Sample records for tacstd2 mutation identified

  1. Two novel mutations of TACSTD2 found in three Japanese gelatinous drop-like corneal dystrophy families with their aberrant subcellular localization

    PubMed Central

    Nakatsukasa, Mina; Yamasaki, Kenta; Fukuoka, Hideki; Matsuda, Akira; Nishida, Kohji; Kinoshita, Shigeru

    2011-01-01

    Purpose To report two novel mutation of the tumor-associated calcium signal transducer 2 (TACSTD2) gene in 3 Japanese patients with gelatinous drop-like corneal dystrophy (GDLD). Methods Genomic DNAs were extracted from the peripheral blood of 3 Japanese families. The coding region of TACSTD2 was amplified by polymerase chain reaction (PCR) and subjected to direct sequencing analysis. Plasmid vectors harboring normal and mutated TACSTD2 were transfected to the immortalized human corneal epithelial cells to identify the subcellular localization of the normal and mutated TACSTD2 gene products. Results Sequencing analysis of TACSTD2 revealed two novel homozygous mutations (c.840_841insTCATCATCGCCGGCCTCATC and c.675C>A which may result in frameshift (p.Ile281SerfsX23) and nonsense (p.Tyr225X) mutations, respectively) in the 3 GDLD patients. Protein expression analysis showed that the mutated gene product was distributed diffusely in the cytoplasm, whereas the normal gene product accumulated at the cell-to-cell borders. Conclusions This study reports two novel mutations in 3 GDLD families and expands the spectrum of mutations in TACSTD2 that may cause pathological corneal amyloidosis. PMID:21541270

  2. Loss of TACSTD2 contributed to squamous cell carcinoma progression through attenuating TAp63-dependent apoptosis

    PubMed Central

    Wang, F; Liu, X; Yang, P; Guo, L; Liu, C; Li, H; Long, S; Shen, Y; Wan, H

    2014-01-01

    Tumor-associated calcium signal transducer 2 (TACSTD2), a calcium signal transducer, is universally expressed in stratified squamous epithelia of many organs, including skin, esophagus and cervix. Although TACSTD2, was reported to be overexpressed in many epithelial tumors, which has increased interest in using it as a molecular target for cancer therapy, the role of TACSTD2 in carcinogenesis of squamous cell carcinoma (SCC) is largely unclear and controversial. To explore the role of TACSTD2, temporal-spatial expression of TACSTD2 was analyzed in both normal and SCC tissues. Our data demonstrate that Tacstd2 expression and membrane localization are tightly associated with stratified epithelial homeostasis, while loss of TACSTD2 was identified in poorly differentiated SCC tissues collected from cervix, esophagus, head and neck. Gradual loss of TACSTD2 was correlated with stepwise progression of SCC. Consistent with these in vivo observations, our data show that inhibition of Tacstd2 expression significantly inhibited chemotherapeutic reagent-induced apoptosis, and TACSTD2 regulated apoptotic gene expression through P63 containing the transactivation domain (TAp63). These findings indicated that loss of TACSTD2 could promote SCC progression and treatment resistance through attenuating chemotherapeutic reagent-induced apoptosis through TAp63, and TACSTD2 could be used as a marker for pathological grading of SCC. PMID:24651436

  3. Establishment of a Human Conjunctival Epithelial Cell Line Lacking the Functional Tacstd2 Gene (An American Ophthalmological Society Thesis)

    PubMed Central

    Kinoshita, Shigeru; Kawasaki, Satoshi; Kitazawa, Koji; Shinomiya, Katsuhiko

    2012-01-01

    Purpose: To report the establishment of a human conjunctival epithelial cell line lacking the functional tumor-associated calcium signal transducer 2 (TACSTD2) gene to be used as an in vitro model of gelatinous drop-like corneal dystrophy (GDLD), a rare disease in which the corneal epithelial barrier function is significantly compromized by the loss of function mutation of the TACSTD2 gene. Methods: A small piece of conjunctival tissue was obtained from a GDLD patient. The conjunctival epithelial cells were enzymatically separated and dissociated from the tissue and immortalized by the lentiviral introduction of the SV40 large T antigen and human telomerase reverse transcriptase (hTERT) genes. Population doubling, protein expression, and transepithelial resistance (TER) analyses were performed to assess the appropriateness of the established cell line as an in vitro model for GDLD. Results: The life span of the established cell line was found to be significantly elongated compared to nontransfected conjunctival epithelial cells. The SV40 large T antigen and hTERT genes were stably expressed in the established cell line. The protein expression level of the tight junction–related proteins was significantly low compared to the immortalized normal conjunctival epithelial cell line. TER of the established cell line was found to be significantly low compared to the immortalized normal conjunctival epithelial cell line. Conclusions: Our conjunctival epithelial cell line was successfully immortalized and well mimicked several features of GDLD corneas. This cell line may be useful for the elucidation of the pathogenesis of GDLD and for the development of novel treatments for GDLD. PMID:23818740

  4. Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway.

    PubMed

    Nakanishi, H; Taccioli, C; Palatini, J; Fernandez-Cymering, C; Cui, R; Kim, T; Volinia, S; Croce, C M

    2014-02-01

    MicroRNAs (miRNAs) have important roles in the initiation and progression of human cancer, but their role in head and neck cancer development and progression is not well defined. We aimed to determine whether specific miRNAs and their target mRNAs contribute to head and neck cancer pathogenesis and progression. To identify miRNAs associated with head and neck squamous cell carcinomas (HNSCCs), we analyzed HNSCC cell lines, normal head and neck tissues and normal keratinocytes by miRNA profiling; a group of differentially expressed miRNAs was identified, which includes miR-125b. Decreased expression of miR-125b is known to occur in epithelial cancers and many target mRNAs for this miR have been reported. We found decreased expression of miR-125b-1 and hypermethylation of its promoter in HNSCC compared with its non-malignant counterpart. The TACSTD2 (also known as TROP2) gene was identified and validated as a direct target of miR-125b-1. Abnormal expression of TACSTD2 cell-surface glycoprotein has been reported in most epithelial tumors, and the overexpressions of this mRNA and protein product has been considered a useful tumor marker. We report that miR-125b-1 causes mitogen-activated protein kinase pathway dysfunction through regulation of TACSTD2 expression. Thus, loss of miR-125b-1 may have a key role in the pathogenesis and progression of squamous cell carcinomas of head and neck and possibly of other tumors. PMID:23416980

  5. Identification of TROP2 (TACSTD2), an EpCAM-like molecule, as a specific marker for TGF-?1-dependent human epidermal Langerhans cells.

    PubMed

    Eisenwort, Gregor; Jurkin, Jennifer; Yasmin, Nighat; Bauer, Thomas; Gesslbauer, Bernhard; Strobl, Herbert

    2011-10-01

    Langerin (CD207) expression is a hallmark of epidermal Langerhans cells (LCs); however, CD207(+) cells comprise several functional subsets. Murine studies showed that epidermal, but not dermal, CD207(+) cells require transforming growth factor-? 1 (TGF-?1) for development, whereas human data are lacking. Using gene profiling, we found that the surface molecule TROP2 (TACSTD2) is strongly and rapidly induced during TGF-?1-dependent LC commitment of human CD34(+) hematopoietic progenitor cells or monocytes. TROP2 is conserved between mouse and human, and shares substantial amino-acid identity with EpCAM, a marker for murine epidermal LCs. To our knowledge, neither TROP2 nor EpCAM expression has been analyzed in human dendritic cell (DC) subsets. We found that (i) all human epidermal LCs are TROP2(+)EpCAM(+); (ii) human dermis lacks CD207(+)EpCAM(-) or CD207(+)TROP2(-) DCs, i.e., equivalents of murine dermal CD207(+) DCs; and (iii) pulmonary CD207(+) cells are TROP2(-)EpCAM(-). Moreover, although EpCAM was broadly expressed by pulmonary and intestinal epithelial cells, as well as by bone marrow erythroid progenitor cells, these cells lacked TROP2. However, although TROP2 is expressed by human LCs as well as by human and murine keratinocytes, most murine LCs, except of a small subset, lacked TROP2. Therefore, TROP2 is a marker for human TGF-?1-dependent epidermal LCs. PMID:21677668

  6. Scientists Using TCGA Data Identify 21 Mutational Signatures in Cancer

    Cancer.gov

    Many mutations have been implicated in human cancer, but the biological mechanisms that produce them remain largely unknown. In a study published online in Nature on August 14, 2013, researchers identified 21 signatures of mutational processes underlying 30 types of cancer. Characterizing mutational signatures may provide a greater understanding of the mechanistic basis of cancer and potentially lead to better treatments that target its root causes.

  7. Key clinical features to identify girls with CDKL5 mutations.

    PubMed

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydeé; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothée; Afenjar, Alexandra; Rio, Marlčne; Héron, Delphine; N'guyen Morel, Marie Ange; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-10-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of CDKL5-associated encephalopathy. We screened the entire coding region of CDKL5 for mutations in 183 females with encephalopathy with early seizures by denaturing high liquid performance chromatography and direct sequencing, and we identified in 20 unrelated girls, 18 different mutations including 7 novel mutations. These mutations were identified in eight patients with encephalopathy with RTT-like features, five with infantile spasms and seven with encephalopathy with refractory epilepsy. Early epilepsy with normal interictal EEG and severe hypotonia are the key clinical features in identifying patients likely to have CDKL5 mutations. Our study also indicates that these patients clearly exhibit some RTT features such as deceleration of head growth, stereotypies and hand apraxia and that these RTT features become more evident in older and ambulatory patients. However, some RTT signs are clearly absent such as the so called RTT disease profile (period of nearly normal development followed by regression with loss of acquired fine finger skill in early childhood and characteristic intensive eye communication) and the characteristic evolution of the RTT electroencephalogram. Interestingly, in addition to the overall stereotypical symptomatology (age of onset and evolution of the disease) resulting from CDKL5 mutations, atypical forms of CDKL5-related conditions have also been observed. Our data suggest that phenotypic heterogeneity does not correlate with the nature or the position of the mutations or with the pattern of X-chromosome inactivation, but most probably with the functional transcriptional and/or translational consequences of CDKL5 mutations. In conclusion, our report show that search for mutations in CDKL5 is indicated in girls with early onset of a severe intractable seizure disorder or infantile spasms with severe hypotonia, and in girls with RTT-like phenotype and early onset seizures, though, in our cohort, mutations in CDKL5 account for about 10% of the girls affected by these disorders. PMID:18790821

  8. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    PubMed Central

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak; Evans, Perry; Bacchiocchi, Antonella; McCusker, James P; Cheng, Elaine; Davis, Matthew J; Goh, Gerald; Choi, Murim; Ariyan, Stephan; Narayan, Deepak; Dutton-Regester, Ken; Capatana, Ana; Holman, Edna C; Bosenberg, Marcus; Sznol, Mario; Kluger, Harriet M; Brash, Douglas E; Stern, David F; Materin, Miguel A; Lo, Roger S; Mane, Shrikant; Ma, Shuangge; Kidd, Kenneth K; Hayward, Nicholas K; Lifton, Richard P; Schlessinger, Joseph; Boggon, Titus J; Halaban, Ruth

    2012-01-01

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1P29S) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1P29S showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit. PMID:22842228

  9. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    SciTech Connect

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak; Evans, Perry; Bacchiocchi, Antonella; McCusker, James P.; Cheng, Elaine; Davis, Matthew J.; Goh, Gerald; Choi, Murim; Ariyan, Stephan; Narayan, Deepak; Dutton-Regester, Ken; Capatana, Ana; Holman, Edna C.; Bosenberg, Marcus; Sznol, Mario; Kluger, Harriet M.; Brash, Douglas E.; Stern, David F.; Materin, Miguel A.; Lo, Roger S.; Mane, Shrikant; Ma, Shuangge; Kidd, Kenneth K.; Hayward, Nicholas K.; Lifton, Richard P.; Schlessinger, Joseph; Boggon, Titus J.; Halaban, Ruth (Yale-MED); (UCLA); (Queens)

    2012-10-11

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

  10. Using Exome Data to Identify Malignant Hyperthermia Susceptibility Mutations

    PubMed Central

    Gonsalves, Stephen G.; Ng, David; Johnston, Jennifer J.; Teer, Jamie K.; Stenson, Peter D.; Cooper, David N.; Mullikin, James C.; Biesecker, Leslie G.

    2013-01-01

    Background Malignant hyperthermia susceptibility (MHS) is a life-threatening, inherited disorder of muscle calcium metabolism, triggered by anesthetics and depolarizing muscle relaxants. An unselected cohort was screened for MHS mutations using exome sequencing. Our aim was to pilot a strategy for the RYR1 and CACNA1S genes. Methods Exome sequencing was performed on 870 volunteers not ascertained for MHS. Variants in RYR1 and CACNA1S were annotated using an algorithm that filtered results based on mutation type, frequency, and information in mutation databases. Variants were scored on a six-point pathogenicity scale. Medical histories and pedigrees were reviewed for malignant hyperthermia and related disorders. Results We identified 70 RYR1 and 53 CACNA1S variants among 870 exomes. Sixty-three RYR1 and 41 CACNA1S variants passed the quality and frequency metrics but we excluded synonymous variants. In RYR1, we identified 65 missense mutations, one nonsense, two that affected splicing, and one non frameshift indel. In CACNA1S, 48 missense, one frameshift deletion, one splicing and one non frameshift indel were identified. RYR1 variants predicted to be pathogenic for MHS were found in three participants without medical or family histories of MHS. Numerous variants, previously described as pathogenic in mutation databases, were reclassified by us to be of unknown pathogenicity. Conclusions Exome sequencing can identify asymptomatic patients at risk for MHS, although the interpretation of exome variants can be challenging. The use of exome sequencing in unselected cohorts is an important tool to understand the prevalence and penetrance of MHS, a critical challenge for the field. PMID:24195946

  11. Two novel mutations identified in familial cases with Donohue syndrome

    PubMed Central

    Falik Zaccai, Tzipora C; Kalfon, Limor; Klar, Aharon; Elisha, Mordechai Ben; Hurvitz, Haggit; Weingarten, Galina; Chechik, Emelia; Fleisher Sheffer, Vered; Haj Yahya, Raid; Meidan, Gal; Gross-Kieselstein, Eva; Bauman, Dvora; Hershkovitz, Sylvia; Yaron, Yuval; Orr-Urtreger, Avi; Wertheimer, Efrat

    2014-01-01

    Donohue syndrome (DS) is a rare and lethal autosomal recessive disease caused by mutations in the insulin receptor (INSR) gene, manifesting marked insulin resistance, severe growth retardation, hypertrichosis, and characteristic dysmorphic features. We report the clinical, molecular, and biochemical characterization of three new patients with DS, and address genotype–phenotype issues playing a role in the pathophysiology of DS. A female infant born to first-degree cousins Muslim Arab parents and two brothers born to first-degree cousins Druze parents presented classical features of DS with hypertrophic cardiomyopathy and died in infancy. Each patient was found homozygous for one missense mutation within the extracellular domain of the INSR gene. Western blot analysis identified the proreceptor of INSR, but not its mature subunits alpha and beta. Of 95 healthy Muslims, no heterozygous was found and of 52 healthy Druze from the same village, one was heterozygous. This study presents two novel familial mutations in the alpha subunit of the INSR which appear to impair post-translational processing of the INSR, resulting loss of its function. Both mutations cause DS with hypertrophic cardiomyopathy and early death. Identification of the causative mutation enables prevention of this devastating disease. PMID:24498630

  12. DCEG Scientists Identify New Gene Mutation Related to Familial Melanoma

    Cancer.gov

    Scientists have identified a rare inherited mutation in a gene that can increase the risk of familial melanoma, according to a study that appeared online in Nature Genetics on March 30, 2014. Although the finding does not offer immediate benefit to patients, variation in the Protection of Telomeres-1 (POT1) gene provides additional clues as to the origins of melanoma and may open new avenues in prevention and treatment research.

  13. Exome sequencing identifies ZNF644 mutations in high myopia.

    PubMed

    Shi, Yi; Li, Yingrui; Zhang, Dingding; Zhang, Hao; Li, Yuanfeng; Lu, Fang; Liu, Xiaoqi; He, Fei; Gong, Bo; Cai, Li; Li, Ruiqiang; Liao, Shihuang; Ma, Shi; Lin, He; Cheng, Jing; Zheng, Hancheng; Shan, Ying; Chen, Bin; Hu, Jianbin; Jin, Xin; Zhao, Peiquan; Chen, Yiye; Zhang, Yong; Lin, Ying; Li, Xi; Fan, Yingchuan; Yang, Huanming; Wang, Jun; Yang, Zhenglin

    2011-06-01

    Myopia is the most common ocular disorder worldwide, and high myopia in particular is one of the leading causes of blindness. Genetic factors play a critical role in the development of myopia, especially high myopia. Recently, the exome sequencing approach has been successfully used for the disease gene identification of Mendelian disorders. Here we show a successful application of exome sequencing to identify a gene for an autosomal dominant disorder, and we have identified a gene potentially responsible for high myopia in a monogenic form. We captured exomes of two affected individuals from a Han Chinese family with high myopia and performed sequencing analysis by a second-generation sequencer with a mean coverage of 30× and sufficient depth to call variants at ?97% of each targeted exome. The shared genetic variants of these two affected individuals in the family being studied were filtered against the 1000 Genomes Project and the dbSNP131 database. A mutation A672G in zinc finger protein 644 isoform 1 (ZNF644) was identified as being related to the phenotype of this family. After we performed sequencing analysis of the exons in the ZNF644 gene in 300 sporadic cases of high myopia, we identified an additional five mutations (I587V, R680G, C699Y, 3'UTR+12 C>G, and 3'UTR+592 G>A) in 11 different patients. All these mutations were absent in 600 normal controls. The ZNF644 gene was expressed in human retinal and retinal pigment epithelium (RPE). Given that ZNF644 is predicted to be a transcription factor that may regulate genes involved in eye development, mutation may cause the axial elongation of eyeball found in high myopia patients. Our results suggest that ZNF644 might be a causal gene for high myopia in a monogenic form. PMID:21695231

  14. What is custom mutation analysis? Custom mutation analysis refers to testing of any gene for families with previously identified mutations associated

    E-print Network

    Gilad, Yoav

    3/10 What is custom mutation analysis? Custom mutation analysis refers to testing of any gene for families with previously identified mutations associated with common or rare genetic conditions. We control guidelines that are not required of research laboratories. Who can benefit from custom mutation

  15. What is custom mutation analysis? Custom mutation analysis refers to testing of any gene for families with previously identified mutations associated

    E-print Network

    Ober, Carole

    1/13 What is custom mutation analysis? Custom mutation analysis refers to testing of any gene for families with previously identified mutations associated with common or rare genetic conditions. We control guidelines that are not required of research laboratories. Who can benefit from custom mutation

  16. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia

    E-print Network

    Takahashi, Ryo

    leukemia Highlights Wholeexome sequencing analysis identified that SETBP1 and JAK3 genes were among common targets for secondary mutations in juvenile myelomonocytic leukemia (JMML), an intractable pediatric leukemia with poor prognosis. These newly identified gene mutations were often subclonal

  17. Whole exome sequencing identifies new causative mutations in Tunisian families with non-syndromic deafness.

    PubMed

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Louha, Malek; Bouyacoub, Yosra; Laroussi, Nadia; Chargui, Mariem; Kefi, Rym; Jonard, Laurence; Dorboz, Imen; Hardelin, Jean-Pierre; Salah, Sihem Belhaj; Levilliers, Jacqueline; Weil, Dominique; McElreavey, Kenneth; Boespflug, Odile Tanguy; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2014-01-01

    Identification of the causative mutations in patients affected by autosomal recessive non syndromic deafness (DFNB forms), is demanding due to genetic heterogeneity. After the exclusion of GJB2 mutations and other mutations previously reported in Tunisian deaf patients, we performed whole exome sequencing in patients affected with severe to profound deafness, from four unrelated consanguineous Tunisian families. Four biallelic non previously reported mutations were identified in three different genes: a nonsense mutation, c.208C>T (p.R70X), in LRTOMT, a missense mutation, c.5417T>C (p.L1806P), in MYO15A and two splice site mutations, c.7395+3G>A, and c.2260+2T>A, in MYO15A and TMC1 respectively. We thereby provide evidence that whole exome sequencing is a powerful, cost-effective screening tool to identify mutations causing recessive deafness in consanguineous families. PMID:24926664

  18. Whole Exome Sequencing Identifies New Causative Mutations in Tunisian Families with Non-Syndromic Deafness

    PubMed Central

    Zainine, Rim; Louha, Malek; Bouyacoub, Yosra; Laroussi, Nadia; Chargui, Mariem; Kefi, Rym; Jonard, Laurence; Dorboz, Imen; Hardelin, Jean-Pierre; Salah, Sihem Belhaj; Levilliers, Jacqueline; Weil, Dominique; McElreavey, Kenneth; Boespflug, Odile Tanguy; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2014-01-01

    Identification of the causative mutations in patients affected by autosomal recessive non syndromic deafness (DFNB forms), is demanding due to genetic heterogeneity. After the exclusion of GJB2 mutations and other mutations previously reported in Tunisian deaf patients, we performed whole exome sequencing in patients affected with severe to profound deafness, from four unrelated consanguineous Tunisian families. Four biallelic non previously reported mutations were identified in three different genes: a nonsense mutation, c.208C>T (p.R70X), in LRTOMT, a missense mutation, c.5417T>C (p.L1806P), in MYO15A and two splice site mutations, c.7395+3G>A, and c.2260+2T>A, in MYO15A and TMC1 respectively. We thereby provide evidence that whole exome sequencing is a powerful, cost-effective screening tool to identify mutations causing recessive deafness in consanguineous families. PMID:24926664

  19. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    PubMed

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. PMID:24575791

  20. Next-generation sequencing as a tool to quickly identify causative EMS-generated mutations.

    PubMed

    Thole, J M; Strader, L C

    2015-05-01

    The advent of next generation sequencing has influenced every aspect of biological research. Many labs are now using whole genome sequencing in Arabidopsis thaliana as a means to quickly identify EMS-generated mutations present in isolated mutants. Following identification of these mutations, examination of T-DNA insertional alleles defective in candidate genes or complementation of the mutant phenotype with a wild type copy of candidate genes can be used to verify which mutation is causative for the phenotype of interest. Here, we discuss the benefits and pitfalls of using this method to identify mutations underlying phenotypes. PMID:26039464

  1. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts.

    PubMed

    Malcovati, Luca; Karimi, Mohsen; Papaemmanuil, Elli; Ambaglio, Ilaria; Jädersten, Martin; Jansson, Monika; Elena, Chiara; Gallě, Anna; Walldin, Gunilla; Della Porta, Matteo G; Raaschou-Jensen, Klas; Travaglino, Erica; Kallenbach, Klaus; Pietra, Daniela; Ljungström, Viktor; Conte, Simona; Boveri, Emanuela; Invernizzi, Rosangela; Rosenquist, Richard; Campbell, Peter J; Cazzola, Mario; Hellström Lindberg, Eva

    2015-07-01

    Refractory anemia with ring sideroblasts (RARS) is a myelodysplastic syndrome (MDS) characterized by isolated erythroid dysplasia and 15% or more bone marrow ring sideroblasts. Ring sideroblasts are found also in other MDS subtypes, such as refractory cytopenia with multilineage dysplasia and ring sideroblasts (RCMD-RS). A high prevalence of somatic mutations of SF3B1 was reported in these conditions. To identify mutation patterns that affect disease phenotype and clinical outcome, we performed a comprehensive mutation analysis in 293 patients with myeloid neoplasm and 1% or more ring sideroblasts. SF3B1 mutations were detected in 129 of 159 cases (81%) of RARS or RCMD-RS. Among other patients with ring sideroblasts, lower prevalence of SF3B1 mutations and higher prevalence of mutations in other splicing factor genes were observed (P < .001). In multivariable analyses, patients with SF3B1 mutations showed significantly better overall survival (hazard ratio [HR], .37; P = .003) and lower cumulative incidence of disease progression (HR = 0.31; P = .018) compared with SF3B1-unmutated cases. The independent prognostic value of SF3B1 mutation was retained in MDS without excess blasts, as well as in sideroblastic categories (RARS and RCMD-RS). Among SF3B1-mutated patients, coexisting mutations in DNA methylation genes were associated with multilineage dysplasia (P = .015) but had no effect on clinical outcome. TP53 mutations were frequently detected in patients without SF3B1 mutation, and were associated with poor outcome. Thus, SF3B1 mutation identifies a distinct MDS subtype that is unlikely to develop detrimental subclonal mutations and is characterized by indolent clinical course and favorable outcome. PMID:25957392

  2. CREB3L2-PPARg Fusion Mutation Identifies a Thyroid Signaling Pathway Regulated by Intramembrane Proteolysis

    Microsoft Academic Search

    Lingchun Zeng; Victoria Rehrmann; Seema Deshpande; Maria Tretiakova; Edwin L. Kaplan; Ingo Leibiger; Barbara Leibiger; Ulla Enberg; Catharina Larsson; Todd G. Kroll

    The discovery of gene fusion mutations, particularly in leukemia, has consistently identified new cancer pathways and led to molecular diagnostic assays and molecular-targeted chemotherapies for cancer patients. Here, we report our discovery of a novel CREB3L2-PPARg fusion mutation in thyroid carcinoma with t(3;7)(p25;q34), showing that a family of somatic PPARg fusion mutations exist in thyroid cancer. The CREB3L2-PPARg fusion encodes

  3. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene.

    PubMed

    Juhlin, C Christofer; Stenman, Adam; Haglund, Felix; Clark, Victoria E; Brown, Taylor C; Baranoski, Jacob; Bilguvar, Kaya; Goh, Gerald; Welander, Jenny; Svahn, Fredrika; Rubinstein, Jill C; Caramuta, Stefano; Yasuno, Katsuhito; Günel, Murat; Bäckdahl, Martin; Gimm, Oliver; Söderkvist, Peter; Prasad, Manju L; Korah, Reju; Lifton, Richard P; Carling, Tobias

    2015-09-01

    As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole-exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis-related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well-established cancer gene lysine (K)-specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome-sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D-mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development. © 2015 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. PMID:26032282

  4. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    PubMed Central

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóńez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beŕ, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  5. Molecular Testing of 163 Patients with Morquio A (Mucopolysaccharidosis IVA) Identifies 39 Novel GALNS Mutations

    PubMed Central

    Morrone, A; Tylee, K.L.; Al-Sayed, M; Brusius-Facchin, A.C.; Caciotti, A.; Church, H.J.; Coll, M.J.; Davidson, K.; Fietz, M.J.; Gort, L.; Hegde, M.; Kubaski, F.; Lacerda, L.; Laranjeira, F.; Leistner-Segal, S.; Mooney, S.; Pajares, S.; Pollard, L.; Riberio, I.; Wang, R.Y.; Miller, N.

    2014-01-01

    Morquio A (Mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by partial or total deficiency of the enzyme galactosamine-6-sulfate sulfatase (GALNS; also known as N-acetylgalactosamine-6-sulfate sulfatase) encoded by the GALNS gene. Patients who inherit two mutated GALNS gene alleles produce protein with decreased ability to degrade the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate, thereby causing GAG accumulation within lysosomes and consequently pleiotropic disease. GALNS mutations occur throughout the gene and many mutations are identified only in single patients or families, causing difficulties both in mutation detection and interpretation. In this study, molecular analysis of 163 patients with Morquio A identified 99 unique mutations in the GALNS gene believed to negatively impact GALNS protein function, of which 39 are previously unpublished, together with 26 single-nucleotide polymorphisms. Recommendations for the molecular testing of patients, clear reporting of sequence findings, and interpretation of sequencing data are provided. PMID:24726177

  6. Simulated Annealing Based Algorithm for Identifying Mutated Driver Pathways in Cancer

    PubMed Central

    Li, Hai-Tao; Zhang, Yu-Lang; Zheng, Chun-Hou; Wang, Hong-Qiang

    2014-01-01

    With the development of next-generation DNA sequencing technologies, large-scale cancer genomics projects can be implemented to help researchers to identify driver genes, driver mutations, and driver pathways, which promote cancer proliferation in large numbers of cancer patients. Hence, one of the remaining challenges is to distinguish functional mutations vital for cancer development, and filter out the unfunctional and random “passenger mutations.” In this study, we introduce a modified method to solve the so-called maximum weight submatrix problem which is used to identify mutated driver pathways in cancer. The problem is based on two combinatorial properties, that is, coverage and exclusivity. Particularly, we enhance an integrative model which combines gene mutation and expression data. The experimental results on simulated data show that, compared with the other methods, our method is more efficient. Finally, we apply the proposed method on two real biological datasets. The results show that our proposed method is also applicable in real practice. PMID:24982873

  7. ONLINE MUTATION REPORT New VMD2 gene mutations identified in patients affected by

    E-print Network

    , six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non-functional. Furthermore, the Q293H mutant inhibited the function of wild-type bestrophin-1 channels in a dominant negative

  8. All-codon scanning identifies p53 cancer rescue mutations

    E-print Network

    Lathrop, Richard H.

    strategies are valuable tools to identify critical residues in proteins and to generate proteins of Microbiology and Molecular Genetics, 4 Department of Chemical Engineering and Materials Science, 5 Department with modified properties. We describe the fast and simple All- Codon Scanning (ACS) strategy that creates

  9. Whole exome sequencing identifies a novel EMD mutation in a Chinese family with dilated cardiomyopathy

    PubMed Central

    2014-01-01

    Background Variants in the emerin gene (EMD) were implicated in X-linked recessive Emery-Dreifuss muscular dystrophy (EDMD), characterized by early-onset contractures of tendons, progressive muscular weakness and cardiomyopathy. To date, 223 mutations have been reported in EMD gene and the majority of them caused a predominant skeletal muscular phenotype. In this study, we identified a novel deletion mutation in EMD exon 1, which results in almost a complete loss of emerin protein in a large Chinese family. However, the patients suffered severe dilated cardiomyopathy (DCM) but very mild skeletal muscle disorder. Case presentation Whole exome sequencing (WES) and linkage analysis were performed to identify the underlying mutation in a Chinese DCM family spanning five generations. A missense variation in the GPR50 gene was found co-segregated with the disease phenotype, whereas no functional alteration was detected in the variant GPR50 protein. When analyzing the failure sequences in the exome sequencing data, a novel deletion mutation (c.26_39delATACCGAGCTGACC) in EMD exon 1, was identified in this family. Different from the typical clinical features caused by most reported EMD mutations, patients in our study presented very mild skeletal muscle degeneration that had not been diagnosed until the mutation was found. Conclusion We described a family with rare clinical presentations caused by a novel EMD deletion mutation. Our findings broaden the heterogeneous spectrum of phenotypes attributed to EMD mutations and provide new insight to explain the genotype-phenotype correlations between EMD mutations and EDMD symptoms. PMID:24997722

  10. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome

    PubMed Central

    Kulasekararaj, Austin G.; Jiang, Jie; Smith, Alexander E.; Mohamedali, Azim M.; Mian, Syed; Gandhi, Shreyans; Gaken, Joop; Czepulkowski, Barbara; Marsh, Judith C. W.

    2014-01-01

    The distinction between acquired aplastic anemia (AA) and hypocellular myelodysplastic syndrome (hMDS) is often difficult, especially nonsevere AA. We postulated that somatic mutations are present in a subset of AA, and predict malignant transformation. From our database, we identified 150 AA patients with no morphological evidence of MDS, who had stored bone marrow (BM) and constitutional DNA. We excluded Fanconi anemia, mutations of telomere maintenance, and a family history of BM failure (BMF) or cancer. The initial cohort of 57 patients was screened for 835 known genes associated with BMF and myeloid cancer; a second cohort of 93 patients was screened for mutations in ASXL1, DNMT3A, BCOR, TET2, and MPL. Somatic mutations were detected in 19% of AA, and included ASXL1 (n = 12), DNMT3A (n = 8) and BCOR (n = 6). Patients with somatic mutations had a longer disease duration (37 vs 8 months, P < .04), and shorter telomere lengths (median length, 0.9 vs 1.1, P < .001), compared with patients without mutations. Somatic mutations in AA patients with a disease duration of >6 months were associated with a 40% risk of transformation to MDS (P < .0002). Nearly one-fifth of AA patients harbor mutations in genes typically seen in myeloid malignancies that predicted for later transformation to MDS. PMID:25139356

  11. Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma.

    PubMed

    Gartner, Jared J; Parker, Stephen C J; Prickett, Todd D; Dutton-Regester, Ken; Stitzel, Michael L; Lin, Jimmy C; Davis, Sean; Simhadri, Vijaya L; Jha, Sujata; Katagiri, Nobuko; Gotea, Valer; Teer, Jamie K; Wei, Xiaomu; Morken, Mario A; Bhanot, Umesh K; Chen, Guo; Elnitski, Laura L; Davies, Michael A; Gershenwald, Jeffrey E; Carter, Hannah; Karchin, Rachel; Robinson, William; Robinson, Steven; Rosenberg, Steven A; Collins, Francis S; Parmigiani, Giovanni; Komar, Anton A; Kimchi-Sarfaty, Chava; Hayward, Nicholas K; Margulies, Elliott H; Samuels, Yardena

    2013-08-13

    Synonymous mutations, which do not alter the protein sequence, have been shown to affect protein function [Sauna ZE, Kimchi-Sarfaty C (2011) Nat Rev Genet 12(10):683-691]. However, synonymous mutations are rarely investigated in the cancer genomics field. We used whole-genome and -exome sequencing to identify somatic mutations in 29 melanoma samples. Validation of one synonymous somatic mutation in BCL2L12 in 285 samples identified 12 cases that harbored the recurrent F17F mutation. This mutation led to increased BCL2L12 mRNA and protein levels because of differential targeting of WT and mutant BCL2L12 by hsa-miR-671-5p. Protein made from mutant BCL2L12 transcript bound p53, inhibited UV-induced apoptosis more efficiently than WT BCL2L12, and reduced endogenous p53 target gene transcription. This report shows selection of a recurrent somatic synonymous mutation in cancer. Our data indicate that silent alterations have a role to play in human cancer, emphasizing the importance of their investigation in future cancer genome studies. PMID:23901115

  12. Abnormal expression and dysfunction of novel SGLT2 mutations identified in familial renal glucosuria patients

    Microsoft Academic Search

    Lei Yu; Ji-Cheng Lv; Xu-jie Zhou; Li Zhu; Ping Hou; Hong Zhang

    2011-01-01

    Familial renal glucosuria (FRG) is characterized by persistent glucosuria despite normal serum glucose and in the absence\\u000a of overt tubular dysfunction. Mutation of sodium\\/glucose co-transporter 2 (SGLT2) has been identified and was recently reported\\u000a to be involved in FRG. However, the functional and pathological consequences of such mutations remain unknown. In the current\\u000a study, we collected four families with FRG.

  13. Point mutations within and outside the homeodomain identify sequences required for proboscipedia homeotic function in Drosophila.

    PubMed

    Benassayag, C; Boube, M; Seroude, L; Cribbs, D L

    1997-07-01

    The Drosophila homeotic gene proboscipedia (pb) encodes a homeodomain protein homologous to vertebrate HoxA2/B2 required for adult mouthparts formation. A transgenic Hsp70-pb (HSPB) element that rescues pb mutations also induces the dominant transformation of antennae to maxillary palps. To identify sequences essential to PB protein function, we screened for EMS-induced HSPB mutations leading to phenotypic reversion of the HSPB transformation. Ten revertants harbor identified point mutations in HSPB coding sequences. The point mutations that remove all detectable phenotypes in vivo reside either within the homeodomain or, more unexpectedly, in evolutionarily nonconserved regions outside the homeodomain. Two independent homeodomain mutations that change the highly conserved Arginine-5 in the N-terminal hinge show effects on adult eye development, suggesting a previously unsuspected role for Arg5 in functional specificity. Three additional revertant mutations outside the homeodomain reduce but do not abolish PB+ activity, identifying protein elements that contribute quantitatively to pb function. This in vivo analysis shows that apart from the conserved motifs of PB, other elements throughout the protein make important contributions to homeotic function. PMID:9215898

  14. Novel MEK1 Mutation Identified by Mutational Analysis of Epidermal Growth Factor Receptor Signaling Pathway Genes in Lung Adenocarcinoma

    PubMed Central

    Marks, Jenifer L.; Gong, Yixuan; Chitale, Dhananjay; Golas, Ben; McLellan, Michael D.; Kasai, Yumi; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Solit, David; Levine, Ross; Michel, Kathrin; Thomas, Roman K.; Rusch, Valerie W.; Ladanyi, Marc; Pao, William

    2008-01-01

    Genetic lesions affecting a number of kinases and other elements within the epidermal growth factor receptor (EGFR) signaling pathway have been implicated in the pathogenesis of human non–small-cell lung cancer (NSCLC). We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this pathway that could contribute to lung tumorigenesis. We have identified in 2 of 207 primary lung tumors a somatic activating mutation in exon 2 of MEK1 (i.e., mitogen-activated protein kinase kinase 1 or MAP2K1) that substitutes asparagine for lysine at amino acid 57 (K57N) in the nonkinase portion of the kinase. Neither of these two tumors harbored known mutations in other genes encoding components of the EGFR signaling pathway (i.e., EGFR, HER2, KRAS, PIK3CA, and BRAF). Expression of mutant, but not wild-type, MEK1 leads to constitutive activity of extracellular signal–regulated kinase (ERK)-1/2 in human 293T cells and to growth factor–independent proliferation of murine Ba/F3 cells. A selective MEK inhibitor, AZD6244, inhibits mutant-induced ERK activity in 293T cells and growth of mutant-bearing Ba/F3 cells. We also screened 85 NSCLC cell lines for MEK1 exon 2 mutations; one line (NCI-H1437) harbors a Q56P substitution, a known transformation-competent allele of MEK1 originally identified in rat fibroblasts, and is sensitive to treatment with AZD6244. MEK1 mutants have not previously been reported in lung cancer and may provide a target for effective therapy in a small subset of patients with lung adenocarcinoma. PMID:18632602

  15. Actin mutations that show suppression with fimbrin mutations identify a likely fimbrin-binding site on actin

    PubMed Central

    1994-01-01

    Actin interacts with a large number of different proteins that modulate its assembly and mediate its functions. One such protein is the yeast actin-binding protein Sac6p, which is homologous to vertebrate fimbrin (Adams, A. E. M., D. Botstein, and D. G. Drubin. 1991. Nature (Lond.). 354:404-408.). Sac6p was originally identified both genetically (Adams, A. E. M., and D. Botstein. 1989. Genetics. 121:675-683.) by dominant, reciprocal suppression of a temperature-sensitive yeast actin mutation (act1-1), as well as biochemically (Drubin, D. G., K. G. Miller, and D. Botstein. 1988. J. Cell Biol. 107: 2551-2561.). To identify the region on actin that interacts with Sac6p, we have analyzed eight different act1 mutations that show suppression with sac6 mutant alleles, and have asked whether (a) these mutations occur in a small defined region on the crystal structure of actin; and (b) the mutant actins are defective in their interaction with Sac6p in vitro. Sequence analysis indicates that all of these mutations change residues that cluster in the small domain of the actin crystal structure, suggesting that this region is an important part of the Sac6p-binding domain. Biochemical analysis reveals defects in the ability of several of the mutant actins to bind Sac6p, and a reduction in Sac6p-induced cross-linking of mutant actin filaments. Together, these observations identify a likely site of interaction of fimbrin on actin. PMID:8034742

  16. New Mutations in Chronic Lymphocytic Leukemia Identified by Target Enrichment and Deep Sequencing

    PubMed Central

    Gzlez-Peńa, Daniel; López, Mar; Herreros, Beatriz; Menezes, Juliane; Gómez-Lozano, Natalia; Carro, Angel; Grańa, Osvaldo; Pisano, David G.; Domínguez, Orlando; García-Marco, José A.; Piris, Miguel A.; Sánchez-Beato, Margarita

    2012-01-01

    Chronic lymphocytic leukemia (CLL) is a heterogeneous disease without a well-defined genetic alteration responsible for the onset of the disease. Several lines of evidence coincide in identifying stimulatory and growth signals delivered by B-cell receptor (BCR), and co-receptors together with NFkB pathway, as being the driving force in B-cell survival in CLL. However, the molecular mechanism responsible for this activation has not been identified. Based on the hypothesis that BCR activation may depend on somatic mutations of the BCR and related pathways we have performed a complete mutational screening of 301 selected genes associated with BCR signaling and related pathways using massive parallel sequencing technology in 10 CLL cases. Four mutated genes in coding regions (KRAS, SMARCA2, NFKBIE and PRKD3) have been confirmed by capillary sequencing. In conclusion, this study identifies new genes mutated in CLL, all of them in cases with progressive disease, and demonstrates that next-generation sequencing technologies applied to selected genes or pathways of interest are powerful tools for identifying novel mutational changes. PMID:22675518

  17. Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma

    PubMed Central

    Wong, Stephen Q.; Behren, Andreas; Mar, Victoria J.; Woods, Katherine; Li, Jason; Martin, Claire; Sheppard, Karen E.; Wolfe, Rory; Kelly, John; Cebon, Jonathan; Dobrovic, Alexander; McArthur, Grant A.

    2015-01-01

    Melanoma is often caused by mutations due to exposure to ultraviolet radiation. This study reports a recurrent somatic C > T change causing a P131L mutation in the RQCD1 (Required for Cell Differentiation1 Homolog) gene identified through whole exome sequencing of 20 metastatic melanomas. Screening in 715 additional primary melanomas revealed a prevalence of ~4%. This represents the first reported recurrent mutation in a member of the CCR4-NOT complex in cancer. Compared to tumors without the mutation, the P131L mutant positive tumors were associated with increased thickness (p = 0.02), head and neck (p = 0.009) and upper limb (p = 0.03) location, lentigo maligna melanoma subtype (p = 0.02) and BRAF V600K (p = 0.04) but not V600E or NRAS codon 61 mutations. There was no association with nodal disease (p = 0.3). Mutually exclusive mutations of other members of the CCR4-NOT complex were found in ~20% of the TCGA melanoma dataset suggesting the complex may play an important role in melanoma biology. Mutant RQCD1 was predicted to bind strongly to HLA-A0201 and HLA-Cw3 MHC1 complexes. From thirteen patients with mutant RQCD1, an anti-tumor CD8+ T cell response was observed from a single patient's peripheral blood mononuclear cell population stimulated with mutated peptide compared to wildtype indicating a neoantigen may be formed. PMID:25544760

  18. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma

    PubMed Central

    Kiel, Mark J.; Velusamy, Thirunavukkarasu; Betz, Bryan L.; Zhao, Lili; Weigelin, Helmut G.; Chiang, Mark Y.; Huebner-Chan, David R.; Bailey, Nathanael G.; Yang, David T.; Bhagat, Govind; Miranda, Roberto N.; Bahler, David W.; Medeiros, L. Jeffrey; Lim, Megan S.

    2012-01-01

    Splenic marginal zone lymphoma (SMZL), the most common primary lymphoma of spleen, is poorly understood at the genetic level. In this study, using whole-genome DNA sequencing (WGS) and confirmation by Sanger sequencing, we observed mutations identified in several genes not previously known to be recurrently altered in SMZL. In particular, we identified recurrent somatic gain-of-function mutations in NOTCH2, a gene encoding a protein required for marginal zone B cell development, in 25 of 99 (?25%) cases of SMZL and in 1 of 19 (?5%) cases of nonsplenic MZLs. These mutations clustered near the C-terminal proline/glutamate/serine/threonine (PEST)-rich domain, resulting in protein truncation or, rarely, were nonsynonymous substitutions affecting the extracellular heterodimerization domain (HD). NOTCH2 mutations were not present in other B cell lymphomas and leukemias, such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; n = 15), mantle cell lymphoma (MCL; n = 15), low-grade follicular lymphoma (FL; n = 44), hairy cell leukemia (HCL; n = 15), and reactive lymphoid hyperplasia (n = 14). NOTCH2 mutations were associated with adverse clinical outcomes (relapse, histological transformation, and/or death) among SMZL patients (P = 0.002). These results suggest that NOTCH2 mutations play a role in the pathogenesis and progression of SMZL and are associated with a poor prognosis. PMID:22891276

  19. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma.

    PubMed

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Betz, Bryan L; Zhao, Lili; Weigelin, Helmut G; Chiang, Mark Y; Huebner-Chan, David R; Bailey, Nathanael G; Yang, David T; Bhagat, Govind; Miranda, Roberto N; Bahler, David W; Medeiros, L Jeffrey; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2012-08-27

    Splenic marginal zone lymphoma (SMZL), the most common primary lymphoma of spleen, is poorly understood at the genetic level. In this study, using whole-genome DNA sequencing (WGS) and confirmation by Sanger sequencing, we observed mutations identified in several genes not previously known to be recurrently altered in SMZL. In particular, we identified recurrent somatic gain-of-function mutations in NOTCH2, a gene encoding a protein required for marginal zone B cell development, in 25 of 99 (?25%) cases of SMZL and in 1 of 19 (?5%) cases of nonsplenic MZLs. These mutations clustered near the C-terminal proline/glutamate/serine/threonine (PEST)-rich domain, resulting in protein truncation or, rarely, were nonsynonymous substitutions affecting the extracellular heterodimerization domain (HD). NOTCH2 mutations were not present in other B cell lymphomas and leukemias, such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; n = 15), mantle cell lymphoma (MCL; n = 15), low-grade follicular lymphoma (FL; n = 44), hairy cell leukemia (HCL; n = 15), and reactive lymphoid hyperplasia (n = 14). NOTCH2 mutations were associated with adverse clinical outcomes (relapse, histological transformation, and/or death) among SMZL patients (P = 0.002). These results suggest that NOTCH2 mutations play a role in the pathogenesis and progression of SMZL and are associated with a poor prognosis. PMID:22891276

  20. Exome sequencing identifies GRIN2A as frequently mutated in melanoma.

    PubMed

    Wei, Xiaomu; Walia, Vijay; Lin, Jimmy C; Teer, Jamie K; Prickett, Todd D; Gartner, Jared; Davis, Sean; Stemke-Hale, Katherine; Davies, Michael A; Gershenwald, Jeffrey E; Robinson, William; Robinson, Steven; Rosenberg, Steven A; Samuels, Yardena

    2011-05-01

    The incidence of melanoma is increasing more than any other cancer, and knowledge of its genetic alterations is limited. To systematically analyze such alterations, we performed whole-exome sequencing of 14 matched normal and metastatic tumor DNAs. Using stringent criteria, we identified 68 genes that appeared to be somatically mutated at elevated frequency, many of which are not known to be genetically altered in tumors. Most importantly, we discovered that TRRAP harbored a recurrent mutation that clustered in one position (p. Ser722Phe) in 6 out of 167 affected individuals (?4%), as well as a previously unidentified gene, GRIN2A, which was mutated in 33% of melanoma samples. The nature, pattern and functional evaluation of the TRRAP recurrent mutation suggest that TRRAP functions as an oncogene. Our study provides, to our knowledge, the most comprehensive map of genetic alterations in melanoma to date and suggests that the glutamate signaling pathway is involved in this disease. PMID:21499247

  1. Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients

    PubMed Central

    2011-01-01

    Background Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2). We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH. Methods A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay. Results Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6%) chromosomes. The most frequent mutation was I2 splice (27%) followed by Ile173Asn (26%), Arg 357 Trp (19%), Gln319stop, 16% and Leu308InsT (12%), whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state. Conclusion Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined. PMID:21329531

  2. Characterization of three XPG-defective patients identifies three missense mutations that impair repair and transcription.

    PubMed

    Schäfer, Annika; Schubert, Steffen; Gratchev, Alexei; Seebode, Christina; Apel, Antje; Laspe, Petra; Hofmann, Lars; Ohlenbusch, Andreas; Mori, Toshio; Kobayashi, Nobuhiko; Schürer, Anke; Schön, Michael P; Emmert, Steffen

    2013-07-01

    Only 16 XPG-defective patients with 20 different mutations have been described. The current hypothesis is that missense mutations impair repair (xeroderma pigmentosum (XP) symptoms), whereas truncating mutations impair both repair and transcription (XP and Cockayne syndrome (CS) symptoms). We identified three cell lines of XPG-defective patients (XP40GO, XP72MA, and XP165MA). Patients' fibroblasts showed a reduced post-UVC cell survival. The reduced repair capability, assessed by host cell reactivation, could be complemented by XPG cDNA. XPG mRNA expression of XP165MA, XP72MA, and XP40GO was 83%, 97%, and 82.5%, respectively, compared with normal fibroblasts. XP165MA was homozygous for a p.G805R mutation; XP72MA and XP40GO were both compound heterozygous (p.W814S and p.E727X, and p.L778P and p.Q150X, respectively). Allele-specific complementation analysis of these five mutations revealed that p.L778P and p.W814S retained considerable residual repair activity. In line with the severe XP/CS phenotypes of XP72MA and XP165MA, even the missense mutations failed to interact with the transcription factor IIH subunits XPD and to some extent cdk7 in coimmunoprecipitation assays. Immunofluorescence techniques revealed that the mutations destabilized early recruitment of XP proteins to localized photodamage and delayed their redistribution in vivo. Thus, we identified three XPG missense mutations in the I-region of XPG that impaired repair and transcription and resulted in severe XP/CS. PMID:23370536

  3. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.

    PubMed

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric; Alexandrov, Ludmil B; Calderaro, Julien; Rebouissou, Sandra; Couchy, Gabrielle; Meiller, Clément; Shinde, Jayendra; Soysouvanh, Frederic; Calatayud, Anna-Line; Pinyol, Roser; Pelletier, Laura; Balabaud, Charles; Laurent, Alexis; Blanc, Jean-Frederic; Mazzaferro, Vincenzo; Calvo, Fabien; Villanueva, Augusto; Nault, Jean-Charles; Bioulac-Sage, Paulette; Stratton, Michael R; Llovet, Josep M; Zucman-Rossi, Jessica

    2015-05-01

    Genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. Analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereas FGF3, FGF4, FGF19 or CCND1 amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)-approved drugs. In conclusion, we identified risk factor-specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy. PMID:25822088

  4. Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity

    E-print Network

    Málaga, Universidad de

    Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid to intracellular abscisic acid (ABA) and this decreased ABA sensitivity of tos1 is a basic cellular trait expressed for osmotic tolerance. Keywords: abscisic acid, osmotic stress, tos1 mutant, tss2 mutant. Introduction Osmotic

  5. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  6. Mudi, a web tool for identifying mutations by bioinformatics analysis of whole-genome sequence.

    PubMed

    Iida, Naoko; Yamao, Fumiaki; Nakamura, Yasukazu; Iida, Tetsushi

    2014-06-01

    In forward genetics, identification of mutations is a time-consuming and laborious process. Modern whole-genome sequencing, coupled with bioinformatics analysis, has enabled fast and cost-effective mutation identification. However, for many experimental researchers, bioinformatics analysis is still a difficult aspect of whole-genome sequencing. To address this issue, we developed a browser-accessible and easy-to-use bioinformatics tool called Mutation discovery (Mudi; http://naoii.nig.ac.jp/mudi_top.html), which enables 'one-click' identification of causative mutations from whole-genome sequence data. In this study, we optimized Mudi for pooled-linkage analysis aimed at identifying mutants in yeast model systems. After raw sequencing data are uploaded, Mudi performs sequential analysis, including mapping, detection of variant alleles, filtering and removal of background polymorphisms, prioritization, and annotation. In an example study of suppressor mutants of ptr1-1 in the fission yeast Schizosaccharomyces pombe, pooled-linkage analysis with Mudi identified mip1(+) , a component of Target of Rapamycin Complex 1 (TORC1), as a novel component involved in RNA interference (RNAi)-related cell-cycle control. The accessibility of Mudi will accelerate systematic mutation analysis in forward genetics. PMID:24766403

  7. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia.

    PubMed

    Malcovati, Luca; Papaemmanuil, Elli; Ambaglio, Ilaria; Elena, Chiara; Gallě, Anna; Della Porta, Matteo G; Travaglino, Erica; Pietra, Daniela; Pascutto, Cristiana; Ubezio, Marta; Bono, Elisa; Da Viŕ, Matteo C; Brisci, Angela; Bruno, Francesca; Cremonesi, Laura; Ferrari, Maurizio; Boveri, Emanuela; Invernizzi, Rosangela; Campbell, Peter J; Cazzola, Mario

    2014-08-28

    Our knowledge of the genetic basis of myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) has considerably improved. To define genotype/phenotype relationships of clinical relevance, we studied 308 patients with MDS, MDS/MPN, or acute myeloid leukemia evolving from MDS. Unsupervised statistical analysis, including the World Health Organization classification criteria and somatic mutations, showed that MDS associated with SF3B1-mutation (51 of 245 patients, 20.8%) is a distinct nosologic entity irrespective of current morphologic classification criteria. Conversely, MDS with ring sideroblasts with nonmutated SF3B1 segregated in different clusters with other MDS subtypes. Mutations of genes involved in DNA methylation, splicing factors other than SF3B1, and genes of the RAS pathway and cohesin complex were independently associated with multilineage dysplasia and identified a distinct subset (51 of 245 patients, 20.8%). No recurrent mutation pattern correlated with unilineage dysplasia without ring sideroblasts. Irrespective of driver somatic mutations, a threshold of 5% bone marrow blasts retained a significant discriminant value for identifying cases with clonal evolution. Comutation of TET2 and SRSF2 was highly predictive of a myeloid neoplasm characterized by myelodysplasia and monocytosis, including but not limited to, chronic myelomonocytic leukemia. These results serve as a proof of concept that a molecular classification of myeloid neoplasms is feasible. PMID:24970933

  8. Screening of 38 genes identifies mutations in 62% of families with nonsyndromic deafness in Turkey.

    PubMed

    Duman, Duygu; Sirmaci, Asli; Cengiz, F Basak; Ozdag, Hilal; Tekin, Mustafa

    2011-01-01

    More than 60% of prelingual deafness is genetic in origin, and of these up to 95% are monogenic autosomal recessive traits. Causal mutations have been identified in 1 of 38 different genes in a subset of patients with nonsyndromic autosomal recessive deafness. In this study, we screened 49 unrelated Turkish families with at least three affected children born to consanguineous parents. Probands from all families were negative for mutations in the GJB2 gene, two large deletions in the GJB6 gene, and the 1555A>G substitution in the mitochondrial DNA MTRNR1 gene. Each family was subsequently screened via autozygosity mapping with genomewide single-nucleotide polymorphism arrays. If the phenotype cosegregated with a haplotype flanking one of the 38 genes, mutation analysis of the gene was performed. We identified 22 different autozygous mutations in 11 genes, other than GJB2, in 26 of 49 families, which overall explains deafness in 62% of families. Relative frequencies of genes following GJB2 were MYO15A (9.9%), TMIE (6.6%), TMC1 (6.6%), OTOF (5.0%), CDH23 (3.3%), MYO7A (3.3%), SLC26A4 (1.7%), PCDH15 (1.7%), LRTOMT (1.7%), SERPINB6 (1.7%), and TMPRSS3 (1.7%). Nineteen of 22 mutations are reported for the first time in this study. Unknown rare genes for deafness appear to be present in the remaining 23 families. PMID:21117948

  9. A novel FBN1 heterozygous mutation identified in a Chinese family with autosomal dominant Marfan syndrome.

    PubMed

    Yin, Y; Liu, X-H; Li, X-H; Fan, N; Lei, D-F; Wang, Y; Cai, S-P; Zhou, X-M; Chen, X-M; Liu, X-Y

    2015-01-01

    The purpose of this study was to identify the clinical features and mutations in the fibrillin-1 gene (FBN1) in a large Chinese family with autosomal dominant Marfan syndrome (MFS). Seventeen members from a Chinese family of 4 generations were included in the study. All members underwent complete ophthalmic examination. Molecular genetic analysis was performed on all subjects. All exons of FBN1 were amplified by polymerase chain reaction, sequenced, and the sequences were compared with a reference database. Variations were evaluated in family members as well as 100 normal controls. Changes in structure and function of the protein induced by amino acid variation were predicted by bioinformatic analysis. Ectopia lentis, dolichostenomelia, arachnodactyly, and tall stature were present in all patients diagnosed with MFS. The novel heterozygous missense mutation c.2243 T>G (p.C781W) in exon 19 of FBN1 was identified in all 5 patients, but not in other family members or 100 normal controls. This mutation caused an amino acid substitution of cysteine to tryptophan at position 781 (p.C781W) of the FBN1 protein. This mutation occurred in a highly conserved region and may cause structural and functional changes in the protein according to our bioinformatic analysis. Our results suggest that the novel mutation C781W of FBN1 is responsible for the pathogenesis of MFS in this pedigree. PMID:25966184

  10. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma.

    PubMed

    Comino-Méndez, Ińaki; Gracia-Aznárez, Francisco J; Schiavi, Francesca; Landa, Ińigo; Leandro-García, Luis J; Letón, Rocío; Honrado, Emiliano; Ramos-Medina, Rocío; Caronia, Daniela; Pita, Guillermo; Gómez-Grańa, Alvaro; de Cubas, Aguirre A; Inglada-Pérez, Lucía; Maliszewska, Agnieszka; Taschin, Elisa; Bobisse, Sara; Pica, Giuseppe; Loli, Paola; Hernández-Lavado, Rafael; Díaz, José A; Gómez-Morales, Mercedes; González-Neira, Anna; Roncador, Giovanna; Rodríguez-Antona, Cristina; Benítez, Javier; Mannelli, Massimo; Opocher, Giuseppe; Robledo, Mercedes; Cascón, Alberto

    2011-07-01

    Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential. PMID:21685915

  11. Exome sequencing circumvents missing clinical data and identifies a BSCL2 mutation in congenital lipodystrophy

    PubMed Central

    2014-01-01

    Background Exome sequencing has become more and more affordable and the technique has emerged as an important diagnostic tool for monogenic disorders at early stages of investigations, in particular when clinical information is limited or unspecific as well as in cases of genetic heterogeneity. Methods We identified a consanguineous Pakistani family segregating an autosomal recessive phenotype characterized by muscular hypertrophy, mild mental retardation and skeletal abnormalities. The available clinical information was incomplete and we applied whole exome sequencing in an affected family member for the identification of candidate gene variants. Results Exome sequencing identified a previously unreported homozygous mutation in the acceptor splice site of intron 5 in the BSCL2 gene (c.574-2A?>?G). Expression analysis revealed that the mutation was associated with skipping of exon 6. BSCL2 mutations are associated with Berardinelli-Seip congenital lipodystrophy and a clinical re-evaluation of affected individuals confirmed the diagnosis. Conclusions Exome sequencing is a powerful technique for the identification of candidate gene variants in Mendelian traits. We applied this technique on a single individual affected by a likely autosomal recessive disorder without access to complete clinical details. A homozygous and truncating mutation was identified in the BSCL2 gene suggesting congenital generalized lipodystrophy. Incomplete phenotypic delineations are frequent limiting factors in search for a diagnosis and may lead to inappropriate care and follow-up. Our study exemplifies exome sequencing as a powerful diagnostic tool in Mendelian disorders that may complement missing clinical information and accelerate clinical diagnosis. PMID:24961962

  12. First identified Korean family with Sotos syndrome caused by a novel intragenic mutation in NSD1.

    PubMed

    Park, So Hyun; Lee, Ji Eun; Sohn, Young Bae; Ko, Jung Min

    2014-01-01

    Sotos syndrome (SS) is a congenital overgrowth syndrome. NSD1 mutations are identifiable in most SS patients. There have been a few reports of familial inheritance of SS worldwide, but no familial cases have been reported in Korea. A 6-month-old girl had tall stature and macrocephaly with mild ventricular enlargement, and showed mild delay in motor and language development. Her mother also had tall stature and a long narrow face. The baby and her mother were suspected of having familial SS. Chromosome 5q35 microdeletion was first ruled out by fluorescence in situ hybridization analysis, and direct sequencing of NSD1 revealed a novel heterozygous mutation in exon 22 (c.6356delA; p.Asp2119Valfs*31). This report describes, for the first time, a Korean family with two generations of SS resulting from a novel intragenic NSD1 mutation. PMID:24795065

  13. Exome sequencing to identify de novo mutations in sporadic ALS trios

    PubMed Central

    Chesi, Alessandra; Staahl, Brett T.; Jovicic, Ana; Couthouis, Julien; Fasolino, Maria; Raphael, Alya R.; Yamazaki, Tomohiro; Elias, Laura; Polak, Meraida; Kelly, Crystal; Williams, Kelly L.; Fifita, Jennifer A.; Maragakis, Nicholas J.; Nicholson, Garth A.; King, Oliver D.; Reed, Robin; Crabtree, Gerald R.; Blair, Ian P.; Glass, Jonathan D.; Gitler, Aaron D.

    2013-01-01

    ALS is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic risk factors, here we assess the role of de novo mutations in ALS by sequencing the exomes of 47 ALS patients and both of their unaffected parents (n=141 exomes). We found that amino acid-altering de novo mutations are enriched in genes encoding chromatin regulators, including the neuronal chromatin remodeling complex component SS18L1/CREST. CREST mutations inhibit activity-dependent neurite outgrowth in primary neurons, and CREST associates with the ALS protein FUS. These findings expand our understanding of the ALS genetic landscape and provide a resource for future studies into the pathogenic mechanisms contributing to sporadic ALS. PMID:23708140

  14. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  15. Targeted next generation sequencing identifies clinically actionable mutations in patients with melanoma.

    PubMed

    Jeck, William R; Parker, Joel; Carson, Craig C; Shields, Janiel M; Sambade, Maria J; Peters, Eldon C; Burd, Christin E; Thomas, Nancy E; Chiang, Derek Y; Liu, Wenjin; Eberhard, David A; Ollila, David; Grilley-Olson, Juneko; Moschos, Stergios; Neil Hayes, D; Sharpless, Norman E

    2014-07-01

    Somatic sequencing of cancers has produced new insight into tumorigenesis, tumor heterogeneity, and disease progression, but the vast majority of genetic events identified are of indeterminate clinical significance. Here, we describe a NextGen sequencing approach to fully analyzing 248 genes, including all those of known clinical significance in melanoma. This strategy features solution capture of DNA followed by multiplexed, high-throughput sequencing and was evaluated in 31 melanoma cell lines and 18 tumor tissues from patients with metastatic melanoma. Mutations in melanoma cell lines correlated with their sensitivity to corresponding small molecule inhibitors, confirming, for example, lapatinib sensitivity in ERBB4 mutant lines and identifying a novel activating mutation of BRAF. The latter event would not have been identified by clinical sequencing and was associated with responsiveness to a BRAF kinase inhibitor. This approach identified focal copy number changes of PTEN not found by standard methods, such as comparative genomic hybridization (CGH). Actionable mutations were found in 89% of the tumor tissues analyzed, 56% of which would not be identified by standard-of-care approaches. This work shows that targeted sequencing is an attractive approach for clinical use in melanoma. PMID:24628946

  16. Targeted Next Generation Sequencing Identifies Clinically Actionable Mutations in Patients with Melanoma

    PubMed Central

    Jeck, William R.; Parker, Joel; Carson, Craig C.; Shields, Janiel M.; Sambade, Maria J.; Peters, Eldon C.; Burd, Christin E.; Thomas, Nancy E.; Chiang, Derek Y.; Liu, Wenjin; Eberhard, David A.; Ollila, David; Grilley-Olson, Juneko; Moschos, Stergios; Hayes, D. Neil; Sharpless, Norman E.

    2014-01-01

    Somatic sequencing of cancers has produced new insight into tumorigenesis, tumor heterogeneity, and disease progression, but the vast majority of genetic events identified are of indeterminate clinical significance. Here we describe a NextGen sequencing approach to fully analyze 248 genes, including all those of known clinical significance in melanoma. This strategy features solution capture of DNA followed by multiplexed, high-throughput sequencing, and was evaluated in 31 melanoma cell lines and 18 tumor tissues from patients with metastatic melanoma. Mutations in melanoma cell lines correlated with their sensitivity to corresponding small molecule inhibitors, confirming, for example, lapatinib sensitivity in ERBB4 mutant lines and identifying a novel activating mutation of BRAF. The latter event would not have been identified by clinical sequencing and was associated with responsiveness to a BRAF kinase inhibitor. This approach identified focal copy number changes of PTEN not found by standard methods, such as comparative genomic hybridization (CGH). Actionable mutations were found in 89% of the tumor tissues analyzed, 56% of which would not be identified by standard-of-care approaches. This work shows that targeted sequencing is an attractive approach for clinical use in melanoma. PMID:24628946

  17. New de novo Genetic Mutations in Schizophrenia Identified http://scicasts.com/bio/2039-disease-processes/4882-new-de-novo-genetic-mutations-in-schizophrenia-identified[11/12/2012 12:43:09 PM

    E-print Network

    performed whole-exome sequencing on 231 patient "trios" from the United States and South Africa. Each trioNew de novo Genetic Mutations in Schizophrenia Identified http://scicasts.com/bio/2039-disease-processes/4882-new-de-novo-genetic-mutations-in-schizophrenia-identified[11/12/2012 12:43:09 PM] Image: Dr. Bin

  18. New de novo genetic mutations in schizophrenia identified -Mental Wellness Today http://www.mentalwellnesstoday.com/...hizophrenia/schizophrenia-articles/16-shizophrenia-research/194-new-de-novo-genetic-mutations-in-schizophrenia-identified[10/10/2012 4:3

    E-print Network

    New de novo genetic mutations in schizophrenia identified - Mental Wellness Today http://www.mentalwellnesstoday.com/...hizophrenia/schizophrenia-articles/16-shizophrenia-research/194-new-de-novo-genetic-mutations-in-schizophrenia-identified[10/10/2012 4 Articles Heart attack more likely in those with schizophrenia: Study Faith Can Help Mental Health Outcomes

  19. Mutations of ANK3 identified by exome sequencing are associated with autism susceptibility.

    PubMed

    Bi, Cheng; Wu, Jinyu; Jiang, Tao; Liu, Qi; Cai, Wanshi; Yu, Ping; Cai, Tao; Zhao, Mei; Jiang, Yong-hui; Sun, Zhong Sheng

    2012-12-01

    Autism spectrum disorders (ASDs) are common neurodevelopmental disorders with a strong genetic etiology. However, due to the extreme genetic heterogeneity of ASDs, traditional approaches for gene discovery are challenging. Next-generation sequencing technologies offer an opportunity to accelerate the identification of the genetic causes of ASDs. Here, we report the results of whole-exome sequence in a cohort of 20 ASD patients. By extensive bioinformatic analysis, we identified novel mutations in seven genes that are implicated in synaptic function and neurodevelopment. After sequencing an additional 47 ASD samples, we identified three different missense mutations in ANK3 in four unrelated ASD patients, one of which, c.4705T>G (p.S1569A), is a de novo mutation. Given the fact that ANK3 has been shown to strongly associate with schizophrenia and bipolar disorder, our findings support an association between ANK3 mutations and ASD susceptibility and imply a shared molecular pathophysiology between ASDs and other neuropsychiatric disorders. PMID:22865819

  20. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor

    Cancer.gov

    Published on Office of Cancer Genomics (https://ocg.cancer.gov) Home > TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing

  1. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor

    Cancer.gov

    Published on Office of Cancer Genomics (http://ocg.cancer.gov) Home > TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing

  2. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer

    PubMed Central

    Barbieri, Christopher E.; Baca, Sylvan C.; Lawrence, Michael S.; Demichelis, Francesca; Blattner, Mirjam; Theurillat, Jean-Philippe; White, Thomas A.; Stojanov, Petar; Van Allen, Eliezer; Stransky, Nicolas; Nickerson, Elizabeth; Chae, Sung-Suk; Boysen, Gunther; Auclair, Daniel; Onofrio, Robert; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y.; Sheikh, Karen; Vuong, Terry; Guiducci, Candace; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L.; Saksena, Gordon; Voet, Douglas; Hussain, Wasay M.; Ramos, Alex H.; Winckler, Wendy; Redman, Michelle C.; Ardlie, Kristin; Tewari, Ashutosh K.; Mosquera, Juan Miguel; Rupp, Niels; Wild, Peter J.; Moch, Holger; Morrissey, Colm; Nelson, Peter S.; Kantoff, Philip W.; Gabriel, Stacey B.; Golub, Todd R.; Meyerson, Matthew; Lander, Eric S.; Getz, Gad; Rubin, Mark A.; Garraway, Levi A.

