Sample records for tactical air navigation system

  1. Advocates and critics for tactical behaviors in UGV navigation

    NASA Astrophysics Data System (ADS)

    Hussain, Talib S.; Vidaver, Gordon; Berliner, Jeffrey

    2005-05-01

    Critical to the development of unmanned ground vehicle platforms is the incorporation of adaptive tactical behaviors for the planning of high-level navigation and tactical actions. BBN Technologies recently completed a simulation-based project for the Army Research Lab (ARL) in which we applied an evolutionary computation approach to navigating through a terrain to capture flag objectives while faced with one or more mobile enemies. Our Advocates and Critics for Tactical Behaviors (ACTB) system evolves plans for the vehicle that control its movement goals (in the form of waypoints), and its future actions (e.g., pointing cameras). We apply domain-specific, state-dependent genetic operators called advocates that promote specific tactical behaviors (e.g., adapt a plan to stay closer to walls). We define the fitness function as a weighted sum of a number of independent, domain-specific, state-dependent evaluation components called critics. Critics reward plans based upon specific tactical criteria, such as minimizing risk of exposure or time to the flags. Additionally, the ACTB system provides the capability for a human commander to specify the "rules of engagement" under which the vehicle will operate. The rules of engagement determine the planning emphasis required under different tactical situations (e.g., discovery of an enemy), and provide a mechanism for automatically adapting the relative selection probabilities of the advocates, the weights of the critics, and the depth of planning in response to tactical events. The ACTB system demonstrated highly effective performance in a head-to-head testing event, held by ARL, against two competing tactical behavior systems.

  2. AirLand Battle and Tactical Command and Control Automation,

    DTIC Science & Technology

    1987-01-07

    Army Tactical Command and Control System (ATCCS) are the primary subjects of the last period. The precepts of AirLand Battle doctrine are examined to...AirLand Battle and the Army Tactical Command and Control System (ATCCS) are thE primary subjects of the last period. The precepts of AirLand Battle...centralized control is identified. AirLand Battle and the Army Tactical Command and Control System (ATCCS) are the primary subjects of the last

  3. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  4. Real-time artificial intelligence issues in the development of the adaptive tactical navigator

    NASA Technical Reports Server (NTRS)

    Green, Peter E.; Glasson, Douglas P.; Pomarede, Jean-Michel L.; Acharya, Narayan A.

    1987-01-01

    Adaptive Tactical Navigation (ATN) is a laboratory prototype of a knowledge based system to provide navigation system management and decision aiding in the next generation of tactical aircraft. ATN's purpose is to manage a set of multimode navigation equipment, dynamically selecting the best equipment to use in accordance with mission goals and phase, threat environment, equipment malfunction status, and battle damage. ATN encompasses functions as diverse as sensor data interpretation, diagnosis, and planning. Real time issues that were identified in ATN and the approaches used to address them are addressed. Functional requirements and a global architecture for the ATN system are described. Decision making with time constraints are discussed. Two subproblems are identified; making decisions with incomplete information and with limited resources. Approaches used in ATN to address real time performance are described and simulation results are discussed.

  5. MEMS and FOG Technologies for Tactical and Navigation Grade Inertial Sensors—Recent Improvements and Comparison

    PubMed Central

    Deppe, Olaf; Dorner, Georg; König, Stefan; Martin, Tim; Voigt, Sven; Zimmermann, Steffen

    2017-01-01

    In the following paper, we present an industry perspective of inertial sensors for navigation purposes driven by applications and customer needs. Microelectromechanical system (MEMS) inertial sensors have revolutionized consumer, automotive, and industrial applications and they have started to fulfill the high end tactical grade performance requirements of hybrid navigation systems on a series production scale. The Fiber Optic Gyroscope (FOG) technology, on the other hand, is further pushed into the near navigation grade performance region and beyond. Each technology has its special pros and cons making it more or less suitable for specific applications. In our overview paper, we present latest improvements at NG LITEF in tactical and navigation grade MEMS accelerometers, MEMS gyroscopes, and Fiber Optic Gyroscopes, based on our long-term experience in the field. We demonstrate how accelerometer performance has improved by switching from wet etching to deep reactive ion etching (DRIE) technology. For MEMS gyroscopes, we show that better than 1°/h series production devices are within reach, and for FOGs we present how limitations in noise performance were overcome by signal processing. The paper also intends a comparison of the different technologies, emphasizing suitability for different navigation applications, thus providing guidance to system engineers. PMID:28287483

  6. Data management of Shuttle radiofrequency navigation aids

    NASA Technical Reports Server (NTRS)

    Stokes, R. E.; Presser, P.

    1982-01-01

    It is noted that the Shuttle navigation system employs redundant tactical air navigation (tacan) and microwave scanning beam landing system (MSBLS) equipment for use in navigation during descent from altitudes of about 150,000 feet through rollout. Attention is given here to the multiple tacan and MSBLS units (three each) that were placed onboard to provide the necessary protection in the event of possible failures. The goals, features, approach, and performance of onboard software required to manage multiple tacan MSBLS units and to provide the corresponding data for navigation processing are described.

  7. Landmark-based robust navigation for tactical UGV control in GPS-denied communication-degraded environments

    NASA Astrophysics Data System (ADS)

    Endo, Yoichiro; Balloch, Jonathan C.; Grushin, Alexander; Lee, Mun Wai; Handelman, David

    2016-05-01

    Control of current tactical unmanned ground vehicles (UGVs) is typically accomplished through two alternative modes of operation, namely, low-level manual control using joysticks and high-level planning-based autonomous control. Each mode has its own merits as well as inherent mission-critical disadvantages. Low-level joystick control is vulnerable to communication delay and degradation, and high-level navigation often depends on uninterrupted GPS signals and/or energy-emissive (non-stealth) range sensors such as LIDAR for localization and mapping. To address these problems, we have developed a mid-level control technique where the operator semi-autonomously drives the robot relative to visible landmarks that are commonly recognizable by both humans and machines such as closed contours and structured lines. Our novel solution relies solely on optical and non-optical passive sensors and can be operated under GPS-denied, communication-degraded environments. To control the robot using these landmarks, we developed an interactive graphical user interface (GUI) that allows the operator to select landmarks in the robot's view and direct the robot relative to one or more of the landmarks. The integrated UGV control system was evaluated based on its ability to robustly navigate through indoor environments. The system was successfully field tested with QinetiQ North America's TALON UGV and Tactical Robot Controller (TRC), a ruggedized operator control unit (OCU). We found that the proposed system is indeed robust against communication delay and degradation, and provides the operator with steady and reliable control of the UGV in realistic tactical scenarios.

  8. Soldier-worn augmented reality system for tactical icon visualization

    NASA Astrophysics Data System (ADS)

    Roberts, David; Menozzi, Alberico; Clipp, Brian; Russler, Patrick; Cook, James; Karl, Robert; Wenger, Eric; Church, William; Mauger, Jennifer; Volpe, Chris; Argenta, Chris; Wille, Mark; Snarski, Stephen; Sherrill, Todd; Lupo, Jasper; Hobson, Ross; Frahm, Jan-Michael; Heinly, Jared

    2012-06-01

    This paper describes the development and demonstration of a soldier-worn augmented reality system testbed that provides intuitive 'heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a robust soldier pose estimation capability with a helmet mounted see-through display to accurately overlay geo-registered iconography (i.e., navigation waypoints, blue forces, aircraft) on the soldier's view of reality. Applied Research Associates (ARA), in partnership with BAE Systems and the University of North Carolina - Chapel Hill (UNC-CH), has developed this testbed system in Phase 2 of the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program. The ULTRA-Vis testbed system functions in unprepared outdoor environments and is robust to numerous magnetic disturbances. We achieve accurate and robust pose estimation through fusion of inertial, magnetic, GPS, and computer vision data acquired from helmet kit sensors. Icons are rendered on a high-brightness, 40°×30° field of view see-through display. The system incorporates an information management engine to convert CoT (Cursor-on-Target) external data feeds into mil-standard icons for visualization. The user interface provides intuitive information display to support soldier navigation and situational awareness of mission-critical tactical information.

  9. Acoustic Sensors for Air and Surface Navigation Applications

    PubMed Central

    Kapoor, Rohan; Ramasamy, Subramanian; Schyndel, Ron Van

    2018-01-01

    This paper presents the state-of-the-art and reviews the state-of-research of acoustic sensors used for a variety of navigation and guidance applications on air and surface vehicles. In particular, this paper focuses on echolocation, which is widely utilized in nature by certain mammals (e.g., cetaceans and bats). Although acoustic sensors have been extensively adopted in various engineering applications, their use in navigation and guidance systems is yet to be fully exploited. This technology has clear potential for applications in air and surface navigation/guidance for intelligent transport systems (ITS), especially considering air and surface operations indoors and in other environments where satellite positioning is not available. Propagation of sound in the atmosphere is discussed in detail, with all potential attenuation sources taken into account. The errors introduced in echolocation measurements due to Doppler, multipath and atmospheric effects are discussed, and an uncertainty analysis method is presented for ranging error budget prediction in acoustic navigation applications. Considering the design challenges associated with monostatic and multi-static sensor implementations and looking at the performance predictions for different possible configurations, acoustic sensors show clear promises in navigation, proximity sensing, as well as obstacle detection and tracking. The integration of acoustic sensors in multi-sensor navigation systems is also considered towards the end of the paper and a low Size, Weight and Power, and Cost (SWaP-C) sensor integration architecture is presented for possible introduction in air and surface navigation systems. PMID:29414894

  10. Autonomous navigation system. [gyroscopic pendulum for air navigation

    NASA Technical Reports Server (NTRS)

    Merhav, S. J. (Inventor)

    1981-01-01

    An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.

  11. Air Traffic Controller Working Memory: Considerations in Air Traffic Control Tactical Operations

    DTIC Science & Technology

    1993-09-01

    INFORMATION PROCESSING SYSTEM 3 2. AIR TRAFFIC CONTROLLER MEMORY 5 2.1 MEMORY CODES 6 21.1 Visual Codes 7 2.1.2 Phonetic Codes 7 2.1.3 Semantic Codes 8...raise an awareness of the memory re- quirements of ATC tactical operations by presenting information on working memory processes that are relevant to...working v memory permeates every aspect of the controller’s ability to process air traffic information and control live traffic. The

  12. Situation assessment in the Paladin tactical decision generation system

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Chappell, Alan R.; Arbuckle, P. Douglas

    1992-01-01

    Paladin is a real-time tactical decision generator for air combat engagements. Paladin uses specialized knowledge-based systems and other Artificial Intelligence (AI) programming techniques to address the modern air combat environment and agile aircraft in a clear and concise manner. Paladin is designed to provide insight into both the tactical benefits and the costs of enhanced agility. The system was developed using the Lisp programming language on a specialized AI workstation. Paladin utilizes a set of air combat rules, an active throttle controller, and a situation assessment module that have been implemented as a set of highly specialized knowledge-based systems. The situation assessment module was developed to determine the tactical mode of operation (aggressive, defensive, neutral, evasive, or disengagement) used by Paladin at each decision point in the air combat engagement. Paladin uses the situation assessment module; the situationally dependent modes of operation to more accurately represent the complex decision-making process of human pilots. This allows Paladin to adapt its tactics to the current situation and improves system performance. Discussed here are the details of Paladin's situation assessment and modes of operation. The results of simulation testing showing the error introduced into the situation assessment module due to estimation errors in positional and geometric data for the opponent aircraft are presented. Implementation issues for real-time performance are discussed and several solutions are presented, including Paladin's use of an inference engine designed for real-time execution.

  13. ATALARS Operational Requirements: Automated Tactical Aircraft Launch and Recovery System

    DOT National Transportation Integrated Search

    1988-04-01

    The Automated Tactical Aircraft Launch and Recovery System (ATALARS) is a fully automated air traffic management system intended for the military service but is also fully compatible with civil air traffic control systems. This report documents a fir...

  14. Air Navigation. Aerospace Education II.

    ERIC Educational Resources Information Center

    Cox, Rodney V., Jr.

    This revised textbook, published for the Air Force ROTC program, contains a discussion of basic and essential understandings about air navigation. The first part of the book describes maps, air navigation charts, flight planning, and pilotage preflight. Basic differences between ground maps and air charts are described and the methods of…

  15. Marine Tactical Command and Control System (MTACCS) Field Development System-1 (FDS-1) assessment: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, L.W.; Hunt, S.T.; Savage, S.F.

    1992-04-01

    The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landingmore » Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.« less

  16. Training and Tactical Operationally Responsive Space Operations

    NASA Astrophysics Data System (ADS)

    Sorensen, B.; Strunce, R., Jr.

    Current space assets managed by traditional space system control resources provide communication, navigation, intelligence, surveillance, and reconnaissance (ISR) capabilities using satellites that are designed for long life and high reliability. The next generation Operationally Responsive Space (ORS) systems are aimed at providing operational space capabilities which will provide flexibility and responsiveness to the tactical battlefield commander. These capabilities do not exist today. The ORS communication, navigation, and ISR satellites are being designed to replace or supplement existing systems in order to enhance the current space force. These systems are expected to rapidly meet near term space needs of the tactical forces. The ORS concept includes new tactical satellites specifically designed to support contingency operations such as increased communication bandwidth and ISR imagery over the theater for a limited period to support air, ground, and naval force mission. The Concept of Operations (CONOPS) that exists today specifies that in addition to operational control of the satellite, the tasking and scheduling of the ORS tactical satellite for mission data collection in support of the tactical warfighter will be accomplished within the Virtual Mission Operations Center (VMOC). This is very similar to what is currently being accomplished in a fixed Mission Operations Center on existing traditional ISR satellites. The VMOC is merely a distributed environment and the CONOPS remain virtually the same. As a result, there is a significant drawback to the current ORS CONOPS that does not account for the full potential of the ORS paradigm for supporting tactical forces. Although the CONOPS approach may be appropriate for experimental Tactical Satellites (TacSat), it ignores the issues associated with the In-Theater Commander's need to own and operate his dedicated TacSat for most effective warfighting as well as the Warfighter specific CONOPS. What is needed

  17. Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.

    2009-05-01

    The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.

  18. Space Shuttle Navigation in the GPS Era

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2001-01-01

    The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.

  19. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other navigation...

  20. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other navigation...

  1. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other navigation...

  2. An on-line monitoring system for navigation equipment

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  3. Trial Maneuver Generation and Selection in the Paladin Tactical Decision Generation System

    NASA Technical Reports Server (NTRS)

    Chappell, Alan R.; McManus, John W.; Goodrich, Kenneth H.

    1992-01-01

    To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the "best" maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.

  4. Trial maneuver generation and selection in the Paladin tactical decision generation system

    NASA Technical Reports Server (NTRS)

    Chappell, Alan R.; Mcmanus, John W.; Goodrich, Kenneth H.

    1993-01-01

    To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real-time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the 'best' maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.

  5. Characterization of Tactical Departure Scheduling in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Capps, Alan; Engelland, Shawn A.

    2011-01-01

    This paper discusses and analyzes current day utilization and performance of the tactical departure scheduling process in the National Airspace System (NAS) to understand the benefits in improving this process. The analysis used operational air traffic data from over 1,082,000 flights during the month of January, 2011. Specific metrics included the frequency of tactical departure scheduling, site specific variances in the technology's utilization, departure time prediction compliance used in the tactical scheduling process and the performance with which the current system can predict the airborne slot that aircraft are being scheduled into from the airport surface. Operational data analysis described in this paper indicates significant room for improvement exists in the current system primarily in the area of reduced departure time prediction uncertainty. Results indicate that a significant number of tactically scheduled aircraft did not meet their scheduled departure slot due to departure time uncertainty. In addition to missed slots, the operational data analysis identified increased controller workload associated with tactical departures which were subject to traffic management manual re-scheduling or controller swaps. An analysis of achievable levels of departure time prediction accuracy as obtained by a new integrated surface and tactical scheduling tool is provided to assess the benefit it may provide as a solution to the identified shortfalls. A list of NAS facilities which are likely to receive the greatest benefit from the integrated surface and tactical scheduling technology are provided.

  6. GPS Auto-Navigation Design for Unmanned Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona

    2003-01-01

    A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.

  7. Measurement of Civil Engineering Customer Satisfaction in Tactical Air Command: A Prototype Evaluation Program.

    DTIC Science & Technology

    1986-09-01

    customers . The article states that in response to a White House Office of Consumer Affairs study and with the wide use of minicomputers: Companies are...D-A174 l16 MEASUREMENT OF CIVIL ENGINEERING CUSTOMER SRTISFACTIbN 1/ IN TACTICAL AIR CO (U) AIR FORCE INST OF TECH ...... RIGHT-PATTERSON AFB ON...BUREAU OF STANDARDS- 1963-A_ . -_- ’II I-F MEASUREMENT OF CIVIL ENGINEERING CUSTOMER SATISFACTION IN TACTICAL AIR COMMAND: A PROTOTYPE EVALUATION PROGRAM

  8. 78 FR 70900 - Proposed Modification of Area Navigation (RNAV) Route Q-20, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... reduced track distances. Q-20 extends between the Corona, NM, VHF Omnidirectional Range/Tactical Air... States Area Navigation Routes. * * * * * Q-20 CNX, NM to JCT, TX [Amended] Corona (CNX), NM VORTAC (Lat...

  9. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  10. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  11. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  12. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  13. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  14. Tactical visualization module

    NASA Astrophysics Data System (ADS)

    Kachejian, Kerry C.; Vujcic, Doug

    1999-07-01

    The Tactical Visualization Module (TVM) research effort will develop and demonstrate a portable, tactical information system to enhance the situational awareness of individual warfighters and small military units by providing real-time access to manned and unmanned aircraft, tactically mobile robots, and unattended sensors. TVM consists of a family of portable and hand-held devices being advanced into a next- generation, embedded capability. It enables warfighters to visualize the tactical situation by providing real-time video, imagery, maps, floor plans, and 'fly-through' video on demand. When combined with unattended ground sensors, such as Combat- Q, TVM permits warfighters to validate and verify tactical targets. The use of TVM results in faster target engagement times, increased survivability, and reduction of the potential for fratricide. TVM technology can support both mounted and dismounted tactical forces involved in land, sea, and air warfighting operations. As a PCMCIA card, TVM can be embedded in portable, hand-held, and wearable PCs. Thus, it leverages emerging tactical displays including flat-panel, head-mounted displays. The end result of the program will be the demonstration of the system with U.S. Army and USMC personnel in an operational environment. Raytheon Systems Company, the U.S. Army Soldier Systems Command -- Natick RDE Center (SSCOM- NRDEC) and the Defense Advanced Research Projects Agency (DARPA) are partners in developing and demonstrating the TVM technology.

  15. A Concurrent Distributed System for Aircraft Tactical Decision Generation

    NASA Technical Reports Server (NTRS)

    McManus, John W.

    1990-01-01

    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of a concurrent version of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS) program, a second generation TDG, is presented. Concurrent computing environments and programming approaches are discussed and the design and performance of a prototype concurrent TDG system are presented.

  16. The AirLand Battle Trojan Horse: The Use of Bypassed Forces to Increase Tactical Depth in the Defense,

    DTIC Science & Technology

    1986-11-19

    ACCESSION NO NT INO.0.1 11 TTL (Infud Seurit Clssifcaton)The AirLand Battle Trojan Horse : The Use of 2 ~RS~4A AUhORS) Bypas-sedForces to Increase Tactical...operations by each of the three types of forces. The AirLand Battle Trojan Horse : The Use of Bypassed Forces to Increase Tactical Depth In The...Russell 1. Goehring Title of Monograph: The AirLand Battle Trojan Horse : The Use ,f Br- -cd Forces to Increase Tactical Depth In The Pe!’en’e

  17. An Expected Value Air Combat Model Simulation Algorithm to Predict Missions Performance in Tactical Air Operations.

    DTIC Science & Technology

    1983-09-01

    Approved by: Me<i W4 1tsZ7 CaifI ,KDpartmento I inistrative Science 3 ( ABSTRACT >This thesis intends to create the basic...a need for a small scale model which allows a student analyst of tactical air operations to create his own battles and to test his own strategies with...iconic model is a large or small-scale repre- sentation of states-objects, or events. For example a scale model airplance resembles the system under the

  18. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  19. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  20. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  1. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  2. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  3. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  4. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  5. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  6. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  7. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...

  8. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...

  9. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...

  10. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...

  11. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...

  12. Small SWAP 3D imaging flash ladar for small tactical unmanned air systems

    NASA Astrophysics Data System (ADS)

    Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.

    2015-05-01

    The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and <10 cm range accuracy through foliage in real-time. The 3D imaging flash ladar is designed for a STUAS with a complete system SWAP estimate of <9 kg, <0.2 m3 and <350 W power. The system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.

  13. A concurrent distributed system for aircraft tactical decision generation

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.

    1990-01-01

    A research program investigating the use of AI techniques to aid in the development of a tactical decision generator (TDG) for within visual range (WVR) air combat engagements is discussed. The application of AI programming and problem-solving methods in the development and implementation of a concurrent version of the computerized logic for air-to-air warfare simulations (CLAWS) program, a second-generation TDG, is presented. Concurrent computing environments and programming approaches are discussed, and the design and performance of prototype concurrent TDG system (Cube CLAWS) are presented. It is concluded that the Cube CLAWS has provided a useful testbed to evaluate the development of a distributed blackboard system. The project has shown that the complexity of developing specialized software on a distributed, message-passing architecture such as the Hypercube is not overwhelming, and that reasonable speedups and processor efficiency can be achieved by a distributed blackboard system. The project has also highlighted some of the costs of using a distributed approach to designing a blackboard system.

  14. Operational Use of GPS Navigation for Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Propst, Carolyn A.

    2008-01-01

    The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.

  15. Area navigation and required navigation performance procedures and depictions

    DOT National Transportation Integrated Search

    2012-09-30

    Area navigation (RNAV) and required navigation performance (RNP) procedures are fundamental to the implementation of a performance based navigation (PBN) system, which is a key enabling technology for the Next Generation Air Transportation System (Ne...

  16. Initiative in Soviet Air Force Tactics and Decision Making.

    DTIC Science & Technology

    1986-06-01

    34 [Ref. 7: p. 1211 [Ref. 8: p.197] The issue is do modern Soviet Air Force command style and tactics allow for the freidom of actions or initiative...Approved for public release; distribution is unlimited. ;:.,,. ,,- .,, ... ., , V SECURITY CLASSIFICATION OF THIS PACE "" ? /"/’ 22 - REPORT DOCUMENTATION...REPORT 2b. DECLASSiFICATIONiDOWNGRAOING SCHEDULE Approved for public release; distribution is unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S

  17. HUMAN ENGINEERING FOR AN EFFECTIVE AIR-NAVIGATION AND TRAFFIC-CONTROL SYSTEM, AND APPENDIXES 1 THRU 3

    DTIC Science & Technology

    1951-03-14

    human "We have been very much occupied In perfect. engineering to the improvement of the air-navigation ing the machines and the tools which the...a man-machine system which will ever, if he were only considered as an instrument, yield optimal results in the way of efficiency and a tool , a motor...operation of machines and equipment and system development, which will permit tools , the emphasis has been upon the adjustment of an orderly and

  18. Enabling information management systems in tactical network environments

    NASA Astrophysics Data System (ADS)

    Carvalho, Marco; Uszok, Andrzej; Suri, Niranjan; Bradshaw, Jeffrey M.; Ceccio, Philip J.; Hanna, James P.; Sinclair, Asher

    2009-05-01

    Net-Centric Information Management (IM) and sharing in tactical environments promises to revolutionize forward command and control capabilities by providing ubiquitous shared situational awareness to the warfighter. This vision can be realized by leveraging the tactical and Mobile Ad hoc Networks (MANET) which provide the underlying communications infrastructure, but, significant technical challenges remain. Enabling information management in these highly dynamic environments will require multiple support services and protocols which are affected by, and highly dependent on, the underlying capabilities and dynamics of the tactical network infrastructure. In this paper we investigate, discuss, and evaluate the effects of realistic tactical and mobile communications network environments on mission-critical information management systems. We motivate our discussion by introducing the Advanced Information Management System (AIMS) which is targeted for deployment in tactical sensor systems. We present some operational requirements for AIMS and highlight how critical IM support services such as discovery, transport, federation, and Quality of Service (QoS) management are necessary to meet these requirements. Our goal is to provide a qualitative analysis of the impact of underlying assumptions of availability and performance of some of the critical services supporting tactical information management. We will also propose and describe a number of technologies and capabilities that have been developed to address these challenges, providing alternative approaches for transport, service discovery, and federation services for tactical networks.

  19. Improved Navigational Technology and Air Traffic Control: A Description of Controller Coordination and Workload

    DOT National Transportation Integrated Search

    1995-04-01

    Improved navigational technology, such as microwave landing systems (MLS) or : global positioning systems (GPS), installed in today's commercial aircraft : enable the air traffic control (ATC) system to better utilize its airspace. : This increased e...

  20. Tactical AI in Real Time Strategy Games

    DTIC Science & Technology

    2015-03-26

    TACTICAL AI IN REAL TIME STRATEGY GAMES THESIS Donald A. Gruber, Capt, USAF AFIT-ENG-MS-15-M-021 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE...protection in the United States. AFIT-ENG-MS-15-M-021 TACTICAL AI IN REAL TIME STRATEGY GAMES THESIS Presented to the Faculty Department of Electrical...DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-021 TACTICAL AI IN REAL TIME STRATEGY GAMES THESIS Donald A

  1. Space System Applications to Tactical Operations.

    DTIC Science & Technology

    1984-10-01

    AD-AI51 884 SPACE SYSTEM APPLICATIONS TO TACTICAL OPERATIONSIU) I, ADVISORY GROU)P FOR AEROSPACE RESEARCH AND DEVELOPMENT NEUILIT-SUR-SEINE (FRANCE...FOR1’ AIIII [ I [IiP[E REEAC [ [llllvd[ N I AGARD CONFERENCE PROCEEDINGS No.344 Space System Applications to Tactical Operations DTIC ELECTE...nota %ii. .tm’ ih1.1i .Il t oning oiii.ian later oil Ili thre centturv are charaeteri/ed. Bloth the ad’.antage’. and limitation%. iii space ’.’.’tem

  2. Methodology for Examining Effects of Arms Control Reduction on Tactical Air Forces. An Example from Conventional Forces in Europe (CFE) Treaty Analysis

    DTIC Science & Technology

    1993-01-01

    H. Wegner for developing the tactical air and ground force databases and producing the campaign results. Thanks are also due to Group Captain Michael ... Jackson , RAF, for developing the evaluation criteria for NATO’s tactical air force reductions during his stay at RAND. -xi. CONTENTS PREFACE

  3. Knowledge-based reasoning in the Paladin tactical decision generation system

    NASA Technical Reports Server (NTRS)

    Chappell, Alan R.

    1993-01-01

    A real-time tactical decision generation system for air combat engagements, Paladin, has been developed. A pilot's job in air combat includes tasks that are largely symbolic. These symbolic tasks are generally performed through the application of experience and training (i.e. knowledge) gathered over years of flying a fighter aircraft. Two such tasks, situation assessment and throttle control, are identified and broken out in Paladin to be handled by specialized knowledge based systems. Knowledge pertaining to these tasks is encoded into rule-bases to provide the foundation for decisions. Paladin uses a custom built inference engine and a partitioned rule-base structure to give these symbolic results in real-time. This paper provides an overview of knowledge-based reasoning systems as a subset of rule-based systems. The knowledge used by Paladin in generating results as well as the system design for real-time execution is discussed.

  4. From ACTS (Air Corps Tactical School) to COBRA: Evolution of Close Air Support Doctrine in World War Two.

    DTIC Science & Technology

    1988-04-01

    cooperated and coordinated their activities in absolute precision cieated by total nental telepathy . Although XIX Tactice.1 Air Coeeand and Third Aray did...capture of the Romanian oil fields and increased production of synthetic oil, Germany produced enough oil to meet her military needs. By 1944, the

  5. Integrated navigation, flight guidance, and synthetic vision system for low-level flight

    NASA Astrophysics Data System (ADS)

    Mehler, Felix E.

    2000-06-01

    Future military transport aircraft will require a new approach with respect to the avionics suite to fulfill an ever-changing variety of missions. The most demanding phases of these mission are typically the low level flight segments, including tactical terrain following/avoidance,payload drop and/or board autonomous landing at forward operating strips without ground-based infrastructure. As a consequence, individual components and systems must become more integrated to offer a higher degree of reliability, integrity, flexibility and autonomy over existing systems while reducing crew workload. The integration of digital terrain data not only introduces synthetic vision into the cockpit, but also enhances navigation and guidance capabilities. At DaimlerChrysler Aerospace AG Military Aircraft Division (Dasa-M), an integrated navigation, flight guidance and synthetic vision system, based on digital terrain data, has been developed to fulfill the requirements of the Future Transport Aircraft (FTA). The fusion of three independent navigation sensors provides a more reliable and precise solution to both the 4D-flight guidance and the display components, which is comprised of a Head-up and a Head-down Display with synthetic vision. This paper will present the system, its integration into the DLR's VFW 614 Advanced Technology Testing Aircraft System (ATTAS) and the results of the flight-test campaign.

  6. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  7. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by

  8. Navigator Command Potential: An Analysis of U.S. Air Force Pilot Attitudes toward the Job Satisfaction Characteristics of U.S. Air Force Navigators

    DTIC Science & Technology

    1990-09-01

    than many of the other officer career fields. In 1986, Marchewka reported that job dissatisfaction among navigators was *probably because their jobs are...Company, Inc., 1935. 30. Marchewka , Maj Peter S. Job Attitudes of USAF Pilots and Navigators. Unpublished report No. 86-1610. Air Command and Staff

  9. 78 FR 78302 - Proposed Modification and Establishment of Air Traffic Service (ATS) Routes in the Vicinity of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... file V-243 are being vectored between the Bowling Green, KY (BWG), VOR Tactical Air Navigation (VORTAC... Administration proposes to amend 14 CFR part 71 as follows: PART 71--DESIGNATION OF CLASS A, B, C, D, AND E...] radials; Choo Choo; to Bowling Green, KY. * * * * * Paragraph 6011 United States Area Navigation Routes...

  10. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...

  11. 132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, BUDOCKS, OCTOBER 14, 1943. QP ACC 9689. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  12. INL Autonomous Navigation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  13. Air Navigation. Flying Training. AFM 51-40. NAVAIR 00-80V-49.

    ERIC Educational Resources Information Center

    Air Training Command, Randolph AFB, TX.

    This manual provides information on all phases of air navigation for navigators and student navigators in training. It develops the art of navigation from the simplest concepts to the most advanced procedures and techniques. The text contains explanations on how to measure, map, and chart the earth; how to use basic instruments to obtain…

  14. Definitions of Tactical and Strategic: An Informal Study

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.

    2004-01-01

    Seventeen subject matter experts defined tactical and strategic within the aviation domain. They provided five verbs and a sentence describing both behaviors. The verbs for strategic behavior were Plan, Think, Arrange, Formulate, Intend, Devise, Anticipate, and Order. The verbs for tactical behavior were Act, Fly, Respond, Do, Avoid, Control, React, and Move. Verbs that were common to both were Get Information, Navigate, Know, Execute, Manage, Perceive, Understand, Direct, Concentrate, and Point. The responses highlight the difference between planning (strategic) and carrying out those plans (tactical). Tactical verbs are more action-oriented that change the state of the world after they have been accomplished. Strategic verbs are more prescriptive in that they do not change the state of the world but offer a procedure or program for changing the world. The pilot is in a tactical mode when actually moving the aircraft and in a strategic mode when thinking about moving it.

  15. Airborne and Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-421 Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) As of FY 2017...Information Program Name Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) DoD Component Army Responsible Office References SAR...UNCLASSIFIED 5 Mission and Description Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) products are software programmable

  16. A Machine Learning System for Analyzing Human Tactics in a Game

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Tanaka, Toshimitsu; Sugie, Noboru

    In order to realize advanced man-machine interfaces, it is desired to develop a system that can infer the mental state of human users and then return appropriate responses. As the first step toward the above goal, we developed a system capable of inferring human tactics in a simple game played between the system and a human. We present a machine learning system that plays a color expectation game. The system infers the tactics of the opponent, and then decides the action based on the result. We employed a modified version of classifier system like XCS in order to design the system. In addition, three methods are proposed in order to accelerate the learning rate. They are a masking method, an iterative method, and tactics templates. The results of computer experiments confirmed that the proposed methods effectively accelerate the machine learning. The masking method and the iterative method are effective to a simple strategy that considers only a part of past information. However, study speed of these methods is not enough for the tactics that refers to a lot of past information. For the case, the tactics template was able to settle the study rapidly when the tactics is identified.

