Pro77 was significantly higher than in milks of heterozygous (CA; 9.05g/kg) and reference (AA; 7.61g/kg) genotype animals. The ?s2-, ?-, and ?-CN contents showed a similar pattern. Milk from goats with a homozygous new mutation had significantly lower micellar size. Milk from both homozygote and heterozygote new-mutation goats had significantly shorter coagulation rate and stronger gel than the reference genotype. Except the transversion, the sequence corresponded to allele A and presumably derived from it. Therefore, this allele is denoted by A3. All goats from the reference genotype (AA) were homozygous for the allele at nucleotide position 1374 and 1866, whereas all mutations in the 5' UTR existed in a heterozygous form in both heterozygous (CA) and the new mutation (CC) genotype. The newly identified mutation (CC) detected in some of the goat breeds is, therefore, important in selection for genetic improvement and high-quality milk for the emerging goat cheese-producing industries. The finding will also benefit farmers raising these goat breeds due to the increased selling price of goats. Further studies should investigate the effect of this amino acid exchange on the secondary and tertiary structure of the ?s1-CN molecule and on the susceptibility of peptide hydrolysis by digestive enzymes. PMID:23706484

  12. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa

    PubMed Central

    Méndez-Vidal, Cristina; González-del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J.; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud

    2013-01-01

    Purpose Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. Methods We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Results Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Conclusions Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data reinforce the clinical role of WES in the molecular diagnosis of highly heterogeneous genetic diseases where conventional genetic approaches have previously failed in achieving a proper diagnosis. PMID:24227914

  13. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    PubMed

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy. PMID:20363167

  14. Genomic Analysis of hESC Pedigrees Identifies De Novo Mutations and Enables Determination of the Timing and Origin of Mutational Events

    PubMed Central

    Ben-Yosef, Dalit; Boscolo, Francesca S.; Amir, Hadar; Malcov, Mira; Amit, Ami; Laurent, Louise C.

    2013-01-01

    Summary Given the association between mutational load and cancer, the observation that genetic aberrations are frequently found in human pluripotent stem cells (hPSCs) is of concern. Prior studies in human induced pluripotent stem cells (hiPSCs) have shown that deletions and regions of loss of heterozygosity (LOH) tend to arise during reprogramming and early culture, whereas duplications more frequently occur during long-term culture. For the corresponding experiments in human embryonic stem cells (hESCs), we studied two sets of hESC lines: one including the corresponding parental DNA and the other generated from single blastomeres from four sibling embryos. Here, we show that genetic aberrations observed in hESCs can originate during preimplantation embryo development and/or early derivation. These early aberrations are mainly deletions and LOH, whereas aberrations arising during long-term culture of hESCs are more frequently duplications. Our results highlight the importance of close monitoring of genomic integrity and the development of improved methods for derivation and culture of hPSCs. PMID:24035391

  15. Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies.

    PubMed

    Kondo, Yukiko; Koshimizu, Eriko; Megarbane, Andre; Hamanoue, Haruka; Okada, Ippei; Nishiyama, Kiyomi; Kodera, Hirofumi; Miyatake, Satoko; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Doi, Hiroshi; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-07-01

    Microphthalmia with limb anomalies (MLA), also known as Waardenburg anophthalmia syndrome or ophthalmoacromelic syndrome, is a rare autosomal recessive disorder. Recently, we and others successfully identified SMOC1 as the causative gene for MLA. However, there are several MLA families without SMOC1 abnormality, suggesting locus heterogeneity in MLA. We aimed to identify a pathogenic mutation in one Lebanese family having an MLA-like condition without SMOC1 mutation by whole-exome sequencing (WES) combined with homozygosity mapping. A c.683C>T (p.Thr228Met) in FNBP4 was found as a primary candidate, drawing the attention that FNBP4 and SMOC1 may potentially modulate BMP signaling. PMID:23703728

  16. Congenital hypothyroidism and thyroid dyshormonogenesis: a case report of siblings with a newly identified mutation in thyroperoxidase

    PubMed Central

    Sparling, David P.; Fabian, Kendra; Harik, Lara; Jobanputra, Vaidehi; Anyane-Yeboa, Kwame; Oberfield, Sharon E.; Fennoy, Ilene

    2016-01-01

    Background Thyroid dyshormonogenesis continues to be a significant cause of congenital hypothyroidism. Over time, forms of thyroid dyshormonogenesis can result in goiter, which can lead to difficult management decisions as the pathologic changes can both mimic or lead to thyroid cancer. Methods Herein we describe the cases of two brothers diagnosed with congenital hypothyroidism, with initial findings consistent with thyroid dyshormonogenesis. One brother eventually developed multinodular goiter with complex pathology on biopsy, resulting in thyroidectomy. Results Whole exome sequencing revealed the brothers carry a novel frameshift mutation in thyroperoxidase; the mutation, while not previously described, was likely both deleterious and pathogenic. Conlcusions These cases highlight the complex pathology that can occur within thyroid dyshormonogenesis, with similar appearance to possible thyroid cancer, leading to complex management decisions. They also highlight the role that a genetic diagnosis can play in interpreting the impact of dyshormonogenesis on nodular thyroid development, and the need for long-term follow-up in these patients. PMID:26894573

  17. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation

    PubMed Central

    Jordan, Jennifer J.; Inga, Alberto; Conway, Kathleen; Edmiston, Sharon; Carey, Lisa A.; Wu, Lin; Resnick, Michael A.

    2010-01-01

    Mutations of the sequence-specific master regulator p53 that alter transactivation function from promoter response elements (REs) could result in changes in the strength of gene activation or spectra of genes regulated. Such mutations in this tumor suppressor might lead to dramatic phenotypic changes and diversification of cell responses to stress. We have determined “functional fingerprints” of sporadic breast cancer-related p53 mutants many of which are also associated with familial cancer proneness such as the Li-Fraumeni Syndrome and germline BRCA1/2 mutant-associated cancers. The ability of p53, wild type and mutants, to transactivate from 11 human target REs has been assessed at variable expression levels using a cellular, isogenomic yeast model system that allows for the rapid analysis of p53 function using a qualitative and a quantitative reporter. Among 50 missense mutants, 29 were classified as loss-of-function. The remaining 21 retained transactivation towards at least one RE. At high levels of galactose induced p53 expression, 12/21 mutants that retain transactivation appeared similar to WT. When the level of galactose was reduced, transactivation defects could be revealed suggesting that some breast cancer related mutants can have subtle changes in transcription. These findings have been compared with clinical data from an ongoing neoadjuvant chemotherapy treatment trial for locally advanced breast tumors. The functional and nonfunctional missense mutations may distinguish tumors in terms of demographics, appearance and relapse, implying that heterogeneity in the functionality of specific p53 mutations could impact clinical behavior and outcome. PMID:20407015

  18. APOA5 Q97X Mutation Identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family

    PubMed Central

    2012-01-01

    Background Severe hypertriglyceridemia (HTG) has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis) were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family. Methods We carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel). Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives. Results A large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter) found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls. Conclusion The Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean family. PMID:23151256

  19. Diagnostic exome sequencing identifies two novel IQSEC2 mutations associated with X-linked intellectual disability with seizures: implications for genetic counseling and clinical diagnosis.

    PubMed

    Gandomi, Stephanie K; Farwell Gonzalez, K D; Parra, M; Shahmirzadi, L; Mancuso, J; Pichurin, P; Temme, R; Dugan, S; Zeng, W; Tang, Sha

    2014-06-01

    Intellectual disability is a heterogeneous disorder with a wide phenotypic spectrum. Over 1,700 OMIM genes have been associated with this condition, many of which reside on the X-chromosome. The IQSEC2 gene is located on chromosome Xp11.22 and is known to play a significant role in the maintenance and homeostasis of the brain. Mutations in IQSEC2 have been historically associated with nonsyndromic X-linked intellectual disability. Case reports of affected probands show phenotypic overlap with conditions associated with pathogenic MECP2, FOXG1, CDKL5, and MEF2C gene mutations. Affected individuals, however, have also been identified as presenting with additional clinical features including seizures, autistic-behavior, psychiatric problems, and delayed language skills. To our knowledge, only 5 deleterious mutations and 2 intragenic duplications have been previously reported in IQSEC2. Here we report two novel IQSEC2 de novo truncating mutations identified through diagnostic exome sequencing in two severely affected unrelated male probands manifesting developmental delay, seizures, hypotonia, plagiocephaly, and abnormal MRI findings. Overall, diagnostic exome sequencing established a molecular diagnosis for two patients in whom traditional testing methods were uninformative while expanding on the mutational and phenotypic spectrum. In addition, our data suggests that IQSEC2 may be more common than previously appreciated, accounting for approximately 9 % (2/22) of positive findings among patients with seizures referred for diagnostic exome sequencing. Further, these data supports recently published data suggesting that IQSEC2 plays a more significant role in the development of X-linked intellectual disability with seizures than previously anticipated. PMID:24306141

  20. Whole-Exome Sequencing Identifies Homozygous GPR161 Mutation in a Family with Pituitary Stalk Interruption Syndrome

    PubMed Central

    Karaca, Ender; Buyukkaya, Ramazan; Pehlivan, Davut; Charng, Wu-Lin; Yaykasli, Kursat O.; Bayram, Yavuz; Gambin, Tomasz; Withers, Marjorie; Atik, Mehmed M.; Arslanoglu, Ilknur; Bolu, Semih; Erdin, Serkan; Buyukkaya, Ayla; Yaykasli, Emine; Jhangiani, Shalini N.; Muzny, Donna M.; Gibbs, Richard A.

    2015-01-01

    Context: Pituitary stalk interruption syndrome (PSIS) is a rare, congenital anomaly of the pituitary gland characterized by pituitary gland insufficiency, thin or discontinuous pituitary stalk, anterior pituitary hypoplasia, and ectopic positioning of the posterior pituitary gland (neurohypophysis). The clinical presentation of patients with PSIS varies from isolated growth hormone (GH) deficiency to combined pituitary insufficiency and accompanying extrapituitary findings. Mutations in HESX1, LHX4, OTX2, SOX3, and PROKR2 have been associated with PSIS in less than 5% of cases; thus, the underlying genetic etiology for the vast majority of cases remains to be determined. Objective: We applied whole-exome sequencing (WES) to a consanguineous family with two affected siblings who have pituitary gland insufficiency and radiographic findings of hypoplastic (thin) pituitary gland, empty sella, ectopic neurohypophysis, and interrupted pitiutary stalk—characteristic clinical diagnostic findings of PSIS. Design and Participants: WES was applied to two affected and one unaffected siblings. Results: WES of two affected and one unaffected sibling revealed a unique homozygous missense mutation in GPR161, which encodes the orphan G protein–coupled receptor 161, a protein responsible for transducing extracellular signals across the plasma membrane into the cell. Conclusion: Mutations of GPR161 may be implicated as a potential novel cause of PSIS. PMID:25322266

  1. Exome sequencing identifies a novel mutation in PIK3R1 as the cause of SHORT syndrome

    PubMed Central

    2014-01-01

    Background SHORT syndrome is a rare autosomal dominant condition whose name is the acronym of short stature, hyperextensibility of joints, ocular depression, Rieger anomaly and teething delay (MIM 269880). Additionally, the patients usually present a low birth weight and height, lipodystrophy, delayed bone age, hernias, low body mass index and a progeroid appearance. Case presentation In this study, we used whole-exome sequencing approaches in two patients with clinical features of SHORT syndrome. We report the finding of a novel mutation in PIK3R1 (c.1929_1933delTGGCA; p.Asp643Aspfs*8), as well as a recurrent mutation c.1945C > T (p.Arg649Trp) in this gene. Conclusions We found a novel frameshift mutation in PIK3R1 (c.1929_1933delTGGCA; p.Asp643Aspfs*8) which consists of a deletion right before the site of substrate recognition. As a consequence, the protein lacks the position that interacts with the phosphotyrosine residue of the substrate, resulting in the development of SHORT syndrome. PMID:24886349

  2. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    SciTech Connect

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  3. Novel PSEN1 mutations (H214N and R220P) associated with familial Alzheimer's disease identified by targeted exome sequencing.

    PubMed

    Piccoli, Elena; Rossi, Giacomina; Rossi, Tommaso; Pelliccioni, Giuseppe; D'Amato, Ilaria; Tagliavini, Fabrizio; Di Fede, Giuseppe

    2016-04-01

    Autosomal dominant Alzheimer's disease (AD) is caused by mutations in amyloid precursor protein, presenilin 1 (PSEN1), and presenilin 2 genes and is mostly associated with early-onset form of AD (EOAD), whereas very few mutations were also found in late-onset AD (LOAD) cases. Because of the clinical overlapping between AD and other degenerative dementias such as frontotemporal dementias, a wide-spectrum genetic analysis should be envisaged in the differential diagnosis of this group of disorders. We used next-generation sequencing techniques to analyze 10 genes involved in dementia on a cohort of 20 EOAD and 20 LOAD cases. We found 5 rare coding variants (frequency <1%). PSEN1 H214N mutation, identified in a case of familial EOAD and PSEN1 R220P, found in a case of familial LOAD, are predicted to be pathogenic. These findings confirm the contribution of PSEN1 genetic variants also to LOAD, underlining the need of extending the genetic screening of presenilin mutations to LOAD patients. Two variants in microtubule-associated protein tau and 1 in progranulin appeared to be benign polymorphisms, showing no major contribution of these genes to AD. PMID:26925509

  4. Immunohistochemical Expression of Estrogen and Progesterone Receptors Identifies a Subset of NSCLCs and Correlates with EGFR Mutation

    PubMed Central

    Raso, Maria G.; Behrens, Carmen; Herynk, Matthew H.; Liu, Suyu; Prudkin, Ludmila; Ozburn, Natalie C.; Woods, Denise M.; Tang, Ximing; Mehran, Reza J.; Moran, Cesar; Lee, J. Jack; Wistuba, Ignacio I.

    2010-01-01

    Purpose To determine the frequency of estrogen receptor α and β and progesterone receptor protein immunohistochemical expression in a large set of non–small cell lungcarcinoma (NSCLC) specimens and to compare our results with those for some of the same antibodies that have provided inconsistent results in previously published reports. Experimental Design Using multiple antibodies, we investigated the immunohistochemical expression of estrogen receptors α and β and progesterone receptor in 317 NSCLCs placed in tissue microarrays and correlated their expression with patients’ clinicopathologic characteristics and in adenocarcinomas with EGFR mutation status. Results Estrogen receptors α and β were detected in the nucleus and cytoplasm of NSCLC cells; however, the frequency of expression (nucleus, 5-36% for α and 42-56% for β; cytoplasm: <1-42% for α and 20-98% for β) varied among the different antibodies tested. Progesterone receptor was expressed in the nuclei of malignant cells in 63% of the tumors. Estrogen receptor α nuclear expression significantly correlated with adenocarcinoma histology, female gender, and history of never smoking (P = 0.0048 to <0.0001). In NSCLC, higher cytoplasmic estrogen receptor α expression significantly correlated with worse recurrence-free survival (hazard ratio, 1.77; 95% confidence interval, 1.12, 2.82; P = 0.015) in multivariate analysis. In adenocarcinomas, estrogen receptor α expression correlated with EGFR mutation (P = 0.0029 to <0.0001). Estrogen receptor β and progesterone receptor but not estrogen receptor α expressed in the normal epithelium adjacent to lung adenocarcinomas. Conclusions Estrogen receptor α and β expression distinguishes a subset of NSCLC that has defined clinicopathologic and genetic features. In lung adenocarcinoma, estrogen receptor α expression correlates with EGFR mutations. PMID:19706809

  5. A novel missense mutation in the NSDHL gene identified in a Lithuanian family by targeted next-generation sequencing causes CK syndrome.

    PubMed

    Preiksaitiene, Egle; Caro, Alfonso; Benušienė, Eglė; Oltra, Silvestre; Orellana, Carmen; Morkūnienė, Aušra; Roselló, Mónica Pilar; Kasnauskiene, Jurate; Monfort, Sandra; Kučinskas, Vaidutis; Mayo, Sonia; Martinez, Francisco

    2015-06-01

    The NSDHL gene encodes 3β-hydroxysteroid dehydrogenase involved in one of the later steps of the cholesterol biosynthetic pathway. Mutations in this gene can cause CHILD syndrome (OMIM 308050) and CK syndrome (OMIM 300831). CHILD syndrome is an X-linked dominant, male lethal disorder caused by mutations in the NSDHL gene that result in the loss of the function of the NSDHL protein. CK syndrome is an allelic X-linked recessive disorder. So far, 13 patients with CK syndrome from two families have been reported on. We present a new five-generation family with affected males manifesting clinical features of CK syndrome. Next generation sequencing was targeted to a custom panel of 542 genes with known or putative implication on intellectual disability. Missense mutation p.Gly152Asp was identified in the NSDHL gene in the DNA sample of the affected male. Mutation carrier status was confirmed for all the obligate carriers in the family. The clinical features of the affected males in the family manifested as weak fetal movements, severe intellectual disability, seizures, spasticity, atrophy of optic discs, microcephaly, plagiocephaly, skeletal abnormalities, and minor facial anomalies, including a high nasal bridge, strabismus, and micrognathia. A highly significant preferential transmission of the mutation was observed in this and previous families segregating CK syndrome. Our report expands the clinical spectrum of this syndrome to include weak fetal movements, spasticity, and plagiocephaly, and transmission ratio distortion. The various findings in these patients increase our understanding of the diversity of the clinical presentation of cholesterol biosynthesis disorders. PMID:25900314

  6. Exome sequencing identifies a novel CEACAM16 mutation associated with autosomal dominant nonsyndromic hearing loss DFNA4B in a Chinese family.

    PubMed

    Wang, Honghan; Wang, Xinwei; He, Chufeng; Li, Haibo; Qing, Jie; Grati, M'hamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2015-03-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next-generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild type, suggesting a deleterious effect of the sequence variant. PMID:25589040

  7. Exome Sequencing Identifies a Novel CEACAM16 Mutation Associated with Autosomal Dominant Nonsyndromic Hearing Loss DFNA4B in a Chinese Family

    PubMed Central

    He, Chufeng; Li, Haibo; Qing, Jie; Grati, Mhamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2014-01-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and Western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild-type, suggesting a deleterious effect of the sequence variant. PMID:25589040

  8. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity

    PubMed Central

    Halbritter, Jan; Gee, Heon Yung; Porath, Jonathan D.; Lawson, Jennifer A.; Airik, Rannar; Shril, Shirlee; Allen, Susan J.; Stein, Deborah; Al Kindy, Adila; Beck, Bodo B.; Cengiz, Nurcan; Moorani, Khemchand N.; Ozaltin, Fatih; Hashmi, Seema; Sayer, John A.; Bockenhauer, Detlef; Soliman, Neveen A.; Otto, Edgar A.; Lifton, Richard P.; Hildebrandt, Friedhelm

    2015-01-01

    Chronically increased echogenicity on renal ultrasound is a sensitive early finding of chronic kidney disease that can be detected before manifestation of other symptoms. Increased echogenicity, however, is not specific for a certain etiology of chronic kidney disease. Here, we performed whole exome sequencing in 79 consanguineous or familial cases of suspected nephronophthisis in order to determine the underlying molecular disease cause. In 50 cases, there was a causative mutation in a known monogenic disease gene. In 32 of these cases whole exome sequencing confirmed the diagnosis of a nephronophthisis-related ciliopathy. In 8 cases it revealed the diagnosis of a renal tubulopathy. The remaining 10 cases were identified as Alport syndrome (4), autosomal-recessive polycystic kidney disease (2), congenital anomalies of the kidney and urinary tract (3), and APECED syndrome (1). In 5 families, in whom mutations in known monogenic genes were excluded, we applied homozygosity mapping for variant filtering, and identified 5 novel candidate genes (RBM48, FAM186B, PIAS1, INCENP, and RCOR1) for renal ciliopathies. Thus, whole exome sequencing allows the detection of the causative mutation in 2/3 of affected individuals, thereby presenting the etiologic diagnosis and allows identification of novel candidate genes. PMID:26489029

  9. Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p

    PubMed Central

    Shah, Abdul Haseeb; Rawal, Manpreet Kaur; Dhamgaye, Sanjiveeni; Komath, Sneha Sudha; Saxena, Ajay Kumar; Prasad, Rajendra

    2015-01-01

    The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was analyzed by biochemical and phenotypic mapping. Only 18% of the mutants from this library displayed enhanced drug susceptibility. Most of the drug-susceptible mutants displayed uncoupling between ATP hydrolysis and drug transport. The two drug-susceptible ICL1 mutants (I574A and S593A) that lay within or close to the predicted coupling helix yielded two chromosomal suppressor mutations that fall near the Q-loop of NBD2 (R935) and in the Walker A motif (G190) of NBD1. Based on a 3D homology model and kinetic analysis of drug transport, our data suggest that large distances between ICL residues and their respective chromosomal suppressor mutations rule out a direct interaction between them. However, they impact the transport cycle by restoring the coupling interface via indirect downstream signaling. PMID:26053667

  10. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations.