    2013-01-01

    Prostate cancer is the second most common cancer in men worldwide and causes over 250,000 deaths each year1. Overtreatment of indolent disease also results in significant morbidity2. Common genetic alterations in prostate cancer include losses of NKX3.1 (8p21)3,4 and PTEN (10q23)5,6, gains of the androgen receptor gene (AR)7,8 and fusion of ETS-family transcription factor genes with androgen-responsive promoters9–11. Recurrent somatic base-pair substitutions are believed to be less contributory in prostate tumorigenesis12,13 but have not been systematically analyzed in large cohorts. Here we sequenced the exomes of 112 prostate tumor/normal pairs. Novel recurrent mutations were identified in multiple genes, including MED12 and FOXA1. SPOP was the most frequently mutated gene, with mutations involving the SPOP substrate binding cleft in 6–15% of tumors across multiple independent cohorts. SPOP-mutant prostate cancers lacked ETS rearrangements and exhibited a distinct pattern of genomic alterations. Thus, SPOP mutations may define a new molecular subtype of prostate cancer. PMID:22610119

  3. A novel missense NMNAT1 mutation identified in a consanguineous family with Leber congenital amaurosis by targeted next generation sequencing.

    PubMed

    Deng, Ying; Huang, Hui; Wang, Yanping; Liu, Zhen; Li, Nana; Chen, Yanhua; Li, Xin; Li, Mingrong; Zhou, Xiaobo; Mu, Dezhi; Zhong, Jing; Wu, Jing; Su, Yan; Yi, Xin; Zhu, Jun

    2015-09-10

    Leber congenital amaurosis is the earliest onset and most severe inherited retinal dystrophy. Mutations in 21 genes have been identified to be responsible for LCA. To detect the causative variants, we performed targeted next generation sequencing in two affected siblings of a consanguineous Chinese family with suspected LCA. A novel homozygous missense mutation (c.721C>T, p. Pro241Ser) of NMNAT1 has been identified. The mutation was inherited from their consanguineous parents who were heterozygous and was absent in 300 unrelated healthy individuals. NMNAT1, which encodes the nicotinamide mononucleotide adenylyltransferase 1, has been recently identified to be one of the LCA-causing genes. Our results expanded the spectrum of mutations in NMNAT1. In this study, targeted next generation sequencing provides an accurate and efficient method for identifying mutations in hereditary diseases with highly genetic and clinical heterogeneity. PMID:25988908

  4. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations

    PubMed Central

    Brastianos, Priscilla K.; Horowitz, Peleg M.; Santagata, Sandro; Jones, Robert T.; McKenna, Aaron; Getz, Gad; Ligon, Keith L.; Palescandolo, Emanuele; Van Hummelen, Paul; Ducar, Matthew D.; Raza, Alina; Sunkavalli, Ashwini; MacConaill, Laura E.; Stemmer-Rachamimov, Anat O.; Louis, David N.; Hahn, William C.; Dunn, Ian F.; Beroukhim, Rameen

    2013-01-01

    Meningiomas are the most common primary nervous system tumor. The tumor suppressor NF2 is disrupted in approximately half of meningiomas1 but the complete spectrum of genetic changes remains undefined. We performed whole-genome or whole-exome sequencing on 17 meningiomas and focused sequencing on an additional 48 tumors to identify and validate somatic genetic alterations. Most meningiomas exhibited simple genomes, with fewer mutations, rearrangements, and copy-number alterations than reported in other adult tumors. However, several meningiomas harbored more complex patterns of copy-number changes and rearrangements including one tumor with chromothripsis. We confirmed focal NF2 inactivation in 43% of tumors and found alterations in epigenetic modifiers among an additional 8% of tumors. A subset of meningiomas lacking NF2 alterations harbored recurrent oncogenic mutations in AKT1 (E17K) and SMO (W535L) and exhibited immunohistochemical evidence of activation of their pathways. These mutations were present in therapeutically challenging tumors of the skull base and higher grade. These results begin to define the spectrum of genetic alterations in meningiomas and identify potential therapeutic targets. PMID:23334667

  5. Whole Exome Sequencing Identifies Three Novel Mutations in ANTXR1 in Families with GAPO Syndrome

    PubMed Central

    Bayram, Yavuz; Pehlivan, Davut; Karaca, Ender; Gambin, Tomasz; Jhangiani, Shalini N.; Erdin, Serkan; Gonzaga-Jauregui, Claudia; Wiszniewski, Wojciech; Muzny, Donna; Elcioglu, Nursel H.; Yildirim, M. Selman; Bozkurt, Banu; Zamani, Ayse Gul; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.

    2015-01-01

    GAPO syndrome (OMIM#230740) is the acronym for growth retardation, alopecia, pseudoanodontia, and optic atrophy. About 35 cases have been reported, making it among one of the rarest recessive conditions. Distinctive craniofacial features including alopecia, rarefaction of eyebrows and eyelashes, frontal bossing, high forehead, mid-facial hypoplasia, hypertelorism, and thickened eyelids and lips make GAPO syndrome a clinically recognizable phenotype. While this genomic study was in progress mutations in ANTXR1 were reported to cause GAPO syndrome. In our study we performed whole exome sequencing (WES) for five affected individuals from three Turkish kindreds segregating the GAPO trait. Exome sequencing analysis identified three novel homozygous mutations including; one frame-shift (c.1220_1221insT; p.Ala408Cysfs*2), one splice site (c.411A>G; p.Gln137Gln), and one non-synonymous (c.1150G>A; p.Gly384Ser) mutation in the ANTXR1 gene. Our studies expand the allelic spectrum in this rare condition and potentially provide insight into the role of ANTXR1 in the regulation of the extracellular matrix. PMID:25045128

  6. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome

    PubMed Central

    Roosing, Susanne; Hofree, Matan; Kim, Sehyun; Scott, Eric; Copeland, Brett; Romani, Marta; Silhavy, Jennifer L; Rosti, Rasim O; Schroth, Jana; Mazza, Tommaso; Miccinilli, Elide; Zaki, Maha S; Swoboda, Kathryn J; Milisa-Drautz, Joanne; Dobyns, William B; Mikati, Mohamed A; ?ncecik, Faruk; Azam, Matloob; Borgatti, Renato; Romaniello, Romina; Boustany, Rose-Mary; Clericuzio, Carol L; D'Arrigo, Stefano; Strřmme, Petter; Boltshauser, Eugen; Stanzial, Franco; Mirabelli-Badenier, Marisol; Moroni, Isabella; Bertini, Enrico; Emma, Francesco; Steinlin, Maja; Hildebrandt, Friedhelm; Johnson, Colin A; Freilinger, Michael; Vaux, Keith K; Gabriel, Stacey B; Aza-Blanc, Pedro; Heynen-Genel, Susanne; Ideker, Trey; Dynlacht, Brian D; Lee, Ji Eun; Valente, Enza Maria; Kim, Joon; Gleeson, Joseph G

    2015-01-01

    Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. DOI: http://dx.doi.org/10.7554/eLife.06602.001 PMID:26026149

  7. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome.

    PubMed

    Roosing, Susanne; Hofree, Matan; Kim, Sehyun; Scott, Eric; Copeland, Brett; Romani, Marta; Silhavy, Jennifer L; Rosti, Rasim O; Schroth, Jana; Mazza, Tommaso; Miccinilli, Elide; Zaki, Maha S; Swoboda, Kathryn J; Milisa-Drautz, Joanne; Dobyns, William B; Mikati, Mohamed A; ?ncecik, Faruk; Azam, Matloob; Borgatti, Renato; Romaniello, Romina; Boustany, Rose-Mary; Clericuzio, Carol L; D'Arrigo, Stefano; Strřmme, Petter; Boltshauser, Eugen; Stanzial, Franco; Mirabelli-Badenier, Marisol; Moroni, Isabella; Bertini, Enrico; Emma, Francesco; Steinlin, Maja; Hildebrandt, Friedhelm; Johnson, Colin A; Freilinger, Michael; Vaux, Keith K; Gabriel, Stacey B; Aza-Blanc, Pedro; Heynen-Genel, Susanne; Ideker, Trey; Dynlacht, Brian D; Lee, Ji Eun; Valente, Enza Maria; Kim, Joon; Gleeson, Joseph G

    2015-01-01

    Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. PMID:26026149

  8. Carrier and prenatal diagnostic strategy and newly identified mutations in Hungarian haemophilia A and B families.

    PubMed

    Bors, András; Andrikovics, Hajnalka; Illés, Zsuzsanna; Jáger, Rita; Kardos, Mária; Marosi, Anikó; Nemes, László; Tordai, Attila

    2015-03-01

    Deficiencies of blood coagulation factors VIII and IX (haemophilia A and haemophilia B) represent the most common inherited bleeding disorders with a wide range of causative mutations. Carrier and prenatal diagnostics are preferably performed by direct mutation detection; however, in certain situations, indirect family studies may also be useful. We aimed to utilize a combination of direct and indirect techniques for carrier and prenatal diagnostics in both haemophilias in a single national centre. Two hundred and eleven haemophilia A families were investigated by screening for inversions of introns 1 and 22, and by family studies using polymorphic markers. Twenty-eight haemophilia A and 39 haemophilia B families were investigated by Sanger-sequencing of the coding regions. Among severe haemophilia A families, frequencies of intron 22 and 1 inversions were 82 out of 145 (57%) and two out of 145 (1.4%). Sequencing of the entire coding region of the respective factor gene was performed and 12 (haemophilia A) and 5 (haemophilia B) previously unpublished disease-causing mutations were identified. For genetic markers used for haemophilia A indirect family testing, heterozygosity rates varied between 137 out of 327 [42% intragenic BclI restriction fragment length polymorphism (RFLP], 168 out of 254 (66% intragenic F8Civs13CA) and 202 out of 261 (77% extragenic DXS15CA) with a combined rate of 92% (intragenic markers) and 97% (all three markers). For male fetuses, prenatal diagnostics was provided to 43 haemophilia A families (n?=?22 with direct mutation detection and n?=?21 by indirect family testing) and to three haemophilia B families. The combination of direct and indirect molecular genetics approaches is a successful and cost-effective approach to provide carrier and prenatal diagnostics and risk assessment for inhibitor formation. PMID:25255241

  9. Exome sequencing identifies a REEP1 mutation involved in distal hereditary motor neuropathy type V.

    PubMed

    Beetz, Christian; Pieber, Thomas R; Hertel, Nicole; Schabhüttl, Maria; Fischer, Carina; Trajanoski, Slave; Graf, Elisabeth; Keiner, Silke; Kurth, Ingo; Wieland, Thomas; Varga, Rita-Eva; Timmerman, Vincent; Reilly, Mary M; Strom, Tim M; Auer-Grumbach, Michaela

    2012-07-13

    The distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of neurodegenerative disorders affecting the lower motoneuron. In a family with both autosomal-dominant dHMN and dHMN type V (dHMN/dHMN-V) present in three generations, we excluded mutations in all genes known to be associated with a dHMN phenotype through Sanger sequencing and defined three potential loci through linkage analysis. Whole-exome sequencing of two affected individuals revealed a single candidate variant within the linking regions, i.e., a splice-site alteration in REEP1 (c.304-2A>G). A minigene assay confirmed complete loss of splice-acceptor functionality and skipping of the in-frame exon 5. The resulting mRNA is predicted to be expressed at normal levels and to encode an internally shortened protein (p.102_139del). Loss-of-function REEP1 mutations have previously been identified in dominant hereditary spastic paraplegia (HSP), a disease associated with upper-motoneuron pathology. Consistent with our clinical-genetic data, we show that REEP1 is strongly expressed in the lower motoneurons as well. Upon exogeneous overexpression in cell lines we observe a subcellular localization defect for p.102_139del that differs from that observed for the known HSP-associated missense mutation c.59C>A (p.Ala20Glu). Moreover, we show that p.102_139del, but not p.Ala20Glu, recruits atlastin-1, i.e., one of the REEP1 binding partners, to the altered sites of localization. These data corroborate the loss-of-function nature of REEP1 mutations in HSP and suggest that a different mechanism applies in REEP1-associated dHMN. PMID:22703882

  10. Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079

  11. Zygotic Lethal Mutations with Maternal Effect Phenotypes in Drosophila Melanogaster. II. Loci on the Second and Third Chromosomes Identified by P-Element-Induced Mutations

    PubMed Central

    Perrimon, N.; Lanjuin, A.; Arnold, C.; Noll, E.

    1996-01-01

    Screens for zygotic lethal mutations that are associated with specific maternal effect lethal phenotypes have only been conducted for the X chromosome. To identify loci on the autosomes, which represent four-fifths of the Drosophila genome, we have used the autosomal ``FLP-DFS'' technique to screen a collection of 496 P element-induced mutations established by the Berkeley Drosophila Genome Project. We have identified 64 new loci whose gene products are required for proper egg formation or normal embryonic development. PMID:8978055

  12. Exome sequencing identifies titin mutations causing hereditary myopathy with early respiratory failure (HMERF) in families of diverse ethnic origins

    PubMed Central

    2013-01-01

    Background Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Methods Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. Results A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Conclusions Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. PMID:23514108

  13. Identifying Highly Penetrant Disease Causal Mutations Using Next Generation Sequencing: Guide to Whole Process

    PubMed Central

    Erzurumluoglu, A. Mesut; Shihab, Hashem A.; Baird, Denis; Richardson, Tom G.; Day, Ian N. M.; Gaunt, Tom R.

    2015-01-01

    Recent technological advances have created challenges for geneticists and a need to adapt to a wide range of new bioinformatics tools and an expanding wealth of publicly available data (e.g., mutation databases, and software). This wide range of methods and a diversity of file formats used in sequence analysis is a significant issue, with a considerable amount of time spent before anyone can even attempt to analyse the genetic basis of human disorders. Another point to consider that is although many possess “just enough” knowledge to analyse their data, they do not make full use of the tools and databases that are available and also do not fully understand how their data was created. The primary aim of this review is to document some of the key approaches and provide an analysis schema to make the analysis process more efficient and reliable in the context of discovering highly penetrant causal mutations/genes. This review will also compare the methods used to identify highly penetrant variants when data is obtained from consanguineous individuals as opposed to nonconsanguineous; and when Mendelian disorders are analysed as opposed to common-complex disorders. PMID:26106619

  14. Novel R634W c-kit mutation identified in familial mastocytosis.

    PubMed

    Pollard, Whitney L; Beachkofsky, Thomas M; Kobayashi, Todd T

    2015-01-01

    Familial mastocytosis is a well-documented but rare entity, with fewer than 100 cases reported in the literature. The etiology has most commonly been linked to activating c-kit mutations, with several mutations reported to date. We present a novel familial mastocytosis-associated c-kit mutation (R634W) in three siblings with urticaria pigmentosa. This mutation has been previously described in mucosal melanoma, chronic myelomonocytic leukemia, and acute myeloid leukemia. Because this is a rare mutation, it is unclear whether screening for other disease states associated with the mutation would be of benefit. PMID:25243845

  15. SysPIMP: the web-based systematical platform for identifying human disease-related mutated sequences from mass spectrometry.

    PubMed

    Xi, Hong; Park, Jongsun; Ding, Guohui; Lee, Yong-Hwan; Li, Yixue

    2009-01-01

    Some mutations resulting in protein sequence change might be tightly related to certain human diseases by affecting its roles, such as sickle cell anemia. Until now several databases, such as PMD, OMIM and HGMD, have been developed, providing useful information about human disease-related mutation. Tandem mass spectrometry (MS) has been used for characterizing proteins in various conditions; however, there is no system in place for finding disease-related mutated proteins within the MS results. Here, a Systematical Platform for Identifying Mutated Proteins (SysPIMP; http://pimp.starflr.info/) was developed to efficiently identify human disease-related mutated proteins within MS results. SysPIMP comprises of three layers: (i) a standardized data warehouse, (ii) a pipeline layer for maintaining human disease databases and X!Tandem and BLAST and (iii) a web-based interface. From OMIM AV part, PMD and SwissProt databases, 35,497 non-redundant human disease-related mutated sequences were collected with disease information described by OMIM terms. With the interfaces to browse sequences archived in SysPIMP, X!Tandem, an open source database-search engine used to identify proteins within MS data, was integrated into SysPIMP to help support the detection of potential human disease-related mutants in MS results. In addition, together with non-redundant disease-related mutated sequences, original non-mutated sequences are also provided in SysPIMP for comparative research. Based on this system, SysPIMP will be the platform for efficiently and intensively studying human diseases caused by mutation. PMID:19036792

  16. Whole-Exome Sequencing Identifies Mutated C12orf57 in Recessive Corpus Callosum Hypoplasia

    PubMed Central

    Akizu, Naiara; Shembesh, Nuri M.; Ben-Omran, Tawfeg; Bastaki, Laila; Al-Tawari, Asma; Zaki, Maha S.; Koul, Roshan; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; da Gente, Gilberto; Li, Jiang; Deardorff, Matthew A.; Conlin, Laura K.; Horton, Margaret A.; Zackai, Elaine H.; Sherr, Elliott H.; Gleeson, Joseph G.

    2013-01-01

    The corpus callosum is the principal cerebral commissure connecting the right and left hemispheres. The development of the corpus callosum is under tight genetic control, as demonstrated by abnormalities in its development in more than 1,000 genetic syndromes. We recruited more than 25 families in which members affected with corpus callosum hypoplasia (CCH) lacked syndromic features and had consanguineous parents, suggesting recessive causes. Exome sequence analysis identified C12orf57 mutations at the initiator methionine codon in four different families. C12orf57 is ubiquitously expressed and encodes a poorly annotated 126 amino acid protein of unknown function. This protein is without significant paralogs but has been tightly conserved across evolution. Our data suggest that this conserved gene is required for development of the human corpus callosum. PMID:23453666

  17. CEP290 Mutations Are Frequently Identified in the Oculo-Renal Form of Joubert Syndrome–Related Disorders

    PubMed Central

    Brancati, Francesco ; Barrano, Giuseppe ; Silhavy, Jennifer L. ; Marsh, Sarah E. ; Travaglini, Lorena ; Bielas, Stephanie L. ; Amorini, Maria ; Zablocka, Dominika ; Kayserili, Hulya ; Al-Gazali, Lihadh ; Bertini, Enrico ; Boltshauser, Eugen ; D’Hooghe, Marc ; Fazzi, Elisa ; Fenerci, Elif Y. ; Hennekam, Raoul C. M. ; Kiss, Andrea ; Lees, Melissa M. ; Marco, Elysa ; Phadke, Shubha R. ; Rigoli, Luciana ; Romano, Stephane ; Salpietro, Carmelo D. ; Sherr, Elliott H. ; Signorini, Sabrina ; Stromme, Petter ; Stuart, Bernard ; Sztriha, Laszlo ; Viskochil, David H. ; Yuksel, Adnan ; Dallapiccola, Bruno ; Valente, Enza Maria ; Gleeson, Joseph G. 

    2007-01-01

    Joubert syndrome–related disorders (JSRDs) are a group of clinically and genetically heterogeneous conditions that share a midbrain-hindbrain malformation, the molar tooth sign (MTS) visible on brain imaging, with variable neurological, ocular, and renal manifestations. Mutations in the CEP290 gene were recently identified in families with the MTS-related neurological features, many of which showed oculo-renal involvement typical of Senior-Löken syndrome (JSRD-SLS phenotype). Here, we performed comprehensive CEP290-mutation analysis on two nonoverlapping cohorts of JSRD-affected patients with a proven MTS. We identified mutations in 19 of 44 patients with JSRD-SLS. The second cohort consisted of 84 patients representing the spectrum of other JSRD subtypes, with mutations identified in only two patients. The data suggest that CEP290 mutations are frequently encountered and are largely specific to the JSRD-SLS subtype. One patient with mutation displayed complete situs inversus, confirming the clinical and genetic overlap between JSRDs and other ciliopathies. PMID:17564967

  18. Characterization of Novel MSX1 Mutations Identified in Japanese Patients with Nonsyndromic Tooth Agenesis

    PubMed Central

    Yamaguchi, Seishi; Machida, Junichiro; Kamamoto, Munefumi; Kimura, Masashi; Shibata, Akio; Tatematsu, Tadashi; Miyachi, Hitoshi; Higashi, Yujiro; Jezewski, Peter; Nakayama, Atsuo; Shimozato, Kazuo; Tokita, Yoshihito

    2014-01-01

    Since MSX1 and PAX9 are linked to the pathogenesis of nonsyndromic tooth agenesis, we performed detailed mutational analysis of these two genes sampled from Japanese patients. We identified two novel MSX1 variants with an amino acid substitution within the homeodomain; Thr174Ile (T174I) from a sporadic hypodontia case and Leu205Arg (L205R) from a familial oligodontia case. Both the Thr174 and Leu205 residues in the MSX1 homeodomain are highly conserved among different species. To define possible roles of mutations at these amino acids in the pathogenesis of nonsyndromic tooth agenesis, we performed several functional analyses. It has been demonstrated that MSX1 plays a pivotal role in hard tissue development as a suppressor for mesenchymal cell differentiation. To evaluate the suppression activity of the variants in mesenchymal cells, we used the myoD-promoter, which is one of convenient reporter assay system for MSX1. Although the gene products of these MSX1 variants are stable and capable of normal nuclear localization, they do not suppress myoD-promoter activity in differentiated C2C12 cells. To clarify the molecular mechanisms underlying our results, we performed further analyses including electrophoretic mobility shift assays, and co-immunoprecipitation assays to survey the molecular interactions between the mutant MSX1 proteins and the oligonucleotide DNA with MSX1 consensus binding motif or EZH2 methyltransferase. Since EZH2 is reported to interact with MSX1 and regulate MSX1 mediated gene suppression, we hypothesized that the T174I and L205R substitutions would impair this interaction. We conclude from the results of our experiments that the DNA binding ability of MSX1 is abolished by these two amino acid substitutions. This illustrates a causative role of the T174I and L205R MSX1 homeodomain mutations in tooth agenesis, and suggests that they may influence cell proliferation and differentiation resulting in lesser tooth germ formation in vivo. PMID:25101640

  19. Thiamine responsive megaloblastic anemia syndrome: A novel homozygous SLC19A2 gene mutation identified.

    PubMed

    Mikstiene, Violeta; Songailiene, Jurgita; Byckova, Jekaterina; Rutkauskiene, Giedre; Jasinskiene, Edita; Verkauskiene, Rasa; Lesinskas, Eugenijus; Utkus, Algirdas

    2015-07-01

    Thiamine responsive megaloblastic anemia syndrome (TRMAS) is a rare autosomal recessive disorder especially in countries where consanguinity is uncommon. Three main features are characteristic of the disease - megaloblastic anemia, early onset deafness, and non-type I diabetes. TRMAS is a Mendelian disorder; a gene SLC19A2 coding high affinity thiamine transporter mediating vitamin B1 uptake through cell membrane has been identified. We present the first patient with TRMAS in Lithuania - a 3-year-old boy born to a non-consanguineous family with a novel homozygous SLC19A2 gene mutation. The patient had insulin dependent diabetes (onset 11 months), respiratory illness (onset 11 months), bilateral profound hearing loss (onset at 7 months, verified at 20 months), refractory anemia (onset 2 years), and decreased vision acuity and photophobia (onset 2.5 years). The psychomotor abilities developed according to age. Phenotypic evaluation did not reveal any dysmorphic features. The clinical diagnosis of TRMAS was suspected and daily supplementation with thiamine 100?mg was started. The condition of the patient markedly improved several days after the initiation of treatment. The results of SLC19A2 gene molecular testing confirmed the clinical diagnosis - novel homozygous c.[205G>T], p.[(Val69Phe)] mutation changing conserved amino acid residue or even interfering the mRNA splicing. Clinical heterogeneity, diverse dynamics, and wide spectrum of symptoms are aggravating factors in the diagnosis. The possibility of treatment demands early recognition of disorder to facilitate the improvement of the patient's condition. © 2015 Wiley Periodicals, Inc. PMID:25707023

  20. Whole-exome sequencing identifies OR2W3 mutation as a cause of autosomal dominant retinitis pigmentosa.

    PubMed

    Ma, Xiangyu; Guan, Liping; Wu, Wei; Zhang, Yao; Zheng, Wei; Gao, Yu-Tang; Long, Jirong; Wu, Na; Wu, Long; Xiang, Ying; Xu, Bin; Shen, Miaozhong; Chen, Yanhua; Wang, Yuewen; Yin, Ye; Li, Yingrui; Xu, Haiwei; Xu, Xun; Li, Yafei

    2015-01-01

    Retinitis pigmentosa (RP), a heterogeneous group of inherited ocular diseases, is a genetic condition that causes retinal degeneration and eventual vision loss. Though some genes have been identified to be associated with RP, still a large part of the clinical cases could not be explained. Here we reported a four-generation Chinese family with RP, during which 6 from 9 members of the second generation affected the disease. To identify the genetic defect in this family, whole-exome sequencing together with validation analysis by Sanger sequencing were performed to find possible pathogenic mutations. After a pipeline of database filtering, including public databases and in-house databases, a novel missense mutation, c. 424 C > T transition (p.R142W) in OR2W3 gene, was identified as a potentially causative mutation for autosomal dominant RP. The mutation co-segregated with the disease phenotype over four generations. This mutation was validated in another independent three-generation family. RT-PCR analysis also identified that OR2W3 gene was expressed in HESC-RPE cell line. The results will not only enhance our current understanding of the genetic basis of RP, but also provide helpful clues for designing future studies to further investigate genetic factors for familial RP. PMID:25783483

  1. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO

    PubMed Central

    Evans, D; Eccles, D; Rahman, N; Young, K; Bulman, M; Amir, E; Shenton, A; Howell, A; Lalloo, F

    2004-01-01

    Methods: DNA samples from affected subjects from 422 non-Jewish families with a history of breast and/or ovarian cancer were screened for BRCA1 mutations and a subset of 318 was screened for BRCA2 by whole gene screening techniques. Using a combination of results from screening and the family history of mutation negative and positive kindreds, a simple scoring system (Manchester scoring system) was devised to predict pathogenic mutations and particularly to discriminate at the 10% likelihood level. A second separate dataset of 192 samples was subsequently used to test the model's predictive value. This was further validated on a third set of 258 samples and compared against existing models. Results: The scoring system includes a cut-off at 10 points for each gene. This equates to >10% probability of a pathogenic mutation in BRCA1 and BRCA2 individually. The Manchester scoring system had the best trade-off between sensitivity and specificity at 10% prediction for the presence of mutations as shown by its highest C-statistic and was far superior to BRCAPRO. Conclusion: The scoring system is useful in identifying mutations particularly in BRCA2. The algorithm may need modifying to include pathological data when calculating whether to screen for BRCA1 mutations. It is considerably less time-consuming for clinicians than using computer models and if implemented routinely in clinical practice will aid in selecting families most suitable for DNA sampling for diagnostic testing. PMID:15173236

  2. MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases with high disease activity.

    PubMed

    Schmidt, Janine; Federmann, Birgit; Schindler, Natalie; Steinhilber, Julia; Bonzheim, Irina; Fend, Falko; Quintanilla-Martinez, Leticia

    2015-06-01

    Recurrent mutations in MYD88 have been identified in >90% of lymphoplasmacytic lymphoma (LPL). Recently, WHIM (warts, hypogammaglobulinaemia, infections, myelokathexis) syndrome-like mutations in CXCR4 have been described in 28% of LPL cases, and seem to impact clinical presentation and response to therapy. We investigated the presence of the MYD88 L265P mutation in 90 decalcified, formalin-fixed, paraffin-embedded (FFPE) bone marrow (BM) biopsies, including 51 cases of LPL, 14 cases of B-cell chronic lymphocytic leukaemia (CLL), 13 cases of marginal zone lymphoma (MZL) and 12 normal controls. In addition, the C-terminal domain of CXCR4 was sequenced in LPL cases. MYD88 L265P was found in 49/51 (96%) LPL cases and in 1/13 (7·6%) MZL (splenic type), whereas all CLL samples remained negative. The two MYD88 wild type LPL cases were associated with cold agglutinin disease. Mutations in CXCR4 were detected in 17/47 (36·2%) LPL cases, which showed a higher extent of BM infiltration and lower leucocyte counts (P = 0·02), haemoglobin (P = 0·05) and platelet counts (P = 0·01). In conclusion the detection of MYD88 L265P mutation in FFPE samples is reliable and useful for subtyping small B-cell lymphomas in BM biopsies. In addition, the presence of CXCR4 mutations identifies a subgroup of LPL patients with higher disease activity. PMID:25819228

  3. Exome Sequencing Identified a Recessive RDH12 Mutation in a Family with Severe Early-Onset Retinitis Pigmentosa

    PubMed Central

    Gong, Bo; Wei, Bo; Huang, Lulin; Hao, Jilong; Li, Xiulan; Yang, Yin; Zhou, Yu; Hao, Fang; Cui, Zhihua; Zhang, Dingding; Wang, Le

    2015-01-01

    Retinitis pigmentosa (RP) is the most important hereditary retinal disease caused by progressive degeneration of the photoreceptor cells. This study is to identify gene mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in a Chinese family using next-generation sequencing technology. A Chinese family with 7 members including two individuals affected with severe early-onset RP was studied. All patients underwent a complete ophthalmic examination. Exome sequencing was performed on a single RP patient (the proband of this family) and direct Sanger sequencing on other family members and normal controls was followed to confirm the causal mutations. A homozygous mutation c.437Tidentified as being related to the phenotype of this arRP family. This homozygous mutation was detected in the two affected patients, but not present in other family members and 600 normal controls. Another three normal members in the family were found to carry this heterozygous missense mutation. Our results emphasize the importance of c.437Tmutation in the pathogenesis and clinical diagnosis of RP. PMID:26124963

  4. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations

    PubMed Central

    2011-01-01

    The recent publication of the draft genome sequences of the Neanderthal and a ~50,000-year-old archaic hominin from Denisova Cave in southern Siberia has ushered in a new age in molecular archaeology. We previously cross-compared the human, chimpanzee and Neanderthal genome sequences with respect to a set of disease-causing/disease-associated missense and regulatory mutations (Human Gene Mutation Database) and succeeded in identifying genetic variants which, although apparently pathogenic in humans, may represent a 'compensated' wild-type state in at least one of the other two species. Here, in an attempt to identify further 'potentially compensated mutations' (PCMs) of interest, we have compared our dataset of disease-causing/disease-associated mutations with their corresponding nucleotide positions in the Denisovan hominin, Neanderthal and chimpanzee genomes. Of the 15 human putatively disease-causing mutations that were found to be compensated in chimpanzee, Denisovan or Neanderthal, only a solitary F5 variant (Val1736Met) was specific to the Denisovan. In humans, this missense mutation is associated with activated protein C resistance and an increased risk of thromboembolism and recurrent miscarriage. It is unclear at this juncture whether this variant was indeed a PCM in the Denisovan or whether it could instead have been associated with disease in this ancient hominin. PMID:21807602

  5. Exome Sequencing Identifies a Mutation in EYA4 as a Novel Cause of Autosomal Dominant Non-Syndromic Hearing Loss

    PubMed Central

    Xia, Wenjun; Hao, Lili; Ma, Jing; Ma, Duan; Ma, Zhaoxin

    2015-01-01

    Autosomal dominant non-syndromic hearing loss is highly heterogeneous, and eyes absent 4 (EYA4) is a disease-causing gene. Most EYA4 mutations founded in the Eya-homologous region, however, no deafness causative missense mutation in variable region of EYA4 have previously been found. In this study, we identified a pathogenic missense mutation located in the variable region of the EYA4 gene for the first time in a four-generation Chinese family with 57 members. Whole-exome sequencing (WES) was performed on samples from one unaffected and two affected individuals to systematically search for deafness susceptibility genes, and the candidate mutations and the co-segregation of the phenotype were verified by polymerase chain reaction amplification and by Sanger sequencing in all of the family members. Then, we identified a novel EYA4 mutation in exon 8, c.511G>C; p.G171R, which segregated with postlingual and progressive autosomal dominant sensorineural hearing loss (SNHL). This report is the first to describe a missense mutation in the variable region domain of the EYA4 gene, which is not highly conserved in many species, indicating that the potential unconserved role of 171G>R in human EYA4 function is extremely important. PMID:25961296

  6. Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome.

    PubMed

    Juang, Jyh-Ming Jimmy; Lu, Tzu-Pin; Lai, Liang-Chuan; Ho, Chia-Chuan; Liu, Yen-Bin; Tsai, Chia-Ti; Lin, Lian-Yu; Yu, Chih-Chieh; Chen, Wen-Jone; Chiang, Fu-Tien; Yeh, Shih-Fan Sherri; Lai, Ling-Ping; Chuang, Eric Y; Lin, Jiunn-Lee

    2014-01-01

    Brugada syndrome (BrS) is one of the ion channelopathies associated with sudden cardiac death (SCD). The most common BrS-associated gene (SCN5A) only accounts for approximately 20-25% of BrS patients. This study aims to identify novel mutations across human ion channels in non-familial BrS patients without SCN5A variants through disease-targeted sequencing. We performed disease-targeted multi-gene sequencing across 133 human ion channel genes and 12 reported BrS-associated genes in 15 unrelated, non-familial BrS patients without SCN5A variants. Candidate variants were validated by mass spectrometry and Sanger sequencing. Five de novo mutations were identified in four genes (SCNN1A, KCNJ16, KCNB2, and KCNT1) in three BrS patients (20%). Two of the three patients presented SCD and one had syncope. Interestingly, the two patients presented with SCD had compound mutations (SCNN1A:Arg350Gln and KCNB2:Glu522Lys; SCNN1A:Arg597* and KCNJ16:Ser261Gly). Importantly, two SCNN1A mutations were identified from different families. The KCNT1:Arg1106Gln mutation was identified in a patient with syncope. Bioinformatics algorithms predicted severe functional interruptions in these four mutation loci, suggesting their pivotal roles in BrS. This study identified four novel BrS-associated genes and indicated the effectiveness of this disease-targeted sequencing across ion channel genes for non-familial BrS patients without SCN5A variants. PMID:25339316

  7. Disease-Targeted Sequencing of Ion Channel Genes identifies de novo mutations in Patients with Non-Familial Brugada Syndrome

    PubMed Central

    Juang, Jyh-Ming Jimmy; Lu, Tzu-Pin; Lai, Liang-Chuan; Ho, Chia-Chuan; Liu, Yen-Bin; Tsai, Chia-Ti; Lin, Lian-Yu; Yu, Chih-Chieh; Chen, Wen-Jone; Chiang, Fu-Tien; Yeh, Shih-Fan Sherri; Lai, Ling-Ping; Chuang, Eric Y.; Lin, Jiunn-Lee

    2014-01-01

    Brugada syndrome (BrS) is one of the ion channelopathies associated with sudden cardiac death (SCD). The most common BrS-associated gene (SCN5A) only accounts for approximately 20–25% of BrS patients. This study aims to identify novel mutations across human ion channels in non-familial BrS patients without SCN5A variants through disease-targeted sequencing. We performed disease-targeted multi-gene sequencing across 133 human ion channel genes and 12 reported BrS-associated genes in 15 unrelated, non-familial BrS patients without SCN5A variants. Candidate variants were validated by mass spectrometry and Sanger sequencing. Five de novo mutations were identified in four genes (SCNN1A, KCNJ16, KCNB2, and KCNT1) in three BrS patients (20%). Two of the three patients presented SCD and one had syncope. Interestingly, the two patients presented with SCD had compound mutations (SCNN1A:Arg350Gln and KCNB2:Glu522Lys; SCNN1A:Arg597* and KCNJ16:Ser261Gly). Importantly, two SCNN1A mutations were identified from different families. The KCNT1:Arg1106Gln mutation was identified in a patient with syncope. Bioinformatics algorithms predicted severe functional interruptions in these four mutation loci, suggesting their pivotal roles in BrS. This study identified four novel BrS-associated genes and indicated the effectiveness of this disease-targeted sequencing across ion channel genes for non-familial BrS patients without SCN5A variants. PMID:25339316

  8. New de novo Genetic Mutations in Schizophrenia Identified | Columbia University Medical Center http://www.cumc.columbia.edu/news-room/2012/10/03/new-de-novo-genetic-mutations-in-schizophrenia-identified/#.UKJgImdNKuJ[11/13/2012 9:59:28 AM

    E-print Network

    New de novo Genetic Mutations in Schizophrenia Identified | Columbia University Medical Center http://www.cumc.columbia.edu/news-room/2012/10/03/new-de-novo-genetic-mutations-in-schizophrenia-identified/#.UKJgImdNKuJ[11/13/2012 9 Profiles | Map | RSS | Giving New de novo Genetic Mutations in Schizophrenia Identified October 3, 2012 New

  9. Integrated sequence analysis pipeline provides one-stop solution for identifying disease-causing mutations.

    PubMed

    Hu, Hao; Wienker, Thomas F; Musante, Luciana; Kalscheuer, Vera M; Kahrizi, Kimia; Najmabadi, Hossein; Ropers, H Hilger

    2014-12-01

    Next-generation sequencing has greatly accelerated the search for disease-causing defects, but even for experts the data analysis can be a major challenge. To facilitate the data processing in a clinical setting, we have developed a novel medical resequencing analysis pipeline (MERAP). MERAP assesses the quality of sequencing, and has optimized capacity for calling variants, including single-nucleotide variants, insertions and deletions, copy-number variation, and other structural variants. MERAP identifies polymorphic and known causal variants by filtering against public domain databases, and flags nonsynonymous and splice-site changes. MERAP uses a logistic model to estimate the causal likelihood of a given missense variant. MERAP considers the relevant information such as phenotype and interaction with known disease-causing genes. MERAP compares favorably with GATK, one of the widely used tools, because of its higher sensitivity for detecting indels, its easy installation, and its economical use of computational resources. Upon testing more than 1,200 individuals with mutations in known and novel disease genes, MERAP proved highly reliable, as illustrated here for five families with disease-causing variants. We believe that the clinical implementation of MERAP will expedite the diagnostic process of many disease-causing defects. PMID:25219469

  10. Whole Exome Sequencing Identifies a Troponin T Mutation Hot Spot in Familial Dilated Cardiomyopathy

    PubMed Central

    Campbell, Nzali; Sinagra, Gianfranco; Jones, Kenneth L.; Slavov, Dobromir; Gowan, Katherine; Merlo, Marco; Carniel, Elisa; Fain, Pamela R.; Aragona, Pierluigi; Di Lenarda, Andrea; Mestroni, Luisa; Taylor, Matthew R. G.

    2013-01-01

    Dilated cardiomyopathy (DCM) commonly causes heart failure and shows extensive genetic heterogeneity that may be amenable to newly developed next-generation DNA sequencing of the exome. In this study we report the successful use of exome sequencing to identify a pathogenic variant in the TNNT2 gene using segregation analysis in a large DCM family. Exome sequencing was performed on three distant relatives from a large family with a clear DCM phenotype. Missense, nonsense, and splice variants were analyzed for segregation among the three affected family members and confirmed in other relatives by direct sequencing. A c.517T C>T, Arg173Trp TNNT2 variant segregated with all affected family members and was also detected in one additional DCM family in our registry. The inclusion of segregation analysis using distant family members markedly improved the bioinformatics filtering process by removing from consideration variants that were not shared by all affected subjects. Haplotype analysis confirmed that the variant found in both DCM families was located on two distinct haplotypes, supporting the notion of independent mutational events in each family. In conclusion, an exome sequencing strategy that includes segregation analysis using distant affected relatives within a family represents a viable diagnostic strategy in a genetically heterogeneous disease like DCM. PMID:24205113

  11. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes

    PubMed Central

    Le Gallo, Matthieu; O’Hara, Andrea J.; Rudd, Meghan L.; Urick, Mary Ellen; Hansen, Nancy F.; O’Neil, Nigel J.; Price, Jessica C.; Zhang, Suiyuan; England, Bryant M.; Godwin, Andrew K.; Sgroi, Dennis C.; Hieter, Philip; Mullikin, James C.; Merino, Maria J.; Bell, Daphne W.

    2012-01-01

    Endometrial cancer is the 6th most commonly diagnosed cancer among women worldwide, causing ~74,000 deaths annually 1. Serous endometrial cancers are a clinically aggressive subtype with a poorly defined genetic etiology 2-4. We used whole exome sequencing (WES) to comprehensively search for somatic mutations within ~22,000 protein-encoding genes among 13 primary serous endometrial tumors. We subsequently resequenced 18 genes that were mutated in more than one tumor, and/or were genes that formed an enriched functional grouping, from 40 additional serous tumors. We identified high frequencies of somatic mutations in CHD4 (17%), EP300 (8%), ARID1A (6%), TSPYL2 (6%), FBXW7 (29%), SPOP (8%), MAP3K4 (6%) and ABCC9 (6%). Overall, 36.5% of serous tumors had mutated a chromatin-remodeling gene and 35% had mutated a ubiquitin ligase complex gene, implicating the frequent mutational disruption of these processes in the molecular pathogenesis of one of the deadliest forms of endometrial cancer. PMID:23104009

  12. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes.

    PubMed

    Le Gallo, Matthieu; O'Hara, Andrea J; Rudd, Meghan L; Urick, Mary Ellen; Hansen, Nancy F; O'Neil, Nigel J; Price, Jessica C; Zhang, Suiyuan; England, Bryant M; Godwin, Andrew K; Sgroi, Dennis C; Hieter, Philip; Mullikin, James C; Merino, Maria J; Bell, Daphne W

    2012-12-01

    Endometrial cancer is the sixth most commonly diagnosed cancer in women worldwide, causing ~74,000 deaths annually. Serous endometrial cancers are a clinically aggressive subtype with a poorly defined genetic etiology. We used whole-exome sequencing to comprehensively search for somatic mutations within ~22,000 protein-encoding genes in 13 primary serous endometrial tumors. We subsequently resequenced 18 genes, which were mutated in more than 1 tumor and/or were components of an enriched functional grouping, from 40 additional serous tumors. We identified high frequencies of somatic mutations in CHD4 (17%), EP300 (8%), ARID1A (6%), TSPYL2 (6%), FBXW7 (29%), SPOP (8%), MAP3K4 (6%) and ABCC9 (6%). Overall, 36.5% of serous tumors had a mutated chromatin-remodeling gene, and 35% had a mutated ubiquitin ligase complex gene, implicating frequent mutational disruption of these processes in the molecular pathogenesis of one of the deadliest forms of endometrial cancer. PMID:23104009

  13. Attitudes toward fragile X mutation carrier testing from women identified in a general population survey.

    PubMed

    Anido, Aimee; Carlson, Lisa M; Sherman, Stephanie L

    2007-02-01

    Fragile X syndrome is primarily due to a CGG repeat expansion found in the FMR1 X-linked gene. In a previous study, we conducted focus groups with women to assess their attitudes towards fragile X carrier screening. In this follow-up study, we conducted in-depth interviews of general population reproductive-age women who were identified as carriers. We explored their attitudes toward testing for carrier status of the fragile X mutation. These women underwent screening primarily to participate in a research project rather than in search of a diagnosis for specific symptoms. As such, these women were wholly unprepared for positive carrier results. Their responses about their results and carrier screening, in many cases, were being worked out over the course of the interview itself. The most salient finding of this work is the apparent lack of relevance of carrier status to these women. Many expressed that although the information could be relevant in the future, it is not relevant at this stage of their lives in terms of family planning (either with respect to having unaffected offspring or to premature ovarian failure) and personal relationships. Although issues of abortion seemed prominent in the focus groups, we found that carrier status did not have an apparent effect on women's attitudes about termination. We hypothesize this may be related to the fact that women had not processed their new carrier status and had not related it to previously-formed personal opinions. The findings of this work have significant implications for genetic counseling and population screening. Genetic counselors should be mindful that general population women may not recognize the immediate importance of their carrier status even when literature is provided and discussed prior to providing a sample. As part of comprehensive genetic counseling, counselors should identify the reproductive life stage of the woman receiving the new information and help her identify when this information would be more meaningful in her life. Counselors can assist in setting up a personalized road map with specific types of services that will be more applicable to the woman as her carrier status becomes more relevant. PMID:17295053

  14. An exploration of the communication preferences regarding genetic testing in individuals from families with identified breast\\/ovarian cancer mutations

    Microsoft Academic Search

    Paboda Ratnayake; Claire E. Wakefield; Bettina Meiser; Graeme Suthers; Melanie A. Price; Jessica Duffy; Kathy Tucker

    2011-01-01

    The responsibility for informing at-risk relatives of the availability of genetic testing for breast\\/ovarian cancer gene (BRCA1\\u000a or BRCA2) mutations currently falls on the probands. This study explored the support needs of individuals from families with\\u000a identified BRCA1 or BRCA2 mutations when communicating about genetic risk and genetic testing with at-risk family members.\\u000a Thirty-nine semi-structured telephone interviews were conducted with

  15. Mutational analysis of the avian pneumovirus conserved transcriptional gene start sequence identifying critical residues.

    PubMed

    Edworthy, Nicole L; Easton, Andrew J

    2005-12-01

    Seven of the eight genes in the avian pneumovirus (APV) genome contain a conserved 9 nt transcriptional start sequence with the virus large (L) polymerase gene differing from the consensus at three positions. The sequence requirements of the APV transcriptional gene start sequence were investigated by generating a series of mutations in which each of the nine conserved bases was mutated to each of the other three possible nucleotides in a minigenome containing two reporter genes. The effect of each mutation was assessed by measuring the relative levels of expression from the altered and unaltered gene start sequences. Mutations at positions 2, 7 and 9 significantly reduced transcription levels while alterations to position 5 had little effect. The L gene start sequence directed transcription at levels approximately 50 % below that of the consensus gene start sequence. These data suggest that there are common features in pneumovirus transcriptional control sequences. PMID:16298980

  16. Novel TECTA mutations identified in stable sensorineural hearing loss and their clinical implications.

    PubMed

    Kim, Ah Reum; Chang, Mun Young; Koo, Ja-Won; Oh, Seung Ha; Choi, Byung Yoon

    2015-01-01

    TECTA is a causative gene of autosomal dominant (DFNA8/A12) and autosomal recessive (DFNB 21) nonsyndromic sensorineural hearing loss (NSHL). Mutations in TECTA account for 4% of all autosomal dominant NSHL cases in some populations and are thus thought to be one of the major causes of autosomal dominant NSHL. A genotype-phenotype correlation for autosomal dominant mutations in the TECTA gene has been proposed. Two families (SB146 and SB149), which segregated moderate NSHL in an autosomal dominant fashion, were included in this study. We performed targeted resequencing of 134 known deafness genes (TRS-134) and bioinformatics analyses to find causative mutations for NSHL in these 2 families. Through TRS-134, we detected 2 novel mutations, i.e. c.3995G>T (p.C1332F) and c.5618C>T (p.T1873I), in the TECTA gene. These mutations cosegregated with NSHL in the studied families and were not detected in normal controls. The mutations c.3995G>T and c.5618C>T reside in the von Willebrand factor type D3-D4 (vWFD3-D4) interdomain of the zonadhesin (ZA) domain and the zona pellucida (ZP) domain, respectively. p.C1332F is the first mutation detected in the vWFD3-D4 interdomain of the ZA domain. The mutations p.C1332F and p.T1873I were associated with stable high-frequency and mid-frequency hearing loss, respectively. Notably, the cysteine residue mutated to phenylalanine in SB146 was not related to progression of sensorineural hearing loss, which argues against the previous hypothesis. Here we confirm a known genotype-phenotype correlation for the ZP domain and propose a hypothetical genotype-phenotype correlation which relates mutations in vWFD3-D4 to stable high-frequency NSHL in Koreans. This clinical feature makes subjects with the missense mutation in the vWFD3-D4 interdomain of TECTA potentially good candidates for middle ear implantation. PMID:25413827

  17. TARGET Researchers Identify Additional Mutations that Predict Relapse in ALL Patients | Office of Cancer Genomics

    Cancer.gov

    Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous disease consisting of distinct clinical and biological subtypes that are characterized by specific chromosomal abnormalities or gene mutations. Mutation of genes encoding tyrosine kinases is uncommon in ALL, with the exception of Philadelphia chromosome-positive ALL, where the t(9,22)(q34;q11) translocation encodes the constitutively active BCR-ABL1 tyrosine kinase.

  18. TARGET Researchers Identify Additional Mutations that Predict Relapse in ALL Patients

    Cancer.gov

    Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous disease consisting of distinct clinical and biological subtypes that are characterized by specific chromosomal abnormalities or gene mutations. Mutation of genes encoding tyrosine kinases is uncommon in ALL, with the exception of Philadelphia chromosome-positive ALL, where the t(9,22)(q34;q11) translocation encodes the constitutively active BCR-ABL1 tyrosine kinase.

  19. Functional Characterization of a CRH Missense Mutation Identified in an ADNFLE Family

    PubMed Central

    Sansoni, Veronica; Forcella, Matilde; Mozzi, Alessandra; Fusi, Paola; Ambrosini, Roberto; Ferini-Strambi, Luigi; Combi, Romina

    2013-01-01

    Nocturnal frontal lobe epilepsy has been historically considered a channelopathy caused by mutations in subunits of the neuronal nicotinic acetylcholine receptor or in a recently reported potassium channel. However, these mutations account for only a minority of patients, and the existence of at least a new locus for the disease has been demonstrated. In 2005, we detected two nucleotide variations in the promoter of the CRH gene coding for the corticotropin releasing hormone in 7 patients. These variations cosegregated with the disease and were demonstrated to alter the cellular levels of this hormone. Here, we report the identification in an Italian affected family of a novel missense mutation (hpreproCRH p.Pro30Arg) located in the region of the CRH coding for the protein pro-sequence. The mutation was detected in heterozygosity in the two affected individuals. In vitro assays demonstrated that this mutation results in reduced levels of protein secretion in the short time thus suggesting that mutated people could present an altered capability to respond immediately to stress agents. PMID:23593457

  20. Correlation between biochemical findings, structural and enzymatic abnormalities in mutated HMBS identified in six Israeli families with acute intermittent porphyria.

    PubMed

    Ulbrichova, Dana; Schneider-Yin, Xiaoye; Mamet, Rivka; Saudek, Vladimir; Martasek, Pavel; Minder, Elisabeth I; Schoenfeld, Nili

    2009-01-01

    Mutations in the hydroxymethylbilane synthase (HMBS) gene are responsible for the inherited disorder of acute intermittent porphyria (AIP). AIP is diagnosed on the basis of characteristic clinical symptoms, elevated levels of urinary porphyrin precursors aminolevulinic acid (ALA) and porphobilinogen (PBG) and a decreased erythrocytic HMBS activity, although an identifiable HMBS mutation provides the ultimate proof for AIP. Six Israeli AIP families underwent biochemical and mutation analysis in order to establish an AIP diagnosis. Variability with respect to the ALA/PBG levels and HBMS activity was found among the index patients. Indeed, each family carried a unique mutation in the HMBS gene. A novel missense c.95G>C (p.R32P) was shown to be a de novo mutation in one family, along with five known mutations p.T59I, p.D178N, p.V215M, c.730_731delCT and c.982_983delCA identified in the rest of the families. Both R32P and D178N were expressed in a prokaryotic system. Recombinant p.R32P was enzymatically inactive as demonstrated by a <1% residual activity, whereas p.D178N possessed 81% of the activity of the wild type enzyme. However, the p.D178N mutant did display a shift in optimal pH and was thermo labile compared to the wild type. Among the four missense mutations, p.R32P and p.V215M had not only harmful effects on the enzyme in vitro but also were associated with high levels of ALA/PBG in patients. On the other hand, the in vitro effect of both p.T59I and p.D178N, and the impact of these mutations on the enzyme structure and function as interpreted by the 3-D structure of the Escherichia coli enzyme, were weaker than that of p.R32P and p.V215M. Concomitantly, patients carrying the p.T59I or p.D178N had normal or borderline increases in ALA/PBG concentrations although they presented characteristic clinical symptoms. These findings provided further insights into the causal relationship between HMBS mutations and AIP. PMID:19138865

  1. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer

    PubMed Central

    Hammerman, Peter S; Sos, Martin L; Ramos, Alex H; Xu, Chunxiao; Dutt, Amit; Zhou, Wenjun; Brace, Lear E; Woods, Brittany A; Lin, Wenchu; Zhang, Jianming; Deng, Xianming; Lim, Sang Min; Heynck, Stefanie; Peifer, Martin; Simard, Jeffrey R; Lawrence, Michael S; Onofrio, Robert C; Salvesen, Helga B; Seidel, Danila; Zander, Thomas; Heuckmann, Johannes M; Soltermann, Alex; Moch, Holger; Koker, Mirjam; Leenders, Frauke; Gabler, Franziska; Querings, Silvia; Ansén, Sascha; Brambilla, Elisabeth; Brambilla, Christian; Lorimier, Philippe; Brustugun, Odd Terje; Helland, Ĺslaug; Petersen, Iver; Clement, Joachim H; Groen, Harry; Timens, Wim; Sietsma, Hannie; Stoelben, Erich; Wolf, Jürgen; Beer, David G; Tsao, Ming Sound; Hanna, Megan; Hatton, Charles; Eck, Michael J; Janne, Pasi A; Johnson, Bruce E; Winckler, Wendy; Greulich, Heidi; Bass, Adam J; Cho, Jeonghee; Rauh, Daniel; Gray, Nathanael S; Wong, Kwok-Kin; Haura, Eric B; Thomas, Roman K; Meyerson, Matthew

    2011-01-01

    While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials. PMID:22328973

  2. Genetic mapping and exome sequencing identify 2 mutations associated with stroke protection in pediatric patients with sickle cell anemia

    PubMed Central

    Sheehan, Vivien; Linder, Heidi; Howard, Thad A.; Wang, Yong-Dong; Hoppe, Carolyn C.; Aygun, Banu; Adams, Robert J.; Neale, Geoffrey A.; Ware, Russell E.

    2013-01-01

    Stroke is a devastating complication of sickle cell anemia (SCA), occurring in 11% of patients before age 20 years. Previous studies of sibling pairs have demonstrated a genetic component to the development of cerebrovascular disease in SCA, but few candidate genetic modifiers have been validated as having a substantial effect on stroke risk. We performed an unbiased whole-genome search for genetic modifiers of stroke risk in SCA. Genome-wide association studies were performed using genotype data from single-nucleotide polymorphism arrays, whereas a pooled DNA approach was used to perform whole-exome sequencing. In combination, 22 nonsynonymous variants were identified and represent key candidates for further in-depth study. To validate the association of these mutations with the risk for stroke, the 22 candidate variants were genotyped in an independent cohort of control patients (n = 231) and patients with stroke (n = 57) with SCA. One mutation in GOLGB1 (Y1212C) and another mutation in ENPP1 (K173Q) were confirmed as having significant associations with a decreased risk for stroke. These mutations were discovered and validated by an unbiased whole-genome approach, and future studies will focus on how these functional mutations may lead to protection from stroke in the context of SCA. PMID:23422753

  3. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness.

    PubMed

    Audo, Isabelle; Bujakowska, Kinga; Orhan, Elise; Poloschek, Charlotte M; Defoort-Dhellemmes, Sabine; Drumare, Isabelle; Kohl, Susanne; Luu, Tien D; Lecompte, Odile; Zrenner, Eberhart; Lancelot, Marie-Elise; Antonio, Aline; Germain, Aurore; Michiels, Christelle; Audier, Claire; Letexier, Mélanie; Saraiva, Jean-Paul; Leroy, Bart P; Munier, Francis L; Mohand-Saďd, Saddek; Lorenz, Birgit; Friedburg, Christoph; Preising, Markus; Kellner, Ulrich; Renner, Agnes B; Moskova-Doumanova, Veselina; Berger, Wolfgang; Wissinger, Bernd; Hamel, Christian P; Schorderet, Daniel F; De Baere, Elfride; Sharon, Dror; Banin, Eyal; Jacobson, Samuel G; Bonneau, Dominique; Zanlonghi, Xavier; Le Meur, Guylene; Casteels, Ingele; Koenekoop, Robert; Long, Vernon W; Meire, Francoise; Prescott, Katrina; de Ravel, Thomy; Simmons, Ian; Nguyen, Hoan; Dollfus, Hélčne; Poch, Olivier; Léveillard, Thierry; Nguyen-Ba-Charvet, Kim; Sahel, José-Alain; Bhattacharya, Shomi S; Zeitz, Christina

    2012-02-10

    Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(?)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated. PMID:22325361

  4. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I.

    PubMed

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papi?, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R; Janecke, Andreas R; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-01

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders. PMID:21194679

  5. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration

    PubMed Central

    Koenekoop, Robert K.; Wang, Hui; Majewski, Jacek; Wang, Xia; Lopez, Irma; Ren, Huanan; Chen, Yiyun; Li, Yumei; Fishman, Gerald A.; Genead, Mohammed; Schwartzentruber, Jeremy; Solanki, Naimesh; Traboulsi, Elias I.; Cheng, Jingliang; Logan, Clare V.; McKibbin, Martin; Hayward, Bruce E.; Parry, David A.; Johnson, Colin A.; Nageeb, Mohammed; Poulter, James A.; Mohamed, Moin D.; Jafri, Hussain; Rashid, Yasmin; Taylor, Graham R.; Keser, Vafa; Mardon, Graeme; Xu, Huidan; Inglehearn, Chris F.; Fu, Qing; Toomes, Carmel; Chen, Rui

    2013-01-01

    Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wlds) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder. PMID:22842230

  6. A Novel Locus Harbouring a Functional CD164 Nonsense Mutation Identified in a Large Danish Family with Nonsyndromic Hearing Impairment

    PubMed Central

    Nielsen, Morten S.; Corydon, Thomas J.; Demontis, Ditte; Starnawska, Anna; Hedemand, Anne; Buniello, Annalisa; Niola, Francesco; Overgaard, Michael T.; Leal, Suzanne M.; Ahmad, Wasim; Wikman, Friedrik P.; Petersen, Kirsten B.; Crüger, Dorthe G.; Oostrik, Jaap; Kremer, Hannie; Tommerup, Niels; Frödin, Morten; Steel, Karen P.; Tranebjćrg, Lisbeth; Břrglum, Anders D.

    2015-01-01

    Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192*) in CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endolyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migration. The mutation segregated with the phenotype and was absent in 1200 Danish control individuals and in databases with whole-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXX?). In whole blood from an affected individual, we found by RT-PCR both the wild-type and the mutated transcript suggesting that the mutant transcript escapes nonsense mediated decay. Functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclusion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated CD164 as a novel gene for hearing impairment. PMID:26197441

  7. Octopod, a homeotic mutation of the moth Manduca sexta, influences the fate of identifiable pattern elements within the CNS.

    PubMed

    Booker, R; Truman, J W

    1989-03-01

    Octopod (Octo) is a mutation of the moth Manduca sexta, which results in the homeotic transformation of the ventral surface of the first (A1) and less often the second (A2) abdominal segments in the anterior direction. The extent of the transformation ranges from a slight deformation of the ventral cuticle, up to the formation of miniature thoracic legs on A1. The extent of the transformation is always less within A2 as compared to A1. A genetic analysis revealed that Octo is an autosomal mutation which shows incomplete dominance. The effect of this mutation on the central nervous system (CNS) was assessed by examining the distribution and fate of the postembryonic neuroblasts in the segmental ganglia of Octo larvae. In each of the thoracic ganglia of wild-type larvae, there is a set of 45-47 neuroblasts; a reduced but homologous array of 24 and 10 neuroblasts are found in A1 and A2, respectively. Ganglion A1 of Octo larvae had 1 to 6 supernumerary neuroblasts, and 20% of the A2 ganglia showed a single ectopic neuroblast. The supernumerary neuroblasts corresponded to identifiable neuroblasts normally found in more anterior ganglia. The Octo mutation also influenced the mitotic activity of stem cells normally present in A1. In this case, the neuroblasts generated a lineage of cells that were typical of a thoracic location rather than A1. These data demonstrate that homeotic mutations can influence the fate of identifiable pattern elements within the CNS of an insect. PMID:2575514

  8. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers

    PubMed Central

    Kumar, Akash; White, Thomas A.; MacKenzie, Alexandra P.; Clegg, Nigel; Lee, Choli; Dumpit, Ruth F.; Coleman, Ilsa; Ng, Sarah B.; Salipante, Stephen J.; Rieder, Mark J.; Nickerson, Deborah A.; Corey, Eva; Lange, Paul H.; Morrissey, Colm; Vessella, Robert L.; Nelson, Peter S.; Shendure, Jay

    2011-01-01

    To catalog protein-altering mutations that may drive the development of prostate cancers and their progression to metastatic disease systematically, we performed whole-exome sequencing of 23 prostate cancers derived from 16 different lethal metastatic tumors and three high-grade primary carcinomas. All tumors were propagated in mice as xenografts, designated the LuCaP series, to model phenotypic variation, such as responses to cancer-directed therapeutics. Although corresponding normal tissue was not available for most tumors, we were able to take advantage of increasingly deep catalogs of human genetic variation to remove most germline variants. On average, each tumor genome contained ?200 novel nonsynonymous variants, of which the vast majority was specific to individual carcinomas. A subset of genes was recurrently altered across tumors derived from different individuals, including TP53, DLK2, GPC6, and SDF4. Unexpectedly, three prostate cancer genomes exhibited substantially higher mutation frequencies, with 2,000–4,000 novel coding variants per exome. A comparison of castration-resistant and castration-sensitive pairs of tumor lines derived from the same prostate cancer highlights mutations in the Wnt pathway as potentially contributing to the development of castration resistance. Collectively, our results indicate that point mutations arising in coding regions of advanced prostate cancers are common but, with notable exceptions, very few genes are mutated in a substantial fraction of tumors. We also report a previously undescribed subtype of prostate cancers exhibiting “hypermutated” genomes, with potential implications for resistance to cancer therapeutics. Our results also suggest that increasingly deep catalogs of human germline variation may challenge the necessity of sequencing matched tumor-normal pairs. PMID:21949389

  9. Massively Parallel DNA Sequencing Successfully Identifies New Causative Mutations in Deafness Genes in Patients with Cochlear Implantation and EAS

    PubMed Central

    Miyagawa, Maiko; Nishio, Shin-ya; Ikeda, Takuo; Fukushima, Kunihiro; Usami, Shin-ichi

    2013-01-01

    Genetic factors, the most common etiology in severe to profound hearing loss, are one of the key determinants of Cochlear Implantation (CI) and Electric Acoustic Stimulation (EAS) outcomes. Satisfactory auditory performance after receiving a CI/EAS in patients with certain deafness gene mutations indicates that genetic testing would be helpful in predicting CI/EAS outcomes and deciding treatment choices. However, because of the extreme genetic heterogeneity of deafness, clinical application of genetic information still entails difficulties. Target exon sequencing using massively parallel DNA sequencing is a new powerful strategy to discover rare causative genes in Mendelian disorders such as deafness. We used massive sequencing of the exons of 58 target candidate genes to analyze 8 (4 early-onset, 4 late-onset) Japanese CI/EAS patients, who did not have mutations in commonly found genes including GJB2, SLC26A4, or mitochondrial 1555A>G or 3243A>G mutations. We successfully identified four rare causative mutations in the MYO15A, TECTA, TMPRSS3, and ACTG1 genes in four patients who showed relatively good auditory performance with CI including EAS, suggesting that genetic testing may be able to predict the performance after implantation. PMID:24130743

  10. Convergent Evolutionary Analysis Identifies Significant Mutations in Drug Resistance Targets of Mycobacterium tuberculosis

    Microsoft Academic Search

    Manzour Hernando Hazbon; Alifiya S. Motiwala; Magali Cavatore; Michael Brimacombe; Thomas S. Whittam; David Alland

    2008-01-01

    Mycobacterium tuberculosis adapts to the environment by selecting for advantageous single-nucleotide poly- morphisms (SNPs). We studied whether advantageous SNPs could be distinguished from neutral mutations within genes associated with drug resistance. A total of 1,003 clinical isolates of M. tuberculosis were related phylogenetically and tested for the distribution of SNPs in putative drug resistance genes. Drug resistance- associated versus non-drug-resistance-associated

  11. HD Chromoendoscopy Coupled with DNA Mass Spectrometry Profiling Identifies Somatic Mutations in Microdissected Human Proximal Aberrant Crypt Foci

    PubMed Central

    Drew, David A.; Devers, Thomas J.; O’Brien, Michael J.; Horelik, Nicole A.; Levine, Joel; Rosenberg, Daniel W.

    2014-01-01

    Despite increased implementation of screening colonoscopy, interval cancers in the proximal colon remain a major public health concern. This fact underscores the limitations of current screening paradigms and the need for developing advanced endoscopic techniques. The density of aberrant crypt foci (ACF), the earliest identifiable mucosal abnormality, may serve as a surrogate marker for colon cancer risk, but has rarely been studied in the proximal colon. To this end, high-definition (HD) chromoendoscopy was conducted to define the relevance of ACF in the proximal colon. In addition, due to limited ACF size, the development of a combinatorial approach was required to maximize data acquisition obtained from individual biopsy samples. Proximal and distal ACF samples were characterized for a total of 105 mutations across 22 known tumor suppressor and proto-oncogenes using high-throughput Sequenom MASSarray analysis. From this profiling, a discrete number of somatic mutations were identified, including APCR876* and FLT3I836M, as well as a deletion within the EGFR gene. Combined, these data highlight the significance of ACF within the context of colon cancer pathogenesis, particularly in the proximal colon. Implications The identification of cancer-related mutations in commonly overlooked mucosal lesions underscores the preventive benefit of implementing advanced endoscopic screening to larger patient populations, particularly in the proximal colon. PMID:24651453

  12. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma.

    PubMed

    Okosun, Jessica; Bödör, Csaba; Wang, Jun; Araf, Shamzah; Yang, Cheng-Yuan; Pan, Chenyi; Boller, Sören; Cittaro, Davide; Bozek, Monika; Iqbal, Sameena; Matthews, Janet; Wrench, David; Marzec, Jacek; Tawana, Kiran; Popov, Nikolay; O'Riain, Ciaran; O'Shea, Derville; Carlotti, Emanuela; Davies, Andrew; Lawrie, Charles H; Matolcsy, András; Calaminici, Maria; Norton, Andrew; Byers, Richard J; Mein, Charles; Stupka, Elia; Lister, T Andrew; Lenz, Georg; Montoto, Silvia; Gribben, John G; Fan, Yuhong; Grosschedl, Rudolf; Chelala, Claude; Fitzgibbon, Jude

    2014-02-01

    Follicular lymphoma is an incurable malignancy, with transformation to an aggressive subtype representing a critical event during disease progression. Here we performed whole-genome or whole-exome sequencing on 10 follicular lymphoma-transformed follicular lymphoma pairs followed by deep sequencing of 28 genes in an extension cohort, and we report the key events and evolutionary processes governing tumor initiation and transformation. Tumor evolution occurred through either a 'rich' or 'sparse' ancestral common progenitor clone (CPC). We identified recurrent mutations in linker histone, JAK-STAT signaling, NF-?B signaling and B cell developmental genes. Longitudinal analyses identified early driver mutations in chromatin regulator genes (CREBBP, EZH2 and KMT2D (MLL2)), whereas mutations in EBF1 and regulators of NF-?B signaling (MYD88 and TNFAIP3) were gained at transformation. Collectively, this study provides new insights into the genetic basis of follicular lymphoma and the clonal dynamics of transformation and suggests that personalizing therapies to target key genetic alterations in the CPC represents an attractive therapeutic strategy. PMID:24362818

  13. Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation.