  17. Combat aircraft operations: Training requirements for the German Air Force tactical flying units and the noise problem

    NASA Astrophysics Data System (ADS)

    Jertz, W.

    1992-04-01

    The deterrence potential of an Air Force, and by that the capability to fulfill their mission in times of war, relies on threat oriented training in peacetime. Low level flying is a major tactical means to help aircrews reduce the anticipated threat imposed to them by enemy air defence systems to an acceptable degree. The demand for this capability applies also to air defence tasks against attacking fighter bombers. Military low level flying requires a high degree of proficiency, which can only be reached and maintained by constant training. A high performance level is then the key to air power. The possibilities for this kind of necessary training are restricted by superior demands concerning, amongst others, flying safety and environmental reasons. Too intensive restrictions might reduce the fighting capability of the wings to such an extent, that mission fulfillment could be seriously endangered.

  18. Improved navigation by combining VOR/DME information with air or inertial data

    NASA Technical Reports Server (NTRS)

    Bobick, J. C.; Bryson, A. E., Jr.

    1972-01-01

    The improvement was determined in navigational accuracy obtainable by combining VOR/DME information (from one or two stations) with air data (airspeed and heading) or with data from an inertial navigation system (INS) by means of a maximum-likelihood filter. It was found that the addition of air data to the information from one VOR/DME station reduces the RMS position error by a factor of about 2, whereas the addition of inertial data from a low-quality INS reduces the RMS position error by a factor of about 3. The use of information from two VOR/DME stations with air or inertial data yields large factors of improvement in RMS position accuracy over the use of a single VOR/DME station, roughly 15 to 20 for the air-data case and 25 to 35 for the inertial-data case. As far as position accuracy is concerned, at most one VOR station need be used. When continuously updating an INS with VOR/DME information, the use of a high-quality INS (0.01 deg/hr gyro drift) instead of a low-quality INS (1.0 deg/hr gyro drift) does not substantially improve position accuracy.

  19. Tactical Infrasound

    DTIC Science & Technology

    2005-05-01

    received briefings on a variety of infra - sonic sensor systenis. Materials were also received from the 2001 and 2002 Infrasonic Technology Workshops and...Systems to Tactical Acoustic Sys- tems One issue to be considered in the evaluation of a p)otential tactical infra - sonic system is the ability to...Communication range Fixed Fixed 5 km 7.4 A Design Approach for a Future Tactical Infra - sonic Sensor System This section describes a procedure used to

  20. Trajectory-Based Takeoff Time Predictions Applied to Tactical Departure Scheduling: Concept Description, System Design, and Initial Observations

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn A.; Capps, Alan

    2011-01-01

    Current aircraft departure release times are based on manual estimates of aircraft takeoff times. Uncertainty in takeoff time estimates may result in missed opportunities to merge into constrained en route streams and lead to lost throughput. However, technology exists to improve takeoff time estimates by using the aircraft surface trajectory predictions that enable air traffic control tower (ATCT) decision support tools. NASA s Precision Departure Release Capability (PDRC) is designed to use automated surface trajectory-based takeoff time estimates to improve en route tactical departure scheduling. This is accomplished by integrating an ATCT decision support tool with an en route tactical departure scheduling decision support tool. The PDRC concept and prototype software have been developed, and an initial test was completed at air traffic control facilities in Dallas/Fort Worth. This paper describes the PDRC operational concept, system design, and initial observations.

  1. Adaptation of a Knowledge-Based Decision-Support System in the Tactical Environment.

    DTIC Science & Technology

    1981-12-01

    002-04-6411S1CURITY CL All PICATION OF 1,416 PAGE (00HIR Onto ea0aOW .L10 *GU9WVC 4bGSI.CAYON S. Voss 10466lVka t... OftesoE ’ making decisons . The...noe..aaw Ad tdlalttt’ IV 680011 MMib) Artificial Intelligence; Decision-Support Systems; Tactical Decision- making ; Knowledge-based Decision-support...tactical information to assist tactical commanders in making decisions. The system, TAC*, for "Tactical Adaptable Consultant," incorporates a database

  2. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  3. Project CHECO Southeast Asia Report. Tactical Airlift in SEA

    DTIC Science & Technology

    1972-02-15

    Air Force doctrine regarded the TALO as a member of the Tactical Air Control Party and thus responsible to the Air Liaison Officer ( ALO ) in 3 14 3...UNCLASSIFIED, I UNCLASSIFIED that area. However, the ALO was concerned with tactical air operations Isuch as delivery of ordnance and close air support...staff. Con- sequently, the TALOs and ALOs had little in common and in many instances were not collocated. Thus, the utilization of TALOs in Vietnam was

  4. From the laboratory to the soldier: providing tactical behaviors for Army robots

    NASA Astrophysics Data System (ADS)

    Knichel, David G.; Bruemmer, David J.

    2008-04-01

    The Army Future Combat System (FCS) Operational Requirement Document has identified a number of advanced robot tactical behavior requirements to enable the Future Brigade Combat Team (FBCT). The FBCT advanced tactical behaviors include Sentinel Behavior, Obstacle Avoidance Behavior, and Scaled Levels of Human-Machine control Behavior. The U.S. Army Training and Doctrine Command, (TRADOC) Maneuver Support Center (MANSCEN) has also documented a number of robotic behavior requirements for the Army non FCS forces such as the Infantry Brigade Combat Team (IBCT), Stryker Brigade Combat Team (SBCT), and Heavy Brigade Combat Team (HBCT). The general categories of useful robot tactical behaviors include Ground/Air Mobility behaviors, Tactical Mission behaviors, Manned-Unmanned Teaming behaviors, and Soldier-Robot Interface behaviors. Many DoD research and development centers are achieving the necessary components necessary for artificial tactical behaviors for ground and air robots to include the Army Research Laboratory (ARL), U.S. Army Research, Development and Engineering Command (RDECOM), Space and Naval Warfare (SPAWAR) Systems Center, US Army Tank-Automotive Research, Development and Engineering Center (TARDEC) and non DoD labs such as Department of Energy (DOL). With the support of the Joint Ground Robotics Enterprise (JGRE) through DoD and non DoD labs the Army Maneuver Support Center has recently concluded successful field trails of ground and air robots with specialized tactical behaviors and sensors to enable semi autonomous detection, reporting, and marking of explosive hazards to include Improvised Explosive Devices (IED) and landmines. A specific goal of this effort was to assess how collaborative behaviors for multiple unmanned air and ground vehicles can reduce risks to Soldiers and increase efficiency for on and off route explosive hazard detection, reporting, and marking. This paper discusses experimental results achieved with a robotic countermine system

  5. Artificial immune system approach for air combat maneuvering

    NASA Astrophysics Data System (ADS)

    Kaneshige, John; Krishnakumar, Kalmanje

    2007-04-01

    Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.

  6. Air Ground Integration and the Brigade Combat Team

    DTIC Science & Technology

    2013-06-13

    Theater Air Control System TADIL-J Tactical Digital Information Link-J TAGS Theater Air Ground System TAIS Tactical Air Integration System TBMCS Theater...during planning and execution. This system interacts with the Theater Battle Management Core System ( TBMCS ) used by the JAOC to build and disseminate...control nodes within the AAGS, in conjunction with the interoperability with the TBMCS and Army mission command systems facilitates information flow during

  7. Artificial intelligence (AI) based tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The knowledge-based systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real time in the Langley Differential Maneuvering Simulator, are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs.

  8. A Leapfrog Navigation System

    NASA Astrophysics Data System (ADS)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  9. Artificial Intelligence (AI) Based Tactical Guidance for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    McManus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The Knowledge-Based Systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real-time in the Langley Differential Maneuvering Simulator (DMS), are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs. Alternate computing environments and programming approaches, including the use of parallel algorithms and heterogeneous computer networks are discussed, and the design and performance of a prototype concurrent TDG system are presented.

  10. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  11. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.

    1993-01-01

    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  12. The Aging Navigational System.

    PubMed

    Lester, Adam W; Moffat, Scott D; Wiener, Jan M; Barnes, Carol A; Wolbers, Thomas

    2017-08-30

    The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Human Factors Considerations for Performance-Based Navigation

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    A transition toward a performance-based navigation system is currently underway in both the United States and around the world. Performance-based navigation incorporates Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures that do not rely on the location of ground-based navigation aids. These procedures offer significant benefits to both operators and air traffic managers. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document human factors issues that have emerged during RNAV and RNP operations and propose areas for further consideration. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for human factors-specific instrument procedure design guidelines. Ongoing industry and government activities to address air-ground communication terminology, procedure design improvements, and chart-database commonality are strongly encouraged.

  14. Learning at Air Navigation Services after Initial Training

    ERIC Educational Resources Information Center

    Teperi, Anna-Maria; Leppanen, Anneli

    2010-01-01

    Purpose: This study aims to find out the means used for individual, group and organizational learning at work at one air navigation service provider after the initial training period. The study also aims to find out what practices need to be improved to enhance learning at work. Design/methodology/approach: The data for the study were collected…

  15. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2015-01-01

    This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.

  16. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    NASA Astrophysics Data System (ADS)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  17. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  18. North Atlantic (NAT) aided inertial navigation system simulation volume I. : technical results

    DOT National Transportation Integrated Search

    1973-07-01

    Current air traffic operations over the North ATlantic (NAT) and the application of hybrid navigation systems to obtain more accurate performance on these NAT routes are reviewed. A digital computer simulation program (NATNAV - North ATlantic NAVigat...

  19. 77 FR 19928 - Amendment of Class E Airspace; Hugo, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    .... Decommissioning of the Hugo Tactical Air Navigation System (TACAN) has made this action necessary for the safety... legal description is better clarified at the request of the National Aeronautical Navigation Services... to publication, it was discovered by NANS that the legal description needed editing by removing the...

  20. NFC Internal: An Indoor Navigation System

    PubMed Central

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  1. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    PubMed Central

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  2. The impact of inertial navigation on air safety.

    DOT National Transportation Integrated Search

    1971-05-01

    An analysis of inertial navigation system performance data was carried out to assess the probable impact of inertial navigation on the aircraft collision risk in the North Atlantic region. These data were used to calculate the collision risk between ...

  3. Management Architecture and Solutions for French Tactical Systems

    DTIC Science & Technology

    2006-10-01

    RTO-MP-IST-062 3 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Management Architecture and Solutions for French Tactical Systems Vincent...COTTIGNIES THALES Land & Joint Systems – Battlespace Transformation Center 160 Boulevard de Valmy - BP 82 92704 Colombes Cedex FRANCE ...planning, configuration and monitoring of Systems. Then, given the limitations of existing Management System Architecture, an innovative design based on

  4. Tightly coupled integration of ionosphere-constrained precise point positioning and inertial navigation systems.

    PubMed

    Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald

    2015-03-10

    The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS.

  5. Tightly Coupled Integration of Ionosphere-Constrained Precise Point Positioning and Inertial Navigation Systems

    PubMed Central

    Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald

    2015-01-01

    The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS. PMID:25763647

  6. Placing Tactical Data into the MIST and LC2IEDM Systems

    DTIC Science & Technology

    2003-10-01

    Defence R& D Canada DEFENCE DÉFENSE & Placing Tactical Data into the MIST and LC2IEDM Systems Anthony W. Isenor Technical Memorandum DRDC Atlantic TM...intentionally left blank. Copy No: Placing Tactical Data into the MIST and LC2IEDM Systems Anthony W. Isenor Defence R& D Canada – Atlantic Technical...currently underway at Defence R& D Canada – Atlantic, as well as international efforts with The Technical Cooperation Program (TTCP). Both groups

  7. Compact autonomous navigation system (CANS)

    NASA Astrophysics Data System (ADS)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  8. Modified Navigation Instructions for Spatial Navigation Assistance Systems Lead to Incidental Spatial Learning

    PubMed Central

    Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja

    2017-01-01

    Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219

  9. National environmental observing system to mitigate the effects of nuclear-biological-chemical (NBC) attacks: strategic and tactical

    NASA Astrophysics Data System (ADS)

    Fleming, Rex J.

    2003-09-01

    The challenge of obtaining an adequate environmental support system to help mitigate the effects of various terrorist generated plumes is articulated and a fiscally responsible solution is presented. A substantially improved national system of upper air data observing systems serves as a powerful information source prior to a terrorist event. A mobile tactical observing system for measuring the environment and for measuring the composition and intensity of the plume is implemented immediately following an event. Only proven and tested technologies are used. Program costs, benefits for the fight against terrorism, and multiple benefits to other aspects of the economy are summarized.

  10. A navigation system for the visually impaired using colored navigation lines and RFID tags.

    PubMed

    Seto, First Tatsuya

    2009-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  11. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  12. Remote navigation systems in electrophysiology.

    PubMed

    Schmidt, Boris; Chun, Kyoung Ryul Julian; Tilz, Roland R; Koektuerk, Buelent; Ouyang, Feifan; Kuck, Karl-Heinz

    2008-11-01

    Today, atrial fibrillation (AF) is the dominant indication for catheter ablation in big electrophysiologists (EP) centres. AF ablation strategies are complex and technically challenging. Therefore, it would be desirable that technical innovations pursue the goal to improve catheter stability to increase the procedural success and most importantly to increase safety by helping to avoid serious complications. The most promising technical innovation aiming at the aforementioned goals is remote catheter navigation and ablation. To date, two different systems, the NIOBE magnetic navigation system (MNS, Stereotaxis, USA) and the Sensei robotic navigation system (RNS, Hansen Medical, USA), are commercially available. The following review will introduce the basic principles of the systems, will give an insight into the merits and demerits of remote navigation, and will further focus on the initial clinical experience at our centre with focus on pulmonary vein isolation (PVI) procedures.

  13. Integrated IR sensors

    NASA Astrophysics Data System (ADS)

    Tom, Michael; Trujillo, Edward

    1994-06-01

    Integrated infrared (IR) sensors which exploit modular avionics concepts can provide features such as operational flexibility, enhanced stealthiness, and ease of maintenance to meet the demands of tactical, airborne sensor systems. On-board, tactical airborne sensor systems perform target acquisition, tracking, identification, threat warning, missile launch detection, and ground mapping in support of situation awareness, self-defense, navigation, target attack, weapon support, and reconnaissance activities. The use of sensor suites for future tactical aircraft such as US Air Force's multirole fighter require a blend of sensor inputs and outputs that may vary over time. It is expected that special-role units of these tactical aircraft will be formed to conduct tasks and missions such as anti-shipping, reconnaissance, or suppression of enemy air defenses.

  14. Design of all-weather celestial navigation system

    NASA Astrophysics Data System (ADS)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  15. In-flight angular alignment of inertial navigation systems by means of radio aids

    NASA Technical Reports Server (NTRS)

    Tanner, W.

    1972-01-01

    The principles involved in the angular alignment of the inertial reference by nondirectional data from radio aids are developed and compared with conventional methods of alignment such as gyro-compassing and pendulous vertical determination. The specific problem is considered of the space shuttle reentry and a proposed technique for the alignment of the inertial reference system some time before landing. A description is given of the digital simulation of a transponder interrogation system and of its interaction with the inertial navigation system. Data from reentry simulations are used to demonstrate the effectiveness of in-flight inertial system alignment. Concluding remarks refer to other potential applications such as space shuttle orbit insertion and air navigation of conventional aircraft.

  16. American Carrier Air Power at the Dawn of a New Century

    DTIC Science & Technology

    2005-01-01

    Systems, Office of the Secretary of Defense (Operational Test and Evaluation); then–Commander Calvin Craig, OPNAV N81; Captain Kenneth Neubauer and...TACP Tactical Air Control Party TARPS Tactical Air Reconnaissance Pod System TCS Television Camera System TLAM Tomahawk Land-Attack Missile TST Time...store any video imagery acquired by the aircraft’s systems, including the TARPS pod, the pilot’s head-up display (HUD), the Television Camera System (TCS

  17. Report on the Audit of the Acquisition of the Tactical Air Operations Center/Modular Control Equipment

    DTIC Science & Technology

    1991-06-06

    This is our final report on the Audit of the Acquisition of the Tactical Air Operations Center/Modular Control Equipment (TAOC/MCE) for your...matters of concern that could affect the acquisition of the TAOC/MCE. We performed the audit from March through December 1990. The audit objective was...controls related to the audit objectives. The audit was made in accordance with the Inspector General’s critical program management element approach

  18. Internetting tactical security sensor systems

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.

    1998-08-01

    The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control

  19. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    NASA Technical Reports Server (NTRS)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  20. Investigating User Search Tactic Patterns and System Support in Using Digital Libraries

    ERIC Educational Resources Information Center

    Joo, Soohyung

    2013-01-01

    This study aims to investigate users' search tactic application and system support in using digital libraries. A user study was conducted with sixty digital library users. The study was designed to answer three research questions: 1) How do users engage in a search process by applying different types of search tactics while conducting different…

  1. Homing pigeons only navigate in air with intact environmental odours: a test of the olfactory activation hypothesis with GPS data loggers.

    PubMed

    Gagliardo, Anna; Ioalè, Paolo; Filannino, Caterina; Wikelski, Martin

    2011-01-01

    A large body of evidence has shown that anosmic pigeons are impaired in their navigation. However, the role of odours in navigation is still subject to debate. While according to the olfactory navigation hypothesis homing pigeons possess a navigational map based on the distribution of environmental odours, the olfactory activation hypothesis proposes that odour perception is only needed to activate a navigational mechanism based on cues of another nature. Here we tested experimentally whether the perception of artificial odours is sufficient to allow pigeons to navigate, as expected from the olfactory activation hypothesis. We transported three groups of pigeons in air-tight containers to release sites 53 and 61 km from home in three different olfactory conditions. The Control group received natural environmental air; both the Pure Air and the Artificial Odour groups received pure air filtered through an active charcoal filter. Only the Artificial Odour group received additional puffs of artificial odours until release. We then released pigeons while recording their tracks with 1 Hz GPS data loggers. We also followed non-homing pigeons using an aerial data readout to a Cessna plane, allowing, for the first time, the tracking of non-homing homing pigeons. Within the first hour after release, the pigeons in both the Artificial Odour and the Pure Air group (receiving no environmental odours) showed impaired navigational performances at each release site. Our data provide evidence against an activation role of odours in navigation, and document that pigeons only navigate well when they perceive environmental odours.

  2. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  3. SWAN: An expert system with natural language interface for tactical air capability assessment

    NASA Technical Reports Server (NTRS)

    Simmons, Robert M.

    1987-01-01

    SWAN is an expert system and natural language interface for assessing the war fighting capability of Air Force units in Europe. The expert system is an object oriented knowledge based simulation with an alternate worlds facility for performing what-if excursions. Responses from the system take the form of generated text, tables, or graphs. The natural language interface is an expert system in its own right, with a knowledge base and rules which understand how to access external databases, models, or expert systems. The distinguishing feature of the Air Force expert system is its use of meta-knowledge to generate explanations in the frame and procedure based environment.

  4. Deep space navigation systems and operations

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.

    1981-01-01

    The history of the deep space navigation system developed by NASA is outlined. Its application to Mariner, Viking and Pioneer missions is reviewed. Voyager navigation results for Jupiter and Saturn are commented on and velocity correction in relation to fuel expenditure and computer time are discussed. The navigation requirements of the Gahleo and Venus orbiting imaging radar (VOIR) missions are assessed. The measurement and data processing systems are described.

  5. Wind-Based Navigation of a Hot-air Balloon on Titan: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim

    2008-01-01

    Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semiautonomous exploration of Titan.

  6. Wind-based navigation of a hot-air balloon on Titan: a feasibility study

    NASA Astrophysics Data System (ADS)

    Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim

    2008-04-01

    Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semi-autonomous exploration of Titan.

  7. Global Positioning System: Observations on Quarterly Reports from the Air Force

    DTIC Science & Technology

    2016-10-17

    Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning, navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX) and development of military GPS

  8. Nuclear Weapons Effects on Army Tactical Systems. Volume 1. Overview

    DTIC Science & Technology

    1979-04-01

    UNCLASSI I I E >D ICV.RI , CLAISGFICAIO04 or TRIS v f, I t’,, *I tn, ) REPORT DOCUMENTATION PAGE ..... ro"..,T.UV IOR REP041 UM"ER . oOVI ACCESSION NO...Effects on Archimy. e ~ Tactical System!p- e . -,- o 0. CON . on GRANT NUMBER(., Joseph J. Halpin (also ed.) John P. Swirczynski (also ed.) D 212 112...THIS PAGE(7h"n Va0m Ent..’. E ) FOREWORD This document describes the general insights and the key issues for the nuclear survivability of tactical

  9. Optical surgical navigation system causes pulse oximeter malfunction.

    PubMed

    Satoh, Masaaki; Hara, Tetsuhito; Tamai, Kenji; Shiba, Juntaro; Hotta, Kunihisa; Takeuchi, Mamoru; Watanabe, Eiju

    2015-01-01

    An optical surgical navigation system is used as a navigator to facilitate surgical approaches, and pulse oximeters provide valuable information for anesthetic management. However, saw-tooth waves on the monitor of a pulse oximeter and the inability of the pulse oximeter to accurately record the saturation of a percutaneous artery were observed when a surgeon started an optical navigation system. The current case is thought to be the first report of this navigation system interfering with pulse oximetry. The causes of pulse jamming and how to manage an optical navigation system are discussed.

  10. Maintenance-free lead acid battery for inertial navigation systems aircraft

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Vutetakis, David G.

    1995-05-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

  11. Radio/FADS/IMU integrated navigation for Mars entry

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang; Huang, Xiangyu

    2018-03-01

    Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.

  12. Relative navigation requirements for automatic rendezvous and capture systems

    NASA Technical Reports Server (NTRS)

    Kachmar, Peter M.; Polutchko, Robert J.; Chu, William; Montez, Moises

    1991-01-01

    This paper will discuss in detail the relative navigation system requirements and sensor trade-offs for Automatic Rendezvous and Capture. Rendezvous navigation filter development will be discussed in the context of navigation performance requirements for a 'Phase One' AR&C system capability. Navigation system architectures and the resulting relative navigation performance for both cooperative and uncooperative target vehicles will be assessed. Relative navigation performance using rendezvous radar, star tracker, radiometric, laser and GPS navigation sensors during appropriate phases of the trajectory will be presented. The effect of relative navigation performance on the Integrated AR&C system performance will be addressed. Linear covariance and deterministic simulation results will be used. Evaluation of relative navigation and IGN&C system performance for several representative relative approach profiles will be presented in order to demonstrate the full range of system capabilities. A summary of the sensor requirements and recommendations for AR&C system capabilities for several programs requiring AR&C will be presented.

  13. Organizing Chaos: The Tactical Assault Kit Collaborative Mission Planner

    DTIC Science & Technology

    2018-12-01

    choice. Case studies , such as the 2017 Presidential Inauguration Collective Security Event, Operation Flaming Sword 2017, and the counter-ISIS campaign...rallied around the Tactical Assault Kit (TAK) as their mission command tool of choice. Case studies , such as the 2017 Presidential Inauguration...authorities ADA Air Defense Artillery ADM Army Design Methodology ADAPT Advanced Digital Advisor Partner Technologies ATAK Android Tactical Assault Kit

  14. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 2. System Functional Description and System Specification.

    DOT National Transportation Integrated Search

    1973-02-01

    The volume provides a functional description and specification for the Satellite-Based Advanced Air Traffic Management System. The system description is presented in terms of the surveillance, navigation, and communications functions along with the a...

  15. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  16. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  17. Tactical Conflict Detection in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Tang, Huabin; Robinson, John E.; Denery, Dallas G.

    2010-01-01

    Air traffic systems have long relied on automated short-term conflict prediction algorithms to warn controllers of impending conflicts (losses of separation). The complexity of terminal airspace has proven difficult for such systems as it often leads to excessive false alerts. Thus, the legacy system, called Conflict Alert, which provides short-term alerts in both en-route and terminal airspace currently, is often inhibited or degraded in areas where frequent false alerts occur, even though the alerts are provided only when an aircraft is in dangerous proximity of other aircraft. This research investigates how a minimal level of flight intent information may be used to improve short-term conflict detection in terminal airspace such that it can be used by the controller to maintain legal aircraft separation. The flight intent information includes a site-specific nominal arrival route and inferred altitude clearances in addition to the flight plan that includes the RNAV (Area Navigation) departure route. A new tactical conflict detection algorithm is proposed, which uses a single analytic trajectory, determined by the flight intent and the current state information of the aircraft, and includes a complex set of current, dynamic separation standards for terminal airspace to define losses of separation. The new algorithm is compared with an algorithm that imitates a known en-route algorithm and another that imitates Conflict Alert by analysis of false-alert rate and alert lead time with recent real-world data of arrival and departure operations and a large set of operational error cases from Dallas/Fort Worth TRACON (Terminal Radar Approach Control). The new algorithm yielded a false-alert rate of two per hour and an average alert lead time of 38 seconds.

  18. Evaluation of a technique to simplify area navigation and required navigation performance charts

    DOT National Transportation Integrated Search

    2013-06-30

    Performance based navigation (PBN), an enabler for the Federal Aviation Administration's Next Generation Air Transportation System (NextGEN), supports the design of more precise flight procedures. However, these new procedures can be visually complex...

  19. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  20. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2016-01-01

    This paper describes an algorithm for atmospheric state estimation based on a coupling between inertial navigation and flush air data-sensing pressure measurements. The navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to estimate the atmosphere using a nonlinear weighted least-squares algorithm. The approach uses a high-fidelity model of atmosphere stored in table-lookup form, along with simplified models propagated along the trajectory within the algorithm to aid the solution. Thus, the method is a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content. The algorithm is applied to the design of the pressure measurement system for the Mars 2020 mission. A linear covariance analysis is performed to assess estimator performance. The results indicate that the new estimator produces more precise estimates of atmospheric states than existing algorithms.

  1. Navigation systems. [for interplanetary flight

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.

    1985-01-01

    The elements of the measurement and communications network comprising the global deep space navigation system (DSN) for NASA missions are described. Among the measurement systems discussed are: VLBI, two-way Doppler and range measurements, and optical measurements carried out on board the spacecraft. Processing of navigation measurement is carried out using two modules: an N-body numerical integration of the trajectory (and state transition partial derivatives) based on pre-guessed initial conditions; and partial derivatives of simulated observables corresponding to each actual observation. Calculations of velocity correction parameters is performed by precise modelling of all physical phenomena influencing the observational measurements, including: planetary motions; tracking station locations, gravity field structure, and transmission media effects. Some of the contributions to earth-relative orbit estimate errors for the Doppler/range system on board Voyager are discussed in detail. A line drawing of the DSN navigation system is provided.

  2. Onboard Navigation Systems Characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.

  3. Towards responsible system development in health services: a discourse analysis study of design conflict resolution tactics.

    PubMed

    Irestig, Magnus; Timpka, Toomas

    2010-02-01

    We set out to examine design conflict resolution tactics used in development of large information systems for health services and to outline the design consequences for these tactics. Discourse analysis methods were applied to data collected from meetings conducted during the development of a web-based system in a public health context. We found that low risk tactics were characterized by design issues being managed within the formal mandate and competences of the design group. In comparison, high risk tactics were associated with irresponsible compromises, i.e. decisions being passed on to others or to later phases of the design process. The consequence of this collective disregard of issues such as responsibility and legitimacy is that the system design will be impossible to implement in factual health service contexts. The results imply that downstream responsibility issues have to be continuously dealt with in system development in health services.

  4. Proceedings of the Sixth Integrated Communications, Navigation and Surveillance (ICNS) Conference & Workshop 2006

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise (Compiler)

    2006-01-01

    The Integrated Communications, Navigation and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event s goals are to understand current efforts and recent results in near- and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  5. Proceedings of the Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Compiler)

    2004-01-01

    The Integrated Communications, Navigational and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for Government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event's goals are to understand current efforts and recent results in near-and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  6. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  7. Application of aircraft navigation sensors to enhanced vision systems

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.

    1993-01-01

    In this presentation, the applicability of various aircraft navigation sensors to enhanced vision system design is discussed. First, the accuracy requirements of the FAA for precision landing systems are presented, followed by the current navigation systems and their characteristics. These systems include Instrument Landing System (ILS), Microwave Landing System (MLS), Inertial Navigation, Altimetry, and Global Positioning System (GPS). Finally, the use of navigation system data to improve enhanced vision systems is discussed. These applications include radar image rectification, motion compensation, and image registration.

  8. Comparative advantage between traditional and smart navigation systems

    NASA Astrophysics Data System (ADS)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  9. Navigating oceans and cultures: Polynesian and European navigation systems in the late eighteenth century

    NASA Astrophysics Data System (ADS)

    Walker, M.

    2012-05-01

    Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.

  10. Fusion of navigational data in River Information Services

    NASA Astrophysics Data System (ADS)

    Kazimierski, W.

    2009-04-01

    . Their main advantage over AIS is total independence from tracked target's facilities. For example, wrong indications of ship's GPS would affect AIS accuracy, but wouldn't have any impact on values estimated by radar. In addition to this in many times update rate for AIS data is longer than for radar. Thus, it can be noticed, that efficient tracking system introduced in RIS shall use both AIS receivers (based on satellite derived positions), and independent radar and camera sensors. This will however cause determining at least two different set of information about positions and movement parameters of targets. Doubled or multiplied vectors for single target are unacceptable, due to safety of navigation and traffic management. Hence the need of data fusion in RIS is obvious. The main goal is to develop unambiguous, clear and reliable information about ships' position and movement for all users in the system. Data fusion itself is not a new problem in maritime navigation. There are systems of Integrated Bridge on sea-going ships, which use information coming out from different sources. However the possibilities of integration of navigational information in the aspect of inland navigation, especially in River Information Services, still needs to be thoroughly surveyed. It is quite useful for simplifying the deduction, to introduce two data fusion levels. First of them is being done on board of the vessel. Its aim is to integrate all information coming from different sensors in the so called Integrated Navigational System. The other task of this fusion is to estimate reliable information about other objects based on AIS and radar. The second level is the integration of AIS, radar and closed-circuit television (CCTV) carried out in coastal station in order to determine Tactical and Strategic Traffic Image. The navigational information in RIS itself can be divided into two main groups. The first one is called static data and contains al basic information related to ship itself

  11. Basic Navigator Battery: An Experimental Selection Composite for Undergraduate Navigator Training.

    ERIC Educational Resources Information Center

    Shanahan, Frank M.; Kantor, Jeffrey E.

    High rates of attrition among students in Undergraduate Navigator Training (UNT) is a major concern for Air Training Command. The main objective of this research was to evaluate the Basic Navigator Battery (BNB), a multi-test experimental selection instrument, for its potential to increase the validity of the Air Force Officer Qualifying Test…

  12. An excellent navigation system and experience in craniomaxillofacial navigation surgery: a double-center study

    PubMed Central

    Dai, Jiewen; Wu, Jinyang; Wang, Xudong; Yang, Xudong; Wu, Yunong; Xu, Bing; Shi, Jun; Yu, Hongbo; Cai, Min; Zhang, Wenbin; Zhang, Lei; Sun, Hao; Shen, Guofang; Zhang, Shilei

    2016-01-01

    Numerous problems regarding craniomaxillofacial navigation surgery are not well understood. In this study, we performed a double-center clinical study to quantitatively evaluate the characteristics of our navigation system and experience in craniomaxillofacial navigation surgery. Fifty-six patients with craniomaxillofacial disease were included and randomly divided into experimental (using our AccuNavi-A system) and control (using Strker system) groups to compare the surgical effects. The results revealed that the average pre-operative planning time was 32.32 mins vs 29.74 mins between the experimental and control group, respectively (p > 0.05). The average operative time was 295.61 mins vs 233.56 mins (p > 0.05). The point registration orientation accuracy was 0.83 mm vs 0.92 mm. The maximal average preoperative navigation orientation accuracy was 1.03 mm vs 1.17 mm. The maximal average persistent navigation orientation accuracy was 1.15 mm vs 0.09 mm. The maximal average navigation orientation accuracy after registration recovery was 1.15 mm vs 1.39 mm between the experimental and control group. All patients healed, and their function and profile improved. These findings demonstrate that although surgeons should consider the patients’ time and monetary costs, our qualified navigation surgery system and experience could offer an accurate guide during a variety of craniomaxillofacial surgeries. PMID:27305855

  13. Certification of tactics and strategies in aviation

    NASA Technical Reports Server (NTRS)

    Koelman, Hartmut

    1994-01-01

    The paper suggests that the 'tactics and strategies' notion is a highly suitable paradigm to describe the cognitive involvement of human operators in advanced aviation systems (far more suitable than classical functional analysis), and that the workload and situational awareness of operators are intimately associated with the planning and execution of their tactics and strategies. If system designers have muddled views about the collective tactics and strategies to be used during operation, they will produce sub-optimum designs. If operators use unproven and/or inappropriate tactics and strategies, the system may fail. The author wants to make a point that, beyond certification of people or system designs, there may be a need to go into more detail and examine (certify?) the set of tactics and strategies (i.e., the Operational Concept) which makes the people and systems perform as expected. The collective tactics and strategies determine the information flows and situational awareness which exists in organizations and composite human-machine systems. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally

  14. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  15. Space Launch Systems Block 1B Preliminary Navigation System Design

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean

    2018-01-01

    NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.