    PubMed

    Buczkowicz, Pawel; Hoeman, Christine; Rakopoulos, Patricia; Pajovic, Sanja; Letourneau, Louis; Dzamba, Misko; Morrison, Andrew; Lewis, Peter; Bouffet, Eric; Bartels, Ute; Zuccaro, Jennifer; Agnihotri, Sameer; Ryall, Scott; Barszczyk, Mark; Chornenkyy, Yevgen; Bourgey, Mathieu; Bourque, Guillaume; Montpetit, Alexandre; Cordero, Francisco; Castelo-Branco, Pedro; Mangerel, Joshua; Tabori, Uri; Ho, King Ching; Huang, Annie; Taylor, Kathryn R; Mackay, Alan; Bendel, Anne E; Nazarian, Javad; Fangusaro, Jason R; Karajannis, Matthias A; Zagzag, David; Foreman, Nicholas K; Donson, Andrew; Hegert, Julia V; Smith, Amy; Chan, Jennifer; Lafay-Cousin, Lucy; Dunn, Sandra; Hukin, Juliette; Dunham, Chris; Scheinemann, Katrin; Michaud, Jean; Zelcer, Shayna; Ramsay, David; Cain, Jason; Brennan, Cameron; Souweidane, Mark M; Jones, Chris; Allis, C David; Brudno, Michael; Becher, Oren; Hawkins, Cynthia

    2014-05-01

    Diffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.Lys27Met histone H3.3 or p.Lys27Met histone H3.1 alteration. However, DIPGs are still thought of as one disease, with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs, we integrated whole-genome sequencing with methylation, expression and copy number profiling, discovering that DIPGs comprise three molecularly distinct subgroups (H3-K27M, silent and MYCN) and uncovering a new recurrent activating mutation affecting the activin receptor gene ACVR1 in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of the downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer. PMID:24705254

  11. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis.

    PubMed

    Gu, Huiqiong; Yoshinari, Shigeo; Ghosh, Raka; Ignatochkina, Anna V; Gollnick, Paul D; Murakami, Katsuhiko S; Ho, C Kiong

    2016-03-18

    An ATP-dependent RNA ligase from Methanobacterium thermoautotrophicum (MthRnl) catalyzes intramolecular ligation of single-stranded RNA to form a closed circular RNA via covalent ligase-AMP and RNA-adenylylate intermediate. Here, we report the X-ray crystal structures of an MthRnl•ATP complex as well as the covalent MthRnl-AMP intermediate. We also performed structure-guided mutational analysis to survey the functions of 36 residues in three component steps of the ligation pathway including ligase-adenylylation (step 1), RNA adenylylation (step 2) and phosphodiester bond synthesis (step 3). Kinetic analysis underscored the importance of motif 1a loop structure in promoting phosphodiester bond synthesis. Alanine substitutions of Thr117 or Arg118 favor the reverse step 2 reaction to deadenylate the 5'-AMP from the RNA-adenylate, thereby inhibiting step 3 reaction. Tyr159, Phe281 and Glu285, which are conserved among archaeal ATP-dependent RNA ligases and are situated on the surface of the enzyme, are required for RNA binding. We propose an RNA binding interface of the MthRnl based on the mutational studies and two sulfate ions that co-crystallized at the active site cleft in the MthRnl-AMP complex. PMID:26896806

  12. Whole exome sequencing identifies a novel frameshift mutation in GPC3 gene in a patient with overgrowth syndrome.

    PubMed

    Das Bhowmik, Aneek; Dalal, Ashwin

    2015-11-10

    Overgrowth syndromes are a heterogeneous group of diseases characterized by focal or generalized overgrowth. Many of the syndromes have overlapping clinical features and it is difficult to diagnose the condition based on clinical features alone. In the present study we report on a patient with overgrowth syndrome where extensive investigation did not reveal the cause of disease. Finally exome sequencing revealed a novel hemizygous single base pair deletion in exon 8 of GPC3 gene (chrX:132670203delA) resulting in a frameshift and creating a new stop codon at 62 amino acids downstream to codon 564 (c.1692delT; p.Leu565SerfsTer63) of the protein. The mutation was confirmed by Sanger sequencing. The mother was found to be heterozygous for the mutation. This variation is not reported in the 1000 Genomes, Exome Variant Server (EVS), Exome Aggregation Consortium (ExAC) and dbSNP databases and the region is conserved across primates. Exome sequencing was helpful in establishing diagnosis of Simpson-Golabi-Behmel syndrome type 1 (SGBS1) in a patient with unknown overgrowth syndrome. PMID:26321508

  13. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis

    PubMed Central

    Gu, Huiqiong; Yoshinari, Shigeo; Ghosh, Raka; Ignatochkina, Anna V.; Gollnick, Paul D.; Murakami, Katsuhiko S.; Ho, C. Kiong

    2016-01-01

    An ATP-dependent RNA ligase from Methanobacterium thermoautotrophicum (MthRnl) catalyzes intramolecular ligation of single-stranded RNA to form a closed circular RNA via covalent ligase-AMP and RNA-adenylylate intermediate. Here, we report the X-ray crystal structures of an MthRnl•ATP complex as well as the covalent MthRnl–AMP intermediate. We also performed structure-guided mutational analysis to survey the functions of 36 residues in three component steps of the ligation pathway including ligase-adenylylation (step 1), RNA adenylylation (step 2) and phosphodiester bond synthesis (step 3). Kinetic analysis underscored the importance of motif 1a loop structure in promoting phosphodiester bond synthesis. Alanine substitutions of Thr117 or Arg118 favor the reverse step 2 reaction to deadenylate the 5′-AMP from the RNA-adenylate, thereby inhibiting step 3 reaction. Tyr159, Phe281 and Glu285, which are conserved among archaeal ATP-dependent RNA ligases and are situated on the surface of the enzyme, are required for RNA binding. We propose an RNA binding interface of the MthRnl based on the mutational studies and two sulfate ions that co-crystallized at the active site cleft in the MthRnl–AMP complex. PMID:26896806

  14. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control.

    PubMed

    Kretzmer, Helene; Bernhart, Stephan H; Wang, Wei; Haake, Andrea; Weniger, Marc A; Bergmann, Anke K; Betts, Matthew J; Carrillo-de-Santa-Pau, Enrique; Doose, Gero; Gutwein, Jana; Richter, Julia; Hovestadt, Volker; Huang, Bingding; Rico, Daniel; Jühling, Frank; Kolarova, Julia; Lu, Qianhao; Otto, Christian; Wagener, Rabea; Arnolds, Judith; Burkhardt, Birgit; Claviez, Alexander; Drexler, Hans G; Eberth, Sonja; Eils, Roland; Flicek, Paul; Haas, Siegfried; Hummel, Michael; Karsch, Dennis; Kerstens, Hinrik H D; Klapper, Wolfram; Kreuz, Markus; Lawerenz, Chris; Lenze, Dido; Loeffler, Markus; López, Cristina; MacLeod, Roderick A F; Martens, Joost H A; Kulis, Marta; Martín-Subero, José Ignacio; Möller, Peter; Nagel, Inga; Picelli, Simone; Vater, Inga; Rohde, Marius; Rosenstiel, Philip; Rosolowski, Maciej; Russell, Robert B; Schilhabel, Markus; Schlesner, Matthias; Stadler, Peter F; Szczepanowski, Monika; Trümper, Lorenz; Stunnenberg, Hendrik G; Küppers, Ralf; Ammerpohl, Ole; Lichter, Peter; Siebert, Reiner; Hoffmann, Steve; Radlwimmer, Bernhard

    2015-11-01

    Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas. PMID:26437030

  15. Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis

    PubMed Central

    Campeau, Philippe M.; Lu, James T.; Sule, Gautam; Jiang, Ming-Ming; Bae, Yangjin; Madan, Simran; Högler, Wolfgang; Shaw, Nicholas J.; Mumm, Steven; Gibbs, Richard A.; Whyte, Michael P.; Lee, Brendan H.

    2012-01-01

    Dysosteosclerosis (DSS) is the form of osteopetrosis distinguished by the presence of skin findings such as red-violet macular atrophy, platyspondyly and metaphyseal osteosclerosis with relative radiolucency of widened diaphyses. At the histopathological level, there is a paucity of osteoclasts when the disease presents. In two patients with DSS, we identified homozygous or compound heterozygous missense mutations in SLC29A3 by whole-exome sequencing. This gene encodes a nucleoside transporter, mutations in which cause histiocytosis–lymphadenopathy plus syndrome, a group of conditions with little or no skeletal involvement. This transporter is essential for lysosomal function in mice. We demonstrate the expression of Slc29a3 in mouse osteoclasts in vivo. In monocytes from patients with DSS, we observed reduced osteoclast differentiation and function (demineralization of calcium surface). Our report highlights the pleomorphic consequences of dysfunction of this nucleoside transporter, and importantly suggests a new mechanism for the control of osteoclast differentiation and function. PMID:22875837

  16. Multiplex genetic cancer testing identifies pathogenic mutations in TP53 and CDH1 in a patient with bilateral breast and endometrial adenocarcinoma

    PubMed Central

    2013-01-01

    Background Germline genetic testing for familial cancer syndromes is usually performed serially for the most likely genetic causes. In recent years the way genetic testing carried out has changed, as next generation sequencing now allows the simultaneous testing of multiple susceptibility genes at low costs. Case presentation Here, we present a female with bilateral breast cancer and endometrial adenocarcinoma. After simultaneous sequencing of 150 genes (890kb) associated with hereditary cancer we identified pathogenic mutations in two high-penetrance genes, i.e. TP53 and CDH1 that would most likely not have been elucidated by serial screening of candidate genes. Conclusion As the two mutated genes are located on different chromosomes and cause different cancer syndromes these findings had a tremendous impact not only on genetic counseling of the index patient and her family but also on subsequent surveillance strategies. PMID:24373500

  17. Mutational analysis identifies leucine-rich repeat insertions crucial for pigeon toll-like receptor 7 recognition and signaling.

    PubMed

    Xiong, Dan; Song, Li; Jiao, Yang; Kang, Xilong; Chen, Xiang; Geng, Shizhong; Pan, Zhiming; Jiao, Xinan

    2015-11-15

    Toll-like receptor 7 (TLR7) is responsible for recognizing viral single-stranded RNA and antiviral imidazoquinoline compounds, leading to the activation of the innate immune response. In this study, mutated pigeon TLR7 fragments, in which the insertion at position 10 of leucine-rich repeat 10 (LRR10) or at position 15 of LRR2/11/13/14 was deleted, were amplified with an overlap-PCR method, and inserted into the expression vector pCMV. The immune functions of the TLR7 mutants were determined with an NF-κB luciferase assay of transfected cells. The deletion of the insertions absolutely abolished TLR7-NF-κB signaling. With quantitative real-time PCR and sandwich enzyme-linked immunosorbent assay, we observed that stimulation with R848 failed to induce the expression of interleukin 8 (IL-8) in any of the mutant-TLR7-transfected cells, consistent with their lack of NF-κB activity. However, the expression of interferon α (IFN-α) and tumor necrosis factor α (TNF-α) was significantly upregulated in the Del10IN10 and Del14IN15 groups. Remarkably, the levels of pigeon TLR7 expression were significantly increased in all the TLR7-mutated groups. Therefore, we speculate that another part of the deficient TLR7 mediates the induction of IFN-α and TNF-α by increasing the expression of TLR7 as compensation. However, the increased expression of TLR7 in the Del11IN15 group failed to induce the production of IFN-α, IL-8, or TNF-α, indicating that a false compensation occurred when the crucial LRR insertion was deleted. PMID:26553562

  18. Exome sequencing identifies a nonsense mutation in Fam46a associated with bone abnormalities in a new mouse model for skeletal dysplasia.

    PubMed

    Diener, Susanne; Bayer, Sieglinde; Sabrautzki, Sibylle; Wieland, Thomas; Mentrup, Birgit; Przemeck, Gerhard K H; Rathkolb, Birgit; Graf, Elisabeth; Hans, Wolfgang; Fuchs, Helmut; Horsch, Marion; Schwarzmayr, Thomas; Wolf, Eckhard; Klopocki, Eva; Jakob, Franz; Strom, Tim M; Hrabě de Angelis, Martin; Lorenz-Depiereux, Bettina

    2016-04-01

    We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a (E157*Mhda)) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a (E157*Mhda) mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a (E157*Mhda) mice are the first mouse model for a mutation within the Fam46a gene. PMID:26803617

  19. Whole-exome sequencing and genome-wide methylation analyses identify novel disease associated mutations and methylation patterns in idiopathic hypereosinophilic syndrome

    PubMed Central

    Andersen, Christen Lykkegaard; Nielsen, Helene Myrtue; Kristensen, Lasse Sommer; Søgaard, Alexandra; Vikeså, Jonas; Jønson, Lars; Nielsen, Finn Cilius; Hasselbalch, Hans; Bjerrum, Ole Weis; Punj, Vasu; Grønbæk, Kirsten

    2015-01-01

    A thorough understanding of the idiopathic hypereosinophilic syndrome (IHES) and further optimization of diagnostic work-up procedures are warranted. We analyzed purified eosinophils from patients with IHES by next-generation whole-exome sequencing and compared DNA methylation profiles from reactive eosinophilic conditions to known clonal and suspected clonal eosinophilia. Somatic missense mutations in cancer-related genes were detected in three IHES patients. These included the spliceosome gene PUF60 and the cadherin gene CDH17. Furthermore, reactive eosinophilia samples could be differentiated from known- and suspected clonal eosinophilia samples based on 285 differentially methylated CpG sites corresponding to 128 differentially methylated genes. Using Ingenuity pathway analysis, we found that differentially methylated genes were highly enriched in functional pathways such as cancer, cell death and survival, and hematological disease. Our data show that a subset of IHES may be of clonal origin not related to the classical molecular aberrations of FGFR, PDGFRA/B, or T-cells, and that the initiating hits could be point mutations in a variety of genes, including spliceosome mutations or hypermethylated tumor suppressor genes. In addition, we identified a DNA methylation signature that is relevant for distinguishing clonal and suspected clonal eosinophilia from reactive eosinophilia per se, which may be useful in daily clinical work. PMID:26497854

  20. In silico reversal of repeat-induced point mutation (RIP) identifies the origins of repeat families and uncovers obscured duplicated genes

    PubMed Central

    2010-01-01

    Background Repeat-induced point mutation (RIP) is a fungal genome defence mechanism guarding against transposon invasion. RIP mutates the sequence of repeated DNA and over time renders the affected regions unrecognisable by similarity search tools such as BLAST. Results DeRIP is a new software tool developed to predict the original sequence of a RIP-mutated region prior to the occurrence of RIP. In this study, we apply deRIP to the genome of the wheat pathogen Stagonospora nodorum SN15 and predict the origin of several previously uncharacterised classes of repetitive DNA. Conclusions Five new classes of transposon repeats and four classes of endogenous gene repeats were identified after deRIP. The deRIP process is a new tool for fungal genomics that facilitates the identification and understanding of the role and origin of fungal repetitive DNA. DeRIP is open-source and is available as part of the RIPCAL suite at http://www.sourceforge.net/projects/ripcal. PMID:21106049

  1. Tumour-associated mutations of PA-TM-RING ubiquitin ligases RNF167/RNF13 identify the PA domain as a determinant for endosomal localization.

    PubMed

    van Dijk, Jesper R; Yamazaki, Yasuo; Palmer, Ruth H

    2014-04-01

    Diverse cellular processes depend on endocytosis, intracellular vesicle trafficking, sorting and exocytosis, and processes that are regulated post-transcriptionally by modifications such as phosphorylation and ubiquitylation. The PA (protease-associated) domain E3 ligases, such as GodzillaCG10277 in Drosophila melanogaster and RNF167 (RING finger protein 167) in humans, have been implicated in the regulation of cellular endosome trafficking. In the present study, we have characterized point mutations in the RING (really interesting new gene) domain of human RNF13 and RNF167, which have been identified in human tumour samples, that abrogate ubiquitin ligase activity as well as function. In the present study, we have also identified a functional role for the PA domain, which is required for endosomal localization of these proteins. Although the PA domain point mutations of RNF13 and RNF167 identified in human tumours are ligase active, the resultant mutant proteins are mislocalized within the cell. Thus the PA domain E3 ligases examined in the present study appear to require both E3 ligase activity as well as an intact PA domain to efficiently target and ubiquitylate their cellular substrates. PMID:24387786

  2. An efficient approach to identify ilvA mutations reveals an amino-terminal catalytic domain in biosynthetic threonine deaminase from Escherichia coli.

    PubMed Central

    Fisher, K E; Eisenstein, E

    1993-01-01

    High-level expression of the regulatory enzyme threonine deaminase in Escherichia coli strains grown on minimal medium that are deficient in the activities of enzymes needed for branched-chain amino acid biosynthesis result in growth inhibition, possibly because of the accumulation of toxic levels of alpha-ketobutyrate, the product of the committed step in isoleucine biosynthesis. This condition affords a means for selecting genetic variants of threonine deaminase that are deficient in catalysis by suppression of growth inhibition. Strains harboring mutations in ilvA that decreased the catalytic activity of threonine deaminase were found to grow more rapidly than isogenic strains containing wild-type ilvA. Modification of the ilvA gene to introduce additional unique, evenly spaced restriction enzyme sites facilitated the identification of suppressor mutations by enabling small DNA fragments to be subcloned for sequencing. The 10 mutations identified in ilvA code for enzymes with significantly reduced activity relative to that of wild-type threonine deaminase. Values for their specific activities range from 40% of that displayed by wild-type enzyme to complete inactivation as evidenced by failure to complement an ilvA deletion strain to isoleucine prototrophy. Moreover, some mutant enzymes showed altered allosteric properties with respect to valine activation and isoleucine inhibition. The location of the 10 mutations in the 5' two-thirds of the ilvA gene is consistent with suggestions that threonine deaminase is organized functionally with an amino-terminal domain that is involved in catalysis and a carboxy-terminal domain that is important for regulation. Images PMID:8407838

  3. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement

    PubMed Central

    2013-01-01

    Background Whole-exome sequencing has identified the causes of several Mendelian diseases by analyzing multiple unrelated cases, but it is more challenging to resolve the cause of extremely rare and suspected Mendelian diseases from individual families. We identified a family quartet with two children, both affected with a previously unreported disease, characterized by progressive muscular weakness and cardiomyopathy, with normal intelligence. During the course of the study, we identified one additional unrelated patient with a comparable phenotype. Methods We performed whole-genome sequencing (Complete Genomics platform), whole-exome sequencing (Agilent SureSelect exon capture and Illumina Genome Analyzer II platform), SNP genotyping (Illumina HumanHap550 SNP array) and Sanger sequencing on blood samples, as well as RNA-Seq (Illumina HiSeq platform) on transformed lymphoblastoid cell lines. Results From whole-genome sequence data, we identified RBCK1, a gene encoding an E3 ubiquitin-protein ligase, as the most likely candidate gene, with two protein-truncating mutations in probands in the first family. However, exome data failed to nominate RBCK1 as a candidate gene, due to poor regional coverage. Sanger sequencing identified a private homozygous splice variant in RBCK1 in the proband in the second family, yet SNP genotyping revealed a 1.2Mb copy-neutral region of homozygosity covering RBCK1. RNA-Seq confirmed aberrant splicing of RBCK1 transcripts, resulting in truncated protein products. Conclusions While the exact mechanism by which these mutations cause disease is unknown, our study represents an example of how the combined use of whole-genome DNA and RNA sequencing can identify a disease-predisposing gene for a novel and extremely rare Mendelian disease. PMID:23889995

  4. Exome sequencing identified mutations in CASK and MYBPC3 as the cause of a complex dilated cardiomyopathy phenotype.

    PubMed

    Reinstein, Eyal; Tzur, Shay; Bormans, Concetta; Behar, Doron M

    2016-01-01

    Whole-exome sequencing for clinical applications is now an integral part of medical genetics practice. Though most studies are performed in order to establish diagnoses in individuals with rare and clinically unrecognizable disorders, due to the constantly decreasing costs and commercial availability, whole-exome sequencing has gradually become the initial tool to study patients with clinically recognized disorders when more than one gene is responsible for the phenotype or in complex phenotypes, when variants in more than one gene can be the cause for the disease. Here we report a patient presenting with a complex phenotype consisting of severe, adult-onset, dilated cardiomyopathy, hearing loss and developmental delay, in which exome sequencing revealed two genetic variants that are inherited from a healthy mother: a novel missense variant in the CASK gene, mutations in which cause a spectrum of neurocognitive manifestations, and a second variant, in MYBPC3, that is associated with hereditary cardiomyopathy. We conclude that although the potential for co-occurrence of rare diseases is higher when analyzing undefined phenotypes in consanguineous families, it should also be given consideration in the genetic evaluation of complex phenotypes in non-consanguineous families. PMID:27173948

  5. Severe vascular calcification and tumoral calcinosis in a family with hyperphosphatemia: a fibroblast growth factor 23 mutation identified by exome sequencing

    PubMed Central

    Shah, Anuja; Miller, Clinton J.; Nast, Cynthia C.; Adams, Mark D.; Truitt, Barbara; Tayek, John A.; Tong, Lili; Mehtani, Parag; Monteon, Francisco; Sedor, John R.; Clinkenbeard, Erica L.; White, Kenneth; Mehrotra, Rajnish; LaPage, Janine; Dickson, Patricia; Adler, Sharon G.; Iyengar, Sudha K.

    2014-01-01

    Background Tumoral calcinosis is an autosomal recessive disorder characterized by ectopic calcification and hyperphosphatemia. Methods We describe a family with tumoral calcinosis requiring amputations. The predominant metabolic anomaly identified in three affected family members was hyperphosphatemia. Biochemical and phenotypic analysis of 13 kindred members, together with exome analysis of 6 members, was performed. Results We identified a novel Q67K mutation in fibroblast growth factor 23 (FGF23), segregating with a null (deletion) allele on the other FGF23 homologue in three affected members. Affected siblings had high circulating plasma C-terminal FGF23 levels, but undetectable intact FGF23 or N-terminal FGF23, leading to loss of FGF23 function. Conclusions This suggests that in human, as in experimental models, severe prolonged hyperphosphatemia may be sufficient to produce bone differentiation proteins in vascular cells, and vascular calcification severe enough to require amputation. Genetic modifiers may contribute to the phenotypic variation within and between families. PMID:25378588

  6. Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia.