    PubMed

    Chan, Kwok Keung; Wong, Corinne Kung Yen; Lui, Vincent Chi Hang; Tam, Paul Kwong Hang; Sham, Mai Har

    2003-10-15

    SOX10 is a member of the SOX gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. Mutations of the transcription factor gene SOX10 lead to Waardenburg-Hirschsprung syndrome (Waardenburg-Shah syndrome, WS4) in humans. A number of SOX10 mutations have been identified in WS4 patients who suffer from different extents of intestinal aganglionosis, pigmentation, and hearing abnormalities. Some patients also exhibit signs of myelination deficiency in the central and peripheral nervous systems. Although the molecular bases for the wide range of symptoms displayed by the patients are still not clearly understood, a few target genes for SOX10 have been identified. We have analyzed the impact of six different SOX10 mutations on the activation of SOX10 target genes by yeast one-hybrid and mammalian cell transfection assays. To investigate the transactivation activities of the mutant proteins, three different SOX target binding sites were introduced into luciferase reporter gene constructs and examined in our series of transfection assays: consensus HMG domain protein binding sites; SOX10 binding sites identified in the RET promoter; and Sox10 binding sites identified in the P0 promoter. We found that the same mutation could have different transactivation activities when tested with different target binding sites and in different cell lines. The differential transactivation activities of the SOX10 mutants appeared to correlate with the intestinal and/or neurological symptoms presented in the patients. Among the six mutant SOX10 proteins tested, much reduced transactivation activities were observed when tested on the SOX10 binding sites from the RET promoter. Of the two similar mutations X467K and 1400del12, only the 1400del12 mutant protein exhibited an increase of transactivation through the P0 promoter. While the lack of normal SOX10 mediated activation of RET transcription may lead to intestinal aganglionosis, overexpression of genes coding for structural myelin proteins such as P0 due to mutant SOX10 may explain the dysmyelination phenotype observed in the patients with an additional neurological disorder. PMID:14523991

  14. Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations.

    PubMed

    Ohgami, Robert S; Ma, Lisa; Merker, Jason D; Gotlib, Jason R; Schrijver, Iris; Zehnder, James L; Arber, Daniel A

    2015-05-01

    We assessed the frequency and clinicopathologic significance of 19 genes currently identified as significantly mutated in myeloid neoplasms, RUNX1, ASXL1, TET2, CEBPA, IDH1, IDH2, DNMT3A, FLT3, NPM1, TP53, NRAS, EZH2, CBL, U2AF1, SF3B1, SRSF2, JAK2, CSF3R, and SETBP1, across 93 cases of acute myeloid leukemia (AML) using capture target enrichment and next-generation sequencing. Of these cases, 79% showed at least one nonsynonymous mutation, and cases of AML with recurrent genetic abnormalities showed a lower frequency of mutations versus AML with myelodysplasia-related changes (P<0.001). Mutational analysis further demonstrated that TP53 mutations are associated with complex karyotype AML, whereas ASXL1 and U2AF1 mutations are associated with AML with myelodysplasia-related changes. Furthermore, U2AF1 mutations were specifically associated with trilineage morphologic dysplasia. Univariate analysis demonstrated that U2AF1 and TP53 mutations are associated with absence of clinical remission, poor overall survival (OS), and poor disease-free survival (DFS; P<0.0001), whereas TET2 and ASXL1 mutations are associated with poor OS (P<0.03). In multivariate analysis, U2AF1 and TP53 mutations retained independent prognostic significance in OS and DFS, respectively. Our results demonstrate unique relationships between mutations in AML, clinicopathologic prognosis, subtype categorization, and morphologic dysplasia. PMID:25412851

  15. Functional and Structural Analysis of Five Mutations Identified in Methylmalonic Aciduria cbIB Type

    PubMed Central

    Jorge-Finnigan, Ana; Aguado, Cristina; Sánchez-Alcudia, Rocio; Abia, David; Richard, Eva; Merinero, Begońa; Gámez, Alejandra; Banerjee, Ruma; Desviat, Lourdes R.; Ugarte, Magdalena; Pérez, Belen

    2010-01-01

    ATP cob(I)alamin adenosyltransferase (ATR, E.C.2.5.1.17) converts reduced cob(I)alamin to the adenosylcobalamin cofactor. Mutations in the MMAB gene encoding ATR are responsible for the cblB type methylmalonic aciduria. Here we report the functional analysis of five cblB mutations to determine the underlying molecular basis of the dysfunction. The transcriptional profile along with minigenes analysis revealed that c.584G>A, c.349-1G>C and c.290G>A affect the splicing process. Wild-type ATR and the p.I96T (c.287T>C) and p.R191W (c.571C>T) mutant proteins were expressed in a prokaryote and a eukaryotic expression systems. The p.I96T protein was enzymatically active with a KM for ATP and KD for cob(I)alamin similar to wild-type enzyme, but exhibited a 40% reduction in specific activity. Both p.I96T and p.R191W mutant proteins are less stable than the wild-type protein, with increased stability when expressed under permissive folding conditions. Analysis of the oligomeric state of both mutants showed a structural defect for p.I96T and also a significant impact on the amount of recovered mutant protein that was more pronounced for p.R191W that, along with the structural analysis, suggest they might be misfolded. These results could serve as a basis for the implementation of pharmacological therapies aimed at increasing the residual activity of this type of mutations. PMID:20556797

  16. nature genetics | volume 46 | NumBeR 12 | DeCemBeR 2014 1251 new ability to identify upstream regulators of these mutated

    E-print Network

    Kaski, Samuel

    nature genetics | volume 46 | NumBeR 12 | DeCemBeR 2014 1251 Editorial new ability to identify for cancer cell phenotypes as well as an ability to begin to understand the genetic changes driving about for somatic mutations altering transcription, finding TERT promoter mutations in 6 types but surprisingly few

  17. FixingTIM: interactive exploration of sequence and structural data to identify functional mutations in protein families

    PubMed Central

    2014-01-01

    Background Knowledge of the 3D structure and functionality of proteins can lead to insight into the associated cellular processes, speed up the creation of pharmaceutical products, and develop drugs that are more effective in combating disease. Methods We present the design and implementation of a visual mining and analysis tool to help identify protein mutations across a family of structural models and to help discover the effect of these mutations on protein function. We integrate 3D structure and sequence information in a common visual interface; multiple linked views and a computational backbone allow comparison at the molecular and atomic levels, while a novel trend-image visual abstraction allows for the sorting and mining of large collections of sequences and of their residues. Results We evaluate our approach on the triosephosphate isomerase (TIM) family structural models and sequence data and show that our tool provides an effective, scalable way to navigate a family of proteins, as well as a means to inspect the structure and sequence of individual proteins. Conclusions The TIM application shows that our tool can assist in the navigation of families of proteins, as well as in the exploration of individual protein structures. In conjunction with domain expert knowledge, this interactive tool can help provide biophysical insight into why specific mutations affect function and potentially suggest additional modifications to the protein that could be used to rescue functionality. PMID:25237390

  18. Characterization of New ACADSB Gene Sequence Mutations and Clinical Implications in Patients with 2-Methylbutyrylglycinuria Identified by Newborn Screening

    PubMed Central

    Alfardan, Jaffar; Mohsen, Al-Walid; Copeland, Sara; Ellison, Jay; Keppen-Davis, Laura; Rohrbach, Marianne; Powell, Berkley R.; Gillis, Jane; Matern, Dietrich; Kant, Jeffrey; Vockley, Jerry

    2010-01-01

    Short/branched chain acyl-CoA dehydrogenase (SBCAD) deficiency, also known as 2-methylbutyryl-CoA dehydrogenase deficiency, is a recently described autosomal recessive disorder of isoleucine metabolism. Most patients reported thus far have originated from a founder mutation in the Hmong Chinese population. While the first reported patients had severe disease, most of the affected Hmong have remained asymptomatic. In this study we describe 11 asymptomatic non-Hmong patients brought to medical attention by elevated C5-carnitine found by newborn screening and one discovered because of clinical symptoms. The diagnosis of SBCAD deficiency was determined by metabolite analysis of blood, urine, and fibroblast samples. PCR and bidirectional sequencing were performed on genomic DNA from five of the patients covering the entire SBCAD (ACADSB) gene sequence of 11 exons. Sequence analysis of genomic DNA from each patient identified variations in the SBCAD gene not previously reported. E. coli expression studies revealed that the missense mutations identified lead to inactivation or instability of the mutant SBCAD enzymes. These findings confirm that SBCAD deficiency can be identified through newborn screening by acylcarnitine analysis. Our patients have been well without treatment and call for careful follow-up studies to learn the true clinical impact of this disorder. PMID:20547083

  19. Pathogenic mutations and rare variants of the APC gene identified in 75 Belgian patients with familial adenomatous polyposis by fluorescent enzymatic mutation detection (EMD)

    Microsoft Academic Search

    Genevičve Michils; Sabine Tejpar; Jean-Pierre Fryns; Eric Legius; Eric Van Cutsem; Jean-Jacques Cassiman; Gert Matthijs

    2002-01-01

    Familial adenomatous polyposis (FAP) is a dominant inherited colorectal cancer syndrome which is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Enzymatic mutation detection (EMD) has potential advantages over the standard protein truncation test (PTT) that is currently used in screening the APC gene for mutations. First we wanted to validate the EMD technique in comparison to

  20. Identifying disease mutations in genomic medicine settings: current challenges and how to accelerate progress

    PubMed Central

    2012-01-01

    The pace of exome and genome sequencing is accelerating, with the identification of many new disease-causing mutations in research settings, and it is likely that whole exome or genome sequencing could have a major impact in the clinical arena in the relatively near future. However, the human genomics community is currently facing several challenges, including phenotyping, sample collection, sequencing strategies, bioinformatics analysis, biological validation of variant function, clinical interpretation and validity of variant data, and delivery of genomic information to various constituents. Here we review these challenges and summarize the bottlenecks for the clinical application of exome and genome sequencing, and we discuss ways for moving the field forward. In particular, we urge the need for clinical-grade sample collection, high-quality sequencing data acquisition, digitalized phenotyping, rigorous generation of variant calls, and comprehensive functional annotation of variants. Additionally, we suggest that a 'networking of science' model that encourages much more collaboration and online sharing of medical history, genomic data and biological knowledge, including among research participants and consumers/patients, will help establish causation and penetrance for disease causal variants and genes. As we enter this new era of genomic medicine, we envision that consumer-driven and consumer-oriented efforts will take center stage, thus allowing insights from the human genome project to translate directly back into individualized medicine. PMID:22830651

  1. Translocation domain mutations affecting cellular toxicity identify the Clostridium difficile toxin B pore

    PubMed Central

    Zhang, Zhifen; Park, Minyoung; Tam, John; Auger, Anick; Beilhartz, Greg L.; Lacy, D. Borden; Melnyk, Roman A.

    2014-01-01

    Disease associated with Clostridium difficile infection is caused by the actions of the homologous toxins TcdA and TcdB on colonic epithelial cells. Binding to target cells triggers toxin internalization into acidified vesicles, whereupon cryptic segments from within the 1,050-aa translocation domain unfurl and insert into the bounding membrane, creating a transmembrane passageway to the cytosol. Our current understanding of the mechanisms underlying pore formation and the subsequent translocation of the upstream cytotoxic domain to the cytosol is limited by the lack of information available regarding the identity and architecture of the transmembrane pore. Here, through systematic perturbation of conserved sites within predicted membrane-insertion elements of the translocation domain, we uncovered highly sensitive residues—clustered between amino acids 1,035 and 1,107—that when individually mutated, reduced cellular toxicity by as much as >1,000-fold. We demonstrate that defective variants are defined by impaired pore formation in planar lipid bilayers and biological membranes, resulting in an inability to intoxicate cells through either apoptotic or necrotic pathways. These findings along with the unexpected similarities uncovered between the pore-forming “hotspots” of TcdB and the well-characterized ?-helical diphtheria toxin translocation domain provide insights into the structure and mechanism of formation of the translocation pore for this important class of pathogenic toxins. PMID:24567384

  2. Jejunal Cancer with WRN Mutation Identified from Next-Generation Sequencing: A Case Study and Minireview

    PubMed Central

    Chang, Christopher; Shiah, Her-Shyong; Hsu, Nan-Yung; Huang, Hsiu-Ying; Chu, Jan-Show; Yen, Yun

    2014-01-01

    Small bowel cancer is a rare, gastrointestinal cancer originating from the small intestines. Carcinogenesis in the jejunum, the middle segment of the small intestines, occurs less commonly than in the duodenum and ileum. Despite the increasing incidences globally, the cancer is still poorly understood, which includes lack of pathological understanding and etiological reasoning, as it seems to exhibit both similarities and differences with other types of cancers. A 76-year-old Asian man was presented with abdominal pain, which was later attributed to an adenocarcinoma in the jejunum. Initial immunoreactive staining results found no connections to colorectal cancer. The microsatellite instability test was further examined by immunohistochemistry which revealed them to be wild-type. From our exome-capture sequencing results, mutations of WRN may be important as they represent the only genetic defect in this jejunal cancer. The patient has since undergone surgical resection of his cancer and is currently being treated with chemotherapy. The pathology, genomic markers, and treatments are described along with literature review. PMID:25018888

  3. Characterization of Mutations in the CPO Gene in British Patients Demonstrates Absence of Genotype-Phenotype Correlation and Identifies Relationship between Hereditary Coproporphyria and Harderoporphyria

    PubMed Central

    Lamoril, Jérôme; Puy, Hervé; Whatley, Sharon D.; Martin, Caroline; Woolf, Jacqueline R.; Da Silva, Vasco; Deybach, Jean-Charles; Elder, George H.

    2001-01-01

    Hereditary coproporphyria (HCP) is the least common of the autosomal dominant acute hepatic porphyrias. It results from mutations in the CPO gene that encodes the mitochondrial enzyme, coproporphyrinogen oxidase. A few patients have also been reported who are homoallellic or heteroallelic for CPO mutations and are clinically distinct from those with HCP. In such patients the presence of a specific mutation (K404E) on one or both alleles produces a neonatal hemolytic anemia that is known as “harderoporphyria”; mutations on both alleles elsewhere in the gene give rise to the “homozygous” variant of HCP. The molecular relationship between these disorders and HCP has not been defined. We describe the molecular investigation and clinical features of 17 unrelated British patients with HCP. Ten novel and four previously reported CPO mutations, together with three previously unrecognized single-nucleotide polymorphisms, were identified in 15 of the 17 patients. HCP is more heterogeneous than other acute porphyrias, with all but one mutation being restricted to a single family, with a predominance of missense mutations (10 missense, 2 nonsense, 1 frameshift, and 1 splice site). Of the four known mutations, one (R331W) has previously been reported to cause disease only in homozygotes. Heterologous expression of another mutation (R401W) demonstrated functional properties similar to those of the K404E harderoporphyria mutation. In all patients, clinical presentation was uniform, in spite of the wide range (1%–64%) of residual coproporphyrinogen oxidase activity, as determined by heterologous expression. Our findings add substantially to knowledge of the molecular epidemiology of HCP, show that single copies of CPO mutations that are known or predicted to cause “homozygous” HCP or harderoporphyria can produce typical HCP in adults, and demonstrate that the severity of the phenotype does not correlate with the degree of inactivation by mutation of coproporphyrinogen oxidase. PMID:11309681

  4. Characterization of mutations in the CPO gene in British patients demonstrates absence of genotype-phenotype correlation and identifies relationship between hereditary coproporphyria and harderoporphyria.

    PubMed

    Lamoril, J; Puy, H; Whatley, S D; Martin, C; Woolf, J R; Da Silva, V; Deybach, J C; Elder, G H

    2001-05-01

    Hereditary coproporphyria (HCP) is the least common of the autosomal dominant acute hepatic porphyrias. It results from mutations in the CPO gene that encodes the mitochondrial enzyme, coproporphyrinogen oxidase. A few patients have also been reported who are homoallellic or heteroallelic for CPO mutations and are clinically distinct from those with HCP. In such patients the presence of a specific mutation (K404E) on one or both alleles produces a neonatal hemolytic anemia that is known as "harderoporphyria"; mutations on both alleles elsewhere in the gene give rise to the "homozygous" variant of HCP. The molecular relationship between these disorders and HCP has not been defined. We describe the molecular investigation and clinical features of 17 unrelated British patients with HCP. Ten novel and four previously reported CPO mutations, together with three previously unrecognized single-nucleotide polymorphisms, were identified in 15 of the 17 patients. HCP is more heterogeneous than other acute porphyrias, with all but one mutation being restricted to a single family, with a predominance of missense mutations (10 missense, 2 nonsense, 1 frameshift, and 1 splice site). Of the four known mutations, one (R331W) has previously been reported to cause disease only in homozygotes. Heterologous expression of another mutation (R401W) demonstrated functional properties similar to those of the K404E harderoporphyria mutation. In all patients, clinical presentation was uniform, in spite of the wide range (1%-64%) of residual coproporphyrinogen oxidase activity, as determined by heterologous expression. Our findings add substantially to knowledge of the molecular epidemiology of HCP, show that single copies of CPO mutations that are known or predicted to cause "homozygous" HCP or harderoporphyria can produce typical HCP in adults, and demonstrate that the severity of the phenotype does not correlate with the degree of inactivation by mutation of coproporphyrinogen oxidase. PMID:11309681

  5. Germline MLH1 Mutations Are Frequently Identified in Lynch Syndrome Patients With Colorectal and Endometrial Carcinoma Demonstrating Isolated Loss of PMS2 Immunohistochemical Expression.

    PubMed

    Dudley, Beth; Brand, Randall E; Thull, Darcy; Bahary, Nathan; Nikiforova, Marina N; Pai, Reetesh K

    2015-08-01

    Current guidelines on germline mutation testing for patients suspected of having Lynch syndrome are not entirely clear in patients with tumors demonstrating isolated loss of PMS2 immunohistochemical expression. We analyzed the clinical and pathologic features of patients with tumors demonstrating isolated loss of PMS2 expression in an attempt to (1) determine the frequency of germline MLH1 and PMS2 mutations and (2) correlate mismatch-repair protein immunohistochemistry and tumor histology with germline mutation results. A total of 3213 consecutive colorectal carcinomas and 215 consecutive endometrial carcinomas were prospectively analyzed for DNA mismatch-repair protein expression by immunohistochemistry. In total, 32 tumors from 31 patients demonstrated isolated loss of PMS2 immunohistochemical expression, including 16 colorectal carcinomas and 16 endometrial carcinomas. Microsatellite instability (MSI) polymerase chain reaction was performed in 29 tumors from 28 patients with the following results: 28 tumors demonstrated high-level MSI, and 1 tumor demonstrated low-level MSI. Twenty of 31 (65%) patients in the study group had tumors demonstrating histopathology associated with high-level MSI. Seventeen patients underwent germline mutation analysis with the following results: 24% with MLH1 mutations, 35% with PMS2 mutations, 12% with PMS2 variants of undetermined significance, and 29% with no mutations in either MLH1 or PMS2. Three of the 4 patients with MLH1 germline mutations had a mutation that results in decreased stability and quantity of the MLH1 protein that compromises the MLH1-PMS2 protein complex, helping to explain the presence of immunogenic but functionally inactive MLH1 protein within the tumor. The high frequency of MLH1 germline mutations identified in our study has important implications for testing strategies in patients suspected of having Lynch syndrome and indicates that patients with tumors demonstrating isolated loss of PMS2 expression without a germline PMS2 mutation must have MLH1 mutation analysis performed. PMID:25871621

  6. Analysis of Hyperekplexia Mutations Identifies Transmembrane Domain Rearrangements That Mediate Glycine Receptor Activation*

    PubMed Central

    Bode, Anna; Lynch, Joseph W.

    2013-01-01

    Pentameric ligand-gated ion channels (pLGICs) mediate numerous physiological processes and are therapeutic targets for a wide range of clinical indications. Elucidating the structural differences between their closed and open states may help in designing improved drugs that bias receptors toward the desired conformational state. We recently showed that two new hyperekplexia mutations, Q226E and V280M, induced spontaneous activity in ?1 glycine receptors. Gln-226, located near the top of transmembrane (TM) 1, is closely apposed to Arg-271 at the top of TM2 in the neighboring subunit. Using mutant cycle analysis, we inferred that Q226E induces activation via an enhanced electrostatic attraction to Arg-271. This would tilt the top of TM2 toward TM1 and hence away from the pore axis to open the channel. We also concluded that the increased side chain volume of V280M, in the TM2-TM3 loop, exerts a steric repulsion against Ile-225 at the top of TM1 in the neighboring subunit. We infer that this steric repulsion would tilt the top of TM3 radially outwards against the stationary TM1 and thus provide space for TM2 to relax away from the pore axis to create an open channel. Because the transmembrane domain movements inferred from this functional analysis are consistent with the structural differences evident in the x-ray atomic structures of closed and open state bacterial pLGICs, we propyose that the model of pLGIC activation as outlined here may be broadly applicable across the eukaryotic pLGIC receptor family. PMID:24097980

  7. Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia

    PubMed Central

    Samuels, Mark E; Majewski, Jacek; Alirezaie, Najmeh; Fernandez, Isabel; Casals, Ferran; Patey, Natalie; Decaluwe, Hélčne; Gosselin, Isabelle; Haddad, Elie; Hodgkinson, Alan; Idaghdour, Youssef; Marchand, Valerie; Michaud, Jacques L; Rodrigue, Marc-André; Desjardins, Sylvie; Dubois, Stéphane; Le Deist, Francoise; Awadalla, Philip; Raymond, Vincent; Maranda, Bruno

    2013-01-01

    Background Congenital multiple intestinal atresia (MIA) is a severe, fatal neonatal disorder, involving the occurrence of obstructions in the small and large intestines ultimately leading to organ failure. Surgical interventions are palliative but do not provide long-term survival. Severe immunodeficiency may be associated with the phenotype. A genetic basis for MIA is likely. We had previously ascertained a cohort of patients of French-Canadian origin, most of whom were deceased as infants or in utero. The goal of the study was to identify the molecular basis for the disease in the patients of this cohort. Methods We performed whole exome sequencing on samples from five patients of four families. Validation of mutations and familial segregation was performed using standard Sanger sequencing in these and three additional families with deceased cases. Exon skipping was assessed by reverse transcription-PCR and Sanger sequencing. Results Five patients from four different families were each homozygous for a four base intronic deletion in the gene TTC7A, immediately adjacent to a consensus GT splice donor site. The deletion was demonstrated to have deleterious effects on splicing causing the skipping of the attendant upstream coding exon, thereby leading to a predicted severe protein truncation. Parents were heterozygous carriers of the deletion in these families and in two additional families segregating affected cases. In a seventh family, an affected case was compound heterozygous for the same 4bp deletion and a second missense mutation p.L823P, also predicted as pathogenic. No other sequenced genes possessed deleterious variants explanatory for all patients in the cohort. Neither mutation was seen in a large set of control chromosomes. Conclusions Based on our genetic results, TTC7A is the likely causal gene for MIA. PMID:23423984

  8. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma

    PubMed Central

    Araf, Shamzah; Yang, Cheng-Yuan; Pan, Chenyi; Boller, Sören; Cittaro, Davide; Bozek, Monika; Iqbal, Sameena; Matthews, Janet; Wrench, David; Marzec, Jacek; Tawana, Kiran; Popov, Nikolay; O’Riain, Ciaran; O’Shea, Derville; Carlotti, Emanuela; Davies, Andrew; Lawrie, Charles H.; Matolcsy, Andras; Calaminici, Maria; Norton, Andrew; Byers, Richard J.; Mein, Charles; Stupka, Elia; Lister, T. Andrew; Lenz, Georg; Montoto, Silvia; Gribben, John G.; Fan, Yuhong; Grosschedl, Rudolf; Chelala, Claude; Fitzgibbon, Jude

    2013-01-01

    Follicular lymphoma (FL) is an incurable malignancy1, with transformation to an aggressive subtype being a critical event during disease progression. Here we performed whole genome or exome sequencing on 10 FL-transformed FL pairs, followed by deep sequencing of 28 genes in an extension cohort and report the key events and evolutionary processes governing initiation and transformation. Tumor evolution occurred through either a ‘rich’ or ‘sparse’ ancestral common progenitor clone (CPC). We identified recurrent mutations in linker histones, JAK-STAT signaling, NF-?B signaling and B-cell development genes. Longitudinal analyses revealed chromatin regulators (CREBBP, EZH2 and MLL2) as early driver genes, whilst mutations in EBF1 and regulators of NF-?B signaling (MYD88 and TNFAIP3) were gained at transformation. Collectively, this study provides novel insights into the genetic basis of follicular lymphoma, the clonal dynamics of transformation and suggests that personalizing therapies to target key genetic alterations within the CPC represents an attractive therapeutic strategy. PMID:24362818

  9. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations.

    PubMed Central

    Elrod-Erickson, M J; Kaiser, C A

    1996-01-01

    Although convergent evidence suggests that proteins destined for export from the endoplasmic reticulum (ER) are separated from resident ER proteins and are concentrated into transport vesicles, the proteins that regulate this process have remained largely unknown. In a screen for suppressors of mutations in the essential COPII gene SEC13, we identified three genes (BST1, BST2/EMP24, and BST3) that negatively regulate COPII vesicle formation, preventing the production of vesicles with defective or missing subunits. Mutations in these genes slow the secretion of some secretory proteins and cause the resident ER proteins Kar2p and Pdi1p to leak more rapidly from the ER, indicating that these genes are also required for proper discrimination between resident ER proteins and Golgi-bound cargo molecules. The BST1 and BST2/EMP24 genes code for integral membrane proteins that reside predominantly in the ER. Our data suggest that the BST gene products represent a novel class of ER proteins that link the regulation of vesicle coat assembly to cargo sorting. Images PMID:8862519

  10. A founder AGL mutation causing glycogen storage disease type IIIa in Inuit identified through whole-exome sequencing: a case series

    PubMed Central

    Rousseau-Nepton, Isabelle; Okubo, Minoru; Grabs, Rosemarie; Mitchell, John; Polychronakos, Constantin; Rodd, Celia

    2015-01-01

    Background: Glycogen storage disease type III is caused by mutations in both alleles of the AGL gene, which leads to reduced activity of glycogen-debranching enzyme. The clinical picture encompasses hypoglycemia, with glycogen accumulation leading to hepatomegaly and muscle involvement (skeletal and cardiac). We sought to identify the genetic cause of this disease within the Inuit community of Nunavik, in whom previous DNA sequencing had not identified such mutations. Methods: Five Inuit children with a clinical and biochemical diagnosis of glycogen storage disease type IIIa were recruited to undergo genetic testing: 2 underwent whole-exome sequencing and all 5 underwent Sanger sequencing to confirm the identified mutation. Selected DNA regions near the AGL gene were also sequenced to identify a potential founder effect in the community. In addition, control samples from 4 adults of European descent and 7 family members of the affected children were analyzed for the specific mutation by Sanger sequencing. Results: We identified a homozygous frame-shift deletion, c.4456delT, in exon 33 of the AGL gene in 2 children by whole-exome sequencing. Confirmation by Sanger sequencing showed the same mutation in all 5 patients, and 5 family members were found to be carriers. With the identification of this mutation in 5 probands, the estimated prevalence of genetically confirmed glycogen storage disease type IIIa in this region is among the highest worldwide (1:2500). Despite identical mutations, we saw variations in clinical features of the disease. Interpretation: Our detection of a homozygous frameshift mutation in 5 Inuit children determines the cause of glycogen storage disease type IIIa and confirms a founder effect. PMID:25602008

  11. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category.

    PubMed

    Metzeler, Klaus H; Becker, Heiko; Maharry, Kati; Radmacher, Michael D; Kohlschmidt, Jessica; Mrózek, Krzysztof; Nicolet, Deedra; Whitman, Susan P; Wu, Yue-Zhong; Schwind, Sebastian; Powell, Bayard L; Carter, Thomas H; Wetzler, Meir; Moore, Joseph O; Kolitz, Jonathan E; Baer, Maria R; Carroll, Andrew J; Larson, Richard A; Caligiuri, Michael A; Marcucci, Guido; Bloomfield, Clara D

    2011-12-22

    The associations of mutations in the enhancer of trithorax and polycomb family gene ASXL1 with pretreatment patient characteristics, outcomes, and gene-/microRNA-expression profiles in primary cytogenetically normal acute myeloid leukemia (CN-AML) are unknown. We analyzed 423 adult patients for ASXL1 mutations, other prognostic gene mutations, and gene-/microRNA-expression profiles. ASXL1 mutations were 5 times more common in older (? 60 years) patients (16.2%) than those younger than 60 years (3.2%; P < .001). Among older patients, ASXL1 mutations associated with wild-type NPM1 (P < .001), absence of FLT3-internal tandem duplications (P = .002), mutated CEBPA (P = .01), and with inferior complete remission (CR) rate (P = .04), disease-free survival (DFS; P = .03), overall survival (OS; P = .006), and event-free survival (EFS; P = .002). Within the European LeukemiaNet (ELN) genetic categories of older CN-AML, ASXL1 mutations associated with inferior CR rate (P = .02), OS (P < .001), and EFS (P < .001) among ELN Favorable, but not among ELN Intermediate-I patients. Multivariable analyses confirmed associations of ASXL1 mutations with unfavorable CR rate (P = .03), DFS (P < .001), OS (P < .001), and EFS (P < .001) among ELN Favorable patients. We identified an ASXL1 mutation-associated gene-expression signature, but no microRNA-expression signature. This first study of ASXL1 mutations in primary CN-AML demonstrates that ASXL1-mutated older patients, particularly within the ELN Favorable group, have unfavorable outcomes and may be candidates for experimental treatment approaches. PMID:22031865

  12. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category

    PubMed Central

    Metzeler, Klaus H.; Becker, Heiko; Maharry, Kati; Radmacher, Michael D.; Kohlschmidt, Jessica; Mrózek, Krzysztof; Nicolet, Deedra; Whitman, Susan P.; Wu, Yue-Zhong; Schwind, Sebastian; Powell, Bayard L.; Carter, Thomas H.; Wetzler, Meir; Moore, Joseph O.; Kolitz, Jonathan E.; Baer, Maria R.; Carroll, Andrew J.; Larson, Richard A.; Caligiuri, Michael A.; Marcucci, Guido

    2011-01-01

    The associations of mutations in the enhancer of trithorax and polycomb family gene ASXL1 with pretreatment patient characteristics, outcomes, and gene-/microRNA-expression profiles in primary cytogenetically normal acute myeloid leukemia (CN-AML) are unknown. We analyzed 423 adult patients for ASXL1 mutations, other prognostic gene mutations, and gene-/microRNA-expression profiles. ASXL1 mutations were 5 times more common in older (? 60 years) patients (16.2%) than those younger than 60 years (3.2%; P < .001). Among older patients, ASXL1 mutations associated with wild-type NPM1 (P < .001), absence of FLT3-internal tandem duplications (P = .002), mutated CEBPA (P = .01), and with inferior complete remission (CR) rate (P = .04), disease-free survival (DFS; P = .03), overall survival (OS; P = .006), and event-free survival (EFS; P = .002). Within the European LeukemiaNet (ELN) genetic categories of older CN-AML, ASXL1 mutations associated with inferior CR rate (P = .02), OS (P < .001), and EFS (P < .001) among ELN Favorable, but not among ELN Intermediate-I patients. Multivariable analyses confirmed associations of ASXL1 mutations with unfavorable CR rate (P = .03), DFS (P < .001), OS (P < .001), and EFS (P < .001) among ELN Favorable patients. We identified an ASXL1 mutation-associated gene-expression signature, but no microRNA-expression signature. This first study of ASXL1 mutations in primary CN-AML demonstrates that ASXL1mutated older patients, particularly within the ELN Favorable group, have unfavorable outcomes and may be candidates for experimental treatment approaches. PMID:22031865

  13. Recessive RYR1 mutations in a patient with severe congenital nemaline myopathy with ophthalomoplegia identified through massively parallel sequencing.

    PubMed

    Kondo, Eri; Nishimura, Takafumi; Kosho, Tomoki; Inaba, Yuji; Mitsuhashi, Satomi; Ishida, Takefumi; Baba, Atsushi; Koike, Kenichi; Nishino, Ichizo; Nonaka, Ikuya; Furukawa, Toru; Saito, Kayoko

    2012-04-01

    Nemaline myopathy (NM) is a group of congenital myopathies, characterized by the presence of distinct rod-like inclusions "nemaline bodies" in the sarcoplasm of skeletal muscle fibers. To date, ACTA1, NEB, TPM3, TPM2, TNNT1, and CFL2 have been found to cause NM. We have identified recessive RYR1 mutations in a patient with severe congenital NM, through high-throughput screening of congenital myopathy/muscular dystrophy-related genes using massively parallel sequencing with target gene capture. The patient manifested fetal akinesia, neonatal severe hypotonia with muscle weakness, respiratory insufficiency, swallowing disturbance, and ophthalomoplegia. Skeletal muscle histology demonstrated nemaline bodies and small type 1 fibers, but without central cores or minicores. Congenital myopathies, a molecularly, histopathologically, and clinically heterogeneous group of disorders are considered to be a good candidate for massively parallel sequencing. PMID:22407809

  14. Whole exome sequencing identifies a POLRID mutation segregating in a father and two daughters with findings of Klippel-Feil and Treacher Collins syndromes.

    PubMed

    Giampietro, Philip F; Armstrong, Linlea; Stoddard, Alex; Blank, Robert D; Livingston, Janet; Raggio, Cathy L; Rasmussen, Kristen; Pickart, Michael; Lorier, Rachel; Turner, Amy; Sund, Sarah; Sobrera, Nara; Neptune, Enid; Sweetser, David; Santiago-Cornier, Alberto; Broeckel, Ulrich

    2015-01-01

    We report on a father and his two daughters diagnosed with Klippel-Feil syndrome (KFS) but with craniofacial differences (zygomatic and mandibular hypoplasia and cleft palate) and external ear abnormalities suggestive of Treacher Collins syndrome (TCS). The diagnosis of KFS was favored, given that the neck anomalies were the predominant manifestations, and that the diagnosis predated later recognition of the association between spinal segmentation abnormalities and TCS. Genetic heterogeneity and the rarity of large families with KFS have limited the ability to identify mutations by traditional methods. Whole exome sequencing identified a nonsynonymous mutation in POLR1D (subunit of RNA polymerase I and II): exon2:c.T332C:p.L111P. Mutations in POLR1D are present in about 5% of individuals diagnosed with TCS. We propose that this mutation is causal in this family, suggesting a pathogenetic link between KFS and TCS. PMID:25348728

  15. Novel A219P Mutation of Hydroxymethylbilane Synthase Identified in a Chinese Woman with Acute Intermittent Porphyria and Syndrome of Inappropriate Antidiuretic Hormone.

    PubMed

    Li, Yingjie; Qu, Hua; Wang, Hang; Deng, Huacong; Liu, Ziyan

    2015-07-01

    Acute intermittent porphyria (AIP) is an autosomal dominant metabolic disorder caused by deficiency of the heme biosynthetic enzyme hydroxymethylbilane synthase (approved gene symbol HMBS), also known as porphobilinogen deaminase (PBGD). AIP is characterised by intermittent attacks of abdominal pain, vomiting, and neurological complaints. The highly variable symptomatic presentation of AIP causes confusion with other diseases and results in a high misdiagnosis rate (68% in China) and delayed effective treatments. Based on biochemical and genetic analysis of two Chinese families, a new and a previously reported HMBS mutation were identified in patients with AIP and syndrome of inappropriate antidiuretic hormone (SIADH). The novel HMBS mutation is the 655G>C point mutation (A219P). In addition, the 973C>T point mutation (R325X), which had been previously reported in two Danish families, was identified. PMID:25787008

  16. Driver mutations among never smoking female lung cancer tissues in China identify unique EGFR and KRAS mutation pattern associated with household coal burning

    PubMed Central

    Hosgood, H. Dean; Pao, William; Rothman, Nathaniel; Hu, Wei; Pan, Yumei Helen; Kuchinsky, Kyle; Jones, Kirk D.; Xu, Jun; Vermeulen, Roel; Simko, Jeff; Lan, Qing

    2013-01-01

    Lung cancer in never smokers, which has been partially attributed to household solid fuel use (i.e coal), is etiologically and clinically different from lung cancer attributed to tobacco smoking. To explore the spectrum of driver mutations among lung cancer tissues from never smokers, specifically in a population where high lung cancer rates have been attributed to indoor air pollution from domestic coal use, multiplexed assays were used to detect >40 point mutations, insertions, and deletions (EGFR, KRAS, BRAF, HER2, NRAS, PIK3CA, MEK1, AKT1, and PTEN) among the lung tumors of confirmed never smoking females from Xuanwei, China [32 adenocarcinomas (ADCs), 7 squamous cell carcinomas (SCCs), 1 adenosquamous carcinoma (ADSC)]. EGFR mutations were detected in 35% of tumors. 46% of these involved EGFR exon 18 G719X, while 14% were exon 21 L858R mutations. KRAS mutations, all of which were G12C_34G>T, were observed in 15% of tumors. EGFR and KRAS mutations were mutually exclusive, and no mutations were observed in the other tested genes. Most point mutations were transversions and were also found in tumors from patients who used coal in their homes. Our high mutation frequencies in EGFR exon 18 and KRAS and low mutation frequency in EGFR exon 21 are strikingly divergent from those in other smoking and never smoking populations from Asia. Given that our subjects live in a region where coal is typically burned indoors, our findings provide new insights into the pathogenesis of lung cancer among never smoking females exposed to indoor air pollution from coal. PMID:24055406

  17. 20 ans aprčs: a second mutation in MAOA identified by targeted high-throughput sequencing in a family with altered behavior and cognition

    PubMed Central

    Piton, Amélie; Poquet, Hélčne; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlčne; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis

    2014-01-01

    Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene–environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients. PMID:24169519

  18. Whole-exome sequencing identifies a de novo TUBA1A mutation in a patient with sporadic malformations of cortical development: a case report

    PubMed Central

    2014-01-01

    Background Owing to the number of genetic mutations that contribute to malformations of cortical development, identification of causative mutations in candidate genes is challenging. To overcome these challenges, we performed whole-exome sequencing in this study. Case presentation A Japanese patient presented with microcephaly and severe developmental delay. Brain magnetic resonance imaging showed the presence of colpocephaly associated with lateral ventricle dilatation and the presence of a simplified gyral pattern. Hypoplasia of the corpus callosum and cerebellar vermis were also noted. Because Sanger sequencing is expensive, laborious, and time-consuming, whole-exome sequencing was performed and a de novo missense mutation in TUBA1A (E27Q) was identified. Conclusion The novel mutation identified in this study was located in the genetic region that encodes the N-terminal domain of TUBA1A, a region of TUBA1A with few reported mutations. Retrospective assessment of the clinical and radiological features of this patient?i.e., microcephaly, lissencephaly (pachygyria) with cerebellar hypoplasia, and corpus callosum hypoplasia?indicated that the TUBA1A mutation did not lead to any contradictions. Because rapid and comprehensive mutation analysis by whole-exome sequencing is time- and cost-effective, it might be useful for genetic counseling of patients with sporadic malformations of cortical development. PMID:25053001

  19. Autosomal Dominant Familial Dyskinesia and Facial Myokymia: Single Exome Sequencing Identifies a Mutation in Adenylate Cyclase 5

    PubMed Central

    Chen, Ying-Zhang; Matsushita, Mark M.; Robertson, Peggy; Rieder, Mark; Girirajan, Santhosh; Antonacci, Francesca; Lipe, Hillary; Eichler, Evan E.; Nickerson, Deborah A.; Bird, Thomas D.; Raskind, Wendy H.

    2012-01-01

    Background Familial dyskinesia with facial myokymia (FDFM) is an autosomal dominant disorder that is exacerbated by anxiety. In a five-generation family of German ancestry we previously mapped FDFM to chromosome 3p21-3q21. The 72.5 Mbp linkage region was too large for traditional positional mutation identification. Objective To identify the gene responsible for FDFM by exome resequencing of a single affected individual. Design, Setting and Participants We performed whole exome sequencing in one affected individual and used a series of bioinformatic filters, including functional significance and presence in dbSNP or 1000 Genomes project, to reduce the number of candidate variants. Co-segregation analysis was performed in 15 additional individuals in three generations. Results The exome contained 23428 single nucleotide variants, of which 9391 were missense, nonsense or splice site alterations. The critical region contained 323 variants, five of which were not present in one of the sequence-databases. Adenylate cyclase 5 (ADCY5) was the only gene in which the variant (c.2176G>A) was co-transmitted perfectly with disease status and was not present in 3510 control Caucasian exomes. This residue is highly conserved and the change is nonconservative and predicted to be damaging. Conclusions ADCY5 is highly expressed in striatum. Mice deficient in Adcy5 develop a movement disorder that is worsened by stress. We conclude that FDFM likely results from a missense mutation in ADCY5. This study demonstrates the power of a single exome sequence in combination with linkage information to identify causative genes for rare autosomal dominant Mendelian diseases. PMID:22782511

  20. Generating and identifying axolotls with targeted mutations using Cas9 RNA-guided nuclease.

    PubMed

    Flowers, G Parker; Crews, Craig M

    2015-01-01

    The CRISPR/Cas9 RNA-guided nuclease now enables a reverse genetics approach to investigate the function of genes of interest during regeneration in the axolotl. The process of generating the constructs necessary for targeting a gene of interest is considerably less labor intensive than for other methods of targeted mutagenesis such as Zinc finger nucleases or Transcription activator-like effector nucleases. Here, we describe the identification of targetable sequences in the gene of interest, the construction of unique guide RNAs, the microinjection of these RNAs with Cas9-encoding mRNA, the selection of well-injected animals, and an inexpensive, PCR-based method for identifying highly mutagenized animals. PMID:25740494

  1. Whole-exome sequencing identifies MYO15A mutations as a cause of autosomal recessive nonsyndromic hearing loss in Korean families

    PubMed Central

    2013-01-01

    Background The genetic heterogeneity of hearing loss makes genetic diagnosis expensive and time consuming using available methods. Whole-exome sequencing has recently been introduced as an alternative approach to identifying causative mutations in Mendelian disorders. Methods To identify the hidden mutations that cause autosomal recessive nonsyndromic hearing loss (ARNSHL), we performed whole-exome sequencing of 13 unrelated Korean small families with ARNSHL who were negative for GJB2 or SLC26A4 mutations. Results We found two novel compound heterozygous mutations, IVS11?+?1 and p.R2146Q, of MYO15A in one (SR903 family) of the 13 families with ARNSHL. In addition to these causative mutations, 13 nonsynonymous variants, including variants with uncertain pathogenicity (SR285 family), were identified in the coding exons of MYO15A from Korean exomes. Conclusion This is the first report of MYO15A mutations in an East Asian population. We suggest that close attention should be paid to this gene when performing genetic testing of patients with hearing loss in East Asia. The present results also indicate that whole-exome sequencing is a valuable method for comprehensive medical diagnosis of a genetically heterogeneous recessive disease, especially in small-sized families. PMID:23865914

  2. High-Throughput Mutation Profiling of Primary and Metastatic Endometrial Cancers Identifies KRAS, FGFR2 and PIK3CA to Be Frequently Mutated

    PubMed Central

    Seidel, Danila; Kusonmano, Kanthida; Petersen, Kjell; Mjřs, Siv; Hoivik, Erling A.; Wik, Elisabeth; Halle, Mari Kyllesř; Řyan, Anne M.; Kalland, Karl-Henning; Werner, Henrica Maria Johanna; Trovik, Jone; Salvesen, Helga

    2012-01-01

    Background Despite being the most common pelvic gynecologic malignancy in industrialized countries, no targeted therapies are available for patients with metastatic endometrial carcinoma. In order to improve treatment, underlying molecular characteristics of primary and metastatic disease must be explored. Methodology/Principal Findings We utilized the mass spectrometric-based mutation detection technology OncoMap to define the types and frequency of point somatic mutations in endometrial cancer. 67 primary tumors, 15 metastases corresponding to 7 of the included primary tumors and 11 endometrial cancer cell lines were screened for point mutations in 28 known oncogenes. We found that 27 (40.3%) of 67 primary tumors harbored one or more mutations with no increase in metastatic lesions. FGFR2, KRAS and PIK3CA were consistently the most frequently mutated genes in primary tumors, metastatic lesions and cell lines. Conclusions/Significance Our results emphasize the potential for targeting FGFR2, KRAS and PIK3CA mutations in endometrial cancer for development of novel therapeutic strategies. PMID:23300780

  3. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects.

    PubMed

    Onoufriadis, Alexandros; Shoemark, Amelia; Schmidts, Miriam; Patel, Mitali; Jimenez, Gina; Liu, Hui; Thomas, Biju; Dixon, Mellisa; Hirst, Robert A; Rutman, Andrew; Burgoyne, Thomas; Williams, Christopher; Scully, Juliet; Bolard, Florence; Lafitte, Jean-Jacques; Beales, Philip L; Hogg, Claire; Yang, Pinfen; Chung, Eddie M K; Emes, Richard D; O'Callaghan, Christopher; Bouvagnet, Patrice; Mitchison, Hannah M

    2014-07-01

    Primary ciliary dyskinesia (PCD) is an inherited chronic respiratory obstructive disease with randomized body laterality and infertility, resulting from cilia and sperm dysmotility. PCD is characterized by clinical variability and extensive genetic heterogeneity, associated with different cilia ultrastructural defects and mutations identified in >20 genes. Next generation sequencing (NGS) technologies therefore present a promising approach for genetic diagnosis which is not yet in routine use. We developed a targeted panel-based NGS pipeline to identify mutations by sequencing of selected candidate genes in 70 genetically undefined PCD patients. This detected loss-of-function RSPH1 mutations in four individuals with isolated central pair (CP) agenesis and normal body laterality, from two unrelated families. Ultrastructural analysis in RSPH1-mutated cilia revealed transposition of peripheral outer microtubules into the 'empty' CP space, accompanied by a distinctive intermittent loss of the central pair microtubules. We find that mutations in RSPH1, RSPH4A and RSPH9, which all encode homologs of components of the 'head' structure of ciliary radial spoke complexes identified in Chlamydomonas, cause clinical phenotypes that appear to be indistinguishable except at the gene level. By high-resolution immunofluorescence we identified a loss of RSPH4A and RSPH9 along with RSPH1 from RSPH1-mutated cilia, suggesting RSPH1 mutations may result in loss of the entire spoke head structure. CP loss is seen in up to 28% of PCD cases, in whom laterality determination specified by CP-less embryonic node cilia remains undisturbed. We propose this defect could arise from instability or agenesis of the ciliary central microtubules due to loss of their normal radial spoke head tethering. PMID:24518672

  4. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects

    PubMed Central

    Onoufriadis, Alexandros; Shoemark, Amelia; Schmidts, Miriam; Patel, Mitali; Jimenez, Gina; Liu, Hui; Thomas, Biju; Dixon, Mellisa; Hirst, Robert A.; Rutman, Andrew; Burgoyne, Thomas; Williams, Christopher; Scully, Juliet; Bolard, Florence; Lafitte, Jean-Jacques; Beales, Philip L.; Hogg, Claire; Yang, Pinfen; Chung, Eddie M.K.; Emes, Richard D.; O'Callaghan, Christopher; Bouvagnet, Patrice; Mitchison, Hannah M.

    2014-01-01

    Primary ciliary dyskinesia (PCD) is an inherited chronic respiratory obstructive disease with randomized body laterality and infertility, resulting from cilia and sperm dysmotility. PCD is characterized by clinical variability and extensive genetic heterogeneity, associated with different cilia ultrastructural defects and mutations identified in >20 genes. Next generation sequencing (NGS) technologies therefore present a promising approach for genetic diagnosis which is not yet in routine use. We developed a targeted panel-based NGS pipeline to identify mutations by sequencing of selected candidate genes in 70 genetically undefined PCD patients. This detected loss-of-function RSPH1 mutations in four individuals with isolated central pair (CP) agenesis and normal body laterality, from two unrelated families. Ultrastructural analysis in RSPH1-mutated cilia revealed transposition of peripheral outer microtubules into the ‘empty’ CP space, accompanied by a distinctive intermittent loss of the central pair microtubules. We find that mutations in RSPH1, RSPH4A and RSPH9, which all encode homologs of components of the ‘head’ structure of ciliary radial spoke complexes identified in Chlamydomonas, cause clinical phenotypes that appear to be indistinguishable except at the gene level. By high-resolution immunofluorescence we identified a loss of RSPH4A and RSPH9 along with RSPH1 from RSPH1-mutated cilia, suggesting RSPH1 mutations may result in loss of the entire spoke head structure. CP loss is seen in up to 28% of PCD cases, in whom laterality determination specified by CP-less embryonic node cilia remains undisturbed. We propose this defect could arise from instability or agenesis of the ciliary central microtubules due to loss of their normal radial spoke head tethering. PMID:24518672

  5. Fifteen Novel EIF2B1-5 Mutations Identified in Chinese Children with Leukoencephalopathy with Vanishing White Matter and a Long Term Follow-Up

    PubMed Central

    Zhang, Haihua; Dai, Lifang; Chen, Na; Zang, Lili; Leng, Xuerong; Du, Li; Wang, Jingmin; Jiang, Yuwu; Zhang, Feng; Wu, Xiru; Wu, Ye

    2015-01-01

    Leukoencephalopathy with vanishing white matter (VWM) is one of the most prevalent inherited childhood white matter disorders, which caused by mutations in each of the five subunits of eukaryotic translation initiation factor 2B (EIF2B1-5). In our study, 34 out of the 36 clinically diagnosed children (94%) were identified to have EIF2B1-5 mutations by sequencing. 15 novel mutations were identified. CNVs were not detected in patients with only one mutant allele and mutation-negative determined by gene sequencing. There is a significantly higher incidence of patients with EIF2B3 mutations compared with Caucasian patients (32% vs. 4%). c.1037T>C (p.Ile346Thr) in EIF2B3 was confirmed to be a founder mutation in Chinese, which probably one of the causes of the genotypic differences between ethnicities. Our average 4.4 years-follow-up on infantile, early childhood and juvenile VWM children suggested a rapid deterioration in motor function. Episodic aggravation was presented in 90% of infantile cases and 71.4% of childhood cases. 10 patients died during the follow-up. The Kaplan-Meier curve showed that the median survival time is 8.83 ± 1.51 years. This is the largest sample of children in a VWM follow-up study, which is helpful for a more depth understanding about the natural course. PMID:25761052

  6. Target enrichment and high-throughput sequencing of 80 ribosomal protein genes to identify mutations associated with Diamond-Blackfan anaemia.

    PubMed

    Gerrard, Gareth; Valgańón, Mikel; Foong, Hui En; Kasperaviciute, Dalia; Iskander, Deena; Game, Laurence; Müller, Michael; Aitman, Timothy J; Roberts, Irene; de la Fuente, Josu; Foroni, Letizia; Karadimitris, Anastasios

    2013-08-01

    Diamond-Blackfan anaemia (DBA) is caused by inactivating mutations in ribosomal protein (RP) genes, with mutations in 13 of the 80 RP genes accounting for 50-60% of cases. The remaining 40-50% cases may harbour mutations in one of the remaining RP genes, but the very low frequencies render conventional genetic screening as challenging. We, therefore, applied custom enrichment technology combined with high-throughput sequencing to screen all 80 RP genes. Using this approach, we identified and validated inactivating mutations in 15/17 (88%) DBA patients. Target enrichment combined with high-throughput sequencing is a robust and improved methodology for the genetic diagnosis of DBA. PMID:23718193

  7. Integrating Transcriptome and Genome Re-Sequencing Data to Identify Key Genes and Mutations Affecting Chicken Eggshell Qualities

    PubMed Central

    Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as reveled by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  8. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities.

    PubMed

    Zhang, Quan; Zhu, Feng; Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as reveled by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  9. Recurrent mutation testing of BRCA1 and BRCA2 in Asian breast cancer patients identify carriers in those with presumed low risk by family history.

    PubMed

    Kang, Peter Choon Eng; Phuah, Sze Yee; Sivanandan, Kavitta; Kang, In Nee; Thirthagiri, Eswary; Liu, Jian Jun; Hassan, Norhashimah; Yoon, Sook-Yee; Thong, Meow Keong; Hui, Miao; Hartman, Mikael; Yip, Cheng Har; Mohd Taib, Nur Aishah; Teo, Soo Hwang

    2014-04-01

    Although the breast cancer predisposition genes BRCA1 and BRCA2 were discovered more than 20 years ago, there remains a gap in the availability of genetic counselling and genetic testing in Asian countries because of cost, access and inaccurate reporting of family history of cancer. In order to improve access to testing, we developed a rapid test for recurrent mutations in our Asian populations. In this study, we designed a genotyping assay with 55 BRCA1 and 44 BRCA2 mutations previously identified in Asian studies, and validated this assay in 267 individuals who had previously been tested by full sequencing. We tested the prevalence of these mutations in additional breast cancer cases. Using this genotyping approach, we analysed recurrent mutations in 533 Malaysian breast cancer cases with <10 % a priori risk, and found 1 BRCA1 (0.2 %) and 5 BRCA2 (0.9 %) carriers. Testing in a hospital-based unselected cohort of 532 Singaporean breast cancer cases revealed 6 BRCA1 (1.1 %) and 3 BRCA2 (0.6 %) carriers. Overall, 2 recurrent BRCA1 and 1 BRCA2 mutations in Malays, 3 BRCA1 and 2 BRCA2 mutations in Chinese and 1 BRCA1 mutation in Indians account for 60, 24 and 20 % of carrier families, respectively. By contrast, haplotype analyses suggest that a recurrent BRCA2 mutation (c.262_263delCT) found in 5 unrelated Malay families has at least 3 distinct haplotypes. Taken together, our data suggests that panel testing may help to identify carriers, particularly Asian BRCA2 carriers, who do not present with a priori strong family history characteristics. PMID:24578176

  10. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism.

    PubMed

    Miraoui, Hichem; Dwyer, Andrew A; Sykiotis, Gerasimos P; Plummer, Lacey; Chung, Wilson; Feng, Bihua; Beenken, Andrew; Clarke, Jeff; Pers, Tune H; Dworzynski, Piotr; Keefe, Kimberley; Niedziela, Marek; Raivio, Taneli; Crowley, William F; Seminara, Stephanie B; Quinton, Richard; Hughes, Virginia A; Kumanov, Philip; Young, Jacques; Yialamas, Maria A; Hall, Janet E; Van Vliet, Guy; Chanoine, Jean-Pierre; Rubenstein, John; Mohammadi, Moosa; Tsai, Pei-San; Sidis, Yisrael; Lage, Kasper; Pitteloud, Nelly

    2013-05-01

    Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ~12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called "FGF8 synexpression" group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH. PMID:23643382

  11. Suppressors of the arabidopsis lsd5 cell death mutation identify genes involved in regulating disease resistance responses.

    PubMed Central

    Morel, J B; Dangl, J L

    1999-01-01

    Cell death is associated with the development of the plant disease resistance hypersensitive reaction (HR). Arabidopsis lsd mutants that spontaneously exhibit cell death reminiscent of the HR were identified previously. To study further the regulatory context in which cell death acts during disease resistance, one of these mutants, lsd5, was used to isolate new mutations that suppress its cell death phenotype. Using a simple lethal screen, nine lsd5 cell death suppressors, designated phx (for the mythological bird Phoenix that rises from its ashes), were isolated. These mutants were characterized with respect to their response to a bacterial pathogen and oomycete parasite. The strongest suppressors-phx2, 3, 6, and 11-1-showed complex, differential patterns of disease resistance modifications. These suppressors attenuated disease resistance to avirulent isolates of the biotrophic Peronospora parasitica pathogen, but only phx2 and phx3 altered disease resistance to avirulent strains of Pseudomonas syringae pv tomato. Therefore, some of these phx mutants define common regulators of cell death and disease resistance. In addition, phx2 and phx3 exhibited enhanced disease susceptibility to different virulent pathogens, confirming probable links between the disease resistance and susceptibility pathways. PMID:9872969

  12. A new hyperrecombination mutation identifies a novel yeast gene, THP1, connecting transcription elongation with mitotic recombination.

    PubMed Central

    Gallardo, M; Aguilera, A

    2001-01-01

    Given the importance of the incidence of recombination in genomic instability, it is of great interest to know the elements or processes controlling recombination in mitosis. One such process is transcription, which has been shown to induce recombination in bacteria, yeast, and mammals. To further investigate the genetic control of the incidence of recombination and genetic instability and, in particular, its connection with transcription, we have undertaken a search for hyperrecombination mutants among a large number of strains deleted in genes of unknown function. We have identified a new gene, THP1 (YOL072w), whose deletion mutation strongly stimulates recombination between repeats. In addition, thp1 Delta impairs transcription, a defect that is particularly strong at the level of elongation through particular DNA sequences such as lacZ. The hyperrecombination phenotype of thp1 Delta cells is fully dependent on transcription elongation of the repeat construct. When transcription is impeded either by shutting off the promoter or by using a premature transcription terminator, hyperrecombination between repeats is abolished, providing new evidence that transcription-elongation impairment may be a source of recombinogenic substrates in mitosis. We show that Thp1p and two other proteins previously shown to control transcription-associated recombination, Hpr1p and Tho2p, act in the same "pathway" connecting transcription elongation with the incidence of mitotic recombination. PMID:11139493

  13. Clinical Features: Mutations of the MEF2C gene [OMIM # 600662] have been identified in patients with severe mental retardation,

    E-print Network

    Gilad, Yoav

    in patients with severe mental retardation, stereotypic movements, hypotonia, and epilepsy [1-4]. Patients can of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements. Zweier, et al, 2010 detected four de novo mutations in MEF2C in 362 patients with severe mental

  14. Clinical Features: Mutations of the MEF2C gene [OMIM # 600662] have been identified in patients with severe mental retardation,

    E-print Network

    Das, Soma

    in patients with severe mental retardation, stereotypic movements, hypotonia, and epilepsy [1-4]. Patients can microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic. Zweier, et al, 2010 detected four de novo mutations in MEF2C in 362 patients with severe mental

  15. SysPIMP: the web-based systematical platform for identifying human disease-related mutated sequences from mass spectrometry

    Microsoft Academic Search

    Hong Xi; Jongsun Park; Yong-hwan Lee; Yixue Li

    2009-01-01

    Some mutations resulting in protein sequence change might be tightly related to certain human diseases by affecting its roles, such as sickle cell anemia. Until now several databases, such as PMD, OMIM and HGMD, have been developed, pro- viding useful information about human disease- related mutation. Tandem mass spectrometry (MS) has been used for characterizing proteins in various conditions; however,

  16. Genotyping Cancer-Associated Genes in Chordoma Identifies Mutations in Oncogenes and Areas of Chromosomal Loss Involving CDKN2A, PTEN, and SMARCB1

    PubMed Central

    Choy, Edwin; MacConaill, Laura E.; Cote, Gregory M.; Le, Long P.; Shen, Jacson K.; Nielsen, Gunnlaugur P.; Iafrate, Anthony J.; Garraway, Levi A.; Hornicek, Francis J.; Duan, Zhenfeng

    2014-01-01

    The molecular mechanisms underlying chordoma pathogenesis are unknown. We therefore sought to identify novel mutations to better understand chordoma biology and to potentially identify therapeutic targets. Given the relatively high costs of whole genome sequencing, we performed a focused genetic analysis using matrix-assisted laser desorption/ionization-time of flight mass spectrometer (Sequenom iPLEX genotyping). We tested 865 hotspot mutations in 111 oncogenes and selected tumor suppressor genes (OncoMap v. 3.0) of 45 human chordoma tumor samples. Of the analyzed samples, seven were identified with at least one mutation. Six of these were from fresh frozen samples, and one was from a paraffin embedded sample. These observations were validated using an independent platform using homogeneous mass extend MALDI-TOF (Sequenom hME Genotyping). These genetic alterations include: ALK (A877S), CTNNB1 (T41A), NRAS (Q61R), PIK3CA (E545K), PTEN (R130), CDKN2A (R58*), and SMARCB1 (R40*). This study reports on the largest comprehensive mutational analysis of chordomas performed to date. To focus on mutations that have the greatest chance of clinical relevance, we tested only oncogenes and tumor suppressor genes that have been previously implicated in the tumorigenesis of more common malignancies. We identified rare genetic changes that may have functional significance to the underlying biology and potential therapeutics for chordomas. Mutations in CDKN2A and PTEN occurred in areas of chromosomal copy loss. When this data is paired with the studies showing 18 of 21 chordoma samples displaying copy loss at the locus for CDKN2A, 17 of 21 chordoma samples displaying copy loss at PTEN, and 3 of 4 chordoma samples displaying deletion at the SMARCB1 locus, we can infer that a loss of heterozygosity at these three loci may play a significant role in chordoma pathogenesis. PMID:24983247

  17. A severe recessive and a mild dominant form of Charcot-Marie-Tooth disease associated with a newly identified Glu222Lys GDAP1 gene mutation.

    PubMed

    Kabzi?ska, Dagmara; Kotruchow, Katarzyna; Cegielska, Joanna; Hausmanowa-Petrusewicz, Irena; Kocha?ski, Andrzej

    2014-01-01

    Charcot-Marie-Tooth (CMT) disease caused by mutations in the GDAP1 gene has been shown to be inherited via traits that may be either autosomal recessive (in the majority of cases) [CMT4A] or autosomal dominant [CMT2K]. CMT4A disease is characterized by an early onset, and a severe clinical course often leading to a loss of ambulation, whereas CMT2K is characterized by a mild clinical course of benign axonal neuropathy beginning even in the 6th decade of life. Clinical data from a GDAP1 mutated patient suggests that the presence of a particular mutation is associated with a certain trait of inheritance. The association of a particular GDAP1 gene mutation and a dominant or recessive trait of inheritance is of special importance for genetic counseling and the prenatal diagnostics as regards severe forms of CMT. In the present study we report on two CMT families in which a newly identified Glu222Lys mutation within the GDAP1 gene segregates both in autosomal dominant and recessive traits. Our study shows that at least some GDAP1 gene mutations may segregate with the CMT phenotype as both dominant and recessive traits. Thus, genetic counseling for CMT4A/CMT2K families requires more extensive data on GDAP1 phenotype-genotype correlations. PMID:25337607

  18. TBX1 Mutation Identified by Exome Sequencing in a Japanese Family with 22q11.2 Deletion Syndrome-Like Craniofacial Features and Hypocalcemia

    PubMed Central

    Kawai, Masahiko; Nagashima, Takeshi; Funayama, Ryo; Nakayama, Keiko; Nakashima, Shinichi; Kato, Fumiko; Fukami, Maki; Aoki, Yoko; Matsubara, Yoichi

    2014-01-01

    Background Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS)-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients. Thus, it would be reasonable to perform a comprehensive genetic analysis in deletion-negative patients with 22q11.2DS-like phenotypes. Methodology/Principal Findings We studied three subjects with craniofacial features and hypocalcemia (group 1), two subjects with craniofacial features alone (group 2), and three subjects with normal phenotype within a single Japanese family. Fluorescence in situ hybridization analysis excluded chromosome 22q11.2 deletion, and genomewide array comparative genomic hybridization analysis revealed no copy number change specific to group 1 or groups 1+2. However, exome sequencing identified a heterozygous TBX1 frameshift mutation (c.1253delA, p.Y418fsX459) specific to groups 1+2, as well as six missense variants and two in-frame microdeletions specific to groups 1+2 and two missense variants specific to group 1. The TBX1 mutation resided at exon 9C and was predicted to produce a non-functional truncated protein missing the nuclear localization signal and most of the transactivation domain. Conclusions/Significance Clinical features in groups 1+2 are well explained by the TBX1 mutation, while the clinical effects of the remaining variants are largely unknown. Thus, the results exemplify the usefulness of exome sequencing in the identification of disease-causing mutations in familial disorders. Furthermore, the results, in conjunction with the previous data, imply that TBX1 isoform C is the biologically essential variant and that TBX1 mutations are associated with a wide phenotypic spectrum, including most of 22q11.2DS phenotypes. PMID:24637876

  19. SNP Linkage Analysis and Whole Exome Sequencing Identify a Novel POU4F3 Mutation in Autosomal Dominant Late-Onset Nonsyndromic Hearing Loss (DFNA15)

    PubMed Central

    Park, Kyoung-Jin; Hong, Sung Hwa; Ki, Chang-Seok; Cho, Sang Sun; Venselaar, Hanka; Vriend, Gert; Kim, Jong-Won

    2013-01-01

    Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3rd alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL. PMID:24260153

  20. Dozens of new de novo genetic mutations in schizophrenia identified http://www.sciencedaily.com/releases/2012/10/121003132420.htm[10/9/2012 1:10:35 PM

    E-print Network

    ) -- Researchers have shown that new, or "de novo," protein-altering mutations -- genetic errors that are presentDozens of new de novo genetic mutations in schizophrenia identified http spontaneous genetic mutations that play a significant role in the development of schizophrenia, adding

  1. [Genotyping of Vaginal Candida glabrata Isolates Using Microsatellite Marker Analysis and DNA Sequencing to Identify Mutations Associated with Antifungal Resistance].