  16. Analysis of navigation performance for the Earth Observing System (EOS) using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Elrod, B.; Kapoor, A.; Folta, David C.; Liu, K.

    1991-01-01

    Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) was proposed as an alternative to the Global Positioning System (GPS) for supporting the Earth Observing System (EOS) mission. The results are presented of EOS navigation performance evaluation with respect to TONS based orbit, time, and frequency determination (OD/TD/FD). Two TONS modes are considered: one uses scheduled TDRSS forward link service to derive one way Doppler tracking data for OD/FD support (TONS-I); the other uses an unscheduled navigation beacon service (proposed for Advanced TDRSS) to obtain pseudorange and Doppler data for OD/TD/FD support (TONS-II). Key objectives of the analysis were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance predictions are presented based on covariance and simulation analyses. EOS navigation scenarios and the contributions of principal error sources impacting performance are also described. The results indicate that a TONS mode can be configured to meet current and proposed EOS position accuracy requirements of 100 and 50 m, respectively.

  17. An Examination of the Conceptual Basis of a Tactical, Logistical, and Air Simulation (ATLAS).

    DTIC Science & Technology

    1980-03-01

    guides the simulation from the start. From this scenario and the de - veloping tactical situation comes information which triggers the tactical-decision...effect of tactical aircraft in a combat situation together with the effect of weapons to destroy the aircraft. The presence of transport aircraft is...sector, the ability of that sector to resupply existing combat units, to transport replacement items and supplies, and to move the new unit through

  18. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  19. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    NASA Astrophysics Data System (ADS)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  20. 76 FR 79563 - Proposed Amendment of Class E Airspace; Sheridan, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Sheridan County Airport, Sheridan, WY. Decommissioning of the Sheridan Tactical Air Navigation System (TACAN) has made this action necessary for the safety and...

  1. 77 FR 55688 - Amendment of Class E Airspace; Boise, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... needed as a reference. The Donnelly Tactical Air Navigation System (TACAN) has been decommissioned and controlled airspace reconfigured. This action also makes a minor change to the legal description in reference.... No comments were received. The FAA's Aeronautical Products Office requested the legal description for...

  2. Medium Altitude Endurance Unmanned Air Vehicle

    NASA Astrophysics Data System (ADS)

    Ernst, Larry L.

    1994-10-01

    The medium altitude endurance unmanned air vehicle (MAE UAV) program (formerly the tactical endurance TE UAV) is a new effort initiated by the Department of Defense to develop a ground launched UAV that can fly out 500 miles, remain on station for 24 hours, and return. It will transmit high resolution optical, infrared, and synthetic aperture radar (SAR) images of well-defended target areas through satellite links. It will provide near-real-time, releasable, low cost/low risk surveillance, targeting and damage assessment complementary to that of satellites and manned aircraft. The paper describes specific objectives of the MAE UAV program (deliverables and schedule) and the program's unique position as one of several programs to streamline the acquisition process under the cognizance of the newly established Airborne Reconnaissance Office. I discuss the system requirements and operational concept and describe the technical capabilities and characteristics of the major subsystems (airframe, propulsion, navigation, sensors, communication links, ground station, etc.) in some detail.

  3. Tactics: A Soviet View

    DTIC Science & Technology

    1984-01-01

    the greatest revolutionizing influence on the nature of combined arms combat and the methods for conducting it, and on the development of tactics as...their combat employment. Meanwhile, the penetrating radiation of a neutron burst has a destructive effect not only on humans and animals , but on...agents may be most diverse. It has been noted in the foreign press that in the American armed forces the Air Force has the greatest capability for

  4. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  5. 76 FR 70920 - Proposed Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ...-1191; Airspace Docket No. 11-ANM-21] Proposed Amendment of Class E Airspace; Colorado Springs, CO...: This action proposes to amend Class E airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black Forest Tactical Air Navigation System (TACAN) has made this...

  6. Neurosurgical robotic arm drilling navigation system.

    PubMed

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Heuristic automation for decluttering tactical displays.

    PubMed

    St John, Mark; Smallman, Harvey S; Manes, Daniel I; Feher, Bela A; Morrison, Jeffrey G

    2005-01-01

    Tactical displays can quickly become cluttered with large numbers of symbols that can compromise effective monitoring. Here, we studied how heuristic automation can aid users by intelligently "decluttering" the display. In a realistic simulated naval air defense task, 27 experienced U.S. Navy users monitored a cluttered airspace and executed defensive responses against significant threats. An algorithm continuously evaluated aircraft for their levels of threat and decluttered the less threatening ones by dimming their symbols. Users appropriately distrusted and spot-checked the automation's assessments, and decluttering had very little effect on which aircraft were judged as significantly threatening. Nonetheless, decluttering improved the timeliness of responses to threatening aircraft by 25% as compared with a baseline display with no decluttering; it was especially beneficial for threats in more peripheral locations, and 25 of 27 participants preferred decluttering. Heuristic automation, when properly designed to guide users' attention by decluttering less important objects, may prove valuable in many cluttered monitoring situations, including air traffic management, crisis team management, and tactical situation awareness in general.

  8. Multi-sensor Navigation System Design

    DOT National Transportation Integrated Search

    1971-03-01

    This report treats the design of naviggation systems that collect data from two or more on-board measurement subsystems and precess this data in an on-board computer. Such systems are called Multi-sensor Navigation Systems. : The design begins with t...

  9. Systems and Methods for Determining Inertial Navigation System Faults

    NASA Technical Reports Server (NTRS)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  10. Space shuttle onboard navigation console expert/trainer system

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bochsler, Dan

    1987-01-01

    A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.

  11. Maritime Navigation/Communications Program. Volume 1. Navigation and Communications System Study.

    DOT National Transportation Integrated Search

    1984-10-01

    A Maritime Administration/Transportation Systems Center team has been conducting a program to study navigation and communication systems on the Great Lakes and St. Lawrence River with the objective of defining technologies and systems that have the p...

  12. Satellite Imagery Assisted Road-Based Visual Navigation System

    NASA Astrophysics Data System (ADS)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  13. Satellite Navigation Systems: Policy, Commercial and Technical Interaction.

    NASA Astrophysics Data System (ADS)

    Rycroft, M.

    2003-12-01

    This book adopts a broad perspective on positioning and navigation systems which rely on Earth orbiting satellites for their successful operation. The first of such global systems was the US Global Positioning System (GPS), and the next the Russian GLONASS system. Now studies relating to Europe's future Galileo system are gaining momentum and other nations are planning regional augmentation systems. All such systems are discussed here, particularly relating to political, commercial, legal and technical issues. The opportunities - and also the problems - of having three similar systems in operation simultaneously are examined, and several novel applications are proposed. These range from improved vehicular transport by land, sea and air, to more accurate surveying, more efficient agricultural practices and safer operations in mountainous regions. Everyone who is challenged by these topics will find this volume invaluable. ISU WWW Server; http://www.isunet.edu. Further information on ISU Symposia may also be obtained by e-mail from symposium@isu.isunet.edu Link: http://www.wkap.nl/prod/b/1-4020-1678-6

  14. Navigation of robotic system using cricket motes

    NASA Astrophysics Data System (ADS)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  15. Field evaluation of a wearable multimodal soldier navigation system.

    PubMed

    Aaltonen, Iina; Laarni, Jari

    2017-09-01

    Challenging environments pose difficulties for terrain navigation, and therefore wearable and multimodal navigation systems have been proposed to overcome these difficulties. Few such navigation systems, however, have been evaluated in field conditions. We evaluated how a multimodal system can aid in navigating in a forest in the context of a military exercise. The system included a head-mounted display, headphones, and a tactile vibrating vest. Visual, auditory, and tactile modalities were tested and evaluated using unimodal, bimodal, and trimodal conditions. Questionnaires, interviews and observations were used to evaluate the advantages and disadvantages of each modality and their multimodal use. The guidance was considered easy to interpret and helpful in navigation. Simplicity of the displayed information was required, which was partially conflicting with the request for having both distance and directional information available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  17. Project CHECO Southeast Asia Report. Air Tactics Against NVN Air Ground Defenses, December 1966-1 November 1969

    DTIC Science & Technology

    1969-08-30

    44th TFS, Korat RTAFB, Thailand, were "in almost all cases... [areas] of suspected SAM activity, i.e., photo-occupied SAM sites, prepared and/ or...the bombing restrictions went into effect, a 7AF Tactics 1 - Conference met at Korat RTAFB, Thailand. A few of the proposed tactics revisions 3 were...Interview, Capt Rick Martin, 388th TFW, Korat RTAFB, Thailand, with Maj John C. Pratt, 7AF, DOAC, 8 Sep 69. I 12. (S) Hist Rprt, 388th TFW, Apr 67 - Jun 67

  18. Navigation-aid power systems

    NASA Technical Reports Server (NTRS)

    Goltz, G. L.; Kaiser, L. M.; Weiner, H.

    1979-01-01

    Design synthesis and performance analysis (DSPA) program package is collection of subroutines used for computation of design and performance characteristics of viable solar-array-charged battery powered system for flashing-lamp buoys employed as maritime aids to navigation.

  19. Human computer interactions in next-generation of aircraft smart navigation management systems: task analysis and architecture under an agent-oriented methodological approach.

    PubMed

    Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B

    2015-03-04

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.

  20. Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    PubMed Central

    Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.

    2015-01-01

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092

  1. Advanced Tactical Booster Technologies: Applications for Long-Range Rocket Systems

    DTIC Science & Technology

    2016-09-07

    Applications for Long-Range Rocket Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew McKinna, Jason Mossman 5d...technology advantages currently under development for tactical rocket motors which have direct application to land-based long-range rocket systems...increased rocket payload capacity, improved rocket range or increased rocket loadout from the volumetrically constrained environment of a land-based

  2. A Method for Evaluation of Microcomputers for Tactical Applications.

    DTIC Science & Technology

    1980-06-01

    application. The computational requirements of a tactical application are specified in terms of performance parameters. The presently marketed microcomputer...computational requirements of a tactical application are specified in terms of performance parameters. The presently marketed microcomputer and multi...also to provide a method to evaluate microcomputer systems for tactical applications, i.e., Command Control Communications (C 3), weapon systems, etc

  3. Integrated communications and optical navigation system

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Pajer, G.; Paluszek, M.

    2013-12-01

    The Integrated Communications and Optical Navigation System (ICONS) is a flexible navigation system for spacecraft that does not require global positioning system (GPS) measurements. The navigation solution is computed using an Unscented Kalman Filter (UKF) that can accept any combination of range, range-rate, planet chord width, landmark, and angle measurements using any celestial object. Both absolute and relative orbit determination is supported. The UKF employs a full nonlinear dynamical model of the orbit including gravity models and disturbance models. The ICONS package also includes attitude determination algorithms using the UKF algorithm with the Inertial Measurement Unit (IMU). The IMU is used as the dynamical base for the attitude determination algorithms. This makes the sensor a more capable plug-in replacement for a star tracker, thus reducing the integration and test cost of adding this sensor to a spacecraft. Recent additions include an integrated optical communications system which adds communications, and integrated range and range rate measurement and timing. The paper includes test results from trajectories based on the NASA New Horizons spacecraft.

  4. Investigation and evaluation of shuttle/GPS navigation system

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1977-01-01

    Iterative procedures were used to analyze the performance of two preliminary shuttle/GPS navigation system configurations: an early OFT experimental system and a more sophisticated system which consolidates several separate navigation functions thus permitting net cost savings from decreased shuttle avionics weight and power consumption, and from reduced ground data processing. The GPS system can provide on-orbit navigation accuracy an order of magnitude better than the baseline system, with very adequate link margins. The worst-case link margin is 4.3 dB. This link margin accounts for shuttle RF circuit losses which were minimized under the constraints of program schedule and environmental limitations. Implicit in the link analyses are the location trade-offs for preamplifiers and antennas.

  5. Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)

    NASA Astrophysics Data System (ADS)

    Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy

    2013-05-01

    GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.

  6. The Joint Capabilities Integration and Development System: Its Impact on Air Force Acquisition Thirteen Years Later

    DTIC Science & Technology

    2016-08-01

    area denial environments . Near peer adversaries continue to develop low observable aircraft , proliferate counter-precision guided munition systems ...when the Air Force had significantly more control over its requirements validation and acquisition processes. The only tactical aircraft currently in... systems such as the F-35A. Interestingly, upgrades to these previously fielded aircraft also take longer after JCIDS was implemented than it did to

  7. Evidence toward an expanded international civil aviation organization (ICAO) concept of a single unified global communication navigation surveillance air traffic management (CNS/ATM) system: A quantitative analysis of ADS-B technology within a CNS/ATM system

    NASA Astrophysics Data System (ADS)

    Gardner, Gregory S.

    This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).

  8. Formulation of an integrated robust design and tactics optimization process for undersea weapon systems

    NASA Astrophysics Data System (ADS)

    Frits, Andrew P.

    In the current Navy environment of undersea weapons development, the engineering aspect of design is decoupled from the development of the tactics with which the weapon is employed. Tactics are developed by intelligence experts, warfighters, and wargamers, while torpedo design is handled by engineers and contractors. This dissertation examines methods by which the conceptual design process of undersea weapon systems, including both torpedo systems and mine counter-measure systems, can be improved. It is shown that by simultaneously designing the torpedo and the tactics with which undersea weapons are used, a more effective overall weapon system can be created. In addition to integrating torpedo tactics with design, the thesis also looks at design methods to account for uncertainty. The uncertainty is attributable to multiple sources, including: lack of detailed analysis tools early in the design process, incomplete knowledge of the operational environments, and uncertainty in the performance of potential technologies. A robust design process is introduced to account for this uncertainty in the analysis and optimization of torpedo systems through the combination of Monte Carlo simulation with response surface methodology and metamodeling techniques. Additionally, various other methods that are appropriate to uncertainty analysis are discussed and analyzed. The thesis also advances a new approach towards examining robustness and risk: the treatment of probability of success (POS) as an independent variable. Examining the cost and performance tradeoffs between high and low probability of success designs, the decision-maker can make better informed decisions as to what designs are most promising and determine the optimal balance of risk, cost, and performance. Finally, the thesis examines the use of non-dimensionalization of parameters for torpedo design. The thesis shows that the use of non-dimensional torpedo parameters leads to increased knowledge about the

  9. Edge-Enabled Tactical Systems (Poster)

    DTIC Science & Technology

    2014-10-23

    Recently added capabilities allow fine grained network and data optimization in Disconnected, Intermittent, Low-Bandwidth (DIL) environments by...Research Focus Establishing Trusted Identities in Disconnected Tactical Environments We will develop trusted identity solutions that work within the...constraints of DIL environments in which there is no consistent access to third-party online trusted authorities that validate the credentials of

  10. A Strapdown Interial Navigation System/Beidou/Doppler Velocity Log Integrated Navigation Algorithm Based on a Cubature Kalman Filter

    PubMed Central

    Gao, Wei; Zhang, Ya; Wang, Jianguo

    2014-01-01

    The integrated navigation system with strapdown inertial navigation system (SINS), Beidou (BD) receiver and Doppler velocity log (DVL) can be used in marine applications owing to the fact that the redundant and complementary information from different sensors can markedly improve the system accuracy. However, the existence of multisensor asynchrony will introduce errors into the system. In order to deal with the problem, conventionally the sampling interval is subdivided, which increases the computational complexity. In this paper, an innovative integrated navigation algorithm based on a Cubature Kalman filter (CKF) is proposed correspondingly. A nonlinear system model and observation model for the SINS/BD/DVL integrated system are established to more accurately describe the system. By taking multi-sensor asynchronization into account, a new sampling principle is proposed to make the best use of each sensor's information. Further, CKF is introduced in this new algorithm to enable the improvement of the filtering accuracy. The performance of this new algorithm has been examined through numerical simulations. The results have shown that the positional error can be effectively reduced with the new integrated navigation algorithm. Compared with the traditional algorithm based on EKF, the accuracy of the SINS/BD/DVL integrated navigation system is improved, making the proposed nonlinear integrated navigation algorithm feasible and efficient. PMID:24434842

  11. Institute of Navigation, Annual Meeting, 47th, Williamsburg, VA, June 10-12, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    1991-11-01

    The present volume of navigation and exploration discusses space exploration, mapping and geodesy, aircraft navigation, undersea navigation, land and vehicular location, international and legal aspects of navigation, the history of navigation technology and applications, Loran development and implementation, GPS and GLONASS developments, and search and rescue. Topics addressed include stabilization of low orbiting spacecraft using GPS, the employment of laser navigation for automatic rendezvous and docking systems, enhanced pseudostatic processing, and the expanding role of sensor fusion. Attention is given to a gravity-aided inertial navigation system, recent developments in aviation products liability and navigation, the ICAO future air navigation system, and Loran's implementation in NAS. Also discussed are Inmarsat integrated navigation/communication activities, the GPS program status, the evolution of military GPS technology into the Navcore V receiver engine, and Sarsat location algorithms.

  12. 77 FR 11796 - Proposed Amendment of Class E Airspace; Rock Springs, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ...-0131; Airspace Docket No. 12-ANM-2 Proposed Amendment of Class E Airspace; Rock Springs, WY AGENCY... action proposes to amend Class E airspace at Rock Springs-Sweetwater County Airport, Rock Springs, WY. Decommissioning of the Rock Springs Tactical Air Navigation System (TACAN) has made this action necessary for the...

  13. Preliminary Design of Nano Satellite for Regional Navigation System

    NASA Astrophysics Data System (ADS)

    Fathurrohim, L.; Poetro, R. E.; Kurniadi, B.; Fadillah, P. A.; Iqbal, M.

    2018-04-01

    A Low cost Regional Navigation Satellite System employing constellation of nano satellites has been proposed for Indonesian coverage. The constellation of Low Earth Orbit nano satellites off course will not be able to give better position fixed to the GPS. However, the design of navigation system has much lower in cost compare to the current navigation system. This paper tells about preliminary design of the proposed regional navigation satellite system. The results of our satellite design has 3 kg on its weight, 10 W on power requirement at the peak condition, and 2.7 years of lifetime. Payload communication of the satellite will use UHF and TT&C communication will use VHF. Total area of solar panel will be 0.11 m2.

  14. A navigation system for the visually impaired an intelligent white cane.

    PubMed

    Fukasawa, A Jin; Magatani, Kazusihge

    2012-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane, this sensor senses a color of navigation line and the system informs the visually impaired that he/she is walking along the navigation line by vibration. This color recognition system is controlled by a one-chip microprocessor. RFID tags and a receiver for these tags are used in the map information system. RFID tags are set on the colored navigation line. An antenna for RFID tags and a tag receiver are also installed on a white cane. The receiver receives the area information as a tag-number and notifies map information to the user by mp3 formatted pre-recorded voice. And now, we developed the direction identification technique. Using this technique, we can detect a user's walking direction. A triaxiality acceleration sensor is used in this system. Three normal subjects who were blindfolded with an eye mask were tested with our developed navigation system. All of them were able to walk along the navigation line perfectly. We think that the performance of the system is good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  15. Investigation on navigation patterns of inertial/celestial integrated systems

    NASA Astrophysics Data System (ADS)

    Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan

    2014-11-01

    It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.

  16. Sensor/Response Coordination In A Tactical Self-Protection System

    NASA Astrophysics Data System (ADS)

    Steinberg, Alan N.

    1988-08-01

    This paper describes a model for integrating information acquisition functions into a response planner within a tactical self-defense system. This model may be used in defining requirements in such applications for sensor systems and for associated processing and control functions. The goal of information acquisition in a self-defense system is generally not that of achieving the best possible estimate of the threat environment; but rather to provide resolution of that environment sufficient to support response decisions. We model the information acquisition problem as that of achieving a partition among possible world states such that the final partition maps into the system's repertoire of possible responses.

  17. Distributed tactical reasoning framework for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Sukthankar, Rahul; Pomerleau, Dean A.; Thorpe, Chuck E.

    1998-01-01

    In independent vehicle concepts for the Automated Highway System (AHS), the ability to make competent tactical-level decisions in real-time is crucial. Traditional approaches to tactical reasoning typically involve the implementation of large monolithic systems, such as decision trees or finite state machines. However, as the complexity of the environment grows, the unforeseen interactions between components can make modifications to such systems very challenging. For example, changing an overtaking behavior may require several, non-local changes to car-following, lane changing and gap acceptance rules. This paper presents a distributed solution to the problem. PolySAPIENT consists of a collection of autonomous modules, each specializing in a particular aspect of the driving task - classified by traffic entities rather than tactical behavior. Thus, the influence of the vehicle ahead on the available actions is managed by one reasoning object, while the implications of an approaching exit are managed by another. The independent recommendations form these reasoning objects are expressed in the form of votes and vetos over a 'tactical action space', and are resolved by a voting arbiter. This local independence enables PolySAPIENT reasoning objects to be developed independently, using a heterogenous implementation. PolySAPIENT vehicles are implemented in the SHIVA tactical highway simulator, whose vehicles are based on the Carnegie Mellon Navlab robots.

  18. Vertical navigation displays : pilot performance and workload during simulated constant-angle-of-descent GPS approaches

    DOT National Transportation Integrated Search

    2000-03-26

    This study compared the effect of alternative graphic or : numeric cockpit display formats on the tactical aspects of : vertical navigation (VNAV). Display formats included: : a) a moving map with altitude range arc, b) the same : format, supplemente...

  19. Multinode data acquisition and control system for the 4-element TACTIC telescope array

    NASA Astrophysics Data System (ADS)

    Yadav, K. K.; Chouhan, N.; Kaul, S. R.; Koul, R.

    2002-03-01

    An interrupt driven multinode data acquisition and control system has been developed for the 4-element gamma-ray telescope array, TACTIC. Computer networking technology and the CAMAC bus have been integrated to develop this icon-based, userfriendly failsafe system. The paper describes the salient features of the system.

  20. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  1. Tactical Communications Training Environment for Unmanned Aircraft System Operators

    DTIC Science & Technology

    2016-12-15

    communication and teamwork skills. The Night Vision Tactical Trainer - Shadow (NVTT-Shadow) was developed as a game -based desktop solution to train...advanced individual training Soldiers and UAS course instructors. The usability testing demonstrated the feasibility of interactive gaming applied to MUM...T tactical communications. Ratings and comments from both students and instructors validated the need as well as mission context, game content, and

  2. Transitioning the Tactical Marine Corps to IPv6

    DTIC Science & Technology

    2011-09-01

    SUT System Under Test SYSCOM Systems Command (synonymous with MCSC) TCP Transmission Control Protocol TDS Tactical Data Systems TDN...capability to provide services to the Marine Corps Tactical Data Systems ( TDS ) and other DDS-M systems. The 2 DDS-M can function as the file server...Intelligence ( ATI ) program provides comprehensive application protocols and attacks, as well as feature updates and responsive service and support with

  3. A goggle navigation system for cancer resection surgery

    NASA Astrophysics Data System (ADS)

    Xu, Junbin; Shao, Pengfei; Yue, Ting; Zhang, Shiwu; Ding, Houzhu; Wang, Jinkun; Xu, Ronald

    2014-02-01

    We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries. The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model. Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and surgical guidance.

  4. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  5. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  6. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  7. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  8. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  9. Two-dimensional laser Doppler velocimeter and its integrated navigation with a strapdown inertial navigation system.

    PubMed

    Wang, Qi; Gao, Chunfeng; Zhou, Jian; Wei, Guo; Nie, Xiaoming; Long, Xingwu

    2018-05-01

    In the field of land navigation, a laser Doppler velocimeter (LDV) can be used to provide the velocity of a vehicle for an integrated navigation system with a strapdown inertial navigation system. In order to suppress the influence of vehicle jolts on a one-dimensional (1D) LDV, this paper designs a split-reuse two-dimensional (2D) LDV. The velocimeter is made up of two 1D velocimeter probes that are mirror-mounted. By the different effects of the vertical vibration on the two probes, the velocimeter can calculate the forward velocity and the vertical velocity of a vehicle. The results of the vehicle-integrated navigation experiments show that the 2D LDV not only can actually suppress the influence of vehicle jolts and greatly improve the navigation positioning accuracy, but also can give high-precision altitude information. The maximum horizontal position errors of the two experiments are 2.6 m and 3.2 m in 1.9 h, and the maximum altitude errors are 0.24 m and 0.22 m, respectively.

  10. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  11. Precise time technology for selected Air Force systems: Present status and future requirements

    NASA Technical Reports Server (NTRS)

    Yannoni, N. F.

    1981-01-01

    Precise time and time interval (PTTI) technology is becoming increasingly significant to Air Force operations as digital techniques find expanded utility in military missions. Timing has a key role in the function as well as in navigation. A survey of the PTTI needs of several Air Force systems is presented. Current technology supporting these needs was reviewed and new requirements are emphasized for systems as they transfer from initial development to final operational deployment.

  12. A Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo

    1997-01-01

    This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.

  13. Tactical Radar Technology Study. Volume II.

    DTIC Science & Technology

    1980-03-01

    area around the component by air conditioning of some nature. The electronic components are solid state and densely packaged. The use of heat pipe ...capabilities. The heat pipe industry may be able to achieve considerable improvement. A tactical assessment of the threat resistance threshold required...Operating -60 to +1550 F (+ Solar Radiation) Temperature Nonoperating -70 to +155F Relative Humidity 100% Winds 45 knots - operation 45-60 knots

  14. Application Of Optical Techniques To Command, Control, And Communications (C3) Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, M.; Steensma, P. D.

    1981-02-01

    This paper identifies and discusses specific applications of the optical transmission technology to various Command Control and Communications (C3) systems. Candidate C3 systems will first be identified and discussed briefly. These will include: 407L/485L Tactical Air Defense Systems (USAF) TAOC-85 Tactical Air Operations Central (USMC) SACDIN Strategic Air Command Digital Integrated Network (USAF) MX-C3 Missile "X" Command Control Communications Network The first tr are classified as tactical C3 systems while the latter two are classified as strategic C systems. Potential optical applications will be identified along with the benefits derived. Each application will be discussed with key parameters, cost performance benefits, potential problem areas, time frame for development identified.

  15. Wildland fire decision support system air quality tools

    Treesearch

    Sim Larkin; Tim Brown; Pete Lahm; Tom Zimmerman

    2010-01-01

    Smoke and air quality information have an important role in wildland fire decisionmaking that is reinforced in the 2009 "Guidance for Implementation of Federal Wildland Fire Management Policy." A key intent of the guidance is to allow consideration and use of the full range of strategic and tactical options that are available in the response to every wildland...

  16. Gravity Gradiometry and Map Matching: An Aid to Aircraft Inertial Navigation Systems

    DTIC Science & Technology

    2010-03-01

    improve its performance. In all of these cases, because information from two or more different navigation systems feeds into a navigation solution...GRAVITY GRADIOMETRY AND MAP MATCHING: AN AID TO AIRCRAFT INERTIAL NAVIGATION SYSTEMS THESIS...M06 GRAVITY GRADIOMETRY AND MAP MATCHING: AN AID TO AIRCRAFT INERTIAL NAVIGATION SYSTEMS THESIS Presented to the Faculty Department of

  17. Desktop-VR system for preflight 3D navigation training

    NASA Astrophysics Data System (ADS)

    Aoki, Hirofumi; Oman, Charles M.; Buckland, Daniel A.; Natapoff, Alan

    Crews who inhabit spacecraft with complex 3D architecture frequently report inflight disorientation and navigation problems. Preflight virtual reality (VR) training may reduce those risks. Although immersive VR techniques may better support spatial orientation training in a local environment, a non-immersive desktop (DT) system may be more convenient for navigation training in "building scale" spaces, especially if the two methods achieve comparable results. In this study trainees' orientation and navigation performance during simulated space station emergency egress tasks was compared while using immersive head-mounted display (HMD) and DT-VR systems. Analyses showed no differences in pointing angular-error or egress time among the groups. The HMD group was significantly faster than DT group when pointing from destination to start location and from start toward different destination. However, this may be attributed to differences in the input device used (a head-tracker for HMD group vs. a keyboard touchpad or a gamepad in the DT group). All other 3D navigation performance measures were similar using the immersive and non-immersive VR systems, suggesting that the simpler desktop VR system may be useful for astronaut 3D navigation training.

  18. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  19. The Mathematics of Navigating the Solar System

    NASA Technical Reports Server (NTRS)

    Hintz, Gerald

    2000-01-01

    In navigating spacecraft throughout the solar system, the space navigator relies on three academic disciplines - optimization, estimation, and control - that work on mathematical models of the real world. Thus, the navigator determines the flight path that will consume propellant and other resources in an efficient manner, determines where the craft is and predicts where it will go, and transfers it onto the optimal trajectory that meets operational and mission constraints. Mission requirements, for example, demand that observational measurements be made with sufficient precision that relativity must be modeled in collecting and fitting (the estimation process) the data, and propagating the trajectory. Thousands of parameters are now determined in near real-time to model the gravitational forces acting on a spacecraft in the vicinity of an irregularly shaped body. Completing these tasks requires mathematical models, analyses, and processing techniques. Newton, Gauss, Lambert, Legendre, and others are justly famous for their contributions to the mathematics of these tasks. More recently, graduate students participated in research to update the gravity model of the Saturnian system, including higher order gravity harmonics, tidal effects, and the influence of the rings. This investigation was conducted for the Cassini project to incorporate new trajectory modeling features in the navigation software. The resulting trajectory model will be used in navigating the 4-year tour of the Saturnian satellites. Also, undergraduate students are determining the ephemerides (locations versus time) of asteroids that will be used as reference objects in navigating the New Millennium's Deep Space 1 spacecraft autonomously.

  20. Evaluation of the Terminal Area Precision Scheduling and Spacing System for Performance-Based Navigation Arrivals

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Swenson, Harry; Thipphavong, Jane; Martin, Lynne Hazel; Chen, Liang; Nguyen, Jimmy

    2013-01-01

    The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and

  1. Systems analysis for ground-based optical navigation

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Deep-space telecommunications systems will eventually operate at visible or near-infrared regions to provide increased information return from interplanetary spacecraft. This would require an onboard laser transponder in place of (or in addition to) the usual microwave transponder, as well as a network of ground-based and/or space-based optical observing stations. This article examines the expected navigation systems to meet these requirements. Special emphasis is given to optical astrometric (angular) measurements of stars, solar system target bodies, and (when available) laser-bearing spacecraft, since these observations can potentially provide the locations of both spacecraft and target bodies. The role of astrometry in the navigation system and the development options for astrometric observing systems are also discussed.

  2. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    PubMed

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  3. FPGA-Based Real-Time Embedded System for RISS/GPS Integrated Navigation

    PubMed Central

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm. PMID:22368460

  4. Underwater terrain-aided navigation system based on combination matching algorithm.

    PubMed

    Li, Peijuan; Sheng, Guoliang; Zhang, Xiaofei; Wu, Jingqiu; Xu, Baochun; Liu, Xing; Zhang, Yao

    2018-07-01

    Considering that the terrain-aided navigation (TAN) system based on iterated closest contour point (ICCP) algorithm diverges easily when the indicative track of strapdown inertial navigation system (SINS) is large, Kalman filter is adopted in the traditional ICCP algorithm, difference between matching result and SINS output is used as the measurement of Kalman filter, then the cumulative error of the SINS is corrected in time by filter feedback correction, and the indicative track used in ICCP is improved. The mathematic model of the autonomous underwater vehicle (AUV) integrated into the navigation system and the observation model of TAN is built. Proper matching point number is designated by comparing the simulation results of matching time and matching precision. Simulation experiments are carried out according to the ICCP algorithm and the mathematic model. It can be concluded from the simulation experiments that the navigation accuracy and stability are improved with the proposed combinational algorithm in case that proper matching point number is engaged. It will be shown that the integrated navigation system is effective in prohibiting the divergence of the indicative track and can meet the requirements of underwater, long-term and high precision of the navigation system for autonomous underwater vehicles. Copyright © 2017. Published by Elsevier Ltd.