    PubMed

    Pak, Theodore R; Altman, Deena R; Attie, Oliver; Sebra, Robert; Hamula, Camille L; Lewis, Martha; Deikus, Gintaras; Newman, Leah C; Fang, Gang; Hand, Jonathan; Patel, Gopi; Wallach, Fran; Schadt, Eric E; Huprikar, Shirish; van Bakel, Harm; Kasarskis, Andrew; Bashir, Ali

    2015-11-01

    Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy. PMID:26324280

  7. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

    PubMed

    Couch, Fergus J; Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B L; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M; Piedmonte, Marion; Singer, Christian F; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V O; Neuhausen, Susan L; Szabo, Csilla I; Blanco, Ignacio; Greene, Mark H; Karlan, Beth Y; Garber, Judy; Phelan, Catherine M; Weitzel, Jeffrey N; Montagna, Marco; Olah, Edith; Andrulis, Irene L; Godwin, Andrew K; Yannoukakos, Drakoulis; Goldgar, David E; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B; van Rensburg, Elizabeth J; Hamann, Ute; Ramus, Susan J; Toland, Amanda Ewart; Caligo, Maria A; Olopade, Olufunmilayo I; Tung, Nadine; Claes, Kathleen; Beattie, Mary S; Southey, Melissa C; Imyanitov, Evgeny N; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B; Arun, Banu K; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A; Campbell, Ian; van der Hout, Annemarie H; van Deurzen, Carolien H M; Seynaeve, Caroline; Gómez Garcia, Encarna B; van Leeuwen, Flora E; Meijers-Heijboer, Hanne E J; Gille, Johannes J P; Ausems, Margreet G E M; Blok, Marinus J; Ligtenberg, Marjolijn J L; Rookus, Matti A; Devilee, Peter; Verhoef, Senno; van Os, Theo A M; Wijnen, Juul T; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D Gareth; Izatt, Louise; Eeles, Rosalind A; Adlard, Julian; Eccles, Diana M; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J; Side, Lucy E; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H F; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L; Rebbeck, Timothy R; Blank, Stephanie V; Cohn, David E; Rodriguez, Gustavo C; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C; Jønson, Lars; Andersen, Mette K; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L; Loud, Jennifer T; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A; Herzog, Josef; Sand, Sharon R; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V; Buys, Saundra S; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A; Duran, Mercedes; Chung, Wendy K; Lasa, Adriana; Dorfling, Cecilia M; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B; Sokolenko, Anna P; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M; Agnarsson, Bjarni A; Lu, Karen H; Lejbkowicz, Flavio; James, Paul A; Hall, Per; Dunning, Alison M; Tessier, Daniel; Cunningham, Julie; Slager, Susan L; Wang, Chen; Hart, Steven; Stevens, Kristen; Simard, Jacques; Pastinen, Tomi; Pankratz, Vernon S; Offit, Kenneth; Easton, Douglas F; Chenevix-Trench, Georgia; Antoniou, Antonis C

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 × 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  8. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    PubMed Central

    Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Investigators, kConFab; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Ewart Toland, Amanda; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per; Dunning, Alison M.; Tessier, Daniel; Cunningham, Julie; Slager, Susan L.; Wang, Chen; Hart, Steven; Stevens, Kristen; Simard, Jacques; Pastinen, Tomi; Pankratz, Vernon S.; Offit, Kenneth; Antoniou, Antonis C.

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  9. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations

    PubMed Central

    Toledo, Luis I.; Murga, Matilde; Zur, Rafal; Soria, Rebeca; Rodriguez, Antonio; Martinez, Sonia; Oyarzabal, Julen; Pastor, Joaquin; Bischoff, James R.; Fernandez-Capetillo, Oscar

    2016-01-01

    SUMMARY Oncogene activation has been shown to generate replication-born DNA damage, also known as replicative stress (RS). Notably, the ATR kinase –and not ATM- is the primary responder to RS. One limitation for the study of ATR is the lack of potent inhibitors. We here describe a cell-based screening strategy that has allowed us to identify compounds with ATR inhibitory activity in the nanomolar range. Pharmacological inhibition of ATR generates RS, leading to chromosomal breakage in the presence of conditions that stall replication forks. Moreover, ATR inhibition is particularly toxic for p53 deficient cells, this toxicity being exacerbated by RS-generating conditions such as the overexpression of cyclin E. Importantly, one of the compounds is NVP-BEZ235, a dual PI3K/mTOR inhibitor that is currently being tested for cancer chemotherapy, but which we now show is also very potent against ATM, ATR and DNA-PKcs. PMID:21552262

  10. Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice.

    PubMed

    Spielmann, Malte; Kakar, Naseebullah; Tayebi, Naeimeh; Leettola, Catherine; Nürnberg, Gudrun; Sowada, Nadine; Lupiáñez, Darío G; Harabula, Izabela; Flöttmann, Ricarda; Horn, Denise; Chan, Wing Lee; Wittler, Lars; Yilmaz, Rüstem; Altmüller, Janine; Thiele, Holger; van Bokhoven, Hans; Schwartz, Charles E; Nürnberg, Peter; Bowie, James U; Ahmad, Jamil; Kubisch, Christian; Mundlos, Stefan; Borck, Guntram

    2016-02-01

    The CRISPR/Cas technology enables targeted genome editing and the rapid generation of transgenic animal models for the study of human genetic disorders. Here we describe an autosomal recessive human disease in two unrelated families characterized by a split-foot defect, nail abnormalities of the hands, and hearing loss, due to mutations disrupting the SAM domain of the protein kinase ZAK. ZAK is a member of the MAPKKK family with no known role in limb development. We show that Zak is expressed in the developing limbs and that a CRISPR/Cas-mediated knockout of the two Zak isoforms is embryonically lethal in mice. In contrast, a deletion of the SAM domain induces a complex hindlimb defect associated with down-regulation of Trp63, a known split-hand/split-foot malformation disease gene. Our results identify ZAK as a key player in mammalian limb patterning and demonstrate the rapid utility of CRISPR/Cas genome editing to assign causality to human mutations in the mouse in <10 wk. PMID:26755636

  11. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options.

    PubMed

    Fischer, Ute; Forster, Michael; Rinaldi, Anna; Risch, Thomas; Sungalee, Stéphanie; Warnatz, Hans-Jörg; Bornhauser, Beat; Gombert, Michael; Kratsch, Christina; Stütz, Adrian M; Sultan, Marc; Tchinda, Joelle; Worth, Catherine L; Amstislavskiy, Vyacheslav; Badarinarayan, Nandini; Baruchel, André; Bartram, Thies; Basso, Giuseppe; Canpolat, Cengiz; Cario, Gunnar; Cavé, Hélène; Dakaj, Dardane; Delorenzi, Mauro; Dobay, Maria Pamela; Eckert, Cornelia; Ellinghaus, Eva; Eugster, Sabrina; Frismantas, Viktoras; Ginzel, Sebastian; Haas, Oskar A; Heidenreich, Olaf; Hemmrich-Stanisak, Georg; Hezaveh, Kebria; Höll, Jessica I; Hornhardt, Sabine; Husemann, Peter; Kachroo, Priyadarshini; Kratz, Christian P; Kronnie, Geertruy Te; Marovca, Blerim; Niggli, Felix; McHardy, Alice C; Moorman, Anthony V; Panzer-Grümayer, Renate; Petersen, Britt S; Raeder, Benjamin; Ralser, Meryem; Rosenstiel, Philip; Schäfer, Daniel; Schrappe, Martin; Schreiber, Stefan; Schütte, Moritz; Stade, Björn; Thiele, Ralf; Weid, Nicolas von der; Vora, Ajay; Zaliova, Marketa; Zhang, Langhui; Zichner, Thomas; Zimmermann, Martin; Lehrach, Hans; Borkhardt, Arndt; Bourquin, Jean-Pierre; Franke, Andre; Korbel, Jan O; Stanulla, Martin; Yaspo, Marie-Laure

    2015-09-01

    TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease. PMID:26214592

  12. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options

    PubMed Central

    Bornhauser, Beat; Gombert, Michael; Kratsch, Christina; Stütz, Adrian M.; Sultan, Marc; Tchinda, Joelle; Worth, Catherine L.; Amstislavskiy, Vyacheslav; Badarinarayan, Nandini; Baruchel, André; Bartram, Thies; Basso, Giuseppe; Canpolat, Cengiz; Cario, Gunnar; Cavé, Hélène; Dakaj, Dardane; Delorenzi, Mauro; Dobay, Maria Pamela; Eckert, Cornelia; Ellinghaus, Eva; Eugster, Sabrina; Frismantas, Viktoras; Ginzel, Sebastian; Haas, Oskar A.; Heidenreich, Olaf; Hemmrich-Stanisak, Georg; Hezaveh, Kebria; Höll, Jessica I.; Hornhardt, Sabine; Husemann, Peter; Kachroo, Priyadarshini; Kratz, Christian P.; te Kronnie, Geertruy; Marovca, Blerim; Niggli, Felix; McHardy, Alice C.; Moorman, Anthony V.; Panzer-Grümayer, Renate; Petersen, Britt S.; Raeder, Benjamin; Ralser, Meryem; Rosenstiel, Philip; Schäfer, Daniel; Schrappe, Martin; Schreiber, Stefan; Schütte, Moritz; Stade, Björn; Thiele, Ralf; von der Weid, Nicolas; Vora, Ajay; Zaliova, Marketa; Zhang, Langhui; Zichner, Thomas; Zimmermann, Martin; Lehrach, Hans; Borkhardt, Arndt; Bourquin, Jean-Pierre; Franke, Andre; Korbel, Jan O.; Stanulla, Martin; Yaspo, Marie-Laure

    2015-01-01

    TCF3-HLF-fusion positive acute lymphoblastic leukemia (ALL) is currently incurable. Employing an integrated approach, we uncovered distinct mutation, gene expression, and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. Recurrent intragenic deletions of PAX5 or VPREB1 were identified in constellation with TCF3-HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin towards a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics, but sensitivity towards glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease. PMID:26214592

  13. Reciprocal mutations of neuropeptide Y receptor Y2 in human and chicken identify amino acids important for antagonist binding.

    PubMed

    Berglund, Magnus M; Fredriksson, Robert; Salaneck, Erik; Larhammar, Dan

    2002-05-01

    The neuropeptide Y (NPY) receptor Y2 antagonist BIIE0246 has sub-nanomolar affinity for the human Y2 (hY2) receptor but binds very poorly to chicken Y2 (chY2) with micromolar affinity. Sequence comparisons identified several amino acids for investigation by mutagenesis. Reciprocal mutagenesis between hY2 and chY2 revealed that three of these, individually and in combination, are important for BIIE0246 binding, namely positions Gln(135) in transmembrane (TM) 3, Leu(227) in TM5, and Leu(284) in TM6. Mutagenesis of hY2 to the corresponding amino in chY2 (generating hY2[Q135H,L227Q,L284F]) made the affinity of BIIE0246 as low as for chY2. Introduction into chY2 of the three human residues resulted in antagonist affinity almost as high as for hY2. To distinguish between direct and indirect effects, each of the three residues in hY2 was replaced with alanine. BIIE0246 bound with 28-fold lower affinity to hY2[L227A], suggesting the Leu(227) interacts directly with the antagonist. The other two alanine mutants bound with unaltered affinity, suggesting that the corresponding chY2 residues abolish binding through steric hindrance or charge repulsion. Thus, three amino acid residues can in an additive manner completely account for the difference in antagonist binding between the hY2 and chY2 receptors. These results will be useful for construction of three-dimensional models of the widely divergent NPY receptor subtypes. PMID:11997008

  14. To the Root of the Curl: A Signature of a Recent Selective Sweep Identifies a Mutation That Defines the Cornish Rex Cat Breed

    PubMed Central

    Gandolfi, Barbara; Alhaddad, Hasan; Affolter, Verena K.; Brockman, Jeffrey; Haggstrom, Jens; Joslin, Shannon E. K.; Koehne, Amanda L.; Mullikin, James C.; Outerbridge, Catherine A.; Warren, Wesley C.; Lyons, Leslie A.

    2013-01-01

    The cat (Felis silvestris catus) shows significant variation in pelage, morphological, and behavioral phenotypes amongst its over 40 domesticated breeds. The majority of the breed specific phenotypic presentations originated through artificial selection, especially on desired novel phenotypic characteristics that arose only a few hundred years ago. Variations in coat texture and color of hair often delineate breeds amongst domestic animals. Although the genetic basis of several feline coat colors and hair lengths are characterized, less is known about the genes influencing variation in coat growth and texture, especially rexoid curly coated types. Cornish Rex is a cat breed defined by a fixed recessive curly coat trait. Genome-wide analyses for selection (di, Tajimas D and nucleotide diversity) were performed in the Cornish Rex breed and in 11 phenotypically diverse breeds and two random bred populations. Approximately 63K SNPs were used in the analysis that aimed to localize the locus controlling the rexoid hair texture. A region with a strong signature of recent selective sweep was identified in the Cornish Rex breed on chromosome A1, as well as a consensus block of homozygosity that spans approximately 3 Mb. Inspection of the region for candidate genes led to the identification of the lysophosphatidic acid receptor 6 (LPAR6). A 4 bp deletion in exon 5, c.250_253_delTTTG, which induces a premature stop codon in the receptor, was identified via Sanger sequencing. The mutation is fixed in Cornish Rex, absent in all straight haired cats analyzed, and is also segregating in the German Rex breed. LPAR6 encodes a G protein-coupled receptor essential for maintaining the structural integrity of the hair shaft; and has mutations resulting in a wooly hair phenotype in humans. PMID:23826204

  15. Discrimination of germline V genes at different sequencing lengths and mutational burdens: A new tool for identifying and evaluating the reliability of V gene assignment.

    PubMed

    Zhang, Bochao; Meng, Wenzhao; Prak, Eline T Luning; Hershberg, Uri

    2015-12-01

    Immune repertoires are collections of lymphocytes that express diverse antigen receptor gene rearrangements consisting of Variable (V), (Diversity (D) in the case of heavy chains) and Joining (J) gene segments. Clonally related cells typically share the same germline gene segments and have highly similar junctional sequences within their third complementarity determining regions. Identifying clonal relatedness of sequences is a key step in the analysis of immune repertoires. The V gene is the most important for clone identification because it has the longest sequence and the greatest number of sequence variants. However, accurate identification of a clone's germline V gene source is challenging because there is a high degree of similarity between different germline V genes. This difficulty is compounded in antibodies, which can undergo somatic hypermutation. Furthermore, high-throughput sequencing experiments often generate partial sequences and have significant error rates. To address these issues, we describe a novel method to estimate which germline V genes (or alleles) cannot be discriminated under different conditions (read lengths, sequencing errors or somatic hypermutation frequencies). Starting with any set of germline V genes, this method measures their similarity using different sequencing lengths and calculates their likelihood of unambiguous assignment under different levels of mutation. Hence, one can identify, under different experimental and biological conditions, the germline V genes (or alleles) that cannot be uniquely identified and bundle them together into groups of specific V genes with highly similar sequences. PMID:26529062

  16. Systematic interpretation of molecular beacon PCR for identifying rpoB mutations in Mycobacterium tuberculosis isolates with mixed resistant and susceptible bacteria

    PubMed Central

    Gomez, Diana I.; Fisher-Hoch, Susan P.; Bordt, Andrea S.; Quitugua, Teresa N.; Robledo, Jaime; Alvarez, Nataly; Correa, Nidia; McCormick, Joseph B.; Restrepo, Blanca I.

    2010-01-01

    Detection of multi-drug resistant tuberculosis (MDR-TB), a frequent cause of treatment failure, takes two or more weeks to identify by culture. Rifampicin (RIF) resistance is a hallmark of MDR-TB, and detection of mutations in the rpoB gene of Mycobacterium tuberculosis using molecular beacon probes with real-time quantitative PCR (qPCR) is a novel approach that takes ≤ 2 days. However, qPCR identification of resistant isolates, particularly for isolates with mixed RIF-susceptible and RIF-resistant bacteria, is reader-dependent and limits its clinical use. The aim of this study was to develop an objective, reader independent method to define rpoB mutants using beacon qPCR. This would facilitate the transition from a research protocol to the clinical setting, where high-throughput methods with objective interpretation are required. For this, DNAs from 107 M. tuberculosis clinical isolates with known susceptibility to RIF by culture-based methods were obtained from two regions where isolates have not previously been subjected to evaluation using molecular beacon qPCR: The Texas-Mexico border and Colombia. Using coded DNA specimens, mutations within an 81 bp hot-spot region of rpoB were established by qPCR with five beacons spanning this region. Visual and mathematical approaches were used to establish whether the qPCR cycle threshold (Ct) of the experimental isolate was significantly higher (mutant) compared to a reference wild-type isolate. Visual classification of the beacon qPCR required reader training for strains with a mixture of RIF-susceptible and resistant bacteria. Only then, the visual interpretation by an experienced reader had 100% sensitivity and 94.6% specificity versus RIF-resistance by culture phenotype, and 98.1% sensitivity and 100% specificity versus mutations based on DNA sequence. The mathematical approach was 98% sensitive and 94.5% specific versus culture, and 96.2% sensitive and 100% specific versus DNA sequence. Our findings indicate the mathematical approach has advantages over the visual reading, in that it uses a Microsoft Excel template to eliminate reader bias or inexperience, and allows objective interpretation from high-throughput analyses even in the presence of a mixture of RIF-resistant and RIF-susceptible isolates without the need for reader training. PMID:20227226

  17. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    PubMed

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. PMID:26417021

  18. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation

    PubMed Central

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-01-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant ‘Blondee’ (BLO) and its red-skin parent ‘Kidd’s D-8’ (KID), the original name of ‘Gala’, to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10–13) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. PMID:26417021

  19. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation

    PubMed Central

    Lee, Hane; Lin, Meng-chin A.; Kornblum, Harley I.; Papazian, Diane M.; Nelson, Stanley F.

    2014-01-01

    Numerous studies and case reports show comorbidity of autism and epilepsy, suggesting some common molecular underpinnings of the two phenotypes. However, the relationship between the two, on the molecular level, remains unclear. Here, whole exome sequencing was performed on a family with identical twins affected with autism and severe, intractable seizures. A de novo variant was identified in the KCND2 gene, which encodes the Kv4.2 potassium channel. Kv4.2 is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current (ISA) channels. The de novo mutation p.Val404Met is novel and occurs at a highly conserved residue within the C-terminal end of the transmembrane helix S6 region of the ion permeation pathway. Functional analysis revealed the likely pathogenicity of the variant in that the p.Val404Met mutant construct showed significantly slowed inactivation, either by itself or after equimolar coexpression with the wild-type Kv4.2 channel construct consistent with a dominant effect. Further, the effect of the mutation on closed-state inactivation was evident in the presence of auxiliary subunits that associate with Kv4 subunits to form ISA channels in vivo. Discovery of a functionally relevant novel de novo variant, coupled with physiological evidence that the mutant protein disrupts potassium current inactivation, strongly supports KCND2 as the causal gene for epilepsy in this family. Interaction of KCND2 with other genes implicated in autism and the role of KCND2 in synaptic plasticity provide suggestive evidence of an etiological role in autism. PMID:24501278

  20. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation.

    PubMed

    Lee, Hane; Lin, Meng-chin A; Kornblum, Harley I; Papazian, Diane M; Nelson, Stanley F

    2014-07-01

    Numerous studies and case reports show comorbidity of autism and epilepsy, suggesting some common molecular underpinnings of the two phenotypes. However, the relationship between the two, on the molecular level, remains unclear. Here, whole exome sequencing was performed on a family with identical twins affected with autism and severe, intractable seizures. A de novo variant was identified in the KCND2 gene, which encodes the Kv4.2 potassium channel. Kv4.2 is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current (ISA) channels. The de novo mutation p.Val404Met is novel and occurs at a highly conserved residue within the C-terminal end of the transmembrane helix S6 region of the ion permeation pathway. Functional analysis revealed the likely pathogenicity of the variant in that the p.Val404Met mutant construct showed significantly slowed inactivation, either by itself or after equimolar coexpression with the wild-type Kv4.2 channel construct consistent with a dominant effect. Further, the effect of the mutation on closed-state inactivation was evident in the presence of auxiliary subunits that associate with Kv4 subunits to form ISA channels in vivo. Discovery of a functionally relevant novel de novo variant, coupled with physiological evidence that the mutant protein disrupts potassium current inactivation, strongly supports KCND2 as the causal gene for epilepsy in this family. Interaction of KCND2 with other genes implicated in autism and the role of KCND2 in synaptic plasticity provide suggestive evidence of an etiological role in autism. PMID:24501278

  1. A Genetic Screen for Dominant Modifiers of a cyclin E Hypomorphic Mutation Identifies Novel Regulators of S-Phase Entry in Drosophila

    PubMed Central

    Brumby, Anthony; Secombe, Julie; Horsfield, Julie; Coombe, Michelle; Amin, Nancy; Coates, Deborah; Saint, Robert; Richardson, Helena

    2004-01-01

    Cyclin E together with its kinase partner Cdk2 is a critical regulator of entry into S phase. To identify novel genes that regulate the G1- to S-phase transition within a whole animal we made use of a hypomorphic cyclin E mutation, DmcycEJP, which results in a rough eye phenotype. We screened the X and third chromosome deficiencies, tested candidate genes, and carried out a genetic screen of 55,000 EMS or X-ray-mutagenized flies for second or third chromosome mutations that dominantly modified the DmcycEJP rough eye phenotype. We have focused on the DmcycEJP suppressors, S(DmcycEJP), to identify novel negative regulators of S-phase entry. There are 18 suppressor gene groups with more than one allele and several genes that are represented by only a single allele. All S(DmcycEJP) tested suppress the DmcycEJP rough eye phenotype by increasing the number of S phases in the postmorphogenetic furrow S-phase band. By testing candidates we have identified several modifier genes from the mutagenic screen as well as from the deficiency screen. DmcycEJP suppressor genes fall into the classes of: (1) chromatin remodeling or transcription factors; (2) signaling pathways; and (3) cytoskeletal, (4) cell adhesion, and (5) cytoarchitectural tumor suppressors. The cytoarchitectural tumor suppressors include scribble, lethal-2-giant-larvae (lgl), and discs-large (dlg), loss of function of which leads to neoplastic tumors and disruption of apical-basal cell polarity. We further explored the genetic interactions of scribble with S(DmcycEJP) genes and show that hypomorphic scribble mutants exhibit genetic interactions with lgl, scab (αPS3-integrin—cell adhesion), phyllopod (signaling), dEB1 (microtubule-binding protein—cytoskeletal), and moira (chromatin remodeling). These interactions of the cytoarchitectural suppressor gene, scribble, with cell adhesion, signaling, cytoskeletal, and chromatin remodeling genes, suggest that these genes may act in a common pathway to negatively regulate cyclin E or S-phase entry. PMID:15454540

  2. A somatic mutation of GFI1B identified in leukemia alters cell fate via a SPI1 (PU.1) centered genetic regulatory network.