    PubMed

    Dö?en, Aylin; Durukan, Hüseyin; Güzel, Ahmet Bar??; Oksüz, Zehra; Kaplan, Engin; Serin, Mehmet Sami; Serin, Ay?e; Emekda?, Gürol; Aslan, Gönül; Tezcan, Seda; Kalkanc?, Ay?e; Ilkit, Macit

    2013-01-01

    Vulvovaginal candidosis is the second most common cause of vaginitis (17-39%) after bacterial vaginosis (22-50%). Since the diagnosis of vulvovaginal candidosis mainly depends on clinical findings without mycologic confirmatory tests and treated empirically, the actual incidence rate of vulvovaginal candidosis is unknown. Approximately 70-90% of vulvovaginal candidosis cases are caused by Candida albicans, however the increasing incidence of C.glabrata infections and its reduced susceptibility to azole drug therapy have generated increasing attention. The epidemiology and population structure of vulvovaginal candidosis due to C.glabrata are poorly characterized. This study was aimed to genotype the C.glabrata strains isolated from vaginal samples in Cukurova region, Turkey by microsatellite markers, to investigate the antifungal susceptibility profiles of the strains and to determine the molecular mechanisms leading to phenotypical azole resistance. A total of 34 unrelated vaginal C.glabrata strains isolated from patients with acute (n= 11) and recurrent (n= 14) vulvovaginal candidosis, control group (n= 9) without vaginitis symptoms, and a reference strain of C.glabrata CBS 138 (ATCC 2001) were included in the study. These isolates were genotyped using multiple-locus variable number tandem repeat analysis of three microsatellite markers (RPM2, MTI, and Cg6). Analysis of microsatellite markers was performed by fragment size determination of RPM2, MTI, and Cg6 PCR products through capillary electrophoresis. For each of the evaluated strains, DNA sequence analysis was performed for one gene (CgERG11) and four loci (CgPDR1, NTM1, TRP1, and URA3) to detect mutations possibly associated with antifungal resistance in each strain. In vitro susceptibility profiles of the strains to 13 antifungals and boric acid were determined according to CLSI document M27-A3 to investigate possible relationships between detected mutations and phenotypic resistance. C.glabrata CBS 138 strain was found to be susceptible to all the antifungals tested, while one of (%2.9) 34 vaginal C.glabrata isolates was found to be dose-dependent susceptible to fluconazole, 13 (38.2%) to itraconazole and 3 (8.8%) to voriconazole. No resistant strain were detected in the study population. Only three isolates were found to be resistant to clotrimazole (8.8%), however no relationship was identified between the genotypes and phenotypic resistance (p> 0.05). Thirteen genotypes were detected by microsatellite marker analysis, with high discrimination power (DP= 0.877). As a result, microsatellite marker analysis was validated as a rapid, reliable method for genotyping C.glabrata strains with good, but not optimal discriminatory power. Further studies examining larger numbers of isolates are needed to verify possible relationships between mutations and phenotypic resistance. PMID:23390908

  2. The Evolutionary History of Amino Acid Variations Mediating Increased Resistance of S. aureus Identifies Reversion Mutations in Metabolic Regulators

    PubMed Central

    Champion, Mia D.; Kumar, Sudhir

    2013-01-01

    The evolution of resistance in Staphylococcus aureus occurs rapidly, and in response to all known antimicrobial treatments. Numerous studies of model species describe compensatory roles of mutations in mediating competitive fitness, and there is growing evidence that these mutation types also drive adaptation of S. aureus strains. However, few studies have tracked amino acid changes during the complete evolutionary trajectory of antibiotic adaptation or been able to predict their functional relevance. Here, we have assessed the efficacy of computational methods to predict biological resistance of a collection of clinically known Resistance Associated Mutations (RAMs). We have found that >90% of known RAMs are incorrectly predicted to be functionally neutral by at least one of the prediction methods used. By tracing the evolutionary histories of all of the false negative RAMs, we have discovered that a significant number are reversion mutations to ancestral alleles also carried in the MSSA476 methicillin-sensitive isolate. These genetic reversions are most prevalent in strains following daptomycin treatment and show a tendency to accumulate in biological pathway reactions that are distinct from those accumulating non-reversion mutations. Our studies therefore show that in addition to non-reversion mutations, reversion mutations arise in isolates exposed to new antibiotic treatments. It is possible that acquisition of reversion mutations in the genome may prevent substantial fitness costs during the progression of resistance. Our findings pose an interesting question to be addressed by further clinical studies regarding whether or not these reversion mutations lead to a renewed vulnerability of a vancomycin or daptomycin resistant strain to antibiotics administered at an earlier stage of infection. PMID:23424663

  3. Virulence-Associated Genome Mutations of Murine Rotavirus Identified by Alternating Serial Passages in Mice and Cell Cultures

    PubMed Central

    Tatsumi, Masatoshi; Tsutsumi, Hiroyuki

    2014-01-01

    ABSTRACT Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3? consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. IMPORTANCE Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. PMID:24599996

  4. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing.

    PubMed

    Walsh, Tom; Casadei, Silvia; Lee, Ming K; Pennil, Christopher C; Nord, Alex S; Thornton, Anne M; Roeb, Wendy; Agnew, Kathy J; Stray, Sunday M; Wickramanayake, Anneka; Norquist, Barbara; Pennington, Kathryn P; Garcia, Rochelle L; King, Mary-Claire; Swisher, Elizabeth M

    2011-11-01

    Inherited loss-of-function mutations in BRCA1 and BRCA2 and other tumor suppressor genes predispose to ovarian carcinomas, but the overall burden of disease due to inherited mutations is not known. Using targeted capture and massively parallel genomic sequencing, we screened for germ-line mutations in 21 tumor suppressor genes in genomic DNA from women with primary ovarian, peritoneal, or fallopian tube carcinoma. Subjects were consecutively enrolled at diagnosis and not selected for age or family history. All classes of mutations, including point mutations and large genomic deletions and insertions, were detected. Of 360 subjects, 24% carried germ-line loss-of-function mutations: 18% in BRCA1 or BRCA2 and 6% in BARD1, BRIP1, CHEK2, MRE11A, MSH6, NBN, PALB2, RAD50, RAD51C, or TP53. Six of these genes were not previously implicated in inherited ovarian carcinoma. Primary carcinomas were generally characterized by genomic loss of normal alleles of the mutant genes. Of women with inherited mutations, >30% had no family history of breast or ovarian carcinoma, and >35% were 60 y or older at diagnosis. More patients with ovarian carcinoma carry cancer-predisposing mutations and in more genes than previously appreciated. Comprehensive genetic testing for inherited carcinoma is warranted for all women with ovarian, peritoneal, or fallopian tube carcinoma, regardless of age or family history. Clinical genetic testing is currently done gene by gene, with each test costing thousands of dollars. In contrast, massively parallel sequencing allows such testing for many genes simultaneously at low cost. PMID:22006311

  5. Do mutator mutations fuel tumorigenesis?

    PubMed Central

    Fox, Edward J.; Prindle, Marc J.

    2014-01-01

    The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways. PMID:23592419

  6. Candidate Gene Analysis of Tooth Agenesis Identifies Novel Mutations in Six Genes and Suggests Significant Role for WNT and EDA Signaling and Allele Combinations

    PubMed Central

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes. PMID:23991204

  7. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations.

    PubMed

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes. PMID:23991204

  8. Complete direct sequencing of the entire AR gene in 45 unrelated patients with androgen insensitivity syndrome: Mutations identified in 32 patients (18 novel mutations), no mutation detected in 13 other patients (29%)

    SciTech Connect

    Mebarki, F.; Forest, M.G.; Josso, N. [Hospital Debrousse, Lyon (France)] [and others

    1994-09-01

    The androgen insensivity syndrome (AIS) is a recessive X-linked disorder resulting from a deficient function of the androgen receptor (AR). The human AR gene has 3 functional domains: N-terminal encoded by exon 1, DNA-binding domain encoded by exons 2 and 3, and androgen-binding domain encoded by exons 4 to 8. In order to characterize the molecular defects of the AR gene in AIS, the entire coding regions and the intronic bording sequences of the AR gene were amplified by PCR before automatic direct sequencing in 45 patients. Twenty seven different point mutations were found in 32 unrelated AIS patients: 18 with a complete form (CAIS), 14 with a partial form (PAIS); 18 of these mutations are novel mutations, not published to date. Only 3 mutations were repeatedly found: R804H in 3 families; M780I in 3 families and R774C in 2 families. For 26 patients out of the 32 found to have a mutation, maternal DNA was collected and sequenced: 6 de novo mutations were detected (i.e. 23% of the cases). Finally, no mutation was detected in 13 patients (29%): 7 with CAIS and 6 familial severe PAIS. The latter all presented with perineal hypospadias, micropenis, 4 out of 6 being raised as girl. Diagnosis of AIS in these 13 families in whom no mutation was detected is supported by the following criteria: clinical data, familial history (2 or 3 index cases in the same family), familial segregation of the polymorphic CAG repeat of the AR gene. Mutations in intronic regions or the promoter of the AR gene could not explain all cases of AIS without mutations in the AR coding regions, because AR binding (performed in 9 out of 13) was normal in 6, suggesting the synthesis of an AR protein. This situation led us to speculate that another X-linked factor associated with the AR could be implicated in some cases of AIS.

  9. Researchers identify dozens of new de novo genetic mutations in schizophrenia http://www.eurekalert.org/pub_releases/2012-10/cumc-rid100312.php[10/9/2012 1:11:24 PM

    E-print Network

    the United States and South Africa. Each trio consisted of a patient and both of his or her parents, who wereResearchers identify dozens of new de novo genetic mutations in schizophrenia http Medical Center Researchers identify dozens of new de novo genetic mutations in schizophrenia Many newly

  10. A mutation unique in serine protease inhibitors (serpins) identified in a family with type II hereditary angioneurotic edema.

    PubMed Central

    Ocejo-Vinyals, J. G.; Leyva-Cobián, F.; Fernández-Luna, J. L.

    1995-01-01

    BACKGROUND: Hereditary angioneurotic edema (HANE) is an autosomal dominant disease due to genetic alterations at the C1 inhibitor gene. Mutations within the C1 inhibitor gene are responsible for the molecular defect in type II HANE. Most of the dysfunctional proteins result from mutations involving the Arg-444 (the P-1 site of the reactive center) or amino acids NH2-terminal to the reactive center. MATERIALS AND METHODS: We have studied a Spanish family with type II HANE by using polymerase chain reaction (PCR) to amplify the exon eight of the C1 inhibitor gene. The purified 338-bp PCR product was subcloned and transformed into competent cells. After overnight cultures, we extracted the cloning vector from the positive colonies and sequenced both strands of the PCR product from each patient and healthy members of the family. RESULTS: We show that affected individuals in this family have a missense mutation, changing an adenine to cytosine in the codon 445. This substitution changes threonine at the P-1' site of the reactive center to a proline. This mutation generates a new restriction site, recognized by Bsi YI. CONCLUSIONS: To our knowledge, this is the first molecular defect characterized in a Spanish family with type II HANE, and to date, this is the first reported mutation at the P-1' site of the reactive center in individuals with type II HANE. This new mutation located at the reactive center emphasizes once more time the enormous heterogeneity of this gene. Images FIG. 1 FIG. 2 FIG. 3 PMID:8529136

  11. Newly identified mutations at the CSN1S1 gene in Ethiopian goats affect casein content and coagulation properties of their milk.

    PubMed

    Mestawet, T A; Girma, A; Adnřy, T; Devold, T G; Vegarud, G E

    2013-08-01

    Very high casein content and good coagulation properties previously observed in some Ethiopian goat breeds led to investigating the ?s1-casein (CSN1S1) gene in these breeds. Selected regions of the CSN1S1 gene were sequenced in 115 goats from 5 breeds (2 indigenous: Arsi-Bale and Somali, 1 exotic: Boer, and 2 crossbreeds: Boer × Arsi-Bale and Boer × Somali). The DNA analysis resulted in 35 new mutations: 3 in exons, 3 in the 5' untranslated region (UTR), and 29 in the introns. The mutations in exons that resulted in an amino acid shift were then picked to evaluate their influence on individual casein content (?s1-, ?s2-, ?-, and ?-CN), micellar size, and coagulation properties in the milk from the 5 goat breeds. A mutation at nucleotide 10657 (exon 10) involved a transversion: CAG?CCG, resulting in an amino acid exchange Gln77?Pro77. This mutation was associated with the indigenous breeds only. Two new mutations, at nucleotide 6072 (exon 4) and 12165 (exon 12), revealed synonymous transitions: GTC?GTT in Val15 and AGA?AGG in Arg100 of the mature protein. Transitions G?A and C?T at nucleotides 1374 and 1866, respectively, occurred in the 5' UTR, whereas the third mutation involved a transversion T?G at nucleotide location 1592. The goats were grouped into homozygote new (CC), homozygote reference (AA), and heterozygote (CA) based on the nucleotide that involved the transversion. The content of ?s1-CN (15.32g/kg) in milk samples of goats homozygous (CC) for this newly identified mutation, Gln77?Pro77 was significantly higher than in milks of heterozygous (CA; 9.05g/kg) and reference (AA; 7.61g/kg) genotype animals. The ?s2-, ?-, and ?-CN contents showed a similar pattern. Milk from goats with a homozygous new mutation had significantly lower micellar size. Milk from both homozygote and heterozygote new-mutation goats had significantly shorter coagulation rate and stronger gel than the reference genotype. Except the transversion, the sequence corresponded to allele A and presumably derived from it. Therefore, this allele is denoted by A3. All goats from the reference genotype (AA) were homozygous for the allele at nucleotide position 1374 and 1866, whereas all mutations in the 5' UTR existed in a heterozygous form in both heterozygous (CA) and the new mutation (CC) genotype. The newly identified mutation (CC) detected in some of the goat breeds is, therefore, important in selection for genetic improvement and high-quality milk for the emerging goat cheese-producing industries. The finding will also benefit farmers raising these goat breeds due to the increased selling price of goats. Further studies should investigate the effect of this amino acid exchange on the secondary and tertiary structure of the ?s1-CN molecule and on the susceptibility of peptide hydrolysis by digestive enzymes. PMID:23706484

  12. A Genetic Screen for Dominant Modifiers of a cyclin E Hypomorphic Mutation Identifies Novel Regulators of S-Phase Entry in Drosophila

    Microsoft Academic Search

    Anthony Brumby; Julie Secombe; Julie Horsfield; Michelle Coombe; Nancy Amin; Deborah Coates; Robert Saint; Helena Richardson

    2004-01-01

    Cyclin E together with its kinase partner Cdk2 is a critical regulator of entry into S phase. To identify novel genes that regulate the G1- to S-phase transition within a whole animal we made use of a hypomorphic cyclin E mutation, DmcycE JP , which results in a rough eye phenotype. We screened the X and third chromo- some deficiencies,

  13. Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases

    Microsoft Academic Search

    Tyler Mark Pierson; David Adams; Florian Bonn; Paola Martinelli; Praveen F. Cherukuri; Jamie K. Teer; Nancy F. Hansen; Pedro Cruz; Robert W. Blakesley; Gretchen Golas; Justin Kwan; Anthony Sandler; Karin Fuentes Fajardo; Thomas Markello; Cynthia Tifft; Craig Blackstone; Elena I. Rugarli; Thomas Langer; William A. Gahl; Camilo Toro

    2011-01-01

    We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and

  14. Diagnostic exome sequencing identifies two novel IQSEC2 mutations associated with X-linked intellectual disability with seizures: implications for genetic counseling and clinical diagnosis.

    PubMed

    Gandomi, Stephanie K; Farwell Gonzalez, K D; Parra, M; Shahmirzadi, L; Mancuso, J; Pichurin, P; Temme, R; Dugan, S; Zeng, W; Tang, Sha

    2014-06-01

    Intellectual disability is a heterogeneous disorder with a wide phenotypic spectrum. Over 1,700 OMIM genes have been associated with this condition, many of which reside on the X-chromosome. The IQSEC2 gene is located on chromosome Xp11.22 and is known to play a significant role in the maintenance and homeostasis of the brain. Mutations in IQSEC2 have been historically associated with nonsyndromic X-linked intellectual disability. Case reports of affected probands show phenotypic overlap with conditions associated with pathogenic MECP2, FOXG1, CDKL5, and MEF2C gene mutations. Affected individuals, however, have also been identified as presenting with additional clinical features including seizures, autistic-behavior, psychiatric problems, and delayed language skills. To our knowledge, only 5 deleterious mutations and 2 intragenic duplications have been previously reported in IQSEC2. Here we report two novel IQSEC2 de novo truncating mutations identified through diagnostic exome sequencing in two severely affected unrelated male probands manifesting developmental delay, seizures, hypotonia, plagiocephaly, and abnormal MRI findings. Overall, diagnostic exome sequencing established a molecular diagnosis for two patients in whom traditional testing methods were uninformative while expanding on the mutational and phenotypic spectrum. In addition, our data suggests that IQSEC2 may be more common than previously appreciated, accounting for approximately 9 % (2/22) of positive findings among patients with seizures referred for diagnostic exome sequencing. Further, these data supports recently published data suggesting that IQSEC2 plays a more significant role in the development of X-linked intellectual disability with seizures than previously anticipated. PMID:24306141

  15. Exome Sequencing and Systems Biology Converge to Identify Novel Mutations in the L-Type Calcium Channel, CACNA1C, Linked to Autosomal Dominant Long QT Syndrome

    PubMed Central

    Boczek, Nicole J.; Best, Jabe M.; Tester, David J.; Giudicessi, John R.; Middha, Sumit; Evans, Jared M.; Kamp, Timothy J.; Ackerman, Michael J.

    2013-01-01

    Background Long QT syndrome (LQTS) is the most common cardiac channelopathy with 15 elucidated LQTS-susceptibility genes. Approximately 20% of LQTS cases remain genetically elusive. Methods and Results We combined whole exome sequencing (WES) and bioinformatic/systems biology to identify the pathogenic substrate responsible for non-syndromic, genotype-negative, autosomal dominant LQTS in a multigenerational pedigree and established the spectrum and prevalence of variants in the elucidated gene among a cohort of 102 unrelated patients with “genotype-negative/phenotype-positive” LQTS. WES was utilized on three members within a genotype-negative/phenotype-positive family. Genomic triangulation combined with bioinformatic tools and ranking algorithms led to the identification of a CACNA1C mutation. This mutation, Pro857Arg-CACNA1C, co-segregated with the disease within the pedigree, was ranked by three disease-network algorithms as the most probable LQTS-susceptibility gene, and involves a conserved residue localizing to the PEST domain in the II–III linker. Functional studies reveal that Pro857Arg-CACNA1C leads to a gain-of-function with increased ICa,L and increased surface membrane expression of the channel compared to wildtype. Subsequent mutational analysis identified 3 additional variants within CACNA1C in our cohort of 102 unrelated cases of genotype-negative/phenotype-positive LQTS. Two of these variants also involve conserved residues within Cav1.2’s PEST domain. Conclusions This study provides evidence that coupling WES and bioinformatic/systems biology is an effective strategy for the identification of potential disease causing genes/mutations. The identification of a functional CACNA1C mutation co-segregating with disease in a single pedigree suggests that CACNA1C perturbations may underlie autosomal dominant LQTS in the absence of Timothy syndrome. PMID:23677916

  16. TCGA researchers identify potential drug targets, markers for leukemia risk; New study reveals relatively few mutations in AML genomes

    Cancer.gov

    Investigators for The Cancer Genome Atlas (TCGA) Research Network have detailed and broadly classified the genomic alterations that frequently underlie the development of acute myeloid leukemia (AML), a deadly cancer of the blood and bone marrow. Their work paints a picture of a cancer marked by relatively few mutations compared to other types of cancer occurring in adults.

  17. A genetic screen for modifiers of drosophila Src42A identifies mutations in Egfr, rolled and a novel signaling gene.

    PubMed Central

    Zhang, Q; Zheng, Q; Lu, X

    1999-01-01

    Drosophila Src42A, a close relative of the vertebrate c-Src, has been implicated in the Ras-Mapk signaling cascade. An allele of Src42A, Su(Raf)1, dominantly suppresses the lethality of partial loss-of-function Raf mutations. To isolate genes involved in the same pathway where Src42A functions, we carried out genetic screens for dominant suppressor mutations that prevented Su(Raf)1 from suppressing Raf. Thirty-six mutations representing at least five genetic loci were recovered from the second chromosome. These are Drosophila EGF Receptor (Egfr), rolled, Src42A, and two other new loci, one of which was named semang (sag). During embryogenesis, sag affects the development of the head, tail, and tracheal branches, suggesting that it participates in the pathways of Torso and DFGF-R1 receptor tyrosine kinases. sag also disrupts the embryonic peripheral nervous system. During the development of imaginal discs, sag affects two processes known to require Egfr signaling: the recruitment of photoreceptor cells and wing vein formation. Thus sag functions in several receptor tyrosine kinase (RTK)-mediated processes. In addition, sag dominantly enhances the phenotypes associated with loss-of-function Raf and rl, but suppresses those of activated Ras1(V12) mutation. This work provides the first genetic evidence that both Src42A and sag are modulators of RTK signaling. PMID:9927462

  18. Copyright 1999 by the Genetics Society of America Suppressors of the Arabidopsis lsd5 Cell Death Mutation Identify Genes

    E-print Network

    Dangl, Jeff

    Copyright © 1999 by the Genetics Society of America Suppressors of the Arabidopsis lsd5 Cell Death hypersensitive reaction (HR). Arabidopsis lsd mutants that spontaneously exhibit cell death reminiscent of the HR disease resistance, one of these mutants, lsd5, was used to isolate new mutations that suppress its cell

  19. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    SciTech Connect

    Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland)] [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland)

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  20. Whole Exome Sequencing Identifies a Novel and a Recurrent Mutation in BBS2 Gene in a Family with Bardet-Biedl Syndrome

    PubMed Central

    Bee, Yong Mong; Chawla, Mayank; Zhao, Yi

    2015-01-01

    Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder known to be caused by mutations in at least 19 BBS genes. We report the genetic analysis of a patient with indisputable features of BBS including cardinal features such as postaxial polydactyly, retinitis pigmentosa, obesity, and kidney failure. Taking advantage of next-generation sequencing technology, we applied whole exome sequencing (WES) with Sanger direct sequencing to the proband and her unaffected mother. A pair of heterozygous nonsense mutations in BBS2 gene was identified in the proband, one being novel and the other recurrent. The novel mutation, p.Y644X, resides in exon 16 and was also found in the heterozygous state in the mother. This mutation is not currently found in the dsSNP and 1000 Genome SNP databases and is predicted to be disease causing by in silico analysis. This study highlights the potential for a rapid and precise detection of disease causing gene using WES in genetically heterogeneous disorders such as BBS.

  1. New Point Mutations in Surface and Core Genes of Hepatitis B Virus Associated with Acute on Chronic Liver Failure Identified by Complete Genomic Sequencing

    PubMed Central

    Lou, Guohua; Zheng, Min; Cao, Qingyi; Chen, Zhi

    2015-01-01

    The objective of this study was to identify new viral biomarkers associated with acute on chronic liver failure (ACLF) by complete genomic sequencing of HBV. Hepatitis B virus mutations associated with ACLF were screened by Illumina high-throughput sequencing in twelve ACLF cases and twelve age-matched mild chronic hepatitis B patients, which were validated in 438 chronic hepatitis B patients (80 asymptomatic carriers, 152 mild chronic hepatitis B patients, 102 severe chronic hepatitis B patients and 104 ACLF patients) by direct sequencing. The results of Illumina sequencing showed that the mutations at 7 sites (T216C, G285A, A1846T, G1896A, C1913A/G, A2159G, and A2189C) of 12 ACLF patients were significantly higher than those of 12 controls. In the validation cohorts, a significantly higher ratio of genotype B to C was found in patients with ACLF than in patients with non-ACLF. Multivariate analysis showed that T216C, G1896A, C1913A/G and A2159G/C were independent risk factors for ACLF. C216 in any combination, A/G1913 in any combination, and G/C2159 in any combination had high specificity for ACLF. In summary, T216C and A2159G/C mutations were novel factors independently associated with ACLF. Combined mutations in hepatitis B cases could play important roles in ACLF development. PMID:25849554

  2. A comprehensive screen for TWIST mutations in patients with craniosynostosis identifies a new microdeletion syndrome of chromosome band 7p21.1.

    PubMed Central

    Johnson, D; Horsley, S W; Moloney, D M; Oldridge, M; Twigg, S R; Walsh, S; Barrow, M; Njřlstad, P R; Kunz, J; Ashworth, G J; Wall, S A; Kearney, L; Wilkie, A O

    1998-01-01

    Mutations in the coding region of the TWIST gene (encoding a basic helix-loop-helix transcription factor) have been identified in some cases of Saethre-Chotzen syndrome. Haploinsufficiency appears to be the pathogenic mechanism involved. To investigate the possibility that complete deletions of the TWIST gene also contribute to this disorder, we have developed a comprehensive strategy to screen for coding-region mutations and for complete gene deletions. Heterozygous TWIST mutations were identified in 8 of 10 patients with Saethre-Chotzen syndrome and in 2 of 43 craniosynostosis patients with no clear diagnosis. In addition to six coding-region mutations, our strategy revealed four complete TWIST deletions, only one of which associated with a translocation was suspected on the basis of conventional cytogenetic analysis. This case and two interstitial deletions were detectable by analysis of polymorphic microsatellite loci, including a novel (CA)n locus 7.9 kb away from TWIST, combined with FISH; these deletions ranged in size from 3.5 Mb to >11.6 Mb. The remaining, much smaller deletion was detected by Southern blot analysis and removed 2,924 bp, with a 2-bp orphan sequence at the breakpoint. Significant learning difficulties were present in the three patients with megabase-sized deletions, which suggests that haploinsufficiency of genes neighboring TWIST contributes to developmental delay. Our results identify a new microdeletion disorder that maps to chromosome band 7p21.1 and that causes a significant proportion of Saethre-Chotzen syndrome. PMID:9792856

  3. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis

    Microsoft Academic Search

    Philippe Metellus; Bema Coulibaly; Carole Colin; Andre Maues de Paula; Alexandre Vasiljevic; David Taieb; Anne Barlier; Blandine Boisselier; Karima Mokhtari; Xiao Wei Wang; Anderson Loundou; Frederique Chapon; Sandrine Pineau; L’Houcine Ouafik; Olivier Chinot; Dominique Figarella-Branger

    2010-01-01

    The phenotypic heterogeneity of low-grade gliomas (LGGs) is still inconsistently explained by known molecular abnormalities\\u000a in patients treated according to the present standards of care. IDH1 codon 132 and IDH2 codon 172 sequencing was performed in a series of 47 LGGs and correlated with clinical presentation, MR imaging characteristics,\\u000a genomic profile and outcome. A total of 38 IDH1 mutations at

  4. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation

    PubMed Central

    Jordan, Jennifer J.; Inga, Alberto; Conway, Kathleen; Edmiston, Sharon; Carey, Lisa A.; Wu, Lin; Resnick, Michael A.

    2010-01-01

    Mutations of the sequence-specific master regulator p53 that alter transactivation function from promoter response elements (REs) could result in changes in the strength of gene activation or spectra of genes regulated. Such mutations in this tumor suppressor might lead to dramatic phenotypic changes and diversification of cell responses to stress. We have determined “functional fingerprints” of sporadic breast cancer-related p53 mutants many of which are also associated with familial cancer proneness such as the Li-Fraumeni Syndrome and germline BRCA1/2 mutant-associated cancers. The ability of p53, wild type and mutants, to transactivate from 11 human target REs has been assessed at variable expression levels using a cellular, isogenomic yeast model system that allows for the rapid analysis of p53 function using a qualitative and a quantitative reporter. Among 50 missense mutants, 29 were classified as loss-of-function. The remaining 21 retained transactivation towards at least one RE. At high levels of galactose induced p53 expression, 12/21 mutants that retain transactivation appeared similar to WT. When the level of galactose was reduced, transactivation defects could be revealed suggesting that some breast cancer related mutants can have subtle changes in transcription. These findings have been compared with clinical data from an ongoing neoadjuvant chemotherapy treatment trial for locally advanced breast tumors. The functional and nonfunctional missense mutations may distinguish tumors in terms of demographics, appearance and relapse, implying that heterogeneity in the functionality of specific p53 mutations could impact clinical behavior and outcome. PMID:20407015

  5. Homozygosity mapping approach identifies a missense mutation in equine cyclophilin B ( PPIB) associated with HERDA in the American Quarter Horse

    Microsoft Academic Search

    Robert C. Tryon; Stephen D. White; Danika L. Bannasch

    2007-01-01

    Hereditary equine regional dermal asthenia (HERDA), a degenerative skin disease that affects the Quarter Horse breed, was localized to ECA1 by homozygosity mapping. Comparative genomics allowed the development of equine gene-specific markers which were used with a set of affected horses to detect a homozygous, identical-by-descent block spanning ?2.5 Mb, suggesting a recent origin for the HERDA mutation. We report a

  6. Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations

    PubMed Central

    Griffin, Helen R.; Pyle, Angela; Blakely, Emma L.; Alston, Charlotte L.; Duff, Jennifer; Hudson, Gavin; Horvath, Rita; Wilson, Ian J.; Santibanez-Koref, Mauro; Taylor, Robert W.; Chinnery, Patrick F.

    2014-01-01

    Purpose: Mitochondrial disorders are a common cause of inherited metabolic disease and can be due to mutations affecting mitochondrial DNA or nuclear DNA. The current diagnostic approach involves the targeted resequencing of mitochondrial DNA and candidate nuclear genes, usually proceeds step by step, and is time consuming and costly. Recent evidence suggests that variations in mitochondrial DNA sequence can be obtained from whole-exome sequence data, raising the possibility of a comprehensive single diagnostic test to detect pathogenic point mutations. Methods: We compared the mitochondrial DNA sequence derived from off-target exome reads with conventional mitochondrial DNA Sanger sequencing in 46 subjects. Results: Mitochondrial DNA sequences can be reliably obtained using three different whole-exome sequence capture kits. Coverage correlates with the relative amount of mitochondrial DNA in the original genomic DNA sample, heteroplasmy levels can be determined using variant and total read depths, and—providing there is a minimum read depth of 20-fold—rare sequencing errors occur at a rate similar to that observed with conventional Sanger sequencing. Conclusion: This offers the prospect of using whole-exome sequence in a diagnostic setting to screen not only all protein coding nuclear genes but also all mitochondrial DNA genes for pathogenic mutations. Off-target mitochondrial DNA reads can also be used to assess quality control and maternal ancestry, inform on ethnic origin, and allow genetic disease association studies not previously anticipated with existing whole-exome data sets. PMID:24901348

  7. Novel compound heterozygous mutations in the MYO15A gene in autosomal recessive hearing loss identified by whole-exome sequencing

    PubMed Central

    2013-01-01

    Background Inherited genetic defects play an important role in congenital hearing loss, contributing to about 60% of deafness occurring in infants. Hereditary nonsyndromic hearing loss is highly heterogeneous, and most patients with a presumed genetic etiology lack a specific molecular diagnosis. Methods By whole exome sequencing, we identified responsible gene of family 4794 with autosomal recessively nonsyndromic hearing loss (ARNSHL). We also used DNA from 56 Chinese familial patients with ARNSHL (autosomal recessive nonsyndromic hearing loss) and 108 ethnicity-matched negative samples to perform extended variants analysis. Results We identified MYO15A c.IVS25?+?3G?>?A and c.8375 T?>?C (p.V2792A) as the disease-causing mutations. Both mutations co-segregated with hearing loss in family 4794, but were absent in the 56 index patients and 108 ethnicity-matched controls. Conclusions Our results demonstrated that the hearing loss of family 4794 was caused by novel compound heterozygous mutations in MYO15A. PMID:24206587

  8. 250K SNP array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies

    PubMed Central

    Dunbar, Andrew J.; Gondek, Lukasz P.; O’Keefe, Christine L.; Makishima, Hideki; Rataul, Manjot S.; Szpurka, Hadrian; Sekeres, Mikkael A.; Wang, Xiao Fei; McDevitt, Michael A.; Maciejewski, Jaroslaw P.

    2009-01-01

    Two types of acquired loss of heterozygosity are possible in cancer: deletions and copy-neutral uniparental disomy (UPD). Conventionally, copy number losses are identified using metaphase cytogenetics while detection of UPD is accomplished by microsatellite and copy number analysis and as such, is not often used clinically. Recently, introduction of single nucleotide polymorphism (SNP) microarrays have allowed for the systematic and sensitive detection of UPD in hematological malignancies and other cancers. In this study, we have applied 250K SNP array technology to detect previously cryptic chromosomal changes, particularly UPD, in a cohort of 301 patients with myelodysplastic syndromes (MDS), overlap MDS/myeloproliferative disorders (MPD), MPD, and acute myeloid leukemia (AML). We show that UPD is a common chromosomal defect in myeloid malignancies, particularly in chronic myelomonocytic leukemia (CMML; 48%) and MDS/MPD-unclassifiable (38%). Furthermore, we demonstrate that mapping minimally overlapping segmental UPD regions can help target the search for both known and unknown pathogenic mutations, including newly identified missense mutations in the proto-oncogene c-Cbl in 7/12 patients with UPD11q. Acquired mutations of c-Cbl E3 ubiquitin ligase may explain the pathogenesis of a clonal process in a subset of MDS/MPD, including CMML. PMID:19074904

  9. A screen for modifiers of cyclin E function in Drosophila melanogaster identifies Cdk2 mutations, revealing the insignificance of putative phosphorylation sites in Cdk2.

    PubMed

    Lane, M E; Elend, M; Heidmann, D; Herr, A; Marzodko, S; Herzig, A; Lehner, C F

    2000-05-01

    In higher eukaryotes, cyclin E is thought to control the progression from G1 into S phase of the cell cycle by associating as a regulatory subunit with cdk2. To identify genes interacting with cyclin E, we have screened in Drosophila melanogaster for mutations that act as dominant modifiers of an eye phenotype caused by a Sevenless-CycE transgene that directs ectopic Cyclin E expression in postmitotic cells of eye imaginal disc and causes a rough eye phenotype in adult flies. The majority of the EMS-induced mutations that we have identified fall into four complementation groups corresponding to the genes split ends, dacapo, dE2F1, and Cdk2(Cdc2c). The Cdk2 mutations in combination with mutant Cdk2 transgenes have allowed us to address the regulatory significance of potential phosphorylation sites in Cdk2 (Thr 18 and Tyr 19). The corresponding sites in the closely related Cdk1 (Thr 14 and Tyr 15) are of crucial importance for regulation of the G2/M transition by myt1 and wee1 kinases and cdc25 phosphatases. In contrast, our results demonstrate that the equivalent sites in Cdk2 play no essential role. PMID:10790398

  10. A novel missense mutation in the NSDHL gene identified in a Lithuanian family by targeted next-generation sequencing causes CK syndrome.

    PubMed

    Preiksaitiene, Egle; Caro, Alfonso; Benušien?, Egl?; Oltra, Silvestre; Orellana, Carmen; Mork?nien?, Aušra; Roselló, Mónica Pilar; Kasnauskiene, Jurate; Monfort, Sandra; Ku?inskas, Vaidutis; Mayo, Sonia; Martinez, Francisco

    2015-06-01

    The NSDHL gene encodes 3?-hydroxysteroid dehydrogenase involved in one of the later steps of the cholesterol biosynthetic pathway. Mutations in this gene can cause CHILD syndrome (OMIM 308050) and CK syndrome (OMIM 300831). CHILD syndrome is an X-linked dominant, male lethal disorder caused by mutations in the NSDHL gene that result in the loss of the function of the NSDHL protein. CK syndrome is an allelic X-linked recessive disorder. So far, 13 patients with CK syndrome from two families have been reported on. We present a new five-generation family with affected males manifesting clinical features of CK syndrome. Next generation sequencing was targeted to a custom panel of 542 genes with known or putative implication on intellectual disability. Missense mutation p.Gly152Asp was identified in the NSDHL gene in the DNA sample of the affected male. Mutation carrier status was confirmed for all the obligate carriers in the family. The clinical features of the affected males in the family manifested as weak fetal movements, severe intellectual disability, seizures, spasticity, atrophy of optic discs, microcephaly, plagiocephaly, skeletal abnormalities, and minor facial anomalies, including a high nasal bridge, strabismus, and micrognathia. A highly significant preferential transmission of the mutation was observed in this and previous families segregating CK syndrome. Our report expands the clinical spectrum of this syndrome to include weak fetal movements, spasticity, and plagiocephaly, and transmission ratio distortion. The various findings in these patients increase our understanding of the diversity of the clinical presentation of cholesterol biosynthesis disorders. © 2015 Wiley Periodicals, Inc. PMID:25900314

  11. Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis

    PubMed Central

    Campeau, Philippe M.; Lu, James T.; Sule, Gautam; Jiang, Ming-Ming; Bae, Yangjin; Madan, Simran; Högler, Wolfgang; Shaw, Nicholas J.; Mumm, Steven; Gibbs, Richard A.; Whyte, Michael P.; Lee, Brendan H.

    2012-01-01

    Dysosteosclerosis (DSS) is the form of osteopetrosis distinguished by the presence of skin findings such as red-violet macular atrophy, platyspondyly and metaphyseal osteosclerosis with relative radiolucency of widened diaphyses. At the histopathological level, there is a paucity of osteoclasts when the disease presents. In two patients with DSS, we identified homozygous or compound heterozygous missense mutations in SLC29A3 by whole-exome sequencing. This gene encodes a nucleoside transporter, mutations in which cause histiocytosis–lymphadenopathy plus syndrome, a group of conditions with little or no skeletal involvement. This transporter is essential for lysosomal function in mice. We demonstrate the expression of Slc29a3 in mouse osteoclasts in vivo. In monocytes from patients with DSS, we observed reduced osteoclast differentiation and function (demineralization of calcium surface). Our report highlights the pleomorphic consequences of dysfunction of this nucleoside transporter, and importantly suggests a new mechanism for the control of osteoclast differentiation and function. PMID:22875837

  12. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations.

    PubMed

    Buczkowicz, Pawel; Hoeman, Christine; Rakopoulos, Patricia; Pajovic, Sanja; Letourneau, Louis; Dzamba, Misko; Morrison, Andrew; Lewis, Peter; Bouffet, Eric; Bartels, Ute; Zuccaro, Jennifer; Agnihotri, Sameer; Ryall, Scott; Barszczyk, Mark; Chornenkyy, Yevgen; Bourgey, Mathieu; Bourque, Guillaume; Montpetit, Alexandre; Cordero, Francisco; Castelo-Branco, Pedro; Mangerel, Joshua; Tabori, Uri; Ho, King Ching; Huang, Annie; Taylor, Kathryn R; Mackay, Alan; Bendel, Anne E; Nazarian, Javad; Fangusaro, Jason R; Karajannis, Matthias A; Zagzag, David; Foreman, Nicholas K; Donson, Andrew; Hegert, Julia V; Smith, Amy; Chan, Jennifer; Lafay-Cousin, Lucy; Dunn, Sandra; Hukin, Juliette; Dunham, Chris; Scheinemann, Katrin; Michaud, Jean; Zelcer, Shayna; Ramsay, David; Cain, Jason; Brennan, Cameron; Souweidane, Mark M; Jones, Chris; Allis, C David; Brudno, Michael; Becher, Oren; Hawkins, Cynthia

    2014-05-01

    Diffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.Lys27Met histone H3.3 or p.Lys27Met histone H3.1 alteration. However, DIPGs are still thought of as one disease, with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs, we integrated whole-genome sequencing with methylation, expression and copy number profiling, discovering that DIPGs comprise three molecularly distinct subgroups (H3-K27M, silent and MYCN) and uncovering a new recurrent activating mutation affecting the activin receptor gene ACVR1 in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of the downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer. PMID:24705254

  13. Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p.

    PubMed

    Shah, Abdul Haseeb; Rawal, Manpreet Kaur; Dhamgaye, Sanjiveeni; Komath, Sneha Sudha; Saxena, Ajay Kumar; Prasad, Rajendra

    2015-01-01

    The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was analyzed by biochemical and phenotypic mapping. Only 18% of the mutants from this library displayed enhanced drug susceptibility. Most of the drug-susceptible mutants displayed uncoupling between ATP hydrolysis and drug transport. The two drug-susceptible ICL1 mutants (I574A and S593A) that lay within or close to the predicted coupling helix yielded two chromosomal suppressor mutations that fall near the Q-loop of NBD2 (R935) and in the Walker A motif (G190) of NBD1. Based on a 3D homology model and kinetic analysis of drug transport, our data suggest that large distances between ICL residues and their respective chromosomal suppressor mutations rule out a direct interaction between them. However, they impact the transport cycle by restoring the coupling interface via indirect downstream signaling. PMID:26053667

  14. Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p

    PubMed Central

    Shah, Abdul Haseeb; Rawal, Manpreet Kaur; Dhamgaye, Sanjiveeni; Komath, Sneha Sudha; Saxena, Ajay Kumar; Prasad, Rajendra

    2015-01-01

    The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was analyzed by biochemical and phenotypic mapping. Only 18% of the mutants from this library displayed enhanced drug susceptibility. Most of the drug-susceptible mutants displayed uncoupling between ATP hydrolysis and drug transport. The two drug-susceptible ICL1 mutants (I574A and S593A) that lay within or close to the predicted coupling helix yielded two chromosomal suppressor mutations that fall near the Q-loop of NBD2 (R935) and in the Walker A motif (G190) of NBD1. Based on a 3D homology model and kinetic analysis of drug transport, our data suggest that large distances between ICL residues and their respective chromosomal suppressor mutations rule out a direct interaction between them. However, they impact the transport cycle by restoring the coupling interface via indirect downstream signaling. PMID:26053667

  15. [Subchromosomal microdeletion identified by molecular karyotyping using DNA microarrays (array CGH) in Rett syndrome girls negative for MECP2 gene mutations].

    PubMed

    Vorsanova, S G; Iurov, I Iu; Voinova, V Iu; Kurinnaia, O S; Zelenova, M A; Demidova, I A; Ulas, E V; Iurov, Iu B

    2013-01-01

    Molecular karyotyping using DNA microarrays (array CGH) was applied for identification of subchromosomal microdeletions in a cohort of 12 girls with clinical features of RETT syndrome, but negative for MECP2 gene mutations. Recurrent microdeletions of MECP2 gene in chromosome X (locus Xq28) were identified in 5 girls of 12 studied. Probably RTT girls with subchromosomic microdeletions in Xq28 could represent a special subtype of the disease, which appears as clinically milder than the classic form of disease. In one case, an atypical form of RTT was associated with genomic abnormalities affecting CDKL5 gene and region critical for microdeletion Prader-Willi and Angelman syndromes (15q11.2). In addition, data are presented for the first time that genetic variation in regions 3p13, 3q27.1, and 1q21.1-1q21.2 could associate with RTT-like clinical manifestations. Without application of molecular karyotyping technology and bioinformatic method of assessing the pathogenic significance of genomic rearrangements these RTT-like girls negative for MECP2 gene mutations were considered as cases of idiopathic mental retardation associated with autism. It should be noted that absence of intragenic mutations in MECP2 gene is not sufficient criteria to reject the clinical diagnosis of RTT. To avoid errors in the genetic diagnosis of this genetically heterogeneous brain disease molecular cytogenetic studies using high resolution oligonucleotide array CGH (molecular karyotyping) are needed. PMID:24300809

  16. Genome-Wide Association Analysis Identifies a Mutation in the Thiamine Transporter 2 (SLC19A3) Gene Associated with Alaskan Husky Encephalopathy

    PubMed Central

    Vernau, Karen M.; Runstadler, Jonathan A.; Brown, Emily A.; Cameron, Jessie M.; Huson, Heather J.; Higgins, Robert J.; Ackerley, Cameron; Sturges, Beverly K.; Dickinson, Peter J.; Puschner, Birgit; Giulivi, Cecilia; Shelton, G. Diane; Robinson, Brian H.; DiMauro, Salvatore; Bollen, Andrew W.; Bannasch, Danika L.

    2013-01-01

    Alaskan Husky Encephalopathy (AHE) has been previously proposed as a mitochondrial encephalopathy based on neuropathological similarities with human Leigh Syndrome (LS). We studied 11 Alaskan Husky dogs with AHE, but found no abnormalities in respiratory chain enzyme activities in muscle and liver, or mutations in mitochondrial or nuclear genes that cause LS in people. A genome wide association study was performed using eight of the affected dogs and 20 related but unaffected control AHs using the Illumina canine HD array. SLC19A3 was identified as a positional candidate gene. This gene controls the uptake of thiamine in the CNS via expression of the thiamine transporter protein THTR2. Dogs have two copies of this gene located within the candidate interval (SLC19A3.2 – 43.36–43.38 Mb and SLC19A3.1 – 43.411–43.419 Mb) on chromosome 25. Expression analysis in a normal dog revealed that one of the paralogs, SLC19A3.1, was expressed in the brain and spinal cord while the other was not. Subsequent exon sequencing of SLC19A3.1 revealed a 4bp insertion and SNP in the second exon that is predicted to result in a functional protein truncation of 279 amino acids (c.624 insTTGC, c.625 C>A). All dogs with AHE were homozygous for this mutation, 15/41 healthy AH control dogs were heterozygous carriers while 26/41 normal healthy AH dogs were wild type. Furthermore, this mutation was not detected in another 187 dogs of different breeds. These results suggest that this mutation in SLC19A3.1, encoding a thiamine transporter protein, plays a critical role in the pathogenesis of AHE. PMID:23469184

  17. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency

    PubMed Central

    Calvo, Sarah E; Tucker, Elena J; Compton, Alison G; Kirby, Denise M; Crawford, Gabriel; Burtt, Noel P; Rivas, Manuel A; Guiducci, Candace; Bruno, Damien L; Goldberger, Olga A; Redman, Michelle C; Wiltshire, Esko; Wilson, Callum J; Altshuler, David; Gabriel, Stacey B; Daly, Mark J; Thorburn, David R; Mootha, Vamsi K

    2010-01-01

    Discovering the molecular basis of mitochondrial respiratory chain disease is challenging given the large number of both mitochondrial and nuclear genes involved. We report a strategy of focused candidate gene prediction, high-throughput sequencing, and experimental validation to uncover the molecular basis of mitochondrial complex I (CI) disorders. We created five pools of DNA from a cohort of 103 patients and then performed deep sequencing of 103 candidate genes to spotlight 151 rare variants predicted to impact protein function. We used confirmatory experiments to establish genetic diagnoses in 22% of previously unsolved cases, and discovered that defects in NUBPL and FOXRED1 can cause CI deficiency. Our study illustrates how large-scale sequencing, coupled with functional prediction and experimental validation, can reveal novel disease-causing mutations in individual patients. PMID:20818383

  18. A specific screen for oligosaccharyltransferase mutations identifies the 9 kDa OST5 protein required for optimal activity in vivo and in vitro.

    PubMed Central

    Reiss, G; te Heesen, S; Gilmore, R; Zufferey, R; Aebi, M

    1997-01-01

    The central reaction in the process of N-linked protein glycosylation in eukaryotic cells, the transfer of the oligosaccharide Glc(3)Man(9)GlcNAc(2) from the lipid dolicholpyrophosphate to selected asparagine residues, is catalyzed by the oligosaccharyltransferase (OTase). This enzyme consists of multiple subunits; however, purification of the complex has revealed different results with respect to its protein composition. To determine how many different loci are required for OTase activity in vivo, we performed a novel, specific screen for mutants with altered OTase activity. Based on the synthetic lethal phenotype of OTase mutants in combination with a deficiency of dolicholphosphoglucose biosynthesis which results in non-glucosylated lipid-linked oligosaccharide, we identified seven complementation groups with decreased OTase activity. Beside the known OTase loci, STT3, OST1, WBP1, OST3, SWP1 and OST2, a novel locus, OST5, was identified. OST5 is an intron-containing gene encoding a putative membrane protein of 9.5 kDa present in highly purified OTase preparations. OST5 protein is not essential for growth but its depletion results in a reduced OTase activity. Suppression of an ost1 mutation by overexpression of OST5 indicates that this small membrane protein directly interacts with other OTase components, most likely with Ost1p. A strong genetic interaction with a stt3 mutation implies a role in complex assembly. PMID:9135133

  19. Potential RNA Binding Proteins in Saccharomyces Cerevisiae Identified as Suppressors of Temperature-Sensitive Mutations in Npl3

    PubMed Central

    Henry, M.; Borland, C. Z.; Bossie, M.; Silver, P. A.

    1996-01-01

    The NPL3 gene of the yeast Saccharomyces cerevisiae encodes a protein with similarity to heterogeneous nuclear ribonucleoproteins (hnRNPs). Npl3p has been implicated in many nuclear-related events including RNA export, protein import, and rRNA processing. Several temperature-sensitive alleles of NPL3 have been isolated. We now report the sequence of these alleles. For one allele, npl3-1, four complementation groups of suppressors have been isolated. The cognate genes for the two recessive mutants were cloned. One of these is the previously known RNA15, which, like NPL3, also encodes a protein with similarity to the vertebrate hnRNP A/B protein family. The other suppressor corresponds to a newly defined gene we term HRP1, which also encodes a protein with similarity to the hnRNP A/B proteins of vertebrates. Mutations in HRP1 suppress all npl3 temperature-sensitive alleles but do not bypass an npl3 null allele. We show that HRP1 is essential for cell growth and that the corresponding protein is located in the nucleus. The discovery of two hnRNP homologues that can partially suppress the function of Np13p, also an RNA binding protein, will be discussed in terms of the possible roles for Npl3p in RNA metabolism. PMID:8770588

  20. Molecular response assessment by quantitative real-time polymerase chain reaction after induction therapy in NPM1-mutated patients identifies those at high risk of relapse

    PubMed Central

    Hubmann, Max; Köhnke, Thomas; Hoster, Eva; Schneider, Stephanie; Dufour, Annika; Zellmeier, Evelyn; Fiegl, Michael; Braess, Jan; Bohlander, Stefan K.; Subklewe, Marion; Sauerland, Maria-Cristina; Berdel, Wolfgang E.; Büchner, Thomas; Wörmann, Bernhard; Hiddemann, Wolfgang; Spiekermann, Karsten

    2014-01-01

    Monitoring minimal residual disease is an important way to identify patients with acute myeloid leukemia at high risk of relapse. In this study we investigated the prognostic potential of minimal residual disease monitoring by quantitative real-time polymerase chain reaction analysis of NPM1 mutations in patients treated in the AMLCG 1999, 2004 and 2008 trials. Minimal residual disease was monitored - in aplasia, after induction therapy, after consolidation therapy, and during follow-up - in 588 samples from 158 patients positive for NPM1 mutations A, B and D (with a sensitivity of 10?6). One hundred and twenty-seven patients (80.4%) achieved complete remission after induction therapy and, of these, 56 patients (44.1%) relapsed. At each checkpoint, minimal residual disease cut-offs were calculated. After induction therapy a cut-off NPM1 mutation ratio of 0.01 was associated with a high hazard ratio of 4.26 and the highest sensitivity of 76% for the prediction of relapse. This was reflected in a cumulative incidence of relapse after 2 years of 77.8% for patients with ratios above the cut-off versus 26.4% for those with ratios below the cut-off. In the favorable subgroup according to European LeukemiaNet, the cut-off after induction therapy also separated the cohort into two prognostic groups with a cumulative incidence of relapse of 76% versus 6% after 2 years. Our data demonstrate that in addition to pre-therapeutic factors, the course of minimal residual disease in an individual is an important prognostic factor and could be included in clinical trials for the guidance of post-remission therapy. The trials from which data were obtained were registered at www.clinicaltrials.gov (#NCT01382147, #NCT00266136) and at the European Leukemia Trial Registry (#LN_AMLINT2004_230). PMID:24816240

  1. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival

    PubMed Central

    Nicolau, Monica; Levine, Arnold J.; Carlsson, Gunnar

    2011-01-01

    High-throughput biological data, whether generated as sequencing, transcriptional microarrays, proteomic, or other means, continues to require analytic methods that address its high dimensional aspects. Because the computational part of data analysis ultimately identifies shape characteristics in the organization of data sets, the mathematics of shape recognition in high dimensions continues to be a crucial part of data analysis. This article introduces a method that extracts information from high-throughput microarray data and, by using topology, provides greater depth of information than current analytic techniques. The method, termed Progression Analysis of Disease (PAD), first identifies robust aspects of cluster analysis, then goes deeper to find a multitude of biologically meaningful shape characteristics in these data. Additionally, because PAD incorporates a visualization tool, it provides a simple picture or graph that can be used to further explore these data. Although PAD can be applied to a wide range of high-throughput data types, it is used here as an example to analyze breast cancer transcriptional data. This identified a unique subgroup of Estrogen Receptor-positive (ER+) breast cancers that express high levels of c-MYB and low levels of innate inflammatory genes. These patients exhibit 100% survival and no metastasis. No supervised step beyond distinction between tumor and healthy patients was used to identify this subtype. The group has a clear and distinct, statistically significant molecular signature, it highlights coherent biology but is invisible to cluster methods, and does not fit into the accepted classification of Luminal A/B, Normal-like subtypes of ER+ breast cancers. We denote the group as c-MYB+ breast cancer. PMID:21482760

  2. Targeted next-generation sequencing identifies novel compound heterozygous mutations of DYNC2H1 in a fetus with short rib-polydactyly syndrome, type III.

    PubMed

    Mei, Libin; Huang, Yanru; Pan, Qian; Su, Wei; Quan, Yi; Liang, Desheng; Wu, Lingqian

    2015-07-20

    A 26-year-old woman with a past history of fetal skeletal dysplasia was referred to our institution at 24weeks of gestation following a routine sonographic diagnosis of short limbs in the fetus. A fetal ultrasound showed short limbs, a narrow thorax, short ribs with marginal spurs, and polydactyly. Conventional cytogenetics analysis of cultured amniocytes demonstrated that the fetal karyotype was normal. Using targeted exome sequencing of 226 known genes implicated in inherited skeletal dysplasia, we identified compound heterozygous mutations in the DYNC2H1 gene in the fetus with short rib-polydactyly syndrome, type III (SRPS III), c.1151 C>T(p.Ala384Val) and c.4351 C>T (p.Gln1451*), which were inherited from paternally and maternally, respectively. These variants were further confirmed using Sanger sequencing and have not been previously reported. To our knowledge, this is the first report of DYNC2H1 mutations causing SRPS III, in the Chinese population. Our findings expand the number of reported cases of this rare disease, and indicate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia. PMID:25982780

  3. Oral and craniofacial manifestations and two novel missense mutations of the NTRK1 gene identified in the patient with congenital insensitivity to pain with anhidrosis.

    PubMed

    Gao, Li; Guo, Hao; Ye, Nan; Bai, Yudi; Liu, Xin; Yu, Ping; Xue, Yang; Ma, Shufang; Wei, Kewen; Jin, Yan; Wen, Lingying; Xuan, Kun

    2013-01-01

    Congenital insensitivity to pain with anhidrosis (CIPA) is a rare inherited disorder of the peripheral nervous system resulting from mutations in neurotrophic tyrosine kinase receptor 1 gene (NTRK1), which encodes the high-affinity nerve growth factor receptor TRKA. Here, we investigated the oral and craniofacial manifestations of a Chinese patient affected by autosomal-recessive CIPA and identified compound heterozygosity in the NTRK1 gene. The affected boy has multisystemic disorder with lack of reaction to pain stimuli accompanied by self-mutilation behavior, the inability to sweat leading to defective thermoregulation, and mental retardation. Oral and craniofacial manifestations included a large number of missing teeth, nasal malformation, submucous cleft palate, severe soft tissue injuries, dental caries and malocclusion. Histopathological evaluation of the skin sample revealed severe peripheral nerve fiber loss as well as mild loss and absent innervation of sweat glands. Ultrastructural and morphometric studies of a shed tooth revealed dental abnormalities, including hypomineralization, dentin hypoplasia, cementogenesis defects and a dysplastic periodontal ligament. Genetic analysis revealed a compound heterozygosity--c.1561T>C and c.2057G>A in the NTRK1 gene. This report extends the spectrum of NTRK1 mutations observed in patients diagnosed with CIPA and provides additional insight for clinical and molecular diagnosis. PMID:23799134

  4. Oral and Craniofacial Manifestations and Two Novel Missense Mutations of the NTRK1 Gene Identified in the Patient with Congenital Insensitivity to Pain with Anhidrosis

    PubMed Central

    Bai, Yudi; Liu, Xin; Yu, Ping; Xue, Yang; Ma, Shufang; Wei, Kewen; Jin, Yan; Wen, Lingying; Xuan, Kun

    2013-01-01

    Congenital insensitivity to pain with anhidrosis (CIPA) is a rare inherited disorder of the peripheral nervous system resulting from mutations in neurotrophic tyrosine kinase receptor 1 gene (NTRK1), which encodes the high-affinity nerve growth factor receptor TRKA. Here, we investigated the oral and craniofacial manifestations of a Chinese patient affected by autosomal-recessive CIPA and identified compound heterozygosity in the NTRK1 gene. The affected boy has multisystemic disorder with lack of reaction to pain stimuli accompanied by self-mutilation behavior, the inability to sweat leading to defective thermoregulation, and mental retardation. Oral and craniofacial manifestations included a large number of missing teeth, nasal malformation, submucous cleft palate, severe soft tissue injuries, dental caries and malocclusion. Histopathological evaluation of the skin sample revealed severe peripheral nerve fiber loss as well as mild loss and absent innervation of sweat glands. Ultrastructural and morphometric studies of a shed tooth revealed dental abnormalities, including hypomineralization, dentin hypoplasia, cementogenesis defects and a dysplastic periodontal ligament. Genetic analysis revealed a compound heterozygosity- c.1561T>C and c.2057G>A in the NTRK1 gene. This report extends the spectrum of NTRK1 mutations observed in patients diagnosed with CIPA and provides additional insight for clinical and molecular diagnosis. PMID:23799134

  5. Exome analysis identified a novel missense mutation in the CLPP gene in a consanguineous Saudi family expanding the clinical spectrum of Perrault Syndrome type-3.

    PubMed

    Ahmed, Saleem; Jelani, Musharraf; Alrayes, Nuha; Mohamoud, Hussein Sheikh Ali; Almramhi, Mona Mohammad; Anshasi, Wasim; Ahmed, Naushad Ali Basheer; Wang, Jun; Nasir, Jamal; Al-Aama, Jumana Yousuf

    2015-06-15

    Perrault syndrome (PRLTS) is a clinically and genetically heterogeneous disorder. Both male and female patients suffer from sensory neuronal hearing loss in early childhood, and female patients are characterized by premature ovarian failure and infertility after puberty. Clinical diagnosis may not be possible in early life, because key features of PRLTS, for example infertility and premature ovarian failure, do not appear before puberty. Limb spasticity, muscle weakness, and intellectual disability have also been observed in PRLTS patients. Mutations in five genes, HSD17B4, HARS2, CLPP, LARS2, and C10orf2, have been reported in five subtypes of PRLTS. We discovered a consanguineous Saudi family with the PRLTS3 phenotype showing an autosomal recessive mode of inheritance. The patients had developed profound hearing loss, brain atrophy, and lower limb spasticity in early childhood. For molecular diagnosis, we complimented genome-wide homozygosity mapping with whole exome sequencing analyses and identified a novel homozygous mutation in exon 6 of CLPP at chromosome 19p13.3. To our knowledge, early onset with regression is a unique feature of these PRLTS patients that has not been reported so far. This study broadens the clinical spectrum of PRLTS3. PMID:25956234

  6. Targeted Capture and Next-Generation Sequencing Identifies C9orf75, Encoding Taperin, as the Mutated Gene in Nonsyndromic Deafness DFNB79

    PubMed Central

    Rehman, Atteeq Ur; Morell, Robert J.; Belyantseva, Inna A.; Khan, Shahid Y.; Boger, Erich T.; Shahzad, Mohsin; Ahmed, Zubair M.; Riazuddin, Saima; Khan, Shaheen N.; Riazuddin, Sheikh; Friedman, Thomas B.

    2010-01-01

    Targeted genome capture combined with next-generation sequencing was used to analyze 2.9 Mb of the DFNB79 interval on chromosome 9q34.3, which includes 108 candidate genes. Genomic DNA from an affected member of a consanguineous family segregating recessive, nonsyndromic hearing loss was used to make a library of fragments covering the DFNB79 linkage interval defined by genetic analyses of four pedigrees. Homozygosity for eight previously unreported variants in transcribed sequences was detected by evaluating a library of 402,554 sequencing reads and was later confirmed by Sanger sequencing. Of these variants, six were determined to be polymorphisms in the Pakistani population, and one was in a noncoding gene that was subsequently excluded genetically from the DFNB79 linkage interval. The remaining variant was a nonsense mutation in a predicted gene, C9orf75, renamed TPRN. Evaluation of the other three DFNB79-linked families identified three additional frameshift mutations, for a total of four truncating alleles of this gene. Although TPRN is expressed in many tissues, immunolocalization of the protein product in the mouse cochlea shows prominent expression in the taper region of hair cell stereocilia. Consequently, we named the protein taperin. PMID:20170899

  7. Mutations in the SUP-PF-1 locus of Chlamydomonas reinhardtii identify a regulatory domain in the beta-dynein heavy chain

    PubMed Central

    1994-01-01

    We have characterized a group of regulatory mutations that alter the activity of the outer dynein arms. Three mutations were obtained as suppressors of the paralyzed central pair mutant pf6 (Luck, D.J.L., and G. Piperno. 1989. Cell Movement. pp. 49-60), whereas two others were obtained as suppressors of the central pair mutant pfl6. Recombination analysis and complementation tests indicate that all five mutations are alleles at the SUP-PF-1/ODA4 locus and that each allele can restore motility to radial spoke and central pair defective strains. Restriction fragment length polymorphism analysis with a genomic probe for the beta-dynein heavy chain (DHC) gene confirms that this locus is tightly linked to the beta-DHC gene. Although all five mutant sup-pf-1 alleles alter the activity of the outer dynein arm as assayed by measurements of flagellar motility, only two alleles have a discernable polypeptide defect by SDS-PAGE. We have used photolytic and proteolytic cleavage procedures to localize the polypeptide defect to an approximately 100-kD domain downstream from the last putative nucleotide binding site. This region is encoded by approximately 5 kb of genomic DNA (Mitchell, D.R., and K. Brown. 1994. J. Cell Sci. 107:653-644). PCR amplification of wild-type and mutant DNA across this region identified one PCR product that was consistently smaller in the sup-pf-1 DNA. Direct DNA sequencing of the PCR products revealed that two of the sup-pf-1 mutations are distinct, in-frame deletions. These deletions occur within a region that is predicted to encode a small alpha-helical coiled-coil domain of the beta-DHC. This domain may play a role in protein-protein interactions within the outer dynein arm. Since both the size and location of this domain have been conserved in all axonemal and cytoplasmic DHCs sequenced to date, it presumably performs a common function in all dynein isoforms. PMID:8089181

  8. Identifiers Identifiers

    E-print Network

    Brass, Stefan

    , July 1998. . Tim Berners­Lee: Cool URIs don't change. [http://www.w3.org/Provider/Style/URI] . Uniform://archive.ncsa.uiuc.edu/demoweb/url­primer.html] . T. Berners­Lee, R. Fielding, L. Masinter: Uniform Resource Identifiers (URI): Generic Syntax. RFC Names. RFC 1737, December 1994, 7 pages. . T. Berners­Lee, L. Masinter, M. McCahill: Uniform Resource

  9. Identifiers Identifiers

    E-print Network

    Brass, Stefan

    , July 1998. . Tim Berners­Lee: Cool URIs don't change. [http://www.w3.org/Provider/Style/URI] Stefan://archive.ncsa.uiuc.edu/demoweb/url­primer.html] . T. Berners­Lee, R. Fielding, L. Masinter: Uniform Resource Identifiers (URI): Generic Syntax. RFC Names. RFC 1737, December 1994, 7 pages. . T. Berners­Lee, L. Masinter, M. McCahill: Uniform Resource

  10. The tamas gene, identified as a mutation that disrupts larval behavior in Drosophila melanogaster, codes for the mitochondrial DNA polymerase catalytic subunit (DNApol-gamma125).

    PubMed

    Iyengar, B; Roote, J; Campos, A R

    1999-12-01

    From a screen of pupal lethal lines of Drosophila melanogaster we identified a mutant strain that displayed a reproducible reduction in the larval response to light. Moreover, this mutant strain showed defects in the development of the adult visual system and failure to undergo behavioral changes characteristic of the wandering stage. The foraging third instar larvae remained in the food substrate for a prolonged period and died at or just before pupariation. Using a new assay for individual larval photobehavior we determined that the lack of response to light in these mutants was due to a primary deficit in locomotion. The mutation responsible for these phenotypes was mapped to the lethal complementation group l(2)34Dc, which we renamed tamas (translated from Sanskrit as "dark inertia"). Sequencing of mutant alleles demonstrated that tamas codes for the mitochondrial DNA polymerase catalytic subunit (DNApol-gamma125). PMID:10581287

  11. A Novel Quantitative Hemolytic Assay Coupled with Restriction Fragment Length Polymorphisms Analysis Enabled Early Diagnosis of Atypical Hemolytic Uremic Syndrome and Identified Unique Predisposing Mutations in Japan

    PubMed Central

    Yoshida, Yoko; Miyata, Toshiyuki; Matsumoto, Masanori; Shirotani-Ikejima, Hiroko; Uchida, Yumiko; Ohyama, Yoshifumi; Kokubo, Tetsuro; Fujimura, Yoshihiro

    2015-01-01

    For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (?50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients. PMID:25951460

  12. To the Root of the Curl: A Signature of a Recent Selective Sweep Identifies a Mutation That Defines the Cornish Rex Cat Breed.

    PubMed

    Gandolfi, Barbara; Alhaddad, Hasan; Affolter, Verena K; Brockman, Jeffrey; Haggstrom, Jens; Joslin, Shannon E K; Koehne, Amanda L; Mullikin, James C; Outerbridge, Catherine A; Warren, Wesley C; Lyons, Leslie A

    2013-01-01

    The cat (Felis silvestris catus) shows significant variation in pelage, morphological, and behavioral phenotypes amongst its over 40 domesticated breeds. The majority of the breed specific phenotypic presentations originated through artificial selection, especially on desired novel phenotypic characteristics that arose only a few hundred years ago. Variations in coat texture and color of hair often delineate breeds amongst domestic animals. Although the genetic basis of several feline coat colors and hair lengths are characterized, less is known about the genes influencing variation in coat growth and texture, especially rexoid - curly coated types. Cornish Rex is a cat breed defined by a fixed recessive curly coat trait. Genome-wide analyses for selection (di, Tajima's D and nucleotide diversity) were performed in the Cornish Rex breed and in 11 phenotypically diverse breeds and two random bred populations. Approximately 63K SNPs were used in the analysis that aimed to localize the locus controlling the rexoid hair texture. A region with a strong signature of recent selective sweep was identified in the Cornish Rex breed on chromosome A1, as well as a consensus block of homozygosity that spans approximately 3 Mb. Inspection of the region for candidate genes led to the identification of the lysophosphatidic acid receptor 6 (LPAR6). A 4 bp deletion in exon 5, c.250_253_delTTTG, which induces a premature stop codon in the receptor, was identified via Sanger sequencing. The mutation is fixed in Cornish Rex, absent in all straight haired cats analyzed, and is also segregating in the German Rex breed. LPAR6 encodes a G protein-coupled receptor essential for maintaining the structural integrity of the hair shaft; and has mutations resulting in a wooly hair phenotype in humans. PMID:23826204

  13. To the Root of the Curl: A Signature of a Recent Selective Sweep Identifies a Mutation That Defines the Cornish Rex Cat Breed

    PubMed Central

    Gandolfi, Barbara; Alhaddad, Hasan; Affolter, Verena K.; Brockman, Jeffrey; Haggstrom, Jens; Joslin, Shannon E. K.; Koehne, Amanda L.; Mullikin, James C.; Outerbridge, Catherine A.; Warren, Wesley C.; Lyons, Leslie A.