  5. Air traffic management system design using satellite based geo-positioning and communications assets

    NASA Technical Reports Server (NTRS)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  6. A Performance Assessment of an Airborne Separation Assistance System Using Realistic Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR

  7. Integration of Irma tactical scene generator into directed-energy weapon system simulation

    NASA Astrophysics Data System (ADS)

    Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.

    2003-08-01

    Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.

  8. Genetically modified plants for tactical systems applications

    NASA Astrophysics Data System (ADS)

    Stewart, C. Neal, Jr.

    2002-08-01

    Plants are ubiquitous in the environment and have the ability to respond to their environment physiologically and through altered gene expression profiles (they cannot walk away). In addition, plant genetic transformation techniques and genomic information in plants are becoming increasingly advanced. We have been performing research to express the jellyfish green fluorescent protein (GFP) in plants. GFP emits green light when excited by blue or UV light. In addition, my group and collaborators have developed methods to detect GFP in plants by contact instruments and at a standoff. There are several tactical uses for this technology. Some obvious applications are using plants as sentinels for detecting biological and chemical warfare agents or their derivatives from a remote platform, as well as detecting explosives. Another tactical application is covert monitoring using individual plants. Different methods to detect GFP in transgenic plants will be discussed.

  9. OMEGA navigation system status and future plans

    NASA Technical Reports Server (NTRS)

    Nolan, T. P.; Scull, D. C.

    1974-01-01

    OMEGA is described as a very low frequency (VLF) radio navigational system operating in the internationally allocated navigation band in the electromagentic spectrum between 10 and 14 kilohertz. Full system implementation with worldwide coverage from eight transmitting stations is planned for the latter 1970's. Experimental stations have operated since 1966 in support of system evaluation and test. These stations provided coverage over most of the North Atlantic, North American Continent, and eastern portions of the North Pacific. This coverage provided the fundamental basis for further development of the system and has been essential to the demonstrated feasibility of the one to two nautical mile root-mean-square system accuracy. OMEGA is available to users in all nations, both on ships and in aircraft.

  10. Lunar Navigation Determination System - LaNDS

    NASA Technical Reports Server (NTRS)

    Quinn, David; Talabac, Stephen

    2012-01-01

    A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.

  11. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements.

    PubMed

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-04-09

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.

  12. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements

    PubMed Central

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-01-01

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549

  13. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 3. Subsystem Functional Description.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...

  14. Fundamentals of satellite navigation

    NASA Astrophysics Data System (ADS)

    Stiller, A. H.

    The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.

  15. Distributed Ship Navigation Control System Based on Dual Network

    NASA Astrophysics Data System (ADS)

    Yao, Ying; Lv, Wu

    2017-10-01

    Navigation system is very important for ship’s normal running. There are a lot of devices and sensors in the navigation system to guarantee ship’s regular work. In the past, these devices and sensors were usually connected via CAN bus for high performance and reliability. However, as the development of related devices and sensors, the navigation system also needs the ability of high information throughput and remote data sharing. To meet these new requirements, we propose the communication method based on dual network which contains CAN bus and industrial Ethernet. Also, we import multiple distributed control terminals with cooperative strategy based on the idea of synchronizing the status by multicasting UDP message contained operation timestamp to make the system more efficient and reliable.

  16. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 10. Subsystem Performance Requirements.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...

  17. Design, development and evaluation of a compact telerobotic catheter navigation system.

    PubMed

    Tavallaei, Mohammad Ali; Gelman, Daniel; Lavdas, Michael Konstantine; Skanes, Allan C; Jones, Douglas L; Bax, Jeffrey S; Drangova, Maria

    2016-09-01

    Remote catheter navigation systems protect interventionalists from scattered ionizing radiation. However, these systems typically require specialized catheters and extensive operator training. A new compact and sterilizable telerobotic system is described, which allows remote navigation of conventional tip-steerable catheters, with three degrees of freedom, using an interface that takes advantage of the interventionalist's existing dexterity skills. The performance of the system is evaluated ex vivo and in vivo for remote catheter navigation and ablation delivery. The system has absolute errors of 0.1 ± 0.1 mm and 7 ± 6° over 100 mm of axial motion and 360° of catheter rotation, respectively. In vivo experiments proved the safety of the proposed telerobotic system and demonstrated the feasibility of remote navigation and delivery of ablation. The proposed telerobotic system allows the interventionalist to use conventional steerable catheters; while maintaining a safe distance from the radiation source, he/she can remotely navigate the catheter and deliver ablation lesions. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  19. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  20. SLS Block 1-B and Exploration Upper Stage Navigation System Design

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Park, Thomas B.; Smith, Austin; Anzalone, Evan; Bernard, Bill; Strickland, Dennis; Geohagan, Kevin; Green, Melissa; Leggett, Jarred

    2018-01-01

    The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with

  1. Navigation and guidance requirements for commercial VTOL operations

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Hollister, W. M.; Howell, J. D.

    1974-01-01

    The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts.

  2. Proof-of-Concept Part Task Trainer for Close Air Support Procedures

    DTIC Science & Technology

    2016-06-01

    TVDL Tactical Video Down Link VE Virtual Environment VR Virtual Reality WTI Weapons and Tactics Instructor xvii ACKNOWLEDGMENTS I would first...in training of USMC pilots for close air support operations? • What is the feasibility of developing a prototype virtual reality (VR) system that...Chapter IV provides a review of virtual reality (VR)/ virtual environment (VE) and part-task trainers currently used in military training

  3. Cyber threat model for tactical radio networks

    NASA Astrophysics Data System (ADS)

    Kurdziel, Michael T.

    2014-05-01

    The shift to a full information-centric paradigm in the battlefield has allowed ConOps to be developed that are only possible using modern network communications systems. Securing these Tactical Networks without impacting their capabilities has been a challenge. Tactical networks with fixed infrastructure have similar vulnerabilities to their commercial counterparts (although they need to be secure against adversaries with greater capabilities, resources and motivation). However, networks with mobile infrastructure components and Mobile Ad hoc Networks (MANets) have additional unique vulnerabilities that must be considered. It is useful to examine Tactical Network based ConOps and use them to construct a threat model and baseline cyber security requirements for Tactical Networks with fixed infrastructure, mobile infrastructure and/or ad hoc modes of operation. This paper will present an introduction to threat model assessment. A definition and detailed discussion of a Tactical Network threat model is also presented. Finally, the model is used to derive baseline requirements that can be used to design or evaluate a cyber security solution that can be scaled and adapted to the needs of specific deployments.

  4. Flight evaluation of differential GPS aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.

    1992-01-01

    Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)

  5. OMEGA Navigation System Synchronization

    DTIC Science & Technology

    1982-12-01

    DEC 1982 2. REPORT TYPE 3. DATES COVERED 00-00-1982 to 00-00-1982 4. TITLE AND SUBTITLE OMEGA Navigation System Synchronization 5a. CONTRACT...l execution of ONSOD’s annual $5 mi l l ion budget. OMEGA SYSTEM SYNCHRONIZATION One of ONSOD’s p r inc ipa l missions i s t o ensure the...OMEGA system i s maintained within es tabl ished timing t o l e r a ~ c e s . A l l OMEGA s t a t i o n s transmissions a r e synchronized , so t h

  6. An onboard navigation system which fulfills Mars aerocapture guidance requirements

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.

    1989-01-01

    The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.

  7. Tele-auscultation support system with mixed reality navigation.

    PubMed

    Hori, Kenta; Uchida, Yusuke; Kan, Tsukasa; Minami, Maya; Naito, Chisako; Kuroda, Tomohiro; Takahashi, Hideya; Ando, Masahiko; Kawamura, Takashi; Kume, Naoto; Okamoto, Kazuya; Takemura, Tadamasa; Yoshihara, Hiroyuki

    2013-01-01

    The aim of this research is to develop an information support system for tele-auscultation. In auscultation, a doctor requires to understand condition of applying a stethoscope, in addition to auscultatory sounds. The proposed system includes intuitive navigation system of stethoscope operation, in addition to conventional audio streaming system of auscultatory sounds and conventional video conferencing system for telecommunication. Mixed reality technology is applied for intuitive navigation of the stethoscope. Information, such as position, contact condition and breath, is overlaid on a view of the patient's chest. The contact condition of the stethoscope is measured by e-textile contact sensors. The breath is measured by a band type breath sensor. In a simulated tele-auscultation experiment, the stethoscope with the contact sensors and the breath sensor were evaluated. The results show that the presentation of the contact condition was not understandable enough for navigating the stethoscope handling. The time series of the breath phases was usable for the remote doctor to understand the breath condition of the patient.

  8. 78 FR 45474 - Proposed Establishment of Class E Airspace; Cut Bank, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0532; Airspace Docket No. 13-ANM-21] Proposed Establishment of Class E Airspace; Cut Bank, MT AGENCY... action proposes to establish Class E airspace at the Cut Bank VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC) navigation aid, Cut Bank, MT, to facilitate vectoring of Instrument...

  9. 78 FR 65556 - Establishment of Class E Airspace; Cut Bank, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...-0532; Airspace Docket No. 13-ANM-21] Establishment of Class E Airspace; Cut Bank, MT AGENCY: Federal... at the Cut Bank VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC) navigation aid, Cut Bank, MT, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of...

  10. Implementation of a vector-based tracking loop receiver in a pseudolite navigation system.

    PubMed

    So, Hyoungmin; Lee, Taikjin; Jeon, Sanghoon; Kim, Chongwon; Kee, Changdon; Kim, Taehee; Lee, Sanguk

    2010-01-01

    We propose a vector tracking loop (VTL) algorithm for an asynchronous pseudolite navigation system. It was implemented in a software receiver and experiments in an indoor navigation system were conducted. Test results show that the VTL successfully tracks signals against the near-far problem, one of the major limitations in pseudolite navigation systems, and could improve positioning availability by extending pseudolite navigation coverage.

  11. Comparison of Precision between Optical and Electromagnetic Navigation Systems in Total Knee Arthroplasty

    PubMed Central

    Rhee, Seung Joon; Park, Shi Hwan; Cho, He Myung

    2014-01-01

    Purpose The purpose of this study is to compare and analyze the precision of optical and electromagnetic navigation systems in total knee arthroplasty (TKA). Materials and Methods We retrospectively reviewed 60 patients who underwent TKA using an optical navigation system and 60 patients who underwent TKA using an electromagnetic navigation system from June 2010 to March 2012. The mechanical axis that was measured on preoperative radiographs and by the intraoperative navigation systems were compared between the groups. The postoperative positions of the femoral and tibial components in the sagittal and coronal plane were assessed. Results The difference of the mechanical axis measured on the preoperative radiograph and by the intraoperative navigation systems was 0.6 degrees more varus in the electromagnetic navigation system group than in the optical navigation system group, but showed no statistically significant difference between the two groups (p>0.05). The positions of the femoral and tibial components in the sagittal and coronal planes on the postoperative radiographs also showed no statistically significant difference between the two groups (p>0.05). Conclusions In TKA, both optical and electromagnetic navigation systems showed high accuracy and reproducibility, and the measurements from the postoperative radiographs showed no significant difference between the two groups. PMID:25505703

  12. The Challenge To Tactical Reconnaissance: Timeliness Through Technology

    NASA Astrophysics Data System (ADS)

    Stromfors, Richard D.

    1984-12-01

    As you have no doubt gathered from Mr. Henkel's introduction, I have spent over 20 years of my Air Force career involved in the reconnaissance mission either as a tactical reconnaissance pilot, as a tactical reconnaissance inspector, as a writer and speaker on that subject while attending the Air Force Professional Military Education Schools, and currently as the Air Force's operational manager for reconnaissance aircraft. In all of those positions, I've been challenged many times over with what appeared, at first, to be insurmountable problems that upon closer examination weren't irresolvable after all. All of these problems pale, however, when viewed side-by-side with the one challenge that has faced me since I began my military career and, in fact, faces all of us as I talk with you today. That one challenge is the problem of timeliness. Better put: "Getting information to our customers firstest with the mostest." Together we must develop better platforms and sensors to cure this age-old "Achilles heel" in the reconnaissance cycle. Despite all of our best intentions, despite all of the emerging technologies that will be available, and despite all of the dollars that we've thrown at research and development, we in the reconnaissance business still haven't done a good job in this area. We must do better.

  13. Tactical Satellite 3

    NASA Astrophysics Data System (ADS)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.

    2008-08-01

    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  14. 77 FR 5168 - Amendment of Class D Airspace; Mount Clemens, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... Regulations (14 CFR) part 71 by updating the geographic coordinates of Selfridge Air National Guard Base and... Class D airspace within the Mount Clemens, MI, area by updating the geographic coordinates of Selfridge Air National Guard Base (ANGB) and the Selfridge Tactical Air Navigation (TACAN). This action does not...

  15. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    This paper extends the results I reported at this year's ION International Technical Meeting on multi-constellation GNSS coverage by showing how the use of multi-constellation GNSS improves Geometric Dilution of Precision (GDOP). Originally developed to provide position, navigation, and timing for terrestrial users, GPS has found increasing use for in space for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Galileo, and Beidou) and the development of Satellite Based Augmentation Services, it is possible to obtain improved precision by using evolving multi-constellation receiver. The Space Service Volume formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude ((is) approximately 36,500 km), with the volume below three thousand kilometers defined as the Terrestrial Service Volume (TSV). The USA has established signal requirements for the Space Service Volume (SSV) as part of the GPS Capability Development Documentation (CDD). Diplomatic efforts are underway to extend Space service Volume commitments to the other Position, Navigation, and Timing (PNT) service providers in an effort to assure that all space users will benefit from the enhanced capabilities of interoperating GNSS services in the space domain.

  16. A System for Fast Navigation of Autonomous Vehicles

    DTIC Science & Technology

    1991-09-01

    AD-A243 523 4, jj A System for Fast Navigation of Autonomous Vehicles Sanjiv Singh, Dai Feng, Paul Keller, Gary Shaffer, Wen Fan Shi, Dong Hun Shin...FUNDING NUMBERS A System for Fast Navigation of Autonomous Vehicles 6. AUTHOR(S) S. Singh, D. Feng, P. Keller, G. Shaffer, W.F. Shi, D.H. Shin, J. West...common in the control of autonomous vehicles to establish the necessary kinematic models but to ignore an explicit representation of the vehicle dynamics

  17. IPS - a vision aided navigation system

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Baumbach, Dirk; Buder, Maximilian; Choinowski, Andre; Ernst, Ines; Funk, Eugen; Grießbach, Denis; Schischmanow, Adrian; Wohlfeil, Jürgen; Zuev, Sergey

    2017-04-01

    Ego localization is an important prerequisite for several scientific, commercial, and statutory tasks. Only by knowing one's own position, can guidance be provided, inspections be executed, and autonomous vehicles be operated. Localization becomes challenging if satellite-based navigation systems are not available, or data quality is not sufficient. To overcome this problem, a team of the German Aerospace Center (DLR) developed a multi-sensor system based on the human head and its navigation sensors - the eyes and the vestibular system. This system is called integrated positioning system (IPS) and contains a stereo camera and an inertial measurement unit for determining an ego pose in six degrees of freedom in a local coordinate system. IPS is able to operate in real time and can be applied for indoor and outdoor scenarios without any external reference or prior knowledge. In this paper, the system and its key hardware and software components are introduced. The main issues during the development of such complex multi-sensor measurement systems are identified and discussed, and the performance of this technology is demonstrated. The developer team started from scratch and transfers this technology into a commercial product right now. The paper finishes with an outlook.

  18. Impact Assessment of GNSS Spoofing Attacks on INS/GNSS Integrated Navigation System.

    PubMed

    Liu, Yang; Li, Sihai; Fu, Qiangwen; Liu, Zhenbo

    2018-05-04

    In the face of emerging Global Navigation Satellite System (GNSS) spoofing attacks, there is a need to give a comprehensive analysis on how the inertial navigation system (INS)/GNSS integrated navigation system responds to different kinds of spoofing attacks. A better understanding of the integrated navigation system’s behavior with spoofed GNSS measurements gives us valuable clues to develop effective spoofing defenses. This paper focuses on an impact assessment of GNSS spoofing attacks on the integrated navigation system Kalman filter’s error covariance, innovation sequence and inertial sensor bias estimation. A simple and straightforward measurement-level trajectory spoofing simulation framework is presented, serving as the basis for an impact assessment of both unsynchronized and synchronized spoofing attacks. Recommendations are given for spoofing detection and mitigation based on our findings in the impact assessment process.

  19. Evaluation of Design Assurance Regulations for Safety of Space Navigation Services

    NASA Astrophysics Data System (ADS)

    Ratti, B.; Sarno, M.; De Andreis, C.

    2005-12-01

    The European Space Agency (ESA), the European Community (EC), and the European Organisation for the Safety of Air Navigation (Eurocontrol) are contributing to the development of a Global positioning and Navigation Satellite System, known as GNSS. The development programme is carried out in two main steps:• GNSS-1: the first-generation system, based on signals received from the GPS (USA) and GLONASS (Russia) constellations, and augmentation systems like EGNOS (European Geostationary Navigation Overlay Service)• GNSS-2: the second-generation system, that will achieve the ultimate objective of European sovereignty for position determination, navigation and time dissemination. This system, named Galileo, comprises a global space and ground control infrastructure.The Galileo navigation signal will be used in the frame of safety-critical transport applications, thus it is necessary to assess the space safety assurance activity against the civil safety regulations and safety management system.. RTCA DO-254 and IEC 61508 standards, considered as part of best practice engineering references, for the development of safety- related systems in most applications, were selected during phases B2 and C0 of the Galileo project for this purpose.

  20. Soft-assembled Multilevel Dynamics of Tactical Behaviors in Soccer

    PubMed Central

    Ric, Angel; Torrents, Carlota; Gonçalves, Bruno; Sampaio, Jaime; Hristovski, Robert

    2016-01-01

    This study aimed to identify the tactical patterns and the timescales of variables during a soccer match, allowing understanding the multilevel organization of tactical behaviors, and to determine the similarity of patterns performed by different groups of teammates during the first and second halves. Positional data from 20 professional male soccer players from the same team were collected using high frequency global positioning systems (5 Hz). Twenty-nine categories of tactical behaviors were determined from eight positioning-derived variables creating multivariate binary (Boolean) time-series matrices. Hierarchical principal component analysis (PCA) was used to identify the multilevel structure of tactical behaviors. The sequential reduction of each set level of principal components revealed a sole principal component as the slowest collective variable, forming the global basin of attraction of tactical patterns during each half of the match. In addition, the mean dwell time of each positioning-derived variable helped to understand the multilevel organization of collective tactical behavior during a soccer match. This approach warrants further investigations to analyze the influence of task constraints on the emergence of tactical behavior. Furthermore, PCA can help coaches to design representative training tasks according to those tactical patterns captured during match competitions and to compare them depending on situational variables. PMID:27761120

  1. An indoor navigation system for the visually impaired.

    PubMed

    Guerrero, Luis A; Vasquez, Francisco; Ochoa, Sergio F

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment.

  2. An Indoor Navigation System for the Visually Impaired

    PubMed Central

    Guerrero, Luis A.; Vasquez, Francisco; Ochoa, Sergio F.

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment. PMID:22969398

  3. Modelling Human Teaching Tactics and Strategies for Tutoring Systems: 14 Years On

    ERIC Educational Resources Information Center

    du Boulay, Benedict; Luckin, Rosemary

    2016-01-01

    Our original paper tried to characterize the richness of the teaching repertoire of expert human teachers and to give a sense of how far there still was to go in the development of pedagogic expertise in AIED systems. It considered three ways in which more expert teaching strategies and tactics might be developed. These were via (i) the…

  4. Comparison of three optical tracking systems in a complex navigation scenario.

    PubMed

    Rudolph, Tobias; Ebert, Lars; Kowal, Jens

    2010-01-01

    Three-dimensional rotational X-ray imaging with the SIREMOBIL Iso-C3D (Siemens AG, Medical Solutions, Erlangen, Germany) has become a well-established intra-operative imaging modality. In combination with a tracking system, the Iso-C3D provides inherently registered image volumes ready for direct navigation. This is achieved by means of a pre-calibration procedure. The aim of this study was to investigate the influence of the tracking system used on the overall navigation accuracy of direct Iso-C3D navigation. Three models of tracking system were used in the study: Two Optotrak 3020s, a Polaris P4 and a Polaris Spectra system, with both Polaris systems being in the passive operation mode. The evaluation was carried out at two different sites using two Iso-C3D devices. To measure the navigation accuracy, a number of phantom experiments were conducted using an acrylic phantom equipped with titanium spheres. After scanning, a special pointer was used to pinpoint these markers. The difference between the digitized and navigated positions served as the accuracy measure. Up to 20 phantom scans were performed for each tracking system. The average accuracy measured was 0.86 mm and 0.96 mm for the two Optotrak 3020 systems, 1.15 mm for the Polaris P4, and 1.04 mm for the Polaris Spectra system. For the Polaris systems a higher maximal error was found, but all three systems yielded similar minimal errors. On average, all tracking systems used in this study could deliver similar navigation accuracy. The passive Polaris system showed – as expected – higher maximal errors; however, depending on the application constraints, this might be negligible.

  5. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  6. A full 3D-navigation system in a suitcase.

    PubMed

    Freysinger, W; Truppe, M J; Gunkel, A R; Thumfart, W F

    2001-01-01

    To reduce the impact of contemporary 3D-navigation systems on the environment of typical otorhinolaryngologic operating rooms, we demonstrate that a transfer of navigation software to modern high-power notebook computers is feasible and results in a practicable way to provide positional information to a surgeon intraoperatively. The ARTMA Virtual Patient System has been implemented on a Macintosh PowerBook G3 and, in connection with the Polhemus FASTRAK digitizer, provides intraoperative positional information during endoscopic endonasal surgery. Satisfactory intraoperative navigation has been realized in two- and three-dimensional medical image data sets (i.e., X-ray, ultrasound images, CT, and MR) and live video. This proof-of-concept study demonstrates that acceptable ergonomics and excellent performance of the system can be achieved with contemporary high-end notebook computers. Copyright 2001 Wiley-Liss, Inc.

  7. Use of Knowledge Base Systems (EMDS) in Strategic and Tactical Forest Planning

    NASA Astrophysics Data System (ADS)

    Jensen, M. E.; Reynolds, K.; Stockmann, K.

    2008-12-01

    The USDA Forest Service 2008 Planning Rule requires Forest plans to provide a strategic vision for maintaining the sustainability of ecological, economic, and social systems across USFS lands through the identification of desired conditions and objectives. In this paper we show how knowledge-based systems can be efficiently used to evaluate disparate natural resource information to assess desired conditions and related objectives in Forest planning. We use the Ecosystem Management Decision Support (EMDS) system (http://www.institute.redlands.edu/emds/), which facilitates development of both logic-based models for evaluating ecosystem sustainability (desired conditions) and decision models to identify priority areas for integrated landscape restoration (objectives). The study area for our analysis spans 1,057 subwatersheds within western Montana and northern Idaho. Results of our study suggest that knowledge-based systems such as EMDS are well suited to both strategic and tactical planning and that the following points merit consideration in future National Forest (and other land management) planning efforts: 1) Logic models provide a consistent, transparent, and reproducible method for evaluating broad propositions about ecosystem sustainability such as: are watershed integrity, ecosystem and species diversity, social opportunities, and economic integrity in good shape across a planning area? The ability to evaluate such propositions in a formal logic framework also allows users the opportunity to evaluate statistical changes in outcomes over time, which could be very useful for regional and national reporting purposes and for addressing litigation; 2) The use of logic and decision models in strategic and tactical Forest planning provides a repository for expert knowledge (corporate memory) that is critical to the evaluation and management of ecosystem sustainability over time. This is especially true for the USFS and other federal resource agencies, which are

  8. TDRSS Onboard Navigation System (TONS) experiment for the Explorer Platform (EP)

    NASA Astrophysics Data System (ADS)

    Gramling, C. J.; Hornstein, R. S.; Long, A. C.; Samii, M. V.; Elrod, B. D.

    A TDRSS Onboard Navigation System (TONS) is currently being developed by NASA to provide a high-accuracy autonomous spacecraft navigation capability for users of TDRSS and its successor, the Advanced TDRSS. A TONS experiment will be performed in conjunction with the Explorer Platform (EP)/EUV Explorer mission to flight-qualify TONS Block I. This paper presents an overview of TDRSS on-board navigation goals and plans and the technical objectives of the TONS experiment. The operations concept of the experiment is described, including the characteristics of the ultrastable oscillator, the Doppler extractor, the signal-acquisition process, the TONS ground-support system, and the navigation flight software. A description of the on-board navigation algorithms and the rationale for their selection is also presented.

  9. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  10. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  11. Applications of different design methodologies in navigation systems and development at JPL

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.

    1990-01-01

    The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.

  12. Robot navigation research at CESAR (Center for Engineering Systems Advanced Research)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, D.L.; de Saussure, G.; Pin, F.G.

    1989-01-01

    A considerable amount of work has been reported on the problem of robot navigation in known static terrains. Algorithms have been proposed and implemented to search for an optimum path to the goal, taking into account the finite size and shape of the robot. Not as much work has been reported on robot navigation in unknown, unstructured, or dynamic environments. A robot navigating in an unknown environment must explore with its sensors, construct an abstract representation of its global environment to plan a path to the goal, and update or revise its plan based on accumulated data obtained and processedmore » in real-time. The core of the navigation program for the CESAR robots is a production system developed on the expert-system-shell CLIPS which runs on an NCUBE hypercube on board the robot. The production system can call on C-compiled navigation procedures. The production rules can read the sensor data and address the robot's effectors. This architecture was found efficient and flexible for the development and testing of the navigation algorithms; however, in order to process intelligently unexpected emergencies, it was found necessary to be able to control the production system through externally generated asynchronous data. This led to the design of a new asynchronous production system, APS, which is now being developed on the robot. This paper will review some of the navigation algorithms developed and tested at CESAR and will discuss the need for the new APS and how it is being integrated into the robot architecture. 18 refs., 3 figs., 1 tab.« less

  13. Review of the tactical evaluation tools for youth players, assessing the tactics in team sports: football.

    PubMed

    González-Víllora, Sixto; Serra-Olivares, Jaime; Pastor-Vicedo, Juan Carlos; da Costa, Israel Teoldo

    2015-01-01

    For sports assessment to be comprehensive, it must address all variables of sports development, such as psychological, social-emotional, physical and physiological, technical and tactical. Tactical assessment has been a neglected variable until the 1980s or 1990s. In the last two decades (1995-2015), the evolution of tactical assessment has grown considerably, given its importance in game performance. The aim of this paper is to compile and analyze different tactical measuring tools in team sports, particularly in soccer, through a bibliographical review. Six tools have been selected on five different criteria: (1) Instruments which assess tactics, (2) The studies have an evolution approach related to the tactical principles, (3) With a valid and reliable method, (4) The existence of publications mentioning the tool in the method, v. Applicable in different sports contexts. All six tools are structured around seven headings: introduction, objective(s), tactical principles, materials, procedures, instructions/rules of the game and published studies. In conclusion, the teaching-learning processes more tactical oriented have useful tactical assessment instrument in the literature. The selection of one or another depends some context information, like age and level of expertise of the players.

  14. An integrated environment for tactical guidance research and evaluation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Mcmanus, John W.

    1990-01-01

    NASA-Langley's Tactical Guidance Research and Evaluation System (TGRES) constitutes an integrated environment for the development of tactical guidance algorithms and evaluating the effects of novel technologies; the modularity of the system allows easy modification or replacement of system elements in order to conduct evaluations of alternative technologies. TGRES differs from existing systems in its capitalization on AI programming techniques for guidance-logic implementation. Its ability to encompass high-fidelity, six-DOF simulation models will facilitate the analysis of complete aircraft dynamics.

  15. A 3D Model Based Imdoor Navigation System for Hubei Provincial Museum

    NASA Astrophysics Data System (ADS)

    Xu, W.; Kruminaite, M.; Onrust, B.; Liu, H.; Xiong, Q.; Zlatanova, S.

    2013-11-01

    3D models are more powerful than 2D maps for indoor navigation in a complicate space like Hubei Provincial Museum because they can provide accurate descriptions of locations of indoor objects (e.g., doors, windows, tables) and context information of these objects. In addition, the 3D model is the preferred navigation environment by the user according to the survey. Therefore a 3D model based indoor navigation system is developed for Hubei Provincial Museum to guide the visitors of museum. The system consists of three layers: application, web service and navigation, which is built to support localization, navigation and visualization functions of the system. There are three main strengths of this system: it stores all data needed in one database and processes most calculations on the webserver which make the mobile client very lightweight, the network used for navigation is extracted semi-automatically and renewable, the graphic user interface (GUI), which is based on a game engine, has high performance of visualizing 3D model on a mobile display.

  16. Oral and maxillofacial surgery with computer-assisted navigation system.

    PubMed

    Kawachi, Homare; Kawachi, Yasuyuki; Ikeda, Chihaya; Takagi, Ryo; Katakura, Akira; Shibahara, Takahiko

    2010-01-01

    Intraoperative computer-assisted navigation has gained acceptance in maxillofacial surgery with applications in an increasing number of indications. We adapted a commercially available wireless passive marker system which allows calibration and tracking of virtually every instrument in maxillofacial surgery. Virtual computer-generated anatomical structures are displayed intraoperatively in a semi-immersive head-up display. Continuous observation of the operating field facilitated by computer assistance enables surgical navigation in accordance with the physician's preoperative plans. This case report documents the potential for augmented visualization concepts in surgical resection of tumors in the oral and maxillofacial region. We report a case of T3N2bM0 carcinoma of the maxillary gingival which was surgically resected with the assistance of the Stryker Navigation Cart System. This system was found to be useful in assisting preoperative planning and intraoperative monitoring.

  17. Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: first clinical experience.

    PubMed

    Tsuchida, Keiichi; García-García, Héctor M; van der Giessen, Willem J; McFadden, Eugène P; van der Ent, Martin; Sianos, Georgios; Meulenbrug, Hans; Ong, Andrew T L; Serruys, Patrick W

    2006-03-01

    The objective of this study was to investigate the efficacy of guidewire navigation across coronary artery stenoses using magnetic navigation system (MNS) versus conventional navigation. The MNS is a novel option to facilitate access to target lesions, particularly in tortuous vessels. In an experimental study using a challenging vessel phantom, magnetic-navigated guidewire passage has been reported to reduce fluoroscopy and procedure time significantly. Both magnetic and manual guidewire navigation were attempted in 21 consecutive diseased coronary arteries. The study endpoint was defined as an intraluminal wire position distal to the stenosis. Procedural success was defined as successful guidewire passage without procedural events. Procedure time, amount of contrast, fluoroscopy time, and radiation dose/area product (DAP) were evaluated. There were no procedural events related to either guidewire. Although the lesions attempted had relatively simple and straightforward characteristics, significantly shorter procedure and fluoroscopy time were observed for manual guidewire navigation compared to MNS (median, 40 vs. 120 sec, P=0.001; 38 vs. 105 sec, P=0.001, respectively). Contrast amount and DAP were higher in MNS than in conventional method (median, 13 vs. 9 ml, P=0.018; 215 vs. 73 Gym2, P=0.002, respectively). The magnetic wire did not cross in two vessels. Guidewire navigation using MNS presented a novel, safe, and feasible approach to address coronary artery lesions. Clinical studies are needed to evaluate the potential benefit of the MNS in more complex coronary lesions and tortuous anatomy. Copyright (c) 2006 Wiley-Liss, Inc.

  18. A Performance Assessment of a Tactical Airborne Separation Assistance System using Realistic, Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Neitzke, Kurt W.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of aspects of an Airborne Separation Assistance System (ASAS) under varying demand levels using realistic traffic patterns. This study only addresses the tactical aspects of an ASAS using aircraft state data (latitude, longitude, altitude, heading and speed) to detect and resolve projected conflicts. The main focus of this paper is to determine the extent to which sole reliance on the proposed tactical ASAS can maintain aircraft separation at demand levels up to three times current traffic. The effect of mixing ASAS equipped aircraft with non-equipped aircraft that do not have the capability to self-separate is also investigated.