    PubMed

    Anguita, Eduardo; Gupta, Rajeev; Olariu, Victor; Valk, Peter J; Peterson, Carsten; Delwel, Ruud; Enver, Tariq

    2016-03-15

    We identify a mutation (D262N) in the erythroid-affiliated transcriptional repressor GFI1B, in an acute myeloid leukemia (AML) patient with antecedent myelodysplastic syndrome (MDS). The GFI1B-D262N mutant functionally antagonizes the transcriptional activity of wild-type GFI1B. GFI1B-D262N promoted myelomonocytic versus erythroid output from primary human hematopoietic precursors and enhanced cell survival of both normal and MDS derived precursors. Re-analysis of AML transcriptome data identifies a distinct group of patients in whom expression of wild-type GFI1B and SPI1 (PU.1) have an inverse pattern. In delineating this GFI1B-SPI1 relationship we show that (i) SPI1 is a direct target of GFI1B, (ii) expression of GFI1B-D262N produces elevated expression of SPI1, and (iii) SPI1-knockdown restores balanced lineage output from GFI1B-D262N-expressing precursors. These results table the SPI1-GFI1B transcriptional network as an important regulatory axis in AML as well as in the development of erythroid versus myelomonocytic cell fate. PMID:26851695

  3. IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

    PubMed Central

    Marcucci, Guido; Maharry, Kati; Wu, Yue-Zhong; Radmacher, Michael D.; Mrózek, Krzysztof; Margeson, Dean; Holland, Kelsi B.; Whitman, Susan P.; Becker, Heiko; Schwind, Sebastian; Metzeler, Klaus H.; Powell, Bayard L.; Carter, Thomas H.; Kolitz, Jonathan E.; Wetzler, Meir; Carroll, Andrew J.; Baer, Maria R.; Caligiuri, Michael A.; Larson, Richard A.; Bloomfield, Clara D.

    2010-01-01

    Purpose To analyze the frequency and associations with prognostic markers and outcome of mutations in IDH genes encoding isocitrate dehydrogenases in adult de novo cytogenetically normal acute myeloid leukemia (CN-AML). Patients and Methods Diagnostic bone marrow or blood samples from 358 patients were analyzed for IDH1 and IDH2 mutations by DNA polymerase chain reaction amplification/sequencing. FLT3, NPM1, CEBPA, WT1, and MLL mutational analyses and gene- and microRNA-expression profiling were performed centrally. Results IDH mutations were found in 33% of the patients. IDH1 mutations were detected in 49 patients (14%; 47 with R132). IDH2 mutations, previously unreported in AML, were detected in 69 patients (19%; 13 with R172 and 56 with R140). R172 IDH2 mutations were mutually exclusive with all other prognostic mutations analyzed. Younger age (< 60 years), molecular low-risk (NPM1-mutated/FLT3-internal tandem duplication–negative) IDH1-mutated patients had shorter disease-free survival than molecular low-risk IDH1/IDH2-wild-type (wt) patients (P = .046). R172 IDH2-mutated patients had lower complete remission rates than IDH1/IDH2wt patients (P = .007). Distinctive microarray gene- and microRNA-expression profiles accurately predicted R172 IDH2 mutations. The highest expressed gene and microRNAs in R172 IDH2-mutated patients compared with the IDH1/IDH2wt patients were APP (previously associated with complex karyotype AML) and miR-1 and miR-133 (involved in embryonal stem-cell differentiation), respectively. Conclusion IDH1 and IDH2 mutations are recurrent in CN-AML and have an unfavorable impact on outcome. The R172 IDH2 mutations, previously unreported in AML, characterize a novel subset of CN-AML patients lacking other prognostic mutations and associate with unique gene- and microRNA-expression profiles that may lead to the discovery of novel, therapeutically targetable leukemogenic mechanisms. PMID:20368543

  4. Effects of FTDP-17 mutations on the in vitro phosphorylation of tau by glycogen synthase kinase 3beta identified by mass spectrometry demonstrate certain mutations exert long-range conformational changes.

    PubMed

    Connell, J W; Gibb, G M; Betts, J C; Blackstock, W P; Gallo, J; Lovestone, S; Hutton, M; Anderton, B H

    2001-03-23

    In vitro phosphorylation of recombinant wild-type 2N4R tau and FTDP-17 exonic mutant forms P301L, V337M and R406W by glycogen synthase kinase 3beta (GSK3beta) was examined by two dimensional phosphopeptide mapping analysis on thin layer cellulose plates. Comparison of these peptide maps with those generated from wild-type 1N4R tau isoform from which the phosphopeptide constituents and sites of phosphorylation had been determined previously, enabled us to monitor directly changes in phosphorylation of the individual tau proteins. No differences were found in the phosphorylation of wild-type, P301L or V337M tau by GSK3beta but the R406W mutant showed at least two clear differences from the other three tau proteins. The peptides, identified by mass spectrometry corresponding to phosphorylation at both threonine 231 and serine 235 (spot 3), serines 396, 400 and 404 (spot 6a) and serines 195 and 199 (spot 6b) were absent from the R406W peptide map. The findings imply that the R406W mutation in tau exerts long-range conformational effects on the structure of tau. PMID:11278002

  5. Novel Mutations in the CPT1A Gene Identified in the Patient Presenting Jaundice as the First Manifestation of Carnitine Palmitoyltransferase 1A Deficiency.

    PubMed

    Choi, Jong Sub; Yoo, Hyeoh Won; Lee, Kyung Jae; Ko, Jung Min; Moon, Jin Soo; Ko, Jae Sung

    2016-03-01

    Carnitine palmitoyltransferase 1A (CPT1A) is an enzyme functioning in mitochondrial fatty acid oxidation (FAO) of the liver. Patients with CPT1A deficiency have impaired mitochondrial FAO and display hypoketotic hypoglycemia and hepatic encephalopathy as typical manifestations. In this report, we present a case of CPT1A deficiency presenting jaundice as the first manifestation. A 1.9 years old boy showed jaundice and elevated levels of free and total carnitine were observed. From direct sequencing analysis of CPT1A, two novel mutations, c.1163+1G>A and c.1393G>A (p.Gly465Arg), were identified. At the age of 2.2 years, hypoglycemia, tachycardia, and altered mental status developed just after cranioplasty for craniosynostosis. High glucose infusion rate was required for recovery of his vital signs and mentality. Diet rich in high carbohydrate, low fat and inclusion of medium chain triglyceride oil resulted in improvement in cholestatic hepatitis and since then the boy has shown normal growth velocity and developmental milestones to date. PMID:27066452

  6. Novel Mutations in the CPT1A Gene Identified in the Patient Presenting Jaundice as the First Manifestation of Carnitine Palmitoyltransferase 1A Deficiency

    PubMed Central

    Choi, Jong Sub; Yoo, Hyeoh Won; Lee, Kyung Jae; Moon, Jin Soo; Ko, Jae Sung

    2016-01-01

    Carnitine palmitoyltransferase 1A (CPT1A) is an enzyme functioning in mitochondrial fatty acid oxidation (FAO) of the liver. Patients with CPT1A deficiency have impaired mitochondrial FAO and display hypoketotic hypoglycemia and hepatic encephalopathy as typical manifestations. In this report, we present a case of CPT1A deficiency presenting jaundice as the first manifestation. A 1.9 years old boy showed jaundice and elevated levels of free and total carnitine were observed. From direct sequencing analysis of CPT1A, two novel mutations, c.1163+1G>A and c.1393G>A (p.Gly465Arg), were identified. At the age of 2.2 years, hypoglycemia, tachycardia, and altered mental status developed just after cranioplasty for craniosynostosis. High glucose infusion rate was required for recovery of his vital signs and mentality. Diet rich in high carbohydrate, low fat and inclusion of medium chain triglyceride oil resulted in improvement in cholestatic hepatitis and since then the boy has shown normal growth velocity and developmental milestones to date. PMID:27066452

  7. Intestinal cell barrier function in vitro is severely compromised by keratin 8 and 18 mutations identified in patients with inflammatory bowel disease.

    PubMed

    Zupancic, Tina; Stojan, Jure; Lane, Ellen Birgitte; Komel, Radovan; Bedina-Zavec, Apolonija; Liovic, Mirjana

    2014-01-01

    Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo. PMID:24915158

  8. Somatic mosaicism for a newly identified splice-site mutation in a patient with adenosine deaminase-deficient immunodeficiency and spontaneous clinical recovery

    SciTech Connect

    Hirschhorn, R.; Yang, D.R.; Israni, A.; Huie, M.L. ); Ownby, D.R. )

    1994-07-01

    Absent or severely reduced adenosine deaminase (ADA) activity produces inherited immunodeficiency of varying severity, with defects of both cellular and humoral immunity. The authors report somatic mosaicism as the basis for a delayed presentation and unusual course of a currently healthy young adult receiving no therapy. He was diagnosed at age 2[1/2] years because of life-threatening pneumonia, recurrent infections, failure of normal growth, and lymphopenia, but he retained significant cellular immune function. A fibroblast cell line and a B cell line, established at diagnosis, lacked ADA activity and were heteroallelic for a splice-donor-site mutation in IVS 1 (+1GT[yields]CT) and a missense mutation (Arg101Gln). All clones (17/17) isolated from the B cell mRNA carried the missense mutation, indicating that the allele with the splice-site mutation produced unstable mRNA. In striking contrast, a B cell line established at age 16 years expressed 50% of normal ADA; 50% had the missense mutation. Genomic DNA contained the missense mutation but not the splice-site mutation. All three cell lines were identical for multiple polymorphic markers and the presence of a Y chromosome. In vivo somatic mosaicism was demonstrated in genomic DNA from peripheral blood cells obtained at 16 years of age, in that less than half the DNA carried the splice-site mutation (P<.0.02, vs. original B cell line). Consistent with mosaicism, erythrocyte content of the toxic metabolite deoxyATP was only minimally elevated. Somatic mosaicism could have arisen either by somatic mutation or by reversion at the site of mutation. Selection in vivo for ADA normal hematopoietic cells may have played a role in the return to normal health, in the absence of therapy. 57 refs., 4 figs., 2 tabs.

  9. Intestinal Cell Barrier Function In Vitro Is Severely Compromised by Keratin 8 and 18 Mutations Identified in Patients with Inflammatory Bowel Disease

    PubMed Central

    Zupancic, Tina; Stojan, Jure; Lane, Ellen Birgitte; Komel, Radovan; Bedina-Zavec, Apolonija; Liovic, Mirjana

    2014-01-01

    Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo. PMID:24915158

  10. Systematic Mutational Analysis of Histidine Kinase Genes in the Nosocomial Pathogen Stenotrophomonas maltophilia Identifies BfmAK System Control of Biofilm Development.

    PubMed

    Zheng, Liu; Wang, Fang-Fang; Ren, Bao-Zhen; Liu, Wei; Liu, Zhong; Qian, Wei

    2016-04-15

    The Gram-negative bacteriumStenotrophomonas maltophilialives in diverse ecological niches. As a result of its formidable capabilities of forming biofilm and its resistance to multiple antibiotic agents, the bacterium is also a nosocomial pathogen of serious threat to the health of patients whose immune systems are suppressed or compromised. Besides the histidine kinase RpfC, the two-component signal transduction system (TCS), which is the canonical regulatory machinery used by most bacterial pathogens, has never been experimentally investigated inS. maltophilia Here, we annotated 62 putative histidine kinase genes in theS. maltophiliagenome and successfully obtained 51 mutants by systematical insertional inactivation. Phenotypic characterization identified a series of mutants with deficiencies in bacterial growth, swimming motility, and biofilm development. A TCS, named here BfmA-BfmK (Smlt4209-Smlt4208), was genetically confirmed to regulate biofilm formation inS. maltophilia Together with interacting partner prediction and chromatin immunoprecipitation screens, six candidate promoter regions bound by BfmAin vivowere identified. We demonstrated that, among them, BfmA acts as a transcription factor that binds directly to the promoter regions ofbfmA-bfmKandSmlt0800(acoT), a gene encoding an acyl coenzyme A thioesterase that is associated with biofilm development, and positively controls their transcription. Genome-scale mutational analyses of histidine kinase genes and functional dissection of BfmK-BfmA regulation in biofilm provide genetic information to support more in-depth studies on cellular signaling inS. maltophilia, in the context of developing novel approaches to fight this important bacterial pathogen. PMID:26873318

  11. Whole-exome sequencing identifies mutations of TBC1D1 encoding a Rab-GTPase-activating protein in patients with congenital anomalies of the kidneys and urinary tract (CAKUT).

    PubMed

    Kosfeld, Anne; Kreuzer, Martin; Daniel, Christoph; Brand, Frank; Schäfer, Anne-Kathrin; Chadt, Alexandra; Weiss, Anna-Carina; Riehmer, Vera; Jeanpierre, Cécile; Klintschar, Michael; Bräsen, Jan Hinrich; Amann, Kerstin; Pape, Lars; Kispert, Andreas; Al-Hasani, Hadi; Haffner, Dieter; Weber, Ruthild G

    2016-01-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) are genetically highly heterogeneous leaving most cases unclear after mutational analysis of the around 30 causative genes known so far. Assuming that phenotypes frequently showing dominant inheritance, such as CAKUT, can be caused by de novo mutations, de novo analysis of whole-exome sequencing data was done on two patient-parent-trios to identify novel CAKUT genes. In one case, we detected a heterozygous de novo frameshift variant in TBC1D1 encoding a Rab-GTPase-activating protein regulating glucose transporter GLUT4 translocation. Sequence analysis of 100 further CAKUT cases yielded three novel or rare inherited heterozygous TBC1D1 missense variants predicted to be pathogenic. TBC1D1 mutations affected Ser237-phosphorylation or protein stability and thereby act as hypomorphs. Tbc1d1 showed widespread expression in the developing murine urogenital system. A mild CAKUT spectrum phenotype, including anomalies observed in patients carrying TBC1D1 mutations, was found in kidneys of some Tbc1d1 (-/-) mice. Significantly reduced Glut4 levels were detected in kidneys of Tbc1d1 (-/-) mice and the dysplastic kidney of a TBC1D1 mutation carrier versus controls. TBC1D1 and SLC2A4 encoding GLUT4 were highly expressed in human fetal kidney. The patient with the truncating TBC1D1 mutation showed evidence for insulin resistance. These data demonstrate heterozygous deactivating TBC1D1 mutations in CAKUT patients with a similar renal and ureteral phenotype, and provide evidence that TBC1D1 mutations may contribute to CAKUT pathogenesis, possibly via a role in glucose homeostasis. PMID:26572137

  12. Mutation and mutation screening.

    PubMed

    Lee, L Slade; Till, Bradley J; Hill, Helen; Huynh, Owen A; Jankowicz-Cieslak, Joanna

    2014-01-01

    Molecular techniques have created the opportunity for great advances in plant mutation genetics and the science of mutation breeding. The powerful targeted induced local lesions in genomes (TILLING) technique has introduced the possibility of reverse genetics-the ability to screen for mutations at the DNA level prior to assessing phenotype. Fundamental to TILLING is the induction of mutant populations (or alternatively, the identification of mutants in the environment); and mutation induction requires an understanding and assessment of the appropriate mutagen dose required. The techniques of mutation induction, dose optimization, and TILLING are explained. PMID:24243197

  13. The FMR1 CGG repeat test is not a candidate prescreening tool for identifying women with a high probability of being carriers of BRCA mutations

    PubMed Central

    Ricci, Maria Teresa; Pennese, Loredana; Gismondi, Viviana; Perfumo, Chiara; Grasso, Marina; Gennaro, Elena; Bruzzi, Paolo; Varesco, Liliana

    2014-01-01

    The identification of women with a high probability of being carriers of pathogenic BRCA mutation is not straightforward and a major improvement would be the availability of markers of mutations that could be directly evaluated in individuals asking for genetic testing. The FMR1 gene testing was recently proposed as a candidate prescreening tool because an association between BRCA pathogenic mutations and FMR1 genotypes with ‘low alleles' (CGG repeat number <26) was observed. To confirm this hypothesis, we evaluated the distribution of FMR1 alleles and genotypes between BRCA mutation carriers and non-carriers in a cohort of 147 Italian women, free of cancer or affected by breast and/or ovarian cancer, who were tested for the presence of BRCA mutation in a clinical setting. The distribution of FMR1 CGG repeat numbers in the two groups was similar (lower allele median/mean were 30/27.4 and 30/27.9, respectively; Mann–Whitney test P=0.997) and no difference in the FMR1 genotype distribution was present (χ2=0.503, d.f.=2, P=0.78). This result is in contrast with literature data and suggests that FMR1 genetic testing is not a candidate BRCA prescreening tool. PMID:24065114

  14. Exome sequencing identifies novel mutations in C5orf42 in patients with Joubert syndrome with oral–facial–digital anomalies

    PubMed Central

    Wentzensen, Ingrid M; Johnston, Jennifer J; Keppler-Noreuil, Kim; Acrich, Karina; David, Karen; Johnson, Kisha D; Graham, John M; Sapp, Julie C; Biesecker, Leslie G

    2015-01-01

    Oral–facial–digital syndrome VI (OFD6 OMIM #277170), also called Varadi–Papp syndrome, is a ciliopathy inherited in an autosomal recessive pattern. Recently, mutations in C5orf42 (OMIM #614571) have been associated with OFD6. OFD6 overlaps with Joubert syndrome and mutations in C5orf42 were described in Joubert syndrome 17 (JBTS17, OMIM #614571). Using exome sequencing we report three novel variants and one previously reported variant in the C5orf42 gene in patients with OFD6. PMID:27081551

  15. WHOLE EXOME SEQUENCING IDENTIFIED THAT THE MAPK AND PI3K PATHWAYS ARE THE MAIN TARGETS FOR MUTATIONS IN INTRACRANIAL GERM CELL TUMORS

    PubMed Central

    Ichimura, Koichi; Fukushima, Shintaro; Totoki, Yasushi; Matsushita, Yuko; Otsuka, Ayaka; Tomiyama, Arata; Niwa, Tohru; Sakai, Ryuichi; Ushijima, Toshikazu; Nakamura, Taishi; Suzuki, Tomonari; Fukuoka, Kouhei; Yanagisawa, Takaaki; Mishima, Kazuhiko; Nakazato, Yoichi; Hosoda, Fumie; Narita, Yoshitaka; Shibui, Soichiro; Yoshida, Akihiko; Takami, Hirokazu; Mukasa, Akitake; Aihara, Koki; Saito, Nobuhito; Kumabe, Toshihiro; Kanamori, Masayuki; Tominaga, Teiji; Kobayashi, Keiichi; Shimizu, Saki; Nagane, Motoo; Iuchi, Toshihiko; Mizoguchi, Masahiro; Yoshimoto, Koji; Tamura, Kaoru; Maehara, Taketoshi; Sugiyama, Kazuhiko; Nakada, Mitsutoshi; Sakai, Keiichi; Kanemura, Yonehiro; Yokogami, Kiyotaka; Takeshima, Hideo; Kawahara, Nobutaka; Takayama, Tatsuya; Yao, Masahiro; Matsutani, Masao; Shibata, Tatsuhiro; Nishikawa, Ryo

    2014-01-01

    BACKGROUND: Intracranial germ cell tumors (iGCTs) are rare in the Western countries, however they are the second most common brain tumors in patients under 14 in Japan. Unlike other common pediatric brain tumors, the biology of iGCTs is largely unknown. METHODS: We performed a whole exome sequencing in a large series of iGCTs to elucidate their molecular pathogenesis. A total of 198 germ cell tumors (GCTs) including 133 iGCTs (69 pure germinomas, 56 NGGCTs and 8 metastatic tumors) as well as 65 testicular germ cell tumors (tGCTs) (39 seminomas and 26 non-seminoma GCTs) were collected from 13 centers participating in the Intracranial Germ Cell Tumor Consortium in Japan. Somatic mutations in all coding exons were investigated by whole exome sequencing (WES) in 41 tumors and the matched normal DNAs. Based on the WES data, 41 candidate genes were selected according to the frequency and/or significance of the mutations found. All coding exons of these 41 genes spanning over 160kb were PCR-amplified in a further 157 GCTs and sequenced using the IonTorrent system. The results were integrated with the patients' clinical information that was available for 124 iGCT patients. RESULTS: On average, 15.4 non-synonymous somatic mutations were observed in each tumor, ranging from 1 to 140 by WES in 41 iGCTs. The combined WES and IonTorrent screenings showed that KIT was the most frequently mutated gene in both iGCTs (27%) and tGCTs (18%). MTOR was the second most frequently mutated also in both iGCTs (7%) and tGCTs (6%). RAS mutations (KRAS, HRAS, NRAS) were altogether found in 13% of iGCTs and 12% of tGCTs. These mutations were mutually exclusive to each other and also to KIT mutations. Collectively, the genes involved in the MAPK pathway (e.g., KIT, RAS, NF1) and the PI3K/MTOR pathway (e.g., MTOR, PTEN) were mutated in 44% and 13% of all GCTs. Among the iGCTs, these alterations were significantly more common among pure germinomas than NGGCTs. The mutated MTOR protein was shown to have increased kinase activity, which was suppressed by specific MTOR inhibitors. CONCLUSIONS: Our comprehensive mutational genomic analysis of GCTs revealed that alterations of the MAPK and/or PI3K/MTOR pathways play a critical role in the pathogenesis of both iGCTs and tGCTs, although the extent of their involvement depends on the histopathological subtypes. Our findings will hopefully lead to the development of a targeted therapy for treatment-resistant iGCTs. SECONDARY CATEGORY: Tumor Biology.