    2013-01-01

    The cat (Felis silvestris catus) shows significant variation in pelage, morphological, and behavioral phenotypes amongst its over 40 domesticated breeds. The majority of the breed specific phenotypic presentations originated through artificial selection, especially on desired novel phenotypic characteristics that arose only a few hundred years ago. Variations in coat texture and color of hair often delineate breeds amongst domestic animals. Although the genetic basis of several feline coat colors and hair lengths are characterized, less is known about the genes influencing variation in coat growth and texture, especially rexoid – curly coated types. Cornish Rex is a cat breed defined by a fixed recessive curly coat trait. Genome-wide analyses for selection (di, Tajima’s D and nucleotide diversity) were performed in the Cornish Rex breed and in 11 phenotypically diverse breeds and two random bred populations. Approximately 63K SNPs were used in the analysis that aimed to localize the locus controlling the rexoid hair texture. A region with a strong signature of recent selective sweep was identified in the Cornish Rex breed on chromosome A1, as well as a consensus block of homozygosity that spans approximately 3 Mb. Inspection of the region for candidate genes led to the identification of the lysophosphatidic acid receptor 6 (LPAR6). A 4 bp deletion in exon 5, c.250_253_delTTTG, which induces a premature stop codon in the receptor, was identified via Sanger sequencing. The mutation is fixed in Cornish Rex, absent in all straight haired cats analyzed, and is also segregating in the German Rex breed. LPAR6 encodes a G protein-coupled receptor essential for maintaining the structural integrity of the hair shaft; and has mutations resulting in a wooly hair phenotype in humans. PMID:23826204

  14. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

    PubMed

    Couch, Fergus J; Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B L; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M; Piedmonte, Marion; Singer, Christian F; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V O; Neuhausen, Susan L; Szabo, Csilla I; Blanco, Ignacio; Greene, Mark H; Karlan, Beth Y; Garber, Judy; Phelan, Catherine M; Weitzel, Jeffrey N; Montagna, Marco; Olah, Edith; Andrulis, Irene L; Godwin, Andrew K; Yannoukakos, Drakoulis; Goldgar, David E; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B; van Rensburg, Elizabeth J; Hamann, Ute; Ramus, Susan J; Toland, Amanda Ewart; Caligo, Maria A; Olopade, Olufunmilayo I; Tung, Nadine; Claes, Kathleen; Beattie, Mary S; Southey, Melissa C; Imyanitov, Evgeny N; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M; Kwong, Ava; Diez, Orland; Balmańa, Judith; Barkardottir, Rosa B; Arun, Banu K; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A; Campbell, Ian; van der Hout, Annemarie H; van Deurzen, Carolien H M; Seynaeve, Caroline; Gómez Garcia, Encarna B; van Leeuwen, Flora E; Meijers-Heijboer, Hanne E J; Gille, Johannes J P; Ausems, Margreet G E M; Blok, Marinus J; Ligtenberg, Marjolijn J L; Rookus, Matti A; Devilee, Peter; Verhoef, Senno; van Os, Theo A M; Wijnen, Juul T; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D Gareth; Izatt, Louise; Eeles, Rosalind A; Adlard, Julian; Eccles, Diana M; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J; Side, Lucy E; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnčs; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Z?owocka-Per?owska, El?bieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H F; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L; Rebbeck, Timothy R; Blank, Stephanie V; Cohn, David E; Rodriguez, Gustavo C; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C; Jřnson, Lars; Andersen, Mette K; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L; Loud, Jennifer T; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A; Herzog, Josef; Sand, Sharon R; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V; Buys, Saundra S; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A; Duran, Mercedes; Chung, Wendy K; Lasa, Adriana; Dorfling, Cecilia M; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B; Sokolenko, Anna P; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M; Agnarsson, Bjarni A; Lu, Karen H; Lejbkowicz, Flavio; James, Paul A; Hall, Per; Dunning, Alison M; Tessier, Daniel; Cunningham, Julie; Slager, Susan L; Wang, Chen; Hart, Steven

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 × 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  15. Mutations in the human Na-K-2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters.

    PubMed

    Starremans, Patrick G J F; Kersten, Ferry F J; Knoers, Nine V A M; van den Heuvel, Lambertus P W J; Bindels, René J M

    2003-06-01

    Bartter syndrome (BS) is a heterogeneous renal tubular disorder affecting Na-K-Cl reabsorption in the thick ascending limb of Henle's loop. BS type I patients typically present with profound hypokalemia and metabolic alkalosis. The main goal of the present study was to elucidate the functional implications of six homozygous mutations (G193R, A267S, G319R, A508T, del526N, and Y998X) in the bumetanide-sensitive Na-K-2Cl cotransporter (hNKCC2) identified in patients diagnosed with BS type I. To this end, capped RNA (cRNA) of FLAG-tagged hNKCC2 and the corresponding mutants was injected in Xenopus laevis oocytes and transporter activity was measured after 72 h by means of a bumetanide-sensitive (22)Na(+) uptake assay at 30 degrees C. Injection of 25 ng of hNKCC2 cRNA resulted in bumetanide-sensitive (22)Na(+) uptake of 2.5 +/- 0.5 nmol/oocyte per 30 min. Injection of 25 ng of mutant cRNA yielded no significant bumetanide-sensitive (22)Na(+) uptake. Expression of wild-type and mutant transporters was confirmed by immunoblotting, showing significantly less mutant protein compared with wild-type at the same cRNA injection levels. However, when the wild-type cRNA injection level was reduced to obtain a protein expression level equal to that of the mutants, the wild-type still exhibited a significant bumetanide-sensitive (22)Na(+) uptake. Immunocytochemical analysis showed immunopositive staining of hNKCC2 at the plasma membrane for wild-type and all studied mutants. In conclusion, mutations in hNKCC2 identified in type I BS patients, when expressed in Xenopus oocytes, result in a low expression of normally routed but functionally impaired transporters. These results are in line with the hypothesis that the mutations in hNKCC2 are the underlying cause of the clinical abnormalities seen in patients with type I BS. PMID:12761241

  16. Positive Selection Detection in 40,000 Human Immunodeficiency Virus (HIV) Type 1 Sequences Automatically Identifies Drug Resistance and Positive Fitness Mutations in HIV Protease and Reverse Transcriptase

    Microsoft Academic Search

    Lamei Chen; Alla Perlina; Christopher J. Lee

    2004-01-01

    Drug resistance is a major problem in the treatment of AIDS, due to the very high mutation rate of human immunodeficiency virus (HIV) and subsequent rapid development of resistance to new drugs. Identification of mutations associated with drug resistance is critical for both individualized treatment selection and new drug design. We have performed an automated mutation analysis of HIV Type

  17. Mutagenesis and Analysis of Genetic Mutations in the GC-rich KISS1 Receptor Sequence Identified in Humans with Reproductive Disorders

    PubMed Central

    da Silva, Luciana Madeira; Vandepas, Lauren; Bianco, Suzy D.C.

    2011-01-01

    The kisspeptin receptor (KISS1R) is a G protein-coupled receptor recognized as the trigger of puberty and a regulator of reproductive competence in adulthood 1,2,3. Inactivating mutations in KISS1R identified in patients have been associated with iodiopathic hypogonadotropic hypogonadism (IHH) 1,2 and precocious puberty 4. Functional studies of these mutants are crucial for our understanding of the mechanisms underlying the regulation of reproduction by this receptor as well as those shaping the disease outcomes, which result from abnormal KISS1R signaling and function. However, the highly GC-rich sequence of the KISS1R gene makes it rather difficult to introduce mutations or amplify the gene encoding this receptor by PCR. Here we describe a method to introduce mutations of interest into this highly GC-rich sequence that has been used successfully to generate over a dozen KISS1R mutants in our laboratory. We have optimized the PCR conditions to facilitate the amplification of a range of KISS1R mutants that include substitutions, deletions or insertions in the KISS1R sequence. The addition of a PCR enhancer solution, as well as of a small percentage of DMSO were especially helpful to improve amplification. This optimized procedure may be useful for other GC-rich templates as well. The expression vector encoding the KISS1R is been used to characterize signaling and function of this receptor in order to understand how mutations may change KISS1R function and lead to the associated reproductive phenotypes. Accordingly, potential applications of KISS1R mutants generated by site-directed mutagenesis can be illustrated by many studies 1,4,5,6,7,8. As an example, the gain-of-function mutation in the KISS1R (Arg386Pro), which is associated with precocious puberty, has been shown to prolong responsiveness of the receptor to ligand stimulation 4 as well as to alter the rate of degradation of KISS1R 9. Interestingly, our studies indicate that KISS1R is degraded by the proteasome, as opposed to the classic lysosomal degradation described for most G protein-coupled receptors 9. In the example presented here, degradation of the KISS1R is investigated in Human Embryonic Kidney Cells (HEK-293) transiently expressing Myc-tagged KISS1R (MycKISS1R) and treated with proteasome or lysosome inhibitors. Cell lysates are immunoprecipitated using an agarose-conjugated anti-myc antibody followed by western blot analysis. Detection and quantification of MycKISS1R on blots is performed using the LI-COR Odyssey Infrared System. This approach may be useful in the study of the degradation of other proteins of interest as well. PMID:21912371

  18. A Genetic Screen for Dominant Modifiers of a cyclin E Hypomorphic Mutation Identifies Novel Regulators of S-Phase Entry in Drosophila

    PubMed Central

    Brumby, Anthony; Secombe, Julie; Horsfield, Julie; Coombe, Michelle; Amin, Nancy; Coates, Deborah; Saint, Robert; Richardson, Helena

    2004-01-01

    Cyclin E together with its kinase partner Cdk2 is a critical regulator of entry into S phase. To identify novel genes that regulate the G1- to S-phase transition within a whole animal we made use of a hypomorphic cyclin E mutation, DmcycEJP, which results in a rough eye phenotype. We screened the X and third chromosome deficiencies, tested candidate genes, and carried out a genetic screen of 55,000 EMS or X-ray-mutagenized flies for second or third chromosome mutations that dominantly modified the DmcycEJP rough eye phenotype. We have focused on the DmcycEJP suppressors, S(DmcycEJP), to identify novel negative regulators of S-phase entry. There are 18 suppressor gene groups with more than one allele and several genes that are represented by only a single allele. All S(DmcycEJP) tested suppress the DmcycEJP rough eye phenotype by increasing the number of S phases in the postmorphogenetic furrow S-phase band. By testing candidates we have identified several modifier genes from the mutagenic screen as well as from the deficiency screen. DmcycEJP suppressor genes fall into the classes of: (1) chromatin remodeling or transcription factors; (2) signaling pathways; and (3) cytoskeletal, (4) cell adhesion, and (5) cytoarchitectural tumor suppressors. The cytoarchitectural tumor suppressors include scribble, lethal-2-giant-larvae (lgl), and discs-large (dlg), loss of function of which leads to neoplastic tumors and disruption of apical-basal cell polarity. We further explored the genetic interactions of scribble with S(DmcycEJP) genes and show that hypomorphic scribble mutants exhibit genetic interactions with lgl, scab (?PS3-integrin—cell adhesion), phyllopod (signaling), dEB1 (microtubule-binding protein—cytoskeletal), and moira (chromatin remodeling). These interactions of the cytoarchitectural suppressor gene, scribble, with cell adhesion, signaling, cytoskeletal, and chromatin remodeling genes, suggest that these genes may act in a common pathway to negatively regulate cyclin E or S-phase entry. PMID:15454540

  19. A genetic screen for dominant modifiers of a cyclin E hypomorphic mutation identifies novel regulators of S-phase entry in Drosophila.

    PubMed

    Brumby, Anthony; Secombe, Julie; Horsfield, Julie; Coombe, Michelle; Amin, Nancy; Coates, Deborah; Saint, Robert; Richardson, Helena

    2004-09-01

    Cyclin E together with its kinase partner Cdk2 is a critical regulator of entry into S phase. To identify novel genes that regulate the G1- to S-phase transition within a whole animal we made use of a hypomorphic cyclin E mutation, DmcycEJP, which results in a rough eye phenotype. We screened the X and third chromosome deficiencies, tested candidate genes, and carried out a genetic screen of 55,000 EMS or X-ray-mutagenized flies for second or third chromosome mutations that dominantly modified the DmcycEJP rough eye phenotype. We have focused on the DmcycEJP suppressors, S(DmcycEJP), to identify novel negative regulators of S-phase entry. There are 18 suppressor gene groups with more than one allele and several genes that are represented by only a single allele. All S(DmcycEJP) tested suppress the DmcycEJP rough eye phenotype by increasing the number of S phases in the postmorphogenetic furrow S-phase band. By testing candidates we have identified several modifier genes from the mutagenic screen as well as from the deficiency screen. DmcycEJP suppressor genes fall into the classes of: (1) chromatin remodeling or transcription factors; (2) signaling pathways; and (3) cytoskeletal, (4) cell adhesion, and (5) cytoarchitectural tumor suppressors. The cytoarchitectural tumor suppressors include scribble, lethal-2-giant-larvae (lgl), and discs-large (dlg), loss of function of which leads to neoplastic tumors and disruption of apical-basal cell polarity. We further explored the genetic interactions of scribble with S(DmcycEJP) genes and show that hypomorphic scribble mutants exhibit genetic interactions with lgl, scab (alphaPS3-integrin--cell adhesion), phyllopod (signaling), dEB1 (microtubule-binding protein--cytoskeletal), and moira (chromatin remodeling). These interactions of the cytoarchitectural suppressor gene, scribble, with cell adhesion, signaling, cytoskeletal, and chromatin remodeling genes, suggest that these genes may act in a common pathway to negatively regulate cyclin E or S-phase entry. PMID:15454540

  20. Mapping of ATP binding regions in poly(A) polymerases by photoaffinity labeling and by mutational analysis identifies a domain conserved in many nucleotidyltransferases.

    PubMed Central

    Martin, G.; Jenö, P.; Keller, W.

    1999-01-01

    We have identified regions in poly(A) polymerases that interact with ATP. Conditions were established for efficient cross-linking of recombinant bovine and yeast poly(A) polymerases to 8-azido-ATP. Mn2+ strongly stimulated this reaction due to a 50-fold lower Ki for 8-azido-ATP in the presence of Mn2+. Mutations of the highly conserved Asp residues 113, 115, and 167, critical for metal binding in the catalytic domain of bovine poly(A) polymerase, led to a strong reduction of cross-linking efficiency, and Mn2+ no longer stimulated the reaction. Sites of 8-azido-ATP cross-linking were mapped in different poly(A) polymerases by CNBr-cleavage and analysis of tryptic peptides by mass spectroscopy. The main cross-link in Schizosaccharomyces pombe poly(A) polymerase could be assigned to the peptide DLELSDNNLLK (amino acids 167-177). Database searches with sequences surrounding the cross-link site detected significant homologies to other nucleotidyltransferase families, suggesting a conservation of the nucleotide-binding fold among these families of enzymes. Mutations in the region of the "helical turn motif" (a domain binding the triphosphate moiety of the nucleotide) and in the suspected nucleotide-binding helix of bovine poly(A) polymerase impaired ATP binding and catalysis. The results indicate that ATP is bound in part by the helical turn motif and in part by a region that may be a structural analog to the fingers domain found in many polymerases. PMID:10595540

  1. Mapping of ATP binding regions in poly(A) polymerases by photoaffinity labeling and by mutational analysis identifies a domain conserved in many nucleotidyltransferases.

    PubMed

    Martin, G; Jenö, P; Keller, W

    1999-11-01

    We have identified regions in poly(A) polymerases that interact with ATP. Conditions were established for efficient cross-linking of recombinant bovine and yeast poly(A) polymerases to 8-azido-ATP. Mn2+ strongly stimulated this reaction due to a 50-fold lower Ki for 8-azido-ATP in the presence of Mn2+. Mutations of the highly conserved Asp residues 113, 115, and 167, critical for metal binding in the catalytic domain of bovine poly(A) polymerase, led to a strong reduction of cross-linking efficiency, and Mn2+ no longer stimulated the reaction. Sites of 8-azido-ATP cross-linking were mapped in different poly(A) polymerases by CNBr-cleavage and analysis of tryptic peptides by mass spectroscopy. The main cross-link in Schizosaccharomyces pombe poly(A) polymerase could be assigned to the peptide DLELSDNNLLK (amino acids 167-177). Database searches with sequences surrounding the cross-link site detected significant homologies to other nucleotidyltransferase families, suggesting a conservation of the nucleotide-binding fold among these families of enzymes. Mutations in the region of the "helical turn motif" (a domain binding the triphosphate moiety of the nucleotide) and in the suspected nucleotide-binding helix of bovine poly(A) polymerase impaired ATP binding and catalysis. The results indicate that ATP is bound in part by the helical turn motif and in part by a region that may be a structural analog to the fingers domain found in many polymerases. PMID:10595540

  2. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation

    PubMed Central

    Lee, Hane; Lin, Meng-chin A.; Kornblum, Harley I.; Papazian, Diane M.; Nelson, Stanley F.

    2014-01-01

    Numerous studies and case reports show comorbidity of autism and epilepsy, suggesting some common molecular underpinnings of the two phenotypes. However, the relationship between the two, on the molecular level, remains unclear. Here, whole exome sequencing was performed on a family with identical twins affected with autism and severe, intractable seizures. A de novo variant was identified in the KCND2 gene, which encodes the Kv4.2 potassium channel. Kv4.2 is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current (ISA) channels. The de novo mutation p.Val404Met is novel and occurs at a highly conserved residue within the C-terminal end of the transmembrane helix S6 region of the ion permeation pathway. Functional analysis revealed the likely pathogenicity of the variant in that the p.Val404Met mutant construct showed significantly slowed inactivation, either by itself or after equimolar coexpression with the wild-type Kv4.2 channel construct consistent with a dominant effect. Further, the effect of the mutation on closed-state inactivation was evident in the presence of auxiliary subunits that associate with Kv4 subunits to form ISA channels in vivo. Discovery of a functionally relevant novel de novo variant, coupled with physiological evidence that the mutant protein disrupts potassium current inactivation, strongly supports KCND2 as the causal gene for epilepsy in this family. Interaction of KCND2 with other genes implicated in autism and the role of KCND2 in synaptic plasticity provide suggestive evidence of an etiological role in autism. PMID:24501278

  3. A Nationwide Study of Norwegian Patients with Hereditary Angioedema with C1 Inhibitor Deficiency Identified Six Novel Mutations in SERPING1

    PubMed Central

    Johnsrud, Irene; Kulseth, Mari Ann; Rřdningen, Olaug Kristin; Landrř, Linn; Helsing, Per; Waage Nielsen, Erik; Heimdal, Ketil

    2015-01-01

    Hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) is characterized by relapsing, non-pruritic swelling in skin and submucosal tissue. Symptoms can appear in early infancy when diagnosis is more difficult. In the absence of a correct diagnosis, treatment of abdominal attacks often lead to unnecessary surgery, and laryngeal edema can cause asphyxiation. A cohort study of 52 patients from 25 unrelated families in Norway was studied. Diagnosis of C1-INH-HAE was based on international consensus criteria including low functional and/or antigenic C1-INH values and antigenic C4. As SERPING1 mutations in Norwegian patients with C1-INH-HAE are largely undescribed and could help in diagnosis, we aimed to find and describe these mutations. Mutation analysis of the SERPING1 gene was performed by Sanger sequencing of all protein coding exons and exon-intron boundaries. Samples without detected mutation were further analyzed by multiplex ligation-dependent probe amplification to detect deletions and duplications. Novel mutations suspected to lead to splice defects were analyzed on the mRNA level. Fifty-two patients from 25 families were included. Forty-four (84,6%) suffered from C1-INH-HAE type I and eight (15,4%) suffered from C1-INH-HAE type II. Pathogenic or likely pathogenic mutations were found in 22/25 families (88%). Thirteen unique mutations were detected, including six previously undescribed. There were three missense mutations including one mutation affecting the reactive center loop at codon 466, three nonsense mutations, three small deletions/duplications, three gross deletions, and one splice mutation. PMID:26154504

  4. Evolutionary Action Score of TP53 Identifies High-Risk Mutations Associated with Decreased Survival and Increased Distant Metastases in Head and Neck Cancer.

    PubMed

    Neskey, David M; Osman, Abdullah A; Ow, Thomas J; Katsonis, Panagiotis; McDonald, Thomas; Hicks, Stephanie C; Hsu, Teng-Kuei; Pickering, Curtis R; Ward, Alexandra; Patel, Ameeta; Yordy, John S; Skinner, Heath D; Giri, Uma; Sano, Daisuke; Story, Michael D; Beadle, Beth M; El-Naggar, Adel K; Kies, Merrill S; William, William N; Caulin, Carlos; Frederick, Mitchell; Kimmel, Marek; Myers, Jeffrey N; Lichtarge, Olivier

    2015-04-01

    TP53 is the most frequently altered gene in head and neck squamous cell carcinoma, with mutations occurring in over two-thirds of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed evolutionary action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high-risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high-risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high-risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations that confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations. Cancer Res; 75(7); 1527-36. ©2015 AACR. PMID:25634208

  5. Intestinal Cell Barrier Function In Vitro Is Severely Compromised by Keratin 8 and 18 Mutations Identified in Patients with Inflammatory Bowel Disease

    PubMed Central

    Zupancic, Tina; Stojan, Jure; Lane, Ellen Birgitte; Komel, Radovan; Bedina-Zavec, Apolonija; Liovic, Mirjana

    2014-01-01

    Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo. PMID:24915158

  6. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B? subunit targeting of PP2A to centrosomes in C. elegans

    PubMed Central

    Lange, Karen I.; Heinrichs, Jeffrey; Cheung, Karen; Srayko, Martin

    2013-01-01

    Summary Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B?, B?) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B? family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B? subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B? subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B?. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo. PMID:23336080

  7. Frequency and distribution in East Asia of 12 mutations identified in the SLC25A13 gene of Japanese patients with citrin deficiency

    Microsoft Academic Search

    Yao Bang Lu; Keiko Kobayashi; Miharu Ushikai; Ayako Tabata; Mikio Iijima; Meng Xian Li; Lei Lei; Kotaro Kawabe; Satoru Taura; Yanling Yang; Tze-Tze Liu; Szu-Hui Chiang; Kwang-Jen Hsiao; Yu-Lung Lau; Lap-Chee Tsui; Dong Hwan Lee; Takeyori Saheki

    2005-01-01

    Deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier (AGC), encoded by the SLC25A13 gene on chromosome 7q21.3, causes autosomal recessive disorders: adult-onset type II citrullinemia (CTLN2) and neonatal hepatitis associated with intrahepatic cholestasis (NICCD). So far, we have described 12 SLC25A13 mutations: 11 were from Japan and one from Israel. Three mutations found in Chinese and Vietnamese patients were the

  8. CDH1 germ-line missense mutation identified by multigene sequencing in a family with no history of diffuse gastric cancer.

    PubMed

    Lajus, Tirzah Braz Petta; Sales, Roberto Magnus Duarte

    2015-09-01

    Germ-line mutation in CDH1 gene is associated with high risk for Hereditary Diffuse Gastric Cancer (HDGC) and Infiltrative Lobular Carcinoma (ILC). Although somatic CDH1 mutations were also detected in ILC with a frequency ranging from 10 to 56%, CDH1 alterations in more frequent infiltrative ductal carcinoma (IDC) appear to be rare, and no association with germ-line CDH1 mutation and IDC has been established. Here we report the case of a woman diagnosed with IDC at 39years of age, presenting extensive familial history of cancer at multiple sites with early-age onset and with no case of HDGC. Deep sequencing have revealed CDH1 missense mutation c.1849G>A (p.Ala617Thr) in heterozygous and four BRCA2 single nucleotide polymorphism in homozygosis. In this family, the mutation c.1849G>A in the CDH1 gene is not related to HDGC nor ILC. Therefore, here we highlight that multigene analysis is important to detect germ-line mutations and genetic variants in patients with cancers at multiple sites in the family, even if inconclusive genetic counseling can be offered, since hereafter, medical awareness will be held. PMID:25981591

  9. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics.

    PubMed

    Goldstein, Andrew S; Lawson, Devon A; Cheng, Donghui; Sun, Wenyi; Garraway, Isla P; Witte, Owen N

    2008-12-30

    The epithelium of the adult prostate contains 3 distinct cell types: basal, luminal, and neuroendocrine. Tissue-regenerative activity has been identified predominantly from the basal cells, isolated by expression of CD49f and stem cell antigen-1 (Sca-1). An important question for the field is whether all basal cells have stem cell characteristics. Prostate-specific microarray databases were interrogated to find candidate surface antigens that could subfractionate the basal cell population. Tumor-associated calcium signal transducer 2 (TACSTD2/Trop2/M1S1/GA733-1) was identified because it was enriched after castration, in prostate sphere cells and in the basal fraction. In the murine prostate, Trop2 shows progenitor characteristics such as localization to the region of the gland proximal to the urethra and enrichment for sphere-forming and colony-forming cells. Trop2 subfractionates the basal cells into 2 populations, both of which express characteristic basal cell markers by quantitative PCR. However, only the basal cells expressing high levels of Trop2 were able to efficiently form spheres in vitro. In the human prostate, where Sca-1 is not expressed, sphere-forming progenitor cells were also isolated based on high expression of Trop2 and CD49f. Trop2-expressing murine basal cells could regenerate prostatic tubules in vivo, whereas the remaining basal cells had minimal activity. Evidence was found for basal, luminal, and neuroendocrine cells in prostatic tubules regenerated from Trop2(hi) basal cells. In summary, functionally distinct populations of cells exist within the prostate basal compartment and an epithelial progenitor can give rise to neuroendocrine cells in vivo. PMID:19088204

  10. The FMR1 CGG repeat test is not a candidate prescreening tool for identifying women with a high probability of being carriers of BRCA mutations.

    PubMed

    Ricci, Maria Teresa; Pennese, Loredana; Gismondi, Viviana; Perfumo, Chiara; Grasso, Marina; Gennaro, Elena; Bruzzi, Paolo; Varesco, Liliana

    2014-02-01

    The identification of women with a high probability of being carriers of pathogenic BRCA mutation is not straightforward and a major improvement would be the availability of markers of mutations that could be directly evaluated in individuals asking for genetic testing. The FMR1 gene testing was recently proposed as a candidate prescreening tool because an association between BRCA pathogenic mutations and FMR1 genotypes with 'low alleles' (CGG repeat number <26) was observed. To confirm this hypothesis, we evaluated the distribution of FMR1 alleles and genotypes between BRCA mutation carriers and non-carriers in a cohort of 147 Italian women, free of cancer or affected by breast and/or ovarian cancer, who were tested for the presence of BRCA mutation in a clinical setting. The distribution of FMR1 CGG repeat numbers in the two groups was similar (lower allele median/mean were 30/27.4 and 30/27.9, respectively; Mann-Whitney test P=0.997) and no difference in the FMR1 genotype distribution was present (?(2)=0.503, d.f.=2, P=0.78). This result is in contrast with literature data and suggests that FMR1 genetic testing is not a candidate BRCA prescreening tool. PMID:24065114

  11. K-rasG12V mediated lung tumor models identified three new quantitative trait loci modifying events post-K-ras mutation.

    PubMed

    Saito, Hiromitsu; Suzuki, Noboru

    2014-10-01

    A high incidence of oncogenic K-ras mutations is observed in lung adenocarcinoma of human cases and carcinogen-induced animal models. The process of oncogenic K-ras-mediated lung adenocarcinogenesis can be dissected into two parts: pre- and post-K-ras mutation. Adoption of transgenic lines containing a flox-K-rasG12V transgene eliminates the use of chemical carcinogens and enables us to study directly crucial events post-K-ras mutation without considering the cellular events involved with oncogenic K-ras mutation, e.g., distribution and metabolism of chemical carcinogens, DNA repair, and somatic recombination by host factors. We generated two mouse strains C57BL/6J-Ryr2(tm1Nobs) and A/J-Ryr2(tm1Nobs) in which K-rasG12V can be transcribed from the cytomegalovirus early enhancer/chicken beta actin promoter in virtually any tissue. Upon K-rasG12V induction in lung epithelial cells by an adenovirus expressing the Cre recombinase, the number of tumors in the C57BL/6J-Ryr2(tm1Nobs/+) mouse line was 12.5 times that in the A/J-Ryr2(tm1Nobs/+) mouse line. Quantitative trait locus (QTL) analysis revealed that new three modifier loci, D3Mit19, D3Mit45 and D11Mit20, were involved in the differential susceptibility between the two lines. In addition, we found that differential expression of the wild-type K-ras gene, which was genetically turn out to be anti-oncogenic activity on K-rasG12V, could not account for the different susceptibility in our two K-rasG12V-mediated lung tumor models. Thus, we provide a genetic system that enables us to explore new downstream modifiers post-K-ras mutation. PMID:25245290

  12. Missense mutations in SH2D1A identified in patients with X-linked lymphoproliferative disease differentially affect the expression and function of SAP

    Microsoft Academic Search

    Nathan J. Hare; Cindy S. Ma; Frank Alvaro; Kim E. Nichols; Stuart G. Tangye

    2006-01-01

    X-linked lymphoproliferative disease (XLP) is an immunodeficiency resulting from mutations in SH2D1A, which encodes signalling lymphocytic activation molecule (SLAM)-associated protein (SAP). In addition to SLAM, SAP associates with several other cell-surface receptors including 2B4 (CD244), Ly9 (CD229), CD84 and NTB-A. SAP contains a single src-homology-2 domain and acts as an intracellular adaptor protein by recruiting the protein tyrosine kinase FynT

  13. rpoB Gene Mutations in Rifampin-Resistant Mycobacterium tuberculosis Identified by Polymerase Chain Reaction Single-Stranded Conformational Polymorphism

    Microsoft Academic Search

    Miriam Bobadilla-del-Valle; Alfredo Ponce-de-Leon; Catalina Arenas-Huertero; Gilberto Vargas-Alarcon; Midori Kato-Maeda; Peter M. Small; Patricia Couary; Guillermo M. Ruiz-Palacios; Jose Sifuentes-Osornio

    2001-01-01

    The use of polymerase chain reaction-single-stranded conformational poly- morphism (PCR-SSCP) to study rpoB gene mutations in rifampin-resistant (RIFr) Mycobacterium tuberculosis has yielded contradictory results. To determine the sensitivity of this method, we analyzed 35 RIFr strains and 11 rifampin-susceptible (RIFs) strains, using the DNA sequencing of the core region of rpoB for comparison. Of the RIFr, 24 had a PCR-SSCP

  14. Identification of three novel OA1 gene mutations identified in three families misdiagnosed with congenital nystagmus and carrier status determination by real-time quantitative PCR assay

    Microsoft Academic Search

    Valérie Faugčre; Sylvie Tuffery-Giraud; Christian Hamel; Mireille Claustres

    2003-01-01

    BACKGROUND: X-linked ocular albinism type 1 (OA1) is caused by mutations in OA1 gene, which encodes a membrane glycoprotein localised to melanosomes. OA1 mainly affects pigment production in the eye, resulting in optic changes associated with albinism including hypopigmentation of the retina, nystagmus, strabismus, foveal hypoplasia, abnormal crossing of the optic fibers and reduced visual acuity. Affected Caucasian males usually

  15. UV signature mutations.

    PubMed

    Brash, Douglas E

    2015-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations—deviations from a random distribution of base changes to create a pattern typical of that mutagen—and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ?60% of mutations are C?T at a dipyrimidine site, with ?5% CC?TT. Other canonical features such as a bias for mutations on the nontranscribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; UV's nonsignature mutations may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  16. Novel point mutation of the ?2-globin gene (HBA2) and a rare 2.4?kb deletion of the ?1-globin gene (HBA1), identified in two chinese patients with Hb H disease.

    PubMed

    So, Chi-Chiu; Chan, Amy Y Y; Ma, Edmond S K

    2014-01-01

    Two Chinese patients with mild and moderate Hb H disease were investigated for rare mutations on the ?-globin genes (HBA1, HBA2) in addition to the - -(SEA) deletion. One patient was a 41-year old man with mild anemia (Hb 11.3?g/dL). Multiplex ligation-dependent probe amplification (MLPA) revealed a rare 2392?bp deletion involving the entire HBA1 gene. Mapping by gap-polymerase chain reaction (gap-PCR) defined the exact breakpoints of this deletion (HBA1: g36859_39252del2392) and confirmed its identity with a recently reported HBA1 deletion found in a Southern Chinese. The other patient was a 53-year old man with moderate anemia (Hb 9.5?g/dL). Automated direct nucleotide (nt) sequencing identified a novel single nt deletion at codon 40 (HBA2: c.123delG). This leads to a frameshift that modifies the C-terminal sequence to (40)Lys-Pro-Thr-Ser-Arg-Thr-Ser-Thr(47)COOH and the introduction of a stop codon TGA 23 nts downstream. These two cases demonstrate the power of MLPA and direct nt sequencing to detect and characterize rare and novel mutations. They also highlight the differential effect of HBA1 and HBA2 gene mutations on an ?-thalassemia (?-thal) phenotype due to their different transcriptional activity. PMID:24826793

  17. Characterizing the Molecular Basis of Attenuation of Marek's Disease Virus via In Vitro Serial Passage Identifies De Novo Mutations in the Helicase-Primase Subunit Gene UL5 and Other Candidates Associated with Reduced Virulence

    PubMed Central

    Hildebrandt, Evin; Dunn, John R.; Perumbakkam, Sudeep; Niikura, Masahiro

    2014-01-01

    ABSTRACT Marek's disease (MD) is a lymphoproliferative disease of chickens caused by the oncogenic Gallid herpesvirus 2, commonly known as Marek's disease virus (MDV). MD vaccines, the primary control method, are often generated by repeated in vitro serial passage of this highly cell-associated virus to attenuate virulent MDV strains. To understand the genetic basis of attenuation, we used experimental evolution by serially passing three virulent MDV replicates generated from an infectious bacterial artificial chromosome (BAC) clone. All replicates became completely or highly attenuated, indicating that de novo mutation, and not selection among quasispecies existing in a strain, is the primary driving force for the reduction in virulence. Sequence analysis of the attenuated replicates revealed 41 to 95 single-nucleotide variants (SNVs) at 2% or higher frequency in each population and several candidate genes containing high-frequency, nonsynonymous mutations. Five candidate mutations were incorporated into recombinant viruses to determine their in vivo effect. SNVs within UL42 (DNA polymerase auxiliary subunit) and UL46 (tegument) had no measurable influence, while two independent mutations in LORF2 (a gene of unknown function) improved survival time of birds but did not alter disease incidence. A fifth SNV located within UL5 (helicase-primase subunit) greatly reduced in vivo viral replication, increased survival time of birds, and resulted in only 0 to 11% disease incidence. This study shows that multiple genes, often within pathways involving DNA replication and transcriptional regulation, are involved in de novo attenuation of MDV and provides targets for the rational design of future MD vaccines. IMPORTANCE Marek's disease virus (MDV) is a very important pathogen in chickens that costs the worldwide poultry industry $1 billion to $2 billion annually. Marek's disease (MD) vaccines, the primary control method, are often produced by passing virulent strains in cell culture until attenuated. To understand this process, we identified all the changes in the viral genome that occurred during repeated cell passage. We find that a single mutation in the UL5 gene, which encodes a viral protein necessary for DNA replication, reduces disease incidence by 90% or more. In addition, other candidate genes were identified. This information should lead to the development of more effective and rationally designed MD vaccines leading to improved animal health and welfare and lower costs to consumers. PMID:24648463

  18. The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis

    PubMed Central

    Johnson, Kim L.; Ramm, Sascha; Kappel, Christian; Ward, Sally; Leyser, Ottoline; Sakamoto, Tomoaki; Kurata, Tetsuya; Bevan, Michael W.; Lenhard, Michael

    2015-01-01

    Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways. PMID:26147117

  19. Mutational analysis of FANCL, FANCM and the recently identified FANCI suggests that among the 13 known Fanconi Anemia genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition.

    PubMed

    García, María J; Fernández, Victoria; Osorio, Ana; Barroso, Alicia; Fernández, Fernando; Urioste, Miguel; Benítez, Javier

    2009-11-01

    Fanconi Anemia (FA) is a rare recessive syndrome characterized by cellular hypersensitivity to DNA-cross-linking agents. To date, 13 FA complementation groups have been described and all 13 genes associated to each of these groups have been currently identified. Three of the known FA genes are also high-risk (FANCD1/BRCA2) or moderate-risk (FANCN/PALB2 and FANCJ/BRIP1) breast cancer susceptibility genes, which makes all members of the FA pathway particularly attractive breast cancer candidate genes. Most FA genes have been screened for mutations in breast cancer families negative for BRCA1/2 mutations but the role of FANCL, FANCM and the recently identified FANCI has not been evaluated to date. This fact and novel data sustaining greater functional relevance of the three genes within the FA pathway prompted us to scrutinize all coding sequences and splicing sites of FANCI, FANCL and FANCM in 95 BRCA1/2-negative index cases from Spanish high-risk breast cancer families. We identified 68 sequence variants of which 24 were coding and 44 non-coding. Six exonic and 26 non-coding variants had not been described previously. None of the coding changes caused clearly pathogenic changes and computational analysis of all non-described intronic variants did not revealed major impact in splicing. With the present study, all known FA genes have been evaluated within the context of breast cancer high-risk predisposition. Our results rule out a major role of FANCI, FANCL and FANCM in familial breast cancer susceptibility, suggesting that among the 13 known FA genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition. PMID:19737859

  20. Human junctophilin-2 undergoes a structural rearrangement upon binding PtdIns(3,4,5)P3 and the S101R mutation identified in hypertrophic cardiomyopathy obviates this response

    PubMed Central

    Bennett, Hayley J.; Davenport, John Bernard; Collins, Richard F.; Trafford, Andrew W.; Pinali, Christian; Kitmitto, Ashraf

    2013-01-01

    JP2 (junctophilin-2) is believed to hold the transverse tubular and jSR (junctional sarcoplasmic reticulum) membranes in a precise geometry that facilitates excitation–contraction coupling in cardiomyocytes. We have expressed and purified human JP2 and shown using electron microscopy that the protein forms elongated structures ~15 nm long and 2 nm wide. Employing lipid-binding assays and quartz crystal microbalance with dissipation we have determined that JP2 is selective for PS (phosphatidylserine), with a Kd value of ~0.5 ?M, with the N-terminal domain mediating this interaction. JP2 also binds PtdIns(3,4,5)P3 at a different site than PS, resulting in the protein adopting a more flexible conformation; this interaction is modulated by both Ca2+ and Mg2+ ions. We show that the S101R mutation identified in patients with hypertrophic cardiomyopathy leads to modification of the protein secondary structure, forming a more flexible molecule with an increased affinity for PS, but does not undergo a structural transition in response to binding PtdIns(3,4,5)P3. In conclusion, the present study provides new insights into the structural and lipid-binding properties of JP2 and how the S101R mutation may have an effect upon the stability of the dyad organization with the potential to alter JP2–protein interactions regulating Ca2+ cycling. PMID:24001019

  1. Evaluation of the diagnostic accuracy of the stop codon (SC) assay for identifying protein-truncating mutations in the BRCA1 and BRCA2 genes in familial breast cancer

    Microsoft Academic Search

    Masato Sakayori; Masanori Kawahara; Kazuko Shiraishi; Tadashi Nomizu; Akira Shimada; Toshio Kudo; Rikiya Abe; Noriaki Ohuchi; Seiichi Takenoshita; Ryunosuke Kanamaru; Chikashi Ishioka

    2003-01-01

    .  ?Screening for protein-truncating mutations of the BRCA1 and BRCA2 genes is useful in genetic testing for familial breast cancer because, first, the methods are usually simple and not expensive,\\u000a and second, the detected mutations indicate pathogenic mutations in general. We evaluated the diagnostic accuracy of the stop\\u000a codon (SC) assay for detecting protein-truncating mutations in the BRCA1 and BRCA2 genes

  2. Expression and mutation analyses implicate ARHGAP29 as the etiologic gene for the cleft lip with or without cleft palate locus identified by genome wide association on chromosome 1p22

    PubMed Central

    Leslie, Elizabeth J; Mansilla, M Adela; Biggs, Leah C; Schuette, Kristi; Bullard, Steve; Cooper, Margaret; Dunnwald, Martine; Lidral, Andrew C; Marazita, Mary L; Beaty, Terri H; Murray, Jeffrey C

    2012-01-01

    Background Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a common birth defect with complex etiology reflecting the action of multiple genetic and/or environmental factors. Genome wide association studies have successfully identified five novel loci associated with NSCL/P including a locus on 1p22.1 near the ABCA4 gene. Since neither expression analysis nor mutation screening support a role for ABCA4 in NSCL/P, we investigated the adjacent gene ARHGAP29. Methods Mutation screening for ARHGAP29 protein coding exons was conducted in 180 individuals with NSCL/P and controls from the US and the Philippines. Nine exons with variants in ARHGAP29 were then screened in an independent set of 872 cases and 802 controls. Arhgap29 expression was evaluated using in situ hybridization in murine embryos. Results Sequencing of ARHGAP29 revealed eight potentially deleterious variants in cases including a frameshift and a nonsense variant. Arhgap29 showed craniofacial expression and was reduced in a mouse deficient for Irf6, a gene previously shown to have a critical role in craniofacial development. Conclusion The combination of genome wide association, rare coding sequence variants, craniofacial specific expression and interactions with IRF6 support a role for ARHGAP29 in NSCL/P and as the etiologic gene at the 1p22 GWAS locus for NSCL/P. This work suggests a novel pathway in which the IRF6 gene regulatory network interacts with the Rho pathway via ARHGAP29. PMID:23008150

  3. Alström Syndrome: Mutation Spectrum of ALMS1.

    PubMed

    Marshall, Jan D; Muller, Jean; Collin, Gayle B; Milan, Gabriella; Kingsmore, Stephen F; Dinwiddie, Darrell; Farrow, Emily G; Miller, Neil A; Favaretto, Francesca; Maffei, Pietro; Dollfus, Hélčne; Vettor, Roberto; Naggert, Jürgen K

    2015-07-01

    Alström Syndrome (ALMS), a recessive, monogenic ciliopathy caused by mutations in ALMS1, is typically characterized by multisystem involvement including early cone-rod retinal dystrophy and blindness, hearing loss, childhood obesity, type 2 diabetes mellitus, cardiomyopathy, fibrosis, and multiple organ failure. The precise function of ALMS1 remains elusive, but roles in endosomal and ciliary transport and cell cycle regulation have been shown. The aim of our study was to further define the spectrum of ALMS1 mutations in patients with clinical features of ALMS. Mutational analysis in a world-wide cohort of 204 families identified 109 novel mutations, extending the number of known ALMS1 mutations to 239 and highlighting the allelic heterogeneity of this disorder. This study represents the most comprehensive mutation analysis in patients with ALMS, identifying the largest number of novel mutations in a single study worldwide. Here, we also provide an overview of all ALMS1 mutations identified to date. PMID:25846608

  4. TCF12 is mutated in anaplastic oligodendroglioma.

    PubMed

    Labreche, Karim; Simeonova, Iva; Kamoun, Aurélie; Gleize, Vincent; Chubb, Daniel; Letouzé, Eric; Riazalhosseini, Yasser; Dobbins, Sara E; Elarouci, Nabila; Ducray, Francois; de Reyničs, Aurélien; Zelenika, Diana; Wardell, Christopher P; Frampton, Mathew; Saulnier, Olivier; Pastinen, Tomi; Hallout, Sabrina; Figarella-Branger, Dominique; Dehais, Caroline; Idbaih, Ahmed; Mokhtari, Karima; Delattre, Jean-Yves; Huillard, Emmanuelle; Mark Lathrop, G; Sanson, Marc; Houlston, Richard S

    2015-01-01

    Anaplastic oligodendroglioma (AO) are rare primary brain tumours that are generally incurable, with heterogeneous prognosis and few treatment targets identified. Most oligodendrogliomas have chromosomes 1p/19q co-deletion and an IDH mutation. Here we analysed 51 AO by whole-exome sequencing, identifying previously reported frequent somatic mutations in CIC and FUBP1. We also identified recurrent mutations in TCF12 and in an additional series of 83 AO. Overall, 7.5% of AO are mutated for TCF12, which encodes an oligodendrocyte-related transcription factor. Eighty percent of TCF12 mutations identified were in either the bHLH domain, which is important for TCF12 function as a transcription factor, or were frameshift mutations leading to TCF12 truncated for this domain. We show that these mutations compromise TCF12 transcriptional activity and are associated with a more aggressive tumour type. Our analysis provides further insights into the unique and shared pathways driving AO. PMID:26068201

  5. TCF12 is mutated in anaplastic oligodendroglioma

    PubMed Central

    Labreche, Karim; Simeonova, Iva; Kamoun, Aurélie; Gleize, Vincent; Chubb, Daniel; Letouzé, Eric; Riazalhosseini, Yasser; Dobbins, Sara E.; Elarouci, Nabila; Ducray, Francois; de Reyničs, Aurélien; Zelenika, Diana; Wardell, Christopher P.; Frampton, Mathew; Saulnier, Olivier; Pastinen, Tomi; Hallout, Sabrina; Figarella-Branger, Dominique; Dehais, Caroline; Idbaih, Ahmed; Mokhtari, Karima; Delattre, Jean-Yves; Huillard, Emmanuelle; Mark Lathrop, G.; Sanson, Marc; Houlston, Richard S.; Adam, Clovis; Andraud, Marie; Aubriot-Lorton, Marie-Hélčne; Bauchet, Luc; Beauchesne, Patrick; Blechet, Claire; Campone, Mario; Carpentier, Antoine; Carpentier, Catherine; Carpiuc, Ioana; Chenard, Marie-Pierre; Chiforeanu, Danchristian; Chinot, Olivier; Cohen-Moyal, Elisabeth; Colin, Philippe; Dam-Hieu, Phong; Desenclos, Christine; Desse, Nicolas; Dhermain, Frederic; Diebold, Marie-Daničle; Eimer, Sandrine; Faillot, Thierry; Fesneau, Mélanie; Fontaine, Denys; Gaillard, Stéphane; Gauchotte, Guillaume; Gaultier, Claude; Ghiringhelli, Francois; Godard, Joel; Marcel Gueye, Edouard; Sebastien Guillamo, Jean; Hamdi-Elouadhani, Selma; Honnorat, Jerome; Louis Kemeny, Jean; Khallil, Toufik; Jouvet, Anne; Labrousse, Francois; Langlois, Olivier; Laquerriere, Annie; Lechapt-Zalcman, Emmanuelle; Le Guérinel, Caroline; Levillain, Pierre-Marie; Loiseau, Hugues; Loussouarn, Delphine; Maurage, Claude-Alain; Menei, Philippe; Janette Motsuo Fotso, Marie; Noel, Georges; Parker, Fabrice; Peoc'h, Michel; Polivka, Marc; Quintin-Roué, Isabelle; Ramirez, Carole; Ricard, Damien; Richard, Pomone; Rigau, Valérie; Rousseau, Audrey; Runavot, Gwenaelle; Sevestre, Henri; Christine Tortel, Marie; Uro-Coste, Emmanuelle; Burel-Vandenbos, Fanny; Vauleon, Elodie; Viennet, Gabriel; Villa, Chiara; Wager, Michel

    2015-01-01

    Anaplastic oligodendroglioma (AO) are rare primary brain tumours that are generally incurable, with heterogeneous prognosis and few treatment targets identified. Most oligodendrogliomas have chromosomes 1p/19q co-deletion and an IDH mutation. Here we analysed 51 AO by whole-exome sequencing, identifying previously reported frequent somatic mutations in CIC and FUBP1. We also identified recurrent mutations in TCF12 and in an additional series of 83 AO. Overall, 7.5% of AO are mutated for TCF12, which encodes an oligodendrocyte-related transcription factor. Eighty percent of TCF12 mutations identified were in either the bHLH domain, which is important for TCF12 function as a transcription factor, or were frameshift mutations leading to TCF12 truncated for this domain. We show that these mutations compromise TCF12 transcriptional activity and are associated with a more aggressive tumour type. Our analysis provides further insights into the unique and shared pathways driving AO. PMID:26068201

  6. Domain landscapes of somatic mutations in cancer

    PubMed Central

    2012-01-01

    Background Large-scale tumor sequencing projects are now underway to identify genetic mutations that drive tumor initiation and development. Most studies take a gene-based approach to identifying driver mutations, highlighting genes mutated in a large percentage of tumor samples as those likely to contain driver mutations. However, this gene-based approach usually does not consider the position of the mutation within the gene or the functional context the position of the mutation provides. Here we introduce a novel method for mapping mutations to distinct protein domains, not just individual genes, in which they occur, thus providing the functional context for how the mutation contributes to disease. Furthermore, aggregating mutations from all genes containing a specific protein domain enables the identification of mutations that are rare at the gene level, but that occur frequently within the specified domain. These highly mutated domains potentially reveal disruptions of protein function necessary for cancer development. Results We mapped somatic mutations from the protein coding regions of 100 colon adenocarcinoma tumor samples to the genes and protein domains in which they occurred, and constructed topographical maps to depict the “mutational landscapes” of gene and domain mutation frequencies. We found significant mutation frequency in a number of genes previously known to be somatically mutated in colon cancer patients including APC, TP53 and KRAS. In addition, we found significant mutation frequency within specific domains located in these genes, as well as within other domains contained in genes having low mutation frequencies. These domain “peaks” were enriched with functions important to cancer development including kinase activity, DNA binding and repair, and signal transduction. Conclusions Using our method to create the domain landscapes of mutations in colon cancer, we were able to identify somatic mutations with high potential to drive cancer development. Interestingly, the majority of the genes involved have a low mutation frequency. Therefore, themethod shows good potential for identifying rare driver mutations in current, large-scale tumor sequencing projects. In addition, mapping mutations to specific domains provides the necessary functional context for understanding how the mutations contribute to the disease, and may reveal novel or more refined gene and domain target regions for drug development. PMID:22759657

  7. Pseudoachondroplasia and Multiple Epiphyseal Dysplasia: A 7-Year Comprehensive Analysis of the Known Disease Genes Identify Novel and Recurrent Mutations and Provides an Accurate Assessment of Their Relative Contribution

    PubMed Central

    Jackson, Gail C; Mittaz-Crettol, Laureane; Taylor, Jacqueline A; Mortier, Geert R; Spranger, Juergen; Zabel, Bernhard; Le Merrer, Martine; Cormier-Daire, Valerie; Hall, Christine M; Offiah, Amaka; Wright, Michael J; Savarirayan, Ravi; Nishimura, Gen; Ramsden, Simon C; Elles, Rob; Bonafe, Luisa; Superti-Furga, Andrea; Unger, Sheila; Zankl, Andreas; Briggs, Michael D

    2012-01-01

    Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED. Hum Mutat 33:144–157, 2012. © 2011 Wiley Periodicals, Inc. PMID:21922596

  8. Progranulin mutations in Dutch familial frontotemporal lobar degeneration

    Microsoft Academic Search

    Iraad F Bronner; Patrizia Rizzu; Harro Seelaar; Saskia E van Mil; Burcu Anar; Asma Azmani; Laura Donker Kaat; Sonia Rosso; Peter Heutink; John C van Swieten

    2007-01-01

    Mutations in the progranulin (PGRN) gene have recently been identified in frontotemporal lobar degeneration with ubiquitin inclusions linked to chromosome 17q21. We report here the finding of two novel frameshift mutations and three possible pathogenic missense mutations in the PGRN gene. Furthermore, we determined the frequency of PGRN mutations in familial cases recruited from a large population-based study of frontotemporal

  9. Analysis of mucolipidosis II/III GNPTAB missense mutations identifies domains of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase involved in catalytic function and lysosomal enzyme recognition.

    PubMed

    Qian, Yi; van Meel, Eline; Flanagan-Steet, Heather; Yox, Alex; Steet, Richard; Kornfeld, Stuart

    2015-01-30

    UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the ? and ? subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III ??. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III ?? patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the ? subunit, suggesting a role for this region in ? subunit binding. These studies provide new insight into the functions of the different domains of the ? and ? subunits. PMID:25505245

  10. Mutations affecting craniofacial development in zebrafish

    Microsoft Academic Search

    Stephan C. F. Neuhauss; Lilianna Solnica-Krezel; Alexander F. Schier; Fried Zwartkruis; Derek L. Stemple; Jarema Malicki; Salim Abdelilah; Didier Y. R. Stainier; Wolfgang Driever

    In a large-scale screen for mutations affecting embryogen- esis in zebrafish, we identified 48 mutations in 34 genetic loci specifically affecting craniofacial development. Mutants were analyzed for abnormalities in the cartilagi- nous head skeleton. Further, the expression of marker genes was studied to investigate potential abnormalities in mutant rhombencephalon, neural crest, and pharyngeal endoderm. The results suggest that the identified

  11. ?-Globin Mutations in Egyptian Patients With ?-Thalassemia.

    PubMed

    Elmezayen, Ammar D; Kotb, Samia M; Sadek, Nadia A; Abdalla, Ebtesam M

    2015-01-01

    ?-thalassemia is a common hereditary disorder, particularly in Middle Eastern countries. More than 200 mutations in the ? globin gene have been reported; most are point mutations in functionally important regions (HBB; OMIM #141900)). The spectrum of mutations varies significantly between different geographical regions; only a few common mutations of ?-globin cause ?-thalassemia in each population. The aim of this study was to determine the spectrum of mutations that cause ?-thalassemia in the North Coast of Egypt and to investigate their correlation with the phenotypic severity of ?-thalassemia. We carried out our study with a total of 47 Egyptian patients (25 male and 22 female) confirmed to have ?-thalassemia. Evaluation of ?-thalassemia mutations revealed the presence of 10 ?-globin mutations. The most frequently encountered mutations were intronic: IVS 1.6 [T>C] (27.66%) and IVS 1.110 [G>A] (22.35%), followed by IVS 2.848 [C>A], IVS 1.1 (G>A), and IVS 2.745 [C>G]. We observed the exonic and promoter mutations less frequently. A homozygous mutation was found in 24 patients (51%) and compound heterozygous mutations were found in 13 patients (28%). However, in 9 patients (19%), we identified only 1 mutation. In 1 patient (2%), we detected no mutation. The detection rate of the method that we used in our population was 88% (83 of the tested 94 alleles). The results we obtained did not reveal any correlation between genotype and phenotype among patients with ?-thalassemia. PMID:25617386

  12. Somatic Mutation, Genomic Variation, and Neurological Disease

    PubMed Central

    Poduri, Annapurna; Evrony, Gilad D.; Cai, Xuyu; Walsh, Christopher A.

    2014-01-01

    Genetic mutations causing human disease are conventionally thought to be inherited through the germ line from one’s parents and present in all somatic (body) cells, except for most cancer mutations, which arise somatically. Increasingly, somatic mutations are being identified in diseases other than cancer, including neurodevelopmental diseases. Somatic mutations can arise during the course of prenatal brain development and cause neurological disease—even when present at low levels of mosaicism, for example—resulting in brain malformations associated with epilepsy and intellectual disability. Novel, highly sensitive technologies will allow more accurate evaluation of somatic mutations in neurodevelopmental disorders and during normal brain development. PMID:23828942

  13. A newly identified Thr99fsX110 mutation in the PMP22 gene associated with an atypical phenotype of the hereditary neuropathy with liability to pressure palsies.

    PubMed

    Moszy?ska, Izabela; Kabzi?ska, Dagmara; Sinkiewicz-Darol, Elena; Kocha?ski, Andrzej

    2009-01-01

    Hereditary neuropathy with liability to pressure palsies (HNPP) is manifested by a spectrum of phenotypes, from the classical HNPP course associated with intermittent nerve palsies to a neuropathy resembling Charcot-Marie-Tooth type 1 (CMT1) disease. The majority of HNPP cases are associated with submicroscopical deletions in the 17p11.2-p12 region containing the PMP22 gene, while PMP22 point mutations are rare, representing about 15% of HNPP cases. In this study, we present a patient manifesting with atypical HNPP phenotype associated with a new Thr99fsX110 mutation in the PMP22 gene. We conclude that all patients who fulfill the electrophysiological criteria of HNPP, even if they lack the typical HNPP phenotype, should be tested for point mutations in the PMP22 gene. PMID:19830275

  14. Stress, Mutators, Mutations and Stress Resistance

    Microsoft Academic Search

    Jonathan Gressel; Avraham A. Levy

    \\u000a Organisms need genetic mechanisms to rapidly adapt to changing, stressful environments. Having a high mutation frequency would\\u000a have a drag on a population due to the deleterious nature of mutations, but having a sub-population with high mutation rate\\u000a due to the presence of mutator genes seems to be nature’s solution. Far more is known about mutator genes in bacteria than

  15. Epilepsy caused by CDKL5 mutations

    Microsoft Academic Search

    Maija Castrén; Eija Gaily; Carola Tengström; Jaana Lähdetie; Hayley Archer; Sirpa Ala-Mello

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy

  16. VSX2 mutations in autosomal recessive microphthalmia

    PubMed Central

    Reis, Linda M.; Khan, Ayesha; Kariminejad, Ariana; Ebadi, Farhad; Tyler, Rebecca C.

    2011-01-01

    Purpose To further explore the spectrum of mutations in the Visual System Homeobox 2 (VSX2/CHX10) gene previously found to be associated with autosomal recessive microphthalmia. Methods We screened 95 probands with syndromic or isolated developmental ocular conditions (including 55 with anophthalmia/microphthalmia) for mutations in VSX2. Results Homozygous mutations in VSX2 were identified in two out of five consanguineous families with isolated microphthalmia. A novel missense mutation, c.668G>C (p.G223A), was identified in a large Pakistani family with multiple sibships affected with bilateral microphthalmia. This p.G223A mutation affects the conserved CVC motif that was shown to be important for DNA binding and repression activities of VSX2. The second mutation, c.249delG (p.Leu84SerfsX57), was identified in an Iranian family with microphthalmia; this mutation has been previously reported and is predicted to generate a severely truncated mutant protein completely lacking the VSX2 homeodomain, CVC domain and COOH-terminal regions. Conclusions Mutations in VSX2 represent an important cause of autosomal recessive microphthalmia in consanguineous pedigrees. Identification of a second missense mutation in the CVC motif emphasizes the importance of this region for normal VSX2 function. PMID:21976963

  17. Mutation rates and mutational loads in man

    SciTech Connect

    Cavalli-Sforza, L.L.

    1984-01-01

    The following areas of research are discussed: (1) the study of human mutation rates; (2) geography of human genes and its relevance to mutation; (3) sociocultural studies correlated with population genetics; (4) consanguineous marriages; and (5) surnames. (ACR)

  18. Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol.

    PubMed

    Kashyap, Sudhanva S; Johnson, James R; McCue, Hannah V; Chen, Xi; Edmonds, Matthew J; Ayala, Mimieveshiofuo; Graham, Margaret E; Jenn, Robert C; Barclay, Jeff W; Burgoyne, Robert D; Morgan, Alan

    2014-11-15

    Adult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission. Mutant dnj-14 worms also exhibited age-dependent neurodegeneration of sensory neurons, which was preceded by severe progressive chemosensory defects. A focussed chemical screen revealed that resveratrol could ameliorate dnj-14 mutant phenotypes, an effect mimicked by the cAMP phosphodiesterase inhibitor, rolipram. In contrast to other worm neurodegeneration models, activation of the Sirtuin, SIR-2.1, was not required, as sir-2.1; dnj-14 double mutants showed full lifespan rescue by resveratrol. The Sirtuin-independent neuroprotective action of resveratrol revealed here suggests potential therapeutic applications for ANCL and possibly other human neurodegenerative diseases. PMID:24947438

  19. Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol

    PubMed Central

    Kashyap, Sudhanva S.; Johnson, James R.; McCue, Hannah V.; Chen, Xi; Edmonds, Matthew J.; Ayala, Mimieveshiofuo; Graham, Margaret E.; Jenn, Robert C.; Barclay, Jeff W.; Burgoyne, Robert D.; Morgan, Alan

    2014-01-01

    Adult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission. Mutant dnj-14 worms also exhibited age-dependent neurodegeneration of sensory neurons, which was preceded by severe progressive chemosensory defects. A focussed chemical screen revealed that resveratrol could ameliorate dnj-14 mutant phenotypes, an effect mimicked by the cAMP phosphodiesterase inhibitor, rolipram. In contrast to other worm neurodegeneration models, activation of the Sirtuin, SIR-2.1, was not required, as sir-2.1; dnj-14 double mutants showed full lifespan rescue by resveratrol. The Sirtuin-independent neuroprotective action of resveratrol revealed here suggests potential therapeutic applications for ANCL and possibly other human neurodegenerative diseases. PMID:24947438

  20. Epilepsy caused by CDKL5 mutations.

    PubMed

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. PMID:20493745

  1. A Haplotype Framework for Cystic Fibrosis Mutations in Iran

    PubMed Central

    Elahi, Elahe; Khodadad, Ahmad; Kupershmidt, Ilya; Ghasemi, Fereshteh; Alinasab, Babak; Naghizadeh, Ramin; Eason, Robert G.; Amini, Mahshid; Esmaili, Mehran; Esmaeili Dooki, Mohammad R.; Sanati, Mohammad H.; Davis, Ronald W.; Ronaghi, Mostafa; Thorstenson, Yvonne R.

    2006-01-01

    This is the first comprehensive profile of cystic fibrosis transmembrane conductance regulator (CFTR) mutations and their corresponding haplotypes in the Iranian population. All of the 27 CFTR exons of 60 unrelated Iranian CF patients were sequenced to identify disease-causing mutations. Eleven core haplotypes of CFTR were identified by genotyping six high-frequency simple nucleotide polymorphisms. The carrier frequency of 2.5 in 100 (1 in 40) was estimated from the frequency of heterozygous patients and suggests that contrary to popular belief, cystic fibrosis may be a common, under-diagnosed disease in Iran. A heterogeneous mutation spectrum was observed at the CFTR locus in 60 cystic fibrosis (CF) patients from Iran. Twenty putative disease-causing mutations were identified on 64 (53%) of the 120 chromosomes. The five most common Iranian mutations together represented 37% of the expected mutated alleles. The most frequent mutation, ?F508 (p.F508del), represented only 16% of the expected mutated alleles. The next most frequent mutations were c.1677del2 (p.515fs) at 7.5%, c.4041C>G (p.N1303K) at 5.6%, c.2183AA>G (p.684fs) at 5%, and c.3661A>T (p.K1177X) at 2.5%. Three of the five most frequent Iranian mutations are not included in a commonly used panel of CF mutations, underscoring the importance of identifying geographic-specific mutations in this population. PMID:16436643

  2. SOX10 mutations mimic isolated hearing loss.

    PubMed

    Pingault, V; Faubert, E; Baral, V; Gherbi, S; Loundon, N; Couloigner, V; Denoyelle, F; Noël-Pétroff, N; Ducou Le Pointe, H; Elmaleh-Bergčs, M; Bondurand, N; Marlin, S

    2014-09-25

    Ninety genes have been identified to date that are involved in non-syndromic hearing loss, and more than 300 different forms of syndromic hearing impairment have been described. Mutations in SOX10, one of the genes contributing to syndromic hearing loss, induce a large range of phenotypes, including several subtypes of Waardenburg syndrome and Kallmann syndrome with deafness. In addition, rare mutations have been identified in patients with isolated signs of these diseases. We used the recent characterization of temporal bone imaging aspects in patients with SOX10 mutations to identify possible patients with isolated hearing loss due to SOX10 mutation. We selected 21 patients with isolated deafness and temporal bone morphological defects for mutational screening. We identified two SOX10 mutations and found that both resulted in a non-functional protein in vitro. Re-evaluation of the two affected patients showed that both had previously undiagnosed olfactory defects. Diagnosis of anosmia or hyposmia in young children is challenging, and particularly in the absence of magnetic resonance imaging (MRI), SOX10 mutations can mimic non-syndromic hearing impairment. MRI should complete temporal bones computed tomographic scan in the management of congenital deafness as it can detect brain anomalies, cochlear nerve defects, and olfactory bulb malformation in addition to inner ear malformations. PMID:25256313

  3. Pathway-driven discovery of rare mutational impact on cancer.

    PubMed

    Ahn, TaeJin; Park, Taesung

    2014-01-01

    Identifying driver mutation is important in understanding disease mechanism and future application of custom tailored therapeutic decision. Functional analysis of mutational impact usually focuses on the gene expression level of the mutated gene itself. However, complex regulatory network may cause differential gene expression among functional neighbors of the mutated gene. We suggest a new approach for discovering rare mutations that have real impact in the context of pathway; the philosophy of our method is iteratively combining rare mutations until no more mutations can be added under the condition that the combined mutational event can statistically discriminate pathway level mRNA expression between groups with and without mutational events. Breast cancer patients with somatic mutation and mRNA expression were analyzed by our approach. Our approach is shown to sensitively capture mutations that change pathway level mRNA expression, concurrently discovering important mutations previously reported in breast cancer such as TP53, PIK3CA, and RB1. In addition, out of 15,819 genes considered in breast cancer, our approach identified mutational events of 32 genes showing pathway level mRNA expression differences. PMID:24883302

  4. Spectrum of small mutations in the dystrophin coding region

    SciTech Connect

    Prior, T.W.; Bartolo, C.; Pearl, D.K. [Ohio State Univ., Columbus, OH (United States)] [and others

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3` of exon 55. The extent of protein truncation caused by the 3` mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. 71 refs., 2 figs., 2 tabs.

  5. Factors affecting the nature of induced mutations

    SciTech Connect

    Russell, L.B.; Russell, W.L.; Rinchik, E.M.; Hunsicker, P.R.

    1989-01-01

    The recent considerable expansion of specific-locus-mutation data has made possible an examination of the effects of germ-cell stage on both quantity of mutation yield and nature of mutations. For chemicals mutagenic in poststem-cell stages, three patterns have been identified according to the stages in which they elicit maximum response: (1) early spermatozoa and late spermatids; (2) early spermatids; and (3) differentiating spermatogonia. The majority of chemicals tested fall into Pattern 1. Chemicals that are also mutagenic in stem-cell spermatogonia do not preferentially belong to any one of these three categories. For only one chemical (CHL) has an entire set of mutations been analyzed molecularly. However, the results of genetic and molecular analyses of genomic regions surrounding six of the specific-locus markers allow us to conclude that any mutation that causes lethality of homozygotes (in the case of d, prenatal lethality, specifically) must involve one or more loci in addition to the marked one. Such mutations have been classified as large lesions'' (LL), the remainder as other lesions'' (OL). Analysis of the data shows that, regardless of the nature of the chemical (Pattern-1, -2, or -3), (1) LLs constitute a very low proportion of the mutations induced in either stem-cell or differentiating spermatogonia, and (b) LLs constitute a high proportion of mutations induced in postmeiotic stages. Chemicals that are active in both pre- and postmeiotic stages produce LL or OL mutations depending on cell stage.

  6. Whole-genome mutational biases in bacteria

    PubMed Central

    Lind, Peter A.; Andersson, Dan I.

    2008-01-01

    A fundamental biological question is what forces shape the guanine plus cytosine (GC) content of genomes. We studied the specificity and rate of different mutational biases in real time in the bacterium Salmonella typhimurium under conditions of strongly reduced selection and in the absence of the major DNA repair systems involved in repairing common spontaneous mutations caused by oxidized and deaminated DNA bases. The mutational spectrum was determined by whole-genome sequencing of two S. typhimurium mutants that were serially passaged for 5,000 generations. Analysis of 943 identified base pair substitutions showed that 91% were GC-to-TA transversions and 7% were GC-to-AT transitions, commonly associated with 8-oxoG- and deamination-induced damages, respectively. Other types of base pair substitutions constituted the remaining 2% of the mutations. With regard to mutational biases, there was a significant increase in C-to-T transitions on the nontranscribed strand, and for highly expressed genes, C/G-to-T mutations were more common than expected; however, no significant mutational bias with regard to leading and lagging strands of replication or chromosome position were found. These results suggest that, based on the experimentally determined mutational rates and specificities, a bacterial genome lacking the relevant DNA repair systems could, as a consequence of these underlying mutational biases, very rapidly reduce its GC content. PMID:19001264

  7. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication.