  19. Tactical assessment in a squad of intelligent bots

    NASA Astrophysics Data System (ADS)

    Gołuński, Marcel; Wasiewicz, Piotr

    2010-09-01

    In this paper we explore the problem of communication and coordination in a team of intelligent game bots (aka embodied agents). It presents a tactical decision making system controlling the behavior of an autonomous bot followed by the concept of a team tactical decision making system controlling the team of intelligent bots. The algorithms to be introduced have been implemented in the Java language by means of Pogamut 2 framework, interfacing the bot logic with Unreal Tournament 2004 virtual environment.

  20. Navigation system for minimally invasive esophagectomy: experimental study in a porcine model.

    PubMed

    Nickel, Felix; Kenngott, Hannes G; Neuhaus, Jochen; Sommer, Christof M; Gehrig, Tobias; Kolb, Armin; Gondan, Matthias; Radeleff, Boris A; Schaible, Anja; Meinzer, Hans-Peter; Gutt, Carsten N; Müller-Stich, Beat-Peter

    2013-10-01

    Navigation systems potentially facilitate minimally invasive esophagectomy and improve patient outcome by improving intraoperative orientation, position estimation of instruments, and identification of lymph nodes and resection margins. The authors' self-developed navigation system is highly accurate in static environments. This study aimed to test the overall accuracy of the navigation system in a realistic operating room scenario and to identify the different sources of error altering accuracy. To simulate a realistic environment, a porcine model (n = 5) was used with endoscopic clips in the esophagus as navigation targets. Computed tomography imaging was followed by image segmentation and target definition with the medical imaging interaction toolkit software. Optical tracking was used for registration and localization of animals and navigation instruments. Intraoperatively, the instrument was displayed relative to segmented organs in real time. The target registration error (TRE) of the navigation system was defined as the distance between the target and the navigation instrument tip. The TRE was measured on skin targets with the animal in the 0° supine and 25° anti-Trendelenburg position and on the esophagus during laparoscopic transhiatal preparation. On skin targets, the TRE was significantly higher in the 25° position, at 14.6 ± 2.7 mm, compared with the 0° position, at 3.2 ± 1.3 mm. The TRE on the esophagus was 11.2 ± 2.4 mm. The main source of error was soft tissue deformation caused by intraoperative positioning, pneumoperitoneum, surgical manipulation, and tissue dissection. The navigation system obtained acceptable accuracy with a minimally invasive transhiatal approach to the esophagus in a realistic experimental model. Thus the system has the potential to improve intraoperative orientation, identification of lymph nodes and adequate resection margins, and visualization of risk structures. Compensation methods for soft tissue

  1. Implementation of Satellite Techniques in the Air Transport

    NASA Astrophysics Data System (ADS)

    Fellner, Andrzej; Jafernik, Henryk

    2016-06-01

    The article shows process of the implementation satellite systems in Polish aviation which contributed to accomplishment Performance-Based Navigation (PBN) concept. Since 1991 authors have introduced Satellite Navigation Equipment in Polish Air Forces. The studies and researches provide to the Polish Air Force alternative approaches, modernize their navigation and landing systems and achieve compatibility with systems of the North Atlantic Treaty Organization (NATO) and International Civil Aviation Organization (ICAO). Acquired experience, conducted military tests and obtained results enabled to take up work scientifically - research in the environment of the civil aviation. Therefore in 2008 there has been launched cooperation with Polish Air Navigation Services Agency (PANSA). Thanks to cooperation, there have been compiled and fulfilled three fundamental international projects: EGNOS APV MIELEC (EGNOS Introduction in European Eastern Region - APV Mielec), HEDGE (Helicopters Deploy GNSS in Europe), SHERPA (Support ad-Hoc to Eastern Region Pre-operational in GNSS). The successful completion of these projects enabled implementation 21 procedures of the RNAV GNSS final approach at Polish airports, contributing to the implementation of PBN in Poland as well as ICAO resolution A37-11. Results of conducted research which served for the implementation of satellite techniques in the air transport constitute the meaning of this material.

  2. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bertsimas, Dimitris

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  3. Troop Carriers at Normandy and Corregidor: Enduring Lessons for Tactical Airlift

    DTIC Science & Technology

    During World War II, troop carrier aviation developed as a new form of combat flying in order to support emerging airborne tactics. Throughout the...of World War II. The second is that modern airlift doctrine and joint practices can improve in how they address air integration and cooperation

  4. Novel cemented cup-holding technique while performing total hip arthroplasty with navigation system.

    PubMed

    Takai, Hirokazu; Takahashi, Tomoki

    2017-09-01

    Recently, navigation systems have been more widely utilized in total hip arthroplasty. However, almost all of these systems have been developed for cementless cups. In the case of cemented total hip arthroplasty using a navigation system, a special-ordered cemented holder is needed. We propose a novel cemented cup-holding technique for navigation systems using readily available articles. We combine a cementless cup holder with an inverted cementless trial cup. The resulting apparatus is used as a cemented cup holder. The upside-down cup-holding technique is useful and permits cemented cup users to utilize a navigation system for placement of the acetabular component.

  5. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  6. Maritime Tactical Unmanned Aerial Systems (TUAS) in Navy Strike Groups Can Improve Maritime Domain Awareness for the Operational Commander

    DTIC Science & Technology

    2008-10-31

    Proposal, staff study, 5 September 2007. 4 Thomas H. Kean, and Lee Hamilton. The 9/11 Commission Report: Final Report of the National...January 2008. http://www.cnaf.navy.mil/nae/main.asp?ItemID=12.   41  Tim Dunigan, “Vertical Take-off and Landing Tactical Unmanned Air Vehicle...September 2007. Berner , Robert A. The Effective Use of Multiple Unmanned Aerial Vehicles in Surface Search and Control. Ft. Belvoir: Defense

  7. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  8. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  9. Flexibility of Continental Navigation and Migration in European Mallards

    PubMed Central

    van Toor, Mariëlle L.; Hedenström, Anders; Waldenström, Jonas; Fiedler, Wolfgang; Holland, Richard A.; Thorup, Kasper; Wikelski, Martin

    2013-01-01

    The ontogeny of continent-wide navigation mechanisms of the individual organism, despite being crucial for the understanding of animal movement and migration, is still poorly understood. Several previous studies, mainly conducted on passerines, indicate that inexperienced, juvenile birds may not generally correct for displacement during fall migration. Waterbirds such as the mallard (Anas platyrhynchos, Linnaeus 1758) are more flexible in their migration behavior than most migratory songbirds, but previous experiments with waterbirds have not yet allowed clear conclusions about their navigation abilities. Here we tested whether immature mallard ducks correct for latitudinal displacement during fall migration within Europe. During two consecutive fall migration periods, we caught immature females on a stopover site in southeast Sweden, and translocated a group of them ca. 1,000 km to southern Germany. We followed the movements of the ducks via satellite GPS-tracking and observed their migration decisions during the fall and consecutive spring migration. The control animals released in Ottenby behaved as expected from banding recoveries: they continued migration during the winter and in spring returned to the population’s breeding grounds in the Baltics and Northwest Russia. Contrary to the control animals, the translocated mallards did not continue migration and stayed at Lake Constance. In spring, three types of movement tactics could be observed: 61.5% of the ducks (16 of 26) stayed around Lake Constance, 27% (7 of 26) migrated in a northerly direction towards Sweden and 11.5% of the individuals (3 of 26) headed east for ca. 1,000 km and then north. We suggest that young female mallards flexibly adjust their migration tactics and develop a navigational map that allows them to return to their natal breeding area. PMID:24023629

  10. The Art and Science of Tactics

    DTIC Science & Technology

    1977-01-01

    THE ART AND SCIENCE OF TACTICS by MAJOR ROBERT A. DOUGHTY, US ARMY E stablishing the nature of tactics has been a pastime of professional...tactics in the US Army have implicitly begun to assume that tactics is more an exact science than an " art and science ." As one recent military writer...and 19th centuries generally agreed that tactics was more an art than it was a science . Many agreed with the terse definition given by Antoine

  11. USAF Development Of Optical Correlation Missile Guidance

    NASA Astrophysics Data System (ADS)

    Kaehr, Ronald; Spector, Marvin

    1980-12-01

    In 1965, the Advanced Development Program (ADP)-679A of the Avionics Laboratory initiated development of guidance systems for stand-off tactical missiles. Employing project engineering support from the Aeronautical Systems Division, WPAFB, the Avionics Laboratory funded multiple terminal guidance concepts and related midcourse navigation technology. Optical correlation techniques which utilize prestored reference information for autonomous target acquisition offered the best near-term opportunity for meeting mission goals. From among the systems studied and flight tested, Aimpoint* optical area guidance provided the best and most consistent performance. Funded development by the Air Force ended in 1974 with a MK-84 guided bomb drop test demonstration at White Sands Missile Range and the subsequent transfer of the tactical missile guidance development charter to the Air Force Armament Laboratory, Eglin AFB. A historical review of optical correlation development within the Avionics Laboratory is presented. Evolution of the Aimpoint system is specifically addressed. Finally, a brief discussion of trends in scene matching technology is presented.

  12. Results from a GPS Shuttle Training Aircraft flight test

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.

    1991-01-01

    A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.

  13. A projective surgical navigation system for cancer resection

    NASA Astrophysics Data System (ADS)

    Gan, Qi; Shao, Pengfei; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Xu, Ronald

    2016-03-01

    Near infrared (NIR) fluorescence imaging technique can provide precise and real-time information about tumor location during a cancer resection surgery. However, many intraoperative fluorescence imaging systems are based on wearable devices or stand-alone displays, leading to distraction of the surgeons and suboptimal outcome. To overcome these limitations, we design a projective fluorescence imaging system for surgical navigation. The system consists of a LED excitation light source, a monochromatic CCD camera, a host computer, a mini projector and a CMOS camera. A software program is written by C++ to call OpenCV functions for calibrating and correcting fluorescence images captured by the CCD camera upon excitation illumination of the LED source. The images are projected back to the surgical field by the mini projector. Imaging performance of this projective navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex-vivo chicken tissue model. In all the experiments, the projected images by the projector match well with the locations of fluorescence emission. Our experimental results indicate that the proposed projective navigation system can be a powerful tool for pre-operative surgical planning, intraoperative surgical guidance, and postoperative assessment of surgical outcome. We have integrated the optoelectronic elements into a compact and miniaturized system in preparation for further clinical validation.

  14. Navigation Operations with Prototype Components of an Automated Real-Time Spacecraft Navigation System

    NASA Technical Reports Server (NTRS)

    Cangahuala, L.; Drain, T. R.

    1999-01-01

    At present, ground navigation support for interplanetary spacecraft requires human intervention for data pre-processing, filtering, and post-processing activities; these actions must be repeated each time a new batch of data is collected by the ground data system.

  15. Navigation Strategies for Primitive Solar System Body Rendezvous and Proximity Operations

    NASA Technical Reports Server (NTRS)

    Getzandanner, Kenneth M.

    2011-01-01

    A wealth of scientific knowledge regarding the composition and evolution of the solar system can be gained through reconnaissance missions to primitive solar system bodies. This paper presents analysis of a baseline navigation strategy designed to address the unique challenges of primitive body navigation. Linear covariance and Monte Carlo error analysis was performed on a baseline navigation strategy using simulated data from a· design reference mission (DRM). The objective of the DRM is to approach, rendezvous, and maintain a stable orbit about the near-Earth asteroid 4660 Nereus. The outlined navigation strategy and resulting analyses, however, are not necessarily limited to this specific target asteroid as they may he applicable to a diverse range of mission scenarios. The baseline navigation strategy included simulated data from Deep Space Network (DSN) radiometric tracking and optical image processing (OpNav). Results from the linear covariance and Monte Carlo analyses suggest the DRM navigation strategy is sufficient to approach and perform proximity operations in the vicinity of the target asteroid with meter-level accuracy.

  16. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  17. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    PubMed Central

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  18. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    PubMed

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  19. Experimental determination of the navigation error of the 4-D navigation, guidance, and control systems on the NASA B-737 airplane

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1978-01-01

    Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.

  20. Computer-assisted neurosurgical navigational system for transsphenoidal surgery--technical note.

    PubMed

    Onizuka, M; Tokunaga, Y; Shibayama, A; Miyazaki, H

    2001-11-01

    Transsphenoidal surgery carries the risk of carotid artery injury even for very experienced neurosurgeons. The computer-assisted neurosurgical (CANS) navigational system was used to obtain more precise guidance, based on the axial and coronal images during the transsphenoidal approach for nine pituitary adenomas. The CANS navigator consists of a three-dimensional digitizer, a computer, and a graphic unit, which utilizes electromagnetic coupling technology to detect the spatial position of a suction tube attached to a magnetic sensor. Preoperatively, the magnetic resonance images are transferred and stored in the computer and the tip of the suction tube is shown on a real-time basis superimposed on the preoperative images. The CANS navigation system correctly displayed the surgical orientation and provided localization in all nine patients. No intraoperative complications were associated with the use of this system. However, outflow of cerebrospinal fluid during tumor removal may affect the accuracy, so the position of the probe when the tumor is removed must be accurately determined. The CANS navigator enables precise localization of the suction tube during the transsphenoidal approach and allows safer and less-invasive surgery.

  1. The Analysis for Energy Consumption of Marine Air Conditioning System Based on VAV and VWV

    NASA Astrophysics Data System (ADS)

    Xu, Sai Feng; Yang, Xing Lin; Le, Zou Ying

    2018-06-01

    For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins' dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.

  2. Navigation system for flexible endoscopes

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Figl, Michael; Birkfellner, Wolfgang; Häfner, Michael; Kollmann, Christian; Bergmann, Helmar

    2003-05-01

    Endoscopic Ultrasound (EUS) features flexible endoscopes equipped with a radial or linear array scanhead allowing high resolution examination of organs adjacent to the upper gastrointestinal tract. An optical system based on fibre-glass or a CCD-chip allows additional orientation. However, 3-dimensional orientation and correct identification of the various anatomical structures may be difficult. It therefore seems desirable to merge real-time US images with high resolution CT or MR images acquired prior to EUS to simplify navigation during the intervention. The additional information provided by CT or MR images might facilitate diagnosis of tumors and, ultimately, guided puncture of suspicious lesions. We built a grid with 15 plastic spheres and measured their positions relatively to five fiducial markers placed on the top of the grid. For this measurement we used an optical tracking system (OTS) (Polaris, NDI, Can). Two sensors of an electromagnetic tracking system (EMTS) (Aurora, NDI, Can) were mounted on a flexible endoscope (Pentax GG 38 UX, USA) to enable a free hand ultrasound calibration. To determine the position of the plastic spheres in the emitter coordinate system of the EMTS we applied a point-to-point registration (Horn) using the coordinates of the fiducial markers in both coordinate systems (OTS and EMTS). For the transformation between EMTS to the CT space the Horn algorithm was adopted again using the fiducial markers. Visualization was enabled by the use of the AVW-4.0 library (Biomedical Imaging Resource, Mayo Clinic, Rochester/MN, USA). To evaluate the suitability of our new navigation system we measured the Fiducial Registration Error (FRE) of the diverse registrations and the Target Registration Error (TRE) for the complete transformation from the US space to the CT space. The FRE for the ultrasound calibration amounted to 4.3 mm +/- 4.2 mm, resulting from 10 calibration procedures. For the transformation from the OTS reference system to the

  3. Navigation integrity monitoring and obstacle detection for enhanced-vision systems

    NASA Astrophysics Data System (ADS)

    Korn, Bernd; Doehler, Hans-Ullrich; Hecker, Peter

    2001-08-01

    Typically, Enhanced Vision (EV) systems consist of two main parts, sensor vision and synthetic vision. Synthetic vision usually generates a virtual out-the-window view using databases and accurate navigation data, e. g. provided by differential GPS (DGPS). The reliability of the synthetic vision highly depends on both, the accuracy of the used database and the integrity of the navigation data. But especially in GPS based systems, the integrity of the navigation can't be guaranteed. Furthermore, only objects that are stored in the database can be displayed to the pilot. Consequently, unexpected obstacles are invisible and this might cause severe problems. Therefore, additional information has to be extracted from sensor data to overcome these problems. In particular, the sensor data analysis has to identify obstacles and has to monitor the integrity of databases and navigation. Furthermore, if a lack of integrity arises, navigation data, e.g. the relative position of runway and aircraft, has to be extracted directly from the sensor data. The main contribution of this paper is about the realization of these three sensor data analysis tasks within our EV system, which uses the HiVision 35 GHz MMW radar of EADS, Ulm as the primary EV sensor. For the integrity monitoring, objects extracted from radar images are registered with both database objects and objects (e. g. other aircrafts) transmitted via data link. This results in a classification into known and unknown radar image objects and consequently, in a validation of the integrity of database and navigation. Furthermore, special runway structures are searched for in the radar image where they should appear. The outcome of this runway check contributes to the integrity analysis, too. Concurrent to this investigation a radar image based navigation is performed without using neither precision navigation nor detailed database information to determine the aircraft's position relative to the runway. The performance of our

  4. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    NASA Astrophysics Data System (ADS)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  5. Design, Development and Testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation and Control System

    NASA Technical Reports Server (NTRS)

    Wagenknecht, J.; Fredrickson, S.; Manning, T.; Jones, B.

    2003-01-01

    Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS.

  6. Two-dimensional measures of accuracy in navigational systems

    DOT National Transportation Integrated Search

    1987-03-31

    Two-dimensional measures generally used to depict the accuracy of radiolocation and navigation systems are described in the report. Application to the NAVSTAR Global Positioning System (GPS) is considered, with a number of geometric illustrations.

  7. Application of Artificial Intelligence (AI) programming techniques to tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) programming techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined and example rules are presented. The results of tests to evaluate the performance of the TDG against a version of AML and against human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements.

  8. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  9. Improved Modeling in a Matlab-Based Navigation System

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.

    1999-01-01

    An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.

  10. Augmented Reality at the Tactical and Operational Levels of War

    DTIC Science & Technology

    2015-10-24

    benefits and challenges their personnel will experience once AR systems are fully adopted. This paper will explain these benefits and challenges as...develop, procure, and integrate systems it believes will benefit its tactical combat units and operational leaders. Ultimately, as the capabilities of...friendly forces, can also help to prevent collateral damage and civilian casualties. Beyond the immediate life-and-death benefits at the tactical

  11. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  12. A comparative analysis of area navigation systems in general aviation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dodge, S. M.

    1973-01-01

    Radio navigation systems which offer the capabilities of area navigation to general aviation operators are discussed. The systems considered are: (1) the VORTAC system, (2) the Loran-C system, and (3) the Differential Omega system. The inital analyses are directed toward a comparison of the systems with respect to their compliance to specified performance parameters and to the cost effectiveness of each system in relation to those specifications. Further analyses lead to the development of system cost sensitivity charts, and the employment of these charts allows conclusions to be drawn relative to the cost-effectiveness of the candidate navigation system.

  13. A novel navigation system for maxillary positioning in orthognathic surgery: Preclinical evaluation.

    PubMed

    Lutz, Jean-Christophe; Nicolau, Stéphane; Agnus, Vincent; Bodin, Frédéric; Wilk, Astrid; Bruant-Rodier, Catherine; Rémond, Yves; Soler, Luc

    2015-11-01

    Appropriate positioning of the maxilla is critical in orthognathic surgery. As opposed to splint-based positioning, navigation systems are versatile and appropriate in assessing the vertical dimension. Bulk and disruption to the line of sight are drawbacks of optical navigation systems. Our aim was to develop and assess a novel navigation system based on electromagnetic tracking of the maxilla, including real-time registration of head movements. Since the software interface has proved to greatly influence the accuracy of the procedure, we purposely designed and evaluated an original, user-friendly interface. A sample of 12 surgeons had to navigate the phantom osteotomized maxilla to eight given target positions using the software we have developed. Time and accuracy (translational error and angular error) were compared between a conventional and a navigated session. A questionnaire provided qualitative evaluation. Our system definitely allows a reduction in variability of time and accuracy among different operators. Accuracy was improved in all surgeons (mean terror difference = 1.11 mm, mean aerror difference = 1.32°). Operative time was decreased in trainees. Therefore, they would benefit from such a system that could also serve for educational purposes. The majority of surgeons who strongly agreed that such a navigation system would prove very helpful in complex deformities, also stated that it would be helpful in everyday orthognathic procedures. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Navigation technique for MR-endoscope system using a wireless accelerometer-based remote control device.

    PubMed

    Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki

    2013-01-01

    The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device.

  15. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    PubMed

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  16. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    PubMed Central

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-01-01

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336

  17. Trajectory Specification for Terminal Air Traffic: Pairwise Conflict Detection and Resolution

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Erzberger, Heinz

    2017-01-01

    Trajectory Specification is the explicit bounding and control of aircraft trajectories such that the position at any point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft navigation capabilities and the current traffic situation. Assuming conformance, Trajectory Specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) system or datalink failure; hence it can help to achieve the high level of safety and reliability needed for ATC automation. It can also reduce the reliance on tactical backup systems during normal operation. This paper applies it to the terminal area around a major airport and presents algorithms and software for detecting and resolving conflicts. A representative set of pairwise conflicts was generated, and a fast-time simulation was run on them. All conflicts were successfully resolved in real time, demonstrating the computational feasibility of the concept.

  18. Trajectory Specification for Terminal Air Traffic: Pairwise Conflict Detection and Resolution

    NASA Technical Reports Server (NTRS)

    Paielli, Russ; Erzberger, Heinz

    2017-01-01

    Trajectory specification is the explicit bounding and control of aircraft trajectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft navigation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) system or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on the terminal area and presents algorithms and software for spacing arrivals and deconflicting both arrivals and departures.

  19. Development of a GPS/INS/MAG navigation system and waypoint navigator for a VTOL UAV

    NASA Astrophysics Data System (ADS)

    Meister, Oliver; Mönikes, Ralf; Wendel, Jan; Frietsch, Natalie; Schlaile, Christian; Trommer, Gert F.

    2007-04-01

    Unmanned aerial vehicles (UAV) can be used for versatile surveillance and reconnaissance missions. If a UAV is capable of flying automatically on a predefined path the range of possible applications is widened significantly. This paper addresses the development of the integrated GPS/INS/MAG navigation system and a waypoint navigator for a small vertical take-off and landing (VTOL) unmanned four-rotor helicopter with a take-off weight below 1 kg. The core of the navigation system consists of low cost inertial sensors which are continuously aided with GPS, magnetometer compass, and a barometric height information. Due to the fact, that the yaw angle becomes unobservable during hovering flight, the integration with a magnetic compass is mandatory. This integration must be robust with respect to errors caused by the terrestrial magnetic field deviation and interferences from surrounding electronic devices as well as ferrite metals. The described integration concept with a Kalman filter overcomes the problem that erroneous magnetic measurements yield to an attitude error in the roll and pitch axis. The algorithm provides long-term stable navigation information even during GPS outages which is mandatory for the flight control of the UAV. In the second part of the paper the guidance algorithms are discussed in detail. These algorithms allow the UAV to operate in a semi-autonomous mode position hold as well an complete autonomous waypoint mode. In the position hold mode the helicopter maintains its position regardless of wind disturbances which ease the pilot job during hold-and-stare missions. The autonomous waypoint navigator enable the flight outside the range of vision and beyond the range of the radio link. Flight test results of the implemented modes of operation are shown.

  20. The accuracy of an electromagnetic navigation system in lateral skull base approaches.

    PubMed

    Komune, Noritaka; Matsushima, Ken; Matsuo, Satoshi; Safavi-Abbasi, Sam; Matsumoto, Nozomu; Rhoton, Albert L

    2017-02-01

    Image-guided optical tracking systems are being used with increased frequency in lateral skull base surgery. Recently, electromagnetic tracking systems have become available for use in this region. However, the clinical accuracy of the electromagnetic tracking system has not been examined in lateral skull base surgery. This study evaluates the accuracy of electromagnetic navigation in lateral skull base surgery. Cadaveric and radiographic study. Twenty cadaveric temporal bones were dissected in a surgical setting under a commercially available, electromagnetic surgical navigation system. The target registration error (TRE) was measured at 28 surgical landmarks during and after performing the standard translabyrinthine and middle cranial fossa surgical approaches to the internal acoustic canal. In addition, three demonstrative procedures that necessitate navigation with high accuracy were performed; that is, canalostomy of the superior semicircular canal from the middle cranial fossa, 1 cochleostomy from the middle cranial fossa, 2 and infralabyrinthine approach to the petrous apex. 3 RESULTS: Eleven of 17 (65%) of the targets in the translabyrinthine approach and five of 11 (45%) of the targets in the middle fossa approach could be identified in the navigation system with TRE of less than 0.5 mm. Three accuracy-dependent procedures were completed without anatomical injury of important anatomical structures. The electromagnetic navigation system had sufficient accuracy to be used in the surgical setting. It was possible to perform complex procedures in the lateral skull base under the guidance of the electromagnetically tracked navigation system. N/A. Laryngoscope, 2016 127:450-459, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Human Factors Considerations for Area Navigation Departure and Arrival Procedures

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    Area navigation (RNAV) procedures are being implemented in the United States and around the world as part of a transition to a performance-based navigation system. These procedures are providing significant benefits and have also caused some human factors issues to emerge. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document RNAV-related human factors issues and propose areas for further consideration. The component focusing on RNAV Departure and Arrival Procedures involved discussions with expert users, a literature review, and a focused review of the NASA Aviation Safety Reporting System (ASRS) database. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for specific instrument procedure design guidelines that consider the effects of human performance. Ongoing industry and government activities to address air-ground communication terminology, design improvements, and chart-database commonality are strongly encouraged. A review of factors contributing to RNAV in-service errors would likely lead to improved system design and operational performance.

  2. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.

  3. Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom.

    PubMed

    Tavallaei, M A; Lavdas, M K; Gelman, D; Drangova, M

    2016-08-01

    To facilitate MRI-guided catheterization procedures, we present an MRI-compatible remote catheter navigation system that allows remote navigation of steerable catheters with 3 degrees of freedom. The system consists of a user interface (master), a robot (slave), and an ultrasonic motor control servomechanism. The interventionalist applies conventional motions (axial, radial and plunger manipulations) on an input catheter in the master unit; this user input is measured and used by the servomechanism to control a compact catheter manipulating robot, such that it replicates the interventionalist's input motion on the patient catheter. The performance of the system was evaluated in terms of MRI compatibility (SNR and artifact), feasibility of remote navigation under real-time MRI guidance, and motion replication accuracy. Real-time MRI experiments demonstrated that catheter was successfully navigated remotely to desired target references in all 3 degrees of freedom. The system had an absolute value error of [Formula: see text]1 mm in axial catheter motion replication over 30 mm of travel and [Formula: see text] for radial catheter motion replication over [Formula: see text]. The worst case SNR drop was observed to be [Formula: see text]3 %; the robot did not introduce any artifacts in the MR images. An MRI-compatible compact remote catheter navigation system has been developed that allows remote navigation of steerable catheters with 3 degrees of freedom. The proposed system allows for safe and accurate remote catheter navigation, within conventional closed-bore scanners, without degrading MR image quality.

  4. Space Weather Effects on Aircraft Navigation

    NASA Astrophysics Data System (ADS)

    Stanley, J. C.; Cade, W. B.

    2012-12-01

    Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.

  5. Panama Canal Fog Navigation Study : Candidate System Definition

    DOT National Transportation Integrated Search

    1984-01-01

    A candidate system for solving fog navigation problems in the Panama Canal is defined. The vessel monitoring subsystem is a shore-based, all-weather, precision ranging system with ranging accuracies of 9 feet (2 standard deviations, 95 percent).

  6. 75 FR 8286 - Proposed Amendment of Area Navigation Route Q-15; California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ...- day traffic flow on Q-15 within the NAS. Area Navigation Routes are published in paragraph 2006 of FAA... http://www.faa.gov/air_traffic/publications/airspace_amendments/ . You may review the public docket... affect air traffic procedures and air navigation, it is certified that this proposed rule, when...

  7. Affective Decision-Making and Tactical Behavior of Under-15 Soccer Players

    PubMed Central

    Gonzaga, Adeilton dos Santos; Albuquerque, Maicon Rodrigues; Malloy-Diniz, Leandro Fernandes; Greco, Pablo Juan; Teoldo da Costa, Israel

    2014-01-01

    Affective decision-making is a type of Executive Function related to cost benefit analysis in situations where gains and losses imply direct consequences for the subject. The purpose of this study was to explore the influence of the affective decision-making on tactical behavior in soccer players under the age of 15 years old. The System of Tactical Assessment in Soccer (FUT-SAT) was used to assess tactical behavior. To evaluate affective decision-making, we used the neuropsychological test called The Iowa Gambling Task (IGT). The values of the offensive, defensive and game tactical behavior of participants were used to create performance groups. The low (≤25%) and high (≥75%) groups, according to offensive, defensive and game tactical behavior, were compared and shown to be different. The values of the IGT net score of the participants with low and high tactical behavior were compared using the non-parametric Mann-Whitney test. Statistically significant differences between the groups were observed for Defensive Tactical Behavior (Z = −3.133; p = 0.002; r = −0.355) and Game Tactical Behavior (Z = −2.267; p = 0.023; r = −0.260). According to these results, it is possible to state that affective decision-making can influence the tactical behavior of under-15 soccer players. PMID:24978030

  8. Broadcast control of air traffic

    NASA Technical Reports Server (NTRS)

    Litchford, G. B.

    1972-01-01

    Applications of wide range broadcast procedures to improve air traffic control and make more airspace available are discussed. A combination of the Omega navigation system and the very high frequency omnirange (VOR) is recommended as a means for accomplishing improved air traffic control. The benefits to be derived by commercial and general aviation are described. The air/ground communications aspects of the improved air traffic control system are explained. Research and development programs for implementing the broadcast concept are recommended.

  9. Air Traffic Control Response to Delays: A System Study of Newark International Airport

    NASA Technical Reports Server (NTRS)

    Evans, Antony D.; Clarke, John-Paul

    2002-01-01

    Airport delays are a significant problem in the United States air transportation system. Between 1999 and 2000 the number of flights delayed increased by 20 percent despite only a 0.4% increase in total operations. Newark International Airport (EWR), one of New York City's primary airports, is one of the airports in the United States most impacted by delays. Newark had the highest percentage of operations delayed in 1999, and was second only to LaGuardia Airport in 2000. Nearly 85% of delays at Newark are caused by adverse weather impacting an airport that may be characterized as having limited capacity and a very full schedule. Although Newark is heavily impacted by weather, delays have not increased significantly since 1998. This indicates that the airlines, air traffic control (ATC), and the Port Authority of New York and New Jersey have successfully adapted. On June 29, 2000, a research team from MIT visited Newark airport to assess the effectiveness of any adaptations made, and to collect data on airline and ATC departure operations, and of the national and local weather affecting the airport. Airline and ATC personnel were also interviewed. Results of this study indicate that airspace capacity limitations downstream of the airport are a primary flow constraint at the airport, and that these constraints are the source of most surface delays. A number of tactical ATC responses to delays were examined, including the application of restrictions, re-routing with the help of the National Playbook, and the use of decision-aiding tools such as the Dynamic Spacing Program (DSP) and the Integrated Terminal Weather System (ITWS). Improved interfacility communications and further utilization of runway 11-29 were identified as other tactical responses to delays, whilst the formation of the Air Traffic Control System Command Center and the New York Airspace redesign were identified as thekey strategic ATC responses to delays. Particularly the New York airspace redesign has

  10. Neural systems analysis of decision making during goal-directed navigation.

    PubMed

    Penner, Marsha R; Mizumori, Sheri J Y

    2012-01-01

    The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors. Copyright © 2011. Published by Elsevier Ltd.

  11. A navigation and control system for an autonomous rescue vehicle in the space station environment

    NASA Technical Reports Server (NTRS)

    Merkel, Lawrence

    1991-01-01

    A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.

  12. A Software Defined Radio Based Airplane Communication Navigation Simulation System

    NASA Astrophysics Data System (ADS)

    He, L.; Zhong, H. T.; Song, D.

    2018-01-01

    Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.

  13. Precise point positioning with the BeiDou navigation satellite system.

    PubMed

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-08

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  14. Precise Point Positioning with the BeiDou Navigation Satellite System

    PubMed Central

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-01

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems. PMID:24406856

  15. Communication networks for the tactical edge

    NASA Astrophysics Data System (ADS)

    Evans, Joseph B.; Pennington, Steven G.; Ewy, Benjamin J.

    2017-04-01

    Information at the tactical level is increasingly critical in today's conflicts. The proliferation of commercial tablets and smart phones has created the ability for extensive information sharing at the tactical edge, beyond the traditional tactical voice communications and location information. This is particularly the case in Gray Zone conflicts, in which tactical decision making and actions are intertwined with information sharing and exploitation. Networking of tactical devices is the key to this information sharing. In this work, we detail and analyze two network models at different parts of the Gray Zone spectrum, and explore a number of networking options including Named Data Networking. We also compare networking approaches in a variety of realistic operating environments. Our results show that Named Data Networking is a good match for the disrupted networking environments found in many tactical situations

  16. Systems Architectures for a Tactical Naval Command and Control System

    DTIC Science & Technology

    2009-03-01

    Supplement TST Time-sensitive Targeting TTP Tactics, Techniques, and Procedures WTP Weapons-target pairing xix GLOSSARY Analysis...target pairings ( WTPs ) and are presented to OTC [a]. 24. OTC conducts risk assessment of engagement options [a]. 25. OTC orders confirmed surface...engagement options are generated through weapon- target pairings ( WTPs ) and are presented to OTC [a]. 24. OTC conducts risk assessment of engagement

  17. Interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Stuart, J. R.

    1984-01-01

    The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.

  18. Performance of magnetic field‐guided navigation system for interventional neurosurgical and cardiac procedures

    PubMed Central

    Chu, James C.H.; Hsi, Wen Chien; Hubbard, Lincoln; Zhang, Yunkai; Bernard, Damian; Reeder, Pamela; Lopes, Demetrius

    2005-01-01

    A hospital‐based magnetic guidance system (MGS) was installed to assist a physician in navigating catheters and guide wires during interventional cardiac and neurosurgical procedures. The objective of this study is to examine the performance of this magnetic field‐guided navigation system. Our results show that the system's radiological imaging components produce images with quality similar to that produced by other modern fluoroscopic devices. The system's magnetic navigation components also deflect the wire and catheter tips toward the intended direction. The physician, however, will have to oversteer the wire or catheter when defining the steering angle during the procedure. The MGS could be clinically useful in device navigation deflection and vessel access. PACS numbers: 07.55.Db, 07.85.‐m PMID:16143799

  19. Canoe: An Autonomous Infrastructure-Free Indoor Navigation System.

    PubMed

    Dong, Kai; Wu, Wenjia; Ye, Haibo; Yang, Ming; Ling, Zhen; Yu, Wei

    2017-04-30

    The development of the Internet of Things (IoT) has accelerated research in indoor navigation systems, a majority of which rely on adequate wireless signals and sources. Nonetheless, deploying such a system requires periodic site-survey, which is time consuming and labor intensive. To address this issue, in this paper we present Canoe , an indoor navigation system that considers shopping mall scenarios. In our system, we do not assume any prior knowledge, such as floor-plan or the shop locations, access point placement or power settings, historical RSS measurements or fingerprints, etc. Instead, Canoe requires only that the shop owners collect and publish RSS values at the entrances of their shops and can direct a consumer to any of these shops by comparing the observed RSS values. The locations of the consumers and the shops are estimated using maximum likelihood estimation. In doing this, the direction of the target shop relative to the current orientation of the consumer can be precisely computed, such that the direction that a consumer should move can be determined. We have conducted extensive simulations using a real-world dataset. Our experiments in a real shopping mall demonstrate that if 50% of the shops publish their RSS values, Canoe can precisely navigate a consumer within 30 s, with an error rate below 9%.

  20. Canoe: An Autonomous Infrastructure-Free Indoor Navigation System

    PubMed Central

    Dong, Kai; Wu, Wenjia; Ye, Haibo; Yang, Ming; Ling, Zhen; Yu, Wei

    2017-01-01

    The development of the Internet of Things (IoT) has accelerated research in indoor navigation systems, a majority of which rely on adequate wireless signals and sources. Nonetheless, deploying such a system requires periodic site-survey, which is time consuming and labor intensive. To address this issue, in this paper we present Canoe, an indoor navigation system that considers shopping mall scenarios. In our system, we do not assume any prior knowledge, such as floor-plan or the shop locations, access point placement or power settings, historical RSS measurements or fingerprints, etc. Instead, Canoe requires only that the shop owners collect and publish RSS values at the entrances of their shops and can direct a consumer to any of these shops by comparing the observed RSS values. The locations of the consumers and the shops are estimated using maximum likelihood estimation. In doing this, the direction of the target shop relative to the current orientation of the consumer can be precisely computed, such that the direction that a consumer should move can be determined. We have conducted extensive simulations using a real-world dataset. Our experiments in a real shopping mall demonstrate that if 50% of the shops publish their RSS values, Canoe can precisely navigate a consumer within 30 s, with an error rate below 9%. PMID:28468291

  1. An analysis of the adaptability of Loran-C to air navigation

    NASA Technical Reports Server (NTRS)

    Littlefield, J. A.

    1981-01-01

    The sources of position errors characteristics of the Loran-C navigation system were identified. Particular emphasis was given to their point on entry as well as their elimination. It is shown that the ratio of realized accuracy to theoretical accuracy of the Loran-C is highly receiver dependent.

  2. Investigation of Air Transportation Technology at Ohio University, 1989-1990

    NASA Technical Reports Server (NTRS)

    Lilley, Robert W.

    1990-01-01

    The activities of the participants in the Joint University Program (JUP) at Ohio University are briefly surveyed. During 1989 to 1990, five topics received emphasis. A spectrum-efficient weather data uplink system was designed, constructed, and flight tested. An integrated Global Positioning System/Inertial Navigation System (GPS/INS) study continued, utilizing the Redundant strapdown Inertial Measurement Unit (IMU) on loan from NASA. The Ridge Regression theory was refined and applied to air navigation scenarios. System Identification theory was applied to GPS data to point the way to better understanding of the effects of Selective Availability on civilian users of this navigation system. An analysis of thought-related (electroencephalographic) signals for application to control of computer systems that could have significance in aiding paraplegics or for hands-off systems control in industrial or air traffic control areas was carried out.

  3. Geo-navigation system for rotary percussion drilling in rocks of high and low electrical conductivity

    NASA Astrophysics Data System (ADS)

    Konurin, AI; Khmelinin, AP; Denisova, EV

    2018-03-01

    The currently available drill navigation systems, with their benefits and shortcomings are reviewed. A mathematical model is built to describe the inertial navigation system movement in horizontal and inclined drilling. A prototype model of the inertial navigation system for rotary percussion drills has been designed.

  4. Tactical 3D model generation using structure-from-motion on video from unmanned systems

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren

    2015-05-01

    Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.

  5. A Model to Measure Bombardier/Navigator Performance during Radar Navigation in Device 2F114, A-6E Weapon System Trainer.

    DTIC Science & Technology

    1981-03-01

    systems, sub- systems, equipment, weapons, tactics, missions, etc. Concepts and Principles - Fundamental truths, ideas, opinions and thoughts formed from...verification, etc. Grasping the meaning of concepts and principles , i.e., understanding the basic principles of infrared and radar detection. Understanding...concepts, principles , procedures, etc.). Analysis A demonstration of a learned process of breaking down material (i.e., data, other information) into

  6. A new systematic calibration method of ring laser gyroscope inertial navigation system

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  7. Battlefield Management System: Data Requirements to Support Passage of Company Level Tactical Information.

    DTIC Science & Technology

    1987-03-01

    intelligent way, assemble those documents and data in usable formats, examine the communications tapes available for this project, and to develop a sampling...Lifetime Learning Publications, Belmont. CA. 1982. Rowe. Neil C.. Artifcial Intelligence , Draft Copv, Class Notes for Winter Quarter. CS 33 10, \\aval...AT2 122 BATTLEFIELD MANAGEMENT SYSTEM DATA REQUIRENTS TO 1/2 SUPPORT PASSAGE OF COMPANY LEVEL TACTICAL INFORMATION (U) NVALE POSTGRADUATE SCHOOL

  8. Guidance and Control Aspects of Tactical Air-Launched Missiles

    DTIC Science & Technology

    1980-10-01

    information; - Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence pusture; -- Improving the co...Symposium on Precision Delivery Systems was held at Eglin Air Force Base , Florida. USA. Many important advances in guidance sensor technology, control system...paper concentrates primarily or the US Army Missile Command’s technology base for development of the precision pointing and tracking or fire control

  9. Research on tactical information display technology for interactive virtual cockpit

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyun; Tian, Tao; Su, Feng

    2018-04-01

    Based on a fact that traditional tactical information display technology suffers from disadvantages of a large number of data to be transferred and low plotting efficiency in an interactive virtual cockpit, a GID protocol-based simulation has been designed. This method dissolves complex tactical information screens into basic plotting units. The indication of plotting units is controlled via the plotting commands, which solves the incompatibility between the tactical information display in traditional simulation and the desktop-based virtual simulation training system. Having been used in desktop systems for helicopters, fighters, and transporters, this method proves to be scientific and reasonable in design and simple and efficient in usage, which exerts a significant value in establishing aviation equipment technology support training products.

  10. National Airspace System : persistent problems in FAA's new navigation system highlight need for periodic reevaluation

    DOT National Transportation Integrated Search

    2000-06-01

    Currently, the Federal Aviation Administration (FAA) relies principally on a ground-based navigation system that uses various types of equipment to assist pilots in navigating their assigned routes and to provide them with guidance for landing their ...

  11. Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning.

    PubMed

    Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien

    2015-01-01

    Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction.

  12. Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning

    PubMed Central

    Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien

    2015-01-01

    Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction. PMID:26065018

  13. The transmission link of CAPS navigation and communication system

    NASA Astrophysics Data System (ADS)

    Cui, Junxia; Shi, Huli; Chen, Jibin; Pei, Jun

    2009-03-01

    The Chinese Area Positioning System (CAPS) is based on communication satellites with integrated capability, which is different from the Global Positioning System (GPS), the International Maritime Satellite Organization (Inmarsat) and so on. CAPS works at C-band, and its navigation information is not directly generated from the satellite, but from the master control station on the ground and transmitted to users via the satellite. The slightly inclined geostationary-satellite orbit (SIGSO) satellites are adopted in CAPS. All of these increase the difficulty in the design of the system and terminals. In this paper, the authors study the CAPS configuration parameters of the navigation master control station, information transmission capability, and the selection of the antenna aperture of the communication center station, as well as the impact of satellite parameters on the whole communication system from the perspective of the transmission link budget. The conclusion of availability of the CAPS navigation system is achieved. The results show that the CAPS inbound communication system forms a new low-data-rate satellite communication system, which can accommodate mass communication terminals with the transmission rate of no more than 1 kbps for every terminal. The communication center station should be configured with a large-aperture antenna (about 10-15 m); spread spectrum communication technology should be used with the spreading gain as high as about 40 dB; reduction of the satellite transponder gain attenuation is beneficial to improving the signal-to-noise ratio of the system, with the attenuation value of 0 or 2 dB as the best choice. The fact that the CAPS navigation system has been checked and accepted by the experts and the operation is stable till now clarifies the rationality of the analysis results. The fact that a variety of experiments and applications of the satellite communication system designed according to the findings in this paper have been

  14. Application of Artificial Intelligence (AI) Programming Techniques to Tactical Guidance for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    McManus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined in detail and example rules are presented. The results of tests to evaluate the performance of the TDG versus a version of AML and versus human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify than the updated FORTRAN AML programs.

  15. A magnetic-resonance-imaging-compatible remote catheter navigation system.

    PubMed

    Tavallaei, Mohammad Ali; Thakur, Yogesh; Haider, Syed; Drangova, Maria

    2013-04-01

    A remote catheter navigation system compatible with magnetic resonance imaging (MRI) has been developed to facilitate MRI-guided catheterization procedures. The interventionalist's conventional motions (axial motion and rotation) on an input catheter - acting as the master - are measured by a pair of optical encoders, and a custom embedded system relays the motions to a pair of ultrasonic motors. The ultrasonic motors drive the patient catheter (slave) within the MRI scanner, replicating the motion of the input catheter. The performance of the remote catheter navigation system was evaluated in terms of accuracy and delay of motion replication outside and within the bore of the magnet. While inside the scanner bore, motion accuracy was characterized during the acquisition of frequently used imaging sequences, including real-time gradient echo. The effect of the catheter navigation system on image signal-to-noise ratio (SNR) was also evaluated. The results show that the master-slave system has a maximum time delay of 41 ± 21 ms in replicating motion; an absolute value error of 2 ± 2° was measured for radial catheter motion replication over 360° and 1.0 ± 0.8 mm in axial catheter motion replication over 100 mm of travel. The worst-case SNR drop was observed to be 2.5%.

  16. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode.

    PubMed

    Hou, Bowen; He, Zhangming; Li, Dong; Zhou, Haiyin; Wang, Jiongqi

    2018-05-27

    Strap-down inertial navigation system/celestial navigation system ( SINS/CNS) integrated navigation is a high precision navigation technique for ballistic missiles. The traditional navigation method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated navigation principle is described and the observability of the navigation system is analyzed. The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during the actual navigation process, leading to the divergence phenomenon of the navigation filter. The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the computational complexity is analyzed. The unscented transformation is used for restricting the nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter compared with the traditional unscented Kalman filter. The comparison results show that the large outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is significantly reduced through the proposed filter.

  17. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla...

  18. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla...

  19. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: New developments and emerging applications

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen

    2017-12-01

    The China's BeiDou Navigation Satellite System (BDS) has been developed and operated well with over 25 launched satellites in 2017, including fifteen Medium Earth orbit (MEO) satellites, five geostationary Earth orbit (GEO) satellites and five inclined geosynchronous orbit (IGSO) satellites. Together with the United States' GPS, European Union's Galileo and Russia's GLONASS as well as other regional augmentation systems, e.g., Indian Regional Navigation Satellite System (IRNSS) and Japan Quasi-Zenith Satellite System (QZSS), more emerging applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the coming years. The papers in this issue of Advances in Space Research present new advances in the system, techniques and emerging applications of BDS/GNSS+. These papers were from an open call and a special call for participants at the 8th China Satellite Navigation Conference (CSNC 2017) held on May 23-25, 2017, Shanghai, China. This conference series provides a good platform for academic and technique exchanges as well as collaboration in satellite navigation. CSNC 2017 was well attend with more than 3000 participants and over 800 papers in 12 sessions.

  20. Flight assessment of a data-link-based navigation-guidance concept

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.

    1983-01-01

    With the proposed introduction of a data-link provision into the Air-Traffic-control (ATC) system, the capability will exist to supplement the ground-air, voice (radio) link with digital, data-link information. Additionally, ATC computers could provide, via the data link guidance and navigation information to the pilot which could then be presented in much the same manner as conventional navigation information. The primary objective of this study was to assess the feasibility and acceptability of using 4-sec and 12-sec information updating to drive conventional cockpit-navigation-instrument formats for path-tracking guidance. A flight test, consisting of 19 tracking tasks, was conducted and, through the use of pilot questionnaires and performance data, the following results were obtained. From a performance standpoint, the 4-sec and 12-sec updating led to a slight degradation in path-tracking performance, relative to continuous updating. From the pilot's viewpoint, the 12-sec data interval was suitable for long path segments (greater than 2 min of flight time), but it was difficult to use on shorter segments because of higher work load and insufficient stabilization time. Overall, it was determined that the utilization of noncontinuous data for navigation was both feasible and acceptable for the prescribed task.

  1. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystalmore » orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.« less

  2. Autonomous Navigation Above the GNSS Constellations and Beyond: GPS Navigation for the Magnetospheric Multiscale Mission and SEXTANT Pulsar Navigation Demonstration

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke

    2017-01-01

    This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.

  3. Development of voice navigation system for the visually impaired by using IC tags.

    PubMed

    Takatori, Norihiko; Nojima, Kengo; Matsumoto, Masashi; Yanashima, Kenji; Magatani, Kazushige

    2006-01-01

    There are about 300,000 visually impaired persons in Japan. Most of them are old persons and, cannot become skillful in using a white cane, even if they make effort to learn how to use a white cane. Therefore, some guiding system that supports the independent activities of the visually impaired are required. In this paper, we will describe about a developed white cane system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines that include IC tags and an intelligent white cane that has a navigation computer. In our system colored navigation lines that are put on the floor of the target space from the start point to the destination and IC tags that are set at the landmark point are used for indication of the route to the destination. The white cane has a color sensor, an IC tag transceiver and a computer system that includes a voice processor. This white cane senses the navigation line that has target color by a color sensor. When a color sensor finds the target color, the white cane informs a white cane user that he/she is on the navigation line by vibration. So, only following this vibration, the user can reach the destination. However, at some landmark points, guidance is necessary. At these points, an IC tag is set under the navigation line. The cane makes communication with the tag and informs the user about the land mark pint by pre recorded voice. Ten normal subjects who were blindfolded were tested with our developed system. All of them could walk along navigation line. And the IC tag information system worked well. Therefore, we have concluded that our system will be a very valuable one to support activities of the visually impaired.

  4. Strategic Dissonance RPA Tactics To Defeat Al Qaeda

    DTIC Science & Technology

    2015-11-24

    Pakistan NDU Journal XXVIII (2014): 77- 86. http://www.ndu.edu.pk/issra/issra_pub/2014/NDU-Journal-2014.pdf. Maass, Matthias. “From U - 2s to Drones: U.S...accordance with Air Force Instruction 51-303, it is not copyrighted, but is the property of the United States government. iii Biography Mr... aircraft (RPA) as the primary means to defeat al-Qaeda is failing. The tactic is a convenient weapon of choice because it is accurate, low risk, and

  5. New vision system and navigation algorithm for an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Tann, Hokchhay; Shakya, Bicky; Merchen, Alex C.; Williams, Benjamin C.; Khanal, Abhishek; Zhao, Jiajia; Ahlgren, David J.

    2013-12-01

    Improvements were made to the intelligence algorithms of an autonomously operating ground vehicle, Q, which competed in the 2013 Intelligent Ground Vehicle Competition (IGVC). The IGVC required the vehicle to first navigate between two white lines on a grassy obstacle course, then pass through eight GPS waypoints, and pass through a final obstacle field. Modifications to Q included a new vision system with a more effective image processing algorithm for white line extraction. The path-planning algorithm adopted the vision system, creating smoother, more reliable navigation. With these improvements, Q successfully completed the basic autonomous navigation challenge, finishing tenth out of over 50 teams.

  6. Multi-aircraft dynamics, navigation and operation

    NASA Astrophysics Data System (ADS)

    Houck, Sharon Wester

    Air traffic control stands on the brink of a revolution. Fifty years from now, we will look back and marvel that we ever flew by radio beacons and radar alone, much as we now marvel that early aviation pioneers flew by chronometer and compass alone. The microprocessor, satellite navigation systems, and air-to-air data links are the technical keys to this revolution. Many airports are near or at capacity now for at least portions of the day, making it clear that major increases in airport capacity will be required in order to support the projected growth in air traffic. This can be accomplished by adding airports, adding runways at existing airports, or increasing the capacity of the existing runways. Technology that allows use of ultra closely spaced (750 ft to 2500 ft) parallel approaches would greatly reduce the environmental impact of airport capacity increases. This research tackles the problem of multi aircraft dynamics, navigation, and operation, specifically in the terminal area, and presents new findings on how ultra closely spaced parallel approaches may be accomplished. The underlying approach considers how multiple aircraft are flown in visual conditions, where spacing criteria is much less stringent, and then uses this data to study the critical parameters for collision avoidance during an ultra closely spaced parallel approach. Also included is experimental and analytical investigations on advanced guidance systems that are critical components of precision approaches. Together, these investigations form a novel approach to the design and analysis of parallel approaches for runways spaced less than 2500 ft apart. This research has concluded that it is technically feasible to reduce the required runway spacing during simultaneous instrument approaches to less than the current minimum of 3400 ft with the use of advanced navigation systems while maintaining the currently accepted levels of safety. On a smooth day with both pilots flying a tunnel

  7. Colonoscope navigation system using colonoscope tracking method based on line registration

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kondo, Hiroaki; Kitasaka, Takayuki; Furukawa, Kazuhiro; Miyahara, Ryoji; Hirooka, Yoshiki; Goto, Hidemi; Navab, Nassir; Mori, Kensaku

    2014-03-01

    This paper presents a new colonoscope navigation system. CT colonography is utilized for colon diagnosis based on CT images. If polyps are found while CT colonography, colonoscopic polypectomy can be performed to remove them. While performing a colonoscopic examination, a physician controls colonoscope based on his/her experience. Inexperienced physicians may occur complications such as colon perforation while colonoscopic examinations. To reduce complications, a navigation system of colonoscope while performing the colonoscopic examinations is necessary. We propose a colonoscope navigation system. This system has a new colonoscope tracking method. This method obtains a colon centerline from a CT volume of a patient. A curved line (colonoscope line) representing the shape of colonoscope inserted to the colon is obtained by using electromagnetic sensors. A coordinate system registration process that employs the ICP algorithm is performed to register the CT and sensor coordinate systems. The colon centerline and colonoscope line are registered by using a line registration method. The position of the colonoscope tip in the colon is obtained from the line registration result. Our colonoscope navigation system displays virtual colonoscopic views generated from the CT volumes. A viewpoint of the virtual colonoscopic view is a point on the centerline that corresponds to the colonoscope tip. Experimental results using a colon phantom showed that the proposed colonoscope tracking method can track the colonoscope tip with small tracking errors.

  8. Computer-Assisted Hip and Knee Arthroplasty. Navigation and Active Robotic Systems

    PubMed Central

    2004-01-01

    Executive Summary Objective The Medical Advisory Secretariat undertook a review of the evidence on the effectiveness and cost-effectiveness of computer assisted hip and knee arthroplasty. The two computer assisted arthroplasty systems that are the topics of this review are (1) navigation and (2) robotic-assisted hip and knee arthroplasty. The Technology Computer-assisted arthroplasty consists of navigation and robotic systems. Surgical navigation is a visualization system that provides positional information about surgical tools or implants relative to a target bone on a computer display. Most of the navigation-assisted arthroplasty devices that are the subject of this review are licensed by Health Canada. Robotic systems are active robots that mill bone according to information from a computer-assisted navigation system. The robotic-assisted arthroplasty devices that are the subject of this review are not currently licensed by Health Canada. Review Strategy The Cochrane and International Network of Agencies for Health Technology Assessment databases did not identify any health technology assessments on navigation or robotic-assisted hip or knee arthroplasty. The MEDLINE and EMBASE databases were searched for articles published between January 1, 1996 and November 30, 2003. This search produced 367 studies, of which 9 met the inclusion criteria. Summary of Findings Navigation-Assisted Arthroplasty Five studies were identified that examined navigation-assisted arthroplasty. A Level 1 evidence study from Germany found a statistically significant difference in alignment and angular deviation between navigation-assisted and free-hand total knee arthroplasty in favour of navigation-assisted surgery. However, the endpoints in this study were short-term. To date, the long-term effects (need for revision, implant longevity, pain, functional performance) are unknown.(1) A Level 2 evidence short-term study found that navigation-assisted total knee arthroplasty was

  9. Integrated Surveillance for the Next Generation Air Transportation System. Final Report of the Integrated Surveillance Study Team

    DTIC Science & Technology

    2008-10-31

    Navigation Services Working Group Jan de Regt FAA Tony Richardson JPDO Technical Support James Roberts DoD AFFSA Eric Rolfe JPDO Air Navigation...Kirsch DHS Drew Kuepper DoD eragency Architecture and Engineering Division Jay Merkle JPDO Int Paul Polski DHS ing GroupElizabeth Lynn ye JPDO Air

  10. Army National Guard Air Defense Artillery Modernization: A Vision for the Future

    DTIC Science & Technology

    1994-05-15

    plan to replace Stinger Under Armor (SUA) for the ARNG, and no guarantee that the BSFV will be in the future ARNG force, divisional assets will remain...Ballistic Missile SUA Stinger Under Armor TAA Total Army Analysis TAAD Theater Area Air Defense TASM Tactical Air-to-Surface Missiles TBM Tactical

  11. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  12. Apollo experience report guidance and control systems: Primary guidance, navigation, and control system development

    NASA Technical Reports Server (NTRS)

    Holley, M. D.; Swingle, W. L.; Bachman, S. L.; Leblanc, C. J.; Howard, H. T.; Biggs, H. M.

    1976-01-01

    The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system.

  13. True navigation in migrating gulls requires intact olfactory nerves.

    PubMed

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A; Huttunen, Markku J; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf

    2015-11-24

    During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances.

  14. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    PubMed

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  15. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  16. A novel technique for tailoring frontal osteoplastic flaps using the ENT magnetic navigation system.

    PubMed

    Volpi, Luca; Pistochini, Andrea; Bignami, Maurizio; Meloni, Francesco; Turri Zanoni, Mario; Castelnuovo, Paolo

    2012-06-01

    The ENT magnetic navigation system is potentially useful and offers the most accurate technique for harvesting frontal osteoplastic flaps. It represents a valid tool in the wide range of instruments available to rhinologists. Precise delineation of the boundaries of the frontal sinus is a crucial step when harvesting a frontal osteoplastic flap. We present a novel technique using the ENT magnetic navigation system. Nineteen patients affected by different pathologies involving the frontal sinus underwent an osteoplastic flap procedure using the ENT magnetic navigation system between January 2009 and April 2011. The ENT magnetic navigation system was found to be a safe and accurate tool for delineating the frontal sinus boundaries. No intraoperative complications occurred during the osteoplastic procedures.

  17. The eyesafe visioceilometer - A tactical visibility and cloud height lidar

    NASA Astrophysics Data System (ADS)

    Barnes, E. S.; Lentz, W. J.

    A recent breakthrough in the mathematical solution to the lidar equation combined with state-of-the-art microelectronics has made it possible to produce the first portable ceiling, visibility, and rangefinding device suitable for tactical use by the U.S. Army. The signal processor of the former XE-2 (Nd:YAG) can be adapted to an eyesafe unit by making use of an erbium glass laser and a GaInAs PIN photodiode detector. It is pointed out that the XE-3 (Eyesafe Visioceilometer) provides tactical real-time data when and where the user needs it, with an accuracy superior to existing nonportable runway equipment. Attention is given to system evolution, lidar theory, the relationship of backscattering and extinction coefficients, a system description, the transient recorder, the analysis of data, and details regarding tactical applications.

  18. Gyroscope-reduced inertial navigation system for flight vehicle motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Xiao, Lu

    2017-01-01

    In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.

  19. Navigation Ground Data System Engineering for the Cassini/Huygens Mission

    NASA Technical Reports Server (NTRS)

    Beswick, R. M.; Antreasian, P. G.; Gillam, S. D.; Hahn, Y.; Roth, D. C.; Jones, J. B.

    2008-01-01

    The launch of the Cassini/Huygens mission on October 15, 1997, began a seven year journey across the solar system that culminated in the entry of the spacecraft into Saturnian orbit on June 30, 2004. Cassini/Huygens Spacecraft Navigation is the result of a complex interplay between several teams within the Cassini Project, performed on the Ground Data System. The work of Spacecraft Navigation involves rigorous requirements for accuracy and completeness carried out often under uncompromising critical time pressures. To support the Navigation function, a fault-tolerant, high-reliability/high-availability computational environment was necessary to support data processing. Configuration Management (CM) was integrated with fault tolerant design and security engineering, according to the cornerstone principles of Confidentiality, Integrity, and Availability. Integrated with this approach are security benchmarks and validation to meet strict confidence levels. In addition, similar approaches to CM were applied in consideration of the staffing and training of the system administration team supporting this effort. As a result, the current configuration of this computational environment incorporates a secure, modular system, that provides for almost no downtime during tour operations.

  20. Designing a wearable navigation system for image-guided cancer resection surgery

    PubMed Central

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2015-01-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure. PMID:24980159

  1. Designing a wearable navigation system for image-guided cancer resection surgery.

    PubMed

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2014-11-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.

  2. Fundamental Tactical Principles of Soccer: A Comparison of Different Age Groups.

    PubMed

    Borges, Paulo Henrique; Guilherme, José; Rechenchosky, Leandro; da Costa, Luciane Cristina Arantes; Rinadi, Wilson

    2017-09-01

    The fundamental tactical principles of the game of soccer represent a set of action rules that guide behaviours related to the management of game space. The aim of this study was to compare the performance of fundamental offensive and defensive tactical principles among youth soccer players from 12 to 17 years old. The sample consisted of 3689 tactical actions performed by 48 soccer players in three age categories: under 13 (U-13), under 15 (U-15), and under 17 (U-17). Tactical performance was measured using the System of Tactical Assessment in Soccer (FUT-SAT). The Kruskal Wallis, Mann-Whitney U, Friedman, Wilcoxon, and Cohen's Kappa tests were used in the study analysis. The results showed that the principles of "offensive coverage" (p = 0.01) and "concentration" (p = 0.04) were performed more frequently by the U-17 players than the U-13 players. The tactical principles "width and length" (p < 0.05) and "defensive unit" (p < 0.05) were executed more frequently by younger soccer players. It can be concluded that the frequency with which fundamental tactical principles are performed varies between the gaming categories, which implies that there is valuation of defensive security and a progressive increase in "offensive coverage" caused by increased confidence and security in offensive actions.

  3. An alternative ionospheric correction model for global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  4. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  5. TDRSS Onboard Navigation System (TONS) flight qualification experiment

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.

  6. Advanced Strategic and Tactical Relay Request Management for the Mars Relay Operations Service

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.; Wallick, Michael N.; Gladden, Roy E.; Wang, Paul; Hy, Franklin H.

    2013-01-01

    This software provides a new set of capabilities for the Mars Relay Operations Service (MaROS) in support of Strategic and Tactical relay, including a highly interactive relay request Web user interface, mission control over relay planning time periods, and mission management of allowed strategic vs. tactical request parameters. Together, these new capabilities expand the scope of the system to include all elements critical for Tactical relay operations. Planning of replay activities spans a time period that is split into two distinct phases. The first phase is called Strategic, which begins at the time that relay opportunities are identified, and concludes at the point that the orbiter generates the flight sequences for on board execution. Any relay request changes from this point on are called Tactical. Tactical requests, otherwise called Orbit - er Relay State Changes (ORSC), are highly restricted in terms of what types of changes can be made, and the types of parameters that can be changed may differ from one orbiter to the next. For example, one orbiter may be able to delay the start of a relay request, while another may not. The legacy approach to ORSC management involves exchanges of e-mail with "requests for change" and "acknowledgement of approval," with no other tracking of changes outside of e-mail folders. MaROS Phases 1 and 2 provided the infrastructure for strategic relay for all supported missions. This new version, 3.0, introduces several capabilities that fully expand the scope of the system to include tactical relay. One new feature allows orbiter users to manage and "lock" Planning Periods, which allows the orbiter team to formalize the changeover from Strategic to Tactical operations. Another major feature allows users to interactively submit tactical request changes via a Web user interface. A third new feature allows orbiter missions to specify allowed tactical updates, which are automatically incorporated into the tactical change process

  7. Interactive navigation system for shock wave applications.

    PubMed

    Hagelauer, U; Russo, S; Gigliotti, S; de Durante, C; Corrado, E M

    2001-01-01

    The latest generation of shock wave lithotripters, with therapy heads mounted on articulated arms, have found widespread application in the treatment of orthopedic diseases. Currently, integration of an ultrasound probe in the therapy head is the dominant modality for positioning the shock wave focus on the treatment area. For orthopedic applications, however, X-ray imaging is often preferred. This article describes a new method to locate the therapy head of a lithotripter. In the first step, the surgeon positions the tissue to be treated at the isocenter of a C-arc. This is achieved using AP and 30-degree lateral projections, with corresponding horizontal and vertical movements of the patient under fluoroscopic guidance. These movements register the anatomic location in the coordinate system of the C-arc. In the second step, the therapy head is navigated to align the shock wave focus with the isocenter. Position data are reported from an optical tracker mounted on the X-ray system, which tracks an array of infrared LEDs on the therapy head. The accuracy of the tracking system was determined on a test bench, and was calculated to be 1.55 mm (RMS) for an angular movement of +/-15 degrees around a calibrated position. Free-hand navigation and precise alignment are performed with a single virtual reality display. The display is calculated by a computer system in real time, and uses graphical symbols to represent the shock wave path and isocenter. In an interactive process, the physician observes the display while navigating the therapy head towards the isocenter. Precise alignment is achieved by displaying an enlarged view of the intersecting graphical symbols. Results from the first tests on 100 patients demonstrate the feasibility of this approach in a clinical environment. Copyright 2001 Wiley-Liss, Inc.

  8. Improving CAR Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  9. Improving Car Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  10. 77 FR 67782 - Proposed Amendment of Class E Airspace; Casper, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ..., Natrona County International Airport, Casper, WY, to facilitate vectoring of Instrument Flight Rules (IFR... Range Tactical Air Navigation (VORTAC) has made reconfiguration necessary for the safety and management of aircraft operations at Casper, Natrona County International Airport, Casper, WY. DATES: Comments...

  11. Tactical emergency medical support programs: a comprehensive statewide survey.

    PubMed

    Bozeman, William P; Morel, Benjamin M; Black, Timothy D; Winslow, James E

    2012-01-01

    Specially trained tactical emergency medical support (TEMS) personnel provide support to law enforcement special weapons and tactics (SWAT) teams. These programs benefit law enforcement agencies, officers, suspects, and citizens. TEMS programs are increasingly popular, but there are wide variations in their organization and operation and no recent data on their prevalence. We sought to measure the current prevalence and specific characteristics of TEMS programs in a comprehensive fashion in a single southeastern state. North Carolina emergency medical services (EMS) systems have county-based central EMS oversight; each system was surveyed by phone and e-mail. The presence and selected characteristics of TEMS programs were recorded. U.S. Census data were used to measure the population impact of the programs. All of the 101 EMS systems statewide were successfully contacted. Thirty-three counties (33%) have TEMS programs providing medical support to 56 local law enforcement agencies as well as state and federal agencies. TEMS programs tend to be located in more populated urban and suburban areas, serving a population base of 5.9 million people, or 64% of the state's population. Tactical medics in the majority of these programs (29/33; 88%) are not sworn law enforcement officers. Approximately one-third of county-based EMS systems in North Carolina have TEMS programs. These programs serve almost two-thirds of the state's population base, using primarily nonsworn tactical medics. Comparison with other regions of the country will be useful to demonstrate differences in prevalence and program characteristics. Serial surveillance will help track trends and measure the growth and impact of this growing subspecialty field.

  12. a New Survey on Self-Tuning Integrated Low-Cost Gps/ins Vehicle Navigation System in Harsh Environment

    NASA Astrophysics Data System (ADS)

    Navidi, N.; Landry, R., Jr.

    2015-08-01

    Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.

  13. Real-time Imaging Orientation Determination System to Verify Imaging Polarization Navigation Algorithm

    PubMed Central

    Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli

    2016-01-01

    Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851

  14. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    PubMed Central

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206

  15. Can low-cost VOR and Omega receivers suffice for RNAV - A new computer-based navigation technique

    NASA Technical Reports Server (NTRS)

    Hollaar, L. A.

    1978-01-01

    It is shown that although RNAV is particularly valuable for the personal transportation segment of general aviation, it has not gained complete acceptance. This is due, in part, to its high cost and the necessary special-handling air traffic control. VOR/DME RNAV calculations are ideally suited for analog computers, and the use of microprocessor technology has been suggested for reducing RNAV costs. Three navigation systems, VOR, Omega, and DR, are compared for common navigational difficulties, such as station geometry, siting errors, ground disturbances, and terminal area coverage. The Kalman filtering technique is described with reference to the disadvantages when using a system including standard microprocessors. An integrated navigation system, using input data from various low-cost sensor systems, is presented and current simulation studies are noted.

  16. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  17. Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.

    1983-01-01

    One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.

  18. Modern Application of Liddell Hart’s Doctrine on Infantry Tactics.

    DTIC Science & Technology

    1983-06-03

    new system is that the platoon should be the basis of all infantry training." The reason for this statement soon becomes clear as he describes all...lecture was titled, "Man-in-the-Dark" Theory of Infantry Tactics and the "Expanding Torrent" System of Attack. These theories will be explained in the...was pub- lished. This book elaborates the lecture and also has an appendix on, "A system for teaching the elements of tactics for a platoon". The book

  19. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    NASA Astrophysics Data System (ADS)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  20. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  1. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  2. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition.

    PubMed

    Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen

    2018-04-24

    The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible.

  3. Fundamental Tactical Principles of Soccer: A Comparison of Different Age Groups

    PubMed Central

    Guilherme, José; Rechenchosky, Leandro; da Costa, Luciane Cristina Arantes; Rinadi, Wilson

    2017-01-01

    Abstract The fundamental tactical principles of the game of soccer represent a set of action rules that guide behaviours related to the management of game space. The aim of this study was to compare the performance of fundamental offensive and defensive tactical principles among youth soccer players from 12 to 17 years old. The sample consisted of 3689 tactical actions performed by 48 soccer players in three age categories: under 13 (U-13), under 15 (U-15), and under 17 (U-17). Tactical performance was measured using the System of Tactical Assessment in Soccer (FUT-SAT). The Kruskal Wallis, Mann-Whitney U, Friedman, Wilcoxon, and Cohen’s Kappa tests were used in the study analysis. The results showed that the principles of “offensive coverage” (p = 0.01) and “concentration” (p = 0.04) were performed more frequently by the U-17 players than the U-13 players. The tactical principles “width and length” (p < 0.05) and “defensive unit” (p < 0.05) were executed more frequently by younger soccer players. It can be concluded that the frequency with which fundamental tactical principles are performed varies between the gaming categories, which implies that there is valuation of defensive security and a progressive increase in “offensive coverage” caused by increased confidence and security in offensive actions. PMID:28828091

  4. High accuracy GNSS based navigation in GEO

    NASA Astrophysics Data System (ADS)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  5. The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias

    PubMed Central

    Bauernfeind, Tamas; Akca, Ferdi; Schwagten, Bruno; de Groot, Natasja; Van Belle, Yves; Valk, Suzanne; Ujvari, Barbara; Jordaens, Luc; Szili-Torok, Tamas

    2011-01-01

    Aims We aimed to evaluate the safety and long-term efficacy of the magnetic navigation system (MNS) in a large number of patients. The MNS has the potential for improving safety and efficacy based on atraumatic catheter design and superior navigation capabilities. Methods and results In this study, 610 consecutive patients underwent ablation. Patients were divided into two age- and sex-matched groups. Ablations were performed either using MNS (group MNS, 292) or conventional manual ablation [group manual navigation (MAN), 318]. The following parameters were analysed: acute success rate, fluoroscopy time, procedure time, complications [major: pericardial tamponade, permanent atrioventricular (AV) block, major bleeding, and death; minor: minor bleeding and temporary AV block]. Recurrence rate was assessed during follow-up (15 ± 9.5 months). Subgroup analysis was performed for the following groups: atrial fibrillation, isthmus dependent and atypical atrial flutter, atrial tachycardia, AV nodal re-entrant tachycardia, circus movement tachycardia, and ventricular tachycardia (VT). Magnetic navigation system was associated with less major complications (0.34 vs. 3.2%, P = 0.01). The total numbers of complications were lower in group MNS (4.5 vs. 10%, P = 0.005). Magnetic navigation system was equally effective as MAN in acute success rate for overall groups (92 vs. 94%, P = ns). Magnetic navigation system was more successful for VTs (93 vs. 72%, P < 0.05). Less fluoroscopy was used in group MNS (30 ± 20 vs. 35 ± 25 min, P < 0.01). There were no differences in procedure times and recurrence rates for the overall groups (168 ± 67 vs. 159 ± 75 min, P = ns; 14 vs. 11%, P = ns; respectively). Conclusions Our data suggest that the use of MNS improves safety without compromising efficiency of ablations. Magnetic navigation system is more effective than manual ablation for VTs. PMID:21508006

  6. The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias.

    PubMed

    Bauernfeind, Tamas; Akca, Ferdi; Schwagten, Bruno; de Groot, Natasja; Van Belle, Yves; Valk, Suzanne; Ujvari, Barbara; Jordaens, Luc; Szili-Torok, Tamas

    2011-07-01

    We aimed to evaluate the safety and long-term efficacy of the magnetic navigation system (MNS) in a large number of patients. The MNS has the potential for improving safety and efficacy based on atraumatic catheter design and superior navigation capabilities. In this study, 610 consecutive patients underwent ablation. Patients were divided into two age- and sex-matched groups. Ablations were performed either using MNS (group MNS, 292) or conventional manual ablation [group manual navigation (MAN), 318]. The following parameters were analysed: acute success rate, fluoroscopy time, procedure time, complications [major: pericardial tamponade, permanent atrioventricular (AV) block, major bleeding, and death; minor: minor bleeding and temporary AV block]. Recurrence rate was assessed during follow-up (15±9.5 months). Subgroup analysis was performed for the following groups: atrial fibrillation, isthmus dependent and atypical atrial flutter, atrial tachycardia, AV nodal re-entrant tachycardia, circus movement tachycardia, and ventricular tachycardia (VT). Magnetic navigation system was associated with less major complications (0.34 vs. 3.2%, P=0.01). The total numbers of complications were lower in group MNS (4.5 vs. 10%, P=0.005). Magnetic navigation system was equally effective as MAN in acute success rate for overall groups (92 vs. 94%, P=ns). Magnetic navigation system was more successful for VTs (93 vs. 72%, P<0.05). Less fluoroscopy was used in group MNS (30±20 vs. 35±25 min, P<0.01). There were no differences in procedure times and recurrence rates for the overall groups (168±67 vs. 159±75 min, P=ns; 14 vs. 11%, P=ns; respectively). Our data suggest that the use of MNS improves safety without compromising efficiency of ablations. Magnetic navigation system is more effective than manual ablation for VTs.

  7. Design of a laser navigation system for the inspection robot used in substation

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Sun, Yanhe; Sun, Deli

    2017-01-01

    Aimed at the deficiency of the magnetic guide and RFID parking system used by substation inspection robot now, a laser navigation system is designed, and the system structure, the method of map building and positioning are all introduced. The system performance is tested in a 500kV substation, and the result show that the repetitive precision of navigation system is precise enough to help the robot fulfill inspection tasks.

  8. Environmental Assessment Addressing the Expansion of Sortie-Operations at Moody Air Force Base, Georgia

    DTIC Science & Technology

    2012-08-01

    include the tactical delivery of air-to-ground munitions, laser designation of targets from ground and airborne platforms, and threat evasion. These...world events, which include the tactical delivery of air-to-ground munitions, laser designation of targets from ground and airborne platforms, and...Closure CAA Clean Air Act CAU Classic Associate Unit CEQ Council on Environmental Quality CFR Code of Federal Regulations CO carbon monoxide

  9. Ramjet Tactical Missile Propulsion Status

    DTIC Science & Technology

    2002-11-01

    EM Linear Actuator Figure 25 - MAR C-R-282Ramjet Figure 26 - AL4RC-R-282Ramjet Testing HIGH SPEED ANTI-RADIATION MISSILE DEMONSRATION ( HSAD ) The High...Speed Anti-Radiation Demonstration ( HSAD ) Project is focused on maturing an advanced propulsion concept that is compatible with the guidance...navigation and control (GNC) section of the Air-Ground Missile-88E (AGM-88f), Advanced Anti-Radiation Guided Missile (AARGM) Program. The HSAD Project

  10. Guidance-Control-Navigation Automation for Night All-Weather Tactical Operations Held at Hague (Netherlands) on 21-24 May 1985.

    DTIC Science & Technology

    1985-11-01

    1 1 f, 1,1"u’t I r -I irmat tor related to the weapon system as a whole can [1--1 Th t- it: as growth pot enS lal to Interface a Mission Planning...taictical decisions4 1n" 1 w 1I ’ depenid en the? core avionics to varying dog re-n. It is Important .i.h, h11~ knew whether any equipment or system ...toot en limitant le poids. le volume et le coOt des eguipements. Des fonctions nouvelles sont introduites. Peu A peu, le systeme de navigation se

  11. Disposal strategy for the geosynchronous orbits of the Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Liu, Lin

    Beidou Navigation Satellite System (BDS) is China's navigation satelite system. It is now operational for navigation service in China and Asia-Pacific region and is due to be fully operational as a global navigation system by 2020. Unlike other navigation satellite systems, BDS consists of both 12-hour medium Earth orbit and 24-hour geosynchronous orbit. To sustain a safe environment for the navigation satellites, the end-of-life satellites must be disposed appropriately so they do not pose potential dangers to the operational satellites. There are currently two strategies for the disposal orbit. One is to put the disposed satellite in a graveyard orbit that has a safe distance from the operational satellites. It is often applied in geosynchronous orbits and such graveyard orbit can always maintain a safe distance even for a few centuries. This strategy is also currently adopted by GPS, yet recent researches show a re-entry orbit can sometimes be a better alternative. The interaction of Earth oblateness and lunisolar gravitation can lead to a rapid increase in the orbit eccentricity such that by proper design the disposed GPS satellite can be cleared out by re-entry into the atmosphere. In this work we focus on the disposal strategy for BDS geosynchronous orbit, which consists of the equatorial stationary orbit (GEO) and the inclined orbit (IGSO). We show that these two orbits are essentially in two different dynamical environments and evolve quite distinctly over a long period of time. Taking advantage of the dynamic nature, we apply the graveyard orbit and the re-entry orbit to GEO and IGSO respectively and propose appropriate disposal strategies accordingly.

  12. Assessment of the OsteoMark-Navigation System for Oral and Maxillofacial Surgery

    PubMed Central

    Peacock, Zachary S.; Magill, John C.; Tricomi, Brad J.; Murphy, Brian A.; Nikonovskiy, Vladimir; Hata, Nobuhiko; Chauvin, Laurent; Troulis, Maria J.

    2015-01-01

    Purpose To assess the accuracy of a novel navigation system for maxillofacial surgery using human cadavers and a live minipig model. Methods We describe and test an electromagnetic tracking system (OsteoMark Navigation) that uses simple sensors to determine position and orientation of a hand held pencil-like marking device. The device can translate 3-dimensional computed tomographic data intraoperatively to allow the surgeon to localize and draw a proposed osteotomy or the margins of a tumor on the bone. The accuracy of OsteoMark-Navigation in locating and marking osteotomies and screw positions in human cadaver heads was assessed. In Group 1 (n=3, 6 sides), Osteomark-Navigation marked osteotomies and screw positions were compared to virtual treatment plans In Group 2 (n=3, 6 sides), marked osteotomies and screw positions for distraction osteogenesis devices were compared to those carried out using fabricated guide-stents. Three metrics were used to document precision and accuracy. In Group 3 (n=1), the system was tested in a standard operating room environment. Results For Group 1, the mean error between points was 0.7mm (horizontal) and 1.7mm (vertical). When compared to the posterior and inferior mandibular border the mean error was 1.2 and 1.7mm, respectively. For Group 2, the mean discrepancy between points marked by Osteomark-Navigation and the surgical guides was 1.9 mm (range 0-4.1 mm). The system maintained accuracy on a live minipig in a standard operating room environment. Conclusion Based on this research OsteoMark-Navigation is potentially a powerful tool for clinical use in maxillofacial surgery. It has accuracy and precision comparable to existing clinical applications. PMID:25865717

  13. Considerations for multiple hypothesis correlation on tactical platforms

    NASA Astrophysics Data System (ADS)

    Thomas, Alan M.; Turpen, James E.

    2013-05-01

    Tactical platforms benefit greatly from the fusion of tracks from multiple sources in terms of increased situation awareness. As a necessary precursor to this track fusion, track-to-track association, or correlation, must first be performed. The related measurement-to-track fusion problem has been well studied with multiple hypothesis tracking and multiple frame assignment methods showing the most success. The track-to-track problem differs from this one in that measurements themselves are not available but rather track state update reports from the measuring sensors. Multiple hypothesis, multiple frame correlation systems have previously been considered; however, their practical implementation under the constraints imposed by tactical platforms is daunting. The situation is further exacerbated by the inconvenient nature of reports from legacy sensor systems on bandwidth- limited communications networks. In this paper, consideration is given to the special difficulties encountered when attempting the correlation of tracks from legacy sensors on tactical aircraft. Those difficulties include the following: covariance information from reporting sensors is frequently absent or incomplete; system latencies can create temporal uncertainty in data; and computational processing is severely limited by hardware and architecture. Moreover, consideration is given to practical solutions for dealing with these problems in a multiple hypothesis correlator.

  14. Architecting the Communication and Navigation Networks for NASA's Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Bhassin, Kul B.; Putt, Chuck; Hayden, Jeffrey; Tseng, Shirley; Biswas, Abi; Kennedy, Brian; Jennings, Esther H.; Miller, Ron A.; Hudiburg, John; Miller, Dave; hide

    2007-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of the missions is to grow, through a series of launches, a system of systems communication, navigation, and timing infrastructure at minimum cost while providing a network-centric infrastructure that maximizes the exploration capabilities and science return. There is a strong need to use architecting processes in the mission pre-formulation stage to describe the systems, interfaces, and interoperability needed to implement multiple space communication systems that are deployed over time, yet support interoperability with each deployment phase and with 20 years of legacy systems. In this paper we present a process for defining the architecture of the communications, navigation, and networks needed to support future space explorers with the best adaptable and evolable network-centric space exploration infrastructure. The process steps presented are: 1) Architecture decomposition, 2) Defining mission systems and their interfaces, 3) Developing the communication, navigation, networking architecture, and 4) Integrating systems, operational and technical views and viewpoints. We demonstrate the process through the architecture development of the communication network for upcoming NASA space exploration missions.

  15. U.S. Unmanned Aerial Vehicles (UAVs) and Network Centric Warfare (NCW): Impacts on Combat Aviation Tactics from Gulf War I Through 2007 Iraq

    DTIC Science & Technology

    2008-03-01

    early warning AIM Air-intercept missile AJCN Adaptive, joint, C4ISR node AOR Area of responsibility ARM Anti-radiation missile ATARS Advanced...Tactical Airborne Reconnaissance System ( ATARS ) on F-16 and F/A-18 aircraft, and satellites. Manned platforms were adapted to multiple mission scenarios... Psychological Ops X Tern/Leaflet Dispensing, 2004 All Weather/ Night Strike X DASH/Vietnam, 1960s Predator/Afghanistan/Iraq, 2001 36

  16. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  17. Significance of Waterway Navigation Positioning Systems On Ship's Manoeuvring Safety

    NASA Astrophysics Data System (ADS)

    Galor, W.

    The main goal of navigation is to lead the ship to the point of destination safety and efficiently. Various factors may affect ship realisating this process. The ship movement on waterway are mainly limited by water area dimensions (surface and depth). These limitations cause the requirement to realise the proper of ship movement trajectory. In case when this re requirement cant't fulfil then marine accident may happend. This fact is unwanted event caused losses of human health and life, damage or loss of cargo and ship, pollution of natural environment, damage of port structures or blocking the port of its ports and lost of salvage operation. These losses in same cases can be catas- trophical especially while e.i. crude oil spilling could be place. To realise of safety navigation process is needed to embrace the ship's movement trajectory by waterways area. The ship's trajectory is described by manoeuvring lane as a surface of water area which is require to realise of safety ship movement. Many conditions affect to ship manoeuvring line. The main are following: positioning accuracy, ship's manoeuvring features and phenomena's of shore and ship's bulk common affecting. The accuracy of positioning system is most important. This system depends on coast navigation mark- ing which can range many kinds of technical realisation. Mainly used systems based on lights (line), radionavigation (local system or GPS, DGPS), or radars. If accuracy of positiong is higer, then safety of navigation is growing. This article presents these problems exemplifying with approaching channel to ports situated on West Pomera- nian water region.

  18. 14 CFR 1.2 - Abbreviations and symbols.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... with runway alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid... touchdown zone lights. TVOR means very high frequency terminal omnirange station. V Ameans design... safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans very high frequency...

  19. Construction and Testing of Broadband High Impedance Ground Planes (HIGPS) for Surface Mount Antennas

    DTIC Science & Technology

    2008-03-01

    Conductor PMC: Perfect Magnetic Conductor RF: Radio Frequency RH: Right-handed SNG : Single Negative TACAN: Tactical Air Navigation UAV: Unmanned Aerial...negative ( SNG ) and double-negative (DNG) materials, and their fascinating properties have driven the interest in MTMs (Engheta and Ziolkowski, 2006

  20. Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2017-06-01

    The Kalman filter has been widely applied in the field of dynamic navigation and positioning. However, its performance will be degraded in the presence of significant model errors and uncertain interferences. In the literature, the fading filter was proposed to control the influences of the model errors, and the H-infinity filter can be adopted to address the uncertainties by minimizing the estimation error in the worst case. In this paper, a new multiple fading factor, suitable for the Global Positioning System (GPS) and the Inertial Navigation System (INS) integrated navigation system, is proposed based on the optimization of the filter, and a comprehensive filtering algorithm is constructed by integrating the advantages of the H-infinity filter and the proposed multiple fading filter. Measurement data of the GPS/INS integrated navigation system are collected under actual conditions. Stability and robustness of the proposed filtering algorithm are tested with various experiments and contrastive analysis are performed with the measurement data. Results demonstrate that both the filter divergence and the influences of outliers are restrained effectively with the proposed filtering algorithm, and precision of the filtering results are improved simultaneously.

  1. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  2. The Development of a Simulator System and Hardware Test Bed for Deep Space X-Ray Navigation

    NASA Astrophysics Data System (ADS)

    Doyle, Patrick T.

    2013-03-01

    Currently, there is a considerable interest in developing technologies that will allow using photon measurements from celestial x-ray sources for deep space navigation. The impetus for this is that many envisioned future space missions will require spacecraft to have autonomous navigation capabilities. For missions close to Earth, Global Navigation Satellite Systems (GNSS) such as GPS are readily available for use, but for missions far from Earth, other alternatives must be provided. While existing systems such as the Deep Space Network (DSN) can be used, latencies associated with servicing a fleet of vehicles may not be compatible with some autonomous operations requiring timely updates of their navigation solution. Because of their somewhat predictable emissions, pulsars are the ideal candidates for x-ray sources that can be used to provide key parameters for navigation. Algorithms and simulation tools that will enable designing and analyzing x-ray navigation concepts are presented. The development of a compact x-ray detector system is pivotal to the eventual deployment of such navigation systems. Therefore, results of a high altitude balloon test to evaluate the design of a compact x-ray detector system are described as well.

  3. Spread Spectrum Applications in Unmanned Aerial Vehicles

    DTIC Science & Technology

    1994-06-01

    Specter can be launched from the ground or F/A-18 and F-16 aircraft. The Specter carries the Advanced Tactical Air Reconnaissance System ( ATARS ...the transition should be easy. While ATARS is Specter’s designated payload, it can carry other payloads weighing up to 400 pounds: electronic...implement a 650 km UAV. The combination of ATARS digital imagery and a real-time data link, together with the Specter’s ability to fly low, fast, navigate

  4. Space-based Scintillation Nowcasting with the Communications/Navigation Outage Forecast System

    NASA Astrophysics Data System (ADS)

    Groves, K.; Starks, M.; Beach, T.; Basu, S.

    2008-12-01

    The Air Force Research Laboratory's Communication/Navigation Outage Forecast System (C/NOFS) fuses ground- and space-based data in a near real-time physics-based model aimed at forecasting and nowcasting equatorial scintillations and their impacts on satellite communications and navigation. A key component of the system is the C/NOFS satellite that was launched into a low-inclination (13°) elliptical orbit (400 km x 850 km) in April 2008. The satellite contains six sensors to measure space environment parameters including electron density and temperature, ion density and drift, electric and magnetic fields and neutral wind, as well as a tri-band radio beacon transmitting at 150 MHz, 400 MHz and 1067 MHz. Scintillation nowcasts are derived from measuring the one-dimensional in situ electron density fluctuations and subsequently modeling the propagation environment for satellite-to-ground radio links. The modeling process requires a number of simplifying assumptions regarding the three-dimensional structure of the ionosphere and the results are readily validated by comparisons with ground-based measurements of the satellite's tri-band beacon signals. In mid-September 2008 a campaign to perform detailed analyses of space-based scintillation nowcasts with numerous ground observations was conducted in the vicinity of Kwajalein Atoll, Marshall Islands. To maximize the collection of ground-truth data, the ALTAIR radar was employed to obtain detailed information on the spatial structure of the ionosphere during the campaign and to aid the improvement of space-based nowcasting algorithms. A comparison of these results will be presented; it appears that detailed information on the electron density structure is a limiting factor in modeling the scintillation environment from in situ observations.

  5. Supporting tactical intelligence using collaborative environments and social networking

    NASA Astrophysics Data System (ADS)

    Wollocko, Arthur B.; Farry, Michael P.; Stark, Robert F.

    2013-05-01

    Modern military environments place an increased emphasis on the collection and analysis of intelligence at the tactical level. The deployment of analytical tools at the tactical level helps support the Warfighter's need for rapid collection, analysis, and dissemination of intelligence. However, given the lack of experience and staffing at the tactical level, most of the available intelligence is not exploited. Tactical environments are staffed by a new generation of intelligence analysts who are well-versed in modern collaboration environments and social networking. An opportunity exists to enhance tactical intelligence analysis by exploiting these personnel strengths, but is dependent on appropriately designed information sharing technologies. Existing social information sharing technologies enable users to publish information quickly, but do not unite or organize information in a manner that effectively supports intelligence analysis. In this paper, we present an alternative approach to structuring and supporting tactical intelligence analysis that combines the benefits of existing concepts, and provide detail on a prototype system embodying that approach. Since this approach employs familiar collaboration support concepts from social media, it enables new-generation analysts to identify the decision-relevant data scattered among databases and the mental models of other personnel, increasing the timeliness of collaborative analysis. Also, the approach enables analysts to collaborate visually to associate heterogeneous and uncertain data within the intelligence analysis process, increasing the robustness of collaborative analyses. Utilizing this familiar dynamic collaboration environment, we hope to achieve a significant reduction of time and skill required to glean actionable intelligence in these challenging operational environments.

  6. 77 FR 13350 - Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-814] Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same; Determination Not To Review Initial... importation of certain automotive GPS navigation systems, components thereof, and products containing the same...

  7. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition

    PubMed Central

    Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen

    2018-01-01

    The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible. PMID:29695041

  8. Evaluation of Hardware and Software for a Small Autonomous Underwater Vehicle Navigation System (SANS)

    DTIC Science & Technology

    1994-09-01

    Hyslop , G.L., Schieber, G.E., Schwartz, M.K., "Automated Mission Planning for the Standoff Land Attack Missile (SLAM)", Proceedings of the...1993, pp. 277-290. [PARK80] Parkinson, B.W., "Overview", Global Positioning System, Vol. 1, The Institute of Navigation, Washington, D.C., 1980 , pp...Navigation Message", Global Positioning System, Vol. 1, The Institute of Navigation, Washington, D.C., 1980 , pp. 55-73. 139 [WOOD851 Wooden, W. H

  9. The Foundations of U.S. Air Doctrine, The Problem of Friction in War

    DTIC Science & Technology

    1984-12-01

    battles of Voronezh, the Chir River. Tatsinskay a and Manichskaya in Russia (May 1942-January 1943); command of 48th Panzer Corps under Erich von...The Air Plan that Defeated Hitler (Atlanta. Georgia: Higgins - McArthur Longino and Porter, 1972). p. 15. Walker’s students at the Air Corps Tactical...Hitter. Atlanta, Georgia: Higgins -McArthur/Longtno and Porter. 1972. Hansell’s account of the thinking behind Air Corps Tactical School precis ton

  10. History of the Air Corps Tactical School 1920-1940

    DTIC Science & Technology

    1998-01-01

    1st Lt. Air Corps SHUFELT, James V. V. Captain Cavalry STRATEMEYER, George E. Major Air Corps SZILAGYI , Nicholas Captain Infantry TYNDALL, Frank B...Air Corps WALLACE , William J. Captain U.S. Marine Corps WEDDINGTON, Harry Captain Air Corps WEIKERT, John M. 1st Lt. Air Corps WHEELER, Walter L. 1st...M. Captain Air Corps SMITH, Joseph Captain Air Corps SMITH, Wallace G. Major Air Corps STOWELL, James S. Captain Air Corps TAYLOR, Yantis H. Captain

  11. [Clinical study on the coronary artery interventions guided by the magnetic navigation system].

    PubMed

    Li, Chun-jian; Wang, Hui; Wang, Lian-sheng; Zhu, Tie-bing; Yang, Zhi-jian; Cao, Ke-jiang

    2010-03-01

    To investigate the efficacy and safety of the magnetic navigation system used in the real world percutaneous coronary artery intervention. All lesions detected by the coronary artery angiography in the magnetic-navigation catheter lab indicated for percutaneous coronary artery intervention (PCI) were included and treated under the guidance of the magnetic navigation system. The characteristics of the target lesion, process of the procedure, time and dosage of the X-ray exposure, and procedure-related complication were recorded and analyzed. One hundred and twenty one patients with 138 lesions were recruited and intervened by PCI during the period from April 2006 to June 2008. Thirty lesions were classified as type A, 50 as type B1, 36 as type B2, 22 as type C (including seven total occlusions). The average stenosis of the target lesions was (85.3 +/- 10.0)%, mean length was (21.1 +/- 10.0) mm. Under the guidance of the magnetic navigation system, 134 target lesions were passed by the magnetic guide-wires, the lesion passing ratio was 97.1%. The X-ray exposure time, X-ray dosage and the contrast volume used during the period of the wire placement were (55.9 +/- 35.4) seconds, (98.0 +/- 86.1) mGy/(490.0 +/- 422.2) microGym(2) and (8.0 +/- 5.4) ml, respectively. A total of 164 stents were implanted in the vessels where the target lesions were passed by the magnetic wires. There was no magnetic navigation system associated complication. Magnetic guide-wires failed to pass four target lesions, two of which were chronic total occlusions (CTOs), and the other two were calcified subtotal occlusions. It is feasible and safe to adopt the magnetic navigation system for the real-world coronary artery intervention. The magnetic guide-wire possesses a high lesion-passing ratio. The CTOs and calcified subtotal occlusions are not ideal lesions for use of the magnetic navigation system.

  12. True navigation in migrating gulls requires intact olfactory nerves

    PubMed Central

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A.; Huttunen, Markku J.; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf

    2015-01-01

    During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances. PMID:26597351

  13. Clock performance as a critical parameter in navigation satellite systems

    NASA Technical Reports Server (NTRS)

    Anderle, R. J.

    1978-01-01

    The high performance of available oscillators has permitted the development of invaluable navigation and geodetic satellite systems. However, still higher performance oscillators would further improve the accuracy or flexibility of the systems.

  14. Celestial Navigation in the 21st Century

    NASA Astrophysics Data System (ADS)

    Kaplan, George H.

    2014-05-01

    Despite the ubiquity of GPS receivers in modern life for both timekeeping and geolocation, other forms of navigation remain important because of the weakness of the GPS signals (and those from similar sat-nav systems) and the ease with which they can be jammed. GPS jammers are available for sale on the Internet. The defense and civil aviation communities are particularly concerned about “GPS denial”, whether intentional or accidental, during critical operations.Automated star trackers for navigation have been available since the 1950s. Modern compact observing systems, operating in the far-red and near-IR bands, can detect useful numbers of stars even in the daytime at sea level. A capability to measure the directions of stars relative to some local set of coordinate axes is advantageous for many types of vehicles, whether on the ground, at sea, in the air, or in space, because it provides a direct connection to the inertial reference system represented by current star catalogs. Such a capability can yield precise absolute orientation information not available in any other way. Automated celestial observing systems can be effectively coupled to inertial navigation systems (INS), providing “truth” data for constraining the drift in the INS navigation solution, even if stellar observations are not continuously available due to weather. However, obtaining precise latitude and longitude from stellar observations alone, on a moving platform, remains a challenge, because it requires a determination of the direction to the center of the Earth, i.e., the gravity vertical. General relativity tells us that on-board (“lab”) measurements cannot separate the acceleration of gravity from the acceleration of the platform. Various schemes for overcoming this fundamental problem have been used in the past, at low accuracy, and better ones have been proposed for modern applications. This paper will review some recent developments in this rapidly advancing field.

  15. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  16. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the highfidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars.

  17. Air Combat Training: Good Stick Index Validation. Final Report for Period 3 April 1978-1 April 1979.

    ERIC Educational Resources Information Center

    Moore, Samuel B.; And Others

    A study was conducted to investigate and statistically validate a performance measuring system (the Good Stick Index) in the Tactical Air Command Combat Engagement Simulator I (TAC ACES I) Air Combat Maneuvering (ACM) training program. The study utilized a twelve-week sample of eighty-nine student pilots to statistically validate the Good Stick…

  18. Urban, Indoor and Subterranean Navigation Sensors and Systems (Capteurs et systemes de navigation urbains, interieurs et souterrains)

    DTIC Science & Technology

    2010-11-01

    3-10 Multiple Images of an Image Sequence Figure 3-10 A Digital Magnetic Compass from KVH Industries 3-11 Figure 3-11 Earth’s Magnetic Field 3-11...ARINO SENER – Ingenieria y Sistemas S.A Aerospace Division Parque Tecnologico de Madrid Calle Severo Ocho 4 28760 Tres Cantos Madrid Email...experts from government, academia, industry and the military produced an analysis of future navigation sensors and systems whose performance

  19. 76 FR 66750 - Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... INTERNATIONAL TRADE COMMISSION [DN 2850] Certain Automotive GPS Navigation Systems, Components... given that the U.S. International Trade Commission has received a complaint entitled In Re Certain Automotive GPS Navigation Systems, Components Thereof, And Products Containing Same, DN 2850; the Commission...

  20. TARDEC Annual Report 2010

    DTIC Science & Technology

    2011-06-15

    capable of engaging threats while interacting with system operators. Through autonomous perception and navigation, intelligent tactical behavior... systems integration approach. TARDEC’s role is to assess the best way to apply the VICTORY architecture to future tactical wheeled vehicles and...Track tops Thrown Object Protection System traDoc U.S. Army Training and Doctrine Command twVs Tactical Wheeled Vehicle Survivability ugV Unmanned

  1. The accuracy of a hand-held navigation system in total knee arthroplasty.

    PubMed

    Loh, Bryan; Chen, Jerry Yongqiang; Yew, Andy Khye Soon; Pang, Hee Nee; Tay, Darren Keng Jin; Chia, Shi-Lu; Lo, Ngai Nung; Yeo, Seng Jin

    2017-03-01

    This study aims to evaluate the effectiveness of a new hand-held navigation system. The authors of this study hypothesize that this navigation system will improve overall lower limb alignment and implant placement without causing a delay in surgery. Two hundred consecutive patients diagnosed with tricompartmental osteoarthritis and underwent total knee arthroplasty by a senior surgeon were included in this study. One hundred patients underwent TKA using the hand-held navigation system, while the other 100 patients underwent TKA using the conventional technique. The primary outcomes of this study were the overall alignment of the lower limb and the position of the components. This was determined radiologically using the: (1) Hip-Knee-Ankle angle (HKA) for lower limb alignment; (2) Coronal Femoral-Component angle (CFA); and (3) Coronal Tibia-Component angle (CTA) for component position. Normal alignment was taken as 180° ± 3° for the HKA and 90° ± 3° for both the CFA and CTA. For the CFA, the proportion of outliers was 7 and 17% in the hand-held navigation and conventional group, respectively (p = 0.030). For the HKA and CTA, there was no difference in the proportion of outliers between the two groups. The duration of surgery was 73 ± 9 min and 87 ± 15 min in the hand-held navigation and conventional group, respectively (p < 0.001). This hand-held navigation system is an effective intraoperative tool for reducing the proportion of outliers for femoral implant placement as well as the duration of surgery. The authors conclude that it can be considered for use to check femoral implant placement intra-operatively. III.

  2. Relationship between Procedural Tactical Knowledge and Specific Motor Skills in Young Soccer Players

    PubMed Central

    Aquino, Rodrigo; Marques, Renato Francisco R.; Petiot, Grégory Hallé; Gonçalves, Luiz Guilherme C.; Moraes, Camila; Santiago, Paulo Roberto P.; Puggina, Enrico Fuini

    2016-01-01

    The purpose of this study was to investigate the association between offensive tactical knowledge and the soccer-specific motor skills performance. Fifteen participants were submitted to two evaluation tests, one to assess their technical and tactical analysis. The motor skills performance was measured through four tests of technical soccer skills: ball control, shooting, passing and dribbling. The tactical performance was based on a tactical assessment system called FUT-SAT (Analyses of Procedural Tactical Knowledge in Soccer). Afterwards, technical and tactical evaluation scores were ranked with and without the use of the cluster method. A positive, weak correlation was perceived in both analyses (rho = 0.39, not significant p = 0.14 (with cluster analysis); and rho = 0.35; not significant p = 0.20 (without cluster analysis)). We can conclude that there was a weak association between the technical and the offensive tactical knowledge. This shows the need to reflect on the use of such tests to assess technical skills in team sports since they do not take into account the variability and unpredictability of game actions and disregard the inherent needs to assess such skill performance in the game. PMID:29910300

  3. Issues in symbol design for electronic displays of navigation information

    DOT National Transportation Integrated Search

    2004-10-24

    An increasing number of electronic displays, ranging from small hand-held displays for general aviation to installed displays for air transport, are showing navigation information, such as symbols representing navigational aids. The wide range of dis...

  4. Modern Inertial and Satellite Navigation Systems

    DTIC Science & Technology

    1994-05-02

    rotor spins, the harder it is to disturb it. This technique is called spin stabilization and it is commonly used for communication satellites. Moder... using a generalization of the complex number called the quaternion . Modem Inertial and Satellite Navigation Systems page 32. 4.2 Exdrson in Pincile...length by an integer. Positive feedback arises from the use of a lasing medium, a gas, liquid, crystal ions, or any of a number of other possibilities

  5. Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning

    NASA Astrophysics Data System (ADS)

    Evennou, Frédéric; Marx, François

    2006-12-01

    This paper presents an aided dead-reckoning navigation structure and signal processing algorithms for self localization of an autonomous mobile device by fusing pedestrian dead reckoning and WiFi signal strength measurements. WiFi and inertial navigation systems (INS) are used for positioning and attitude determination in a wide range of applications. Over the last few years, a number of low-cost inertial sensors have become available. Although they exhibit large errors, WiFi measurements can be used to correct the drift weakening the navigation based on this technology. On the other hand, INS sensors can interact with the WiFi positioning system as they provide high-accuracy real-time navigation. A structure based on a Kalman filter and a particle filter is proposed. It fuses the heterogeneous information coming from those two independent technologies. Finally, the benefits of the proposed architecture are evaluated and compared with the pure WiFi and INS positioning systems.

  6. 14 CFR 1.2 - Abbreviations and symbols.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid. TAS means true... means technical standard order. TVOR means very high frequency terminal omnirange station. V Ameans... 2minmeans minimum takeoff safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans...

  7. 14 CFR 1.2 - Abbreviations and symbols.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid. TAS means true... means technical standard order. TVOR means very high frequency terminal omnirange station. V Ameans... 2minmeans minimum takeoff safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans...

  8. 14 CFR 1.2 - Abbreviations and symbols.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid. TAS means true... means technical standard order. TVOR means very high frequency terminal omnirange station. V Ameans... 2minmeans minimum takeoff safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans...

  9. 14 CFR 1.2 - Abbreviations and symbols.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid. TAS means true... means technical standard order. TVOR means very high frequency terminal omnirange station. V Ameans... 2minmeans minimum takeoff safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans...

  10. 78 FR 78299 - Proposed Establishment of Class E Airspace; Truth or Consequences, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...-0995; Airspace Docket No. 13-ASW-30] Proposed Establishment of Class E Airspace; Truth or Consequences... Truth or Consequences VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Truth or Consequences, NM, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of...

  11. SURVIVORSHIP NAVIGATION OUTCOME MEASURES: A report from the ACS Patient Navigation Working Group on Survivorship Navigation

    PubMed Central

    Pratt-Chapman, Mandi; Simon, Melissa A.; Patterson, Angela; Risendal, Betsy C.; Patierno, Steven

    2013-01-01

    Survivorship navigation is a relatively new concept in the field of patient navigation, but an important one. This paper highlights the essential functions of the survivorship navigator and defines core outcomes and measures for navigation in the survivorship period. Barriers to access to care experienced by patients during active cancer treatment can continue into the post-treatment period, affecting quality follow-up care for survivors. These barriers to care can be particularly acute for non-English speakers, immigrants, the uninsured, the underinsured and other vulnerable populations. The survivorship navigator can help reduce barriers and facilitate access to survivorship care and services through communication and information exchange for patients. Survivorship navigation may improve appropriate health care utilization through education and care coordination, potentially improving health outcomes and quality of life of survivors while reducing cost to the health care system. Survivorship navigators can also educate survivors on how to improve their overall wellness, thereby directly impacting the health of a growing population of cancer survivors. PMID:21780092

  12. 2009 Tactical Wheeled Vehicles Conference (TWV)

    DTIC Science & Technology

    2009-02-03

    Concept / Status / Joint Effort Between TARDEC & CERDEC • Leverage Military / Commercial vehicular technologies to equip tactical vehicles with a common... Vehicles Trailer (HEMAT) Heavy Equipment Transport (HETS) Container Handling Unit (CHU) Armored Security Vehicle Over 1200 systems fielded 978...Important Note: While EMIP is an excellent means to introduce new technologies to the Military , it can not change vehicle systems. Army PM’s are

  13. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.

    PubMed

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-12-17

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  14. Positioning accuracy in a registration-free CT-based navigation system

    NASA Astrophysics Data System (ADS)

    Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.

    2007-12-01

    In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.

  15. An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chien, T. T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.

  16. Rebuilding the Joint Airborne Forward Air Controller: Analyzing Joint Air Tasking Doctrine’s Ability to Facilitate Effective Air-Ground Integration

    DTIC Science & Technology

    2013-12-13

    Air Controller: An Analysis of Mosquito Operations in Korea Since the dawn of powered flight, airpower visionaries and land warfare stalwarts have...properly employed, this aid from the sky in assisting during an attack by our own troops or in repelling an attack or counterattack by the enemy greatly...proliferation of airborne Forward Air Controllers. The Mosquito Airborne Tactical Air Coordinator (TAC(A)) role, known as FAC(A) in modern joint

  17. Learning to navigate the healthcare system in a new country: a qualitative study.

    PubMed

    Straiton, Melanie L; Myhre, Sonja

    2017-12-01

    Learning to navigate a healthcare system in a new country is a barrier to health care. Understanding more about the specific navigation challenges immigrants experience may be the first step towards improving health information and thus access to care. This study considers the challenges that Thai and Filipino immigrant women encounter when learning to navigate the Norwegian primary healthcare system and the strategies they use. A qualitative interview study using thematic analysis. Norway. Fifteen Thai and 15 Filipino immigrant women over the age of 18 who had been living in Norway at least one year. The women took time to understand the role of the general practitioner and some were unaware of their right to an interpreter during consultations. In addition to reliance on family members and friends in their social networks, voluntary and cultural organisations provided valuable tips and advice on how to navigate the Norwegian health system. While some women actively engaged in learning more about the system, they noted a lack of information available in multiple languages. Informal sources play an important role in learning about the health care system. Formal information should be available in different languages in order to better empower immigrant women.

  18. 76 FR 72442 - Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-814] Certain Automotive GPS Navigation Systems... the sale within the United States after importation of certain automotive GPS navigation systems... further alleges that an industry in the United States exists as required by subsection (a)(2) of section...

  19. A reactive system for open terrain navigation: Performance and limitations

    NASA Technical Reports Server (NTRS)

    Langer, D.; Rosenblatt, J.; Hebert, M.

    1994-01-01

    We describe a core system for autonomous navigation in outdoor natural terrain. The system consists of three parts: a perception module which processes range images to identify untraversable regions of the terrain, a local map management module which maintains a representation of the environment in the vicinity of the vehicle, and a planning module which issues commands to the vehicle controller. Our approach is to use the concept of 'early traversability evaluation', and on the use of reactive planning for generating commands to drive the vehicle. We argue that our approach leads to a robust and efficient navigation system. We illustrate our approach by an experiment in which a vehicle travelled autonomously for one kilometer through unmapped cross-country terrain.

  20. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  1. Coding of navigational affordances in the human visual system

    PubMed Central

    Epstein, Russell A.

    2017-01-01

    A central component of spatial navigation is determining where one can and cannot go in the immediate environment. We used fMRI to test the hypothesis that the human visual system solves this problem by automatically identifying the navigational affordances of the local scene. Multivoxel pattern analyses showed that a scene-selective region of dorsal occipitoparietal cortex, known as the occipital place area, represents pathways for movement in scenes in a manner that is tolerant to variability in other visual features. These effects were found in two experiments: One using tightly controlled artificial environments as stimuli, the other using a diverse set of complex, natural scenes. A reconstruction analysis demonstrated that the population codes of the occipital place area could be used to predict the affordances of novel scenes. Taken together, these results reveal a previously unknown mechanism for perceiving the affordance structure of navigable space. PMID:28416669

  2. Advanced Tactical Crew System (ATACS) Issues and Options: Impacts on Aircrew Selection and Training.

    DTIC Science & Technology

    1981-10-01

    simulation-intensive aircrew training simulator comb1 al readiness tactics development fidelity training device Next Generation Training System 20. ABSTRACT...quest’ione~s. driv.ei iii large part b%’ thlie general reqeuiremuenits for initial and( ’oniiipaili training and for \\irFre iiev,, for achieviotg a...ni- cal In formationl Service. where if will he available to the general public. iicluding foreign nationals. •rhis paper has heen reviewed and is

  3. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  4. Femur-mounted navigation system for the arthroscopic treatment of femoroacetabular impingement

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Hwang, D. S.; Yoon, Y. S.

    2013-07-01

    Femoroacetabular impingement stems from an abnormal shape of the acetabulum and proximal femur. It is treated by resection of damaged soft tissue and by the shaping of bone to resemble normal features. The arthroscopic treatment of femoroacetabular impingement has many advantages, including minimal incisions, rapid recovery, and less pain. However, in some cases, revision is needed owing to the insufficient resection of damaged bone from a misreading of the surgical site. The limited view of arthroscopy is the major reason for the complications. In this research, a navigation method for the arthroscopic treatment of femoroacetabular impingement is developed. The proposed navigation system consists of femur attachable measurement device and user interface. The bone mounted measurement devices measure points on head-neck junction for registration and position of surgical instrument. User interface shows the three-dimensional model of patient's femur and surgical instrument position that is tracked by measurement device. Surgeon can know the three-dimensional anatomical structure of hip joint and surgical instrument position on surgical site using navigation system. Surface registration was used to obtain relation between patient's coordinate at the surgical site and coordinate of three-dimensional model of femur. In this research, we evaluated the proposed navigation system using plastic model bone. It is expected that the surgical tool tracking position accuracy will be less than 1 mm.

  5. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2017-06-01

    Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.

  6. 76 FR 77939 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... navigation for en route through non-precision instrument approaches. GPS is an internationally accepted... Localizer Performance with Vertical guidance (LPV). These approaches are equivalent to Category I ILS, but... approach procedures with LPV or localizer performance (LP) non-precision lines of minima to all qualified...

  7. A simplified satellite navigation system for an autonomous Mars roving vehicle.

    NASA Technical Reports Server (NTRS)

    Janosko, R. E.; Shen, C. N.

    1972-01-01

    The use of a retroflecting satellite and a laser rangefinder to navigate a Martian roving vehicle is considered in this paper. It is shown that a simple system can be employed to perform this task. An error analysis is performed on the navigation equations and it is shown that the error inherent in the scheme proposed can be minimized by the proper choice of measurement geometry. A nonlinear programming approach is used to minimize the navigation error subject to constraints that are due to geometric and laser requirements. The problem is solved for a particular set of laser parameters and the optimal solution is presented.

  8. Indoor navigation by image recognition

    NASA Astrophysics Data System (ADS)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  9. Functional Description of Air Traffic Control

    DOT National Transportation Integrated Search

    1971-04-01

    The document contains a description of air traffic control in terms of generic operational functions. The functions are grouped by flight phase and by major system function (navigation, surveillance, control and communication). More detailed descript...

  10. Hybrid optical navigation by crater detection for lunar pin-point landing: trajectories from helicopter flight tests

    NASA Astrophysics Data System (ADS)

    Trigo, Guilherme F.; Maass, Bolko; Krüger, Hans; Theil, Stephan

    2018-01-01

    Accurate autonomous navigation capabilities are essential for future lunar robotic landing missions with a pin-point landing requirement, since in the absence of direct line of sight to ground control during critical approach and landing phases, or when facing long signal delays the herein before mentioned capability is needed to establish a guidance solution to reach the landing site reliably. This paper focuses on the processing and evaluation of data collected from flight tests that consisted of scaled descent scenarios where the unmanned helicopter of approximately 85 kg approached a landing site from altitudes of 50 m down to 1 m for a downrange distance of 200 m. Printed crater targets were distributed along the ground track and their detection provided earth-fixed measurements. The Crater Navigation (CNav) algorithm used to detect and match the crater targets is an unmodified method used for real lunar imagery. We analyze the absolute position and attitude solutions of CNav obtained and recorded during these flight tests, and investigate the attainable quality of vehicle pose estimation using both CNav and measurements from a tactical-grade inertial measurement unit. The navigation filter proposed for this end corrects and calibrates the high-rate inertial propagation with the less frequent crater navigation fixes through a closed-loop, loosely coupled hybrid setup. Finally, the attainable accuracy of the fused solution is evaluated by comparison with the on-board ground-truth solution of a dual-antenna high-grade GNSS receiver. It is shown that the CNav is an enabler for building autonomous navigation systems with high quality and suitability for exploration mission scenarios.

  11. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    PubMed Central

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-01-01

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information. PMID:27999318

  12. A dataset on human navigation strategies in foreign networked systems.

    PubMed

    Kőrösi, Attila; Csoma, Attila; Rétvári, Gábor; Heszberger, Zalán; Bíró, József; Tapolcai, János; Pelle, István; Klajbár, Dávid; Novák, Márton; Halasi, Valentina; Gulyás, András

    2018-03-13

    Humans are involved in various real-life networked systems. The most obvious examples are social and collaboration networks but the language and the related mental lexicon they use, or the physical map of their territory can also be interpreted as networks. How do they find paths between endpoints in these networks? How do they obtain information about a foreign networked world they find themselves in, how they build mental model for it and how well they succeed in using it? Large, open datasets allowing the exploration of such questions are hard to find. Here we report a dataset collected by a smartphone application, in which players navigate between fixed length source and destination English words step-by-step by changing only one letter at a time. The paths reflect how the players master their navigation skills in such a foreign networked world. The dataset can be used in the study of human mental models for the world around us, or in a broader scope to investigate the navigation strategies in complex networked systems.

  13. A dataset on human navigation strategies in foreign networked systems

    PubMed Central

    Kőrösi, Attila; Csoma, Attila; Rétvári, Gábor; Heszberger, Zalán; Bíró, József; Tapolcai, János; Pelle, István; Klajbár, Dávid; Novák, Márton; Halasi, Valentina; Gulyás, András

    2018-01-01

    Humans are involved in various real-life networked systems. The most obvious examples are social and collaboration networks but the language and the related mental lexicon they use, or the physical map of their territory can also be interpreted as networks. How do they find paths between endpoints in these networks? How do they obtain information about a foreign networked world they find themselves in, how they build mental model for it and how well they succeed in using it? Large, open datasets allowing the exploration of such questions are hard to find. Here we report a dataset collected by a smartphone application, in which players navigate between fixed length source and destination English words step-by-step by changing only one letter at a time. The paths reflect how the players master their navigation skills in such a foreign networked world. The dataset can be used in the study of human mental models for the world around us, or in a broader scope to investigate the navigation strategies in complex networked systems. PMID:29533391

  14. Telecommunications and navigation systems design for manned Mars exploration missions

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  15. Telecommunications and navigation systems design for manned Mars exploration missions

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-01-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  16. Clarissa Spoken Dialogue System for Procedure Reading and Navigation

    NASA Technical Reports Server (NTRS)

    Hieronymus, James; Dowding, John

    2004-01-01

    Speech is the most natural modality for humans use to communicate with other people, agents and complex systems. A spoken dialogue system must be robust to noise and able to mimic human conversational behavior, like correcting misunderstandings, answering simple questions about the task and understanding most well formed inquiries or commands. The system aims to understand the meaning of the human utterance, and if it does not, then it discards the utterance as being meant for someone else. The first operational system is Clarissa, a conversational procedure reader and navigator, which will be used in a System Development Test Objective (SDTO) on the International Space Station (ISS) during Expedition 10. In the present environment one astronaut reads the procedure on a Manual Procedure Viewer (MPV) or paper, and has to stop to read or turn pages, shifting focus from the task. Clarissa is designed to read and navigate ISS procedures entirely with speech, while the astronaut has his eyes and hands engaged in performing the task. The system also provides an MPV like graphical interface so the procedure can be read visually. A demo of the system will be given.

  17. 78 FR 78298 - Proposed Establishment of Class E Airspace; Phoenix, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...-0956; Airspace Docket No. 13-AWP-17] Proposed Establishment of Class E Airspace; Phoenix, AZ AGENCY... rulemaking (NPRM). SUMMARY: This action proposes to establish Class E airspace at the Phoenix VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Phoenix, AZ, to facilitate vectoring of...

  18. Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish

    PubMed Central

    Partridge, Charlyn G.; MacManes, Matthew D.; Knapp, Rosemary; Neff, Bryan D.

    2016-01-01

    Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning. PMID:27907106

  19. Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish.

    PubMed

    Partridge, Charlyn G; MacManes, Matthew D; Knapp, Rosemary; Neff, Bryan D

    2016-01-01

    Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning.

  20. DIY-style GIS service in mobile navigation system integrated with web and wireless GIS

    NASA Astrophysics Data System (ADS)

    Yan, Yongbin; Wu, Jianping; Fan, Caiyou; Wang, Minqi; Dai, Sheng

    2007-06-01

    Mobile navigation system based on handheld device can not only provide basic GIS services, but also enable these GIS services to be provided without location limit, to be more instantly interacted between users and devices. However, we still see that most navigation systems have common defects on user experience like limited map format, few map resources, and unable location share. To overcome the above defects, we propose DIY-style GIS service which provide users a more free software environment and allow uses to customize their GIS services. These services include defining geographical coordinate system of maps which helps to hugely enlarge the map source, editing vector feature, related property information and hotlink images, customizing covered area of download map via General Packet Radio Service (GPRS), and sharing users' location information via SMS (Short Message Service) which establishes the communication between users who needs GIS services. The paper introduces the integration of web and wireless GIS service in a mobile navigation system and presents an implementation sample of a DIY-Style GIS service in a mobile navigation system.

  1. An IMM-Aided ZUPT Methodology for an INS/DVL Integrated Navigation System.

    PubMed

    Yao, Yiqing; Xu, Xiaosu; Xu, Xiang

    2017-09-05

    Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most common navigation solution for underwater vehicles. Due to the complex underwater environment, the velocity information provided by DVL always contains some errors. To improve navigation accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because of the existence of the water current. In order to leverage the strengths of the ZUPT method and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and INS/ZUPT models are constructed and operated in parallel, with weights calculated according to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the effectiveness of the proposed algorithm is also verified.

  2. An IMM-Aided ZUPT Methodology for an INS/DVL Integrated Navigation System

    PubMed Central

    Yao, Yiqing

    2017-01-01

    Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most common navigation solution for underwater vehicles. Due to the complex underwater environment, the velocity information provided by DVL always contains some errors. To improve navigation accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because of the existence of the water current. In order to leverage the strengths of the ZUPT method and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and INS/ZUPT models are constructed and operated in parallel, with weights calculated according to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the effectiveness of the proposed algorithm is also verified. PMID:28872602

  3. Mission Operations and Navigation Toolkit Environment

    NASA Technical Reports Server (NTRS)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.; hide

    2009-01-01

    MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.

  4. Application of the dynamically allocated virtual clustering management system to emulated tactical network experimentation

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin

    2014-06-01

    The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.

  5. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-11-29

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  6. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2013-01-22

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  7. Occlusion-free animation of driving routes for car navigation systems.

    PubMed

    Takahashi, Shigeo; Yoshida, Kenichi; Shimada, Kenji; Nishita, Tomoyuki

    2006-01-01

    This paper presents a method for occlusion-free animation of geographical landmarks, and its application to a new type of car navigation system in which driving routes of interest are always visible. This is achieved by animating a nonperspective image where geographical landmarks such as mountain tops and roads are rendered as if they are seen from different viewpoints. The technical contribution of this paper lies in formulating the nonperspective terrain navigation as an inverse problem of continuously deforming a 3D terrain surface from the 2D screen arrangement of its associated geographical landmarks. The present approach provides a perceptually reasonable compromise between the navigation clarity and visual realism where the corresponding nonperspective view is fully augmented by assigning appropriate textures and shading effects to the terrain surface according to its geometry. An eye tracking experiment is conducted to prove that the present approach actually exhibits visually-pleasing navigation frames while users can clearly recognize the shape of the driving route without occlusion, together with the spatial configuration of geographical landmarks in its neighborhood.

  8. Reliable Alignment in Total Knee Arthroplasty by the Use of an iPod-Based Navigation System

    PubMed Central

    Koenen, Paola; Schneider, Marco M.; Fröhlich, Matthias; Driessen, Arne; Bouillon, Bertil; Bäthis, Holger

    2016-01-01

    Axial alignment is one of the main objectives in total knee arthroplasty (TKA). Computer-assisted surgery (CAS) is more accurate regarding limb alignment reconstruction compared to the conventional technique. The aim of this study was to analyse the precision of the innovative navigation system DASH® by Brainlab and to evaluate the reliability of intraoperatively acquired data. A retrospective analysis of 40 patients was performed, who underwent CAS TKA using the iPod-based navigation system DASH. Pre- and postoperative axial alignment were measured on standardized radiographs by two independent observers. These data were compared with the navigation data. Furthermore, interobserver reliability was measured. The duration of surgery was monitored. The mean difference between the preoperative mechanical axis by X-ray and the first intraoperatively measured limb axis by the navigation system was 2.4°. The postoperative X-rays showed a mean difference of 1.3° compared to the final navigation measurement. According to radiographic measurements, 88% of arthroplasties had a postoperative limb axis within ±3°. The mean additional time needed for navigation was 5 minutes. We could prove very good precision for the DASH system, which is comparable to established navigation devices with only negligible expenditure of time compared to conventional TKA. PMID:27313898

  9. Evaluation of the navigation performance of shipboard-VTOL-landing guidance systems

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Paulk, C. H., Jr.; Steck, S. A.; Schmidt, S. F.; Merz, A. W.

    1979-01-01

    The objective of this study was to explore the performance of a VTOL aircraft landing approach navigation system that receives data (1) from either a microwave scanning beam (MSB) or a radar-transponder (R-T) landing guidance system, and (2) information data-linked from an aviation facility ship. State-of-the-art low-cost-aided inertial techniques and variable gain filters were used in the assumed navigation system. Compensation for ship motion was accomplished by a landing pad deviation vector concept that is a measure of the landing pad's deviation from its calm sea location. The results show that the landing guidance concepts were successful in meeting all of the current Navy navigation error specifications, provided that vector magnitude of the allowable error, rather than the error in each axis, is a permissible interpretation of acceptable performance. The success of these concepts, however, is strongly dependent on the distance measuring equipment bias. In addition, the 'best possible' closed-loop tracking performance achievable with the assumed point-mass VTOL aircraft guidance concept is demonstrated.

  10. Calibration Of An Omnidirectional Vision Navigation System Using An Industrial Robot

    NASA Astrophysics Data System (ADS)

    Oh, Sung J.; Hall, Ernest L.

    1989-09-01

    The characteristics of an omnidirectional vision navigation system were studied to determine position accuracy for the navigation and path control of a mobile robot. Experiments for calibration and other parameters were performed using an industrial robot to conduct repetitive motions. The accuracy and repeatability of the experimental setup and the alignment between the robot and the sensor provided errors of less than 1 pixel on each axis. Linearity between zenith angle and image location was tested at four different locations. Angular error of less than 1° and radial error of less than 1 pixel were observed at moderate speed variations. The experimental information and the test of coordinated operation of the equipment provide understanding of characteristics as well as insight into the evaluation and improvement of the prototype dynamic omnivision system. The calibration of the sensor is important since the accuracy of navigation influences the accuracy of robot motion. This sensor system is currently being developed for a robot lawn mower; however, wider applications are obvious. The significance of this work is that it adds to the knowledge of the omnivision sensor.

  11. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  12. Pilot factors guidelines for the operational inspection of navigation systems

    NASA Technical Reports Server (NTRS)

    Sadler, J. F.; Boucek, G. P.

    1988-01-01

    A computerized human engineered inspection technique is developed for use by FAA inspectors in evaluating the pilot factors aspects of aircraft navigation systems. The short title for this project is Nav Handbook. A menu-driven checklist, computer program and data base (Human Factors Design Criteria) were developed and merged to form a self-contained, portable, human factors inspection checklist tool for use in a laboratory or field setting. The automated checklist is tailored for general aviation navigation systems and can be expanded for use with other aircraft systems, transports or military aircraft. The Nav Handbook inspection concept was demonstrated using a lap-top computer and an Omega/VLF CDU. The program generates standardized inspection reports. Automated checklists for LORAN/C and R NAV were also developed. A Nav Handbook User's Guide is included.

  13. Alternative reproductive tactics and the propensity of hybridization.

    PubMed

    Tynkkynen, K; Raatikainen, K J; Häkkilä, M; Haukilehto, E; Kotiaho, J S

    2009-12-01

    One explanation for hybridization between species is the fitness benefits it occasionally confers to the hybridizing individuals. This explanation is possible in species that have evolved alternative male reproductive tactics: individuals with inferior tactics might be more prone to hybridization provided it increases their reproductive success and fitness. Here we experimentally tested whether the propensity of hybridization in the wild depends on male reproductive tactic in Calopteryx splendens damselflies. Counter to our expectation, it was males adopting the superior reproductive tactic (territoriality) that had greatest propensity to hybridize than males adopting the inferior tactics (sneakers and floaters). Moreover, among the territorial males, the most ornamented males had greatest propensity to hybridize whereas the pattern was reversed in the sneaker males. Our results suggest that there is fluctuating selection on male mate discrimination against heterospecific females depending on both ornament size and the male's reproductive tactic.

  14. Joint Tactical Networks (JTN)

    DTIC Science & Technology

    2013-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-284 Joint Tactical Networks (JTN) As of FY 2015 President’s Budget... Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection...to 00-00-2013 4. TITLE AND SUBTITLE Joint Tactical Networks (JTN) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  15. Building a Navigation System to Reduce Cancer Disparities in Urban Black Older Adults

    PubMed Central

    Bone, Lee; Edington, Kristen; Rosenberg, Jessica; Wenzel, Jennifer; Garza, Mary A.; Klein, Catherine; Schmitt, Lisa; Ford, Jean G.

    2014-01-01

    Background Although cancer outcomes have improved in recent decades, substantial disparities by race, ethnicity, income and education persist. Increasingly, patient navigation services are demonstrating success in improving cancer detection, treatment and care and in reducing cancer health disparities. To advance progress in developing patient navigation programs, extensive descriptions of each component of the program must be made available to researchers and health service providers. Objective To describe the components of a patient navigation program designed to improve cancer screening based on informed decision-making on cancer screening and cancer treatment services among predominantly Black older adults in Baltimore City. Methods A community-academic participatory approach was used to develop a patient navigation program in Baltimore, Maryland. The components of the patient navigation system included the development of a community academic (advisory) committee (CAC); recruitment and selection of community health workers (CHWs)/navigators and supervisory staff; initial training and continuing education of the CHWs/navigators; and evaluation of CHWs/navigators. The study was approved by the Johns Hopkins Bloomberg School of Public Health Institutional Review Board. Conclusions The incorporation of community-based participatory research (CPBR) principles into each facet of this patient navigation program facilitated the attainment of the intervention’s objectives. This patient navigation program successfully delivered cancer navigation services to 1302 urban Black older adults. Appropriately recruited, selected and trained CHWs monitored by an experienced supervisor and investigators are the key elements in a patient navigation program. This model has the potential to be adapted by research and health service providers. PMID:23793252

  16. Towards a Game-Based Periscope Simulator for Submarine Officers Tactical Training

    DTIC Science & Technology

    2016-06-01

    release; distribution is unlimited TOWARDS A GAME -BASED PERISCOPE SIMULATOR FOR SUBMARINE OFFICERS TACTICAL TRAINING by Rodrigo da Silva Vieira...ONLY 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE TOWARDS A GAME -BASED PERISCOPE SIMULATOR...career to learn and practice these skills. Following an instructional system design process, this thesis developed a 3D, game -based periscope tactical

  17. Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.

  18. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    PubMed

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  19. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles

    PubMed Central

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.

    2016-01-01

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203

  20. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    NASA Astrophysics Data System (ADS)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.