  16. Mutations Related to Antiretroviral Resistance Identified by Ultra-Deep Sequencing in HIV-1 Infected Children under Structured Interruptions of HAART.

    PubMed

    Vazquez-Guillen, Jose Manuel; Palacios-Saucedo, Gerardo C; Rivera-Morales, Lydia G; Garcia-Campos, Jorge; Ortiz-Lopez, Rocio; Noguera-Julian, Marc; Paredes, Roger; Vielma-Ramirez, Herlinda J; Ramirez, Teresa J; Chavez-Garcia, Marcelino; Lopez-Guillen, Paulo; Briones-Lara, Evangelina; Sanchez-Sanchez, Luz M; Vazquez-Martinez, Carlos A; Rodriguez-Padilla, Cristina

    2016-01-01

    Although Structured Treatment Interruptions (STI) are currently not considered an alternative strategy for antiretroviral treatment, their true benefits and limitations have not been fully established. Some studies suggest the possibility of improving the quality of life of patients with this strategy; however, the information that has been obtained corresponds mostly to studies conducted in adults, with a lack of knowledge about its impact on children. Furthermore, mutations associated with antiretroviral resistance could be selected due to sub-therapeutic levels of HAART at each interruption period. Genotyping methods to determine the resistance profiles of the infecting viruses have become increasingly important for the management of patients under STI, thus low-abundance antiretroviral drug-resistant mutations (DRM's) at levels under limit of detection of conventional genotyping (<20% of quasispecies) could increase the risk of virologic failure. In this work, we analyzed the protease and reverse transcriptase regions of the pol gene by ultra-deep sequencing in pediatric patients under STI with the aim of determining the presence of high- and low-abundance DRM's in the viral rebounds generated by the STI. High-abundance mutations in protease and high- and low-abundance mutations in reverse transcriptase were detected but no one of these are directly associated with resistance to antiretroviral drugs. The results could suggest that the evaluated STI program is virologically safe, but strict and carefully planned studies, with greater numbers of patients and interruption/restart cycles, are still needed to evaluate the selection of DRM's during STI. PMID:26807922

  17. Novel CIC Point Mutations and an Exon-Spanning, Homozygous Deletion Identified in Oligodendroglial Tumors by a Comprehensive Genomic Approach Including Transcriptome Sequencing

    PubMed Central

    Eisenreich, Sophie; Abou-El-Ardat, Khalil; Szafranski, Karol; Campos Valenzuela, Jaime A.; Rump, Andreas; Nigro, Janice M.; Bjerkvig, Rolf; Gerlach, Eva-Maria; Hackmann, Karl; Schröck, Evelin; Krex, Dietmar; Kaderali, Lars; Schackert, Gabriele; Platzer, Matthias; Klink, Barbara

    2013-01-01

    Oligodendroglial tumors form a distinct subgroup of gliomas, characterized by a better response to treatment and prolonged overall survival. Most oligodendrogliomas and also some oligoastrocytomas are characterized by a unique and typical unbalanced translocation, der(1,19), resulting in a 1p/19q co-deletion. Candidate tumor suppressor genes targeted by these losses, CIC on 19q13.2 and FUBP1 on 1p31.1, were only recently discovered. We analyzed 17 oligodendrogliomas and oligoastrocytomas by applying a comprehensive approach consisting of RNA expression analysis, DNA sequencing of CIC, FUBP1, IDH1/2, and array CGH. We confirmed three different genetic subtypes in our samples: i) the “oligodendroglial” subtype with 1p/19q co-deletion in twelve out of 17 tumors; ii) the “astrocytic” subtype in three tumors; iii) the “other” subtype in two tumors. All twelve tumors with the 1p/19q co-deletion carried the most common IDH1 R132H mutation. In seven of these tumors, we found protein-disrupting point mutations in the remaining allele of CIC, four of which are novel. One of these tumors also had a deleterious mutation in FUBP1. Only by integrating RNA expression and array CGH data, were we able to discover an exon-spanning homozygous microdeletion within the remaining allele of CIC in an additional tumor with 1p/19q co-deletion. Therefore we propose that the mutation rate might be underestimated when looking at sequence variants alone. In conclusion, the high frequency and the spectrum of CIC mutations in our 1p/19q-codeleted tumor cohort support the hypothesis that CIC acts as a tumor suppressor in these tumors, whereas FUBP1 might play only a minor role. PMID:24086756

  18. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance.

    PubMed

    Roh, Sandy S; Smith, Laura E; Lee, Jong Seok; Via, Laura E; Barry, Clifton E; Alland, David; Chakravorty, Soumitesh

    2015-01-01

    Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis) have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB) melting temperature (Tm) assay and a Dual labeled probe (DLP) Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD) and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100%) samples with rpoB RRDR mutations and 3/3 (100%) samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94%) gyrA mutants and 12/22 (55%) rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition. PMID:25938476

  19. K-rasG12V mediated lung tumor models identified three new quantitative trait loci modifying events post-K-ras mutation.

    PubMed

    Saito, Hiromitsu; Suzuki, Noboru

    2014-10-01

    A high incidence of oncogenic K-ras mutations is observed in lung adenocarcinoma of human cases and carcinogen-induced animal models. The process of oncogenic K-ras-mediated lung adenocarcinogenesis can be dissected into two parts: pre- and post-K-ras mutation. Adoption of transgenic lines containing a flox-K-rasG12V transgene eliminates the use of chemical carcinogens and enables us to study directly crucial events post-K-ras mutation without considering the cellular events involved with oncogenic K-ras mutation, e.g., distribution and metabolism of chemical carcinogens, DNA repair, and somatic recombination by host factors. We generated two mouse strains C57BL/6J-Ryr2(tm1Nobs) and A/J-Ryr2(tm1Nobs) in which K-rasG12V can be transcribed from the cytomegalovirus early enhancer/chicken beta actin promoter in virtually any tissue. Upon K-rasG12V induction in lung epithelial cells by an adenovirus expressing the Cre recombinase, the number of tumors in the C57BL/6J-Ryr2(tm1Nobs/+) mouse line was 12.5 times that in the A/J-Ryr2(tm1Nobs/+) mouse line. Quantitative trait locus (QTL) analysis revealed that new three modifier loci, D3Mit19, D3Mit45 and D11Mit20, were involved in the differential susceptibility between the two lines. In addition, we found that differential expression of the wild-type K-ras gene, which was genetically turn out to be anti-oncogenic activity on K-rasG12V, could not account for the different susceptibility in our two K-rasG12V-mediated lung tumor models. Thus, we provide a genetic system that enables us to explore new downstream modifiers post-K-ras mutation. PMID:25245290

  20. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death

    PubMed Central

    Zaragoza, Michael V.; Fung, Lianna; Jensen, Ember; Oh, Frances; Cung, Katherine; McCarthy, Linda A.; Tran, Christine K.; Hoang, Van; Hakim, Simin A.; Grosberg, Anna

    2016-01-01

    The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10) with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85%) located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51%) variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies <1% for family studies. The results identified LMNA c.357-2A>G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency. PMID:27182706

  1. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death.

    PubMed

    Zaragoza, Michael V; Fung, Lianna; Jensen, Ember; Oh, Frances; Cung, Katherine; McCarthy, Linda A; Tran, Christine K; Hoang, Van; Hakim, Simin A; Grosberg, Anna

    2016-01-01

    The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10) with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85%) located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51%) variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies <1% for family studies. The results identified LMNA c.357-2A>G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency. PMID:27182706

  2. NRAS Mutations in Noonan Syndrome

    PubMed Central

    Denayer, E.; Peeters, H.; Sevenants, L.; Derbent, M.; Fryns, J.P.; Legius, E.

    2012-01-01

    Noonan syndrome is a genetically heterogeneous disorder caused by mutations in PTPN11, SOS1, RAF1 and less frequently in KRAS, NRAS or SHOC2. Here, we performed mutation analysis of NRAS and SHOC2 in 115 PTPN11, SOS1, RAF1, and KRAS mutation-negative individuals. No SHOC2 mutations were found, but we identified 3 NRAS mutations in 3 probands. One NRAS mutation was novel. The phenotype associated with germline NRAS mutations is variable. Our results confirm that a small proportion of Noonan syndrome patients carry germline NRAS mutations. PMID:22855653

  3. Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non-small cell lung carcinoma from Chinese patients.

    PubMed

    Xiong, Donghai; Li, Guangming; Li, Kezhen; Xu, Qinzi; Pan, Zhongjie; Ding, Feng; Vedell, Peter; Liu, Pengyuan; Cui, Peng; Hua, Xing; Jiang, Hui; Yin, Yuxin; Zhu, Ze; Li, Xiaomian; Zhang, Bin; Ma, Ding; Wang, Yian; You, Ming

    2012-09-01

    Lung cancer has become the top killer among malignant tumors in China and is significantly associated with somatic genetic alterations. We performed exome sequencing of 14 non-small cell lung carcinomas (NSCLCs) with matched adjacent normal lung tissues extracted from Chinese patients. In addition to the lung cancer-related genes (TP53, EGFR, KRAS, PIK3CA, and ROS1), this study revealed "novel" genes not previously implicated in NSCLC. Especially, matrix-remodeling associated 5 was the second most frequently mutated gene in NSCLC (first is TP53). Subsequent Sanger sequencing of matrix-remodeling associated 5 in an additional sample set consisting of 52 paired tumor-normal DNA samples revealed that 15% of Chinese NSCLCs contained somatic mutations in matrix-remodeling associated 5. These findings, together with the results from pathway analysis, strongly indicate that altered extracellular matrix-remodeling may be involved in the etiology of NSCLC. PMID:22696596

  4. Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non–small cell lung carcinoma from Chinese patients

    PubMed Central

    You, Ming

    2012-01-01

    Lung cancer has become the top killer among malignant tumors in China and is significantly associated with somatic genetic alterations. We performed exome sequencing of 14 non–small cell lung carcinomas (NSCLCs) with matched adjacent normal lung tissues extracted from Chinese patients. In addition to the lung cancer–related genes (TP53, EGFR, KRAS, PIK3CA, and ROS1), this study revealed “novel” genes not previously implicated in NSCLC. Especially, matrix-remodeling associated 5 was the second most frequently mutated gene in NSCLC (first is TP53). Subsequent Sanger sequencing of matrix-remodeling associated 5 in an additional sample set consisting of 52 paired tumor-normal DNA samples revealed that 15% of Chinese NSCLCs contained somatic mutations in matrix-remodeling associated 5. These findings, together with the results from pathway analysis, strongly indicate that altered extracellular matrix-remodeling may be involved in the etiology of NSCLC. PMID:22696596

  5. Mutations Related to Antiretroviral Resistance Identified by Ultra-Deep Sequencing in HIV-1 Infected Children under Structured Interruptions of HAART

    PubMed Central

    Vazquez-Guillen, Jose Manuel; Palacios-Saucedo, Gerardo C.; Rivera-Morales, Lydia G.; Garcia-Campos, Jorge; Ortiz-Lopez, Rocio; Noguera-Julian, Marc; Paredes, Roger; Vielma-Ramirez, Herlinda J.; Ramirez, Teresa J.; Chavez-Garcia, Marcelino; Lopez-Guillen, Paulo; Briones-Lara, Evangelina; Sanchez-Sanchez, Luz M.; Vazquez-Martinez, Carlos A.; Rodriguez-Padilla, Cristina

    2016-01-01

    Although Structured Treatment Interruptions (STI) are currently not considered an alternative strategy for antiretroviral treatment, their true benefits and limitations have not been fully established. Some studies suggest the possibility of improving the quality of life of patients with this strategy; however, the information that has been obtained corresponds mostly to studies conducted in adults, with a lack of knowledge about its impact on children. Furthermore, mutations associated with antiretroviral resistance could be selected due to sub-therapeutic levels of HAART at each interruption period. Genotyping methods to determine the resistance profiles of the infecting viruses have become increasingly important for the management of patients under STI, thus low-abundance antiretroviral drug-resistant mutations (DRM’s) at levels under limit of detection of conventional genotyping (<20% of quasispecies) could increase the risk of virologic failure. In this work, we analyzed the protease and reverse transcriptase regions of the pol gene by ultra-deep sequencing in pediatric patients under STI with the aim of determining the presence of high- and low-abundance DRM’s in the viral rebounds generated by the STI. High-abundance mutations in protease and high- and low-abundance mutations in reverse transcriptase were detected but no one of these are directly associated with resistance to antiretroviral drugs. The results could suggest that the evaluated STI program is virologically safe, but strict and carefully planned studies, with greater numbers of patients and interruption/restart cycles, are still needed to evaluate the selection of DRM’s during STI. PMID:26807922

  6. Characterization of clinically identified mutations in NDUFV1, the flavin-binding subunit of respiratory complex I, using a yeast model system

    PubMed Central

    Varghese, Febin; Atcheson, Erwan; Bridges, Hannah R.; Hirst, Judy

    2015-01-01

    Dysfunctions in mitochondrial complex I (NADH:ubiquinone oxidoreductase) are both genetically and clinically highly diverse and a major cause of human mitochondrial diseases. The genetic determinants of individual clinical cases are increasingly being described, but how these genetic defects affect complex I on the molecular and cellular level, and have different clinical consequences in different individuals, is little understood. Furthermore, without molecular-level information innocent genetic variants may be misassigned as pathogenic. Here, we have used a yeast model system (Yarrowia lipolytica) to study the molecular consequences of 16 single amino acid substitutions, classified as pathogenic, in the NDUFV1 subunit of complex I. NDUFV1 binds the flavin cofactor that oxidizes NADH and is the site of complex I-mediated reactive oxygen species production. Seven mutations caused loss of complex I expression, suggesting they are detrimental but precluding further study. In two variants complex I was fully assembled but did not contain any flavin, and four mutations led to functionally compromised enzymes. Our study provides a molecular rationale for assignment of all these variants as pathogenic. However, three variants provided complex I that was functionally equivalent to the wild-type enzyme, challenging their assignment as pathogenic. By combining structural, bioinformatic and functional data, a simple scoring system for the initial evaluation of future NDUFV1 variants is proposed. Overall, our results broaden understanding of how mutations in this centrally important core subunit of complex I affect its function and provide a basis for understanding the role of NDUFV1 mutations in mitochondrial dysfunction. PMID:26345448

  7. Identifying Mutations of the Tetratricopeptide Repeat Domain 37 (TTC37) Gene in Infants With Intractable Diarrhea and a Comparison of Asian and Non-Asian Phenotype and Genotype

    PubMed Central

    Lee, Wen-I; Huang, Jing-Long; Chen, Chien-Chang; Lin, Ju-Li; Wu, Ren-Chin; Jaing, Tang-Her; Ou, Liang-Shiou

    2016-01-01

    Abstract Syndromic diarrhea/tricho-hepato-enteric syndrome (SD/THE) is a rare, autosomal recessive and severe bowel disorder mainly caused by mutations in the tetratricopeptide repeat domain 37 (TTC37) gene which act as heterotetrameric cofactors to enhance aberrant mRNAs decay. The phenotype and immune profiles of SD/THE overlap those of primary immunodeficiency diseases (PIDs). Neonates with intractable diarrhea underwent immunologic assessments including immunoglobulin levels, lymphocyte subsets, lymphocyte proliferation, superoxide production, and IL-10 signaling function. Candidate genes for PIDs predisposing to inflammatory bowel disease were sequencing in this study. Two neonates, born to nonconsanguineous parents, suffered from intractable diarrhea, recurrent infections, and massive hematemesis from esopharyngeal varices due to liver cirrhosis or accompanying Trichorrhexis nodosa that developed with age and thus guided the diagnosis of SD/THE compatible to TTC37 mutations (homozygous DelK1155H, Fs∗2; heterozygous Y1169Ter and InsA1143, Fs∗3). Their immunologic evaluation showed normal mitogen-stimulated lymphocyte proliferation, superoxide production, and IL-10 signaling, but low IgG levels, undetectable antibody to hepatitis B surface antigen and decreased antigen-stimulated lymphocyte proliferation. A PubMed search for bi-allelic TTC37 mutations and phenotypes were recorded in 14 Asian and 12 non-Asian cases. They had similar presentations of infantile onset refractory diarrhea, facial dysmorphism, hair anomalies, low IgG, low birth weight, and consanguinity. A higher incidence of heart anomalies (8/14 vs 2/12; P = 0.0344, Chi-square), nonsense mutations (19 in 28 alleles), and hot-spot mutations (W936Ter, 2779-2G>A, and Y1169Ter) were found in the Asian compared with the non-Asian patients. Despite immunoglobulin therapy in 20 of the patients, 4 died from liver cirrhosis and 1 died from sepsis. Patients of all ethnicities with SD/THE with the characteristic triad of T nodosa, hepatic cirrhosis, and intractable enteropathy have low IgG, poor vaccine response and/or decreased antigen-stimulated lymphocyte proliferation. This is now better classified into the subgroup of “well-defined syndromes with immunodeficiency” (the update termed as “combined immunodeficiencies with associated or syndromic features”) than “predominantly antibody deficiencies” in the update PIDs classification, and requires optimal interventions. PMID:26945392

  8. Experimental Evolution Identifies Vaccinia Virus Mutations in A24R and A35R That Antagonize the Protein Kinase R Pathway and Accompany Collapse of an Extragenic Gene Amplification

    PubMed Central

    Brennan, Greg; Kitzman, Jacob O.; Shendure, Jay

    2015-01-01

    ABSTRACT Most new human infectious diseases emerge from cross-species pathogen transmissions; however, it is not clear how viruses adapt to productively infect new hosts. Host restriction factors represent one species-specific barrier that viruses may initially have little ability to inhibit in new hosts. For example, viral antagonists of protein kinase R (PKR) vary in their ability to block PKR-mediated inhibition of viral replication, in part due to PKR allelic variation between species. We previously reported that amplification of a weak PKR antagonist encoded by rhesus cytomegalovirus, rhtrs1, improved replication of a recombinant poxvirus (VVΔEΔK+RhTRS1) in several resistant primate cells. To test whether amplification increases the opportunity for mutations that improve virus replication with only a single copy of rhtrs1 to evolve, we passaged rhtrs1-amplified viruses in semipermissive primate cells. After passage, we isolated two viruses that contained only a single copy of rhtrs1 yet replicated as well as the amplified virus. Surprisingly, rhtrs1 was not mutated in these viruses; instead, we identified mutations in two vaccinia virus (VACV) genes, A24R and A35R, either of which was sufficient to improve VVΔEΔK+RhTRS1 replication. Neither of these genes has previously been implicated in PKR antagonism. Furthermore, the mutation in A24R, but not A35R, increased resistance to the antipoxviral drug isatin-β-thiosemicarbazone, suggesting that these mutations employ different mechanisms to evade PKR. This study supports our hypothesis that gene amplification may provide a “molecular foothold,” broadly improving replication to facilitate rapid adaptation, while subsequent mutations maintain this efficient replication in the new host without requiring gene amplification. IMPORTANCE Understanding how viruses adapt to a new host may help identify viruses poised to cross species barriers before an outbreak occurs. Amplification of rhtrs1, a weak viral antagonist of the host antiviral protein PKR, enabled a recombinant vaccinia virus to replicate in resistant cells from humans and other primates. After serial passage of rhtrs1-amplified viruses, there arose in two vaccinia virus genes mutations that improved viral replication without requiring rhtrs1 amplification. Neither of these genes has previously been associated with inhibition of the PKR pathway. These data suggest that gene amplification can improve viral replication in a resistant host species and facilitate the emergence of novel adaptations that maintain the foothold needed for continued replication and spread in the new host. PMID:26202237

  9. Whole-genome sequencing identifies a novel ABCB7 gene mutation for X-linked congenital cerebellar ataxia in a large family of Mongolian ancestry.

    PubMed

    Protasova, Maria S; Grigorenko, Anastasia P; Tyazhelova, Tatiana V; Andreeva, Tatiana V; Reshetov, Denis A; Gusev, Fedor E; Laptenko, Alexander E; Kuznetsova, Irina L; Goltsov, Andrey Y; Klyushnikov, Sergey A; Illarioshkin, Sergey N; Rogaev, Evgeny I

    2016-04-01

    X-linked congenital cerebellar ataxia is a heterogeneous nonprogressive neurodevelopmental disorder with onset in early childhood. We searched for a genetic cause of this condition, previously reported in a Buryat pedigree of Mongolian ancestry from southeastern Russia. Using whole-genome sequencing on Illumina HiSeq 2000 platform, we found a missense mutation in the ABCB7 (ABC-binding cassette transporter B7) gene, encoding a mitochondrial transporter, involved in heme synthesis and previously associated with sideroblastic anemia and ataxia. The mutation resulting in a substitution of a highly conserved glycine to serine in position 682 is apparently a major causative factor of the cerebellar hypoplasia/atrophy found in affected individuals of a Buryat family who had no evidence of sideroblastic anemia. Moreover, in these affected men we also found the genetic defects in two other genes closely linked to ABCB7 on chromosome X: a deletion of a genomic region harboring the second exon of copper-transporter gene (ATP7A) and a complete deletion of PGAM4 (phosphoglycerate mutase family member 4) retrogene located in the intronic region of the ATP7A gene. Despite the deletion, eliminating the first of six metal-binding domains in ATP7A, no signs for Menkes disease or occipital horn syndrome associated with ATP7A mutations were found in male carriers. The role of the PGAM4 gene has been previously implicated in human reproduction, but our data indicate that its complete loss does not disrupt male fertility. Our finding links cerebellar pathology to the genetic defect in ABCB7 and ATP7A structural variant inherited as X-linked trait, and further reveals the genetic heterogeneity of X-linked cerebellar disorders. PMID:26242992

  10. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers molecularly characterized favorable histology Wilms tumor (FHWT), a pediatric renal cancer. Comprehensive genome and transcript analyses revealed single-nucleotide substitution/deletion mutations in microRNA processing genes (15% of FHWT patients) and Sine Oculis Homeobox Homolog 1/2 (SIX1/2) genes (7% of FHWT patients). SIX1/2 genes play a critical role in renal development and were not previously associated with FHWT, thus presenting a novel role for SIX1/2 pathway aberrations in this disease.