    PubMed

    Shinbrot, Eve; Henninger, Erin E; Weinhold, Nils; Covington, Kyle R; Göksenin, A Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M; Gibbs, Richard A; Sander, Chris; Pursell, Zachary F; Wheeler, David A

    2014-11-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT?TAT and TCG?TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C?A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  8. Station Identifier

    Microsoft Academic Search

    J. Stepan

    1968-01-01

    This paper describes an end office tributary identifier which sends to a toll center the calling subscriber's directory number. It is arranged to interface with the Bell System's centralized automatic message accounting (CAMA) centers. The electronic identifier operates on either a terminal per line, a terminal per station, or mixed basis. In operating, it feeds an ac signal on the

  9. Mutation screening of the RYR1 gene in malignant hyperthermia: Detection of a novel Tyr to ser mutation in a pedigree with associated centrl cores

    Microsoft Academic Search

    K. A. Quane; K. E. Keating; J. M. S. Healy

    1994-01-01

    The ryanodine receptor gene (RYR1) has been shown to be mutated in a small number of malignant hyperthermia (MH) predigrees. Missense mutations in this gene have also been identified in two families with central core disease (CCD), a rare myopathy closely associated with MH. In an effort to identify other RYR1 mutations responsible for MH and CCD, we used a

  10. Seventeen Complementation Groups of Mutations Decreasing Meiotic Recombination in Schirosaccharomyces pombe

    Microsoft Academic Search

    Linda C. DeVeaux; Nicole A. Hoagland; Gerald R. Smith

    We have analyzed 43 recessive mutations reducing meiotic intragenic recombination in Schizosac- charomyces pombe. These mutations were isolated by a screen for reduced plasmid-by-chromosome recombination at the ade6 locus. Sixteen of the mutations define 10 new complementation groups, bringing to 17 the number of genes identified to be involved in meiotic recombination. The mutations were grouped into three discrete classes

  11. Therapeutically Targetable ALK Mutations in Leukemia.

    PubMed

    Maxson, Julia E; Davare, Monika A; Luty, Samuel B; Eide, Christopher A; Chang, Bill H; Loriaux, Marc M; Tognon, Cristina E; Bottomly, Daniel; Wilmot, Beth; McWeeney, Shannon K; Druker, Brian J; Tyner, Jeffrey W

    2015-06-01

    Genome sequencing is revealing a vast mutational landscape in leukemia, offering new opportunities for treatment with targeted therapy. Here, we identify two patients with acute myelogenous leukemia and B-cell acute lymphoblastic leukemia whose tumors harbor point mutations in the ALK kinase. The mutations reside in the extracellular domain of ALK and are potently transforming in cytokine-independent cellular assays and primary mouse bone marrow colony formation studies. Strikingly, both mutations conferred sensitivity to ALK kinase inhibitors, including the FDA-approved drug crizotinib. On the basis of our results, we propose that tumors harboring ALK mutations may be therapeutically tractable for personalized treatment of certain aggressive leukemias with ALK inhibitors. Cancer Res; 75(11); 2146-50. ©2015 AACR. PMID:26032424

  12. ?-Tubulin mutations that cause severe neuropathies disrupt axonal transport.

    PubMed

    Niwa, Shinsuke; Takahashi, Hironori; Hirokawa, Nobutaka

    2013-05-15

    Microtubules are fundamental to neuronal morphogenesis and function. Mutations in tubulin, the major constituent of microtubules, result in neuronal diseases. Here, we have analysed ?-tubulin mutations that cause neuronal diseases and we have identified mutations that strongly inhibit axonal transport of vesicles and mitochondria. These mutations are in the H12 helix of ?-tubulin and change the negative charge on the surface of the microtubule. This surface is the interface between microtubules and kinesin superfamily motor proteins (KIF). The binding of axonal transport KIFs to microtubules is dominant negatively disrupted by these mutations, which alters the localization of KIFs in neurons and inhibits axon elongation in vivo. In humans, these mutations induce broad neurological symptoms, such as loss of axons in the central nervous system and peripheral neuropathy. Thus, our data identified the critical region of ?-tubulin required for axonal transport and suggest a molecular mechanism for human neuronal diseases caused by tubulin mutations. PMID:23503589

  13. ?-Tubulin mutations that cause severe neuropathies disrupt axonal transport

    PubMed Central

    Niwa, Shinsuke; Takahashi, Hironori; Hirokawa, Nobutaka

    2013-01-01

    Microtubules are fundamental to neuronal morphogenesis and function. Mutations in tubulin, the major constituent of microtubules, result in neuronal diseases. Here, we have analysed ?-tubulin mutations that cause neuronal diseases and we have identified mutations that strongly inhibit axonal transport of vesicles and mitochondria. These mutations are in the H12 helix of ?-tubulin and change the negative charge on the surface of the microtubule. This surface is the interface between microtubules and kinesin superfamily motor proteins (KIF). The binding of axonal transport KIFs to microtubules is dominant negatively disrupted by these mutations, which alters the localization of KIFs in neurons and inhibits axon elongation in vivo. In humans, these mutations induce broad neurological symptoms, such as loss of axons in the central nervous system and peripheral neuropathy. Thus, our data identified the critical region of ?-tubulin required for axonal transport and suggest a molecular mechanism for human neuronal diseases caused by tubulin mutations. PMID:23503589

  14. Weaver syndrome and EZH2 mutations: Clarifying the clinical phenotype.

    PubMed

    Tatton-Brown, Katrina; Murray, Anne; Hanks, Sandra; Douglas, Jenny; Armstrong, Ruth; Banka, Siddharth; Bird, Lynne M; Clericuzio, Carol L; Cormier-Daire, Valerie; Cushing, Tom; Flinter, Frances; Jacquemont, Marie-Line; Joss, Shelagh; Kinning, Esther; Lynch, Sally Ann; Magee, Alex; McConnell, Vivienne; Medeira, Ana; Ozono, Keiichi; Patton, Michael; Rankin, Julia; Shears, Debbie; Simon, Marleen; Splitt, Miranda; Strenger, Volker; Stuurman, Kyra; Taylor, Clare; Titheradge, Hannah; Van Maldergem, Lionel; Temple, I Karen; Cole, Trevor; Seal, Sheila; Rahman, Nazneen

    2013-12-01

    Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation-positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ~80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation-positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve. PMID:24214728

  15. Mutation Screening in Juvenile Polyposis Syndrome

    PubMed Central

    Pyatt, Robert E.; Pilarski, Robert; Prior, Thomas W.

    2006-01-01

    Juvenile polyposis syndrome (JPS) is an autosomal dominant cancer predisposition syndrome characterized by congenital anomalies, hamartomatous polyps in the gastrointestinal tract, and the development of tumors in these tissues. The diagnosis of JPS is often difficult because of the phenotypic overlap with other hamartomatous polyposis syndromes. Germline mutations have been identified in MADH4 and BMPR1A, aiding in presymptomatic genetic testing. In this study, we describe the results from 3 years of molecular diagnostic screening in JPS. Seventy unrelated individuals referred to our lab for JPS testing were examined through the sequence analysis of coding regions and exon-intron boundaries in both genes. Germline mutations were identified in 30% of cases, with 11.4% in BMPR1A and 18.6% in MADH4. All mutation-positive individuals were negative for cancer at testing, and a single pulmonary valve stenosis was the only congenital anomaly reported. A majority of mutations identified were novel including the first splice site alteration in MADH4. Based on the limited number of exons in each gene, low polymorphism frequency, and high frequency of frameshift or nonsense mutations identified, direct sequence analysis is a suitable methodology for mutation screening if all coding regions and exon-intron boundaries are examined in both genes. PMID:16436638

  16. Mutation screening in juvenile polyposis syndrome.

    PubMed

    Pyatt, Robert E; Pilarski, Robert; Prior, Thomas W

    2006-02-01

    Juvenile polyposis syndrome (JPS) is an autosomal dominant cancer predisposition syndrome characterized by congenital anomalies, hamartomatous polyps in the gastrointestinal tract, and the development of tumors in these tissues. The diagnosis of JPS is often difficult because of the phenotypic overlap with other hamartomatous polyposis syndromes. Germline mutations have been identified in MADH4 and BMPR1A, aiding in presymptomatic genetic testing. In this study, we describe the results from 3 years of molecular diagnostic screening in JPS. Seventy unrelated individuals referred to our lab for JPS testing were examined through the sequence analysis of coding regions and exon-intron boundaries in both genes. Germline mutations were identified in 30% of cases, with 11.4% in BMPR1A and 18.6% in MADH4. All mutation-positive individuals were negative for cancer at testing, and a single pulmonary valve stenosis was the only congenital anomaly reported. A majority of mutations identified were novel including the first splice site alteration in MADH4. Based on the limited number of exons in each gene, low polymorphism frequency, and high frequency of frameshift or nonsense mutations identified, direct sequence analysis is a suitable methodology for mutation screening if all coding regions and exon-intron boundaries are examined in both genes. PMID:16436638

  17. Desmin Mutations and Arrhythmogenic Right Ventricular Cardiomyopathy

    PubMed Central

    Lorenzon, Alessandra; Beffagna, Giorgia; Bauce, Barbara; De Bortoli, Marzia; Li Mura, Ilena E.A.; Calore, Martina; Dazzo, Emanuela; Basso, Cristina; Nava, Andrea; Thiene, Gaetano; Rampazzo, Alessandra

    2013-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease characterized by fibrofatty replacement of the myocardium and ventricular arrhythmias, associated with mutations in the desmosomal genes. Only a missense mutation in the DES gene coding for desmin, the intermediate filament protein expressed by cardiac and skeletal muscle cells, has been recently associated with ARVC. We screened 91 ARVC index cases (53 negative for mutations in desmosomal genes and an additional 38 carrying desmosomal gene mutations) for DES mutations. Two rare missense variants were identified. The heterozygous p.K241E substitution was detected in 1 patient affected with a severe form of ARVC who also carried the p.T816RfsX10 mutation in plakophilin-2 gene. This DES substitution, showing an allele frequency of <0.01 in the control population, is predicted to cause an intolerant amino acid change in a highly conserved protein domain. Thus, it can be considered a rare variant with a possible modifier effect on the phenotypic expression of the concomitant mutation. The previously known p.A213V substitution was identified in 1 patient with ARVC who was negative for mutations in the desmosomal genes. Because a greater prevalence of p.A213V has been reported in patients with heart dilation than in control subjects, the hypothesis that this rare variant could have an unfavorable effect on cardiac remodeling cannot be ruled out. In conclusion, our data help to establish that, in the absence of skeletal muscle involvement suggestive of a desminopathy, the probability of DES mutations in ARVC is very low. These findings have important implications in the mutation screening strategy for patients with ARVC. PMID:23168288

  18. Exposing synonymous mutations.

    PubMed

    Hunt, Ryan C; Simhadri, Vijaya L; Iandoli, Matthew; Sauna, Zuben E; Kimchi-Sarfaty, Chava

    2014-07-01

    Synonymous codon changes, which do not alter protein sequence, were previously thought to have no functional consequence. Although this concept has been overturned in recent years, there is no unique mechanism by which these changes exert biological effects. A large repertoire of both experimental and bioinformatic methods has been developed to understand the effects of synonymous variants. Results from this body of work have provided global insights into how biological systems exploit the degeneracy of the genetic code to control gene expression, protein folding efficiency, and the coordinated expression of functionally related gene families. Although it is now clear that synonymous variants are important in a variety of contexts, from human disease to the safety and efficacy of therapeutic proteins, there is no clear consensus on the approaches to identify and validate these changes. Here, we review the diverse methods to understand the effects of synonymous mutations. PMID:24954581

  19. Juvenile polyposis: massive gastric polyposis is more common in MADH4 mutation carriers than in BMPR1A mutation carriers.

    PubMed

    Friedl, Waltraut; Uhlhaas, Siegfried; Schulmann, Karsten; Stolte, Manfred; Loff, Steffan; Back, Walter; Mangold, Elisabeth; Stern, Martin; Knaebel, Hanns-Peter; Sutter, Christian; Weber, Ruthild G; Pistorius, Steffen; Burger, Bettina; Propping, Peter

    2002-07-01

    Juvenile polyposis syndrome (JPS) is an autosomal dominant predisposition to multiple juvenile polyps in the gastrointestinal tract. Germline mutations in the MADH4 or BMPR1A genes have been found to be causative of the disease in a subset of JPS patients. So far, no genotype-phenotype correlation has been reported. We examined 29 patients with the clinical diagnosis of JPS for germline mutations in the MADH4 or BMPR1A genes and identified MADH4 mutations in seven (24%) and BMPR1A mutations in five patients (17%). A remarkable prevalence of massive gastric polyposis was observed in patients with MADH4 mutations when compared with patients with BMPR1A mutations or without identified mutations. This is the first genotype-phenotype correlation observed in JPS. PMID:12136244

  20. Reverse mutations in fragile X syndrome

    SciTech Connect

    Brown, W.T.; Nolin, S.; Houck, G.E. [and others

    1994-09-01

    The fragile X syndrome is the most common inherited form of mental retardation. Yet new mutations have not been described and no affected child has been born to a carrier mother having less than 60 FMR-1 CGG triplet repeats. Reverse mutations also appear to be very rare. We have previously identified the daughter of a premutation mother (95 CGGs) who inherited a normal repeat size of 35 as a reverse mutation. In the process of carrier testing by PCR, we have now identified two additional females with reverse mutations. All three of these reverse mutation women were previously tested by linkage as part of known fragile X families (subsequently confirmed by direct analysis), and assigned a > 99% risk as a carrier. In the second family, the mother carries a premutation allele of 95 repeats and the daughter inherited a 43 repeat allele. Prior to direct DNA testing, she had a positive prenatal diagnosis by linkage (> 99% risk) and cytogenetics with 3/450 cells apparently positive. Subsequent retesting of the products of conception by PCR now reveals a 43 repeat allele from her carrier mother with an 82 repeat allele. Testing with close CA markers (FRAXAC1 and DXS548) confirmed that these women inherited the same chromosome and their full mutation brothers. Further analysis is pending. These examples of reverse mutations are the only ones we have identified in our study of offspring of more than 200 carriers (400+ meioses) examined to date. Therefore, we conclude the frequency of fragile X back mutations is likely to be less than 1%. Retesting of linkage positive carriers is recommended to detect reverse mutations and assure accurate genetic counseling.

  1. Mutation accumulation in Tetrahymena

    Microsoft Academic Search

    Patrícia H Brito; Elsa Guilherme; Helena Soares; Isabel Gordo

    2010-01-01

    BACKGROUND: The rate and fitness effects of mutations are key in understanding the evolution of every species. Traditionally, these parameters are estimated in mutation accumulation experiments where replicate lines are propagated in conditions that allow mutations to randomly accumulate without the purging effect of natural selection. These experiments have been performed with many model organisms but we still lack empirical

  2. De Novo Discovery of Mutated Driver Pathways in Cancer

    NASA Astrophysics Data System (ADS)

    Vandin, Fabio; Upfal, Eli; Raphael, Benjamin J.

    Next-generation DNA sequencing technologies are enabling genome-wide measurements of somatic mutations in large numbers of cancer patients. A major challenge in interpretation of this data is to distinguish functional driver mutations that are important for cancer development from random, passenger mutations. A common approach to identify driver mutations is to find genes that are mutated at significant frequency in a large cohort of cancer genomes. This approach is confounded by the observation that driver mutations target multiple cellular signaling and regulatory pathways. Thus, each cancer patient may exhibit a different combination of mutations that are sufficient to perturb the necessary pathways. However, the current understanding of the somatic mutational process of cancer [3,5,6] places two additional constraints on the expected patterns of somatic mutations in a cancer pathway. First, an important cancer pathway should be perturbed in a large number of patients. Thus we expect that with genome-wide measurements of somatic mutations a driver pathway will exhibit high coverage, where most patients will have a mutation in some gene in the pathway. Second, since driver mutations are relatively rare and typically a single driver mutation is sufficient to perturb a pathway, a reasonable assumption is that most patients have a single driver mutation in a pathway. Thus, the genes in a driver pathway exhibit a pattern of mutually exclusive driver mutations, where driver mutations are observed in exactly one gene in the pathway in each patient. There are numerous examples of sets of mutually exclusive mutations [5,6].

  3. Identifying Erosion

    NSDL National Science Digital Library

    COSI

    2009-01-01

    In this environmental science activity (page 3 of the PDF), leaners will identify and explain the causes of erosion. They will observe the effects of erosion on the surrounding area and further explore examples of erosion online. An extension activity allows learners to make a hands-on model of soil erosion. Though this was created as a pre-visit activity for a workshop about water flow and erosion, it makes a great stand-alone activity as well!

  4. Identify Symmetry

    NSDL National Science Digital Library

    Mrs. Neubert

    2011-03-03

    This unit will teach you how to identify symmetry in everyday objects and mathematical shapes in lines and rotational symmetry. What is line symmetry? Click on the link to find out: Line Symmetry Here is a line activity to see if you understand it: Line Symmetry Class Zone See if you understand the concepts by doing the following quiz: Line Symmetry Work Now for rotational symmetry: Rotational Symmetry See if you understand rotational symmetry by taking this quiz: Rotational Symmetry Work ...

  5. Germ-line and somatic DICER1 mutations in pineoblastoma.

    PubMed

    de Kock, Leanne; Sabbaghian, Nelly; Druker, Harriet; Weber, Evan; Hamel, Nancy; Miller, Suzanne; Choong, Catherine S; Gottardo, Nicholas G; Kees, Ursula R; Rednam, Surya P; van Hest, Liselotte P; Jongmans, Marjolijn C; Jhangiani, Shalini; Lupski, James R; Zacharin, Margaret; Bouron-Dal Soglio, Dorothée; Huang, Annie; Priest, John R; Perry, Arie; Mueller, Sabine; Albrecht, Steffen; Malkin, David; Grundy, Richard G; Foulkes, William D

    2014-10-01

    Germ-line RB-1 mutations predispose to pineoblastoma (PinB), but other predisposing genetic factors are not well established. We recently identified a germ-line DICER1 mutation in a child with a PinB. This was accompanied by loss of heterozygosity (LOH) of the wild-type allele within the tumour. We set out to establish the prevalence of DICER1 mutations in an opportunistically ascertained series of PinBs. Twenty-one PinB cases were studied: Eighteen cases had not undergone previous testing for DICER1 mutations; three patients were known carriers of germ-line DICER1 mutations. The eighteen PinBs were sequenced by Sanger and/or Fluidigm-based next-generation sequencing to identify DICER1 mutations in blood gDNA and/or tumour gDNA. Testing for somatic DICER1 mutations was also conducted on one case with a known germ-line DICER1 mutation. From the eighteen PinBs, we identified four deleterious DICER1 mutations, three of which were germ line in origin, and one for which a germ line versus somatic origin could not be determined; in all four, the second allele was also inactivated leading to complete loss of DICER1 protein. No somatic DICER1 RNase IIIb mutations were identified. One PinB arising in a germ-line DICER1 mutation carrier was found to have LOH. This study suggests that germ-line DICER1 mutations make a clinically significant contribution to PinB, establishing DICER1 as an important susceptibility gene for PinB and demonstrates PinB to be a manifestation of a germ-line DICER1 mutation. The means by which the second allele is inactivated may differ from other DICER1-related tumours. PMID:25022261

  6. Hepatoblastoma and APC gene mutation in familial adenomatous polyposis.

    PubMed Central

    Giardiello, F M; Petersen, G M; Brensinger, J D; Luce, M C; Cayouette, M C; Bacon, J; Booker, S V; Hamilton, S R

    1996-01-01

    BACKGROUND: Hepatoblastoma is a rare, rapidly progressive, usually fatal childhood malignancy, which if confined to the liver can be cured by radical surgical resection. An association between hepatoblastoma and familial adenomatous polyposis (FAP), which is due to germline mutation of the APC (adenomatous polyposis coli) gene, has been confirmed, but correlation with site of APC mutation has not been studied. AIM: To analyse the APC mutational spectrum in FAP families with hepatoblastoma as a possible basis to select kindreds for surveillance. PATIENTS: Eight patients with hepatoblastoma in seven FAP kindreds were compared with 97 families with identified APC gene mutation in a large Registry. METHODS: APC gene mutation was evaluated by RNase protection assay or in vitro synthesis protein assay. The chi 2 test and correlation were used for data analysis. RESULTS: APC gene mutation was identified in all seven FAP kindreds in which an at risk member developed hepatoblastoma. A male predominance was noted (six of eight), similar to literature cases (18 of 25, p < 0.01. Mutations were restricted to codons 141 to 1230, but no significant difference in site of mutation between pedigrees with and without hepatoblastoma was identified. CONCLUSIONS: Hepatoblastoma occurs primarily in boys in FAP kindreds and is associated with germline APC mutation in the 5' end of the gene. However, the site of APC mutation cannot be used to predict occurrence of this extracolonic cancer in FAP pedigrees. PMID:9038672

  7. Novel KRAS Gene Mutations in Sporadic Colorectal Cancer

    PubMed Central

    Naser, Walid M.; Shawarby, Mohamed A.; Al-Tamimi, Dalal M.; Seth, Arun; Al-Quorain, Abdulaziz; Nemer, Areej M. Al; Albagha, Omar M. E.

    2014-01-01

    Introduction In this article, we report 7 novel KRAS gene mutations discovered while retrospectively studying the prevalence and pattern of KRAS mutations in cancerous tissue obtained from 56 Saudi sporadic colorectal cancer patients from the Eastern Province. Methods Genomic DNA was extracted from formalin-fixed, paraffin-embedded cancerous and noncancerous colorectal tissues. Successful and specific PCR products were then bi-directionally sequenced to detect exon 4 mutations while Mutector II Detection Kits were used for identifying mutations in codons 12, 13 and 61. The functional impact of the novel mutations was assessed using bioinformatics tools and molecular modeling. Results KRAS gene mutations were detected in the cancer tissue of 24 cases (42.85%). Of these, 11 had exon 4 mutations (19.64%). They harbored 8 different mutations all of which except two altered the KRAS protein amino acid sequence and all except one were novel as revealed by COSMIC database. The detected novel mutations were found to be somatic. One mutation is predicted to be benign. The remaining mutations are predicted to cause substantial changes in the protein structure. Of these, the Q150X nonsense mutation is the second truncating mutation to be reported in colorectal cancer in the literature. Conclusions Our discovery of novel exon 4 KRAS mutations that are, so far, unique to Saudi colorectal cancer patients may be attributed to environmental factors and/or racial/ethnic variations due to genetic differences. Alternatively, it may be related to paucity of clinical studies on mutations other than those in codons 12, 13, 61 and 146. Further KRAS testing on a large number of patients of various ethnicities, particularly beyond the most common hotspot alleles in exons 2 and 3 is needed to assess the prevalence and explore the exact prognostic and predictive significance of the discovered novel mutations as well as their possible role in colorectal carcinogenesis. PMID:25412182

  8. Founder BRCA1 and BRCA2 mutations in French Canadian breast and ovarian cancer families.

    PubMed Central

    Tonin, P N; Mes-Masson, A M; Futreal, P A; Morgan, K; Mahon, M; Foulkes, W D; Cole, D E; Provencher, D; Ghadirian, P; Narod, S A

    1998-01-01

    We have identified four mutations in each of the breast cancer-susceptibility genes, BRCA1 and BRCA2, in French Canadian breast cancer and breast/ovarian cancer families from Quebec. To identify founder effects, we examined independently ascertained French Canadian cancer families for the distribution of these eight mutations. Mutations were found in 41 of 97 families. Six of eight mutations were observed at least twice. The BRCA1 C4446T mutation was the most common mutation found, followed by the BRCA2 8765delAG mutation. Together, these mutations were found in 28 of 41 families identified to have a mutation. The odds of detection of any of the four BRCA1 mutations was 18.7x greater if one or more cases of ovarian cancer were also present in the family. The odds of detection of any of the four BRCA2 mutations was 5.3x greater if there were at least five cases of breast cancer in the family. Interestingly, the presence of a breast cancer case <36 years of age was strongly predictive of the presence of any of the eight mutations screened. Carriers of the same mutation, from different families, shared similar haplotypes, indicating that the mutant alleles were likely to be identical by descent for a mutation in the founder population. The identification of common BRCA1 and BRCA2 mutations will facilitate carrier detection in French Canadian breast cancer and breast/ovarian cancer families. PMID:9792861

  9. Wilson disease mutation pattern with genotype-phenotype correlations from Western India: confirmation of p.C271* as a common Indian mutation and identification of 14 novel mutations.

    PubMed

    Aggarwal, Annu; Chandhok, Gursimran; Todorov, Theodor; Parekh, Saloni; Tilve, Sharada; Zibert, Andree; Bhatt, Mohit; Schmidt, Hartmut H-J

    2013-07-01

    Wilson disease (WD) is an autosomal recessive disorder resulting from mutations in the ATP7B gene, with over 600 mutations described. Identification of mutations has made genetic diagnosis of WD feasible in many countries. The heterogeneity of ATP7B mutants is, however, yet to be identified in the Indian population. We analyzed the mutational pattern of WD in a large region of Western India. We studied patients (n = 52) for ATP7B gene mutations in a cohort of families with WD and also in first-degree relatives (n = 126). All 21 exon-intron boundaries of the WD gene were amplified and directly sequenced. We identified 36 different disease-causing mutations (31 exonic and five intronic splice site variants). Fourteen novel mutations were identified. Exons 2, 8, 13, 14, and 18 accounted for the majority of mutations (86.4%). A previously recognized mutation, p.C271*, and the novel mutation p.E122fs, were the most common mutations with allelic frequencies of 20.2% and 10.6%, respectively. Frequent homozygous mutations (58.9%) and disease severity assessments allowed analysis of genotype-phenotype correlations. Our study significantly adds to the emerging data from other parts of India suggesting that p.C271* may be the most frequent mutation across India, and may harbor a moderate to severely disabling phenotype with limited variability. PMID:23551039

  10. Rare nonconservative LRP6 mutations are associated with metabolic syndrome

    PubMed Central

    Singh, Rajvir; Smith, Emily; Fathzadeh, Mohsen; Liu, Wenzhong; Go, Gwang-Woong; Subrahmanyan, Lakshman; Faramarzi, Saeed; McKenna, William; Mani, Arya

    2013-01-01

    A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which co-segregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. PMID:23703864

  11. Rare nonconservative LRP6 mutations are associated with metabolic syndrome.

    PubMed

    Singh, Rajvir; Smith, Emily; Fathzadeh, Mohsen; Liu, Wenzhong; Go, Gwang-Woong; Subrahmanyan, Lakshman; Faramarzi, Saeed; McKenna, William; Mani, Arya

    2013-09-01

    A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. PMID:23703864

  12. Inherited cardiomyopathies caused by troponin mutations

    PubMed Central

    Lu, Qun-Wei; Wu, Xiao-Yan; Morimoto, Sachio

    2013-01-01

    Genetic investigations of cardiomyopathy in the recent two decades have revealed a large number of mutations in the genes encoding sarcomeric proteins as a cause of inherited hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or restrictive cardiomyopathy (RCM). Most functional analyses of the effects of mutations on cardiac muscle contraction have revealed significant changes in the Ca2+-regulatory mechanism, in which cardiac troponin (cTn) plays important structural and functional roles as a key regulatory protein. Over a hundred mutations have been identified in all three subunits of cTn, i.e., cardiac troponins T, I, and C. Recent studies on cTn mutations have provided plenty of evidence that HCM- and RCM-linked mutations increase cardiac myofilament Ca2+ sensitivity, while DCM-linked mutations decrease it. This review focuses on the functional consequences of mutations found in cTn in terms of cardiac myofilament Ca2+ sensitivity, ATPase activity, force generation, and cardiac troponin I phosphorylation, to understand potential molecular and cellular pathogenic mechanisms of the three types of inherited cardiomyopathy. PMID:23610579

  13. The Mutational Landscape of Adenoid Cystic Carcinoma

    PubMed Central

    Ho, Allen S.; Kannan, Kasthuri; Roy, David M.; Morris, Luc G.T.; Ganly, Ian; Katabi, Nora; Ramaswami, Deepa; Walsh, Logan A.; Eng, Stephanie; Huse, Jason T.; Zhang, Jianan; Dolgalev, Igor; Huberman, Kety; Heguy, Adriana; Viale, Agnes; Drobnjak, Marija; Leversha, Margaret A.; Rice, Christine E.; Singh, Bhuvanesh; Iyer, N. Gopalakrishna; Leemans, C. Rene; Bloemena, Elisabeth; Ferris, Robert L.; Seethala, Raja R.; Gross, Benjamin E.; Liang, Yupu; Sinha, Rileen; Peng, Luke; Raphael, Benjamin J.; Turcan, Sevin; Gong, Yongxing; Schultz, Nikolaus; Kim, Seungwon; Chiosea, Simion; Shah, Jatin P.; Sander, Chris; Lee, William; Chan, Timothy A.

    2013-01-01

    Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here, we determined the ACC mutational landscape and report the exome or whole genome sequences of 60 ACC tumor/normal pairs. These analyses revealed a low exonic somatic mutation rate (0.31 non-silent events/megabase) and wide mutational diversity. Interestingly, mutations selectively involved chromatin state regulators, such as SMARCA2, CREBBP, and KDM6A, suggesting aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to DNA damage and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying these aberrations as critical events. Lastly, we identified recurrent mutations in the FGF/IGF/PI3K pathway that may potentially offer new avenues for therapy (30%). Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC. PMID:23685749

  14. Screening hepcidin for mutations in juvenile hemochromatosis: identification of a new mutation (C70R).

    PubMed

    Roetto, Antonella; Daraio, Filomena; Porporato, Paolo; Caruso, Roberta; Cox, Timothy M; Cazzola, Mario; Gasparini, Paolo; Piperno, Alberto; Camaschella, Clara

    2004-03-15

    Juvenile or type 2 hemochromatosis (JH) is a genetic disease caused by increased intestinal iron absorption that leads to early massive iron overload. The main form of the disease is caused by mutations in a still unknown gene on chromosome 1q. Recently, we recognized a second type of JH with clinical features identical to the 1q-linked form, caused by mutations in the gene encoding hepcidin (HEPC). Hepcidin is a hepatic antimicrobial-like peptide whose role in iron homeostasis was first defined in animal models; deficiency of hepcidin in mice leads to iron overload, whereas its hepatic overexpression in transgenic animals causes iron deficiency. To define the prevalence of HEPC mutations in JH we screened the HEPC gene for mutation in 21 unrelated JH subjects. We identified a new mutation (C70R), which affects 1 of the 8 conserved cysteines that form the disulfide bonds and are critical for the stability of the polypeptide. PMID:14630809

  15. Two novel mutations in the glycine-rich region of human PAX6 gene: Implications for an association of cataracts and anosmia with aniridia

    Microsoft Academic Search

    A. Martha; R. E. Ferrel; H. M. Hittner; G. F. Saunders

    1994-01-01

    Aniridia (iris hyplasia) is a autosomal dominant congenital disorder of the eye. Mutations in the human aniridia (PAX6) gene have now been identified in many patients from various ethnic groups. In the present study we describe new mutations in this gene. Out of four mutations found, three were novel mutations; the fourth one is identical to the previously reported mutations

  16. Mitochondrial DNA replication and disease: insights from DNA polymerase ? mutations

    PubMed Central

    Stumpf, Jeffrey D.

    2011-01-01

    DNA polymerase ? (pol ?), encoded by POLG, is responsible for replicating human mitochondrial DNA. About 150 mutations in the human POLG have been identified in patients with mitochondrial diseases such as Alpers syndrome, progressive external ophthalmoplegia, and ataxia-neuropathy syndromes. Because many of the mutations are described in single citations with no genotypic family history, it is important to ascertain which mutations cause or contribute to mitochondrial disease. The vast majority of data about POLG mutations has been generated from biochemical characterizations of recombinant pol ?. However, recently, the study of mitochondrial dysfunction in Saccharomyces cerevisiae and mouse models provides important in vivo evidence for the role of POLG mutations in disease. Also, the published 3D-structure of the human pol ? assists in explaining some of the biochemical and genetic properties of the mutants. This review summarizes the current evidence that identifies and explains disease-causing POLG mutations. PMID:20927567

  17. Identifying Species

    NSDL National Science Digital Library

    Michael DiSpezio

    This two part activity will allow students to investigate biological diversity in the area of their school. They will first prepare a taxonomic key to distinguish between the four insects or spiders that they have selected. All of the keys are combined and students then perform a transect study of a neighborhood field or school playing ground. Finally as a class students will compile a list of the animals and plants that are found within a mile of their school. They may need to use field guides, local resources, taxonomic keys, and species lists to help identify these organisms. Once they have compiled their list they will organize the species into the taxonomic groups they have studied.

  18. Germ-line and somatic DICER1 mutations in pineoblastoma

    PubMed Central

    de Kock, Leanne; Sabbaghian, Nelly; Druker, Harriet; Weber, Evan; Hamel, Nancy; Miller, Suzanne; Choong, Catherine S.; Gottardo, Nicholas G.; Kees, Ursula R.; Rednam, Surya P.; van Hest, Liselotte P.; Jongmans, Marjolijn C.; Jhangiani, Shalini; Lupski, James R.; Zacharin, Margaret; Bouron-Dal Soglio, Dorothée; Huang, Annie; Priest, John R.; Perry, Arie; Mueller, Sabine; Albrecht, Steffen; Malkin, David; Grundy, Richard G.

    2015-01-01

    Germ-line RB-1 mutations predispose to pineoblastoma (PinB), but other predisposing genetic factors are not well established. We recently identifed a germ-line DICER1 mutation in a child with a PinB. This was accompanied by loss of heterozygosity (LOH) of the wild-type allele within the tumour. We set out to establish the prevalence of DICER1 mutations in an opportunistically ascertained series of PinBs. Twenty-one PinB cases were studied: eighteen cases had not undergone previous testing for DICER1 mutations; three patients were known carriers of germ-line DICER1 mutations. The eighteen PinBs were sequenced by Sanger and/or Fluidigm-based next-generation sequencing to identify DICER1 mutations in blood gDNA and/or tumour gDNA. Testing for somatic DICER1 mutations was also conducted on one case with a known germ-line DICER1 mutation. From the eighteen PinBs, we identified four deleterious DICER1 mutations, three of which were germ line in origin, and one for which a germ line versus somatic origin could not be determined; in all four, the second allele was also inactivated leading to complete loss of DICER1 protein. No somatic DICER1 RNase IIIb mutations were identified. One PinB arising in a germ-line DICER1 mutation carrier was found to have LOH. This study suggests that germ-line DICER1 mutations make a clinically significant contribution to PinB, establishing DICER1 as an important susceptibility gene for PinB and demonstrates PinB to be a manifestation of a germ-line DICER1 mutation. The means by which the second allele is inactivated may differ from other DICER1-related tumours. PMID:25022261

  19. CEBPA methylation and mutation in myelodysplastic syndrome.

    PubMed

    Wen, Xiang-mei; Hu, Jia-bo; Yang, Jing; Qian, Wei; Yao, Dong-ming; Deng, Zhao-qun; Zhang, Ying-ying; Zhu, Xiao-wen; Guo, Hong; Lin, Jiang; Qian, Jun

    2015-07-01

    Aberrant methylation of CCAAT/enhancer-binding protein alpha (CEBPA) promoter has been observed in acute myeloid leukemia. However, little is known about CEBPA promoter in myelodysplastic syndrome (MDS). The purpose of this study was to investigate the alteration of CEBPA promoter in MDS patients and further determine the association with CEBPA expression and mutation. CEBPA promoter was significantly methylated in 105 MDS patients compared to 22 controls (median 0.016 vs. 0.000) (P < 0.0001). Receiver operating characteristic curve analysis discriminated all patients or cytogenetically normal patients from normal controls. Three cases (3 %) were identified with single-mutated CEBPA and one (1 %) with double-mutated CEBPA. CEBPA methylation and mutation occurred mutually exclusive. No significant correlation was found between CEBPA expression and methylation (P = 0.586). Our findings indicate that CEBPA methylation is a common event in MDS, but could not act as a prognostic biomarker for MDS patients. PMID:26025484

  20. Mechanisms underlying mutational signatures in human cancers.

    PubMed

    Helleday, Thomas; Eshtad, Saeed; Nik-Zainal, Serena

    2014-09-01

    The collective somatic mutations observed in a cancer are the outcome of multiple mutagenic processes that have been operative over the lifetime of a patient. Each process leaves a characteristic imprint--a mutational signature--on the cancer genome, which is defined by the type of DNA damage and DNA repair processes that result in base substitutions, insertions and deletions or structural variations. With the advent of whole-genome sequencing, researchers are identifying an increasing array of these signatures. Mutational signatures can be used as a physiological readout of the biological history of a cancer and also have potential use for discerning ongoing mutational processes from historical ones, thus possibly revealing new targets for anticancer therapies. PMID:24981601

  1. Emerging patterns of somatic mutations in cancer

    PubMed Central

    Watson, Ian R.; Takahashi, Koichi; Futreal, P. Andrew; Chin, Lynda

    2014-01-01

    The advance in technological tools for massively parallel, high-throughput sequencing of DNA has enabled the comprehensive characterization of somatic mutations in large number of tumor samples. Here, we review recent cancer genomic studies that have assembled emerging views of the landscapes of somatic mutations through deep sequencing analyses of the coding exomes and whole genomes in various cancer types. We discuss the comparative genomics of different cancers, including mutation rates, spectrums, and roles of environmental insults that influence these processes. We highlight the developing statistical approaches used to identify significantly mutated genes, and discuss the emerging biological and clinical insights from such analyses as well as the challenges ahead translating these genomic data into clinical impacts. PMID:24022702

  2. PKU in Slovakia: mutation screening and haplotype analysis

    Microsoft Academic Search

    Ludovit Kádasi; Helena Poláková; Eva Feráková; So?a Hudecová; Tá?a Bohušová; Ildiko Szomolayová; Jaroslava Strnová; Ivan Hruškovi?; Nicholas K. Moschonas; Vladimír Ferák

    1995-01-01

    The restriction fragment length polymorphism haplotypes and seven common mutations in the phenylalanine hydroxylase gene were analysed in 49 unrelated Slovak phenylketonuria (PKU) families of Caucasian origin. The predominant mutation in this population sample is R408W, with a frequency of 45.9%. In addition, four other mutations have been identified at relatively high frequencies: IVS12nt1, 10.2%; R158Q, 7.1%; R261Q, 7.1%; R252W,

  3. The spectrum of Familial Mediterranean Fever (FMF) mutations

    Microsoft Academic Search

    Isabelle Touitou

    2001-01-01

    Familial Mediterranean Fever (FMF) is the prototype of a group of inherited inflammatory disorders. The gene (MEFV) responsible for this disease, comprises 10 exons and 781 codons. Twenty-nine mutations, most located in the last exon, have been identified so far. It is unclear whether all are true disease-causing mutations. Five founder mutations, V726A, M694V, M694I, M680I and E148Q account for

  4. Human somatic mutation assays as biomarkers of carcinogenesis

    SciTech Connect

    Compton, P.J.E.; Smith, M.T. (Univ. of California, Berkeley (United States)); Hooper, K. (California Dept. of Health Services, Berkeley (United States))

    1991-08-01

    This paper describes four assays that detect somatic gene mutations in humans: the hypoxanthine-guanine phosphoribosyl transferase assay, the glycophorin A assay, the HLA-A assay, and the sickle cell hemoglobin assay. Somatic gene mutations can be considered a biomarker of carcinogenesis, and assays for somatic mutation may assist epidemiologists in studies that attempt to identify factors associated with increased risks of cancer. Practical aspects of the use of these assays are discussed.

  5. Analysis of Dominant Mutations Affecting Muscle Excitation in Caenorhabditis Elegans

    PubMed Central

    Reiner, D. J.; Weinshenker, D.; Thomas, J. H.

    1995-01-01

    We examined mutations that disrupt muscle activation in Caenorhabditis elegans. Fifteen of 17 of these genes were identified previously and we describe new mutations in three of them. We also describe mutations in two new genes, exp-3 and exp-4. We assessed the degree of defect in pharyngeal, body-wall, egg-laying, and enteric muscle activation in animals mutant for each gene. Mutations in all 17 genes are semidominant and, in cases that could be tested, appear to be gain-of-function. Based on their phenotypes, the genes fall into three broad categories: mutations in 11 genes cause defective muscle activation, mutations in four genes cause hyperactivated muscle, and mutations in two genes cause defective activation in some muscle types and hyperactivation in others. In all testable cases, the mutations blocked response to pharmacological activators of egg laying, but did not block muscle activation by irradiation with a laser microbeam. The data suggest that these mutations affect muscle excitation, but not the capacity of the muscle fibers to contract. For most of the genes, apparent loss-of-function mutants have a grossly wild-type phenotype. These observations suggest that there is a large group of genes that function in muscle excitation that can be identified primarily by dominant mutations. PMID:8582640

  6. The somatic autosomal mutation matrix in cancer genomes.

    PubMed

    Temiz, Nuri A; Donohue, Duncan E; Bacolla, Albino; Vasquez, Karen M; Cooper, David N; Mudunuri, Uma; Ivanic, Joseph; Cer, Regina Z; Yi, Ming; Stephens, Robert M; Collins, Jack R; Luke, Brian T

    2015-08-01

    DNA damage in somatic cells originates from both environmental and endogenous sources, giving rise to mutations through multiple mechanisms. When these mutations affect the function of critical genes, cancer may ensue. Although identifying genomic subsets of mutated genes may inform therapeutic options, a systematic survey of tumor mutational spectra is required to improve our understanding of the underlying mechanisms of mutagenesis involved in cancer etiology. Recent studies have presented genome-wide sets of somatic mutations as a 96-element vector, a procedure that only captures the immediate neighbors of the mutated nucleotide. Herein, we present a 32 × 12 mutation matrix that captures the nucleotide pattern two nucleotides upstream and downstream of the mutation. A somatic autosomal mutation matrix (SAMM) was constructed from tumor-specific mutations derived from each of 909 individual cancer genomes harboring a total of 10,681,843 single-base substitutions. In addition, mechanistic template mutation matrices (MTMMs) representing oxidative DNA damage, ultraviolet-induced DNA damage, (5m)CpG deamination, and APOBEC-mediated cytosine mutation, are presented. MTMMs were mapped to the individual tumor SAMMs to determine the maximum contribution of each mutational mechanism to the overall mutation pattern. A Manhattan distance across all SAMM elements between any two tumor genomes was used to determine their relative distance. Employing this metric, 89.5 % of all tumor genomes were found to have a nearest neighbor from the same tissue of origin. When a distance-dependent 6-nearest neighbor classifier was used, 86.9 % of all SAMMs were assigned to the correct tissue of origin. Thus, although tumors from different tissues may have similar mutation patterns, their SAMMs often display signatures that are characteristic of specific tissues. PMID:26001532

  7. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  8. Mutator Mutations Enhance Tumorigenic Efficiency across Fitness Landscapes

    PubMed Central

    Beckman, Robert A.

    2009-01-01

    Background Tumorigenesis requires multiple genetic changes. Mutator mutations are mutations that increase genomic instability, and according to the mutator hypothesis, accelerate tumorigenesis by facilitating oncogenic mutations. Alternatively, repeated lineage selection and expansion without increased mutation frequency may explain observed cancer incidence. Mutator lineages also risk increased deleterious mutations, leading to extinction, thus providing another counterargument to the mutator hypothesis. Both selection and extinction involve changes in lineage fitness, which may be represented as “trajectories” through a “fitness landscape” defined by genetics and environment. Methodology/Principal Findings Here I systematically analyze the relative efficiency of tumorigenesis with and without mutator mutations by evaluating archetypal fitness trajectories using deterministic and stochastic mathematical models. I hypothesize that tumorigenic mechanisms occur clinically in proportion to their relative efficiency. This work quantifies the relative importance of mutator pathways as a function of experimentally measurable parameters, demonstrating that mutator pathways generally enhance efficiency of tumorigenesis. An optimal mutation rate for tumor evolution is derived, and shown to differ from that for species evolution. Conclusions/Significance The models address the major counterarguments to the mutator hypothesis, confirming that mutator mechanisms are generally more efficient routes to tumorigenesis than non-mutator mechanisms. Mutator mutations are more likely to occur early, and to occur when more oncogenic mutations are required to create a tumor. Mutator mutations likely occur in a minority of premalignant lesions, but these mutator premalignant lesions are disproportionately likely to develop into malignant tumors. Tumor heterogeneity due to mutator mutations may contribute to therapeutic resistance, and the degree of heterogeneity of tumors may need to be considered when therapeutic strategies are devised. The model explains and predicts important biological observations in bacterial and mouse systems, as well as clinical observations. PMID:19517009

  9. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    Microsoft Academic Search

    Sara Simonetti; Miguel Angel Molina; Cristina Queralt; Itziar de Aguirre; Clara Mayo; Jordi Bertran-Alamillo; José Javier Sanchez; Jose Luis Gonzalez-Larriba; Ulpiano Jimenez; Dolores Isla; Teresa Moran; Santiago Viteri; Carlos Camps; Rosario Garcia-Campelo; Bartomeu Massuti; Susana Benlloch; Santiago Ramon y Cajal; Miquel Taron; Rafael Rosell

    2010-01-01

    BACKGROUND: Immunohistochemistry (IHC) with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. METHODS: EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC) cell lines and tumor samples from 78 stage IV NSCLC patients. RESULTS: IHC correctly identified del 19 in the H1650 and

  10. Quantification of random genomic mutations

    Microsoft Academic Search

    Jason H Bielas; Lawrence A Loeb

    2005-01-01

    Cancer cells contain numerous clonal mutations. It has been theorized that malignant cells sustain an elevated mutation rate and, as a consequence, harbor yet larger numbers of random point mutations. Testing this hypothesis has been precluded by lack of an assay to measure random mutations—that is, mutations that occur in only one or a few cells of a population. We

  11. Calreticulin gene mutations in myeloproliferative neoplasms without Janus kinase 2 mutations.

    PubMed

    Sun, Chao; Zhang, Sujiang; Li, Jianyong

    2015-06-01

    Calreticulin, an endoplasmic reticulum protein with multiple functions involving chaperone activity and calcium homeostasis, plays an important role in cellular proliferation and differentiation. Calreticulin dysfunction is known to be associated with different cancers. Very recently, calreticulin mutations have been identified in myeloproliferative neoplasms (MPNs), with a particularly high frequency in MPNs without Janus kinase 2 (JAK2) mutations, which exhibit clinical characteristics different from those with mutant JAK2. Here, we focus on the structure, function and carcinogenicity of calreticulin, as well as its relationship with MPNs not involving JAK2 mutations. PMID:25115511

  12. Sensitive detection of KRAS mutations using enhanced-ice-COLD-PCR mutation enrichment and direct sequence identification.

    PubMed

    How Kit, Alexandre; Mazaleyrat, Nicolas; Daunay, Antoine; Nielsen, Helene Myrtue; Terris, Benoît; Tost, Jörg

    2013-11-01

    A number of methods allowing the detection of low levels of KRAS mutations have been developed in the last years. However, although these methods have become increasingly sensitive, they can rarely identify the mutated base directly without prior knowledge on the mutated base and are often incompatible with a sequencing-based read-out desirable in clinical practice. Here, we present a modified version of the ice-COLD-PCR assay called Enhanced-ice-COLD-PCR (E-ice-COLD-PCR) for KRAS mutation detection and identification, which allows the enrichment of the six most frequent KRAS mutations. The method is based on a nonextendable chemically modified blocker sequence, complementary to the wild-type (WT) sequence leading to the enrichment of mutated sequences. This assay permits the reliable detection of down to 0.1% mutated sequences in a WT background. A single genotyping assay of the amplification product by pyrosequencing directly following the E-ice-COLD-PCR is performed to identify the mutated base. This developed two-step method is rapid and cost-effective, and requires only a small amount of starting material permitting the sensitive detection and sequence identification of KRAS mutations within 3 hr. This method is applied in the current study to clinical colorectal cancer samples and enables detection of mutations in samples, which appear as WT using standard detection technologies. PMID:24038839

  13. AChR deficiency due to ?-subunit mutations: two common mutations in the Netherlands

    Microsoft Academic Search

    Catharina G. Faber; Peter C. Molenaar; Johannes S. H. Vles; Domenic M. Bonifati; Jan J. G. M. Verschuuren; Pieter A. van Doorn; Jan B. M. Kuks; John H. J. Wokke; David Beeson; Marc De Baets

    2009-01-01

    Congenital myasthenic syndromes are a clinically and genetically heterogeneous group of hereditary disorders affecting neuromuscular\\u000a transmission. We have identified mutations within the acetylcholine receptor (AChR) ?-subunit gene underlying congenital myasthenic\\u000a syndromes in nine patients (seven kinships) of Dutch origin. Previously reported mutations ?1369delG and ?R311Q were found\\u000a to be common; ?1369delG was present on at least one allele in seven

  14. The FBN2 gene: new mutations, locus-specific database (Universal Mutation Database FBN2), and genotype-phenotype correlations.

    PubMed

    Frédéric, Melissa Yana; Monino, Christine; Marschall, Christoph; Hamroun, Dalil; Faivre, Laurence; Jondeau, Guillaume; Klein, Hanns-Georg; Neumann, Luitgard; Gautier, Elodie; Binquet, Christine; Maslen, Cheryl; Godfrey, Maurice; Gupta, Prateek; Milewicz, Dianna; Boileau, Catherine; Claustres, Mireille; Béroud, Christophe; Collod-Béroud, Gwenaëlle

    2009-02-01

    Congenital contractural arachnodactyly (CCA) is an extremely rare disease, due to mutations in the FBN2 gene encoding fibrillin-2. Another member of the fibrillin family, the FBN1 gene, is involved in a broad phenotypic continuum of connective-tissue disorders including Marfan syndrome. Identifying not only what is in common but also what differentiates these two proteins should enable us to better comprehend their respective functions and better understand the multitude of diseases in which these two genes are involved. In 1995 we created a locus-specific database (LSDB) for FBN1 mutations with the Universal Mutation Database (UMD) tool. To facilitate comparison of identified mutations in these two genes and search for specific functional areas, we created an LSDB for the FBN2 gene: the UMD-FBN2 database. This database lists 26 published and six newly identified mutations that mainly comprise missense and splice-site mutations. Although the number of described FBN2 mutations was low, the frequency of joint dislocation was significantly higher with missense mutations when compared to splice site mutations. PMID:18767143

  15. Collagen expression in fibroblasts with a novel LMNA mutation

    Microsoft Academic Search

    Desiree Nguyen; Dru F. Leistritz; Lesley Turner; David MacGregor; Kamal Ohson; Paul Dancey; George M. Martin; Junko. Oshima

    2007-01-01

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies, and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities

  16. Mutations affecting development of the notochord in zebrafish

    Microsoft Academic Search

    Derek L. Stemple; Lilianna Solnica-Krezel; Fried Zwartkruis; Stephan C. F. Neuhauss; Alexander F. Schier; Jarema Malicki; Didier Y. R. Stainier; Salim Abdelilah; Zehava Rangini; Elizabeth Mountcastle-Shah; Wolfgang Driever

    The notochord is critical for the normal development of vertebrate embryos. It serves both as the major skeletal element of the embryo and as a signaling source for the establishment of pattern within the neurectoderm, the paraxial mesoderm and other tissues. In a large-scale sys- tematic screen of mutations affecting embryogenesis in zebrafish we identified 65 mutations that fall into

  17. The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer

    PubMed Central

    Grasso, Catherine S.; Wu, Yi-Mi; Robinson, Dan R.; Cao, Xuhong; Dhanasekaran, Saravana M.; Khan, Amjad P.; Quist, Michael J.; Jing, Xiaojun; Lonigro, Robert J.; Brenner, J. Chad; Asangani, Irfan A.; Ateeq, Bushra; Chun, Sang Y.; Siddiqui, Javed; Sam, Lee; Anstett, Matt; Mehra, Rohit; Prensner, John R.; Palanisamy, Nallasivam; Ryslik, Gregory A.; Vandin, Fabio; Raphael, Benjamin J.; Kunju, Lakshmi P.; Rhodes, Daniel R.; Pienta, Kenneth J.; Chinnaiyan, Arul M.; Tomlins, Scott A.

    2012-01-01

    Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains/losses, including ETS gene fusions, PTEN loss and androgen receptor (AR) amplification, that drive prostate cancer development and progression to lethal, metastatic castrate resistant prostate cancer (CRPC)1. As less is known about the role of mutations2–4, here we sequenced the exomes of 50 lethal, heavily-pretreated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment naďve, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPC (2.00/Mb) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1, which define a subtype of ETS fusionnegative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in ~1/3 of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Further, we identified recurrent mutations in multiple chromatin/histone modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with AR, which is required for AR-mediated signaling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signaling and increases tumour growth. Proteins that physically interact with AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX, and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signaling deregulated in prostate cancer, and prioritize candidates for future study. PMID:22722839

  18. No association between MUTYH and MSH6 germline mutations in 64 HNPCC patients.

    PubMed

    Steinke, Verena; Rahner, Nils; Morak, Monika; Keller, Gisela; Schackert, Hans K; Görgens, Heike; Schmiegel, Wolff; Royer-Pokora, Brigitte; Dietmaier, Wolfgang; Kloor, Matthias; Engel, Christoph; Propping, Peter; Aretz, Stefan

    2008-05-01

    Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant tumour predisposition syndrome caused by germline mutations in mismatch repair (MMR) genes. In contrast to MLH1 and MSH2, germline mutations in MSH6 are associated with a milder and particularly variable phenotype. Based on the reported interaction of the MMR complex and the base excision repair protein MUTYH, it was hypothesised that MUTYH mutations serve as phenotypical modifiers in HNPCC families. Recently, a significantly higher frequency of heterozygosity for MUTYH mutations among MSH6 mutation carriers was reported. We examined 64 MSH6 mutation carriers (42 truncating mutations, 19 missense mutations and 3 silent mutations) of the German HNPCC Consortium for MUTYH mutations by sequencing the whole coding region of the gene. Monoallelic MUTYH mutations were identified in 2 of the 64 patients (3.1%), no biallelic MUTYH mutation carrier was found. The frequency of MUTYH mutations was not significantly higher than that in healthy controls, neither in the whole patient group (P=0.30) nor in different subgroups regarding mutation type. Our results do not support the association between MSH6 mutations and heterozygosity for MUTYH mutations. PMID:18301448

  19. Reverse mutations in the fragile X syndrome

    SciTech Connect

    Brown, W.T.; Houck, G.E. Jr.; Ding, Xiaohua [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (United States)] [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (United States)

    1996-08-09

    Three females were identified who have apparent reversal of fragile X premutations. Based on haplotype analysis of nearby markers, they were found to have inherited a fragile X chromosome from their premutation carrier mothers, and yet had normal size FMR1 repeat alleles. The changes in repeat sizes from mother to daughter was 95 to 35 in the first, 145 to 43 in the second, and 82 to 33 in the third. In the first family, mutations of the nearby microsatellites FRAXAC2 and DXS548 were also observed. In the other two, only mutations involving the FMR1 repeats were found. We suggest differing mutational mechanisms such as gene conversion versus DNA replication slippage may underlie such reversions. We estimate that such revertants may occur among 1% or less of premutation carrier offspring. Our results indicate that women identified to be carriers by linkage should be retested by direct DNA analysis. 35 refs., 5 figs.

  20. Reverse mutations in the fragile X syndrome.

    PubMed

    Brown, W T; Houck, G E; Ding, X; Zhong, N; Nolin, S; Glicksman, A; Dobkin, C; Jenkins, E C

    1996-08-01

    Three females were identified who have apparent reversal of fragile X premutations. Based on haplotype analysis of nearby markers, they were found to have inherited a fragile X chromosome from their premutation carrier mothers, and yet had normal size FMR1 repeat alleles. The changes in repeat sizes from mother to daughter was 95 to 35 in the first, 145 to 43 in the second, and 82 to 33 in the third. In the first family, mutations of the nearby microsatellites FRAXAC2 and DXS548 were also observed. In the other two, only mutations involving the FMR1 repeats were found. We suggest differing mutational mechanisms such as gene conversion versus DNA replication slippage may underlie such reversions. We estimate that such revertants may occur among 1% or less of premutation carrier offspring. Our results indicate that women identified to be carriers by linkage should be retested by direct DNA analysis. PMID:8844067

  1. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing

    PubMed Central

    2013-01-01

    Background Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Methods Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Results Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. Conclusions We found that 8 of 23 (35%) of ‘missing’ mutations in Usher type 2 probands with only a single heterozygous USH2A mutation detected with Sanger sequencing could be attributed to deletions, duplications or a pathogenic deep intronic variant. Future mutation detection strategies and genetic counselling will need to take into account the prevalence of these types of mutations in order to provide a more comprehensive diagnostic service. PMID:23924366

  2. Mutation Clustering Shamaila Hussain

    E-print Network

    Singer, Jeremy

    Mutation Clustering Shamaila Hussain shamaila.2.hussain@kcl.ac.uk Student Number: 0425528 to reduce the computational cost of the mutation testing, reducing the number of the mutants by clustering. K-means clustering algorithm and agglomerative hierarchical clustering algorithm are implemented

  3. IBMFS - gene mutations

    Cancer.gov

    A "mutation" is a change in a gene that prevents it from working properly. A "germline" mutation is a change that occurs in the egg or the sperm, or both, and is passed from one parent or both parents to the child.

  4. Identifying and Mapping Parallel Mutations of GAR-3 

    E-print Network

    Prompuntagorn, Christopher

    2009-06-09

    DNA; regions of the chromosome that display wildtype DNA are ruled out. An online catalog of single nucleotide polymorphisms allows us to distinguish between the wildtype (HA) and mutant (N2) DNA; there are regions that contain a single base pair...

  5. Multiplex detection of mutations.

    PubMed

    Perlin, David S; Balashov, Sergey; Park, Steven

    2008-01-01

    Rapid and reliable detection of mutations at the genetic level is an integral part of modern molecular diagnostics. These mutations can range from dominant single nucleotide polymorphisms within specific loci to codominant heterozygotic insertions and they present considerable challenges to investigators in developing rapid nucleic acid-based amplification assays that can distinguish wild-type from mutant alleles. The recent improvements of real-time polymerase chain reaction (PCR) using self-reporting fluorescence probes have given researchers a powerful tool in developing assays for mutation detection that can be multiplexed for high-throughput screening of multiple mutations and cost effectiveness. Here we describe an application of a multiplexed real-time PCR assay using Molecular Beacon probes for the detection of mutations in codon 54 of the CYP51A gene in Aspergillus fumigatus conferring triazole resistance. PMID:18695956

  6. Genetic mutations and mechanisms in dilated cardiomyopathy

    PubMed Central

    McNally, Elizabeth M.; Golbus, Jessica R.; Puckelwartz, Megan J.

    2013-01-01

    Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are “private” or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia. PMID:23281406

  7. The Mutations Associated with Dilated Cardiomyopathy

    PubMed Central

    Parvari, Ruti; Levitas, Aviva

    2012-01-01

    Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM). The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes. PMID:22830024

  8. Origins of the fragile X syndrome mutation

    Microsoft Academic Search

    M C Hirst; S J Knight; Z Christodoulou; P K Grewal; J P Fryns; K E Davies

    1993-01-01

    The fragile X syndrome is a common cause of mental impairment. In view of the low reproductive fitness of affected males, the high incidence of the syndrome has been suggested to be the result of a high rate of new mutations occurring exclusively in the male germline. Extensive family studies, however, have failed to identify any cases of a new

  9. Mutation analysis of two families with inherited congenital cataracts.

    PubMed

    Liang, Chang; Liang, Han; Yang, Yu; Ping, Liu; Jie, Qiao

    2015-09-01

    The present study aimed to identify the genetic mutations in two families affected with congenital cataracts. Detailed family histories and clinical data of the family members were recorded. The family members with affected phenotypes were recruited, and candidate gene sequencing was performed to determine the disease?causing mutation. Bioinformatics analysis was performed to predict the function of the mutant gene. Green fluorescent protein?tagged human wild?type CRYAA and GJA8 were sub?cloned, and the mutants were generated by site?directed mutagenesis. A novel mutation, c.416T>C (p.L139P), in CRYAA and a known mutation, c.139G>A (p.D47N), in GJA8 were identified. These mutations co?segregated with all affected individuals in each family and were not observed in the unaffected family members or in unrelated controls. The results of the bioinformatics analysis indicated that the amino acid at position 139 was highly conserved and that the p.L139P mutation was predicted to be damaging, as with p.D47N. Finally, overexpression of the two mutants revealed marked alterations, compared with the wild?type proteins. These results extend the mutation spectrum of CRYAA and provides further evidence that the p.D47N mutation in GJA8 is a hot-spot mutation. PMID:26004348

  10. MEFV mutations in Northwest of Iran: a cross sectional study

    PubMed Central

    Bonyadi, Morteza Jabbarpour; Gerami, Sousan Mir Najd; Somi, Mohammad Hossein; Dastgiri, Saeed

    2015-01-01

    Objective(s): Familial Mediterranean Fever (FMF) is an autosomal recessive disorder characterized by recurrent episodes of fever accompanied by peritonitis, pleurisy, and arthritis. FMF affects mainly Mediterranean populations and is caused by mutations in the familial Mediterranean fever (MEFV) gene. The aim of this study was to identify the frequency and distribution of MEFV mutations in Iranian Azerbaijanis with FMF. Materials and Methods: Medical records of 1330 Iranian Azerbaijanis who were diagnosed with FMF according to Tel-Hashomer criteria from May 2006 to April 2013 were reviewed and 10 MEFV mutations were found in affected individuals. Results: 243 patients (18.27%) were homozygous, 370 (27.82%) were compound heterozygous and 717 (53.91%) were identified as heterozygous for one of the studied mutations. Of the studied mutations, M694V, E148Q, V726A, M680I, and M694I accounted for 42%, 21%, 19%, 14% and 2% of mutations respectively. Conclusion: In our study, M694V was found to be the most prevalent mutation. M694I, the most common mutation among Arabs, is rare in this cohort. Allele frequencies of the common mutations in our studied population have some similarities to those of the Turkish population reported previously. However, M680I is less common in our cohort. PMID:25810876

  11. GJC2 promoter mutations causing Pelizaeus-Merzbacher-like disease

    PubMed Central

    Gotoh, Leo; Inoue, Ken; Helman, Guy; Mora, Sara; Maski, Kiran; Soul, Janet S.; Bloom, Miriam; Evans, Sarah H; Goto, Yu-ichi; Caldovic, Ljubica; Hobson, Grace M.; Vanderver, Adeline

    2014-01-01

    Objective Pelizaeus-Merzbacher-like disease is a rare hypomyelinating leukodystrophy caused by autosomal recessive mutations in GJC2, encoding a gap junction protein essential for production of a mature myelin sheath. A previously identified GJC2 mutation (c.-167G>A) in the promoter region is hypothesized to disrupt a putative SOX10 binding site; however, the lack of additional mutations in this region and contradictory functional data have limited the interpretation of this variant. Methods We describe two independent Pelizaeus-Merzbacher-like disease families with a novel promoter region mutation and updated in vitro functional assays. Results A novel GJC2 mutation (c.-170G>A) in the promoter region was identified in Pelizaeus-Merzbacher-like disease patients. In vitro functional assays using human GJC2 promoter constructs demonstrated that this mutation and the previously described c.-167G>A mutation similarly diminished the transcriptional activity driven by SOX10 and the binding affinity for SOX10. Interpretation These findings support the role of GJC2 promoter mutations in Pelizaeus-Merzbacher-like disease. GJC2 promoter region mutation screening should be included in the evaluation of patients with unexplained hypomyelinating leukodystrophies. PMID:24374284

  12. COL4A3 mutations cause focal segmental glomerulosclerosis.

    PubMed

    Xie, Jingyuan; Wu, Xiaoxi; Ren, Hong; Wang, Weiming; Wang, Zhaohui; Pan, Xiaoxia; Hao, Xu; Tong, Jun; Ma, Jun; Ye, Zhibin; Meng, Guoyu; Zhu, Yufei; Kiryluk, Krzysztof; Kong, Xiangyin; Hu, Landian; Chen, Nan

    2014-12-01

    Focal segmental glomerulosclerosis (FSGS) is a histologically identifiable glomerular injury often leading to proteinuria and renal failure. To identify its causal genes, whole-exome sequencing and Sanger sequencing were performed on a large Chinese cohort that comprised 40 FSGS families, 50 sporadic FSGS patients, 9 independent autosomal recessive Alport's syndrome (ARAS) patients, and 190 ethnically matched healthy controls. Patients with extrarenal manifestations, indicating systemic diseases or other known hereditary renal diseases, were excluded. Heterozygous COL4A3 mutations were identified in five (12.5%) FSGS families and one (2%) sporadic FSGS patient. All identified mutations disrupted highly conserved protein sequences and none of them was found in either public databases or the 190 healthy controls. Of the FSGS patients with heterozygous COL4A3 mutations, segmental thinning of the glomerular base membrane (GBM) was only detected in the patient with electronic microscopy examination results available. Five ARAS patients (55.6%) had homozygous or compound-heterozygous mutations in COL4A3 or COL4A4. Serious changes in the GBM, hearing loss, and ocular abnormalities were found in 100%, 80%, and 40% of the ARAS patients, respectively. Overall, a new subgroup of FSGS patients resulting from heterozygous COL4A3 mutations was identified. The mutations are relatively frequent in families diagnosed with inherited forms of FSGS. Thus, we suggest screening for COL4A3 mutations in familial FSGS patients. PMID:25596306

  13. The role of mtDNA mutations in the pathogenesis of age-related hearing loss in mice carrying a mutator DNA polymerase ?

    PubMed Central

    Someya, Shinichi; Yamasoba, Tatsuya; Kujoth, Gregory C.; Pugh, Thomas D.; Weindruch, Richard; Tanokura, Masaru; Prolla, Tomas A.

    2014-01-01

    Mitochondrial DNA (mtDNA) mutations may contribute to aging and age-related diseases. Previously, we reported that accumulation of mtDNA mutations is associated with age-related hearing loss in mice carrying a mutator allele of the mitochondrial Polg DNA polymerase. To elucidate the role of mtDNA mutations in the pathogenesis of age-related hearing loss or presbycusis, we performed large scale gene expression analysis to identify mtDNA mutation-responsive genes and biological process categories associated with mtDNA mutations by comparing the gene expression patterns of cochlear tissues from 9-month-old mitochondrial mutator and control mice. mtDNA mutations were associated with transcriptional alterations consistent with impairment of energy metabolism, induction of apoptosis, cytoskeletal dysfunction, and hearing dysfunction in the cochlea of aged mitochondrial mutator mice. TUNEL staining and caspase-3 immunostaining analysis demonstrated that the levels of apoptotic markers were significantly increased in the cochleae of mitochondrial mutator mice compared to age-matched controls. These observations support a new model of how mtDNA mutations impact cochlear function whereby accumulation of mtDNA mutations lead to mitochondrial dysfunction, an associated impairment of energy metabolism, and the induction of an apoptotic program. The data presented here provide the first global assessment at the molecular level of the pathogenesis of age-related disease in mitochondrial mutator mice and reveal previously unrecognized biological pathways associated with mtDNA mutations. PMID:17363114

  14. Mutation and Extinction: The Role of Variable Mutational Effects, Synergistic Epistasis, Beneficial Mutations, and Degree of Outcrossing

    E-print Network

    Lynch, Michael

    Mutation and Extinction: The Role of Variable Mutational Effects, Synergistic Epistasis, Beneficial AND EXTINCTION: THE ROLE OF VARIABLE MUTATIONAL EFFECTS, SYNERGISTIC EPISTASIS, BENEFICIAL MUTATIONS of extinction. These include the presence of synergistic epistasis, which can reduce the rate of mutation

  15. Nonaminoglycoside compounds induce readthrough of nonsense mutations

    PubMed Central

    Damoiseaux, Robert; Nahas, Shareef; Gao, Kun; Hu, Hailiang; Pollard, Julianne M.; Goldstine, Jimena; Jung, Michael E.; Henning, Susanne M.; Bertoni, Carmen

    2009-01-01

    Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ?34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein. PMID:19770270

  16. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy

    PubMed Central

    Ceyhan-Birsoy, Ozge; Agrawal, Pankaj B.; Hidalgo, Carlos; Schmitz-Abe, Klaus; DeChene, Elizabeth T.; Swanson, Lindsay C.; Soemedi, Rachel; Vasli, Nasim; Iannaccone, Susan T.; Shieh, Perry B.; Shur, Natasha; Dennison, Jane M.; Lawlor, Michael W.; Laporte, Jocelyn; Markianos, Kyriacos; Fairbrother, William G.; Granzier, Henk

    2013-01-01

    Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. Results: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. Conclusions: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes. PMID:23975875

  17. Identification of factor VIII gene mutations and carrier detection in Korean haemophilia A patients

    Microsoft Academic Search

    J.-Y. HAN; J.-N. LEE; S.-Y. LEE; I.-J. KIM; C.-M KIM

    2007-01-01

    Haemophilia A is an X-linked bleeding disorder caused by heterogeneous mutations in the factor VIII gene. More than 900 mutations within the FVIII coding and untranslated regions have been identified. The most common defects is an inversion in the FVIII gene that accounts for nearly 40-50% of individuals with severe haemophilia A. Point mutations, deletions and insertions are responsible for

  18. Nature and frequency of mutations in the argininosuccinate synthetase gene that cause classical citrullinemia

    Microsoft Academic Search

    Keiko Kobayashi; Hiroshige Kakinoki; Tomoko Fukushige; Nazma Shaheen; Hiroki Terazono; Takeyori Saheki

    1995-01-01

    Citrullinemia is an autosomal recessive disorder caused by a genetic deficiency of argininosuccinate synthetase (ASS). So far 20 mutations in ASS mRNA have been identified in human classical citrullinemia, including 14 single base changes causing missense mutations in the coding sequence of the enzyme, 4 mutations associated with an absence of exons 5, 6, 7, or 13 in mRNA, 1

  19. Constitutive RB1 mutation in a child conceived by in vitro fertilization: implications for genetic counseling

    Microsoft Academic Search

    Raquel H Barbosa; Fernando R Vargas; Evandro Lucena; Cibele R Bonvicino; Héctor N Seuánez

    2009-01-01

    BACKGROUND: The purpose of this study was to identify mutations associated with bilateral retinoblastoma in a quadruplet conceived by in vitro fertilization, and to trace the parental origin of mutations in the four quadruplets and their father. METHODS: Mutational screening was carried out by sequencing. Genotyping was carried out for determining quadruplet zygosity. RESULTS: The proband was a carrier of

  20. GATA2 mutations in patients with acute myeloid leukemia-paired samples analyses show that the mutation is unstable during disease evolution.