  11. Homozygosity Mapping and Candidate Prioritization Identify Mutations, Missed by Whole-Exome Sequencing, in SMOC2, Causing Major Dental Developmental Defects

    PubMed Central

    Bloch-Zupan, Agnès; Jamet, Xavier; Etard, Christelle; Laugel, Virginie; Muller, Jean; Geoffroy, Véronique; Strauss, Jean-Pierre; Pelletier, Valérie; Marion, Vincent; Poch, Olivier; Strahle, Uwe; Stoetzel, Corinne; Dollfus, Hélène

    2011-01-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on a severe developmental dental defect that results in a dentin dysplasia phenotype with major microdontia, oligodontia, and shape abnormalities in a highly consanguineous family. Homozygosity mapping revealed a unique zone on 6q27-ter. The two affected children were found to carry a homozygous mutation in SMOC2. Knockdown of smoc2 in zebrafish showed pharyngeal teeth that had abnormalities reminiscent of the human phenotype. Moreover, smoc2 depletion in zebrafish affected the expression of three major odontogenesis genes: dlx2, bmp2, and pitx2. PMID:22152679

  12. Novel ALOX12B Mutation Identified in Parents following Single Nucleotide Polymorphism Microarray Testing of Banked DNA from a Fatal Case of Congenital Ichthyosis

    PubMed Central

    Salian, Smrithi; Gupta, Ashish; Shukla, Anju; Girisha, Katta M

    2016-01-01

    In genetically and phenotypically heterogeneous conditions like ichthyosis, it is clinically not possible to predict mutation in a specific gene. Sequential testing of all the causative genes is time consuming and expensive. In consanguineous families with autosomal recessive genetically heterogeneous disorders, it is possible to narrow down the candidate gene/genes by recognizing the regions of homozygosity by a single nucleotide polymorphism (SNP) array. Here, we present a fatal case of autosomal recessive severe congenital ichthyosis born to a consanguineous couple. Two candidate genes were recognized by SNP array on banked DNA of the subject. Sequencing of these candidate genes in parents found them to be carriers of the same variation, a novel heterozygous deletion of single nucleotide in exon 8 (c. 1067delT) of ALOX12B gene. The present case illustrates the utility of DNA banking, SNP array and testing of parents to arrive at a definitive molecular diagnosis, essential for genetic counseling, and prenatal testing. PMID:26955140

  13. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. PMID:26126624

  14. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients

    PubMed Central

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-01-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. PMID:26126624

  15. An overlapping phenotype of Osteogenesis imperfecta and Ehlers-Danlos syndrome due to a heterozygous mutation in COL1A1 and biallelic missense variants in TNXB identified by whole exome sequencing.

    PubMed

    Mackenroth, Luisa; Fischer-Zirnsak, Björn; Egerer, Johannes; Hecht, Jochen; Kallinich, Tilmann; Stenzel, Werner; Spors, Birgit; von Moers, Arpad; Mundlos, Stefan; Kornak, Uwe; Gerhold, Kerstin; Horn, Denise

    2016-04-01

    Osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) are variable genetic disorders that overlap in different ways [Cole 1993; Grahame 1999]. Here, we describe a boy presenting with severe muscular hypotonia, multiple fractures, and joint hyperflexibility, features that are compatible with mild OI and hypermobility type EDS, respectively. By whole exome sequencing, we identified both a COL1A1 mutation (c.4006-1G > A) inherited from the patient's mildly affected mother and biallelic missense variants in TNXB (p.Val1213Ile, p.Gly2592Ser). Analysis of cDNA showed that the COL1A1 splice site mutation led to intron retention causing a frameshift (p.Phe1336Valfs*72). Type 1 collagen secretion by the patient's skin fibroblasts was reduced. Immunostaining of a muscle biopsy obtained from the patient revealed a clear reduction of tenascin-X in the extracellular matrix compared to a healthy control. These findings imply that the combination of the COL1A1 mutation with the TNXB variants might cause the patient's unique phenotype. © 2016 Wiley Periodicals, Inc. PMID:26799614

  16. Characterizing the Molecular Basis of Attenuation of Marek's Disease Virus via In Vitro Serial Passage Identifies De Novo Mutations in the Helicase-Primase Subunit Gene UL5 and Other Candidates Associated with Reduced Virulence

    PubMed Central

    Hildebrandt, Evin; Dunn, John R.; Perumbakkam, Sudeep; Niikura, Masahiro

    2014-01-01

    ABSTRACT Marek's disease (MD) is a lymphoproliferative disease of chickens caused by the oncogenic Gallid herpesvirus 2, commonly known as Marek's disease virus (MDV). MD vaccines, the primary control method, are often generated by repeated in vitro serial passage of this highly cell-associated virus to attenuate virulent MDV strains. To understand the genetic basis of attenuation, we used experimental evolution by serially passing three virulent MDV replicates generated from an infectious bacterial artificial chromosome (BAC) clone. All replicates became completely or highly attenuated, indicating that de novo mutation, and not selection among quasispecies existing in a strain, is the primary driving force for the reduction in virulence. Sequence analysis of the attenuated replicates revealed 41 to 95 single-nucleotide variants (SNVs) at 2% or higher frequency in each population and several candidate genes containing high-frequency, nonsynonymous mutations. Five candidate mutations were incorporated into recombinant viruses to determine their in vivo effect. SNVs within UL42 (DNA polymerase auxiliary subunit) and UL46 (tegument) had no measurable influence, while two independent mutations in LORF2 (a gene of unknown function) improved survival time of birds but did not alter disease incidence. A fifth SNV located within UL5 (helicase-primase subunit) greatly reduced in vivo viral replication, increased survival time of birds, and resulted in only 0 to 11% disease incidence. This study shows that multiple genes, often within pathways involving DNA replication and transcriptional regulation, are involved in de novo attenuation of MDV and provides targets for the rational design of future MD vaccines. IMPORTANCE Marek's disease virus (MDV) is a very important pathogen in chickens that costs the worldwide poultry industry $1 billion to $2 billion annually. Marek's disease (MD) vaccines, the primary control method, are often produced by passing virulent strains in cell culture until attenuated. To understand this process, we identified all the changes in the viral genome that occurred during repeated cell passage. We find that a single mutation in the UL5 gene, which encodes a viral protein necessary for DNA replication, reduces disease incidence by 90% or more. In addition, other candidate genes were identified. This information should lead to the development of more effective and rationally designed MD vaccines leading to improved animal health and welfare and lower costs to consumers. PMID:24648463

  17. In situ single cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2+ breast cancer

    PubMed Central

    Janiszewska, Michalina; Liu, Lin; Almendro, Vanessa; Kuang, Yanan; Paweletz, Cloud; Sakr, Rita A.; Weigelt, Britta; Hanker, Ariella B.; Chandarlapaty, Sarat; King, Tari A.; Reis-Filho, Jorge S.; Arteaga, Carlos L.; Park, So Yeon; Michor, Franziska; Polyak, Kornelia

    2015-01-01

    Detection of minor genetically distinct subpopulations within tumors is a key challenge in cancer genomics. Here we report STAR-FISH (Specific-To-Allele PCR – FISH), a novel method for the combined detection of single nucleotide and copy number alterations in single cells in intact archived tissues. Using this method, we assessed the clinical impact of changes in the frequency and topology of PIK3CA mutation and HER2/ERBB2 amplification within HER2+ breast cancer during neoadjuvant therapy. We found that the two genetic events are not always present within the same cell. Chemotherapy selects for PIK3CA mutant cells, a minor subpopulation in nearly all treatment-naïve samples, and modulates genetic diversity within tumors. Treatment-associated changes in spatial distribution of cellular genetic diversity correlated with poor long-term outcome following adjuvant trastuzumab therapy. Our findings support the use of in situ single-cell based methods in cancer genomics and imply that chemotherapy before HER2-targeted therapy may promote treatment resistance. PMID:26301495

  18. Mutational analysis of the EMCV 2A protein identifies a nuclear localization signal and an eIF4E binding site

    SciTech Connect

    Groppo, Rachel; Brown, Bradley A.; Palmenberg, Ann C.

    2011-02-05

    Cardioviruses have a unique 2A protein (143 aa). During genome translation, the encephalomyocarditis virus (EMCV) 2A is released through a ribosome skipping event mitigated through C-terminal 2A sequences and by subsequent N-terminal reaction with viral 3C{sup pro}. Although viral replication is cytoplasmic, mature 2A accumulates in nucleoli shortly after infection. Some protein also transiently associates with cytoplasmic 40S ribosomal subunits, an activity contributing to inhibition of cellular cap-dependent translation. Cardiovirus sequences predict an eIF4E binding site (aa 126-134) and a nuclear localization signal (NLS, aa 91-102), within 2A, both of which are functional during EMCV infection. Point mutations preventing eIF4E:2A interactions gave small-plaque phenotype viruses, but still inhibited cellular cap-dependent translation. Deletions within the NLS motif relocalized 2A to the cytoplasm and abrogated the inhibition of cap-dependent translation. A fusion protein linking the 2A NLS to eGFP was sufficient to redirect the reporter to the nucleus but not into nucleoli.

  19. The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis

    PubMed Central

    Johnson, Kim L.; Ramm, Sascha; Kappel, Christian; Ward, Sally; Leyser, Ottoline; Sakamoto, Tomoaki; Kurata, Tetsuya; Bevan, Michael W.; Lenhard, Michael

    2015-01-01

    Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways. PMID:26147117

  20. The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis.

    PubMed

    Johnson, Kim L; Ramm, Sascha; Kappel, Christian; Ward, Sally; Leyser, Ottoline; Sakamoto, Tomoaki; Kurata, Tetsuya; Bevan, Michael W; Lenhard, Michael

    2015-01-01

    Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase indole-3-butyric acid-response5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways. PMID:26147117

  1. Exome sequencing identifies novel compound heterozygous IFNA4 and IFNA10 mutations as a cause of impaired function in Crohn’s disease patients

    PubMed Central

    Xiao, Chuan-Xing; Xiao, Jing-Jing; Xu, Hong-Zhi; Wang, Huan-Huan; Chen, Xu; Liu, Yuan-Sheng; Li, Ping; Shi, Ying; Nie, Yong-Zhan; Li, Shao; Wu, Kai-Chun; Liu, Zhan-Ju; Ren, Jian-Lin; Guleng, Bayasi

    2015-01-01

    Previous studies have highlighted the role of genetic predispositions in disease, and several genes had been identified as important in Crohn’s disease (CD). However, many of these genes are likely rare and not associated with susceptibility in Chinese CD patients. We found 294 shared identical variants in the CD patients of which 26 were validated by Sanger sequencing. Two heterozygous IFN variants (IFNA10 c.60 T > A; IFNA4 c.60 A > T) were identified as significantly associated with CD susceptibility. The single-nucleotide changes alter a cysteine situated before the signal peptide cleavage site to a stop code (TGA) in IFNA10 result in the serum levels of IFNA10 were significantly decreased in the CD patients compared to the controls. Furthermore, the IFNA10 and IFNA4 mutants resulted in an impairment of the suppression of HCV RNA replication in HuH7 cells, and the administration of the recombinant IFN subtypes restored DSS-induced colonic inflammation through the upregulation of CD4+ Treg cells. We identified heterozygous IFNA10 and IFNA4 variants as a cause of impaired function and CD susceptibility genes in Chinese patients from multiple center based study. These findings might provide clues in the understanding of the genetic heterogeneity of CD and lead to better screening and improved treatment. PMID:26000985

  2. Positive Newborn Screen for Methylmalonic Aciduria Identifies the First Mutation in TCblR/CD320, the Gene for Cellular Uptake of Transcobalamin-bound Vitamin B12

    PubMed Central

    Quadros, Edward V.; Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M.; Hannibal, Luciana; Wang, Sihe; Jacobsen, Donald W.; Fedosov, Sergey; Wright, Erica; Gallagher, Renata C.; Anastasio, Natascia; Watkins, David; Rosenblatt, David S.

    2010-01-01

    Elevated methylmalonic acid in five asymptomatic newborns whose fibroblasts showed decreased uptake of transcobalamin-bound cobalamin (holo-TC), suggested a defect in the cellular uptake of cobalamin. Analysis of TCblR/CD320, the gene for the receptor for cellular uptake of holo-TC, identified a homozygous single codon deletion, c.262_264GAG (p.E88del), resulting in the loss of a glutamic acid residue in the low-density lipoprotein receptor type A-like domain. Inserting the codon by site-directed mutagenesis fully restored TCblR function. PMID:20524213

  3. Differential effects of peripheral and transitional prostatic stromal cells on tumorigenesis.

    PubMed

    Li, Bao; Peng, Yu-Bing; Chen, Qi; Zhou, Juan; Zhang, Ming; Wang, Hao; Li, Wen-Ji; Da, Jun; Wang, Zhong; Gao, Yan

    2015-01-01

    The human prostate contains two types of stromal cells, peripheral stromal cells (PSCs) and transitional stromal cells (TSCs). Here, we demonstrate the effects of PSCs and TSCs on tumorigenesis in prostate cancer (PCa) and identify the mechanisms underlying these effects. Using microarray analysis, we identified 3,643 differentially expressed genes in cocultures of TSCs, PSCs, and DU145 cells, a human prostate cancer cell line. Expression of cell division cycle 25 homolog A (CDC25A) was lower and that of tumor-associated calcium signal transducer 2 (TACSTD2) was higher in TSCs than in PSCs. Additionally, increased CDC25A expression or decreased TACSTD2 expression modulated the survival, growth, and migration of DU145 cells. These data suggest that PSCs promote and TSCs inhibit tumorigenesis by regulating the expression of CDC25A and TACSTD2. PMID:25553474

  4. A minimal ligand binding pocket within a network of correlated mutations identified by multiple sequence and structural analysis of G protein coupled receptors

    PubMed Central

    2012-01-01

    Background G protein coupled receptors (GPCRs) are seven helical transmembrane proteins that function as signal transducers. They bind ligands in their extracellular and transmembrane regions and activate cognate G proteins at their intracellular surface at the other side of the membrane. The relay of allosteric communication between the ligand binding site and the distant G protein binding site is poorly understood. In this study, GREMLIN [1], a recently developed method that identifies networks of co-evolving residues from multiple sequence alignments, was used to identify those that may be involved in communicating the activation signal across the membrane. The GREMLIN-predicted long-range interactions between amino acids were analyzed with respect to the seven GPCR structures that have been crystallized at the time this study was undertaken. Results GREMLIN significantly enriches the edges containing residues that are part of the ligand binding pocket, when compared to a control distribution of edges drawn from a random graph. An analysis of these edges reveals a minimal GPCR binding pocket containing four residues (T1183.33, M2075.42, Y2686.51 and A2927.39). Additionally, of the ten residues predicted to have the most long-range interactions (A1173.32, A2726.55, E1133.28, H2115.46, S186EC2, A2927.39, E1223.37, G902.57, G1143.29 and M2075.42), nine are part of the ligand binding pocket. Conclusions We demonstrate the use of GREMLIN to reveal a network of statistically correlated and functionally important residues in class A GPCRs. GREMLIN identified that ligand binding pocket residues are extensively correlated with distal residues. An analysis of the GREMLIN edges across multiple structures suggests that there may be a minimal binding pocket common to the seven known GPCRs. Further, the activation of rhodopsin involves these long-range interactions between extracellular and intracellular domain residues mediated by the retinal domain. PMID:22748306

  5. Human junctophilin-2 undergoes a structural rearrangement upon binding PtdIns(3,4,5)P3 and the S101R mutation identified in hypertrophic cardiomyopathy obviates this response

    PubMed Central

    Bennett, Hayley J.; Davenport, John Bernard; Collins, Richard F.; Trafford, Andrew W.; Pinali, Christian; Kitmitto, Ashraf

    2013-01-01

    JP2 (junctophilin-2) is believed to hold the transverse tubular and jSR (junctional sarcoplasmic reticulum) membranes in a precise geometry that facilitates excitation–contraction coupling in cardiomyocytes. We have expressed and purified human JP2 and shown using electron microscopy that the protein forms elongated structures ~15 nm long and 2 nm wide. Employing lipid-binding assays and quartz crystal microbalance with dissipation we have determined that JP2 is selective for PS (phosphatidylserine), with a Kd value of ~0.5 μM, with the N-terminal domain mediating this interaction. JP2 also binds PtdIns(3,4,5)P3 at a different site than PS, resulting in the protein adopting a more flexible conformation; this interaction is modulated by both Ca2+ and Mg2+ ions. We show that the S101R mutation identified in patients with hypertrophic cardiomyopathy leads to modification of the protein secondary structure, forming a more flexible molecule with an increased affinity for PS, but does not undergo a structural transition in response to binding PtdIns(3,4,5)P3. In conclusion, the present study provides new insights into the structural and lipid-binding properties of JP2 and how the S101R mutation may have an effect upon the stability of the dyad organization with the potential to alter JP2–protein interactions regulating Ca2+ cycling. PMID:24001019

  6. Isocitrate dehydrogenase mutations in leukemia

    PubMed Central

    McKenney, Anna Sophia; Levine, Ross L.

    2013-01-01

    Recent genome-wide discovery studies have identified a spectrum of mutations in different malignancies and have led to the elucidation of novel pathways that contribute to oncogenic transformation. The discovery of mutations in the genes encoding isocitrate dehydrogenase (IDH) has uncovered a critical role for altered metabolism in oncogenesis, and the neomorphic, oncogenic function of IDH mutations affects several epigenetic and gene regulatory pathways. Here we discuss the relevance of IDH mutations to leukemia pathogenesis, therapy, and outcome and how mutations in IDH1 and IDH2 affect the leukemia epigenome, hematopoietic differentiation, and clinical outcome. PMID:23999441

  7. Genetic Analysis of 63 Mutations Affecting Maize Kernel Development Isolated from Mutator Stocks

    PubMed Central

    Scanlon, M. J.; Stinard, P. S.; James, M. G.; Myers, A. M.; Robertson, D. S.

    1994-01-01

    Sixty-three mutations affecting development of the maize kernel were isolated from active Robertson's Mutator (Mu) stocks. At least 14 previously undescribed maize gene loci were defined by mutations in this collection. Genetic mapping located 53 of these defective kernel (dek) mutations to particular chromosome arms, and more precise map determinations were made for 21 of the mutations. Genetic analyses identified 20 instances of allelism between one of the novel mutations and a previously described dek mutation, or between new dek mutations identified in this study; phenotypic variability was observed in three of the allelic series. Viability testing of homozygous mutant kernels identified numerous dek mutations with various pleiotropic effects on seedling and plant development. The mutations described here presumably arose by insertion of a Mu transposon within a dek gene; thus, many of the affected loci are expected to be accessible to molecular cloning via transposon-tagging. PMID:8138165

  8. Pseudoachondroplasia and Multiple Epiphyseal Dysplasia: A 7-Year Comprehensive Analysis of the Known Disease Genes Identify Novel and Recurrent Mutations and Provides an Accurate Assessment of Their Relative Contribution

    PubMed Central

    Jackson, Gail C; Mittaz-Crettol, Laureane; Taylor, Jacqueline A; Mortier, Geert R; Spranger, Juergen; Zabel, Bernhard; Le Merrer, Martine; Cormier-Daire, Valerie; Hall, Christine M; Offiah, Amaka; Wright, Michael J; Savarirayan, Ravi; Nishimura, Gen; Ramsden, Simon C; Elles, Rob; Bonafe, Luisa; Superti-Furga, Andrea; Unger, Sheila; Zankl, Andreas; Briggs, Michael D

    2012-01-01

    Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED. Hum Mutat 33:144–157, 2012. © 2011 Wiley Periodicals, Inc. PMID:21922596

  9. KRAS mutations: analytical considerations.

    PubMed

    Herreros-Villanueva, Marta; Chen, Chih-Chieh; Yuan, Shyng-Shiou F; Liu, Ta-Chih; Er, Tze-Kiong

    2014-04-20

    Colorectal cancer (CRC) is the third most common cancer and the second most common cause of cancer death globally. Significant improvements in survival have been made in patients with metastasis by new therapies. For example, Cetuximab and Panitumumab are monoclonal antibodies that inhibit the epidermal growth receptor (EGFR). KRAS mutations in codon 12 and 13 are the recognized biomarkers that are analyzed in clinics before the administration of anti-EGFR therapy. Genetic analyses have revealed that mutations in KRAS predict a lack of response to Panitumumab and Cetuximab in patients with metastatic CRC (mCRC). Notably, it is estimated that 35-45% of CRC patients harbor KRAS mutations. Therefore, KRAS mutation testing should be performed in all individuals with the advanced CRC in order to identify the patients who will not respond to the monoclonal EGFR antibody inhibitors. New techniques for KRAS testing have arisen rapidly, and each technique has advantages and disadvantages. Herein, we review the latest published literature specific to KRAS mutation testing techniques. Since reliability and feasibility are important issues in clinical analyses. Therefore, this review also summarizes the effectiveness and limitations of numerous KRAS mutation testing techniques. PMID:24534449

  10. Pseudoachondroplasia and multiple epiphyseal dysplasia: a 7-year comprehensive analysis of the known disease genes identify novel and recurrent mutations and provides an accurate assessment of their relative contribution.

    PubMed

    Jackson, Gail C; Mittaz-Crettol, Laureane; Taylor, Jacqueline A; Mortier, Geert R; Spranger, Juergen; Zabel, Bernhard; Le Merrer, Martine; Cormier-Daire, Valerie; Hall, Christine M; Offiah, Amaka; Wright, Michael J; Savarirayan, Ravi; Nishimura, Gen; Ramsden, Simon C; Elles, Rob; Bonafe, Luisa; Superti-Furga, Andrea; Unger, Sheila; Zankl, Andreas; Briggs, Michael D

    2012-01-01

    Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED. PMID:21922596

  11. TCF12 is mutated in anaplastic oligodendroglioma

    PubMed Central

    Labreche, Karim; Simeonova, Iva; Kamoun, Aurélie; Gleize, Vincent; Chubb, Daniel; Letouzé, Eric; Riazalhosseini, Yasser; Dobbins, Sara E.; Elarouci, Nabila; Ducray, Francois; de Reyniès, Aurélien; Zelenika, Diana; Wardell, Christopher P.; Frampton, Mathew; Saulnier, Olivier; Pastinen, Tomi; Hallout, Sabrina; Figarella-Branger, Dominique; Dehais, Caroline; Idbaih, Ahmed; Mokhtari, Karima; Delattre, Jean-Yves; Huillard, Emmanuelle; Mark Lathrop, G.; Sanson, Marc; Houlston, Richard S.; Adam, Clovis; Andraud, Marie; Aubriot-Lorton, Marie-Hélène; Bauchet, Luc; Beauchesne, Patrick; Blechet, Claire; Campone, Mario; Carpentier, Antoine; Carpentier, Catherine; Carpiuc, Ioana; Chenard, Marie-Pierre; Chiforeanu, Danchristian; Chinot, Olivier; Cohen-Moyal, Elisabeth; Colin, Philippe; Dam-Hieu, Phong; Desenclos, Christine; Desse, Nicolas; Dhermain, Frederic; Diebold, Marie-Danièle; Eimer, Sandrine; Faillot, Thierry; Fesneau, Mélanie; Fontaine, Denys; Gaillard, Stéphane; Gauchotte, Guillaume; Gaultier, Claude; Ghiringhelli, Francois; Godard, Joel; Marcel Gueye, Edouard; Sebastien Guillamo, Jean; Hamdi-Elouadhani, Selma; Honnorat, Jerome; Louis Kemeny, Jean; Khallil, Toufik; Jouvet, Anne; Labrousse, Francois; Langlois, Olivier; Laquerriere, Annie; Lechapt-Zalcman, Emmanuelle; Le Guérinel, Caroline; Levillain, Pierre-Marie; Loiseau, Hugues; Loussouarn, Delphine; Maurage, Claude-Alain; Menei, Philippe; Janette Motsuo Fotso, Marie; Noel, Georges; Parker, Fabrice; Peoc'h, Michel; Polivka, Marc; Quintin-Roué, Isabelle; Ramirez, Carole; Ricard, Damien; Richard, Pomone; Rigau, Valérie; Rousseau, Audrey; Runavot, Gwenaelle; Sevestre, Henri; Christine Tortel, Marie; Uro-Coste, Emmanuelle; Burel-Vandenbos, Fanny; Vauleon, Elodie; Viennet, Gabriel; Villa, Chiara; Wager, Michel

    2015-01-01

    Anaplastic oligodendroglioma (AO) are rare primary brain tumours that are generally incurable, with heterogeneous prognosis and few treatment targets identified. Most oligodendrogliomas have chromosomes 1p/19q co-deletion and an IDH mutation. Here we analysed 51 AO by whole-exome sequencing, identifying previously reported frequent somatic mutations in CIC and FUBP1. We also identified recurrent mutations in TCF12 and in an additional series of 83 AO. Overall, 7.5% of AO are mutated for TCF12, which encodes an oligodendrocyte-related transcription factor. Eighty percent of TCF12 mutations identified were in either the bHLH domain, which is important for TCF12 function as a transcription factor, or were frameshift mutations leading to TCF12 truncated for this domain. We show that these mutations compromise TCF12 transcriptional activity and are associated with a more aggressive tumour type. Our analysis provides further insights into the unique and shared pathways driving AO. PMID:26068201

  12. Three mutations identified in the voltage-sensitive sodium channel α-subunit gene of permethrin-resistant human head lice reduce the permethrin sensitivity of house fly Vssc1 sodium channels expressed in Xenopus oocytes

    PubMed Central

    Symington, Steven B.; Lee, Si Hyeock; Soderlund, David M.; Clark, J. Marshall

    2008-01-01

    Point mutations in the para-orthologous sodium channel α-subunit of the head louse (M815I, T917I and L920F) are associated with permethrin- and DDT-resistance. These mutations were inserted in all combinations using site-directed mutagenesis at the corresponding amino acid sequence positions (M827I, T929I and L932F) of the house fly para-orthologous voltage-sensitive sodium channel α-subunit (Vssc1WT) gene and heterologously co-expressed with the sodium channel auxiliary subunit of house fly (Vsscβ) in Xenopus oocytes. The double mutant possessing M827I and T929I (Vssc1MITI/Vsscβ) caused a ~4.0 mV hyperpolarizing shift and the triple mutant, Vssc1MITILF/Vsscβ, caused a ~3.2 mV depolarizing shift in the voltage dependence of activation curves. Vssc1MITI/Vsscβ, Vssc1TILF/Vsscβ and Vssc1MITILF/Vsscβ caused depolarizing shifts (~6.6, ~7.6 and ~8.8 mV, respectively) in the voltage dependence of steady-state inactivation curves. The M827I and L932F mutations reduced permethrin sensitivity when expressed alone but the T929I mutation, either alone or in combination, virtually abolished permethrin sensitivity. Thus, the T929I mutation is the principal cause of permethrin resistance in head lice. Comparison of the expression rates of channels containing single, double and triple mutations with that of Vssc1WT/Vsscβ channels indicates that the M827I mutation may play a role in rescuing the decreased expression of channels containing T929I. PMID:18252244

  13. Analysis of mucolipidosis II/III GNPTAB missense mutations identifies domains of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase involved in catalytic function and lysosomal enzyme recognition.

    PubMed

    Qian, Yi; van Meel, Eline; Flanagan-Steet, Heather; Yox, Alex; Steet, Richard; Kornfeld, Stuart

    2015-01-30

    UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the α and β subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III αβ. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III αβ patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the γ subunit, suggesting a role for this region in γ subunit binding. These studies provide new insight into the functions of the different domains of the α and β subunits. PMID:25505245

  14. Accumulating Progenitor Cells in the Luminal Epithelial Cell Layer Are Candidate Tumor Initiating Cells in a Pten Knockout Mouse Prostate Cancer Model

    PubMed Central

    Korsten, Hanneke; Ziel-van der Made, Angelique; Ma, Xiaoqian; van der Kwast, Theo; Trapman, Jan

    2009-01-01

    The PSA-Cre;Pten-loxP/loxP mouse prostate cancer model displays clearly defined stages of hyperplasia and cancer. Here, the initial stages of hyperplasia development are studied. Immunohistochemical staining showed that accumulated pAkt+ hyperplastic cells overexpress luminal epithelial cell marker CK8, and progenitor cell markers CK19 and Sca-1, but not basal epithelial cell markers. By expression profiling we identified novel hyperplastic cell markers, including Tacstd2 and Clu. Further we showed that at young age prostates of targeted Pten knockout mice contained in the luminal epithelial cell layer single pAkt+ cells, which overexpressed CK8, Sca-1, Tacstd2 and Clu; basal epithelial cells were always pAkt−. Importantly, in the luminal epithelial cell layer of normal prostates we detected rare Clu+Tacstd2+Sca-1+ progenitor cells. These novel cells are candidate tumor initiating cells in Pten knockout mice. Remarkably, all luminal epithelial cells in the proximal region of normal prostates were Clu+Tacstd2+Sca-1+. However, in PSA-Cre;Pten-loxP/loxP mice, the proximal prostate does not contain hyperplastic foci. Small hyperplastic foci in prostates of PSA-Cre;Pten-loxP/+ mice found at old age, showed complete Pten inactivation and a progenitor marker profile. Finally, we present a novel model of prostate development and renewal, including lineage-specific luminal epithelial progenitor cells. It is proposed that Pten deficiency induces a shift in the balance of differentiation to proliferation in these cells. PMID:19461893

  15. Whole Genome Sequencing of Newly Established Pancreatic Cancer Lines Identifies Novel Somatic Mutation (c.2587G>A) in Axon Guidance Receptor Plexin A1 as Enhancer of Proliferation and Invasion

    PubMed Central

    Abisoye-Ogunniyan, Abisola; Waterfall, Joshua J.; Davis, Sean; Killian, J. Keith; Pineda, Marbin; Ray, Satyajit; McCord, Matt R.; Pflicke, Holger; Burkett, Sandra Sczerba; Meltzer, Paul S.; Rudloff, Udo

    2016-01-01

    The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A) in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor’s natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression. PMID:26962861

  16. Whole Genome Sequencing of Newly Established Pancreatic Cancer Lines Identifies Novel Somatic Mutation (c.2587G>A) in Axon Guidance Receptor Plexin A1 as Enhancer of Proliferation and Invasion.

    PubMed

    Sorber, Rebecca; Teper, Yaroslav; Abisoye-Ogunniyan, Abisola; Waterfall, Joshua J; Davis, Sean; Killian, J Keith; Pineda, Marbin; Ray, Satyajit; McCord, Matt R; Pflicke, Holger; Burkett, Sandra Sczerba; Meltzer, Paul S; Rudloff, Udo

    2016-01-01

    The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A) in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor's natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression. PMID:26962861

  17. Exome Sequencing Identifies a Founder Frameshift Mutation in an Alternative Exon of USH1C as the Cause of Autosomal Recessive Retinitis Pigmentosa with Late-Onset Hearing Loss

    PubMed Central

    Khateb, Samer; Zelinger, Lina; Ben-Yosef, Tamar; Crystal-Shalit, Ornit; Gross, Menachem; Banin, Eyal; Sharon, Dror

    2012-01-01

    We used a combined approach of homozygosity mapping and whole exome sequencing (WES) to search for the genetic cause of autosomal recessive retinitis pigmentosa (arRP) in families of Yemenite Jewish origin. Homozygosity mapping of two arRP Yemenite Jewish families revealed a few homozygous regions. A subsequent WES analysis of the two index cases revealed a shared homozygous novel nucleotide deletion (c.1220delG) leading to a frameshift (p.Gly407Glufs*56) in an alternative exon (#15) of USH1C. Screening of additional Yemenite Jewish patients revealed a total of 16 homozygous RP patients (with a carrier frequency of 0.008 in controls). Funduscopic and electroretinography findings were within the spectrum of typical RP. While other USH1C mutations usually cause Usher type I (including RP, vestibular dysfunction and congenital deafness), audiometric screening of 10 patients who are homozygous for c.1220delG revealed that patients under 40 years of age had normal hearing while older patients showed mild to severe high tone sensorineural hearing loss. This is the first report of a mutation in a known USH1 gene that causes late onset rather than congenital sensorineural hearing loss. The c.1220delG mutation of USH1C accounts for 23% of RP among Yemenite Jewish patients in our cohort. PMID:23251578

  18. Mutational profiling reveals PIK3CA mutations in gallbladder carcinoma

    PubMed Central

    2011-01-01

    Background The genetics of advanced biliary tract cancers (BTC), which encompass intra- and extra-hepatic cholangiocarcinomas as well as gallbladder carcinomas, are heterogeneous and remain to be fully defined. Methods To better characterize mutations in established known oncogenes and tumor suppressor genes we tested a mass spectrometric based platform to interrogate common cancer associated mutations across a panel of 77 formalin fixed paraffin embedded archived BTC cases. Results Mutations among three genes, KRAS, NRAS and PIK3CA were confirmed in this cohort. Activating mutations in PIK3CA were identified exclusively in GBC (4/32, 12.5%). KRAS mutations were identified in 3 (13%) intra-hepatic cholangiocarcinomas and 1 (33%) perihillar cholangiocarcinoma but were not identified in gallbladder carcinomas and extra-hepatic cholangiocarcinoma. Conclusions The presence of activating mutations in PIK3CA specifically in GBC has clinical implications in both the diagnosis of this cancer type, as well as the potential utility of targeted therapies such as PI3 kinase inhibitors. PMID:21303542

  19. Somatic mutation, genomic variation, and neurological disease.

    PubMed

    Poduri, Annapurna; Evrony, Gilad D; Cai, Xuyu; Walsh, Christopher A

    2013-07-01

    Genetic mutations causing human disease are conventionally thought to be inherited through the germ line from one's parents and present in all somatic (body) cells, except for most cancer mutations, which arise somatically. Increasingly, somatic mutations are being identified in diseases other than cancer, including neurodevelopmental diseases. Somatic mutations can arise during the course of prenatal brain development and cause neurological disease-even when present at low levels of mosaicism, for example-resulting in brain malformations associated with epilepsy and intellectual disability. Novel, highly sensitive technologies will allow more accurate evaluation of somatic mutations in neurodevelopmental disorders and during normal brain development. PMID:23828942

  20. Somatic Mutation, Genomic Variation, and Neurological Disease

    PubMed Central

    Poduri, Annapurna; Evrony, Gilad D.; Cai, Xuyu; Walsh, Christopher A.

    2014-01-01

    Genetic mutations causing human disease are conventionally thought to be inherited through the germ line from one’s parents and present in all somatic (body) cells, except for most cancer mutations, which arise somatically. Increasingly, somatic mutations are being identified in diseases other than cancer, including neurodevelopmental diseases. Somatic mutations can arise during the course of prenatal brain development and cause neurological disease—even when present at low levels of mosaicism, for example—resulting in brain malformations associated with epilepsy and intellectual disability. Novel, highly sensitive technologies will allow more accurate evaluation of somatic mutations in neurodevelopmental disorders and during normal brain development. PMID:23828942

  1. Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol.

    PubMed

    Kashyap, Sudhanva S; Johnson, James R; McCue, Hannah V; Chen, Xi; Edmonds, Matthew J; Ayala, Mimieveshiofuo; Graham, Margaret E; Jenn, Robert C; Barclay, Jeff W; Burgoyne, Robert D; Morgan, Alan

    2014-11-15

    Adult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission. Mutant dnj-14 worms also exhibited age-dependent neurodegeneration of sensory neurons, which was preceded by severe progressive chemosensory defects. A focussed chemical screen revealed that resveratrol could ameliorate dnj-14 mutant phenotypes, an effect mimicked by the cAMP phosphodiesterase inhibitor, rolipram. In contrast to other worm neurodegeneration models, activation of the Sirtuin, SIR-2.1, was not required, as sir-2.1; dnj-14 double mutants showed full lifespan rescue by resveratrol. The Sirtuin-independent neuroprotective action of resveratrol revealed here suggests potential therapeutic applications for ANCL and possibly other human neurodegenerative diseases. PMID:24947438

  2. Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol

    PubMed Central

    Kashyap, Sudhanva S.; Johnson, James R.; McCue, Hannah V.; Chen, Xi; Edmonds, Matthew J.; Ayala, Mimieveshiofuo; Graham, Margaret E.; Jenn, Robert C.; Barclay, Jeff W.; Burgoyne, Robert D.; Morgan, Alan

    2014-01-01

    Adult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission. Mutant dnj-14 worms also exhibited age-dependent neurodegeneration of sensory neurons, which was preceded by severe progressive chemosensory defects. A focussed chemical screen revealed that resveratrol could ameliorate dnj-14 mutant phenotypes, an effect mimicked by the cAMP phosphodiesterase inhibitor, rolipram. In contrast to other worm neurodegeneration models, activation of the Sirtuin, SIR-2.1, was not required, as sir-2.1; dnj-14 double mutants showed full lifespan rescue by resveratrol. The Sirtuin-independent neuroprotective action of resveratrol revealed here suggests potential therapeutic applications for ANCL and possibly other human neurodegenerative diseases. PMID:24947438

  3. Mutation and the environment

    SciTech Connect

    Mendelsohn, M.L. ); Albertini, R.J. )

    1990-01-01

    This book is covered under the following topics: Somatic Mutation: Animal Model; Somatic Mutation: Human; Heritable Mutation: Animal Model; Heritable Mutation: Approaches to Human Induction Rates; Heritable Mutation: Human Risk; Epidemiology: Population Studies on Genotoxicity; and Epidemiology: Workplace Studies of Genotoxicity.

  4. Gefitinib Treatment in EGFR Mutated Caucasian NSCLC

    PubMed Central

    Ostoros, Gyula; Cobo, Manuel; Ciuleanu, Tudor; Cole, Rebecca; McWalter, Gael; Walker, Jill; Dearden, Simon; Webster, Alan; Milenkova, Tsveta; McCormack, Rose

    2014-01-01

    Introduction: In the phase IV, open-label, single-arm study NCT01203917, first-line gefitinib 250 mg/d was effective and well tolerated in Caucasian patients with epidermal growth factor receptor (EGFR) mutation-positive non–small-cell lung cancer (previously published). Here, we report EGFR mutation analyses of plasma-derived, circulating-free tumor DNA. Methods: Mandatory tumor and duplicate plasma (1 and 2) baseline samples were collected (all screened patients; n = 1060). Preplanned, exploratory analyses included EGFR mutation (and subtype) status of tumor versus plasma and between plasma samples. Post hoc, exploratory analyses included efficacy by tumor and plasma EGFR mutation (and subtype) status. Results: Available baseline tumor samples were 1033 of 1060 (118 positive of 859 mutation status known; mutation frequency, 13.7%). Available plasma 1 samples were 803 of 1060 (82 positive of 784 mutation status known; mutation frequency, 10.5%). Mutation status concordance between 652 matched tumor and plasma 1 samples was 94.3% (95% confidence interval [CI], 92.3–96.0) (comparable for mutation subtypes); test sensitivity was 65.7% (95% CI, 55.8–74.7); and test specificity was 99.8% (95% CI, 99.0–100.0). Twelve patients of unknown tumor mutation status were subsequently identified as plasma mutation-positive. Available plasma 2 samples were 803 of 1060 (65 positive of 224 mutation status-evaluable and -known). Mutation status concordance between 224 matched duplicate plasma 1 and 2 samples was 96.9% (95% CI, 93.7–98.7). Objective response rates are as follows: mutation-positive tumor, 70% (95% CI, 60.5–77.7); mutation-positive tumor and plasma 1, 76.9% (95% CI, 65.4–85.5); and mutation-positive tumor and mutation-negative plasma 1, 59.5% (95% CI, 43.5–73.7). Median progression-free survival (months) was 9.7 (95% CI, 8.5–11.0; 61 events) for mutation-positive tumor and 10.2 (95% CI, 8.5–12.5; 36 events) for mutation-positive tumor and plasma 1. Conclusion: The high concordance, specificity, and sensitivity demonstrate that EGFR mutation status can be accurately assessed using circulating-free tumor DNA. Although encouraging and suggesting that plasma is a suitable substitute for mutation analysis, tumor tissue should remain the preferred sample type when available. PMID:25122430

  5. Mutation Analysis of IDH1/2 Genes in Unselected De novo Acute Myeloid Leukaemia Patients in India - Identification of A Novel IDH2 Mutation.