    PubMed

    Hou, Hsin-An; Lin, Yun-Chu; Kuo, Yuan-Yeh; Chou, Wen-Chien; Lin, Chien-Chin; Liu, Chieh-Yu; Chen, Chien-Yuan; Lin, Liang-In; Tseng, Mei-Hsuan; Huang, Chi-Fei; Chiang, Ying-Chieh; Liu, Ming-Chih; Liu, Chia-Wen; Tang, Jih-Luh; Yao, Ming; Huang, Shang-Yi; Ko, Bor-Sheng; Hsu, Szu-Chun; Wu, Shang-Ju; Tsay, Woei; Chen, Yao-Chang; Tien, Hwei-Fang

    2015-02-01

    Recently, mutations of the GATA binding protein 2 (GATA2) gene were identified in acute myeloid leukemia (AML) patients with CEBPA double mutations (CEBPA (double-mut)), but the interaction of this mutation with other genetic alterations and its dynamic changes during disease progression remain to be determined. In this study, 14 different missense GATA2 mutations, which were all clustered in the highly conserved N-terminal zinc finger 1 domain, were identified in 27.4, 6.7, and 1 % of patients with CEBPA (double-mut), CEBPA (single-mut), and CEBPA wild type, respectively. All but one patient with GATA2 mutation had concurrent CEBPA mutation. GATA2 mutations were closely associated with younger age, FAB M1 subtype, intermediate-risk cytogenetics, expression of HLA-DR, CD7, CD15, or CD34 on leukemic cells, and CEBPA mutation, but negatively associated with FAB M4 subtype, favorable-risk cytogenetics, and NPM1 mutation. Patients with GATA2 mutation had significantly better overall survival and relapse-free survival than those without GATA2 mutation. Sequential analysis showed that the original GATA2 mutations might be lost during disease progression in GATA2-mutated patients, while novel GATA2 mutations might be acquired at relapse in GATA2-wild patients. In conclusion, AML patients with GATA2 mutations had distinct clinic-biological features and a favorable prognosis. GATA2 mutations might be lost or acquired at disease progression, implying that it was a second hit in the leukemogenesis of AML, especially those with CEBPA mutation. PMID:25241285

  1. OCRL1 mutations in patients with Dent disease phenotype in Japan.

    PubMed

    Sekine, Takashi; Nozu, Kandai; Iyengar, Rashmi; Fu, Xue Jun; Matsuo, Masafumi; Tanaka, Ryojiro; Iijima, Kazumoto; Matsui, Emiko; Harita, Yutaka; Inatomi, Jun; Igarashi, Takashi

    2007-07-01

    Three distinct OCRL1 mutations in three patients with the Dent disease phenotype are described. All the patients manifested an extremely high degree of low-molecular-weight proteinuria and showed no ocular abnormalities or apparent mental retardation. Urinalysis and blood chemistry showed no findings suggestive of Fanconi syndrome with renal tubular acidosis. Mutations in CLCN5 were ruled out. The mutations identified in OCRL1 are one frame-shift mutation (I127stop) and two missense mutations (R301C and R476W). R301C and R476W mutations might be hot spots in OCRL1, which develop very similar phenotypes as Dent-2. PMID:17384968

  2. Algorithms for Detecting Significantly Mutated Pathways in Cancer

    NASA Astrophysics Data System (ADS)

    Vandin, Fabio; Upfal, Eli; Raphael, Benjamin J.

    Recent genome sequencing studies have shown that the somatic mutations that drive cancer development are distributed across a large number of genes. This mutational heterogeneity complicates efforts to distinguish functional mutations from sporadic, passenger mutations. Since cancer mutations are hypothesized to target a relatively small number of cellular signaling and regulatory pathways, a common approach is to assess whether known pathways are enriched for mutated genes. However, restricting attention to known pathways will not reveal novel cancer genes or pathways. An alterative strategy is to examine mutated genes in the context of genome-scale interaction networks that include both well characterized pathways and additional gene interactions measured through various approaches. We introduce a computational framework for de novo identification of subnetworks in a large gene interaction network that are mutated in a significant number of patients. This framework includes two major features. First, we introduce a diffusion process on the interaction network to define a local neighborhood of "influence" for each mutated gene in the network. Second, we derive a two-stage multiple hypothesis test to bound the false discovery rate (FDR) associated with the identified subnetworks. We test these algorithms on a large human protein-protein interaction network using mutation data from two recent studies: glioblastoma samples from The Cancer Genome Atlas and lung adenocarcinoma samples from the Tumor Sequencing Project. We successfully recover pathways that are known to be important in these cancers, such as the p53 pathway. We also identify additional pathways, such as the Notch signaling pathway, that have been implicated in other cancers but not previously reported as mutated in these samples. Our approach is the first, to our knowledge, to demonstrate a computationally efficient strategy for de novo identification of statistically significant mutated subnetworks. We anticipate that our approach will find increasing use as cancer genome studies increase in size and scope.

  3. A Novel Missense Mutation in POMT1 Modulates the Severe Congenital Muscular Dystrophy Phenotype Associated with POMT1 Nonsense Mutations

    PubMed Central

    Wallace, Stephanie E.; Conta, Jessie H.; Winder, Thomas L.; Willer, Tobias; Eskuri, Jamie M.; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P.; Moore, Steven A.; Gospe, Sidney M.

    2014-01-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  4. Identification of a novel BMPR1A germline mutation in a Korean juvenile polyposis patient without SMAD4 mutation.

    PubMed

    Kim, I-J; Park, J-H; Kang, H C; Kim, K-H; Kim, J-H; Ku, J-L; Kang, S-B; Park, S Y; Lee, J-S; Park, J-G

    2003-02-01

    Juvenile polyposis (JP) is characterized by the development of multiple hamartomatous polyps and is inherited as an autosomal dominant trait. Germline mutations of the SMAD4 gene have been reported in JP. We have previously identified three SMAD4 germline mutations in five Korean JP patients. Recently, germline mutations of the BMPR1A (ALK3) gene were reported in JP cases without SMAD4 mutations. In order to determine whether BMPR1A could be involved in the development of JP, we screened all five patients using denaturing high-performance liquid chromatography (DHPLC) analysis. We found that one patient had a BMPR1A germline mutation without a SMAD4 mutation. This patient harbored a novel missense mutation (M470T) in exon 10. After close clinico-pathological examination, one patient who was previously diagnosed to have JP was excluded from the JP group. In total, all four Korean JP patients had either the SMAD4 or the BMPR1A mutation, with three having SMAD4 germline mutations and one carrying a BMPR1A germline mutation. PMID:12630959

  5. Novel CLCN1 mutations in Taiwanese patients with myotonia congenita.

    PubMed

    Jou, Shuo-Bin; Chang, Ling-I; Pan, Huichin; Chen, Pei-Ru; Hsiao, Kuang-Ming

    2004-06-01

    We have performed genetic screening on the skeletal muscle chloride channel gene (CLCN1) in Taiwanese population. A total of four patients with myotonia congenita (MC) together with 106 normal individuals were examined. All 23 exons of the CLCN1 gene were analysed by direct sequencing of PCR products to detect the nucleotide changes. Five mutations and three polymorphisms were identified in this study. Among these, three missense mutations (S471F, P575S, D644G) and one polymorphism (T736I) are novel and could be unique to the Taiwanese. In addition, a previously documented recessive G482R mutation was identified in a heterozygous patient and his nonsymptomatic father, indicating that this mutation might indeed function recessively or dominantly with incomplete penetrance. In conclusion, this is the first report of MC in Taiwan with proven CLCN1 gene mutations and showing high molecular heterogeneity in Taiwanese MC patients. PMID:15311340

  6. Novel CLCN5 mutations in patients with Dent’s disease result in altered ion currents or impaired exchanger processing

    Microsoft Academic Search

    Teddy Grand; David Mordasini; Sébastien L'Hoste; Thomas Pennaforte; Mathieu Genete; Marie-Jeanne Biyeyeme; Rosa Vargas-Poussou; Anne Blanchard; Jacques Teulon; Stéphane Lourdel

    2009-01-01

    Dent's disease is an X-linked recessive disorder affecting the proximal tubules and is frequently associated with mutations in CLCN5, which encodes the electrogenic chloride-proton exchanger ClC-5. To better understand the functional consequences of CLCN5 mutations in this disease, we screened four newly identified missense mutations (G179D, S203L, G212A, L469P), one new nonsense mutation (R718X), and three known mutations (L200R, C219R,

  7. Novel chloride channel gene mutations in two unrelated Chinese families with myotonia congenita.

    PubMed

    Gao, Feng; Ma, Fu Chan; Yuan, Zhe Feng; Yang, Cui Wei; Li, Hai Feng; Xia, Zhe Zhi; Shui, Quan Xiang; Jiang, Ke Wen

    2010-01-01

    Myotonia congenita (MC) is a genetic disease characterized by mutations in the muscle chloride channel gene (CLCN1). To date, approximately 130 different mutations on the CLCN1 gene have been identified. However, most of the studies have focused on Caucasians, and reports on CLCN1 mutations in Chinese population are rare. This study investigated the mutation of CLCN1 in two Chinese families with MC. Direct sequencing of the CLCN1 gene revealed a heterozygous mutation (892G>A, resulting in A298T) in one family and a compound heterozygous mutations (782A>G, resulting in Y261C; 1679T>C, resulting in M560T) in the other family, None of the 100 normal controls had these mutations. Our findings add more to the available information on the CLCN1 mutation spectrum, and provide a valuable reference for studying the mutation types and inheritance pattern of CLCN1 in the Chinese population. PMID:21045501

  8. Diverse mutations in patients with Menkes disease often lead to exon skipping

    SciTech Connect

    Das, S.; Levinson, Levinson, B.; Whitney, S.; Vulpe, C.; Packman, S.; Gitschier, J. [Univ. of California, San Francisco, CA (United States)

    1994-11-01

    Fibroblast cultures from 12 unrelated patients with classical Menkes disease were analyzed for mutations in the MNK gene, by reverse transcription-PCR (RT-PCR) and chemical cleavage mismatch detection. Mutations were observed in 10 patients, and in each case a different mutation was present. All of the mutations would be predicted to have adverse effects on protein expression. Mutations that resulted in splicing abnormalities, detected by RT-PCR alone, were observed in six patients and included two splice-site changes, a nonsense mutation, a missense mutation, a small duplication, and a small deletion. Chemical cleavage analysis of the remaining six patients revealed the presence of one missense mutation. A valine/leucine polymorphism was also observed. These findings, combined with the prior observation of deletions in 15%-20% of Menkes patients, suggest that Southern blot hybridization and RT-PCR will identify mutations in the majority of patients. 26 refs., 3 figs., 2 tabs.

  9. Characterization of rare transforming KRAS mutations in sporadic colorectal cancer

    PubMed Central

    Tong, Joanna HM; Lung, Raymond WM; Sin, Frankie MC; Law, Peggy PY; Kang, Wei; Chan, Anthony WH; Ma, Brigette BY; Mak, Tony WC; Ng, Simon SM; To, Ka Fai

    2014-01-01

    KRAS mutational status has been shown to be a predictive biomarker of resistance to anti-EGFR monoclonal antibody (mAb) therapy in patients with metastatic colorectal cancer. We report the spectrum of KRAS mutation in 1506 patients with colorectal cancer and the identification and characterization of rare insertion mutations within the functional domain of KRAS. KRAS mutations are found in 44.5% (670/1506) of the patients. Two cases are found to harbor double mutations involving both codons 12 and 13. The frequencies of KRAS mutations at its codons 12, 13, 61, and 146 are 75.1%, 19.3%, 2.5%, and 2.7%, respectively. The most abundant mutation of codon 12 is G12D, followed by G12V and G12C while G13D is the predominant mutation in codon 13. Mutations in other codons are rare. The KRAS mutation rate is significantly higher in women (48%, 296/617) than in men (42.1%, 374/889, P = 0.023). Tumors on the right colon have a higher frequency of KRAS mutations than those on the left (57.3% vs. 40.4%, P < 0.0001). Two in-frame insertion mutations affect the phosphate-binding loop (codon 10–16) of KRAS are identified. One of them has never been reported before. Compared with wild-type protein, the insertion variants enhance the cellular accumulation of active RAS (RAS-GTP) and constitutively activate the downstream signaling pathway. NIH3T3 cells transfected with the insertion variants show enhanced anchorage-independent growth and in vivo tumorigenicity. Potentially these mutations contribute to primary resistance to anti-EGFR mAb therapy but the clinical implication requires further validation. PMID:24642870

  10. Genomic screening for ?-sarcoglycan gene mutations: missense mutations may cause severe limb-girdle muscular dystrophy type 2E (LGMD 2E)

    Microsoft Academic Search

    Carsten G. Bönnemann; M. Rita Passos-Bueno; Elizabeth M. McNally; Mariz Vainzof; Eloísa de Sá Moreira; Suely K. Marie; Rita C. M. Pavanello; Satoru Noguchi; Eijiro Ozawa; Mayana Zatz; Louis M. Kunkel

    1996-01-01

    Autosomal recessive limb-girdle muscular dys- trophies (LGMDs) are genetically heterogeneous. A subgroup of these disorders is caused by mutations in the dystrophin-associated sarcoglycan complex. Truncating mutations in the 43 kDa ?-sarcoglycan gene (LGMD 2E) were originally identified in a sporadic case of Duchenne-like muscular dystrophy, and a common missense mutation (T151R) was identified indepen- dently in Indiana Amish pedigrees with

  11. Fitness Causes Bloat: Mutation

    Microsoft Academic Search

    William B. Langdon; Riccardo Poli

    1998-01-01

    The problem of evolving, using mutation, an artificial ant to follow the Santa Fe trail is used to study the well known genetic program- ming feature of growth in solution length. Known variously as \\

  12. MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS

    PubMed Central

    Pugh, Trevor J.; Weeraratne, Shyamal Dilhan; Archer, Tenley C.; Pomeranz Krummel, Daniel A.; Auclair, Daniel; Bochicchio, James; Carneiro, Mauricio O.; Carter, Scott L.; Cibulskis, Kristian; Erlich, Rachel L.; Greulich, Heidi; Lawrence, Michael S.; Lennon, Niall J.; McKenna, Aaron; Meldrim, James; Ramos, Alex H.; Ross, Michael G.; Russ, Carsten; Shefler, Erica; Sivachenko, Andrey; Sogoloff, Brian; Stojanov, Petar; Tamayo, Pablo; Mesirov, Jill P.; Amani, Vladimir; Teider, Natalia; Sengupta, Soma; Francois, Jessica Pierre; Northcott, Paul A.; Taylor, Michael D.; Yu, Furong; Crabtree, Gerald R.; Kautzman, Amanda G.; Gabriel, Stacey B.; Getz, Gad; Jäger, Natalie; Jones, David T. W.; Lichter, Peter; Pfister, Stefan M.; Roberts, Thomas M.; Meyerson, Matthew; Pomeroy, Scott L.; Cho, Yoon-Jae

    2012-01-01

    Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma. PMID:22820256

  13. LGI1 mutations in autosomal dominant partial epilepsy with auditory features

    PubMed Central

    Ottman, R.; Winawer, M.R.; Kalachikov, S.; Barker-Cummings, C.; Gilliam, T.C.; Pedley, T.A.; Hauser, W.A.

    2006-01-01

    Objectives Mutations in LGI1 cause autosomal dominant partial epilepsy with auditory features (ADPEAF), a form of familial temporal lobe epilepsy with auditory ictal manifestations. The authors aimed to determine what proportion of ADPEAF families carries a mutation, to estimate the penetrance of identified mutations, and to identify clinical features that distinguish families with and without mutations. Methods The authors sequenced LGI1 in 10 newly described ADPEAF families and analyzed clinical features in these families and others with mutations reported previously. Results Three of the families had missense mutations in LGI1 (C42R, I298T, and A110D). Penetrance was 54% in eight families with LGI1 mutations the authors have identified so far (five reported previously and three reported here). Excluding the original linkage family, the authors have found mutations in 50% (7/14) of tested families. Families with and without mutations had similar clinical features, but those with mutations contained significantly more subjects with auditory symptoms and significantly fewer with autonomic symptoms. In families with mutations, the most common auditory symptom type was simple, unformed sounds (e.g., buzzing and ringing). In two of the newly identified families with mutations, some subjects with mutations had idiopathic generalized epilepsies. Conclusions LGI1 mutations are a common cause of autosomal dominant partial epilepsy with auditory features. Current data do not reveal a clinical feature that clearly predicts which families with autosomal dominant partial epilepsy with auditory features have a mutation. Some families with LGI1 mutations contain individuals with idiopathic generalized epilepsies. This could result from either an effect of LGI1 on risk for generalized epilepsy or an effect of co-occurring idiopathic generalized epilepsy-specific genes in these families. PMID:15079011

  14. Characteristics of disorders associated with genetic mutations of surfactant protein C

    Microsoft Academic Search

    Guillaume Thouvenin; Rola Abou Taam; Florence Flamein; Loďc Guillot; Muriel Le Bourgeois; Philippe Reix; Mickael Fayon; François Counil; Ulrika Depontbriand; Delphine Feldmann; Hubert Ducou-Le Pointe; Jacques de Blic; Annick Clement; Ralph Epaud

    2010-01-01

    Study objectivesTo present diagnosis and treatment modalities of children with interstitial lung disease associated with frequent or rare surfactant protein C gene (SFTPC) mutation.PatientsTwenty-two children with chronic lung disease associated with SFTPC mutation in a heterozygous form.ResultsMutations located in the BRICHOS domain (‘BRICHOS domain’ group) were identified in six children, whereas 16 children carried mutations located outside the BRICHOS domain

  15. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1)

    Microsoft Academic Search

    John C. Sparrowa; Kristen J. Nowakb; Hayley J. Durlingb; Alan H. Beggse; Carina Wallgren-Petterssonf; Norma Romerog; Ikuya Nonakah; Nigel G. Laingb

    Mutations in the skeletal muscle alpha-actin gene (ACTA1) associated with congenital myopathy with excess of thin myofilaments, nemaline myopathy and intranuclear rod myopathy were first described in 1999. At that time, only 15 different missense mutations were known in ACTA1. More than 60 mutations have now been identified. This review analyses this larger spectrum of mutations in ACTA1. It investigates

  16. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene ( ACTA1)

    Microsoft Academic Search

    John C. Sparrow; Kristen J. Nowak; Hayley J. Durling; Alan H. Beggs; Carina Wallgren-Pettersson; Norma Romero; Ikuya Nonaka; Nigel G. Laing

    2003-01-01

    Mutations in the skeletal muscle alpha-actin gene (ACTA1) associated with congenital myopathy with excess of thin myofilaments, nemaline myopathy and intranuclear rod myopathy were first described in 1999. At that time, only 15 different missense mutations were known in ACTA1. More than 60 mutations have now been identified. This review analyses this larger spectrum of mutations in ACTA1. It investigates

  17. MECP2 and CDKL5 gene mutation analysis in Chinese patients with Rett syndrome

    Microsoft Academic Search

    Mei-rong Li; Hong Pan; Xin-Hua Bao; Yu-Zhi Zhang; Xi-Ru Wu

    2007-01-01

    Rett syndrome (RTT) is a progressive neurodevelopmental disorder that is caused by mutations in the X-linked methyl-CpG-binding\\u000a protein2 (MECP2) gene. In this study, the MECP2 sequences in 121 unrelated Chinese patients with classical or atypical RTT were screened for deletions and mutations. In\\u000a all, we identified 45 different MECP2 mutations in 102 of these RTT patients. The p. T158M mutation

  18. The phenotypic expression of three MSH2 mutations in large Newfoundland families with Lynch syndrome

    Microsoft Academic Search

    Susan Stuckless; Patrick S. Parfrey; Michael O. Woods; Janet Cox; G. William Fitzgerald; Jane S. Green; Roger C. Green

    2007-01-01

    To compare the phenotypic expression of three different MSH2 mutations causing Lynch syndrome, 290 family members at 50% risk of inheriting a mutation were studied. Two truncating mutations\\u000a of the MSH2 gene have been identified in Newfoundland: an exon 8 deletion in five families (N=74 carriers) and an exon 4–16 deletion in one family (N=65 carriers). The third mutation was

  19. Germline and somatic mutations in meningiomas.

    PubMed

    Smith, Miriam J

    2015-04-01

    Meningiomas arise from the arachnoid layer of the meninges that surround the brain and spine. They account for over one third of all primary central nervous system tumors in adults and confer a significant risk of location-dependent morbidity due to compression or displacement. A significant increase in risk of meningiomas is associated with neurofibromatosis type 2 (NF2) disease through mutation of the NF2 gene. In addition, approximately 5% of individuals with schwannomatosis disease develop meningiomas, through mutation of the SWI/SNF chromatin remodeling complex subunit, SMARCB1. Recently, a second SWI/SNF complex subunit, SMARCE1, was identified as a cause of clear cell meningiomas, indicating a wider role for this complex in meningioma disease. The sonic hedgehog (SHH)-GLI1 signaling pathway gene, SUFU, has also been identified as the cause of hereditary multiple meningiomas in a large Finnish family. The recent identification of somatic mutations in components of the SHH-GLI1 and AKT1-MTOR signaling pathways indicates the potential for cross talk of these pathways in the development of meningiomas. This review describes the known meningioma predisposition genes and their links to the recently identified somatic mutations. PMID:25857641

  20. Mutations in argininosuccinate synthetase mRNA of Japanese patients, causing classical citrullinemia.

    PubMed Central

    Kobayashi, K.; Shaheen, N.; Terazono, H.; Saheki, T.

    1994-01-01

    Citrullinemia is an autosomal recessive disease caused by a genetic deficiency of argininosuccinate synthetase. In order to characterize mutations in Japanese patients with classical citrullinemia, RNA isolated from 10 unrelated patients was reverse-transcribed, and cDNA amplified by PCR was cloned and sequenced. The 10 mutations identified included 6 missense mutations (A118T, A192V, R272C, G280R, R304W, and R363L), 2 mutations associated with an absence of an exon 7 or exon 13, 1 mutation with a deletion of the first 7 bp in exon 16 (which might be caused by abnormal splicing), and 1 mutation with an insertion of 37 bp within exons 15 and 16 in cDNA. The insertion mutation and the five missense mutations (R304W being excluded) are new mutations described in the present paper. These are in addition to 14 mutations (9 missense mutations, 4 mutations associated with an absence of an exon in mRNA, and 1 splicing mutation) that we identified previously in mainly American patients with neonatal citrullinemia. Two of these 20 mutations, a deletion of exon 13 sequence and a 7-bp deletion in exon 16, were common to Japanese and American populations from different ethnic backgrounds; however, other mutations were unique to each population. Furthermore, the presence of a frequent mutation--the exon 7 deletion mutation in mRNA, which accounts for 10 of 23 affected alleles--was demonstrated in Japanese citrullinemia. This differs from the situation in the United States, where there was far greater heterogeneity of mutations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:7977368

  1. Rates of spontaneous mutation.

    PubMed Central

    Drake, J W; Charlesworth, B; Charlesworth, D; Crow, J F

    1998-01-01

    Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates. PMID:9560386

  2. Identical mutations and phenotypic variation

    Microsoft Academic Search

    Ulrich Wolf

    1997-01-01

    The relationship between pathogenetic mutations and disease phenotype is becoming increasingly complex. Well-delineated clinical\\u000a entities can be genetically heterogeneous, and mutations in a particular gene may result in fundamental clinical differences.\\u000a Genetic heterogeneity includes mutations at different gene loci or allelic mutations within a single gene, resulting in a\\u000a similar phenotype. However, one and the same mutation is expected to

  3. Gender Differences in the Inheritance Mode of RYR2 Mutations in Catecholaminergic Polymorphic Ventricular Tachycardia Patients

    PubMed Central

    Ohno, Seiko; Hasegawa, Kanae; Horie, Minoru

    2015-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is one of the causes of sudden cardiac death in young people and results from RYR2 mutations in ~60% of CPVT patients. The inheritance of the RYR2 mutations follows an autosomal dominant trait, however, de novo mutations are often identified during familial analysis. In 36 symptomatic CPVT probands with RYR2 mutations, we genotyped their parents and confirmed the origin of the respective mutation. In 26 sets of proband and both parents (trio), we identified 17 de novo mutations (65.4%), seven from their mothers and only two mutations were inherited from their fathers. Among nine sets of proband and mother, five mutations were inherited from mothers. Four other mutations were of unknown origin. The inheritance of RYR2 mutations was significantly more frequent from mothers (n = 12, 34.3%) than fathers (n = 2, 5.7%) (P = 0.013). The mean ages of onset were not significantly different in probands between de novo mutations and those from mothers. Thus, half of the RYR2 mutations in our cohort were de novo, and most of the remaining mutations were inherited from mothers. These data would be useful for family analysis and risk stratification of the disease. PMID:26114861

  4. Expanding the phenotype of GMPPB mutations.

    PubMed

    Cabrera-Serrano, Macarena; Ghaoui, Roula; Ravenscroft, Gianina; Johnsen, Russell D; Davis, Mark R; Corbett, Alastair; Reddel, Stephen; Sue, Carolyn M; Liang, Christina; Waddell, Leigh B; Kaur, Simranpreet; Lek, Monkol; North, Kathryn N; MacArthur, Daniel G; Lamont, Phillipa J; Clarke, Nigel F; Laing, Nigel G

    2015-04-01

    Dystroglycanopathies are a heterogeneous group of diseases with a broad phenotypic spectrum ranging from severe disorders with congenital muscle weakness, eye and brain structural abnormalities and intellectual delay to adult-onset limb-girdle muscular dystrophies without mental retardation. Most frequently the disease onset is congenital or during childhood. The exception is FKRP mutations, in which adult onset is a common presentation. Here we report eight patients from five non-consanguineous families where next generation sequencing identified mutations in the GMPPB gene. Six patients presented as an adult or adolescent-onset limb-girdle muscular dystrophy, one presented with isolated episodes of rhabdomyolysis, and one as a congenital muscular dystrophy. This report expands the phenotypic spectrum of GMPPB mutations to include limb-girdle muscular dystrophies with adult onset with or without intellectual disability, or isolated rhabdomyolysis. PMID:25681410

  5. IRF4 mutations in chronic lymphocytic leukemia.

    PubMed

    Havelange, Violaine; Pekarsky, Yuri; Nakamura, Tatsuya; Palamarchuk, Alexey; Alder, Hansjuerg; Rassenti, Laura; Kipps, Thomas; Croce, Carlo M

    2011-09-01

    Interferon regulatory factor 4 (IRF4) is a member of the interferon regulatory factor family of transcription factors and has been shown to have critical functions at several stages of B-cell development. Genome-wide association study identified a polymorphism in the 3' untranslated region of IRF4 as a chronic lymphocytic leukemia risk locus. In this study, we report a recurrent heterozygous somatic mutation in the DNA-binding domain of IRF4 detected in 7 of 457 chronic lymphocytic leukemia patients (1.5%). Patients with IRF4 mutation have a good prognosis, and 4 of 6 have a trisomy 12. We also found that IRF4 mRNA expression is higher in the patients with the mutation. PMID:21791429

  6. Adaptive mutations in the H5N1 polymerase complex.

    PubMed

    Gabriel, Gülsah; Czudai-Matwich, Volker; Klenk, Hans-Dieter

    2013-12-01

    Adaptation of the viral polymerase to host factors plays an important role in interspecies transmission of H5N1 viruses. Several adaptive mutations have been identified that, in general, determine not only host range, but also pathogenicity and transmissibility of the virus. The available evidence indicates that most of these mutations are found in the PB2 subunit of the polymerase. Particularly prominent mutations are located in the C-terminal domain of PB2 involving the amino acid exchanges E627K and D701N. Both mutations, that are also responsible for the adaptation of other avian viruses to mammalian hosts, have been described in human H5N1 isolates. In animal models, it could be demonstrated that they enhance pathogenicity in mice and induce contact transmission in guinea pigs. Mutation E627K has also been identified as a determinant of air-borne H5N1 transmission in ferrets. We are only beginning to understand the underlying mechanisms at the molecular level. Thus, mutation D701N promotes importin-? mediated nuclear transport in mammalian cells. Mutation E627K also enhances the replication rate in an importin-? dependent fashion in mammalian cells, yet without affecting nuclear entry of PB2. Numerous other adaptive mutations, some of which compensate for the lack of PB2 E627K, have been observed in PB2 as well as in the polymerase subunit PB1, the nucleoprotein NP, and the nuclear export protein NEP (NS2). PMID:23732876

  7. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others] [Oak Ridge National Lab., TN (United States); and others

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  8. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  9. Mutation analysis of the gene involved in adrenoleukodystrophy

    SciTech Connect

    Oost, B.A. van; Ligtenberg, M.J.L. [Univ. Hospital Nijmegen (Netherlands); Kemp, S.; Bolhuis, P.A. [Academic Medical Center, Amsterdam (Netherlands)

    1994-09-01

    A gene responsible for the X-linked genetic disorder adrenoleukodystrophy (ALD) that is characterized by demyelination of the nervous system and adrenocortical insufficiency has been identified by positional cloning. The gene encodes an ATP-binding transporter which is located in the peroxisomal membrane. Deficiency of the gene leads to accumulation of unsaturated very long chain fatty acids due to impaired peroxisomal {beta}-oxidation. A systematic analysis of the open reading frame of the ALD gene unraveled the mutations in 28 different families using reverse transcriptase-PCR followed by direct sequencing. No entire gene deletions or drastic promoter mutations have been detected. Only in one family did the mutation involved multiple exons. The remaining mutations were subtle alterations leading to missense (about 50%) or nonsense mutations, frameshifts or splice acceptor site defects. In one patient a single codon was missing. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative membrane spanning fragments and in the ATP-binding domain. This overview of mutations aids in the determination of structural and functional important regions and facilitates the screening for mutations in other ALD patients. The detection of mutations in virtually all ALD families tested indicates that the isolated gene is the only gene responsible for ALD located in Xq28.

  10. Somatic mutations of KIT in familial testicular germ cell tumours.

    PubMed

    Rapley, E A; Hockley, S; Warren, W; Johnson, L; Huddart, R; Crockford, G; Forman, D; Leahy, M G; Oliver, D T; Tucker, K; Friedlander, M; Phillips, K-A; Hogg, D; Jewett, M A S; Lohynska, R; Daugaard, G; Richard, S; Heidenreich, A; Geczi, L; Bodrogi, I; Olah, E; Ormiston, W J; Daly, P A; Looijenga, L H J; Guilford, P; Aass, N; Fossĺ, S D; Heimdal, K; Tjulandin, S A; Liubchenko, L; Stoll, H; Weber, W; Einhorn, L; Weber, B L; McMaster, M; Greene, M H; Bishop, D T; Easton, D; Stratton, M R

    2004-06-14

    Somatic mutations of the KIT gene have been reported in mast cell diseases and gastrointestinal stromal tumours. Recently, they have also been found in mediastinal and testicular germ cell tumours (TGCTs), particularly in cases with bilateral disease. We screened the KIT coding sequence (except exon 1) for germline mutations in 240 pedigrees with two or more cases of TGCT. No germline mutations were found. Exons 10, 11 and 17 of KIT were examined for somatic mutations in 123 TGCT from 93 multiple-case testicular cancer families. Five somatic mutations were identified; four were missense amino-acid substitutions in exon 17 and one was a 12 bp in-frame deletion in exon 11. Two of seven TGCT from cases with bilateral disease carried KIT mutations compared with three out of 116 unilateral cases (P=0.026). The results indicate that somatic KIT mutations are implicated in the development of a minority of familial as well as sporadic TGCT. They also lend support to the hypothesis that KIT mutations primarily take place during embryogenesis such that primordial germ cells with KIT mutations are distributed to both testes. PMID:15150569

  11. Integrated analysis of recurrent properties of cancer genes to identify novel drivers

    PubMed Central

    2013-01-01

    The heterogeneity of cancer genomes in terms of acquired mutations complicates the identification of genes whose modification may exert a driver role in tumorigenesis. In this study, we present a novel method that integrates expression profiles, mutation effects, and systemic properties of mutated genes to identify novel cancer drivers. We applied our method to ovarian cancer samples and were able to identify putative drivers in the majority of carcinomas without mutations in known cancer genes, thus suggesting that it can be used as a complementary approach to find rare driver mutations that cannot be detected using frequency-based approaches. PMID:23718799

  12. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy

    PubMed Central

    Lichter, David I.; Di Bacco, Alessandra; Blakemore, Stephen J.; Berger, Allison; Koenig, Erik; Bernard, Hugues; Trepicchio, William; Li, Bin; Neuwirth, Rachel; Chattopadhyay, Nibedita; Bolen, Joseph B.; Dorner, Andrew J.; van de Velde, Helgi; Ricci, Deborah; Jagannath, Sundar; Berenson, James R.; Richardson, Paul G.; Stadtmauer, Edward A.; Orlowski, Robert Z.; Lonial, Sagar; Anderson, Kenneth C.; Sonneveld, Pieter; San Miguel, Jesús F.; Esseltine, Dixie-Lee; Schu, Matthew

    2014-01-01

    Various translocations and mutations have been identified in myeloma, and certain aberrations, such as t(4;14) and del17, are linked with disease prognosis. To investigate mutational prevalence in myeloma and associations between mutations and patient outcomes, we tested a panel of 41 known oncogenes and tumor suppressor genes in tumor samples from 133 relapsed myeloma patients participating in phase 2 or 3 clinical trials of bortezomib. DNA mutations were identified in 14 genes. BRAF as well as RAS genes were mutated in a large proportion of cases (45.9%) and these mutations were mutually exclusive. New recurrent mutations were also identified, including in the PDGFRA and JAK3 genes. NRAS mutations were associated with a significantly lower response rate to single-agent bortezomib (7% vs 53% in patients with mutant vs wild-type NRAS, P = .00116, Bonferroni-corrected P = .016), as well as shorter time to progression in bortezomib-treated patients (P = .0058, Bonferroni-corrected P = .012). However, NRAS mutation did not impact outcome in patients treated with high-dose dexamethasone. KRAS mutation did not reduce sensitivity to bortezomib or dexamethasone. These findings identify a significant clinical impact of NRAS mutation in myeloma and demonstrate a clear example of functional differences between the KRAS and NRAS oncogenes. PMID:24335104

  13. Hypercalciuria in patients with CLCN5 mutations.

    PubMed

    Ludwig, Michael; Utsch, Boris; Balluch, Bernd; Fründ, Stefan; Kuwertz-Bröking, Eberhard; Bökenkamp, Arend

    2006-09-01

    Hypercalciuria is regarded as a characteristic symptom of Dent disease, an X-linked recessive tubulopathy characterized by low molecular weight (LMW) proteinuria, nephrocalcinosis/nephrolithiasis, and progressive renal failure due to mutations in the CLCN5 gene. As the presence of hypercalciuria may affect the decision to consider a CLCN5 mutation in the differential diagnosis, the phenotypic spectrum and the relative frequency of hypercalciuria in patients with CLCN5 mutations was determined. We assessed renal calcium excretion in 34 male patients with proven CLCN5 mutations, who had been referred because of LMW proteinuria and at least one additional symptom of Dent disease. Hypercalciuria was defined as renal calcium excretion exceeding 0.1 mmol/kg per day. Data obtained were compared with all series of CLCN5-positive patients identified by a systematic literature survey. In 7 of our 19 families, at least 1 affected male had normal calcium excretion. Hypercalciuria was observed in 22 of 31 patients tested (71%) compared to 85 of 90 (94.4%) in series from Europe and North America and 74.4% from Japan. LMW proteinuria was present in all CLCN5-positive patients; 25% of the patients in European and North American series, 45% of the Japanese, and 41% in the present series had only two of the four principal symptoms of Dent disease. Therefore, a CLCN5 mutation should be considered irrespective of the presence of hypercalciuria in a patient with LMW proteinuria and one additional symptom of Dent disease. PMID:16807762

  14. Recurrent BRAF mutations in Langerhans cell histiocytosis

    PubMed Central

    Badalian-Very, Gayane; Vergilio, Jo-Anne; Degar, Barbara A.; MacConaill, Laura E.; Brandner, Barbara; Calicchio, Monica L.; Kuo, Frank C.; Ligon, Azra H.; Stevenson, Kristen E.; Kehoe, Sarah M.; Garraway, Levi A.; Hahn, William C.; Meyerson, Matthew; Fleming, Mark D.

    2010-01-01

    Langerhans cell histiocytosis (LCH) has a broad spectrum of clinical behaviors; some cases are self-limited, whereas others involve multiple organs and cause significant mortality. Although Langerhans cells in LCH are clonal, their benign morphology and their lack (to date) of reported recurrent genomic abnormalities have suggested that LCH may not be a neoplasm. Here, using 2 orthogonal technologies for detecting cancer-associated mutations in formalin-fixed, paraffin-embedded material, we identified the oncogenic BRAF V600E mutation in 35 of 61 archived specimens (57%). TP53 and MET mutations were also observed in one sample each. BRAF V600E tended to appear in younger patients but was not associated with disease site or stage. Langerhans cells stained for phospho-mitogen–activated protein kinase kinase (phospho-MEK) and phospho-extracellular signal-regulated kinase (phospho-ERK) regardless of mutation status. High prevalence, recurrent BRAF mutations in LCH indicate that it is a neoplastic disease that may respond to RAF pathway inhibitors. PMID:20519626

  15. NPHS2 mutations in steroid-resistant nephrotic syndrome: a mutation update and the associated phenotypic spectrum.

    PubMed

    Bouchireb, Karim; Boyer, Olivia; Gribouval, Olivier; Nevo, Fabien; Huynh-Cong, Evelyne; Moriničre, Vincent; Campait, Raphaëlle; Ars, Elisabet; Brackman, Damien; Dantal, Jacques; Eckart, Philippe; Gigante, Maddalena; Lipska, Beata S; Liutkus, Aurélia; Megarbane, André; Mohsin, Nabil; Ozaltin, Fatih; Saleem, Moin A; Schaefer, Franz; Soulami, Kenza; Torra, Roser; Garcelon, Nicolas; Mollet, Géraldine; Dahan, Karin; Antignac, Corinne

    2014-02-01

    Mutations in the NPHS2 gene encoding podocin are implicated in an autosomal-recessive form of nonsyndromic steroid-resistant nephrotic syndrome in both pediatric and adult patients. Patients with homozygous or compound heterozygous mutations commonly present with steroid-resistant nephrotic syndrome before the age of 6 years and rapidly progress to end-stage kidney disease with a very low prevalence of recurrence after renal transplantation. Here, we reviewed all the NPHS2 mutations published between October 1999 and September 2013, and also all novel mutations identified in our personal cohort and in international genetic laboratories. We identified 25 novel pathogenic mutations in addition to the 101 already described. The mutations are distributed along the entire coding region and lead to all kinds of alterations including 53 missense, 17 nonsense, 11 small insertions, 26 small deletions, 16 splicing, two indel mutations, and one mutation in the stop codon. In addition, 43 variants were classified as variants of unknown significance, as these missense changes were exclusively described in the heterozygous state and/or considered benign by prediction software. Genotype-phenotype analyses established correlations between specific variants and age at onset, ethnicity, or clinical evolution. We created a Web database using the Leiden Open Variation Database (www.lovd.nl/NPHS2) software that will allow the inclusion of future reports. PMID:24227627

  16. ASXL1 mutations are frequent and prognostically detrimental in CSF3R-mutated chronic neutrophilic leukemia.

    PubMed

    Elliott, Michelle A; Pardanani, Animesh; Hanson, Curtis A; Lasho, Terra L; Finke, Christy M; Belachew, Alem A; Tefferi, Ayalew

    2015-07-01

    Colony stimulating factor 3 receptor gene (CSF3R) mutations have recently been associated with chronic neutrophilic leukemia (CNL). Fourteen patients with CSF3R-mutated CNL (median age 67 years; 57% males) were screened for additional mutations; 8 (57%) and 5 (38%) harbored an ASXL1 and/or SETBP1 mutation (two patients expressed both), respectively. Two patients developed blastic transformation, both SETBP1-mutated and ASXL1-unmutated, whereas two other cases evolved into chronic myelomonocytic leukemia (CMML), both ASXL1-mutated and SETBP1-unmutated. Median survival was 23.2 months (10 deaths documented). On multivariable analysis mutated ASXL1 (P?=?0.009; HR 19.6, 95% CI 2.1-184.1) and thrombocytopenia (P?=?0.005; HR 28.8, 95% CI 2.8-298.2) were independently predictive of shortened survival. This study provides information on the natural history of CSF3R-mutated CNL and identifies mutant ASXL1 and thrombocytopenia as risk factors for survival. The study also suggests pathogenetic roles for SETBP1 and ASXL1 mutations in disease evolution into blast phase disease and CMML, respectively. Am. J. Hematol. 90:653-656, 2015. © 2015 Wiley Periodicals, Inc. PMID:25850813

  17. Silting mutation in triangulated categories

    E-print Network

    Aihara, Takuma

    2010-01-01

    In representation theory of algebras the notion of `mutation' often plays important roles, and two cases are well known, i.e. `cluster tilting mutation' and `exceptional mutation'. In this paper we focus on `tilting mutation', which has a disadvantage that it is often impossible, i.e. some of summands of a tilting object can not be replaced to get a new tilting object. The aim of this paper is to take away this disadvantage by introducing `silting mutation' for silting objects as a generalization of `tilting mutation'. We shall develope a basic theory of silting mutation. In particular, we introduce a partial order on the set of silting objects and establish the relationship with `silting mutation' by generalizing the theory of Riedmann-Schofield and Happel-Unger. We show that iterated silting mutation act transitively on the set of silting objects for local, hereditary or canonical algebras. Finally we give a bijection between silting subcategories and certain t-structures.

  18. Molecular genetic dissection of mouse unconventional myosin-VA: tail region mutations.

    PubMed Central

    Huang, J D; Mermall, V; Strobel, M C; Russell, L B; Mooseker, M S; Copeland, N G; Jenkins, N A

    1998-01-01

    We used an RT-PCR-based sequencing approach to identify the mutations responsible for 17 viable dilute alleles, a mouse-coat-color locus encoding unconventional myosin-VA. Ten of the mutations mapped to the MyoVA tail and are reported here. These mutations represent the first extensive collection of tail mutations reported for any unconventional mammalian myosin. They identify sequences important for tail function and identify domains potentially involved in cargo binding and/or proper folding of the MyoVA tail. Our results also provide support for the notion that different myosin tail isoforms produced by alternative splicing encode important cell-type-specific functions. PMID:9560409

  19. Seven functional classes of Barth syndrome mutation

    PubMed Central

    Whited, Kevin; Baile, Matthew G.; Currier, Pamela; Claypool, Steven M.

    2013-01-01

    Patients with Barth syndrome (BTHS), a rare X-linked disease, suffer from skeletal and cardiomyopathy and bouts of cyclic neutropenia. The causative gene encodes tafazzin, a transacylase, which is the major determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, CL. In addition to numerous frame shift and splice-site mutations, 36 missense mutations have been associated with BTHS. Previously, we established a BTHS-mutant panel in the yeast Saccharomyces cerevisiae that successfully models 18/21 conserved pathogenic missense mutations and defined the loss-of-function mechanism associated with a subset of the mutant tafazzins. Here, we report the biochemical and cell biological characterization of the rest of the yeast BTHS-mutant panel and in so doing identify three additional modes of tafazzin dysfunction. The largest group of mutant tafazzins is catalytically null, two mutants encode hypomorphic alleles, and another two mutants are temperature sensitive. Additionally, we have expanded the defects associated with previously characterized matrix-mislocalized-mutant tafazzins to include the rapid degradation of aggregation-prone polypeptides that correctly localize to the mitochondrial IMS. In sum, our in-depth characterization of the yeast BTHS-mutant panel has identified seven functional classes of BTHS mutation. PMID:23100323

  20. Inactivating CUX1 mutations promote tumorigenesis

    PubMed Central

    Wong, Chi C.; Martincorena, Inigo; Rust, Alistair G.; Rashid, Mamunur; Alifrangis, Constantine; Alexandrov, Ludmil B.; Tiffen, Jessamy C.; Kober, Christina; Green, Anthony R.; Massie, Charles E.; Nangalia, Jyoti; Lempidaki, Stella; Döhner, Hartmut; Döhner, Konstanze; Bray, Sarah J.; McDermott, Ultan; Papaemmanuil, Elli; Campbell, Peter J.; Adams, David J.

    2013-01-01

    A major challenge for cancer genetics is to determine which low frequency somatic mutations are drivers of tumorigenesis. Here we interrogate the genomes of 7,651 diverse human cancers to identify novel drivers and find inactivating mutations in the homeodomain transcription factor CUX1 (cut-like homeobox 1) in ~1-5% of tumors. Meta-analysis of CUX1 mutational status in 2,519 cases of myeloid malignancies reveals disruptive mutations associated with poor survival, highlighting the clinical significance of CUX1 loss. In parallel, we validate CUX1 as a bona fide tumor suppressor using mouse transposon-mediated insertional mutagenesis and Drosophila cancer models. We demonstrate that CUX1 deficiency activates phosphoinositide 3-kinase (PI3K) signaling through direct transcriptional downregulation of the PI3K inhibitor PIK3IP1 (phosphoinositide-3-kinase interacting protein 1), leading to increased tumor growth, while exposing susceptibility to PI3K-AKT inhibition. Thus, our complementary approaches identify CUX1 as a new pan-driver of tumorigenesis and uncover a potential strategy for treating CUX1-mutant tumors. PMID:24316979

  1. Novel mutations in the muscle chloride channel CLCN1 gene causing myotonia congenita in Spanish families

    Microsoft Academic Search

    C. de Diego; J. Gámez; E. Plassart-Schiess; A. Lasa; E. Del Río; C. Cervera; M. Baiget; P. Gallano; B. Fontaine

    1999-01-01

    Mutations in the muscular voltage-dependent chloride channel gene (CLCN1), located at 7q35, lead to recessive and dominant myotonia congenita. We report four novel mutations identified in this gene,\\u000a after clinical, electromyographic, and genetic studies performed on 13 unrelated families. Two of the four mutations (2512insCTCA\\u000a and A218T) were identified in families with Thomsen’s disease, one (Q658X) in a family with

  2. A novel mutation in EED associated with overgrowth.

    PubMed

    Cohen, Ana S A; Tuysuz, Beyhan; Shen, Yaoqing; Bhalla, Sanjiv K; Jones, Steven J M; Gibson, William T

    2015-06-01

    In a patient suspected clinically to have Weaver syndrome, we ruled out mutations in EZH2 and NSD1, then identified a previously undescribed de novo mutation in EZH2's partner protein EED. Both proteins are members of the Polycomb Repressive Complex 2 that maintains gene silencing. On the basis of the similarities of the patient's phenotype to Weaver syndrome, which is caused by de novo mutations in EZH2, and on other lines of evidence including mouse Eed hypomorphs, we characterize this mutation as probably pathogenic for a Weaver-like overgrowth syndrome. This is the first report of overgrowth and related phenotypes associated with a constitutional mutation in human EED. PMID:25787343

  3. Frontotemporal Dementia Caused by CHMP2B Mutations

    PubMed Central

    Isaacs, A.M; Johannsen, P; Holm, I; Nielsen, J.E; Consortium, FReJA

    2011-01-01

    CHMP2B mutations are a rare cause of autosomal dominant frontotemporal dementia (FTD). The best studied example is frontotemporal dementia linked to chromosome 3 (FTD-3) which occurs in a large Danish family, with a further CHMP2B mutation identified in an unrelated Belgian familial FTD patient. These mutations lead to C-terminal truncations of the CHMP2B protein and we will review recent advances in our understanding of the molecular effects of these mutant truncated proteins on vesicular fusion events within the endosome-lysosome and autophagy degradation pathways. We will also review the clinical features of FTD caused by CHMP2B truncation mutations as well as new brain imaging and neuropathological findings. Finally, we collate the current data on CHMP2B missense mutations, which have been reported in FTD and motor neuron disease. PMID:21222599

  4. ATM gene founder haplotypes and associated mutations in Polish families with ataxia-telangiectasia.

    PubMed

    Mitui, M; Bernatowska, E; Pietrucha, B; Piotrowska-Jastrzebska, J; Eng, L; Nahas, S; Teraoka, S; Sholty, G; Purayidom, A; Concannon, P; Gatti, R A

    2005-11-01

    Ataxia-telangiectasia (A-T) is an early onset autosomal recessive ataxia associated with characteristic chromosomal aberrations, cell cycle checkpoint defects, cancer susceptibility, and sensitivity to ionizing radiation. We utilized the protein truncation test (PTT), and single strand conformation polymorphism (SSCP) on cDNA, as well as denaturing high performance liquid chromatography (dHPLC) on genomic DNA (gDNA) to screen for mutations in 24 Polish A-T families. Twenty-six distinct Short Tandem Repeat (STR) haplotypes were identified. Three founder mutations accounted for 58% of the alleles. Three-quarters of the families had at least one recurring (shared) mutation, which was somewhat surprising given the low frequency of consanguinity in Poland. STR haplotyping greatly improved the efficiency of mutation detection. We identified 44 of the expected 48 mutations (92%): sixty-nine percent were nonsense mutations, 23% caused aberrant splicing, and 5% were missense mutations. Four mutations have not been previously described. Two of the Polish mutations have been observed previously in Amish and Mennonite A-T patients; this is compatible with historical records. Shared mutations shared the same Single Nucleotide Polymorphism (SNP) and STR haplotypes, indicating common ancestries. The Mennonite mutation, 5932 G>T, is common in Russian A-T families, and the STR haplovariants are the same in both Poland and Russia. Attempts to correlate phenotypes with genotypes were inconclusive due to the limited numbers of patients with identical mutations. PMID:16266405

  5. Prevalence and Clinicopathological Characteristics of HER2 and BRAF Mutation in Chinese Patients with Lung Adenocarcinoma

    PubMed Central

    Shan, Ling; Qiu, Tian; Ling, Yun; Guo, Lei; Zheng, Bo; Wang, Bingning; Li, Wenbin; Li, Lin; Ying, Jianming

    2015-01-01

    Aims To determine the prevalence and clinicopathological characteristics of BRAF V600E mutation and HER2 exon 20 insertions in Chinese lung adenocarcinoma (ADC) patients. Methods Given the fact that the driver mutations are mutually exclusive in lung ADCs, 204 EGFR/KRAS wild-type cases were enrolled in this study. Direct Sanger sequencing was performed to examine BRAF V600E and HER2 exon 20 mutations. The association of BRAF and HER2 mutations with clinicopathological characteristics was statistically analyzed. Results Among the 204 lung ADCs tested, 11 cases (5.4%) carried HER2 exon 20 insertions and 4 cases (2.0%) had BRAF V600E mutation. HER2 mutation status was identified to be associated with a non-smoking history (p<0.05). HER2 mutation occurs in 9.4% of never smokers (10/106), 8.7% of female (8/92) and 2.7% of male (3/112) in this selected cohort. All four BRAF mutated patients were women and three of them were never-smokers. No HER2 mutant patients harbor BRAF mutation. Conclusions HER2 and BRAF mutations identify a distinct subset of lung ADCs. Given the high prevalence of lung cancer and the availability of targeted therapy, Chinese lung ADC patients without EGFR and KRAS mutations are recommended for HER2 and BRAF mutations detection, especially for those never smokers. PMID:26102513

  6. ALS2 mutations

    PubMed Central

    Schneider, Susanne A.; Carr, Lucinda; Deuschl, Guenther; Hopfner, Franziska; Stamelou, Maria; Wood, Nicholas W.; Bhatia, Kailash P.

    2014-01-01

    Objective: To determine the genetic etiology in 2 consanguineous families who presented a novel phenotype of autosomal recessive juvenile amyotrophic lateral sclerosis associated with generalized dystonia. Methods: A combination of homozygosity mapping and whole-exome sequencing in the first family and Sanger sequencing of candidate genes in the second family were used. Results: Both families were found to have homozygous loss-of-function mutations in the amyotrophic lateral sclerosis 2 (juvenile) (ALS2) gene. Conclusions: We report generalized dystonia and cerebellar signs in association with ALS2-related disease. We suggest that the ALS2 gene should be screened for mutations in patients who present with a similar phenotype. PMID:24562058

  7. A novel FBN2 mutation in a Chinese family with congenital contractural arachnodactyly.

    PubMed

    Liu, Wei; Zhao, Ning; Li, Xue-Fu; Wang, Hong; Sui, Yu; Lu, Yong-Ping; Feng, Wen-Hua; Ma, Chao; Han, Wei-Tian; Jiang, Miao

    2015-01-01

    Congenital contractural arachnodactyly (CCA, OMIM: 121050) is an autosomal dominant condition that shares skeletal features with Marfan syndrome (MFS, OMIM: 154700), including contractures, arachnodactyly, dolichostenomelia, scoliosis, crumpled ears and pectus deformities but excluding the ocular and cardiovascular complications that characterize MFS. These two similar syndromes result from mutations in two genes belonging to the fibrillin family, FBN1 and FBN2, respectively. We successfully identified a novel FBN2 mutation (C1406R) in a Chinese family with CCA for over five generations. This mutation was detected in the patients of this family but not in the seven unaffected family members or 100 normal individuals. SIFT and PolyPhen analyses suggested that the mutation was pathogenic. We identified a missense mutation in the calcium binding-epidermal growth factor (cbEGF)-like domain. Our study extends the mutation spectrum of CCA and confirms a relationship between mutations in the FBN2 gene and the clinical findings of CCA. PMID:25834781

  8. Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations

    PubMed Central

    Yang, Fan; Petsalaki, Evangelia; Rolland, Thomas; Hill, David E.; Vidal, Marc; Roth, Frederick P.

    2015-01-01

    Identifying driver mutations and their functional consequences is critical to our understanding of cancer. Towards this goal, and because domains are the functional units of a protein, we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Specifically, we systematically examined tumor genomes from 21 cancer types to identify domains with high mutational density in specific tissues, the positions of mutational hotspots within these domains, and the functional and structural context where possible. While hotspots corresponding to specific gain-of-function mutations are expected for oncoproteins, we found that tumor suppressor proteins also exhibit strong biases toward being mutated in particular domains. Within domains, however, we observed the expected patterns of mutation, with recurrently mutated positions for oncogenes and evenly distributed mutations for tumor suppressors. For example, we identified both known and new endometrial cancer hotspots in the tyrosine kinase domain of the FGFR2 protein, one of which is also a hotspot in breast cancer, and found new two hotspots in the Immunoglobulin I-set domain in colon cancer. Thus, to prioritize cancer mutations for further functional studies aimed at more precise cancer treatments, we have systematically correlated mutations and cancer types at the protein domain level. PMID:25794154

  9. Analysis of Dosage Mutation in PARK2 among Korean Patients with Early-Onset or Familial Parkinson's Disease

    PubMed Central

    Chu, Min Kyung; Kim, Won Chan; Choi, Jung Mi; Hong, Jeong-Hoon; Kang, Suk Yun; Ma, Hyeo-Il

    2014-01-01

    Background and Purpose There is some controversy regarding heterozygous mutations of the gene encoding parkin (PARK2) as risk factors for Parkinson's disease (PD), and all previous studies have been performed in non-Asian populations. Dosage mutation of PARK2, rather than a point mutation or small insertion/deletion mutation, was reported to be a risk factor for familial PD; dosage mutation of PARK2 is common in Asian populations. Methods We performed a gene-dosage analysis of PARK2 using real-time polymerase chain reaction for 189 patients with early-onset PD or familial PD, and 191 control individuals. In the case of PD patients with heterozygous gene-dosage mutation, we performed a sequencing analysis to exclude compound heterozygous mutations. The association between heterozygous mutation of PARK2 and PD was tested. Results We identified 22 PD patients with PARK2 mutations (11.6%). Five patients (2.6%) had compound heterozygous mutations, and 13 patients (6.9%) had a heterozygous mutation. The phase could not be determined in one patient. Three small sequence variations were found in 30 mutated alleles (10.0%). Gene-dosage mutation accounted for 90% of all of the mutations found. The frequency of a heterozygous PARK2 gene-dosage mutation was higher in PD patients than in the controls. Conclusions Heterozygous gene-dosage mutation of PARK2 is a genetic risk factor for patients with early-onset or familial PD in Koreans. PMID:25045378

  10. Instabilotyping: Comprehensive Identification of Frameshift Mutations Caused by Coding Region Microsatellite Instability1

    Microsoft Academic Search

    Yuriko Mori; Jing Yin; Asma Rashid; Barbara A. Leggett; Joanne Young; Lisa Simms; Peter M. Kuehl; Patricia Langenberg; Stephen J. Meltzer; O. Colin Stine

    2001-01-01

    Coding region frameshift mutation caused by microsatellite instability (MSI) is one mechanism contributing to tumorigenesis in cancers with MSI in high frequency. Mutation of TGFBR2 is one example of this process. To identify additional examples, a large-scale genomic screen of coding region microsatellites was conducted. 1115 coding homopolymeric loci with six or more nucleotides were identified in an online genetic

  11. The role of BRCA mutation testing in determining breast cancer therapy

    Microsoft Academic Search

    Craig R. Lewis; Kathy Tucker; Bettina Meiser; Michael Friedlander; Robyn L. Ward; Alison H. Trainer

    2010-01-01

    Landmark discoveries in the field of breast cancer research include the identification of germline BRCA mutations as a cause of hereditary disease, and the use of gene-expression profiling to identify distinct subtypes of breast cancer. These findings, coupled with the availability of rapid germline testing, make it possible to identify a BRCA mutation carrier contemporaneous with a diagnosis of breast

  12. The landscape of cancer genes and mutational processes in breast cancer

    PubMed Central

    Stephens, Philip J.; Tarpey, Patrick S.; Davies, Helen; Loo, Peter Van; Greenman, Chris; Wedge, David C.; Nik-Zainal, Serena; Martin, Sancha; Varela, Ignacio; Bignell, Graham R.; Yates, Lucy R.; Papaemmanuil, Elli; Beare, David; Butler, Adam; Cheverton, Angela; Gamble, John; Hinton, Jonathan; Jia, Mingming; Jayakumar, Alagu; Jones, David; Latimer, Calli; Lau, King Wai; McLaren, Stuart; McBride, David J.; Menzies, Andrew; Mudie, Laura; Raine, Keiran; Rad, Roland; Chapman, Michael Spencer; Teague, Jon; Easton, Douglas; Langerřd, Anita; OSBREAC; Lee, Ming Ta Michael; Shen, Chen-Yang; Tee, Benita Tan Kiat; Huimin, Bernice Wong; Broeks, Annegien; Vargas, Ana Cristina; Turashvili, Gulisa; Martens, John; Fatima, Aquila; Miron, Penelope; Chin, Suet-Feung; Thomas, Gilles; Boyault, Sandrine; Mariani, Odette; Lakhani, Sunil R.; van de Vijver, Marc; van ’t Veer, Laura; Foekens, John; Desmedt, Christine; Sotiriou, Christos; Tutt, Andrew; Caldas, Carlos; Reis-Filho, Jorge S.; Aparicio, Samuel A. J. R.; Salomon, Anne Vincent; Břrresen-Dale, Anne-Lise; Richardson, Andrea L.; Campbell, Peter J.; Futreal, P. Andrew; Stratton, Michael R.

    2012-01-01

    All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis1, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease. PMID:22722201

  13. Clinicopathological Features of Rare BRAF Mutations in Korean Thyroid Cancer Patients

    PubMed Central

    2014-01-01

    The most common BRAF mutation in thyroid cancer is c.1799T>A (p.Val600Glu), and other BRAF mutations are rarely reported. We investigated the clinicopathological features of thyroid cancer with rare BRAF mutations. A total of 2,763 patients with thyroid cancer underwent molecular testing by direct DNA sequencing for mutations in BRAF exon 15. Among them, 2,110 (76.4%) had BRAF mutations. The c.1799T>A mutation was found in 2,093 (76.9%) of 2,722 papillary carcinomas and in one of 7 medullary carcinomas. Sixteen cases (0.76%) harbored rare mutation types. Five cases had single-nucleotide substitutions, 5 cases had small in-frame deletion or insertion, and one harbored a two-nucleotide substitution. Of these mutations, 2 were novel (c.1797_1798insGAGACTACA, c.[1799T>A; 1801_1812del]). The c.1801A>C mutation was identified in 4 follicular variant papillary carcinomas and one follicular carcinoma. None of the patients with the c.1801A>C mutation showed extrathyroidal extension or lymph node metastasis. The prevalence of rare BRAF mutations was 0.76% of all BRAF-positive thyroid cancers, and the rare mutations were associated with less aggressive pathologic features. Although BRAF mutations are detected exclusively in papillary carcinoma, they are also found in medullary carcinoma and follicular carcinoma. Graphical Abstract PMID:25120313

  14. Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12

    PubMed Central

    Siegel, Eli C.

    1973-01-01

    An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage ?. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut+ strains. UV irradiation induced mutations in a mutU4 strain, and phage ? was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4. PMID:4345920

  15. Comprehensive analysis of targetable oncogenic mutations in chinese cervical cancers

    PubMed Central

    Xiang, Libing; Li, Jiajia; Jiang, Wei; Shen, Xuxia; Yang, Wentao; Wu, Xiaohua; Yang, Huijuan

    2015-01-01

    Mutations in 16 targetable oncogenic genes were examined using reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing in 285 Chinese cervical cancers. Their clinicopathological relevance and prognostic significance was assessed. Ninety-two nonsynonymous somatic mutations were identified in 29.8% of the cancers. The mutation rates were as follows: PIK3CA (12.3%), KRAS (5.3%), HER2 (4.2%), FGFR3-TACC3 fusions (3.9%), PTEN (2.8%), FGFR2 (1.8%), FGFR3 (0.7%), NRAS (0.7%), HRAS (0.4%) and EGFR (0.4%). No mutations were detected in AKT1 or BRAF, and the fusions FGFR1-TACC1, EML4-ALK, CCDC6-RET and KIF5B-RET were not found in any of the cancers. RTK and RAS mutations were more common in non-squamous carcinomas than in squamous carcinomas (P=0.043 and P=0.042, respectively). RAS mutations were more common in young patients (<45 years) (13.7% vs. 7.7%, P=0.027). RTK mutations tended to be more common in young patients, whereas PIK3CA/PTEN/AKT mutations tended to be more common in old patients. RAS mutations were significantly associated with disease relapse. To our knowledge, this is the first comprehensive analysis of major targetable oncogenic mutations in a large cohort of cervical cancer cases. Our data reveal that a considerable proportion of patients with cervical cancers harbor known druggable mutations and might benefit from targeted therapy. PMID:25669975

  16. Comprehensive analysis of targetable oncogenic mutations in chinese cervical cancers.

    PubMed

    Xiang, Libing; Li, Jiajia; Jiang, Wei; Shen, Xuxia; Yang, Wentao; Wu, Xiaohua; Yang, Huijuan

    2015-03-10

    Mutations in 16 targetable oncogenic genes were examined using reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing in 285 Chinese cervical cancers. Their clinicopathological relevance and prognostic significance was assessed. Ninety-two nonsynonymous somatic mutations were identified in 29.8% of the cancers. The mutation rates were as follows: PIK3CA (12.3%), KRAS (5.3%), HER2 (4.2%), FGFR3-TACC3 fusions (3.9%), PTEN (2.8%), FGFR2 (1.8%), FGFR3 (0.7%), NRAS (0.7%), HRAS (0.4%) and EGFR (0.4%). No mutations were detected in AKT1 or BRAF, and the fusions FGFR1-TACC1, EML4-ALK, CCDC6-RET and KIF5B-RET were not found in any of the cancers. RTK and RAS mutations were more common in non-squamous carcinomas than in squamous carcinomas (P=0.043 and P=0.042, respectively). RAS mutations were more common in young patients (<45 years) (13.7% vs. 7.7%, P=0.027). RTK mutations tended to be more common in young patients, whereas PIK3CA/PTEN/AKT mutations tended to be more common in old patients. RAS mutations were significantly associated with disease relapse. To our knowledge, this is the first comprehensive analysis of major targetable oncogenic mutations in a large cohort of cervical cancer cases. Our data reveal that a considerable proportion of patients with cervical cancers harbor known druggable mutations and might benefit from targeted therapy. PMID:25669975

  17. Heterozygous Reelin Mutations Cause Autosomal-Dominant Lateral Temporal Epilepsy.

    PubMed

    Dazzo, Emanuela; Fanciulli, Manuela; Serioli, Elena; Minervini, Giovanni; Pulitano, Patrizia; Binelli, Simona; Di Bonaventura, Carlo; Luisi, Concetta; Pasini, Elena; Striano, Salvatore; Striano, Pasquale; Coppola, Giangennaro; Chiavegato, Angela; Radovic, Slobodanka; Spadotto, Alessandro; Uzzau, Sergio; La Neve, Angela; Giallonardo, Anna Teresa; Mecarelli, Oriano; Tosatto, Silvio C E; Ottman, Ruth; Michelucci, Roberto; Nobile, Carlo

    2015-06-01

    Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain. PMID:26046367

  18. Adaptive mutation: implications for evolution

    PubMed Central

    Foster, Patricia L.

    2010-01-01

    Summary Adaptive mutation is defined as a process that, during nonlethal selections, produces mutations that relieve the selective pressure whether or not other, nonselected mutations are also produced. Examples of adaptive mutation or related phenomena have been reported in bacteria and yeast but not yet outside of microorganisms. A decade of research on adaptive mutation has revealed mechanisms that may increase mutation rates under adverse conditions. This article focuses on mechanisms that produce adaptive mutations in one strain of Escherichia coli, FC40. These mechanisms include recombination-induced DNA replication, the placement of genes on a conjugal plasmid, and a transient mutator state. The implications of these various phenomena for adaptive evolution in microorganisms are discussed. PMID:11084622

  19. Recurrent PTPRB and PLCG1 mutations in angiosarcoma

    PubMed Central

    Martincorena, Inigo; Van Loo, Peter; Gundem, Gunes; Wedge, David C; Ramakrishna, Manasa; Cooke, Susanna L; Pillay, Nischalan; Vollan, Hans Kristian M; Papaemmanuil, Elli; Koss, Hans; Bunney, Tom D; Hardy, Claire; Joseph, Olivia R; Martin, Sancha; Mudie, Laura; Butler, Adam; Teague, Jon W; Patil, Meena; Steers, Graham; Cao, Yu; Gumbs, Curtis; Ingram, Davis; Lazar, Alexander J; Little, Latasha; Mahadeshwar, Harshad; Protopopov, Alexei; Al Sannaa, Ghadah A; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Zhang, Jianhua; Ravi, Vinod; Torres, Keila E; Khatri, Bhavisha; Halai, Dina; Roxanis, Ioannis; Baumhoer, Daniel; Tirabosco, Roberto; Amary, M Fernanda; Boshoff, Chris; McDermott, Ultan; Katan, Matilda; Stratton, Michael R; Futreal, P Andrew; Flanagan, Adrienne M; Harris, Adrian; Campbell, Peter J

    2014-01-01

    Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionising radiation or chronic lymphoedema1. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signalling genes, as a key driver of angiosarcoma1. Here, we employed whole genome, exome, and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harboured predominantly truncating mutations in 10/39 (26%) tumours. PLCG1, a signal transducer of tyrosine kinases, presented with a recurrent, likely activating R707Q missense variant in 3/34 cases (9%). Overall, 15/39 (38%) tumours harboured at least one driver mutation in angiogenesis signalling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signalling in angiosarcoma. PMID:24633157

  20. Recurrent PTPRB and PLCG1 mutations in angiosarcoma.

    PubMed

    Behjati, Sam; Tarpey, Patrick S; Sheldon, Helen; Martincorena, Inigo; Van Loo, Peter; Gundem, Gunes; Wedge, David C; Ramakrishna, Manasa; Cooke, Susanna L; Pillay, Nischalan; Vollan, Hans Kristian M; Papaemmanuil, Elli; Koss, Hans; Bunney, Tom D; Hardy, Claire; Joseph, Olivia R; Martin, Sancha; Mudie, Laura; Butler, Adam; Teague, Jon W; Patil, Meena; Steers, Graham; Cao, Yu; Gumbs, Curtis; Ingram, Davis; Lazar, Alexander J; Little, Latasha; Mahadeshwar, Harshad; Protopopov, Alexei; Al Sannaa, Ghadah A; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Zhang, Jianhua; Ravi, Vinod; Torres, Keila E; Khatri, Bhavisha; Halai, Dina; Roxanis, Ioannis; Baumhoer, Daniel; Tirabosco, Roberto; Amary, M Fernanda; Boshoff, Chris; McDermott, Ultan; Katan, Matilda; Stratton, Michael R; Futreal, P Andrew; Flanagan, Adrienne M; Harris, Adrian; Campbell, Peter J

    2014-04-01

    Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma. PMID:24633157

  1. IDH Mutation Analysis in Ewing Sarcoma Family Tumors

    PubMed Central

    Na, Ki Yong; Noh, Byeong-Joo; Sung, Ji-Youn; Kim, Youn Wha; Santini Araujo, Eduardo; Park, Yong-Koo

    2015-01-01

    Background: Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to yield ?-ketoglutarate (?-KG) with production of reduced nicotinamide adenine dinucleotide (NADH). Dysfunctional IDH leads to reduced production of ?-KG and NADH and increased production of 2-hydroxyglutarate, an oncometabolite. This results in increased oxidative damage and stabilization of hypoxia-inducible factor ?, causing cells to be prone to tumorigenesis. Methods: This study investigated IDH mutations in 61 Ewing sarcoma family tumors (ESFTs), using a pentose nucleic acid clamping method and direct sequencing. Results: We identified four cases of ESFTs harboring IDH mutations. The number of IDH1 and IDH2 mutations was equal and the subtype of IDH mutations was variable. Clinicopathologic analysis according to IDH mutation status did not reveal significant results. Conclusions: This study is the first to report IDH mutations in ESFTs. The results indicate that ESFTs can harbor IDH mutations in previously known hot-spot regions, although their incidence is rare. Further validation with a larger case-based study would establish more reliable and significant data on prevalence rate and the biological significance of IDH mutations in ESFTs. PMID:26018518

  2. BRAF mutations in non-small cell lung cancer

    PubMed Central

    Luk, Peter P.; Yu, Bing; Ng, Chiu Chin; Mercorella, Belinda; Selinger, Christina; Lum, Trina; Kao, Steven; O’Toole, Sandra A.

    2015-01-01

    Background BRAF is a proto-oncogene encoding a serine/threonine protein kinase which promotes cell proliferation and survival. BRAF mutations are commonly seen in melanoma and papillary thyroid carcinoma. We aimed to investigate the prevalence and clinicopathological features of BRAF mutations in non-small cell lung cancer (NSCLC) cases submitted for routine mutation testing at our institution. Methods Mutation analysis for BRAF, EGFR and KRAS was performed using Sequenom MassARRAY platform with OncoCarta panel v1.0. Pathological features were reviewed and immunohistochemistry for BRAF V600E was also performed. Results Seven out of 273 cases (2.6%) had BRAF mutations (three males and four females, median age 70 years, all smokers), with six adenocarcinomas and one NSCLC, not otherwise specified (NOS). All had wild-type EGFR and KRAS. The identified BRAF mutations were V600E (4/7, 58%), K601N, L597Q and G469V. BRAF V600E immunohistochemistry was positive in two cases with V600E and negative in one case with K601N (tissue available in three cases only). No significant difference in age or gender was found (BRAF mutant vs. wild-type). Conclusions BRAF mutations occur in a small proportion of NSCLC that lack other driver mutations. The clinicopathological profile differs from that of EGFR mutant tumours. The potential benefits of BRAF-inhibitors should be investigated. PMID:25870796

  3. Mutational hotspots in the mitochondrial genome of lung cancer.

    PubMed

    Choi, So-Jung; Kim, Sung-Hyun; Kang, Ho Y; Lee, Jinseon; Bhak, Jong H; Sohn, Insuk; Jung, Sin-Ho; Choi, Yong Soo; Kim, Hong Kwan; Han, Jungho; Huh, Nam; Lee, Gyusang; Kim, Byung C; Kim, Jhingook

    2011-04-01

    We determined the somatic mutations in the mitochondrial genomes of 70 lung cancer patients by pair-wise comparative analyses of the normal- and tumor-genome sequences acquired using Affymetrix Mitochondrial Resequencing Array 2.0. The overall mutation rates in lung cancers were Approximately 100 fold higher than those in normal cells, with significant statistical correlation with smoking (p=0.00088). Total of 532 somatic mutations were evenly distributed in 499 positions with very low overall frequency (1.07/bp), but the non-synonymous mutations causing amino acid substitution occurred more frequently (1.83/bp), particularly at two positions, 8701 and 10398 (10.5/bp) that code for ATPase6 and NADH dehydrogenase 3, respectively. Despite the randomness or even distribution of the mutations, these two mutations occurred together in 86% of the cases. The linkage between the two most frequent mutations suggests that they were selected together, possibly due to their cooperative role during cancer development. Indeed, the mutation at 10398 was shown by Canter, Pezzotti, and their colleagues in 2009, as a risk factor for breast cancer. In this study, we identified two potential biomarkers that might be functionally linked together during the development of cancer. PMID:21334307

  4. Extended phenotypic spectrum of KIF5A mutations

    PubMed Central

    Liu, Yo-Tsen; Laurá, Matilde; Hersheson, Joshua; Horga, Alejandro; Jaunmuktane, Zane; Brandner, Sebastian; Pittman, Alan; Hughes, Deborah; Polke, James M.; Sweeney, Mary G.; Proukakis, Christos; Janssen, John C.; Auer-Grumbach, Michaela; Zuchner, Stephan; Shields, Kevin G.; Reilly, Mary M.

    2014-01-01

    Objective: To establish the phenotypic spectrum of KIF5A mutations and to investigate whether KIF5A mutations cause axonal neuropathy associated with hereditary spastic paraplegia (HSP) or typical Charcot-Marie-Tooth disease type 2 (CMT2). Methods: KIF5A sequencing of the motor-domain coding exons was performed in 186 patients with the clinical diagnosis of HSP and in 215 patients with typical CMT2. Another 66 patients with HSP or CMT2 with pyramidal signs were sequenced for all exons of KIF5A by targeted resequencing. One additional patient was genetically diagnosed by whole-exome sequencing. Results: Five KIF5A mutations were identified in 6 unrelated patients: R204W and D232N were novel mutations; R204Q, R280C, and R280H have been previously reported. Three patients had CMT2 as the predominant and presenting phenotype; 2 of them also had pyramidal signs. The other 3 patients presented with HSP but also had significant axonal neuropathy or other additional features. Conclusion: This is currently the largest study investigating KIF5A mutations. By combining next-generation sequencing and conventional sequencing, we confirm that KIF5A mutations can cause variable phenotypes ranging from HSP to CMT2. The identification of mutations in CMT2 broadens the phenotypic spectrum and underlines the importance of KIF5A mutations, which involve degeneration of both the central and peripheral nervous systems and should be tested in HSP and CMT2. PMID:25008398

  5. Induced mutations in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Induced mutations have a long history in both applied and basic aspects of rice research. During the past fifty years, over 500 rice varieties have been developed worldwide, either directly from induced mutants or as a result of crossing such mutants with other breeding lines. More recently, the gen...

  6. Localised Sex, Contingency and Mutator Genes

    E-print Network

    Atkinson, Katie

    ;Consequences of Asexual Reproduction Mutation Clonal Population: highly structured with low diversity, bottlenecking, back mutations #12;Mutation and mutator genes · In asexual reproduction, novelty introduced) § Reproduction § Architecture-Alteration (deletion/duplication) #12;Adaptation and Optimization · Natural

  7. Global prevalence of putative haemochromatosis mutations

    Microsoft Academic Search

    A T Merryweather-Clarke; J J Pointon; J D Shearman; K J Robson

    1997-01-01

    Haemochromatosis is a genetic disease associated with progressive iron overload, and is common among populations of northern European origin. HLA-H is a recently reported candidate gene for this condition. Two mutations have been identified, a substitution of cysteine for tyrosine at amino acid 282 (C282Y, nucleotide 845) and of histidine for aspartate at amino acid 63 (H63D, nucleotide 187). Over

  8. Age-related cancer mutations associated with clonal hematopoietic expansion

    PubMed Central

    Xie, Mingchao; Lu, Charles; Wang, Jiayin; McLellan, Michael D.; Johnson, Kimberly J.; Wendl, Michael C.; McMichael, Joshua F.; Schmidt, Heather K.; Yellapantula, Venkata; Miller, Christopher A.; Ozenberger, Bradley A.; Welch, John S.; Link, Daniel C.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Chen, Feng; Wilson, Richard K.; Ley, Timothy J.; Ding, Li

    2015-01-01

    Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. We analyzed blood-derived sequence data from 2,728 individuals within The Cancer Genome Atlas, and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia/lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5–6% of people older than 70 years) contain mutations that may represent premalignant, initiating events that cause clonal hematopoietic expansion. PMID:25326804

  9. Oligodontia and curly hair occur with ectodysplasin-a mutations.

    PubMed

    Lee, K E; Ko, J; Shin, T J; Hyun, H K; Lee, S H; Kim, J W

    2014-04-01

    Oligodontia is the developmental absence of more than 5 permanent teeth except for the third molar. Familial oligodontia can occur as an isolated form or as part of a genetic syndrome. Mutations in the MSX1, PAX9, AXIN2, EDA, and WNT10A genes have been identified in familial non-syndromic oligodontia. Ectodermal dysplasia is a group of syndromes involving abnormalities of the ectodermal structures and is comprised of more than 150 different forms. Mutations in the ectodysplasin-A (EDA) gene have been associated with X-linked hypohidrotic ectodermal dysplasia, and partial disruption of the EDA signaling pathway has been shown to cause an isolated form of oligodontia. We identified 2 X-linked oligodontia families and performed mutational analysis of the EDA gene. The mutational analysis revealed 2 novel EDA mutations: c.866G>T, p.Arg289Leu and c.1135T>G, p.Phe379Val (reference sequence NM_001399.4). These mutations were perfectly segregated with oligodontia and curly hair within each family and were not found in the 150 control X-chromosomes with the same ethnic background and in the exome variant server. This study broadens the mutational spectrum of the EDA gene and the understanding of X-linked oligodontia with curly hair. PMID:24487376

  10. DOK2 Inhibits EGFR-Mutated Lung Adenocarcinoma

    PubMed Central

    Berger, Alice H.; Chen, Ming; Morotti, Alessandro; Janas, Justyna A.; Niki, Masaru; Bronson, Roderick T.; Taylor, Barry S.; Ladanyi, Marc; Van Aelst, Linda; Politi, Katerina; Varmus, Harold E.; Pandolfi, Pier Paolo

    2013-01-01

    Somatic mutations in the EGFR proto-oncogene occur in ~15% of human lung adenocarcinomas and the importance of EGFR mutations for the initiation and maintenance of lung cancer is well established from mouse models and cancer therapy trials in human lung cancer patients. Recently, we identified DOK2 as a lung adenocarcinoma tumor suppressor gene. Here we show that genomic loss of DOK2 is associated with EGFR mutations in human lung adenocarcinoma, and we hypothesized that loss of DOK2 might therefore cooperate with EGFR mutations to promote lung tumorigenesis. We tested this hypothesis using genetically engineered mouse models and find that loss of Dok2 in the mouse accelerates lung tumorigenesis initiated by oncogenic EGFR, but not that initiated by mutated Kras. Moreover, we find that DOK2 participates in a negative feedback loop that opposes mutated EGFR; EGFR mutation leads to recruitment of DOK2 to EGFR and DOK2-mediated inhibition of downstream activation of RAS. These data identify DOK2 as a tumor suppressor in EGFR-mutant lung adenocarcinoma. PMID:24255704

  11. Cantú Syndrome Is Caused by Mutations in ABCC9

    PubMed Central

    van Bon, Bregje W.M.; Gilissen, Christian; Grange, Dorothy K.; Hennekam, Raoul C.M.; Kayserili, Hülya; Engels, Hartmut; Reutter, Heiko; Ostergaard, John R.; Morava, Eva; Tsiakas, Konstantinos; Isidor, Bertrand; Le Merrer, Martine; Eser, Metin; Wieskamp, Nienke; de Vries, Petra; Steehouwer, Marloes; Veltman, Joris A.; Robertson, Stephen P.; Brunner, Han G.; de Vries, Bert B.A.; Hoischen, Alexander

    2012-01-01

    Cantú syndrome is a rare disorder characterized by congenital hypertrichosis, neonatal macrosomia, a distinct osteochondrodysplasia, and cardiomegaly. Using an exome-sequencing approach applied to one proband-parent trio and three unrelated single cases, we identified heterozygous mutations in ABCC9 in all probands. With the inclusion of the remaining cohort of ten individuals with Cantú syndrome, a total of eleven mutations in ABCC9 were found. The de novo occurrence in all six simplex cases in our cohort substantiates the presence of a dominant disease mechanism. All mutations were missense, and several mutations affect Arg1154. This mutation hot spot lies within the second type 1 transmembrane region of this ATP-binding cassette transporter protein, which may suggest an activating mutation. ABCC9 encodes the sulfonylurea receptor (SUR) that forms ATP-sensitive potassium channels (KATP channels) originally shown in cardiac, skeletal, and smooth muscle. Previously, loss-of-function mutations in this gene have been associated with idiopathic dilated cardiomyopathy type 10 (CMD10). These findings identify the genetic basis of Cantú syndrome and suggest that this is a new member of the potassium channelopathies. PMID:22608503

  12. Cantú syndrome is caused by mutations in ABCC9.

    PubMed

    van Bon, Bregje W M; Gilissen, Christian; Grange, Dorothy K; Hennekam, Raoul C M; Kayserili, Hülya; Engels, Hartmut; Reutter, Heiko; Ostergaard, John R; Morava, Eva; Tsiakas, Konstantinos; Isidor, Bertrand; Le Merrer, Martine; Eser, Metin; Wieskamp, Nienke; de Vries, Petra; Steehouwer, Marloes; Veltman, Joris A; Robertson, Stephen P; Brunner, Han G; de Vries, Bert B A; Hoischen, Alexander

    2012-06-01

    Cantú syndrome is a rare disorder characterized by congenital hypertrichosis, neonatal macrosomia, a distinct osteochondrodysplasia, and cardiomegaly. Using an exome-sequencing approach applied to one proband-parent trio and three unrelated single cases, we identified heterozygous mutations in ABCC9 in all probands. With the inclusion of the remaining cohort of ten individuals with Cantú syndrome, a total of eleven mutations in ABCC9 were found. The de novo occurrence in all six simplex cases in our cohort substantiates the presence of a dominant disease mechanism. All mutations were missense, and several mutations affect Arg1154. This mutation hot spot lies within the second type 1 transmembrane region of this ATP-binding cassette transporter protein, which may suggest an activating mutation. ABCC9 encodes the sulfonylurea receptor (SUR) that forms ATP-sensitive potassium channels (K(ATP) channels) originally shown in cardiac, skeletal, and smooth muscle. Previously, loss-of-function mutations in this gene have been associated with idiopathic dilated cardiomyopathy type 10 (CMD10). These findings identify the genetic basis of Cantú syndrome and suggest that this is a new member of the potassium channelopathies. PMID:22608503

  13. Clinical Grade “SNaPshot” Genetic Mutation Profiling in Multiple Myeloma

    PubMed Central

    O'Donnell, Elizabeth; Mahindra, Anuj; Yee, Andrew J.; Nardi, Valentina; Birrer, Nicole; Horick, Nora; Borger, Darrell; Finkelstein, Dianne; Iafrate, John A.; Raje, Noopur

    2014-01-01

    Whole genome sequencing studies have identified several oncogenic mutations in multiple myeloma (MM). As MM progresses, it evolves genetically underscoring the need to have tools for rapid detection of targetable mutations to optimize individualized treatment. Massachusetts General Hospital (MGH) has developed a Clinical Laboratory Improvement Amendments (CLIA)-approved, high-throughput, genotyping platform to determine the mutation status of a panel of known oncogenes. Sequence analysis using SNaPshot on DNA extracted from bone marrow and extramedullary plasmacytomas is feasible and leads to the detection of potentially druggable mutations. Screening MM patients for somatic mutations in oncogenes may provide novel targets leading to additional therapies for this patient population.

  14. DICER1: mutations, microRNAs and mechanisms.

    PubMed

    Foulkes, William D; Priest, John R; Duchaine, Thomas F

    2014-10-01

    Dicer is central to microRNA-mediated silencing and several other RNA interference phenomena that are profoundly embedded in cancer gene networks. Most recently, both germline and somatic mutations in DICER1 have been identified in diverse types of cancer. Although some of the mutations clearly reduce the dosage of this key enzyme, others dictate surprisingly specific changes in select classes of small RNAs. This Review reflects on the molecular properties of the Dicer enzymes in small RNA silencing pathways, and rationalizes the newly discovered mutations on the basis of the activities and functions of its determinants. PMID:25176334

  15. Germline Mutations in SMAD4 Disrupt Bone Morphogenetic Protein Signaling

    PubMed Central

    Carr, Jennifer C.; Dahdaleh, Fadi S.; Wang, Donghong; Howe, James R.

    2011-01-01

    Introduction Juvenile polyposis (JP) is an autosomal dominant disease that predisposes to GI malignancies. Germline mutations in the tumor suppressor gene SMAD4 account for approximately 20% of JP cases. SMAD4 is the common intracellular mediator of the TGF-? and bone morphogenetic protein (BMP) pathways. Since mutations in BMP receptor 1A also cause JP, we hypothesize that altered BMP signaling is the underlying defect in JP. We therefore set out to investigate the effect of SMAD4 mutations on BMP signaling. Methods SMAD4 mutations identified in JP patients were selected for analysis. These were created in SMAD4 pCMV expression vectors (EV) using a PCR-based, site-directed mutagenesis (SDM) approach. SDM clones were confirmed by direct sequencing, then co-transfected with an IdI-BMP Luciferase Responsive Element (BRE-Luc) vector and Renilla control vector into HEK-293T cells. Lysates were then collected after 48 hours, and luciferase activity was quantified using a luminometer. A pCMV empty vector was used as a negative control, and its luciferase activity was considered the baseline for cellular BMP signaling. Results obtained for each SDM clone were compared to those with the wild type (WT) vector. Statistical analysis was performed with the Student’s t-test. Results Eleven distinct mutations from 16 JP patients were analyzed; seven mutations were nonsense, and four were missense. Both type of mutations resulted in reduction of BMP signaling; missense mutations produced an 8–30% reduction in luciferase activity, whereas nonsense mutations led to 30–60% reduction in luciferase activity when compared to the WT clone (Figure 1). All nonsense mutations led to significantly reduced activity relative to WT (P < 0.05), while the reduction in signaling seen in missense mutations was not statistically significant. Conclusion SMAD4 germline mutations as seen in the JP patients appear to negatively impact downstream BMP signaling. Nonsense mutations resulted in significantly reduced luciferase activity when compared to missense mutations. These results support the hypothesis that disruption of the BMP signaling pathway is the likely etiology of JP in patients with SMAD4 mutations. PMID:22316667

  16. Detection of Mitochondrial DNA Mutations in Pancreatic Cancer Offers a \\

    Microsoft Academic Search

    Jessa B. Jones; Jason J. Song; Paula M. Hempen; Giovanni Parmigiani; Ralph H. Hruban; Scott E. Kern

    2001-01-01

    We sequenced the complete 16.5-kb mitochondrial genome (mtDNA) in 15 pancreatic cancer cell lines and xenografts. Homoplasmic mtDNA somatic mutations and novel variants were identified in nearly all samples. Southern blot analysis and direct sequencing of mutation sites showed that the intracellular mass of mtDNA was greatly (6 - 8-fold) increased in pancreatic cancer cells in relation to corresponding normal

  17. Drosophila Ecdysone Receptor Mutations Reveal Functional Differences among Receptor Isoforms

    Microsoft Academic Search

    Michael Bender; Farhad B Imam; William S Talbot; Barry Ganetzky; David S Hogness

    1997-01-01

    The steroid hormone ecdysone directs Drosophila metamorphosis via three heterodimeric receptors that differ according to which of three ecdysone receptor isoforms encoded by the EcR gene (EcR-A, EcR-B1, or EcR-B2) is activated by the orphan nuclear receptor USP. We have identified and molecularly mapped two classes of EcR mutations: those specific to EcR-B1 that uncouple metamorphosis, and embryonic-lethal mutations that

  18. Mutator Phenotype of Caenorhabditis elegans DNA Damage Checkpoint Mutants

    Microsoft Academic Search

    Jasper Harris; Mia Lowden; Iuval Clejan; Monika Tzoneva; James H. Thomas; Jonathan Hodgkin; Shawn Ahmed

    2006-01-01

    DNA damage response proteins identify sites of DNA damage and signal to downstream effectors that orchestrate either apoptosis or arrest of the cell cycle and DNA repair. The C. elegans DNA damage response mutants mrt-2, hus-1 ,a ndclk-2(mn159) displayed 8- to 15-fold increases in the frequency of spontaneous mutation in their germlines. Many of these mutations were small- to medium-sized

  19. Engineered T Cells Targeting Tumor-Specific Mutations

    Cancer.gov

    Scientists at the National Cancer Institute's Surgery Branch have developed a method to identify and generate T-cell receptor (TCR) engineered T- cells for personalized cancer therapy. The TCR is a complex of integral membrane proteins that recognizes antigens and activates T cells. Human cancers contain genetic mutations that are unique in each patient. The researchers found cancer-specific mutations by sequencing tumors and comparing with normal cells.

  20. Normosmic Congenital Hypogonadotropic Hypogonadism Due to TAC3/TACR3 Mutations: Characterization of Neuroendocrine Phenotypes and Novel Mutations

    PubMed Central

    Voican, Adela; Amazit, Larbi; Trabado, Séverine; Fagart, Jérôme; Meduri, Geri; Brailly-Tabard, Sylvie; Chanson, Philippe; Lecomte, Pierre; Guiochon-Mantel, Anne; Young, Jacques

    2011-01-01

    Context TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. Objective To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. Results From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%). We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants) found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn) probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001) higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. Conclusion The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations. PMID:22031817

  1. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    PubMed

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélčne; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. PMID:23064044

  2. Familial Mediterranean fever gene mutations in north-eastern part of Anatolia with special respect to rare mutations.

    PubMed

    Dogan, Hasan; Faruk Bayrak, Omer; Emet, Mucahit; Keles, Mustafa; Gulluoglu, Sukru; Gul, Zeynep; Pirim, Ibrahim

    2015-09-01

    We aimed to determine the frequency of mutations, carrier rates and the association of rare mutations with Familial Mediterranean Fever (FMF) symptoms. There is a need to evaluate as many different populations as possible in order to determine either specific rare mutations or a range of disease-associated mutations. The demographic data and FMF symptoms related to MEFV gene mutations were collected from 731 participants. Exon 2 and exon 10 of the MEFV gene were tested by DNA sequencing. The rare mutations were identified as: M694I (1.1%, n=12), E148V (0.6%, n=6), T267I (0.5%, n=5), L110P (0.2%, n=2), E167D (0.2%, n=2), K695R (0.1%, n=1) and an insertion G (Guanine) mutation (0.4%, n=4) at the 777th codon of exon 10. We used routine comprehensive detection systems such as Sanger sequence that can catch rare mutations, for definite diagnosis and treatment of FMF disease. PMID:26003477

  3. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    PubMed

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. PMID:23262346

  4. Few FH Mutations in Sporadic Counterparts of Tumor Types Observed in Hereditary Leiomyomatosis and Renal Cell Cancer Families1

    Microsoft Academic Search

    Maija Kiuru; Rainer Lehtonen; Johanna Arola; Reijo Salovaara; Heikki Jarvinen; Kristiina Aittomaki; Jari Sjoberg; Tapio Visakorpi; Sakari Knuutila; Jorma Isola; Brett Delahunt; Riitta Herva; Virpi Launonen; Auli Karhu; Lauri A. Aaltonen

    2002-01-01

    Loss of function mutations in the fumarate hydratase (fumarase, FH) gene were recently identified as the cause for dominantly inherited uterine and cutaneous leiomyomas and renal cell cancer. To further evaluate the role of FH in tumorigenesis, we screened FH mutations from tumor types seen in hereditary leiomyomatosis and renal cell cancer mutation carriers— 41 uterine and 10 cutaneous leiomyomas,

  5. Molecular analysis of the APC and MUTYH genes in Galician and Catalonian FAP families: a different spectrum of mutations?

    Microsoft Academic Search

    Nuria Gómez-Fernández; Sergi Castellví-Bel; Ceres Fernández-Rozadilla; Francesc Balaguer; Jenifer Muńoz; Irene Madrigal; Montserrat Milŕ; Begońa Grańa; Ana Vega; Antoni Castells; Ángel Carracedo; Clara Ruiz-Ponte

    2009-01-01

    BACKGROUND: Familial adenomatous polyposis (FAP) is an autosomal dominant-inherited colorectal cancer syndrome, caused by germline mutations in the APC gene. Recently, biallelic mutations in MUTYH have also been identified in patients with multiple colorectal adenomas and in APC-negative patients with FAP. The aim of this work is therefore to determine the frequency of APC and MUTYH mutations among FAP families

  6. Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn)

    Microsoft Academic Search

    J. M. Schröder; H. Durling; N. Laing

    2004-01-01

    Mutations in the skeletal muscle ?-actin gene ( ACTA1) are associated by and large with three muscle diseases (1) congenital actin myopathy, (2) nemaline myopathy, and (3) intranuclear rod myopathy. More than 70 mutations have now been identified. The majority of ACTA1 mutations are dominant, a small number are recessive and most isolated cases with no previous family history have

  7. A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation

    Microsoft Academic Search

    Erich Heidenreich; Herfried Eisler; Theresia Lengheimer; Petra Dorninger; Ferdinand Steinboeck

    2010-01-01

    Growing attention is paid to the concept that mutations arising in stationary, non-proliferating cell populations considerably contribute to evolution, aging, and pathogenesis. If such mutations are beneficial to the affected cell, in the sense of allowing a restart of proliferation, they are called adaptive mutations. In order to identify cellular processes responsible for adaptive mutagenesis in eukaryotes, we study frameshift

  8. Targeted sequencing using a 47 gene multiple myeloma mutation panel (M3P) in -17p high risk disease

    PubMed Central

    Kortüm, Klaus M.; Langer, Christian; Monge, Jorge; Bruins, Laura; Egan, Jan B.; Zhu, Yuan X.; Shi, Chang Xin; Jedlowski, Patrick; Schmidt, Jessica; Ojha, Juhi; Bullinger, Lars; Liebisch, Peter; Kull, Miriam; Champion, Mia D.; Van Wier, Scott; Ahmann, Gregory; Rasche, Leo; Knop, Stefan; Fonseca, Rafael; Einsele, Hermann; Stewart, A Keith; Braggio, Esteban

    2015-01-01

    Summary We constructed a multiple myeloma (MM)-specific gene panel for targeted sequencing and investigated 72 untreated high-risk (del17p) MM patients. Mutations were identified in 78% of the patients. While the majority of studied genes were mutated at similar frequency to published literature, the prevalence of TP53 mutation was increased (28%) and no mutations were found in FAM46C. This study provides a comprehensive insight into the mutational landscape of del17p high-risk MM. Additionally, our work demonstrates the practical use of a customized sequencing panel, as an easy, cheap and fast approach to characterize the mutational profile of MM. PMID:25302557

  9. Targeted sequencing using a 47 gene multiple myeloma mutation panel (M(3) P) in -17p high risk disease.

    PubMed

    Kortüm, Klaus M; Langer, Christian; Monge, Jorge; Bruins, Laura; Egan, Jan B; Zhu, Yuan X; Shi, Chang Xin; Jedlowski, Patrick; Schmidt, Jessica; Ojha, Juhi; Bullinger, Lars; Liebisch, Peter; Kull, Miriam; Champion, Mia D; Van Wier, Scott; Ahmann, Gregory; Rasche, Leo; Knop, Stefan; Fonseca, Rafael; Einsele, Hermann; Stewart, A Keith; Braggio, Esteban

    2015-02-01

    We constructed a multiple myeloma (MM)-specific gene panel for targeted sequencing and investigated 72 untreated high-risk (del17p) MM patients. Mutations were identified in 78% of the patients. While the majority of studied genes were mutated at similar frequency to published literature, the prevalence of TP53 mutation was increased (28%) and no mutations were found in FAM46C. This study provides a comprehensive insight into the mutational landscape of del17p high-risk MM. Additionally, our work demonstrates the practical use of a customized sequencing panel, as an easy, cheap and fast approach to characterize the mutational profile of MM. PMID:25302557

  10. Expanding the clinical and mutational spectrum of Kaufman oculocerebrofacial syndrome with biallelic UBE3B mutations.

    PubMed

    Basel-Vanagaite, Lina; Yilmaz, Rüstem; Tang, Sha; Reuter, Miriam S; Rahner, Nils; Grange, Dorothy K; Mortenson, Megan; Koty, Patrick; Feenstra, Heather; Farwell Gonzalez, Kelly D; Sticht, Heinrich; Boddaert, Nathalie; Désir, Julie; Anyane-Yeboa, Kwame; Zweier, Christiane; Reis, André; Kubisch, Christian; Jewett, Tamison; Zeng, Wenqi; Borck, Guntram

    2014-07-01

    Biallelic mutations of UBE3B have recently been shown to cause Kaufman oculocerebrofacial syndrome (also reported as blepharophimosis-ptosis-intellectual disability syndrome), an autosomal recessive condition characterized by hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels. To date, six patients with either missense mutations affecting the UBE3B HECT domain or truncating mutations have been described. Here, we report on the identification of homozygous or compound heterozygous UBE3B mutations in six additional patients from five unrelated families using either targeted UBE3B sequencing in individuals with suggestive facial dysmorphic features, or exome sequencing. Our results expand the clinical and mutational spectrum of the UBE3B-related disorder in several ways. First, we have identified UBE3B mutations in individuals who previously received distinct clinical diagnoses: two sibs with Toriello-Carey syndrome as well as the patient reported to have a "new" syndrome by Buntinx and Majewski in 1990. Second, we describe the adult phenotype and clinical variability of the syndrome. Third, we report on the first instance of homozygous missense alterations outside the HECT domain of UBE3B, observed in a patient with mildly dysmorphic facial features. We conclude that UBE3B mutations cause a clinically recognizable and possibly underdiagnosed syndrome characterized by distinct craniofacial features, hypotonia, failure to thrive, eye abnormalities, other congenital malformations, low cholesterol levels, and severe intellectual disability. We review the UBE3B-associated phenotypes, including forms that can mimick Toriello-Carey syndrome, and suggest the single designation "Kaufman oculocerebrofacial syndrome". PMID:24615390

  11. Comprehensive Desmosome Mutation Analysis in North Americans with Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

    PubMed Central

    Haan, A. Dénise den; Tan, Boon Yew; Zikusoka, Michelle N.; Lladó, Laura Ibańez; Jain, Rahul; Daly, Amy; Tichnell, Crystal; James, Cynthia; Amat-Alarcon, Nuria; Abraham, Theodore; Russell, Stuart D.; Bluemke, David A.; Calkins, Hugh; Dalal, Darshan; Judge, Daniel P.

    2009-01-01

    Background Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an inherited disorder typically caused by mutations in components of the cardiac desmosome. The prevalence and significance of desmosome mutations among ARVD/C patients in North America has not previously been described. We report comprehensive desmosome genetic analysis for 100 North Americans with clinically confirmed or suspected ARVD/C. Methods and results In 82 individuals with ARVD/C and 18 people with suspected ARVD/C, DNA sequence analysis was performed on PKP2, DSG2, DSP, DSC2, and JUP. In those with ARVD/C, 52% harbored a desmosome mutation. A majority of these mutations occurred in PKP2. Notably, 3 of the individuals studied have a mutation in more than one gene. Patients with a desmosome mutation were more likely to have experienced ventricular tachycardia (73% versus 44%) and they presented at a younger age (33 versus 41 years) compared to those without a desmosome mutation. Males with ARVD/C were more likely to carry a desmosome mutation than females (63% versus 38%). A mutation was identified in 5/18 (28%) patients with suspected ARVD. In this smaller subgroup there were no significant phenotypic differences identified between individuals with a desmosome mutation compared to those without a mutation. Conclusions Our study shows that in 52% of North Americans with ARVD/C a mutation in one of the cardiac desmosome genes can be identified. Compared to those without a desmosome gene mutation, individuals with a desmosome gene mutation had earlier onset ARVD/C and were more likely to have ventricular tachycardia. PMID:20031617

  12. Novel mutations in the RB1 gene from Chinese families with a history of retinoblastoma.

    PubMed

    Zhang, Leilei; Jia, Renbing; Zhao, Junyang; Fan, Jiayan; Zhou, YiXiong; Han, Bing; Song, Xin; Wu, Li; Zhang, He; Song, Huaidong; Ge, Shengfang; Fan, Xianqun

    2015-04-01

    Retinoblastoma is an aggressive eye cancer that develops during infancy and is divided into two clinical types, sporadic and heritable. RB1 has been identified as the only pathological gene responsible for heritable retinoblastoma. Here, we identified 11 RB1 germline mutations in the Han pedigrees of 17 bilateral retinoblastoma patients from China. Four mutations were nonsense mutations, five were splice site mutations, and two resulted in a frame shift due to an insertion or a deletion. Three of the mutations had not been previously reported, and the p.Q344L mutation occurred in two generations of retinoblastoma patients. We investigated phenotypic-genotypic relationships for the novel mutations and showed that these mutations affected the expression, location, and function of the retinoblastoma protein. Abnormal protein localization was observed after transfection of the mutant genes. In addition, changes in the cell cycle distribution and apoptosis rates were observed when the Saos-2 cell line was transfected with plasmids encoding the mutant RB1 genes. Our findings expand the spectrum of known RB1 mutations and will benefit the investigation of RB1 mutation hotspots. Genetic counseling can be offered to families with heritable RB1 mutations. PMID:25424699

  13. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders

    PubMed Central

    Cai, Yan; An, Seong Soo A; Kim, SangYun

    2015-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. Mutations in the genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein have been identified as the main genetic causes of familial AD. To date, more than 200 mutations have been described worldwide in PSEN1, which is highly homologous with PSEN2, while mutations in PSEN2 have been rarely reported. We performed a systematic review of studies describing the mutations identified in PSEN2. Most PSEN2 mutations were detected in European and in African populations. Only two were found in Korean populations. Interestingly, PSEN2 mutations appeared not only in AD patients but also in patients with other disorders, including frontotemporal dementia, dementia with Lewy bodies, breast cancer, dilated cardiomyopathy, and Parkinson’s disease with dementia. Here, we have summarized the PSEN2 mutations and the potential implications of these mutations in dementia-associated disorders.

  14. Activating and Resistance Mutations of the Epidermal Growth Factor Receptor (EGFR) Gene and Non-Small Cell Lung Cancer: A Clinical Reality

    Microsoft Academic Search

    Álvaro Taus; Iván Vollmer; Edurne Arriola

    2011-01-01

    In non-small cell lung cancer, EGFR gene mutations identify a patient sub-population with different clinical characteristics and treatment responses than those who do not present these mutations. There are mutations that lead to increased sensitivity to EGFR-targeted therapy, as well as mutations that result in resistance. The determination of EGFR mutations involves a change in the therapeutic approach to lung

  15. Benign familial neonatal convulsions caused by mutation in KCNQ3, exon 6: a European case.

    PubMed

    Fister, Petja; Soltirovska-Salamon, Aneta; Debeljak, Marusa; Paro-Panjan, Darja

    2013-05-01

    Benign familial neonatal convulsions (BFNC) is a rare, clinically and genetically heterogenous epileptic disorder. Two voltage gated potassium genes, KCNQ2 and KCNQ3, have been identified as genes responsible for BFNC1 and BFNC2 respectively. While as many as 73 mutations of KCNQ2 have been described up to date, only 4 mutations in KCNQ3, 3 of them appearing in exon 5, have been identified. Mutation in exon 6 was found for the first time in a Chinese family, and here we report the same missense mutation of KCNQ3 within exon 6 in a Caucasian family, whose history and clinical picture were in accordance with BFNC. PMID:23146207

  16. A phenotype of atypical apraxia of speech in a family carrying SQSTM1 mutation.

    PubMed

    Boutoleau-Bretonničre, Claire; Camuzat, Agnčs; Le Ber, Isabelle; Bouya-Ahmed, Kawtar; Guerreiro, Rita; Deruet, Anne-Laure; Evrard, Christelle; Bras, José; Lamy, Estelle; Auffray-Calvier, Elisabeth; Pallardy, Amandine; Hardy, John; Brice, Alexis; Derkinderen, Pascal; Vercelletto, Martine

    2015-01-01

    SQSTM1 mutations, coding for the p62 protein, were identified as a monogenic cause of Paget disease of bone and of amyotrophic lateral sclerosis. More recently, SQSTM1 mutations were identified in few families with frontotemporal dementia. We report a new family carrying SQSTM1 mutation and presenting with a clinical phenotype of speech apraxia or atypical behavioral disorders, associated with early visuo-contructional deficits. This study further supports the implication of SQSTM1 in frontotemporal dementia, and enlarges the phenotypic spectrum associated with SQSTM1 mutations. PMID:25114083

  17. Recurrent and novel GLB1 mutations in India.

    PubMed

    Bidchol, Abdul Mueed; Dalal, Ashwin; Trivedi, Rakesh; Shukla, Anju; Nampoothiri, Sheela; Sankar, V H; Danda, Sumita; Gupta, Neerja; Kabra, Madhulika; Hebbar, Shrikiran A; Bhat, Ramesh Y; Matta, Divya; Ekbote, Alka V; Puri, Ratna Dua; Phadke, Shubha R; Gowrishankar, Kalpana; Aggarwal, Shagun; Ranganath, Prajnya; Sharda, Sheetal; Kamate, Mahesh; Datar, Chaitanya A; Bhat, Kamalakshi; Kamath, Nutan; Shah, Hitesh; Krishna, Shuba; Gopinath, Puthiya Mundyat; Verma, Ishwar C; Nagarajaram, H A; Satyamoorthy, Kapaettu; Girisha, Katta Mohan

    2015-08-10

    GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in the GLB1 gene, leading to the deficiency of the enzyme ?-d-galactosidase. In this study, we report molecular findings in 50 Asian Indian families with GM1 gangliosidosis. We sequenced all the exons and flanking intronic sequences of GLB1 gene. We identified 33 different mutations (20 novel and 13 previously reported). The novel mutations include 12 missense (p.M1?, p.E129Q, p.G134R, p.L236P, p.G262E, p.L297F, p.Y331C, p.G414V, p.K493N, p.L514P, p.P597L, p.T600I), four splicing (c.246-2A>G, c.397-2A>G, c.552+1G>T, c.956-2A>G), three indels (p.R22Qfs*8, p.L24Cfs*47, p.I489Qfs*4) and one nonsense mutation (p.Q452*). Most common mutations identified in this study were c.75+2InsT (14%) and p.L337P (10%). Known mutations accounted for 67% of allele frequency in our cohort of patients, suggesting that these mutations in GLB1 are recurrent across different populations. Twenty three mutations were localized in the TIM barrel domain, ?-domain 1 and ?-domain 2. In silico sequence and structure analysis of GLB1 reveal that all the novel mutations affect the function and structure of the protein. We hereby report on the largest series of patients with GM1 gangliosidosis and the first from India. PMID:25936995

  18. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: Family studies indicate a mutation type-dependent sex ratio of mutation frequencies

    SciTech Connect

    Becker, J.; Schmidt, W.; Olek, K. [Univ. of Bonn (Germany)] [and others

    1996-04-01

    The clinical manifestation of hemophilia A is caused by a wide range of different mutations. In this study the factor VIII genes of 147 severe hemophilia A patients-all exclusively from sporadic families-were screened for mutations by use of the complete panel of modern DNA techniques. The pathogenous defect could be characterized in 126 patients (85.7%). Fifty-five patients (37.4%) showed a F8A-gene inversion, 47 (32.0%) a point mutation, 14 (9.5%) a small deletion, 8 (5.4%) a large deletion, and 2 (1.4%) a small insertion. Further, four (2.7%) mutations were localized but could not be sequenced yet. No mutation could be identified in 17 patients (11.6%). Sixteen (10.9%) of the P identified mutations occurred in the B domain. Four of these were located in an adenosine nucleotide stretch at codon 1192, indicating a mutation hotspot. Somatic mosaicisms were detected in 3 (3.9%) of 76 patients` mothers, comprising 3 of 16 de novo mutations in the patients` mothers. Investigation of family relatives allowed detection of a de novo mutation in 16 of 76 two-generation and 28 of 34 three-generation families. On the basis of these data, the male:female ratio of mutation frequencies (k) was estimated as k = 3.6. By use of the quotients of mutation origin in maternal grandfather to patient`s mother or to maternal grandmother, k was directly estimated as k = 15 and k = 7.5, respectively. Considering each mutation type separately, we revealed a mutation type-specific sex ratio of mutation frequencies. Point mutations showed a 5-to-10-fold-higher and inversions a >10-fold- higher mutation rate in male germ cells, whereas deletions showed a >5-fold-higher mutation rate in female germ cells. Consequently, and in accordance with the data of other diseases like Duchenne muscular dystrophy, our results indicate that at least for X-chromosomal disorders the male:female mutation rate of a disease is determined by its proportion of the different mutation types. 68 refs., 1 fig., 5 tabs.

  19. Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.

    PubMed Central

    Wedell, A; Ritzén, E M; Haglund-Stengler, B; Luthman, H

    1992-01-01

    Lesions in the gene encoding steroid 21-hydroxylase [steroid hydrogen-donor: oxygen oxidoreductase (21-hydroxylating), EC 1.14.99.10] result in defective adrenal steroid synthesis; the severe forms are known as congenital adrenal hyperplasia. To facilitate complete characterization of mutations in this region of tandemly repeated genes, we have developed selective PCR amplification and direct sequencing of full-length nonpseudogene steroid 21-hydroxylase genes. This technique identifies known mutations, characterizes or excludes unknown mutations, and determines the gene-copy number. Three additional defective alleles were found. A Gly-292----Ser mutation and a frameshift mutation at Arg-484 (GG----C) were identified in patients with severe steroid 21-hydroxylase deficiency. An allele with three additional sequence variations--C----T at 4 bases upstream of translation initiation, Pro-106----Leu, and Pro-454----Ser--were identified in two siblings with late-onset deficiency. Pro-454 is conserved in four species, indicating its importance for normal enzyme function. Functional consequences of individual alleles have been determined in vivo by studying individuals with only one steroid 21-hydroxylase gene. Detailed analyses of clinical data revealed that genotyping could predict the clinical course of the disease. The locations of disease-causing mutations on different haplotypes of the steroid 21-hydroxylase gene region are described. Images PMID:1496017

  20. ELOVL5 Mutations Cause Spinocerebellar Ataxia 38

    PubMed Central

    Di Gregorio, Eleonora; Borroni, Barbara; Giorgio, Elisa; Lacerenza, Daniela; Ferrero, Marta; Lo Buono, Nicola; Ragusa, Neftj; Mancini, Cecilia; Gaussen, Marion; Calcia, Alessandro; Mitro, Nico; Hoxha, Eriola; Mura, Isabella; Coviello, Domenico A.; Moon, Young-Ah; Tesson, Christelle; Vaula, Giovanna; Couarch, Philippe; Orsi, Laura; Duregon, Eleonora; Papotti, Mauro Giulio; Deleuze, Jean-François; Imbert, Jean; Costanzi, Chiara; Padovani, Alessandro; Giunti, Paola; Maillet-Vioud, Marcel; Durr, Alexandra; Brice, Alexis; Tempia, Filippo; Funaro, Ada; Boccone, Loredana; Caruso, Donatella; Stevanin, Giovanni; Brusco, Alfredo

    2014-01-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ?3 and ?6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases. PMID:25065913

  1. Oncogenic mutations in melanomas and benign melanocytic nevi of the female genital tract

    PubMed Central

    Tseng, Diane; Kim, Julie; Warrick, Andrea; Nelson, Dylan; Pukay, Marina; Beadling, Carol; Heinrich, Michael; Selim, Maria Angelica; Corless, Christopher L.; Nelson, Kelly

    2015-01-01

    Background The genetic heterogeneity of melanomas and melanocytic nevi of the female genital tract is poorly understood. Objective We aim to characterize the frequency of mutations of the following genes: BRAF, NRAS, KIT, GNA11, and GNAQ in female genital tract melanomas. We also characterize the frequency of BRAF mutations in female genital tract melanomas compared with melanocytic nevi. Methods Mutational screening was performed on the following female genital tract melanocytic neoplasms: 25 melanomas, 7 benign melanocytic nevi, and 4 atypical melanocytic nevi. Results Of the 25 female genital tract melanoma specimens queried, KIT mutations were detected in 4 (16.0%), NRAS mutations in 4 (16.0%), and BRAF mutations in 2 (8.0%) samples. Two of the tumors with KIT mutations harbored double mutations in the same exon. No GNAQ or GNA11 mutations were identified among 11 melanomas screened. BRAF V600E mutations were detected in 7 of 7 benign melanocytic genital nevi (100%) and 3 of 4 atypical genital nevi (75%). Limitations Our study is limited by the small sample size of this rare subset of melanomas. Conclusion KIT, NRAS, and BRAF mutations are found in a subset of female genital tract melanomas. Screening for oncogenic mutations is important for developing and applying clinical therapies for melanomas of the female genital tract. PMID:24842760

  2. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate

    Microsoft Academic Search

    E Jabbour; H Kantarjian; D Jones; M Talpaz; N Bekele; S O'Brien; X Zhou; R Luthra; G Garcia-Manero; F Giles; M B Rios; S Verstovsek; J Cortes

    2006-01-01

    Mutations of the BCR-ABL kinase domain are a common mechanism of resistance to imatinib in chronic myeloid leukemia. We screened for mutations 171 patients failing imatinib therapy. Sixty-six mutations in 23 amino acids were identified in 62 (36%) patients not responding to imatinib. Phosphate-binding loop (P-loop) mutations were the most frequent (n=24; 36%). By multivariate analysis, factors associated with development

  3. Molecular Analysis of the CYP1B1 Gene: Identification of Novel Truncating Mutations in Patients with Primary Congenital Glaucoma

    Microsoft Academic Search

    O. M. Messina-Baas; L. M. González-Huerta; C. Chima-Galán; S. H. Kofman-Alfaro; M. R. Rivera-Vega; I. Babayán-Mena; S. A. Cuevas-Covarrubias

    2007-01-01

    Background: Mutations and polymorphisms have been identified in the CYP1B1 gene; while mutations that affect the conserved core structures of cytochrome P4501B1 result in primary congenital glaucoma (PCG), mutations in other regions hold the potential to define differences in estrogen metabolism. In the present study, we analyzed the CYP1B1 gene in Mexican patients with PCG and described four novel mutations.

  4. CLCN1 mutations in Czech patients with myotonia congenita, in silico analysis of novel and known mutations in the human dimeric skeletal muscle chloride channel.

    PubMed

    Skálová, Daniela; Zídková, Jana; Vohá?ka, Stanislav; Mazanec, Radim; Mušová, Zuzana; Vondrá?ek, Petr; Mrázová, Lenka; Kraus, Josef; Réblová, Kamila; Fajkusová, Lenka

    2013-01-01

    Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessive myotonia most likely affect properties of only the mutant monomer in the heterodimer, leaving the wild type monomer unaffected, while mutations causing dominant myotonia affect properties of both subunits in the heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by analysis of the CLCN1 gene and 2) structural analysis of mutations in the homology model of the human dimeric ClC-1 protein. In the first part, 34 different types of CLCN1 mutations were identified in 51 MC probands (14 mutations were new). In the second part, on the basis of the homology model we identified the amino acids which forming the dimer interface and those which form the Cl(-) ion pathway. In the literature, we searched for mutations of these amino acids for which functional analyses were performed to assess the correlation between localisation of a mutation and occurrence of a dominant-negative effect (corresponding to dominant MC). This revealed that both types of mutations, with and without a dominant-negative effect, are localised at the dimer interface while solely mutations without a dominant-negative effect occur inside the chloride channel. This work is complemented by structural analysis of the homology model which provides elucidation of the effects of mutations, including a description of impacts of newly detected missense mutations. PMID:24349310

  5. CLCN1 Mutations in Czech Patients with Myotonia Congenita, In Silico Analysis of Novel and Known Mutations in the Human Dimeric Skeletal Muscle Chloride Channel

    PubMed Central

    Skálová, Daniela; Zídková, Jana; Vohá?ka, Stanislav; Mazanec, Radim; Mušová, Zuzana; Vondrá?ek, Petr; Mrázová, Lenka; Kraus, Josef; Réblová, Kamila; Fajkusová, Lenka

    2013-01-01

    Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessive myotonia most likely affect properties of only the mutant monomer in the heterodimer, leaving the wild type monomer unaffected, while mutations causing dominant myotonia affect properties of both subunits in the heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by analysis of the CLCN1 gene and 2) structural analysis of mutations in the homology model of the human dimeric ClC-1 protein. In the first part, 34 different types of CLCN1 mutations were identified in 51 MC probands (14 mutations were new). In the second part, on the basis of the homology model we identified the amino acids which forming the dimer interface and those which form the Cl- ion pathway. In the literature, we searched for mutations of these amino acids for which functional analyses were performed to assess the correlation between localisation of a mutation and occurrence of a dominant-negative effect (corresponding to dominant MC). This revealed that both types of mutations, with and without a dominant-negative effect, are localised at the dimer interface while solely mutations without a dominant-negative effect occur inside the chloride channel. This work is complemented by structural analysis of the homology model which provides elucidation of the effects of mutations, including a description of impacts of newly detected missense mutations. PMID:24349310

  6. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures

    PubMed Central

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5–13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known.     We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  7. New somatic mutations and WNK1-B4GALNT3 gene fusion in papillary thyroid carcinoma.

    PubMed

    Costa, Valerio; Esposito, Roberta; Ziviello, Carmela; Sepe, Romina; Bim, Larissa Valdemarin; Cacciola, Nunzio Antonio; Decaussin-Petrucci, Myriam; Pallante, Pierlorenzo; Fusco, Alfredo; Ciccodicola, Alfredo

    2015-05-10

    Papillary thyroid carcinoma (PTC) is the most frequent thyroid malignant neoplasia. Oncogene activation occurs in more than 70% of the cases. Indeed, about 40% of PTCs harbor mutations in BRAF gene, whereas RET rearrangements (RET/PTC oncogenes) are present in about 20% of cases. Finally, RAS mutations and TRK rearrangements account for about 5% each of these malignancies. We used RNA-Sequencing to identify fusion transcripts and mutations in cancer driver genes in a cohort of 18 PTC patients. Furthermore, we used targeted DNA sequencing to validate identified mutations. We extended the screening to 50 PTC patients and 30 healthy individuals. Using this approach we identified new missense mutations in CBL, NOTCH1, PIK3R4 and SMARCA4 genes. We found somatic mutations in DICER1, MET and VHL genes, previously found mutated in other tumors, but not described in PTC. We identified a new chimeric transcript generated by the fusion of WNK1 and B4GALNT3 genes, correlated with B4GALNT3 overexpression. Our data confirmed PTC genetic heterogeneity, revealing that gene expression correlates more with the mutation pattern than with tumor staging. Overall, this study provides new data about mutational landscape of this neoplasia, suggesting potential pharmacological adjuvant therapies against Notch signaling and chromatin remodeling enzymes. PMID:25803323

  8. Somatic mutation as a mechanism of Wnt/?-catenin pathway activation in CLL.

    PubMed

    Wang, Lili; Shalek, Alex K; Lawrence, Mike; Ding, Ruihua; Gaublomme, Jellert T; Pochet, Nathalie; Stojanov, Petar; Sougnez, Carrie; Shukla, Sachet A; Stevenson, Kristen E; Zhang, Wandi; Wong, Jessica; Sievers, Quinlan L; MacDonald, Bryan T; Vartanov, Alexander R; Goldstein, Natalie R; Neuberg, Donna; He, Xi; Lander, Eric; Hacohen, Nir; Regev, Aviv; Getz, Gad; Brown, Jennifer R; Park, Hongkun; Wu, Catherine J

    2014-08-14

    One major goal of cancer genome sequencing is to identify key genes and pathways that drive tumor pathogenesis. Although many studies have identified candidate driver genes based on recurrence of mutations in individual genes, subsets of genes with nonrecurrent mutations may also be defined as putative drivers if they affect a single biological pathway. In this fashion, we previously identified Wnt signaling as significantly mutated through large-scale massively parallel DNA sequencing of chronic lymphocytic leukemia (CLL). Here, we use a novel method of biomolecule delivery, vertical silicon nanowires, to efficiently introduce small interfering RNAs into CLL cells, and interrogate the effects of 8 of 15 mutated Wnt pathway members identified across 91 CLLs. In HEK293T cells, mutations in 2 genes did not generate functional changes, 3 led to dysregulated pathway activation, and 3 led to further activation or loss of repression of pathway activation. Silencing 4 of 8 mutated genes in CLL samples harboring the mutated alleles resulted in reduced viability compared with leukemia samples with wild-type alleles. We demonstrate that somatic mutations in CLL can generate dependence on this pathway for survival. These findings support the notion that nonrecurrent mutations at different nodes of the Wnt pathway can contribute to leukemogenesis. PMID:24778153

  9. New somatic mutations and WNK1-B4GALNT3 gene fusion in papillary thyroid carcinoma

    PubMed Central

    Ziviello, Carmela; Sepe, Romina; Bim, Larissa Valdemarin; Cacciola, Nunzio Antonio; Decaussin-Petrucci, Myriam; Pallante, Pierlorenzo; Fusco, Alfredo; Ciccodicola, Alfredo

    2015-01-01

    Papillary thyroid carcinoma (PTC) is the most frequent thyroid malignant neoplasia. Oncogene activation occurs in more than 70% of the cases. Indeed, about 40% of PTCs harbor mutations in BRAF gene, whereas RET rearrangements (RET/PTC oncogenes) are present in about 20% of cases. Finally, RAS mutations and TRK rearrangements account for about 5% each of these malignancies. We used RNA-Sequencing to identify fusion transcripts and mutations in cancer driver genes in a cohort of 18 PTC patients. Furthermore, we used targeted DNA sequencing to validate identified mutations. We extended the screening to 50 PTC patients and 30 healthy individuals. Using this approach we identified new missense mutations in CBL, NOTCH1, PIK3R4 and SMARCA4 genes. We found somatic mutations in DICER1, MET and VHL genes, previously found mutated in other tumors, but not described in PTC. We identified a new chimeric transcript generated by the fusion of WNK1 and B4GALNT3 genes, correlated with B4GALNT3 overexpression. Our data confirmed PTC genetic heterogeneity, revealing that gene expression correlates more with the mutation pattern than with tumor staging. Overall, this study provides new data about mutational landscape of this neoplasia, suggesting potential pharmacological adjuvant therapies against Notch signaling and chromatin remodeling enzymes. PMID:25803323

  10. A report of a national mutation testing service for the MEN1 gene: clinical presentations and implications for mutation testing

    PubMed Central

    Cardinal, J; Bergman, L; Hayward, N; Sweet, A; Warner, J; Marks, L; Learoyd, D; Dwight, T; Robinson, B; Epstein, M; Smith, M; Teh, B; Cameron, D; Prins, J

    2005-01-01

    Introduction: Mutation testing for the MEN1 gene is a useful method to diagnose and predict individuals who either have or will develop multiple endocrine neoplasia type 1 (MEN 1). Clinical selection criteria to identify patients who should be tested are needed, as mutation analysis is costly and time consuming. This study is a report of an Australian national mutation testing service for the MEN1 gene from referred patients with classical MEN 1 and various MEN 1-like conditions. Results: All 55 MEN1 mutation positive patients had a family history of hyperparathyroidism, had hyperparathyroidism with one other MEN1 related tumour, or had hyperparathyroidism with multiglandular hyperplasia at a young age. We found 42 separate mutations and six recurring mutations from unrelated families, and evidence for a founder effect in five families with the same mutation. Discussion: Our results indicate that mutations in genes other than MEN1 may cause familial isolated hyperparathyroidism and familial isolated pituitary tumours. Conclusions: We therefore suggest that routine germline MEN1 mutation testing of all cases of "classical" MEN1, familial hyperparathyroidism, and sporadic hyperparathyroidism with one other MEN1 related condition is justified by national testing services. We do not recommend routine sequencing of the promoter region between nucleotides 1234 and 1758 (Genbank accession no. U93237) as we could not detect any sequence variations within this region in any familial or sporadic cases of MEN1 related conditions lacking a MEN1 mutation. We also suggest that testing be considered for patients <30 years old with sporadic hyperparathyroidism and multigland hyperplasia. PMID:15635078

  11. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases

    PubMed Central

    2013-01-01

    The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations. PMID:23351976

  12. Mutational and functional analysis reveals ADAMTS18 metalloproteinase as a novel driver in melanoma.

    PubMed

    Wei, Xiaomu; Prickett, Todd D; Viloria, Cristina G; Molinolo, Alfredo; Lin, Jimmy C; Cardenas-Navia, Isabel; Cruz, Pedro; Rosenberg, Steven A; Davies, Michael A; Gershenwald, Jeffrey E; López-Otín, Carlos; Samuels, Yardena

    2010-11-01

    The disintegrin-metalloproteinases with thrombospondin domains (ADAMTS) genes have been suggested to function as tumor suppressors as several have been found to be epigenetically silenced in various cancers. We performed a mutational analysis of the ADAMTS gene family in human melanoma and identified a large fraction of melanomas to harbor somatic mutations. To evaluate the functional consequences of the most commonly mutated gene, ADAMTS18, six of its mutations were biologically examined. ADAMTS18 mutations had little effect on melanoma cell growth under standard conditions, but reduced cell dependence on growth factors. ADAMTS18 mutations also reduced adhesion to laminin and increased migration in vitro and metastasis in vivo. Melanoma cells expressing mutant ADAMTS18 had reduced cell migration after short hairpin RNA-mediated knockdown of ADAMTS18, suggesting that ADAMTS18 mutations promote growth, migration, and metastasis in melanoma. PMID:21047771

  13. Mutations of the GREAT gene cause cryptorchidism.

    PubMed

    Gorlov, Ivan P; Kamat, Aparna; Bogatcheva, Natalia V; Jones, Eric; Lamb, Dolores J; Truong, Anne; Bishop, Colin E; McElreavey, Ken; Agoulnik, Alexander I

    2002-09-15

    In humans, failure of testicular descent (cryptorchidism) is one of the most frequent congenital malformations, affecting 1-3% of newborn boys. The clinical consequences of this abnormality are infertility in adulthood and a significantly increased risk of testicular malignancy. Recently, we described a mouse transgene insertional mutation, crsp, causing high intraabdominal cryptorchidism in homozygous males. A candidate gene Great (G-protein-coupled receptor affecting testis descent), was identified within the transgene integration site. Great encodes a seven-transmembrane receptor with a close similarity to the glycoprotein hormone receptors. The Great gene is highly expressed in the gubernaculum, the ligament that controls testicular movement during development, and therefore may be responsible for mediating hormonal signals that affect testicular descent. Here we show that genetic targeting of the Great gene in mice causes infertile bilateral intraabdominal cryptorchidism. The mutant gubernaculae fail to differentiate, indicating that the Great gene controls their development. Mutation screening of the human GREAT gene was performed using DHPLC analysis of the genomic DNA from 60 cryptorchid patients. Nucleotide variations in GREAT cDNA were found in both the patient and the control populations. A unique missense mutation (T222P) in the ectodomain of the GREAT receptor was identified in one of the patients. This mutant receptor fails to respond to ligand stimulation, implicating the GREAT gene in the etiology in some cases of cryptorchidism in humans. PMID:12217959

  14. ?-Globin chain abnormalities with coexisting ?-thalassemia mutations

    PubMed Central

    Canataroglu, Abdullah; Unsal, Cagatay; Yildiz, Sule Menziletoglu; Turhan, Ferda Tekin; Bozdogan, Sevcan Tug; Dincer, Suleyman; Erkman, Hakan

    2012-01-01

    Introduction The frequency of hemoglobinopathies is still high in Adana, the biggest city of the Cukurova Region that is located in the southern part of Turkey. Our aim was to identify the concomitant mutations in ?- and ?-globin genes which lead to complex hemoglobinopathies and to establish an appropriate plan of action for each subject, particularly when prenatal diagnosis is necessary. Material and methods We studied the association between the ?-globin gene and ?-thalassemia genotypes. The reverse hybridization technique was employed to perform molecular analysis, and the results were confirmed by amplification refractory mutation system (ARMS) or restriction fragment length polymorphism (RFLP) technique. Results We evaluated 36 adult subjects (28 female and 8 male; age range: 18-52 years) with concomitant mutations in their ?- and ?-globin genes. The –?3.7/?? deletion was the commonest defect in the ?-chain as expected, followed by ?3.7/–?3.7 deletion. Twenty-five of 36 cases were sickle cell trait with coexisting ?-thalassemia, while seven Hb S/S patients had concurrent mutations in their ?-genes. The coexistence of ?PolyA-2?/?? with Hb A/D and with Hb S/D, which is very uncommon, was also detected. There was a subject with compound heterozygosity for ?-globin chain (–?3.7/?? with IVSI.110/S), and also a case who had –?3.7/?? deletion with IVSI.110/A. Conclusions Although limited, our data suggest that it would be valuable to study coexisting ?-globin mutations in subjects with sickle cell disease or ?-thalassemia trait during the screening programs for premarital couples, especially in populations with a high frequency of hemoglobinopathies. PMID:23056075

  15. Reverse mutation in fragile X syndrome

    SciTech Connect

    Antinolo, G.; Borrego, S.; Cabeza, J.C. [Hospital Universitario, Sevilla (Spain)] [and others

    1996-01-01

    The fragile X syndrome is the most common cause of familial mental retardation, with an incidence of {approximately}1/1,500 in males and 1/2,500 in females. The clinical expression includes moderate to severe mental retardation, macroorchidism, dysmorphic facial features and behavior disturbances. In 1991, the FMR-1 gene was isolated from the region of the fragile X site. The fragile X phenotype has been found, in most cases, to be characterized at the molecular level by expansion of a (CGG){sub n} repeat and hypermethylation of a CpG island identified in the 5{prime}-UTR of the FMR-1 gene. It has been proposed, and some evidence has been shown, that germ cells carry only premutation alleles and that expansion occurs at a postzygotic stage. A few cases of reduction of the (CGG){sub n} repeat in fragile X syndrome have been reported. These reductions were from a larger premutation to a smaller premutation, in female-to-male transmission, from full mutation to a mosaic pattern, reduction from mosaic full-mutation/premutation females or regression from premutation to normal. We present here the novel observation of a phenotypically normal female carrying a nonmosaic full-mutation allele in somatic cells who transmits a premutation allele to her daughter. This daughter has three mosaic offspring with the full mutation and the premutation. Two of them are monozygotic (MZ) twins sharing a concordant mutation pattern. They are monoamniotic monochorionic, which indicates a late form of twinning. 20 refs., 1 fig.

  16. Detecting BRAF Mutations in Formalin-Fixed Melanoma: Experiences with Two State-of-the-Art Techniques

    PubMed Central

    Schoenewolf, Nicola L.; Dummer, Reinhard; Mihic-Probst, Daniela; Moch, Holger; Simcock, Mathew; Ochsenbein, Adrian; Gillessen, Silke; Schraml, Peter; von Moos, Roger

    2012-01-01

    Background Melanoma is characterized by a high frequency of BRAF mutations. It is unknown if the BRAF mutation status has any predictive value for therapeutic approaches such as angiogenesis inhibition. Patients and Methods We used 2 methods to analyze the BRAF mutation status in 52 of 62 melanoma patients. Method 1 (mutation-specific real-time PCR) specifically detects the most frequent BRAF mutations, V600E and V600K. Method 2 (denaturing gel gradient electrophoresis and direct sequencing) identifies any mutations affecting exons 11 and 15. Results Eighteen BRAF mutations and 15 wild-type mutations were identified with both methods. One tumor had a double mutation (GAA) in codon 600. Results of 3 samples were discrepant. Additional mutations (V600M, K601E) were detected using method 2. Sixteen DNA samples were analyzable with either method 1 or method 2. There was a significant association between BRAF V600E mutation and survival. Conclusion Standardized tissue fixation protocols are needed to optimize BRAF mutation analysis in melanoma. For melanoma treatment decisions, the availability of a fast and reliable BRAF V600E screening method may be sufficient. If other BRAF mutations in exons 11 and 15 are found to be of predictive value, a combination of the 2 methods would be useful. PMID:22740817

  17. Novel point mutations in survival motor neuron 1 gene expand the spectrum of phenotypes observed in spinal muscular atrophy patients.

    PubMed

    J?drzejowska, Maria; Gos, Monika; Zimowski, Janusz G; Kostera-Pruszczyk, Anna; Ryniewicz, Barbara; Hausmanowa-Petrusewicz, Irena

    2014-07-01

    The aim of our study was to identify point mutations in a group of 606 patients diagnosed for spinal muscular atrophy with excluded biallelic loss of the SMN1 gene. Point missense mutations or small deletions in the SMN1 gene were ultimately identified in 18 patients. Six patients were found to have small deletions, the c.429_435del mutation in 3 cases, the c.431delC mutation in 2 and c.722delC in one. Those mutations, not described previously, were characteristic of patients presenting a severe phenotype. The most frequent missense mutation - p.Thr274Ile, was identified in 9 patients presenting a rather mild phenotype. Three other missense mutati