    PubMed

    Raveendran, Sureshkumar; Sarojam, Santhi; Vijay, Sangeetha; Geetha, Aswathy Chandran; Sreedharan, Jayadevan; Narayanan, Geetha; Sreedharan, Hariharan

    2015-01-01

    IDH1/2 mutations which result in alternation in DNA methylation pattern are one of the most common methylation associated mutations in Acute myeloid leukaemia. IDH1/2 mutations frequently associated with higher platelet level, normal cytogentics and NPM1 mutations. Here we analyzed IDH1/2 mutations in 200 newly diagnosed unselected Indian adult AML patients and investigated their correlation with clinical, cytogenetic parameters along with cooperating NPM1 mutation. We detected 5.5% and 4% mutations in IDH1/2 genes, respectively. Except IDH2 c.515_516GG>AA mutation, all the other identified mutations were reported mutations. Similar to reported c.515G>A mutation, the novel c.515_516GG>AA mutation replaces 172nd arginine to lysine in the active site of the enzyme. Even though there was a preponderance of IDH1/2 mutations in NK-AML, cytogenetically abnormal patients also harboured IDH1/2 mutations. IDH1 mutations showed significant higher platelet count and NPM1 mutations. IDH2 mutated patients displayed infrequent NPM1 mutations and lower WBC count. All the NPM1 mutations in the IDH1/2 mutated cases showed type A mutation. The present data suggest that IDH1/2 mutations are associated with normal cytogenetics and type A NPM1 mutations in adult Indian AML patients. PMID:25987093

  6. The CDC Hemophilia A Mutation Project (CHAMP) Mutation List: a New Online Resource

    PubMed Central

    Payne, Amanda B.; Miller, Connie H.; Kelly, Fiona M.; Soucie, J. Michael; Hooper, W. Craig

    2015-01-01

    Genotyping efforts in hemophilia A (HA) populations in many countries have identified large numbers of unique mutations in the Factor VIII gene (F8). To assist HA researchers conducting genotyping analyses, we have developed a listing of F8 mutations including those listed in existing locus-specific databases as well as those identified in patient populations and reported in the literature. Each mutation was reviewed and uniquely identified using Human Genome Variation Society (HGVS) nomenclature standards for coding DNA and predicted protein changes as well as traditional nomenclature based on the mature, processed protein. Listings also include the associated hemophilia severity classified by International Society of Thrombosis and Haemostasis (ISTH) criteria, associations of the mutations with inhibitors, and reference information. The mutation list currently contains 2,537 unique mutations known to cause HA. HA severity caused by the mutation is available for 2,022 mutations (80%) and information on inhibitors is available for 1,816 mutations (72%). The CDC Hemophilia A Mutation Project (CHAMP) Mutation List is available at http://www.cdc.gov/hemophiliamutations for download and search and will be updated quarterly based on periodic literature reviews and submitted reports. PMID:23280990

  7. OXPHOS mutations and neurodegeneration

    PubMed Central

    Koopman, Werner J H; Distelmaier, Felix; Smeitink, Jan AM; Willems, Peter HGM

    2013-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI–CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce ‘primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration. PMID:23149385

  8. OXPHOS mutations and neurodegeneration.

    PubMed

    Koopman, Werner J H; Distelmaier, Felix; Smeitink, Jan A M; Willems, Peter H G M

    2013-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI-CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce 'primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration. PMID:23149385

  9. Glucocerebrosidase mutations in primary parkinsonism

    PubMed Central

    Asselta, Rosanna; Rimoldi, Valeria; Siri, Chiara; Cilia, Roberto; Guella, Ilaria; Tesei, Silvana; Soldà, Giulia; Pezzoli, Gianni; Duga, Stefano; Goldwurm, Stefano

    2014-01-01

    Introduction Mutations in the lysosomal glucocerebrosidase (GBA) gene increase the risk of Parkinson's Disease (PD). We determined the frequency and relative risk of major GBA mutations in a large series of Italian patients with primary parkinsonism. Methods We studied 2766 unrelated consecutive patients with clinical diagnosis of primary degenerative parkinsonism (including 2350 PD), and 1111 controls. The entire cohort was screened for mutations in GBA exons 9 and 10, covering approximately 70% of mutations, including the two most frequent defects, p.N370S and p.L444P. Results Four known mutations were identified in heterozygous state: 3 missense mutations (p.N370S, p.L444P, and p.D443N), and the splicing mutation IVS10+1G>T, which results in the in-frame exon-10 skipping. Molecular characterization of 2 additional rare variants, potentially interfering with splicing, suggested a neutral effect. GBA mutations were more frequent in PD (4.5%, RR = 7.2, CI = 3.3–15.3) and in Dementia with Lewy Bodies (DLB) (13.8%, RR = 21.9, CI = 6.8–70.7) than in controls (0.63%). but not in the other forms of parkinsonism such as Progressive Supranuclear Palsy (PSP, 2%), and Corticobasal Degeneration (CBD, 0%). Considering only the PD group, GBA-carriers were younger at onset (52 ± 10 vs. 57 ± 10 years, P < 0.0001) and were more likely to have a positive family history of PD (34% vs. 20%, P < 0.001). Conclusion GBA dysfunction is relevant for synucleinopathies, such as PD and DLB, except for MSA, in which pathology involves oligodendrocytes, and the tauopathies PSP and CBD. The risk of developing DLB is three-fold higher than PD, suggesting a more aggressive phenotype. PMID:25249066

  10. Mutation and the environment

    SciTech Connect

    Mendelsohn, M.L. ); Albertini, R.J. )

    1990-01-01

    This book is organized under the following headings: Plenary lectures; Brook mutational mechanisms; Adduction and DNA damage; Recombination and gene conversion; Repair: Prokoyote mechanisms and induction; Repair: Lower eukaryote and plant mechanisms; Repair: Higher eukaryote mechanisms and selectivity; Repair: Human genes and mechanisms; Mutation: Spectra and mechanisms; Mutation: Shuttle vectors; Mutation: Transgenic animals; New methods: Polymerase chain reaction.

  11. Genomic Analysis of Salmonella enterica Serovar Typhimurium Characterizes Strain Diversity for Recent U.S. Salmonellosis Cases and Identifies Mutations Linked to Loss of Fitness under Nitrosative and Oxidative Stress

    PubMed Central

    Hayden, Hillary S.; Matamouros, Susana; Hager, Kyle R.; Brittnacher, Mitchell J.; Rohmer, Laurence; Radey, Matthew C.; Weiss, Eli J.; Kim, Katie B.; Jacobs, Michael A.; Sims-Day, Elizabeth H.; Yue, Min; Zaidi, Mussaret B.; Schifferli, Dieter M.; Manning, Shannon D.; Walson, Judd L.

    2016-01-01

    ABSTRACT Salmonella enterica serovar Typhimurium is one of the most common S. enterica serovars associated with U.S. foodborne outbreaks. S. Typhimurium bacteria isolated from humans exhibit wide-ranging virulence phenotypes in inbred mice, leading to speculation that some strains are more virulent in nature. However, it is unclear whether increased virulence in humans is related to organism characteristics or initial treatment failure due to antibiotic resistance. Strain diversity and genetic factors contributing to differential human pathogenicity remain poorly understood. We reconstructed phylogeny, resolved genetic population structure, determined gene content and nucleotide variants, and conducted targeted phenotyping assays for S. Typhimurium strains collected between 1946 and 2012 from humans and animals in the United States and abroad. Strains from recent U.S. salmonellosis cases were associated with five S. Typhimurium lineages distributed within three phylogenetic clades, which are not restricted by geography, year of acquisition, or host. Notably, two U.S. strains and four Mexican strains are more closely related to strains associated with human immunodeficiency virus (HIV)-infected individuals in sub-Saharan Africa than to other North American strains. Phenotyping studies linked variants specific to these strains in hmpA and katE to loss of fitness under nitrosative and oxidative stress, respectively. These results suggest that U.S. salmonellosis is caused by diverse S. Typhimurium strains circulating worldwide. One lineage has mutations in genes affecting fitness related to innate immune system strategies for fighting pathogens and may be adapting to immunocompromised humans by a reduction in virulence capability, possibly due to a lack of selection for its maintenance as a result of the worldwide HIV epidemic. PMID:26956590

  12. Haplotypes and mutations in Wilson disease.

    PubMed Central

    Thomas, G R; Roberts, E A; Walshe, J M; Cox, D W

    1995-01-01

    Wilson disease is a disorder of copper transport, resulting in neurological and hepatic damage due to copper toxicity. We have recently identified > 20 mutations in the copper-transporting ATPase defective in this disease. Given the difficulties of searching for mutations in a gene spanning > 80 kb of genomic DNA, haplotype data are important as a guide to mutation detection. Here we examine the haplotypes associated with specific mutations. We have extended previous studies of DNA haplotypes of dinucleotide-repeat polymorphisms (CA repeats) in the Wilson disease region to include an additional marker, in 58 families. These haplotypes, combining three markers (D13S314, D13S316, and D13S301), are usually specific for each different mutation, even though highly polymorphic CA repeat markers have been used. Haplotypes, as well as their accompanying mutations, differ between populations. In the patients whom we have studied, the haplotype data indicate that as many as 20 mutations may still be unidentified. The use of the haplotypes that we have identified provides an important guide for the identification of known mutations and can facilitate future mutation searches. PMID:7762553

  13. Haplotypes and mutations in Wilson disease

    SciTech Connect

    Thomas, G.R.; Roberts, E.A.; Cox, D.W.

    1995-06-01

    Wilson disease is a disorder of copper transport, resulting in neurological and hepatic damage due to copper toxicity. We have recently identified >20 mutations in the copper-transporting ATPase defective in this disease. Given the difficulties of searching for mutations in a gene spanning >80 kb of genomic DNA, haplotype data are important as a guide to mutation detection. Here we examine the haplotypes associated with specific mutations. We have extended previous studies of DNA haplotypes of dinucleotide-repeat polymorphisms (CA repeats) in the Wilson disease region to include an additional marker, in 58 families. These haplotypes, combining three markers (D13S314, D12S316, and D13S301), are usually specific for each different mutation, even though highly polymorphic CA repeat markers have been used. Haplotypes, as well as their accompanying mutations, differ between populations. In the patients whom we have studied, the haplotype data indicate that as many as 20 mutations may still be unidentified. The use of the haplotypes that we have identified provides an important guide for the identification of known mutations and can facilitate future mutation searches. 15 refs., 1 fig., 2 tabs.

  14. Study of mutations in Jordanian patients with haemophilia A: identification of five novel mutations.

    PubMed

    Awidi, A; Ramahi, M; Alhattab, D; Mefleh, R; Dweiri, M; Bsoul, N; Magablah, A; Arafat, E; Barqawi, M; Bishtawi, M; Haddadeen, E; Falah, M; Tarawneh, B; Swaidan, S; Fauori, S

    2010-01-01

    Haemophilia A (HA) is an X-linked recessive bleeding disorder caused by mutations in the factor VIII gene (F8), which encodes factor VIII (FVIII) protein, a plasma glycoprotein, that plays an important role in the blood coagulation cascade. In the present study, our aim was to identify F8 gene mutations in HA patients from Jordan. One hundred and seventy-five HA patients from 42 unrelated families were included in this study. Among these patients, 117 (67%) had severe HA, 13 (7%) had moderate HA and 45 (26%) had mild HA. Severe patients were first tested for intron-22 inversion using long range polymerase chain reaction (PCR), then negative patients were tested for intron-1 inversion using PCR. Sequencing for the entire F8 gene was performed for all severe HA patients who were found negative for intron-22 and -1 inversions and it was also performed for moderate and mild HA patients. HA causative mutations were identified in all patients. Intron-22 and -1 inversions were detected in 52% and 2% of families respectively. Beside these two mutations, 19 different mutations were identified, which include 15 missense and four frameshift mutations. Five novel mutations were identified including one frameshift and four missense mutations. No large deletions or nonsense mutations were detected in patients who participated in this study. Only 17 patients with severe HA were found positive for FVIII inhibitors. The data presented will play an important role for genetic counselling and health care of HA patients in Jordan. PMID:19817879

  15. Identifying harms.

    PubMed

    Harrosh, Shlomit

    2012-11-01

    Moral disagreements often revolve around the issue of harm to others. Identifying harms, however, is a contested enterprise. This paper provides a conceptual toolbox for identifying harms, and so possible wrongdoing, by drawing several distinctions. First, I distinguish between four modes of human vulnerability, forming four ways in which one can be in a harmed state. Second, I argue for the intrinsic disvalue of harm and so distinguish the presence of harm from the fact that it is instrumental to or constitutive of a valued act, practice or way of life. Finally, I distinguish between harm and wrongdoing, arguing that while harm is a normative concept requiring justification, not all harmed states are automatically unjustified. The advantage of this view is that it refocuses the moral debate on the normative issues involved while establishing a common basis to which both sides can agree: the presence of harm to others. PMID:21434956

  16. SOX10 mutations mimic isolated hearing loss.

    PubMed

    Pingault, V; Faubert, E; Baral, V; Gherbi, S; Loundon, N; Couloigner, V; Denoyelle, F; Noël-Pétroff, N; Ducou Le Pointe, H; Elmaleh-Bergès, M; Bondurand, N; Marlin, S

    2015-10-01

    Ninety genes have been identified to date that are involved in non-syndromic hearing loss, and more than 300 different forms of syndromic hearing impairment have been described. Mutations in SOX10, one of the genes contributing to syndromic hearing loss, induce a large range of phenotypes, including several subtypes of Waardenburg syndrome and Kallmann syndrome with deafness. In addition, rare mutations have been identified in patients with isolated signs of these diseases. We used the recent characterization of temporal bone imaging aspects in patients with SOX10 mutations to identify possible patients with isolated hearing loss due to SOX10 mutation. We selected 21 patients with isolated deafness and temporal bone morphological defects for mutational screening. We identified two SOX10 mutations and found that both resulted in a non-functional protein in vitro. Re-evaluation of the two affected patients showed that both had previously undiagnosed olfactory defects. Diagnosis of anosmia or hyposmia in young children is challenging, and particularly in the absence of magnetic resonance imaging (MRI), SOX10 mutations can mimic non-syndromic hearing impairment. MRI should complete temporal bones computed tomographic scan in the management of congenital deafness as it can detect brain anomalies, cochlear nerve defects, and olfactory bulb malformation in addition to inner ear malformations. PMID:25256313

  17. Recurrent Somatic Mutations in Regulatory Regions of Human Cancer Genomes

    PubMed Central

    Melton, Collin; Reuter, Jason A.; Spacek, Damek V.; Snyder, Michael

    2015-01-01

    Aberrant regulation of gene expression in cancer can promote survival and proliferation of cancer cells. Here we integrate TCGA whole genome sequencing data of 436 patients from eight cancer subtypes with ENCODE and other regulatory annotations to identify point mutations in regulatory regions. We find evidence for positive selection of mutations in transcription factor binding sites, consistent with these sites regulating important cancer cell functions. Using a novel method that adjusts for sample- and genomic locus-specific mutation rate, we identify recurrently mutated sites across cancer patients. Mutated regulatory sites include known sites in the TERT promoter and many novel sites, including a subset in proximity to cancer genes. In reporter assays, two novel sites display decreased enhancer activity upon mutation. These data demonstrate that many regulatory regions contain mutations under selective pressure and suggest a larger role for regulatory mutations in cancer than previously appreciated. PMID:26053494

  18. BRCA2 founder mutation in Slovenian breast cancer families.

    PubMed

    Krajc, Mateja; De Grve, Jacques; Goelen, Guido; Teugels, Erik

    2002-12-01

    Linkage analysis has identified BRCA1 and BRCA2 germline mutations as the major cause for cancer predisposition in breast and/or ovarian cancer families. In previous screening efforts on Belgian families we had a BRCA1/2 gene mutation detection rate of 25%.(1) Here we report the results of a BRCA mutation screening in seven high-risk breast/ovarian cancer families from Slovenia. We found a single but highly recurrent BRCA2 splice site mutation (IVS16-2A>G) in three breast cancer-only families. This cancer-linked mutation could not be identified in three families with ovarian cancer, suggesting that the mutation predisposes at least predominantly to breast cancer. All mutation carriers shared a common disease associated haplotype indicating a founder effect. This mutation most probably occurred in a single ancestor and seems essentially confined to the Slovene population. PMID:12461697

  19. Two missense mutations, E123Q and K151E, identified in the ERG11 allele of an azole-resistant isolate of Candida kefyr recovered from a stem cell transplant patient for acute myeloid leukemia.

    PubMed

    Couzigou, Célia; Gabriel, Frédéric; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Noël, Thierry; Accoceberry, Isabelle

    2014-07-01

    We report on the first cloning and nucleotide sequencing of an ERG11 allele from a clinical isolate of Candida kefyr cross-resistant to azole antifungals. It was recovered from a stem cell transplant patient, in an oncohematology unit exhibiting unexpected high prevalence of C. kefyr. Two amino acid substitutions were identified: K151E, whose role in fluconazole resistance was already demonstrated in Candida albicans, and E123Q, a new substitution never described so far in azole-resistant Candida yeast. PMID:24936404

  20. Spectrum of Phenotypes Associated with Mutations in LRBA.

    PubMed

    Alkhairy, Omar K; Abolhassani, Hassan; Rezaei, Nima; Fang, Mingyan; Andersen, Kasper Krogh; Chavoshzadeh, Zahra; Mohammadzadeh, Iraj; El-Rajab, Mariam A; Massaad, Michel; Chou, Janet; Aghamohammadi, Asghar; Geha, Raif S; Hammarström, Lennart

    2016-01-01

    To date, several germline mutations have been identified in the LRBA gene in patients suffering from a variety of clinical symptoms. These mutations abolish the expression of the LRBA protein, leading to autoimmunity, chronic diarrhea, B-cell deficiency, hypogammaglobulinemia, functional T-cell defects and aberrant autophagy. We review the clinical and laboratory features of patients with LRBA mutations and present five novel mutations in eight patients suffering from a multitude of clinical features. PMID:26707784

  1. Analysis of SDHD promoter mutations in various types of melanoma

    PubMed Central

    Scholz, Simone L.; Horn, Susanne; Murali, Rajmohan; Möller, Inga; Sucker, Antje; Sondermann, Wiebke; Stiller, Mathias; Schilling, Bastian; Livingstone, Elisabeth; Zimmer, Lisa; Reis, Henning; Metz, Claudia H.; Zeschnigk, Michael; Paschen, Annette; Steuhl, Klaus-Peter; Schadendorf, Dirk; Westekemper, Henrike; Griewank, Klaus G.

    2015-01-01

    Objectives Recently, recurrent mutations in regulatory DNA regions, such as promoter mutations in the TERT gene were identified in melanoma. Subsequently, Weinhold et al. reported SDHD promoter mutations occurring in 10% of melanomas and being associated with a lower overall survival rate. Our study analyzes the mutation rate and clinico-pathologic associations of SDHD promoter mutations in a large cohort of different melanoma subtypes. Methods 451 melanoma samples (incl. 223 non-acral cutaneous, 38 acral, 33 mucosal, 43 occult, 43 conjunctival and 51 uveal melanoma) were analyzed for the presence of SDHD promoter mutations by Sanger-sequencing. Statistical analysis was performed to screen for potential correlations of SDHD promoter mutation status with various clinico-pathologic criteria. Results The SDHD promoter was successfully sequenced in 451 tumor samples. ETS binding site changing SDHD promoter mutations were identified in 16 (4%) samples, of which 5 mutations had not been described previously. Additionally, 5 point mutations not located in ETS binding elements were identified. Mutations in UV-exposed tumors were frequently C>T. One germline C>A SDHD promoter mutation was identified. No statistically significant associations between SDHD promoter mutation status and various clinico-pathologic variables or overall patient survival were observed. Conclusions Melanomas harbor recurrent SDHD promoter mutations, which occur primarily as C>T alterations in UV-exposed melanomas. In contrast to the initial report and promoter mutations in the TERT gene, our analysis suggests that SDHD promoter mutations are a relatively rare event in melanoma (4% of tumors) of unclear clinical and prognostic relevance. PMID:26327518

  2. Three Turkish families with different transthyretin mutations.

    PubMed

    Bekircan-Kurt, Can Ebru; Güneş, Nalan; Yılmaz, Arda; Erdem-Özdamar, Sevim; Tan, Ersin

    2015-09-01

    Transthyretin (TTR)-related hereditary amyloidosis, also called familial amyloid polyneuropathy (FAP), is a rare autosomal dominant systemic disorder that presents with progressive axonal sensory, autonomic and/or motor neuropathies. The present report describes three families with three different TTR mutations who were followed from 1995 to 2014. Only one of these families expressed the Val30Met mutation, which is the most common mutation in endemic regions; all members of this family had late disease onset but varied severities and clinical presentations of the disease. The second family expressed the Thr49Ser mutation, which has not been well documented previously. Our limited experience obtained from these patients indicates that this mutation presents with autonomic neuropathy but a greater degree of cardiac involvement, especially fatal heart failure. The third mutation, Glu54Lys, has been identified as a cause of severe familial amyloid polyneuropathy; the family members with this mutation exhibited severe motor and autonomic neuropathy, early vitreous opacity, and fatal heart failure. Three of the patients with the Val30Met mutation were treated with tafamidis for longer than one year and cessation of the polyneuropathy resulted. However, a short trial of tafamidis in two patients with the Glu54Lys mutation, who showed severe systemic and neurological involvement, did not gain any clinical benefits. PMID:26115788

  3. Gene mutations in chronic lymphocytic leukemia.

    PubMed

    Amin, Nisar A; Malek, Sami N

    2016-04-01

    The recent discovery of genes mutated in chronic lymphocytic leukemia (CLL) has stimulated new research into the role of these genes in CLL pathogenesis. CLL cases carry approximately 5-20 mutated genes per exome, a lower number than detected in many human tumors. Of the recurrently mutated genes in CLL, all are mutated in 10% or less of patients when assayed in unselected CLL cohorts at diagnosis. Mutations in TP53 are of major clinical relevance, are often associated with del17p and gain in frequency over time. TP53 mutated and associated del17p states substantially lower response rates, remission duration, and survival in CLL. Mutations in NOTCH1 and SF3B1 are recurrent, often associated with progressive CLL that is also IgVH unmutated and ZAP70-positive and are under investigation as targets for novel therapies and as factors influencing CLL outcome. There are an estimated 20-50 additional mutated genes with frequencies of 1%-5% in CLL; more work is needed to identify these and to study their significance. Finally, of the major biological aberration categories influencing CLL as a disease, gene mutations will need to be placed into context with regard to their ultimate role and importance. Such calibrated appreciation necessitates studies incorporating multiple CLL driver aberrations into biological and clinical analyses. PMID:27040699

  4. Spectrum of mutations in alpha-mannosidosis.

    PubMed Central

    Berg, T; Riise, H M; Hansen, G M; Malm, D; Tranebjaerg, L; Tollersrud, O K; Nilssen, O

    1999-01-01

    alpha-Mannosidosis is an autosomal recessive disorder caused by deficiency of lysosomal alpha-mannosidase (LAMAN). The resulting intracellular accumulation of mannose-containing oligosaccharides leads to mental retardation, hearing impairment, skeletal changes, and immunodeficiency. Recently, we reported the first alpha-mannosidosis-causing mutation affecting two Palestinian siblings. In the present study 21 novel mutations and four polymorphic amino acid positions were identified by the screening of 43 patients, from 39 families, mainly of European origin. Disease-causing mutations were identified in 72% of the alleles and included eight splicing, six missense, and three nonsense mutations, as well as two small insertions and two small deletions. In addition, Southern blot analysis indicated rearrangements in some alleles. Most mutations were private or occurred in two or three families, except for a missense mutation resulting in an R750W substitution. This mutation was found in 13 patients, from different European countries, and accounted for 21% of the disease alleles. Although there were clinical variations among the patients, no significant LAMAN activity could be detected in any of the fibroblast cultures. In addition, no correlation between the types of mutations and the clinical manifestations was evident. PMID:9915946

  5. Spectrum of small mutations in the dystrophin coding region

    SciTech Connect

    Prior, T.W.; Bartolo, C.; Pearl, D.K.

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutati