Sample records for tagged dna fragments

  1. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    PubMed

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  2. Micropreparative capillary gel electrophoresis of DNA: rapid expressed sequence tag library construction.

    PubMed

    Shi, Liang; Khandurina, Julia; Ronai, Zsolt; Li, Bi-Yu; Kwan, Wai King; Wang, Xun; Guttman, András

    2003-01-01

    A capillary gel electrophoresis based automated DNA fraction collection technique was developed to support a novel DNA fragment-pooling strategy for expressed sequence tag (EST) library construction. The cDNA population is first cleaved by BsaJ I and EcoR I restriction enzymes, and then subpooled by selective ligation with specific adapters followed by polymerase chain reaction (PCR) amplification and labeling. Combination of this cDNA fingerprinting method with high-resolution capillary gel electrophoresis separation and precise fractionation of individual cDNA transcript representatives avoids redundant fragment selection and concomitant repetitive sequencing of abundant transcripts. Using a computer-controlled capillary electrophoresis device the transcript representatives were separated by their size and fractions were automatically collected in every 30 s into 96-well plates. The high resolving power of the sieving matrix ensured sequencing grade separation of the DNA fragments (i.e., single-base resolution) and successful fraction collection. Performance and precision of the fraction collection procedure was validated by PCR amplification of the collected DNA fragments followed by capillary electrophoresis analysis for size and purity verification. The collected and PCR-amplified transcript representatives, ranging up to several hundred base pairs, were then sequenced to create an EST library.

  3. Multi-Threaded DNA Tag/Anti-Tag Library Generator for Multi-Core Platforms

    DTIC Science & Technology

    2009-05-01

    base pair)  Watson ‐ Crick  strand pairs that bind perfectly within pairs, but poorly across pairs. A variety  of  DNA  strand hybridization metrics...AFRL-RI-RS-TR-2009-131 Final Technical Report May 2009 MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE PLATFORMS...TYPE Final 3. DATES COVERED (From - To) Jun 08 – Feb 09 4. TITLE AND SUBTITLE MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE

  4. Separation efficiency of free-solution conjugated electrophoresis with drag-tags incorporating a synthetic amino acid.

    PubMed

    Seo, Kyung-Ho; Chu, Hun-Su; Yoo, Tae Hyeon; Lee, Sun-Gu; Won, Jong-In

    2016-03-01

    DNA sequencing or separation by conventional capillary electrophoresis with a polymer matrix has some inherent drawbacks, such as the expense of polymer matrix and limitations in sequencing read length. As DNA fragments have a linear charge-to-friction ratio in free solution, DNA fragments cannot be separated by size. However, size-based separation of DNA is possible in free-solution conjugate electrophoresis (FSCE) if a "drag-tag" is attached to DNA fragments because the tag breaks the linear charge-to-friction scaling. Although several previous studies have demonstrated the feasibility of DNA separation by free-solution conjugated electrophoresis, generation of a monodisperse drag-tag and identification of a strong, site-specific conjugation method between a DNA fragment and a drag-tag are challenges that still remain. In this study, we demonstrate an efficient FSCE method by conjugating a biologically synthesized elastin-like polypeptide (ELP) and green fluorescent protein (GFP) to DNA fragments. In addition, to produce strong and site-specific conjugation, a methionine residue in drag-tags is replaced with homopropargylglycine (Hpg), which can be conjugated specifically to a DNA fragment with an azide site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multiplex analysis of DNA

    DOEpatents

    Church, George M.; Kieffer-Higgins, Stephen

    1992-01-01

    This invention features vectors and a method for sequencing DNA. The method includes the steps of: a) ligating the DNA into a vector comprising a tag sequence, the tag sequence includes at least 15 bases, wherein the tag sequence will not hybridize to the DNA under stringent hybridization conditions and is unique in the vector, to form a hybrid vector, b) treating the hybrid vector in a plurality of vessels to produce fragments comprising the tag sequence, wherein the fragments differ in length and terminate at a fixed known base or bases, wherein the fixed known base or bases differs in each vessel, c) separating the fragments from each vessel according to their size, d) hybridizing the fragments with an oligonucleotide able to hybridize specifically with the tag sequence, and e) detecting the pattern of hybridization of the tag sequence, wherein the pattern reflects the nucleotide sequence of the DNA.

  6. Fragment Length of Circulating Tumor DNA

    PubMed Central

    Underhill, Hunter R.; Kitzman, Jacob O.; Hellwig, Sabine; Welker, Noah C.; Daza, Riza; Gligorich, Keith M.; Rostomily, Robert C.; Shendure, Jay

    2016-01-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134–144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132–145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA. PMID:27428049

  7. Fragment Length of Circulating Tumor DNA.

    PubMed

    Underhill, Hunter R; Kitzman, Jacob O; Hellwig, Sabine; Welker, Noah C; Daza, Riza; Baker, Daniel N; Gligorich, Keith M; Rostomily, Robert C; Bronner, Mary P; Shendure, Jay

    2016-07-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.

  8. DNA fragment sizing and sorting by laser-induced fluorescence

    DOEpatents

    Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.

    1996-01-01

    A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.

  9. DNA fragmentation by charged particle tracks.

    PubMed

    Stenerlow, B; Hoglund, E; Carlsson, J

    2002-01-01

    High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons (60Co) or 125 keV/micrometers nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  10. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  11. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  12. DNA fragmentation status in patients with necrozoospermia.

    PubMed

    Brahem, Sonia; Jellad, Sonia; Ibala, Samira; Saad, Ali; Mehdi, Meriem

    2012-12-01

    The aim of this study was to determine if a relationship exists between the levels of sperm DNA fragmentation and necrospermia in infertile men. Semen samples obtained from 70 men consulting for infertility evaluation were analyzed according to World Health Organization (WHO) guidelines. Patients were subdivided into three groups according to the percentage of necrotic spermatozoa: normozoospermia (<30%; n = 20), moderate necrozoospermia (50-80%; n = 30), and severe necrozoospermia (>80%; n = 20). DNA fragmentation was detected by the terminal desoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick-end labeling (TUNEL) assay. The sperm DNA fragmentation index (DFI) was 9.28 ± 2.98% in patients with a normal level of necrotic spermatozoa, 20.25 ± 3.21% in patients with moderate necrozoospermia, and 35.31 ± 5.25% in patients with severe necrozoospermia. There was a statistically significant increase of DNA fragmentation in the necrozoospermic group (P < 0.01). A strong correlation was found between the degree of necrozoospermia and sperm DNA fragmentation. We concluded that patients with necrozoospermia showed a high level of DNA fragmentation compared to normozoospermic men. Severe necrozoospermia (>80%) is a predictive factor for increased sperm DNA damage.

  13. Supramolecular gel electrophoresis of large DNA fragments.

    PubMed

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, R.A.; Huang, X.C.; Quesada, M.A.

    1995-07-25

    A DNA sequencing method is described which uses single lane or channel electrophoresis. Sequencing fragments are separated in the lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radioisotope labels. 5 figs.

  15. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, Richard A.; Huang, Xiaohua C.; Quesada, Mark A.

    1995-01-01

    A DNA sequencing method described which uses single lane or channel electrophoresis. Sequencing fragments are separated in said lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radio-isotope labels.

  16. The application of PIT tags to measure transport of detrital coral fragments on a fringing reef: Majuro Atoll, Marshall Islands

    NASA Astrophysics Data System (ADS)

    Ford, Murray R.

    2014-06-01

    Passive integrated transponder (PIT) tags are a radio-frequency identification device widely used as a machine-readable identification tool in fisheries research. PIT tags have also been employed, to a lesser extent, to track the movement of gravel-sized clasts within fluvial and coastal systems. In this study, PIT tags were inserted into detrital coral fragments and used to establish source-sink transport pathways on a fringing reef on Majuro Atoll in the Marshall Islands. Results suggest the transport of gravel-sized material on the inter-tidal reef flat is exclusively across-reef towards the lagoon. Considerable variation in the distance travelled by fragments was observed. Fragments were largely intact and visually recognisable after almost 5 months on the reef flat. However, the branches of some recovered fragments had broken off and corallite abrasion was observed in recovered fragments. This study indicates that PIT tags are an inexpensive and powerful new addition to the suite of sediment transport and taphonomic tools for researchers working within coral reef systems.

  17. Linkage map of the fragments of herpesvirus papio DNA.

    PubMed Central

    Lee, Y S; Tanaka, A; Lau, R Y; Nonoyama, M; Rabin, H

    1981-01-01

    Herpesvirus papio (HVP), an Epstein-Barr-like virus, causes lymphoblastoid disease in baboons. The physical map of HVP DNA was constructed for the fragments produced by cleavage of HVP DNA with restriction endonucleases EcoRI, HindIII, SalI, and PvuI, which produced 12, 12, 10, and 4 fragments, respectively. The total molecular size of HVP DNA was calculated as close to 110 megadaltons. The following methods were used for construction of the map; (i) fragments near the ends of HVP DNA were identified by treating viral DNA with lambda exonuclease before restriction enzyme digestion; (ii) fragments containing nucleotide sequences in common with fragments from the second enzyme digest of HVP DNA were examined by Southern blot hybridization; and (iii) the location of some fragments was determined by isolating individual fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. Terminal heterogeneity and internal repeats were found to be unique features of HVP DNA molecule. One to five repeats of 0.8 megadaltons were found at both terminal ends. Although the repeats of both ends shared a certain degree of homology, it was not determined whether they were identical repeats. The internal repeat sequence of HVP DNA was found in the EcoRI-C region, which extended from 8.4 to 23 megadaltons from the left end of the molecule. The average number of the repeats was calculated to be seven, and the molecular size was determined to be 1.8 megadaltons. Similar unique features have been reported in EBV DNA (D. Given and E. Kieff, J. Virol. 28:524-542, 1978). Images PMID:6261015

  18. Sperm DNA fragmentation affects epigenetic feature in human male pronucleus.

    PubMed

    Rajabi, H; Mohseni-Kouchesfehani, H; Eslami-Arshaghi, T; Salehi, M

    2018-02-01

    To evaluate whether the sperm DNA fragmentation affects male pronucleus epigenetic factors, semen analysis was performed and DNA fragmentation was assessed by the method of sperm chromatin structure assay (SCSA). Human-mouse interspecies fertilisation was used to create human male pronucleus. Male pronucleus DNA methylation and H4K12 acetylation were evaluated by immunostaining. Results showed a significant positive correlation between the level of sperm DNA fragmentation and DNA methylation in male pronuclei. In other words, an increase in DNA damage caused an upsurge in DNA methylation. In the case of H4K12 acetylation, no correlation was detected between DNA damage and the level of histone acetylation in the normal group, but results for the group in which male pronuclei were derived from sperm cells with DNA fragmentation, increased DNA damage led to a decreased acetylation level. Sperm DNA fragmentation interferes with the active demethylation process and disrupts the insertion of histones into the male chromatin in the male pronucleus, following fertilisation. © 2017 Blackwell Verlag GmbH.

  19. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System

    PubMed Central

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C. T.; Shui, Lingling

    2017-01-01

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1–10 Kbp fragment lengths with a yield of 75.30–91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future. PMID:28098208

  20. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.

    PubMed

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling

    2017-01-18

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.

  1. A comparison of DNA fragmentation methods - Applications for the biochip technology.

    PubMed

    Sapojnikova, Nelly; Asatiani, Nino; Kartvelishvili, Tamar; Asanishvili, Lali; Zinkevich, Vitaly; Bogdarina, Irina; Mitchell, Julian; Al-Humam, Abdulmohsen

    2017-08-20

    The efficiency of hybridization signal detection in a biochip is affected by the method used for test DNA preparation, such as fragmentation, amplification and fluorescent labelling. DNA fragmentation is the commonest methods used and it is recognised as a critical step in biochip analysis. Currently methods used for DNA fragmentation are based either on sonication or on the enzymatic digestion. In this study, we compared the effect of different types of enzymatic DNA fragmentations, using DNase I to generate ssDNA breaks, NEBNext dsDNA fragmentase and SaqAI restrictase, on DNA labelling. DNA from different Desulfovibrio species was used as a substrate for these enzymes. Of the methods used, DNA fragmented by NEBNext dsDNA Fragmentase digestion was subsequently labelled with the greatest efficiency. As a result of this, the use of this enzyme to fragment target DNA increases the sensitivity of biochip-based detection significantly, and this is an important consideration when determining the presence of targeted DNA in ecological and medical samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sizing of single fluorescently stained DNA fragments by scanning microscopy

    PubMed Central

    Laib, Stephan; Rankl, Michael; Ruckstuhl, Thomas; Seeger, Stefan

    2003-01-01

    We describe an approach to determine DNA fragment sizes based on the fluorescence detection of single adsorbed fragments on specifically coated glass cover slips. The brightness of single fragments stained with the DNA bisintercalation dye TOTO-1 is determined by scanning the surface with a confocal microscope. The brightness of adsorbed fragments is found to be proportional to the fragment length. The method needs only minute amount of DNA, beyond inexpensive and easily available surface coatings, like poly-l-lysine, 3-aminoproyltriethoxysilane and polyornithine, are utilizable. We performed DNA-sizing of fragment lengths between 2 and 14 kb. Further, we resolved the size distribution before and after an enzymatic restriction digest. At this a separation of buffers or enzymes was unnecessary. DNA sizes were determined within an uncertainty of 7–14%. The proposed method is straightforward and can be applied to standardized microtiter plates. PMID:14602931

  3. Immobilization of proteins onto microbeads using a DNA binding tag for enzymatic assays.

    PubMed

    Kojima, Takaaki; Mizoguchi, Takuro; Ota, Eri; Hata, Jumpei; Homma, Keisuke; Zhu, Bo; Hitomi, Kiyotaka; Nakano, Hideo

    2016-02-01

    A novel DNA-binding protein tag, scCro-tag, which is a single-chain derivative of the bacteriophage lambda Cro repressor, has been developed to immobilize proteins of interest (POI) on a solid support through binding OR consensus DNA (ORC) that is tightly bound by the scCro protein. The scCro-tag successfully bound a transglutaminase 2 (TGase 2) substrate and manganese peroxidase (MnP) to microbeads via scaffolding DNA. The resulting protein-coated microbeads can be utilized for functional analysis of the enzymatic activity using flow cytometry. The quantity of bead-bound proteins can be enhanced by increasing the number of ORCs. In addition, proteins with the scCro-tag that were synthesized using a cell-free protein synthesis system were also immobilized onto the beads, thus indicating that this bead-based system would be applicable to high-throughput analysis of various enzymatic activities. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  5. Sequencing degraded DNA from non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun phylogenetics.

    PubMed

    Tin, Mandy Man-Ying; Economo, Evan Philip; Mikheyev, Alexander Sergeyevich

    2014-01-01

    Ancient and archival DNA samples are valuable resources for the study of diverse historical processes. In particular, museum specimens provide access to biotas distant in time and space, and can provide insights into ecological and evolutionary changes over time. However, archival specimens are difficult to handle; they are often fragile and irreplaceable, and typically contain only short segments of denatured DNA. Here we present a set of tools for processing such samples for state-of-the-art genetic analysis. First, we report a protocol for minimally destructive DNA extraction of insect museum specimens, which produced sequenceable DNA from all of the samples assayed. The 11 specimens analyzed had fragmented DNA, rarely exceeding 100 bp in length, and could not be amplified by conventional PCR targeting the mitochondrial cytochrome oxidase I gene. Our approach made these samples amenable to analysis with commonly used next-generation sequencing-based molecular analytic tools, including RAD-tagging and shotgun genome re-sequencing. First, we used museum ant specimens from three species, each with its own reference genome, for RAD-tag mapping. Were able to use the degraded DNA sequences, which were sequenced in full, to identify duplicate reads and filter them prior to base calling. Second, we re-sequenced six Hawaiian Drosophila species, with millions of years of divergence, but with only a single available reference genome. Despite a shallow coverage of 0.37 ± 0.42 per base, we could recover a sufficient number of overlapping SNPs to fully resolve the species tree, which was consistent with earlier karyotypic studies, and previous molecular studies, at least in the regions of the tree that these studies could resolve. Although developed for use with degraded DNA, all of these techniques are readily applicable to more recent tissue, and are suitable for liquid handling automation.

  6. In situ end labeling of fragmented DNA in induced ovarian atresia.

    PubMed

    D'Herde, K; De Pestel, G; Roels, F

    1994-01-01

    Apoptosis is studied in a model of induced follicular atresia in the ovary of Japanese quail (Coturnix coturnix japonica) by in situ end labeling of DNA fragments in granulosa cells using two different techniques (incorporation of labeled nucleotides by DNA polymerase I or terminal deoxynucleotidyl transferase). The most remarkable observation related to apoptosis in this model is the predominant cytoplasmic localization of labeled DNA fragments, while DNA fragmentation appears to be absent from compacted chromatin masses of apoptotic nuclei and apoptotic nuclear fragments. Unstained apoptotic bodies are present adjacent to stained ones, so that their detection rate on hematoxylin + eosin stained sections is better than on the in situ end-labeled sections. This suggests that DNA fragmentation is a late even or not obligatory in apoptotic granulosa cell death. In contrast to similar studies on atretic granulosa in mammalian models, the process of apoptosis is asynchronous in the granulosal epithelium, with a majority of nuclei with normal chromatin configuration remaining negative for DNA fragmentation. Finally it is shown that the techniques used are not specific for apoptosis, as DNA fragmentation in necrotic granulosa cells is detected as well.

  7. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.

    PubMed

    Zhang, Zijie; Liu, Juewen

    2016-03-01

    Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.

  8. Agarose gel electrophoresis for the separation of DNA fragments.

    PubMed

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-04-20

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate

  9. SPlinted Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing

    PubMed Central

    Manlig, Erika; Wahlberg, Per

    2017-01-01

    Abstract Sodium bisulphite treatment of DNA combined with next generation sequencing (NGS) is a powerful combination for the interrogation of genome-wide DNA methylation profiles. Library preparation for whole genome bisulphite sequencing (WGBS) is challenging due to side effects of the bisulphite treatment, which leads to extensive DNA damage. Recently, a new generation of methods for bisulphite sequencing library preparation have been devised. They are based on initial bisulphite treatment of the DNA, followed by adaptor tagging of single stranded DNA fragments, and enable WGBS using low quantities of input DNA. In this study, we present a novel approach for quick and cost effective WGBS library preparation that is based on splinted adaptor tagging (SPLAT) of bisulphite-converted single-stranded DNA. Moreover, we validate SPLAT against three commercially available WGBS library preparation techniques, two of which are based on bisulphite treatment prior to adaptor tagging and one is a conventional WGBS method. PMID:27899585

  10. Affinity Purification of Proteins in Tag-Free Form: Split Intein-Mediated Ultrarapid Purification (SIRP).

    PubMed

    Guan, Dongli; Chen, Zhilei

    2017-01-01

    Proteins purified using affinity-based chromatography often exploit a recombinant affinity tag. Existing methods for the removal of the extraneous tag, needed for many applications, suffer from poor efficiency and/or high cost. Here we describe a simple, efficient, and potentially low-cost approach-split intein-mediated ultrarapid purification (SIRP)-for both the purification of the desired tagged protein from Escherichia coli lysate and removal of the tag in less than 1 h. The N- and C-fragment of a self-cleaving variant of a naturally split DnaE intein from Nostoc punctiforme are genetically fused to the N-terminus of an affinity tag and a protein of interest (POI), respectively. The N-intein/affinity tag is used to functionalize an affinity resin. The high affinity between the N- and C-fragment of DnaE intein enables the POI to be purified from the lysate via affinity to the resin, and the intein-mediated C-terminal cleavage reaction causes tagless POI to be released into the flow-through. The intein cleavage reaction is strongly inhibited by divalent ions (e.g., Zn 2+ ) under non-reducing conditions and is significantly enhanced by reducing conditions. The POI is cleaved efficiently regardless of the identity of the N-terminal amino acid except in the cases of threonine and proline, and the N-intein-functionalized affinity resin can be regenerated for multiple cycles of use.

  11. DNA Length Modulates the Affinity of Fragments of Genomic DNA for the Nuclear Matrix In Vitro.

    PubMed

    García-Vilchis, David; Aranda-Anzaldo, Armando

    2017-12-01

    Classical observations have shown that during the interphase the chromosomal DNA of metazoans is organized in supercoiled loops attached to a compartment known as the nuclear matrix (NM). Fragments of chromosomal DNA able to bind the isolated NM in vitro are known as matrix associated/attachment/addressed regions or MARs. No specific consensus sequence or motif has been found that may constitute a universal, defining feature of MARs. On the other hand, high-salt resistant DNA-NM interactions in situ define true DNA loop anchorage regions or LARs, that might correspond to a subset of the potential MARs but are not necessarily identical to MARs characterized in vitro, since there are several examples of MARs able to bind the NM in vitro but which are not actually bound to the NM in situ. In the present work we assayed the capacity of two LARs, as well as of shorter fragments within such LARs, for binding to the NM in vitro. Paradoxically the isolated (≈2 kb) LARs cannot bind to the NM in vitro while their shorter (≈300 pb) sub-fragments and other non-related but equally short DNA fragments, bind to the NM in a high-salt resistant fashion. Our results suggest that the ability of a given DNA fragment for binding to the NM in vitro primarily depends on the length of the fragment, suggesting that binding to the NM is modulated by the local topology of the DNA fragment in suspension that it is known to depend on the DNA length. J. Cell. Biochem. 118: 4487-4497, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. DNA fragmentation and sperm head morphometry in cat epididymal spermatozoa.

    PubMed

    Vernocchi, Valentina; Morselli, Maria Giorgia; Lange Consiglio, Anna; Faustini, Massimo; Luvoni, Gaia Cecilia

    2014-10-15

    Sperm DNA fragmentation is an important parameter to assess sperm quality and can be a putative fertility predictor. Because the sperm head consists almost entirely of DNA, subtle differences in sperm head morphometry might be related to DNA status. Several techniques are available to analyze sperm DNA fragmentation, but they are labor-intensive and require expensive instrumentations. Recently, a kit (Sperm-Halomax) based on the sperm chromatin dispersion test and developed for spermatozoa of different species, but not for cat spermatozoa, became commercially available. The first aim of the present study was to verify the suitability of Sperm-Halomax assay, specifically developed for canine semen, for the evaluation of DNA fragmentation of epididymal cat spermatozoa. For this purpose, DNA fragmentation indexes (DFIs) obtained with Sperm-Halomax and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) were compared. The second aim was to investigate whether a correlation between DNA status, sperm head morphology, and morphometry assessed by computer-assisted semen analysis exists in cat epididymal spermatozoa. No differences were observed in DFIs obtained with Sperm-Halomax and TUNEL. This result indicates that Sperm-Halomax assay provides a reliable evaluation of DNA fragmentation of epididymal feline spermatozoa. The DFI seems to be independent from all the measured variables of sperm head morphology and morphometry. Thus, the evaluation of the DNA status of spermatozoa could effectively contribute to the completion of the standard analysis of fresh or frozen semen used in assisted reproductive technologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effects of semen storage and separation techniques on sperm DNA fragmentation.

    PubMed

    Jackson, Robert E; Bormann, Charles L; Hassun, Pericles A; Rocha, André M; Motta, Eduardo L A; Serafini, Paulo C; Smith, Gary D

    2010-12-01

    To determine the effect of semen storage and separation techniques on sperm DNA fragmentation. Controlled clinical study. An assisted reproductive technology laboratory. Thirty normoozospermic semen samples obtained from patients undergoing infertility evaluation. One aliquot from each sample was immediately prepared (control) for the sperm chromatin dispersion assay (SCD). Aliquots used to assess storage techniques were treated in the following ways: snap frozen by liquid nitrogen immersion, slow frozen with Tris-yolk buffer and glycerol, kept on ice for 24 hours or maintained at room temperature for 4 and 24 hours. Aliquots used to assess separation techniques were processed by the following methods: washed and centrifuged in media, swim-up from washed sperm pellet, density gradient separation, density gradient followed by swim-up. DNA integrity was then measured by SCD. DNA fragmentation as measured by SCD. There was no significant difference in fragmentation among the snap frozen, slow frozen, and wet-ice groups. Compared to other storage methods short-term storage at room temperature did not impact DNA fragmentation yet 24 hours storage significantly increased fragmentation. Swim-up, density gradient and density gradient/swim-up had significantly reduced DNA fragmentation levels compared with washed semen. Postincubation, density gradient/swim-up showed the lowest fragmentation levels. The effect of sperm processing methods on DNA fragmentation should be considered when selecting storage or separation techniques for clinical use. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1987-10-07

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  15. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1990-10-09

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  16. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, James H.; Keller, Richard A.; Martin, John C.; Moyzis, Robert K.; Ratliff, Robert L.; Shera, E. Brooks; Stewart, Carleton C.

    1990-01-01

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed.

  17. FragIdent--automatic identification and characterisation of cDNA-fragments.

    PubMed

    Seelow, Dominik; Goehler, Heike; Hoffmann, Katrin

    2009-03-02

    Many genetic studies and functional assays are based on cDNA fragments. After the generation of cDNA fragments from an mRNA sample, their content is at first unknown and must be assigned by sequencing reactions or hybridisation experiments. Even in characterised libraries, a considerable number of clones are wrongly annotated. Furthermore, mix-ups can happen in the laboratory. It is therefore essential to the relevance of experimental results to confirm or determine the identity of the employed cDNA fragments. However, the manual approach for the characterisation of these fragments using BLAST web interfaces is not suited for larger number of sequences and so far, no user-friendly software is publicly available. Here we present the development of FragIdent, an application for the automatic identification of open reading frames (ORFs) within cDNA-fragments. The software performs BLAST analyses to identify the genes represented by the sequences and suggests primers to complete the sequencing of the whole insert. Gene-specific information as well as the protein domains encoded by the cDNA fragment are retrieved from Internet-based databases and included in the output. The application features an intuitive graphical interface and is designed for researchers without any bioinformatics skills. It is suited for projects comprising up to several hundred different clones. We used FragIdent to identify 84 cDNA clones from a yeast two-hybrid experiment. Furthermore, we identified 131 protein domains within our analysed clones. The source code is freely available from our homepage at http://compbio.charite.de/genetik/FragIdent/.

  18. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  19. Methyl-CpG island-associated genome signature tags

    DOEpatents

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  20. Comparing the Properties of Electrochemical-Based DNA Sensors Employing Different Redox Tags

    PubMed Central

    Kang, Di; Zuo, Xiaolei; Yang, Renqiang; Xia, Fan; Plaxco, Kevin W.; White, Ryan J.

    2009-01-01

    Many electrochemical biosensor approaches developed in recent years utilize redox labeled (most commonly methylene blue or ferrocene) oligonucleotide probes site-specifically attached to an interrogating electrode. Sensors in this class have been reported employing a range of probe architectures, including single- and double-stranded DNA, more complex DNA structures, DNA and RNA aptamers and, most recently, DNA-small molecule chimeras. Signaling in this class of sensors is generally predicated on binding-induced changes in the efficiency with which the covalently attached redox label transfers electrons with the interrogating electrode. Here we have investigated how the properties of the redox tag affect the performance of such sensors. Specifically, we compare the differences in signaling and stability of electrochemical DNA sensors (E-DNA sensors) fabricated using either ferrocene or methylene blue as the signaling redox moiety. We find that while both tags support efficient E-DNA signaling, ferrocene produces slightly improved signal gain and target affinity. These small advantages, however, come at a potentially significant price: the ferrocene-based sensors are far less stable than their methylene blue counterparts, particularly with regards to stability to long-term storage, repeated electrochemical interrogations, repeated sensing/regeneration iterations, and employment in complex sample matrices such as blood serum. PMID:19810694

  1. Scarless assembly of unphosphorylated DNA fragments with a simplified DATEL method.

    PubMed

    Ding, Wenwen; Weng, Huanjiao; Jin, Peng; Du, Guocheng; Chen, Jian; Kang, Zhen

    2017-05-04

    Efficient assembly of multiple DNA fragments is a pivotal technology for synthetic biology. A scarless and sequence-independent DNA assembly method (DATEL) using thermal exonucleases has been developed recently. Here, we present a simplified DATEL (sDATEL) for efficient assembly of unphosphorylated DNA fragments with low cost. The sDATEL method is only dependent on Taq DNA polymerase and Taq DNA ligase. After optimizing the committed parameters of the reaction system such as pH and the concentration of Mg 2+ and NAD+, the assembly efficiency was increased by 32-fold. To further improve the assembly capacity, the number of thermal cycles was optimized, resulting in successful assembly 4 unphosphorylated DNA fragments with an accuracy of 75%. sDATEL could be a desirable method for routine manual and automated assembly.

  2. Spontaneous apoptotic DNA fragmentation in cultured guinea pig gastric mucosal cells.

    PubMed

    Tsutsumi, S; Rokutan, K; Tsuchiya, T; Mizushima, T

    2000-02-01

    The purpose of this study was to elucidate the mechanism of spontaneous and rapid cell death of cultured gastric pit cells. Gastric pit cells have a rapid cell turnover rate in vivo. We here show that guinea pig gastric pit cells in culture undergo spontaneous and rapid apoptotic DNA fragmentation, which may represent the rapid cell turnover cycle of gastric pit cells in vivo. This spontaneous apoptotic DNA fragmentation required the presence of fetal calf serum in the culture media. Furthermore, the spontaneous apoptotic DNA fragmentation was prevented by protein synthesis and caspase inhibitors.

  3. Lower sperm DNA fragmentation after r-FSH administration in functional hypogonadotropic hypogonadism.

    PubMed

    Ruvolo, Giovanni; Roccheri, Maria Carmela; Brucculeri, Anna Maria; Longobardi, Salvatore; Cittadini, Ettore; Bosco, Liana

    2013-04-01

    An observational clinical and molecular study was designed to evaluate the effects of the administration of recombinant human FSH on sperm DNA fragmentation in men with a non-classical form of hypogonadotropic hypogonadism and idiopathic oligoasthenoteratozoospermia. In the study were included 53 men with a non-classical form of hypogonadotropic hypogonadism and idiopathic oligoasthenoteratozoospermia. In all patients, sperm DNA fragmentation index (DFI), assessed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) in situ DNA nick end-labelling (TUNEL) assay, was evaluated before starting the treatment with 150 IU of recombinant human FSH, given three times a week for at least 3 months. Patients' semen analysis and DNA fragmentation index were re-evaluated after the 3-month treatment period. After recombinant human FSH therapy, we did not find any differences in terms of sperm count, motility and morphology. The average DNA fragmentation index was significantly reduced (21.15 vs 15.2, p<0.05), but we found a significant reduction in patients with high basal DFI values (>15 %), while no significant variation occurred in the patients with DFI values ≤ 15 %. Recombinant human FSH administration improves sperm DNA integrity in hypogonadotropic hypogonadism and idiopathic oligoasthenoteratozoospermia men with DNA fragmentation index value >15 % .

  4. Accumulation of linear mitochondrial DNA fragments in the nucleus shortens the chronological life span of yeast.

    PubMed

    Cheng, Xin; Ivessa, Andreas S

    2012-10-01

    Translocation of mitochondrial DNA (mtDNA) fragments to the nucleus and insertion of those fragments into nuclear DNA has been observed in several organisms ranging from yeast to plants and mammals. Disruption of specific nuclear genes by de novo insertions of mtDNA fragments has even been linked to the initiation of several human diseases. Recently, we demonstrated that baker's yeast strains with high rates of mtDNA fragments migrating to the nucleus (yme1-1 mutant) exhibit short chronological life spans (CLS). The yeast CLS is determined by the survival of non-dividing cell populations. Here, we show that lack of the non-homologous-end-joining enzyme DNA ligase IV (DNL4) can rescue the short CLS of the yme1-1 mutant. In fission yeast, DNA ligase IV has been shown to be required for the capture of mtDNA fragments during the repair of double-stranded DNA breaks in nuclear DNA. In further analyses using pulse field gel and 2D gel electrophoresis we demonstrate that linear mtDNA fragments with likely nuclear localization accumulate in the yme1-1 mutant. The accumulation of the linear mtDNA fragments in the yme1-1 mutant is suppressed when Dnl4 is absent. We propose that the linear nuclear mtDNA fragments accelerate the aging process in the yme1-1 mutant cells by possibly affecting nuclear processes including DNA replication, recombination, and repair as well as transcription of nuclear genes. We speculate further that Dnl4 protein has besides its function as a ligase also a role in DNA protection. Dnl4 protein may stabilize the linear mtDNA fragments in the nucleus by binding to their physical ends. In the absence of Dnl4 protein the linear fragments are therefore unprotected and possibly degraded by nuclear nucleases. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    PubMed Central

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  6. Characterization of human glucocorticoid receptor complexes formed with DNA fragments containing or lacking glucocorticoid response elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tully, D.B.; Cidlowski, J.A.

    1989-03-07

    Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, ({sup 3}H)TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins priormore » to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. Activated ({sup 3}H)TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA. Stability of the complexes formed between GR and these three DNA fragments was strongly affected by even moderate alterations in either the salt concentration or the pH of the gradient buffer. Under all conditions tested, the complex formed with the MMTV LTR DNA fragment was more stable than the complexes formed with either of the pBR322 DNA fragments. Together these observations indicate that the formation of stable complexes between activated GR and isolated DNA fragments requires the presence of GRE consensus sequences in the DNA.« less

  7. An accurate algorithm for the detection of DNA fragments from dilution pool sequencing experiments.

    PubMed

    Bansal, Vikas

    2018-01-01

    The short read lengths of current high-throughput sequencing technologies limit the ability to recover long-range haplotype information. Dilution pool methods for preparing DNA sequencing libraries from high molecular weight DNA fragments enable the recovery of long DNA fragments from short sequence reads. These approaches require computational methods for identifying the DNA fragments using aligned sequence reads and assembling the fragments into long haplotypes. Although a number of computational methods have been developed for haplotype assembly, the problem of identifying DNA fragments from dilution pool sequence data has not received much attention. We formulate the problem of detecting DNA fragments from dilution pool sequencing experiments as a genome segmentation problem and develop an algorithm that uses dynamic programming to optimize a likelihood function derived from a generative model for the sequence reads. This algorithm uses an iterative approach to automatically infer the mean background read depth and the number of fragments in each pool. Using simulated data, we demonstrate that our method, FragmentCut, has 25-30% greater sensitivity compared with an HMM based method for fragment detection and can also detect overlapping fragments. On a whole-genome human fosmid pool dataset, the haplotypes assembled using the fragments identified by FragmentCut had greater N50 length, 16.2% lower switch error rate and 35.8% lower mismatch error rate compared with two existing methods. We further demonstrate the greater accuracy of our method using two additional dilution pool datasets. FragmentCut is available from https://bansal-lab.github.io/software/FragmentCut. vibansal@ucsd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Real-time Tracking of DNA Fragment Separation by Smartphone.

    PubMed

    Tao, Chunxian; Yang, Bo; Li, Zhenqing; Zhang, Dawei; Yamaguchi, Yoshinori

    2017-06-01

    Slab gel electrophoresis (SGE) is the most common method for the separation of DNA fragments; thus, it is broadly applied to the field of biology and others. However, the traditional SGE protocol is quite tedious, and the experiment takes a long time. Moreover, the chemical consumption in SGE experiments is very high. This work proposes a simple method for the separation of DNA fragments based on an SGE chip. The chip is made by an engraving machine. Two plastic sheets are used for the excitation and emission wavelengths of the optical signal. The fluorescence signal of the DNA bands is collected by smartphone. To validate this method, 50, 100, and 1,000 bp DNA ladders were separated. The results demonstrate that a DNA ladder smaller than 5,000 bp can be resolved within 12 min and with high resolution when using this method, indicating that it is an ideal substitute for the traditional SGE method.

  9. A Colorimetric Microplate Assay for DNA-Binding Activity of His-Tagged MutS Protein.

    PubMed

    Banasik, Michał; Sachadyn, Paweł

    2016-09-01

    A simple microplate method was designed for rapid testing DNA-binding activity of proteins. The principle of the assay involves binding of tested DNA by his-tagged protein immobilized on a nickel-coated ELISA plate, following colorimetric detection of biotinylated DNA with avidin conjugated to horseradish peroxidase. The method was used to compare DNA mismatch binding activities of MutS proteins from three bacterial species. The assay required relatively low amounts of tested protein (approximately 0.5-10 pmol) and DNA (0.1-10 pmol) and a relatively short time of analysis (up to 60 min). The method is very simple to apply and convenient to test different buffer conditions of DNA-protein binding. Sensitive colorimetric detection enables naked eye observations and quantitation with an ELISA reader. The performance of the assay, which we believe is a distinguishing trait of the method, is based on two strong and specific molecular interactions: binding of a his-tagged protein to a nickel-coated microplate and binding of biotinylated DNA to avidin. In the reported experiments, the solution was used to optimize the conditions for DNA mismatch binding by MutS protein; however, the approach could be implemented to test nucleic acids interactions with any protein of interest.

  10. Subacute Low Dose Nerve Agent Exposure Causes DNA Fragmentation in Guinea Pig Leukocytes

    DTIC Science & Technology

    2005-10-01

    1 SUBACUTE LOW DOSE NERVE AGENT EXPOSURE CAUSES DNA FRAGMENTATION IN GUINEA PIG LEUKOCYTES. Jitendra R. Dave1, John R. Moffett1, Sally M...DNA fragmentation in blood leukocytes from guinea pigs by ‘Comet’ assay after exposure to soman at doses ranging from 0.1LD50 to 0.4 LD50, once per...computer. Data obtained for exposure to soman demonstrated significant increases in DNA fragmentation in circulating leukocytes in CWNA treated guinea pigs as

  11. Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.

    1995-01-01

    Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.

  12. Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy.

    PubMed

    Mei, Ting; Lu, Xuewen; Sun, Ning; Li, Xiaomei; Chen, Jitao; Liang, Min; Zhou, Xinke; Fang, Zhiyuan

    2018-06-05

    The level of circulating tumor cell (CTCs) is a reliable marker for tumor burden and malignant progression. Quantification of CTCs remains technically challenging due to the rarity of these cells in peripheral blood. In the present study, we established a real-time quantitative PCR (Q-PCR) based method for sensitive detection of CTCs without DNA extraction. Blood sample was first turned to erythrocyte lyses and then incubated with two antibodies, tag-DNA modified CK-19 antibody and magnetic beads conjugated EpCAM antibody. Tumor cells were further enriched by magnetic separation. Tag-DNA that immobilized on tumor cells through CK-19 antibodies were also retrieved, which was further quantified by Q-PCR. This assay was able to detect single tumor cell in a 5 mL blood sample. The detection rate of clinical tumor blood sample was 92.3%. Furthermore, CTC count in patient was correlated with tumor stage and tumor status. The signal amplification was based on tag DNA rather than tumor gene, which was independent of nucleic acid extraction. With high sensitivity and convenience, this method can be a good alternative for the determination of cancer progress. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease

    PubMed Central

    Nicholls, Thomas J.; Zsurka, Gábor; Peeva, Viktoriya; Schöler, Susanne; Szczesny, Roman J.; Cysewski, Dominik; Reyes, Aurelio; Kornblum, Cornelia; Sciacco, Monica; Moggio, Maurizio; Dziembowski, Andrzej; Kunz, Wolfram S.; Minczuk, Michal

    2014-01-01

    MGME1, also known as Ddk1 or C20orf72, is a mitochondrial exonuclease found to be involved in the processing of mitochondrial DNA (mtDNA) during replication. Here, we present detailed insights on the role of MGME1 in mtDNA maintenance. Upon loss of MGME1, elongated 7S DNA species accumulate owing to incomplete processing of 5′ ends. Moreover, an 11-kb linear mtDNA fragment spanning the entire major arc of the mitochondrial genome is generated. In contrast to control cells, where linear mtDNA molecules are detectable only after nuclease S1 treatment, the 11-kb fragment persists in MGME1-deficient cells. In parallel, we observed characteristic mtDNA duplications in the absence of MGME1. The fact that the breakpoints of these mtDNA rearrangements do not correspond to either classical deletions or the ends of the linear 11-kb fragment points to a role of MGME1 in processing mtDNA ends, possibly enabling their repair by homologous recombination. In agreement with its functional involvement in mtDNA maintenance, we show that MGME1 interacts with the mitochondrial replicase PolgA, suggesting that it is a constituent of the mitochondrial replisome, to which it provides an additional exonuclease activity. Thus, our results support the viewpoint that MGME1-mediated mtDNA processing is essential for faithful mitochondrial genome replication and might be required for intramolecular recombination of mtDNA. PMID:24986917

  14. Anisotropic Brownian motion in ordered phases of DNA fragments.

    PubMed

    Dobrindt, J; Rodrigo Teixeira da Silva, E; Alves, C; Oliveira, C L P; Nallet, F; Andreoli de Oliveira, E; Navailles, L

    2012-01-01

    Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.

  15. Methods for producing partially digested restriction DNA fragments and for producing a partially modified PCR product

    DOEpatents

    Wong, Kwong-Kwok

    2000-01-01

    The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.

  16. An innovative platform for quick and flexible joining of assorted DNA fragments

    DOE PAGES

    De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan

    2016-01-13

    Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. We describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. Moreover, we find that this system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitrymore » assembled from different DNA fragments.« less

  17. Electrostatic field of the large fragment of Escherichia coli DNA polymerase I.

    PubMed

    Warwicker, J; Ollis, D; Richards, F M; Steitz, T A

    1985-12-05

    The electrostatic field of the large fragment of Escherichia coli DNA polymerase I (Klenow fragment) has been calculated by the finite difference procedure on a 2 A grid. The potential field is substantially negative at physiological pH (reflecting the net negative charge at this pH). The largest regions of positive potential are in the deep crevice of the C-terminal domain, which is the proposed binding site for the DNA substrate. Within the crevice, the electrostatic potential has a partly helical form. If the DNA is positioned to fulfil stereochemical requirements, then the positive potential generally follows the major groove and (to a lesser extent) the negative potential is in the minor groove. Such an arrangement could stabilize DNA configurations related by screw symmetry. The histidine residues of the Klenow fragment give the positive field of the groove a sensitivity to relatively small pH changes around neutrality. We suggest that the histidine residues could change their ionization states in response to DNA binding, and that this effect could contribute to the protein-DNA binding energy.

  18. Processes involved in assisted reproduction technologies significantly increase sperm DNA fragmentation and phosphatidylserine translocation.

    PubMed

    Balasuriya, A; Serhal, P; Doshi, A; Harper, J C

    2014-03-01

    Sperm preparation techniques in assisted reproduction technologies (ART) are potential generators of exogenous stresses that cause additional DNA damage. DNA fragmentation tests, such as the sperm chromatin structure assay, involve freezing sperm samples in the absence of cryoprotectant. Thermal, oxidative stress (OS) and freezing are detrimental to sperm DNA fragmentation and phosphatidylserine (PS) translocation. The primary aim of this study was to subject mature sperm to environmental insults that normally occur during ART. We tested the hypotheses that OS, thermal stress and freeze-thawing caused sperm nuclear and membrane damage and that a positive correlation exists between PS translocation and DNA fragmentation. Sperm DNA integrity deteriorates in semen samples from men with advancing age and a sperm concentration of <15 m ml(-1) . The significant increase in sperm DNA fragmentation at 37 °C after merely 1 h is important clinically as semen liquefaction and short-term sperm storage in an ART cycle involve incubating samples at this temperature. Freezing without a cryoprotectant significantly increases the level of sperm nuclear damage, so it is important not to freeze neat semen prior to DNA fragmentation testing. This study highlights the importance of minimising the production of exogenous stresses during sperm preparation in ART. © 2012 Blackwell Verlag GmbH.

  19. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation.

    PubMed

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P

    2013-10-01

    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The

  20. Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase.

    PubMed

    Takahashi, Shuntaro; Brazier, John A; Sugimoto, Naoki

    2017-09-05

    Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases.

  1. Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase

    PubMed Central

    Takahashi, Shuntaro; Brazier, John A.; Sugimoto, Naoki

    2017-01-01

    Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases. PMID:28827350

  2. In vitro DNA fragmentation of mitochondrial DNA caused by single-stranded breakage related to macroplasmodial senescence of the true slime mold, Physarum polycephalum.

    PubMed

    Abe, T; Takano, H; Sasaki, N; Mori, K; Kawano, S

    2000-02-01

    We found that mitochondrial DNA (mtDNA) isolated from Physarum polycephalum fragmented itself in weak ionic solutions. The mtDNA was dissolved in STE (saline Tris-EDTA: 150 mM NaCl, 10 mM Tris-HCl, 1 mM EDTA), TE (10 mM Tris-HCl, 1 mM EDTA) and DW, and then electrophoresed in an agarose gel. The intact 86-kbp mtDNA band was seen in STE, but several novel bands appeared in TE and DW. In TE, two discrete bands appeared at 6.7-kbp (alpha-band) and 5.0-kbp (beta-band), whereas at least 17 discrete bands were observed in distilled water (DW). These fragmentation patterns were not stoichiometric, as seen when using restriction endonucleases, but were clearly different from the degradation of DNA caused by a physical shearing force or a contaminating nuclease. In this paper, we characterize this in vitro fragmentation of mtDNA from P. polycephalum. We located 19 fragments, including the alpha and beta fragments, on a mtDNA restriction map, and demonstrated that these cleavage sites were S1 nuclease-sensitive regions, which are single-stranded DNA regions such as nicks and gaps in the mtDNA. The alpha and beta fragments are derived from the region encoding ribosomal RNAs (rRNAs) and the ATP synthase (atpA) gene, while the other 17 fragments are not derived from any specific region, but the cleavage sites are located throughout the mtDNA molecule. In P. polycephalum, it is well known that the growth rate of macroplasmodia decreases with aging. Equal amounts of mtDNA from juvenile and aged macroplasmodia were electrophoresed and the frequency of the beta fragment in each sample was measured. The ratio of the beta band to the total signal including background was estimated to be 3.3-4.0% in juvenile macroplasmodia, whereas it increased to 8.3-28.2% in aged macroplasmodia. This result suggests that the in vitro fragmentation of mtDNA is associated with macroplasmodial senescence. The single-stranded breakage of mtDNA of P. polycephalum may accumulate with age.

  3. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  4. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties.

    PubMed

    Soleimanpour, Saman; Hassannia, Tahereh; Motiee, Mahdieh; Amini, Abbas Ali; Rezaee, S A R

    2017-05-01

    Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.

  5. Luciferase assay to study the activity of a cloned promoter DNA fragment.

    PubMed

    Solberg, Nina; Krauss, Stefan

    2013-01-01

    Luciferase based assays have become an invaluable tool for the analysis of cloned promoter DNA fragments, both for verifying the ability of a potential promoter fragment to drive the expression of a luciferase reporter gene in various cellular contexts, and for dissecting binding elements in the promoter. Here, we describe the use of the Dual-Luciferase(®) Reporter Assay System created by Promega (Promega Corporation, Wisconsin, USA) to study the cloned 6.7 kilobases (kb) mouse (m) Tcf3 promoter DNA fragment in mouse embryonic derived neural stem cells (NSC). In this system, the expression of the firefly luciferase driven by the cloned mTcf3 promoter DNA fragment (including transcription initiation sites) is correlated with a co-transfected control reporter expressing Renilla luciferase from the herpes simplex virus (HSV) thymidine kinase promoter. Using an internal control reporter allows to normalize the activity of the experimental reporter to the internal control, which minimizes experimental variability.

  6. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    ERIC Educational Resources Information Center

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli"…

  7. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    PubMed Central

    Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039

  8. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA[reg])

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evenson, Donald P.; Wixon, Regina

    Studies over the past two decades have clearly shown that reproductive toxicants cause sperm DNA fragmentation. This DNA fragmentation can usually be detected prior to observing alterations of metaphase chromosomes in embryos. Thus, Sperm Chromatin Structure Assay (SCSA)-detected DNA damage is viewed as the molecular precursor to later gross chromosome damage observed under the light microscope. SCSA measurements of animal or human sperm consist of first obtaining a fresh or flash frozen neat semen sample in LN2 or dry ice. Samples are then sent to a SCSA diagnostic laboratory where the samples are thawed, diluted to {approx}1-2 x 106 sperm/ml,more » treated for 30 s with a pH 1.2 detergent buffer and then stained with acridine orange (AO). The low pH partially denatures DNA at the sites of DNA strand breaks and the AO-ssDNA fluoresces red while the AO-dsDNA fluoresces green. Flow cytometry measurements of 5000 sperm/sample provide statistically robust data on the ratio of red to green sperm, the extent of the DNA fragmentation and the standard deviations of measures. Numerous experiments on rodents treated with reproductive toxicants clearly showed that SCSA measures are highly dose responsive and have a very low CV. Different agents that act on germ cells at various stages of development usually showed sperm DNA fragmentation when that germ cell fraction arrived in the epididymis or ejaculate. Some of these treated samples were capable of successful in vitro fertilization but with frequent embryo failure. A 2-year longitudinal study of men living a valley town with a reported abnormal level of infertility and spontaneous miscarriages and also a seasonal atmospheric smog pollution, showed, for the first time, that SCSA measurements of human sperm DNA fragmentation were detectable and correlated with dosage of air pollution while the classical semen measures were not correlated. Also, young men spraying pesticides without protective gear are at an increased risk

  9. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome.

    PubMed

    Avendaño, Conrado; Franchi, Anahí; Duran, Hakan; Oehninger, Sergio

    2010-07-01

    To evaluate DNA fragmentation in morphologically normal sperm recovered from the same sample used for intracytoplasmic sperm injection (ICSI) and to correlate DNA damage with embryo quality and pregnancy outcome. Prospective study. Academic center. 36 infertile men participating in the ICSI program. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-fluorescein nick end labeling (TUNEL) assay and morphologic assessment by phase contrast. Simultaneous assessment of sperm morphology and DNA fragmentation by TUNEL assay was performed in the same cell, then the percentage of normal sperm with fragmented DNA (normal SFD) was correlated with embryo quality and pregnancy outcomes. A highly statistically significant negative correlation was found between the percentage of normal SFD and embryo quality. This association was confirmed for the transferred embryos and for the total embryo cohort. The receiver operating characteristics curve analysis demonstrated that the percentage of normal SFD and embryo quality were statistically significant predictors of pregnancy. When the percentage of normal SFD was fragmented DNA (morphologically normal and abnormal) and ICSI outcomes. The DNA fragmentation of morphologically normal sperm negatively impacts embryo quality and probability of pregnancy in ICSI cycles. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  11. Sperm DNA fragmentation in boars is delayed or abolished by using sperm extenders.

    PubMed

    Pérez-Llano, Begoña; Enciso, María; García-Casado, Pedro; Sala, Rubén; Gosálvez, Jaime

    2006-12-01

    The semen quality of seven young adult boars was assessed for percentages of sperm motility, normal acrosomes, abnormal sperm, cells positive to sHOST (short Hipoosmotic Swelling Test), HPNA cells (sHOST Positive with Normal Acrosome cells) and the percentage of sperm heads, which exhibited DNA fragmentation using the Sperm Chromatin Dispersion test (SCD). These parameters were analysed in sperm samples both undiluted and diluted using a commercial extender and stored at 15 degrees C for 21 days. Results showed that semen quality decreases faster in the undiluted semen samples from day 0 to day 7 compared to diluted semen samples that remained with a high quality up to day 11. The undiluted semen exhibited a low DNA fragmentation index (DFI) during the first days and then a significant increase from day 7 up to day 21. This increase in the DFI coincided with the lowest levels of the other semen quality parameters. On the contrary, the samples diluted in the commercial extender showed very low levels of DNA fragmentation in all boars during the preservation period. When the evolution of DNA fragmentation was analysed in the undiluted samples, differences were found among boars. These differences were not shown in the samples diluted in the extender where the basal DFI remained stable during the 21 days. The main conclusion of this study was that some sperm extenders delay or partially prevent sperm DNA fragmentation.

  12. High-Efficiency Ligation and Recombination of DNA Fragments by Vertebrate Cells

    NASA Astrophysics Data System (ADS)

    Miller, Cynthia K.; Temin, Howard M.

    1983-05-01

    DNA-mediated gene transfer (transfection) is used to introduce specific genes into vertebrate cells. Events soon after transfection were quantitatively analyzed by determining the infectivity of the DNA from an avian retrovirus and of mixtures of subgenomic fragments of this DNA. The limiting step of transfection with two DNA molecules is the uptake by a single cell of both DNA's in a biologically active state. Transfected cells mediate ligation and recombination of physically unlinked DNA's at nearly 100 percent efficiency.

  13. The catalytic activity of a recombinant single chain variable fragment nucleic acid-hydrolysing antibody varies with fusion tag and expression host.

    PubMed

    Lee, Joungmin; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Park, Hyunjoon; Byun, Sung June; Kwon, Myung-Hee

    2017-11-01

    The antigen-binding properties of single chain Fv antibodies (scFvs) can vary depending on the position and type of fusion tag used, as well as the host cells used for expression. The issue is even more complicated with a catalytic scFv antibody that binds and hydrolyses a specific antigen. Herein, we investigated the antigen-binding and -hydrolysing activities of the catalytic anti-nucleic acid antibody 3D8 scFv expressed in Escherichia coli or HEK293f cells with or without additional amino acid residues at the N- and C-termini. DNA-binding activity was retained in all recombinant forms. However, the DNA-hydrolysing activity varied drastically between forms. The DNA-hydrolysing activity of E. coli-derived 3D8 scFvs was not affected by the presence of a C-terminal human influenza haemagglutinin (HA) or His tag. By contrast, the activity of HEK293f-derived 3D8 scFvs was completely lost when additional residues were included at the N-terminus and/or when a His tag was incorporated at the C-terminus, whereas a HA tag at the C-terminus did not diminish activity. Thus, we demonstrate that the antigen-binding and catalytic activities of a catalytic antibody can be separately affected by the presence of additional residues at the N- and C-termini, and by the host cell type. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Ultra-High-Speed DNA Fragment Separations Using Microfabricated Capillary Array Electrophoresis Chips

    NASA Astrophysics Data System (ADS)

    Woolley, Adam T.; Mathies, Richard A.

    1994-11-01

    Capillary electrophoresis arrays have been fabricated on planar glass substrates by photolithographic masking and chemical etching techniques. The photolithographically defined channel patterns were etched in a glass substrate, and then capillaries were formed by thermally bonding the etched substrate to a second glass slide. High-resolution electrophoretic separations of φX174 Hae III DNA restriction fragments have been performed with these chips using a hydroxyethyl cellulose sieving matrix in the channels. DNA fragments were fluorescently labeled with dye in the running buffer and detected with a laser-excited, confocal fluorescence system. The effects of variations in the electric field, procedures for injection, and sizes of separation and injection channels (ranging from 30 to 120 μm) have been explored. By use of channels with an effective length of only 3.5 cm, separations of φX174 Hae III DNA fragments from ≈70 to 1000 bp are complete in only 120 sec. We have also demonstrated high-speed sizing of PCR-amplified HLA-DQα alleles. This work establishes methods for high-speed, high-throughput DNA separations on capillary array electrophoresis chips.

  15. Analysis of human blood plasma cell-free DNA fragment size distribution using EvaGreen chemistry based droplet digital PCR assays.

    PubMed

    Fernando, M Rohan; Jiang, Chao; Krzyzanowski, Gary D; Ryan, Wayne L

    2018-04-12

    Plasma cell-free DNA (cfDNA) fragment size distribution provides important information required for diagnostic assay development. We have developed and optimized droplet digital PCR (ddPCR) assays that quantify short and long DNA fragments. These assays were used to analyze plasma cfDNA fragment size distribution in human blood. Assays were designed to amplify 76,135, 490 and 905 base pair fragments of human β-actin gene. These assays were used for fragment size analysis of plasma cell-free, exosome and apoptotic body DNA obtained from normal and pregnant donors. The relative percentages for 76, 135, 490 and 905 bp fragments from non-pregnant plasma and exosome DNA were 100%, 39%, 18%, 5.6% and 100%, 40%, 18%,3.3%, respectively. The relative percentages for pregnant plasma and exosome DNA were 100%, 34%, 14%, 23%, and 100%, 30%, 12%, 18%, respectively. The relative percentages for non-pregnant plasma pellet (obtained after 2nd centrifugation step) were 100%, 100%, 87% and 83%, respectively. Non-pregnant Plasma cell-free and exosome DNA share a unique fragment distribution pattern which is different from pregnant donor plasma and exosome DNA fragment distribution indicating the effect of physiological status on cfDNA fragment size distribution. Fragment distribution pattern for plasma pellet that includes apoptotic bodies and nuclear DNA was greatly different from plasma cell-free and exosome DNA. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Longitudinal study of sperm DNA fragmentation as measured by terminal uridine nick end-labelling assay.

    PubMed

    Sergerie, M; Laforest, G; Boulanger, K; Bissonnette, F; Bleau, G

    2005-07-01

    One major limitation in the use of sperm DNA fragmentation as measured by the TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick-end labelling (TUNEL) assay is the paucity of solid data on the stability of this parameter. The objective of our study was to evaluate variations in the degree of sperm DNA fragmentation, as measured by the TUNEL assay, over a 6 month period. Five donors provided semen samples (total 107) on the average three times per month, and 10 infertility patients provided semen samples every 4 weeks (total 58). The mean percentage of sperm DNA fragmentation for donors was 13.18%, the within-donor standard deviation (SD(W) = 3.79%) was small compared to between-donor (SD(B) = 17.56%). For the group of patients, the mean percentage of sperm DNA fragmentation was 22.44%, with SD(W) of 4.43% within patients and SD(B) of 29.48% between patients. No seasonal rhythm was observed during the study. The intra-class correlation coefficient for all subjects combined was 0.83. Compared to sperm concentration, individual coefficients of variation for sperm DNA fragmentation indicated less variability in four subjects, but were similar in the others. This longitudinal study shows that sperm DNA fragmentation is a parameter with good stability (repeatability) over time; it can be taken as a baseline both in healthy fertile men and in patients from infertility couples.

  17. Prophagic DNA Fragments in Streptococcus agalactiae Strains and Association with Neonatal Meningitis

    PubMed Central

    van der Mee-Marquet, Nathalie; Domelier, Anne-Sophie; Mereghetti, Laurent; Lanotte, Philippe; Rosenau, Agnès; van Leeuwen, Willem; Quentin, Roland

    2006-01-01

    We identified—by randomly amplified polymorphic DNA (RAPD) analysis at the population level followed by DNA differential display, cloning, and sequencing—three prophage DNA fragments (F5, F7, and F10) in Streptococcus agalactiae that displayed significant sequence similarity to the DNA of S. agalactiae and Streptococcus pyogenes. The F5 sequence aligned with a prophagic gene encoding the large subunit of a terminase, F7 aligned with a phage-associated cell wall hydrolase and a phage-associated lysin, and F10 aligned with a transcriptional regulator (ArpU family) and a phage-associated endonuclease. We first determined the prevalence of F5, F7, and F10 by PCR in a collection of 109 strains isolated in the 1980s and divided into two populations: one with a high risk of causing meningitis (HR group) and the other with a lower risk of causing meningitis (LR group). These fragments were significantly more prevalent in the HR group than in the LR group (P < 0.001). Our findings suggest that lysogeny has increased the ability of some S. agalactiae strains to invade the neonatal brain endothelium. We then determined the prevalence of F5, F7, and F10 by PCR in a collection of 40 strains recently isolated from neonatal meningitis cases for comparison with the cerebrospinal fluid (CSF) strains isolated in the 1980s. The prevalence of the three prophage DNA fragments was similar in these two populations isolated 15 years apart. We suggest that the prophage DNA fragments identified have remained stable in many CSF S. agalactiae strains, possibly due to their importance in virulence or fitness. PMID:16517893

  18. DNA attachment to support structures

    DOEpatents

    Balhorn, Rodney L.; Barry, Christopher H.

    2002-01-01

    Microscopic beads or other structures are attached to nucleic acids (DNA) using a terminal transferase. The transferase adds labeled dideoxy nucleotide bases to the ends of linear strands of DNA. The labels, such as the antigens digoxigenin and biotin, bind to the antibody compounds or other appropriate complementary ligands, which are bound to the microscopic beads or other support structures. The method does not require the synthesis of a synthetic oligonucleotide probe. The method can be used to tag or label DNA even when the DNA has an unknown sequence, has blunt ends, or is a very large fragment (e.g., >500 kilobase pairs).

  19. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis.

    PubMed

    Sakkas, Denny; Alvarez, Juan G

    2010-03-01

    To review the mechanisms responsible for DNA fragmentation in human sperm, including those occurring during spermatogenesis and transport through the reproductive tract. The mechanisms examined include: apoptosis in the seminiferous tubule epithelium, defects in chromatin remodeling during the process of spermiogenesis, oxygen radical-induced DNA damage during sperm migration from the seminiferous tubules to the epididymis, the activation of sperm caspases and endonucleases, damage induced by chemotherapy and radiotherapy, and the effect of environmental toxicants. The different tests currently used for sperm DNA fragmentation analysis and the factors that determine the predictive value of sperm DNA fragmentation testing and their implications in the diagnosis and treatment of infertility are also discussed. Finally, we also scrutinize how the presence in the embryonic genome of DNA strand breaks or modifications of DNA nucleotides inherited from the paternal genome could impact the embryo and offspring. In particular we discuss how abnormal sperm could be dealt with by the oocyte and how sperm DNA abnormalities, which have not been satisfactorily repaired by the oocyte after fertilization, may interfere with normal embryo and fetal development. Sperm DNA can be modified through various mechanisms. The integrity of the paternal genome is therefore of paramount importance in the initiation and maintenance of a viable pregnancy both in a natural conception and in assisted reproduction. The need to diagnose sperm at a nuclear level is an area that needs further understanding so that we can improve treatment of the infertile couple. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities

    NASA Astrophysics Data System (ADS)

    Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan

    2016-03-01

    New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.

  1. A glass fiber/diethylaminoethyl double filter binding assay that measures apoptotic internucleosomal DNA fragmentation.

    PubMed

    Erusalimsky, J D; John, J; Hong, Y; Moore, M

    1996-11-15

    A filter binding assay that measures internucleosomal DNA fragmentation associated with apoptosis is described. The assay is based on a novel principle that consists of using simultaneously two kinds of glass fiber filters to harvest [3H]thymidine-prelabeled cells following their incubation with inducers of apoptosis. One filter, which is neutral, traps intact chromatin and high-molecular-weight DNA. The other filter, which is positively charged with DEAE active groups, traps low-molecular-weight DNA fragments. DNA fragmentation is quantified by measuring the radioactivity retained by each of the filters. The assay was evaluated with the histiocytic lymphoma cell line U937 and the topoisomerase inhibitors camptothecin, etoposide, and doxorubicin. These agents caused a dose-dependent decrease of radioactivity in the neutral filter and a parallel increase of radioactivity in the DEAE filter. Irradiation-induced single strand breaks and topoisomerase-mediated primary DNA damage were not detected by this method. Consistent with the detection of internucleosomal DNA fragmentation, the effects measured by this assay were prevented by the endonuclease inhibitor zinc acetate and by the metabolic inhibitor sodium azide. Results obtained using this assay were validated by observation of DNA ladders on agarose gels and by morphologic examination of apoptotic features. Evaluation of the assay in a mock screen demonstrated that the introduction of the DEAE filter increases the assay sensitivity and eliminates false positives. Thus, this assay may be used in high-throughput screening approaches to discover novel modulators of apoptosis.

  2. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  3. Optical selection and collection of DNA fragments

    DOEpatents

    Roslaniec, Mary C.; Martin, John C.; Jett, James H.; Cram, L. Scott

    1998-01-01

    Optical selection and collection of DNA fragments. The present invention includes the optical selection and collection of large (>.mu.g) quantities of clonable, chromosome-specific DNA from a sample of chromosomes. Chromosome selection is based on selective, irreversible photoinactivation of unwanted chromosomal DNA. Although more general procedures may be envisioned, the invention is demonstrated by processing chromosomes in a conventional flow cytometry apparatus, but where no droplets are generated. All chromosomes in the sample are first stained with at least one fluorescent analytic dye and bonded to a photochemically active species which can render chromosomal DNA unclonable if activated. After passing through analyzing light beam(s), unwanted chromosomes are irradiated using light which is absorbed by the photochemically active species, thereby causing photoinactivation. As desired chromosomes pass this photoinactivation point, the inactivating light source is deflected by an optical modulator; hence, desired chromosomes are not photoinactivated and remain clonable. The selection and photoinactivation processes take place on a microsecond timescale. By eliminating droplet formation, chromosome selection rates 50 times greater than those possible with conventional chromosome sorters may be obtained. Thus, usable quantities of clonable DNA from any source thereof may be collected.

  4. Dependence on radiation quality of DNA fragmentation spectra

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro; Ottolenghi, Andrea; Alloni, Daniele; Ballarini, Francesca; Belli, Mauro; Esposito, Giuseppe; Facoetti, Angelica; Friedland, Werner; Liotta, Marco; Paretzke, Herwig

    Energy deposition by radiation initially gives rise to cellular critical lesions such as DNA doublestrand breaks (DSB), that later lead to the formation of relevant biological endpoints. Studies on fragment size distributions induced by radiations of various qualities can be of great help in linking the characteristics of radiation to cellular endpoints, providing information for understanding the main mechanisms of cell damage. Here we are concerned with the damage induced by heavy charged particles; this issue is very important in the field of radioprotection of astronauts participating in long term space missions, besides being relevant also in other fields, like hadrontherapy. Galactic Cosmic Rays contain a large component of high-LET particles (HZE), e.g. helium and carbon ions, as well as highcharge particles such as iron ions. These particles are characterized by complex track structures with energy depositions not only along the path of the primary particle, but also at relatively large distance form the path, due to the presence of high energy secondary electrons. In this work we have simulated the irradiation of human fibroblasts with γ-rays, protons, helium, carbon and iron ions at a fixed dose with the biophysical Monte Carlo code PARTRAC,and calculated the induction of DSB. The PARTRAC code includes accurate representation of the chromatin geometry and of the physical and physico-chemical processes associated with the energy deposition by radiation. The results of a first validation of the code have been reported in A. Campa et al. (2005) and D. Alloni et al. (2007a, 2007b). DNA fragment spectra were calculated based on the DSB induction patterns and compared in particular for particles of the same specific energy and for particles of the same LET. Special emphasis has been directed to the calculation of very small fragments (< 1 kbp) that are not detectable by the most common experimental techniques and that can significantly influence the RBE

  5. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    PubMed

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  6. The use of archived tags in retrospective genetic analysis of fish.

    PubMed

    Bonanomi, Sara; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Hemmer-Hansen, Jakob; Nielsen, Einar E

    2014-05-01

    Collections of historical tissue samples from fish (e.g. scales and otoliths) stored in museums and fisheries institutions are precious sources of DNA for conducting retrospective genetic analysis. However, in some cases, only external tags used for documentation of spatial dynamics of fish populations have been preserved. Here, we test the usefulness of fish tags as a source of DNA for genetic analysis. We extract DNA from historical tags from cod collected in Greenlandic waters between 1950 and 1968. We show that the quantity and quality of DNA recovered from tags is comparable to DNA from archived otoliths from the same individuals. Surprisingly, levels of cross-contamination do not seem to be significantly higher in DNA from external (tag) than internal (otolith) sources. Our study therefore demonstrates that historical tags can be a highly valuable source of DNA for retrospective genetic analysis of fish. © 2013 John Wiley & Sons Ltd.

  7. Comprehensive Study On The Metastable Negative Ion Fragmentation Of Individual Dna Components And Larger Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Ingolfsson, O.; Flosadottir, H. D.; Omarsson, B.; Ilko, B.

    2010-07-01

    Here we present a systematic study on the unimolecular decay pathways of the deprotonated building blocks of DNA and RNA to address the following questions: 1. Are the negative ion fragmentation patterns observed in the metastable decay of individual DNA components still evident when these are combined to larger oligonucleotides? 2. What is the significance of the charge location in determining the fragmentation pathways in the metastable decay process? 3. Are those metastable decay channels relevant in dissociative electron attachment to DNA components? To address these questions we have studied the fragmentation patterns of the deprotonated ribose and ribose 5'-monophosphate, the fragmentation patterns of the individual bases, all nucleosides and all 2'-deoxynucleosides as well as the individual nucleotides and several combinations of hexameric oligonucleotides. Furthermore, to understand the significance of the charge location in determining the fragmentation path in the metastable decay process of these deprotonated ions we have also studied modified uridine and guanosine. These have been modified to block different deprotonation sites and thus to control the initial step in the in the fragmentation process i.e. the site of deprotonation. In addition to our experimental approach we have also simulated the metastable fragmentation of the deprotonated uridine and 2'-deoxyguanosine to clarify the mechanisms and fragmentation patterns observed. Where data is available, the results are compared to dissociative electron attachment to DNA components and discussed in context to the underlying mechanism. Experiments on modified nucleosides where selected deprotonation sites have been blocked are used to verify the predicted reaction paths and imulations on uridine and 2'-deoxyguanosine are compared to the experimental results and used to shed light on the mechanisms involved.

  8. Comparison of three methods of DNA extraction from peripheral blood mononuclear cells and lung fragments of equines.

    PubMed

    Santos, E M; Paula, J F R; Motta, P M C; Heinemann, M B; Leite, R C; Haddad, J P A; Del Puerto, H L; Reis, J K P

    2010-08-17

    We compared three different protocols for DNA extraction from horse peripheral blood mononuclear cells (PBMC) and lung fragments, determining average final DNA concentration, purity, percentage of PCR amplification using beta-actin, and cost. Thirty-four samples from PBMC, and 33 samples from lung fragments were submitted to DNA extraction by three different protocols. Protocol A consisted of a phenol-chloroform and isoamylic alcohol extraction, Protocol B used alkaline extraction with NaOH, and Protocol C used the DNAzol((R)) reagent kit. Protocol A was the best option for DNA extraction from lung fragments, producing high DNA concentrations, with high sensitivity in PCR amplification (100%), followed by Protocols C and B. On the other hand, for PBMC samples, Protocol B gave the highest sensitivity in PCR amplification (100%), followed by Protocols C and A. We conclude that Protocol A should be used for PCR diagnosis from lung fragment samples, while Protocol B should be used for PBMC.

  9. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    PubMed Central

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  10. Differentiation of mixed biological traces in sexual assaults using DNA fragment analysis

    PubMed Central

    Apostolov, Аleksandar

    2014-01-01

    During the investigation of sexual abuse, it is not rare that mixed genetic material from two or more persons is detected. In such cases, successful profiling can be achieved using DNA fragment analysis, resulting in individual genetic profiles of offenders and their victims. This has led to an increase in the percentage of identified perpetrators of sexual offenses. The classic and modified genetic models used, allowed us to refine and implement appropriate extraction, polymerase chain reaction and electrophoretic procedures with individual assessment and approach to conducting research. Testing mixed biological traces using DNA fragment analysis appears to be the only opportunity for identifying perpetrators in gang rapes. PMID:26019514

  11. Measuring Sperm DNA Fragmentation and Clinical Outcomes of Medically Assisted Reproduction: A Systematic Review and Meta-Analysis.

    PubMed

    Cissen, Maartje; Wely, Madelon van; Scholten, Irma; Mansell, Steven; Bruin, Jan Peter de; Mol, Ben Willem; Braat, Didi; Repping, Sjoerd; Hamer, Geert

    2016-01-01

    Sperm DNA fragmentation has been associated with reduced fertilization rates, embryo quality, pregnancy rates and increased miscarriage rates. Various methods exist to test sperm DNA fragmentation such as the sperm chromatin structure assay (SCSA), the sperm chromatin dispersion (SCD) test, the terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay and the single cell gel electrophoresis (Comet) assay. We performed a systematic review and meta-analysis to assess the value of measuring sperm DNA fragmentation in predicting chance of ongoing pregnancy with IVF or ICSI. Out of 658 unique studies, 30 had extractable data and were thus included in the meta-analysis. Overall, the sperm DNA fragmentation tests had a reasonable to good sensitivity. A wide variety of other factors may also affect the IVF/ICSI outcome, reflected by limited to very low specificity. The constructed hierarchical summary receiver operating characteristic (HSROC) curve indicated a fair discriminatory capacity of the TUNEL assay (area under the curve (AUC) of 0.71; 95% CI 0.66 to 0.74) and Comet assay (AUC of 0.73; 95% CI 0.19 to 0.97). The SCSA and the SCD test had poor predictive capacity. Importantly, for the TUNEL assay, SCD test and Comet assay, meta-regression showed no differences in predictive value between IVF and ICSI. For the SCSA meta-regression indicated the predictive values for IVF and ICSI were different. The present review suggests that current sperm DNA fragmentation tests have limited capacity to predict the chance of pregnancy in the context of MAR. Furthermore, sperm DNA fragmentation tests have little or no difference in predictive value between IVF and ICSI. At this moment, there is insufficient evidence to recommend the routine use of sperm DNA fragmentation tests in couples undergoing MAR both for the prediction of pregnancy and for the choice of treatment. Given the significant limitations of the evidence and the

  12. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis.

    PubMed

    Nezis, Ioannis P; Shravage, Bhupendra V; Sagona, Antonia P; Lamark, Trond; Bjørkøy, Geir; Johansen, Terje; Rusten, Tor Erik; Brech, Andreas; Baehrecke, Eric H; Stenmark, Harald

    2010-08-23

    Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death.

  13. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    PubMed

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  15. Surface-Enhanced Raman Spectroscopy for Staphylococcus aureus DNA Detection by Using Surface-Enhanced Raman Scattering Tag on Au Film Over Nanosphere Substrate.

    PubMed

    Chen, Jian; Wang, Jun-Feng; Wu, Xue-Zhong; Rong, Zhen; Dong, Pei-Tao; Xiao, Rui

    2018-06-01

    We developed a high-performance surface-enhanced Raman scattering (SERS) sensing platform that can be used for specific and sensitive DNA detection. The SERS platform combines the advantages of Au film over nanosphere (AuFON) substrate and Ag@PATP@SiO2 SERS tag. SERS tag-on-AuFON is a sensing system that operates by the self-assembly of SERS tag onto an AuFON substrate in the presence of target DNAs. The SERS signals can be dramatically enhanced by the formation of "hot spots" in the interstices between the assembled nanostructures, as confirmed by finite-difference time-domain (FDTD) simulation. As a new sensing platform, SERS tag-on-AuFON was utilized to detect Staphylococcus aureus (S. aureus) DNA with a limit of detection at 1 nM. A linear relationship was also observed between the SERS intensity at Raman peak 1439 cm-1 and the logarithm of target DNA concentrations ranging from 1 μM to 1 nM. Besides, the sensing platform showed good homogeneity, with a relative standard deviation of about 1%. The sensitive SERS platform created in this study is a promising tool for detecting trace biochemical molecules because of its relatively simple and effective fabrication procedure, high sensitivity, and high reproducibility of the SERS effect.

  16. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    PubMed

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  17. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    PubMed Central

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  18. A Modified Gibson Assembly Method for Cloning Large DNA Fragments with High GC Contents.

    PubMed

    Li, Lei; Jiang, Weihong; Lu, Yinhua

    2018-01-01

    Gibson one-step, isothermal assembly method (Gibson assembly) can be used to efficiently assemble large DNA molecules by in vitro recombination involving a 5'-exonuclease, a DNA polymerase and a DNA ligase. In the past few years, this robust DNA assembly method has been widely applied to seamlessly construct genes, genetic pathways and even entire genomes. Here, we expand this method to clone large DNA fragments with high GC contents, such as antibiotic biosynthetic gene clusters from Streptomyces . Due to the low isothermal condition (50 °C) in the Gibson reaction system, the complementary overlaps with high GC contents are proposed to easily form mismatched linker pairings, which leads to low assembly efficiencies mainly due to vector self-ligation. So, we modified this classic method by the following two steps. First, a pair of universal terminal single-stranded DNA overhangs with high AT contents are added to the ends of the BAC vector. Second, two restriction enzyme sites are introduced into the respective sides of the designed overlaps to achieve the hierarchical assembly of large DNA molecules. The optimized Gibson assembly method facilitates fast acquisition of large DNA fragments with high GC contents from Streptomyces.

  19. Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.

    PubMed

    Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-01-19

    Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.

  20. A simple method for semi-random DNA amplicon fragmentation using the methylation-dependent restriction enzyme MspJI.

    PubMed

    Shinozuka, Hiroshi; Cogan, Noel O I; Shinozuka, Maiko; Marshall, Alexis; Kay, Pippa; Lin, Yi-Han; Spangenberg, German C; Forster, John W

    2015-04-11

    Fragmentation at random nucleotide locations is an essential process for preparation of DNA libraries to be used on massively parallel short-read DNA sequencing platforms. Although instruments for physical shearing, such as the Covaris S2 focused-ultrasonicator system, and products for enzymatic shearing, such as the Nextera technology and NEBNext dsDNA Fragmentase kit, are commercially available, a simple and inexpensive method is desirable for high-throughput sequencing library preparation. MspJI is a recently characterised restriction enzyme which recognises the sequence motif CNNR (where R = G or A) when the first base is modified to 5-methylcytosine or 5-hydroxymethylcytosine. A semi-random enzymatic DNA amplicon fragmentation method was developed based on the unique cleavage properties of MspJI. In this method, random incorporation of 5-methyl-2'-deoxycytidine-5'-triphosphate is achieved through DNA amplification with DNA polymerase, followed by DNA digestion with MspJI. Due to the recognition sequence of the enzyme, DNA amplicons are fragmented in a relatively sequence-independent manner. The size range of the resulting fragments was capable of control through optimisation of 5-methyl-2'-deoxycytidine-5'-triphosphate concentration in the reaction mixture. A library suitable for sequencing using the Illumina MiSeq platform was prepared and processed using the proposed method. Alignment of generated short reads to a reference sequence demonstrated a relatively high level of random fragmentation. The proposed method may be performed with standard laboratory equipment. Although the uniformity of coverage was slightly inferior to the Covaris physical shearing procedure, due to efficiencies of cost and labour, the method may be more suitable than existing approaches for implementation in large-scale sequencing activities, such as bacterial artificial chromosome (BAC)-based genome sequence assembly, pan-genomic studies and locus-targeted genotyping-by-sequencing.

  1. DNA tagged microparticles

    DOEpatents

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  2. Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal-organic framework.

    PubMed

    Qiu, Gui-Hua; Weng, Zi-Hua; Hu, Pei-Pei; Duan, Wen-Jun; Xie, Bao-Ping; Sun, Bin; Tang, Xiao-Yan; Chen, Jin-Xiang

    2018-04-01

    From a three-dimensional (3D) metal-organic framework (MOF) of {[Cu(Cmdcp)(phen)(H 2 O)] 2 ·9H 2 O} n (1, H 3 CmdcpBr = N-carboxymethyl-(3,5-dicarboxyl)pyridinium bromide, phen = phenanthroline), a sensitive and selective fluorescence sensor has been developed for the simultaneous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded microRNA-like (miRNA-like) fragment. The results from molecular dynamics simulation confirmed that MOF 1 absorbs carboxyfluorescein (FAM)-tagged and 5(6)-carboxyrhodamine, triethylammonium salt (ROX)-tagged probe ss-DNA (probe DNA, P-DNA) by π … π stacking and hydrogen bonding, as well as additional electrostatic interactions to form a sensing platform of P-DNAs@1 with quenched FAM and ROX fluorescence. In the presence of targeted ebolavirus conserved RNA sequences or ebolavirus-encoded miRNA-like fragment, the fluorophore-labeled P-DNA hybridizes with the analyte to give a P-DNA@RNA duplex and released from MOF 1, triggering a fluorescence recovery. Simultaneous detection of two target RNAs has also been realized by single and synchronous fluorescence analysis. The formed sensing platform shows high sensitivity for ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment with detection limits at the picomolar level and high selectivity without cross-reaction between the two probes. MOF 1 thus shows the potential as an effective fluorescent sensing platform for the synchronous detection of two ebolavirus-related sequences, and offer improved diagnostic accuracy of Ebola virus disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Magnetic bead purification of labeled DNA fragments forhigh-throughput capillary electrophoresis sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkin, Christopher; Kapur, Hitesh; Smith, Troy

    2001-09-15

    We have developed an automated purification method for terminator sequencing products based on a magnetic bead technology. This 384-well protocol generates labeled DNA fragments that are essentially free of contaminates for less than $0.005 per reaction. In comparison to laborious ethanol precipitation protocols, this method increases the phred20 read length by forty bases with various DNA templates such as PCR fragments, Plasmids, Cosmids and RCA products. Our method eliminates centrifugation and is compatible with both the MegaBACE 1000 and ABIPrism 3700 capillary instruments. As of September 2001, this method has produced over 1.6 million samples with 93 percent averaging 620more » phred20 bases as part of Joint Genome Institutes Production Process.« less

  4. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.

    PubMed

    Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won

    2014-11-01

    Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates

  5. DNA-tagged Microparticles for Tracing Water Flows and Travel Times in Natural Systems: The First results from Controlled Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bogaard, T.; Bandyopadhyay, S.; Foppen, J. W.

    2017-12-01

    Societal demand for water safety is continuously increasing, being it resilient against flood/droughts, clean water for ecosystems, recreation or safe drinking water. Robust methods to measure temporal and spatial patterns of water and contaminant pathways are still lacking. Our research project aims to develop and apply (1) innovative, robust, and environmental-friendly silica-protected iron oxide micro-particles tagged with artificial DNA to trace contaminant movement and travel times of water in natural systems and (2) an innovative coupled model approach to capture dynamics in hydrological pathways and their effects on water quality. The exceptional property of DNA-tagging is the infinite number of unique tracers that can be produced and their detectability at extreme low concentrations. The advantage of the iron-core of the particle is the magnetic harvesting of the particles from water-samples. Such tracers are thought to give the water sector a unique tool for in-situ mapping of transport of contaminants and pathogenic microorganisms in water systems. However, the characteristics of the particle like magnetic property of the iron-core and surface potential of the silica layer, are of key importance for the behaviour of the particle in surface water and in soils. Furthermore, the application of such micro-particles requires strict protocols for the experiment, sampling and laboratory handling which are currently not available. We used two different types of silica-protected DNA-tagged micro-particles. We performed batch, column and flow experiments to assess the behaviour of the particles. We will present the first results of the controlled laboratory experiments for hydrological tracing. We will discuss the results and link it to the differences in particles design. Furthermore, we will draw conclusions and discuss knowledge gaps for future application of silica-protected DNA-tagged micro-particles in hydrological research.

  6. Modified Terminal Restriction Fragment Analysis for Quantifying Telomere Length Using In-gel Hybridization.

    PubMed

    Jenkins, Frank J; Kerr, Charles M; Fouquerel, Elise; Bovbjerg, Dana H; Opresko, Patricia L

    2017-07-10

    There are several different techniques for measuring telomere length, each with their own advantages and disadvantages. The traditional approach, Telomere Restriction Fragment (TRF) analysis, utilizes a DNA hybridization technique whereby genomic DNA samples are digested with restriction enzymes, leaving behind telomere DNA repeats and some sub-telomeric DNA. These are separated by agarose gel electrophoresis, transferred to a filter membrane and hybridized to oligonucleotide probes tagged with either chemiluminescence or radioactivity to visualize telomere restriction fragments. This approach, while requiring a larger quantity of DNA than other techniques such as PCR, can measure the telomere length distribution of a population of cells and allows measurement expressed in absolute kilobases. This manuscript demonstrates a modified DNA hybridization procedure for determining telomere length. Genomic DNA is first digested with restriction enzymes (that do not cut telomeres) and separated by agarose gel electrophoresis. The gel is then dried and the DNA is denatured and hybridized in situ to a radiolabeled oligonucleotide probe. This in situ hybridization avoids loss of telomere DNA and improves signal intensity. Following hybridization, the gels are imaged utilizing phosphor screens and the telomere length is quantified using a graphing program. This procedure was developed by the laboratories of Drs. Woodring Wright and Jerry Shay at the University of Texas Southwestern 1 , 2 . Here, we present a detailed description of this procedure, with some modifications.

  7. DNA-based identification of Brassica vegetable species for the juice industry.

    PubMed

    Etoh, Kazumi; Niijima, Noritaka; Yokoshita, Masahiko; Fukuoka, Shin-Ichi

    2003-10-01

    Since kale (Brassica oleracea var. acephala), a cruciferous vegetable with a high level of vitamins and functional compounds beneficial to health and wellness, has become widely used in the juice industry, a precise method for quality control of vegetable species is necessary. We describe here a DNA-based identification method to distinguish kale from cabbage (Brassica oleracea var. capitata), a closely related species, which can be inadvertently mixed with kale during the manufacturing process. Using genomic DNA from these vegetables and combinatory sets of nucleotide primers, we screened for random amplified polymorphic DNA (RAPD) fragments and found three cabbage-specific fragments. These RAPD fragments, with lengths of 1.4, 0.5, and 1.5 kb, were purified, subcloned, and sequenced. Based on sequence-tagged sites (STS), we designed sets of primers to detect cabbage-specific identification (CAI) DNA markers. Utilizing the CAI markers, we successfully distinguished more than 10 different local cabbage accessions from 20 kale accessions, and identified kale juices experimentally spiked with different amounts of cabbage.

  8. Crystallization of DNA fragments from water-salt solutions, containing 2-methylpentane-2,3-diol.

    PubMed

    Osica, V D; Sukharevsky, B Y; Vasilchenko, V N; Verkin, B I; Polyvtsev, O F

    1976-09-01

    Fragments of calf thymus DNA have been crystallized by precipitation from water-salt solutions, containing 2-methylpentane-2,3-diol (MPD). DNA crystals usually take the form either of spherulites up to 100 mu in diameter or of needles with the length up to 50 mu. No irreversible denaturation of DNA occurs during the crystallization process. X-ray diffraction from dense slurries of DNA crystals yields crystalline powder patterns.

  9. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction.

    PubMed

    Birla, Bhagyashree S; Chou, Hui-Hsien

    2015-01-01

    Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.

  10. Phylogenomics of caspase-activated DNA fragmentation factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckhart, Leopold; Fischer, Heinz; Tschachler, Erwin

    2007-04-27

    The degradation of nuclear DNA by DNA fragmentation factor (DFF) is a key step in apoptosis of mammalian cells. Using comparative genomics, we have here determined the evolutionary history of the genes encoding the two DFF subunits, DFFA (also known as ICAD) and DFFB (CAD). Orthologs of DFFA and DFFB were identified in Nematostella vectensis, a representative of the primitive metazoan clade cnidarians, and in various vertebrates and insects, but not in representatives of urochordates, echinoderms, and nematodes. The domains mediating the interaction of DFFA and DFFB, a caspase cleavage site in DFFA, and the amino acid residues critical formore » endonuclease activity of DFFB were conserved in Nematostella. These findings suggest that DFF has been a part of the primordial apoptosis system of the eumetazoan common ancestor and that the ancient cell death machinery has degenerated in several evolutionary lineages, including the one leading to the prototypical apoptosis model, Caenorhabditis elegans.« less

  11. In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level.

    PubMed

    Michikawa, Yuichi; Sugahara, Keisuke; Suga, Tomo; Ohtsuka, Yoshimi; Ishikawa, Kenichi; Ishikawa, Atsuko; Shiomi, Naoko; Shiomi, Tadahiro; Iwakawa, Mayumi; Imai, Takashi

    2008-12-15

    The isolation and multiple genotyping of long individual DNA fragments are needed to obtain haplotype information for diploid organisms. Limiting dilution of sample DNA followed by multiple displacement amplification is a useful technique but is restricted to short (<5 kb) DNA fragments. In the current study, a novel modification was applied to overcome these problems. A limited amount of cellular DNA was carefully released from intact cells into a mildly heated alkaline agarose solution and mixed thoroughly. The solution was then gently aliquoted and allowed to solidify while maintaining the integrity of the diluted DNA. Exogenously provided Phi29 DNA polymerase was used to perform consistent genomic amplification with random hexameric oligonucleotides within the agarose gels. Simple heat melting of the gel allowed recovery of the amplified materials in a solution of the polymerase chain reaction (PCR)-ready form. The haplotypes of seven SNPs spanning 240 kb of the DNA surrounding the human ATM gene region on chromosome 11 were determined for 10 individuals, demonstrating the feasibility of this new method.

  12. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch; Gallati, Sabina, E-mail: sabina.gallati@insel.ch; Schaller, Andre, E-mail: andre.schaller@insel.ch

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serialmore » qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct

  13. RNA primer–primase complexes serve as the signal for polymerase recycling and Okazaki fragment initiation in T4 phage DNA replication

    PubMed Central

    Spiering, Michelle M.; Hanoian, Philip; Gannavaram, Swathi; Benkovic, Stephen J.

    2017-01-01

    The opposite strand polarity of duplex DNA necessitates that the leading strand is replicated continuously whereas the lagging strand is replicated in discrete segments known as Okazaki fragments. The lagging-strand polymerase sometimes recycles to begin the synthesis of a new Okazaki fragment before finishing the previous fragment, creating a gap between the Okazaki fragments. The mechanism and signal that initiate this behavior—that is, the signaling mechanism—have not been definitively identified. We examined the role of RNA primer–primase complexes left on the lagging ssDNA from primer synthesis in initiating early lagging-strand polymerase recycling. We show for the T4 bacteriophage DNA replication system that primer–primase complexes have a residence time similar to the timescale of Okazaki fragment synthesis and the ability to block a holoenzyme synthesizing DNA and stimulate the dissociation of the holoenzyme to trigger polymerase recycling. The collision with primer–primase complexes triggering the early termination of Okazaki fragment synthesis has distinct advantages over those previously proposed because this signal requires no transmission to the lagging-strand polymerase through protein or DNA interactions, the mechanism for rapid dissociation of the holoenzyme is always collision, and no unique characteristics need to be assigned to either identical polymerase in the replisome. We have modeled repeated cycles of Okazaki fragment initiation using a collision with a completed Okazaki fragment or primer–primase complexes as the recycling mechanism. The results reproduce experimental data, providing insights into events related to Okazaki fragment initiation and the overall functioning of DNA replisomes. PMID:28507156

  14. RNA primer-primase complexes serve as the signal for polymerase recycling and Okazaki fragment initiation in T4 phage DNA replication.

    PubMed

    Spiering, Michelle M; Hanoian, Philip; Gannavaram, Swathi; Benkovic, Stephen J

    2017-05-30

    The opposite strand polarity of duplex DNA necessitates that the leading strand is replicated continuously whereas the lagging strand is replicated in discrete segments known as Okazaki fragments. The lagging-strand polymerase sometimes recycles to begin the synthesis of a new Okazaki fragment before finishing the previous fragment, creating a gap between the Okazaki fragments. The mechanism and signal that initiate this behavior-that is, the signaling mechanism-have not been definitively identified. We examined the role of RNA primer-primase complexes left on the lagging ssDNA from primer synthesis in initiating early lagging-strand polymerase recycling. We show for the T4 bacteriophage DNA replication system that primer-primase complexes have a residence time similar to the timescale of Okazaki fragment synthesis and the ability to block a holoenzyme synthesizing DNA and stimulate the dissociation of the holoenzyme to trigger polymerase recycling. The collision with primer-primase complexes triggering the early termination of Okazaki fragment synthesis has distinct advantages over those previously proposed because this signal requires no transmission to the lagging-strand polymerase through protein or DNA interactions, the mechanism for rapid dissociation of the holoenzyme is always collision, and no unique characteristics need to be assigned to either identical polymerase in the replisome. We have modeled repeated cycles of Okazaki fragment initiation using a collision with a completed Okazaki fragment or primer-primase complexes as the recycling mechanism. The results reproduce experimental data, providing insights into events related to Okazaki fragment initiation and the overall functioning of DNA replisomes.

  15. Acoustic stimulation promotes DNA fragmentation in the Guinea pig cochlea.

    PubMed

    Kamio, Tomonobu; Watanabe, Ken-Ichi; Okubo, Kimihiro

    2012-01-01

    Apoptosis can be described as programmed cell death. Apoptosis regulates cell turnover and is involved in various pathological conditions. The characteristic features of apoptosis are shrinkage of the cell body, chromatin condensation, and nucleic acid fragmentation. During apoptosis, double-stranded DNA is broken down into single-stranded DNA (ssDNA) by proteases. Acoustic trauma is commonly encountered in otorhinolaryngology clinics. Intense noise can cause inner ear damage, such as hearing disturbance, tinnitus, ear fullness, and decreased speech discrimination. In this study, we used immunohistochemical and electrophysiological methods to examine the fragmentation of DNA in the cochleas of guinea pigs that had been exposed to intense noise. Twenty-four guinea pigs weighing 250 to 350 g were used. The animals were divided into 4 groups: (I) a control group (n=6), (II) a group that was exposed to noise for 2 hours (n=6), (III) a group that was exposed to noise for 5 hours (n=6), and (IV) a group that was exposed to noise for 20 hours. The stimulus was a pure tone delivered at a frequency of 2 kHz. The sound pressure level was 120 dBSPL. No threshold shifts were apparent in group I. Group II showed a significant elevation of the hearing threshold (ANOVA, p<0.05(*)). The ABR threshold level was also significantly elevated immediately after the acoustic stimulation in groups III and IV (ANOVA, p<0.01(**)). In groups I, II, and IV, the lateral wall of the ear did not show immunoreactivity to ssDNA but did in group III. No immunoreactivity was apparent in the organ of Corti in group I or II. However, the supporting cells and outer hair cells in groups III and IV showed reactions for ssDNA. The fine structure of the organ of Corti had been destroyed in group IV. The lateral wall showed immunoreactivity for ssDNA only in group III, whereas the organ of Corti showed reactions for ssDNA in groups III and IV. Our study suggests that apoptotic changes occur in patients that

  16. [PCR-based evaluation of sequence specificity of DNA fragmentation by ultrasound].

    PubMed

    Garafutdinov, R R; Galimova, A A; Sakhabutdinova, A R; Chemeris, A V

    2016-01-01

    Ultrasonic fragmentation, which is a simple and convenient method for the mechanical degradation of DNA, is widely used in modern genome studies as one of the sample preparation steps. It has been recently found that the DNA breaks occur more often in the regions containing 5'-CG-3' dinucleotides. We studied the influence of the 5'-CG-3' dinucleotides on the efficiency of the 28S rRNA gene amplification during PCR with sonicated DNA of Mantis religiosa. It was shown that the amplification rate depends on the template length and the number of 5'-CG-3' dinucleotides. Amplification of the DNA regions with a higher 5'-CG-3' density is less efficient because of their higher sensitivity to ultrasound. The amount of the amplified DNA templates is inversely proportional to the 5'-CG-3'number.

  17. The effect of swim-up and gradient sperm preparation techniques on deoxyribonucleic acid (DNA) fragmentation in subfertile patients.

    PubMed

    Oguz, Yuksel; Guler, Ismail; Erdem, Ahmet; Mutlu, Mehmet Firat; Gumuslu, Seyhan; Oktem, Mesut; Bozkurt, Nuray; Erdem, Mehmet

    2018-03-23

    To compare the effect of two different sperm preparation techniques, including swim-up and gradient methods on sperm deoxyribonucleic acid (DNA) fragmentation status of semen samples from unexplained and mild male factor subfertile patients undergoing intrauterine insemination (IUI). A prospective randomized study was conducted in 65 subfertile patients, including 34 unexplained and 31 male factor infertility to compare basal and post-procedure DNA fragmentation rates in swim-up and gradient techniques. Sperm DNA fragmentation rates were evaluated by a sperm chromatin dispersion (SCD) test in two portions of each sample of semen that was prepared with either swim-up or gradient techniques. Sperm motility and morphology were also assessed based on WHO 2010 criteria. Swim-up but not gradient method yielded a statistically significant reduction in the DNA fragmented sperm rate after preparation as compared to basal rates, in the semen samples of both unexplained (41.85 ± 22.04 vs. 28.58 ± 21.93, p < 0.001 for swim-up; and 41.85 ± 22.04 vs. 38.79 ± 22.30, p = 0.160 for gradient) and mild male factor (46.61 ± 19.38 vs. 30.32 ± 18.20, p < 0.001 for swim-up and 46.61 ± 19.38 vs. 44.03 ± 20.87, p = 0.470 for gradient) subgroups. Swim-up method significantly reduces sperm DNA fragmentation rates and may have some prognostic value on intrauterine insemination in patients with decreased sperm DNA integrity.

  18. Chromatin Collapse during Caspase-dependent Apoptotic Cell Death Requires DNA Fragmentation Factor, 40-kDa Subunit-/Caspase-activated Deoxyribonuclease-mediated 3′-OH Single-strand DNA Breaks*

    PubMed Central

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X.; Yuste, Victor J.

    2013-01-01

    Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks. PMID:23430749

  19. A LDR-PCR approach for multiplex polymorphisms genotyping of severely degraded DNA with fragment sizes <100 bp.

    PubMed

    Zhang, Zhen; Wang, Bao-Jie; Guan, Hong-Yu; Pang, Hao; Xuan, Jin-Feng

    2009-11-01

    Reducing amplicon sizes has become a major strategy for analyzing degraded DNA typical of forensic samples. However, amplicon sizes in current mini-short tandem repeat-polymerase chain reaction (PCR) and mini-sequencing assays are still not suitable for analysis of severely degraded DNA. In this study, we present a multiplex typing method that couples ligase detection reaction with PCR that can be used to identify single nucleotide polymorphisms and small-scale insertion/deletions in a sample of severely fragmented DNA. This method adopts thermostable ligation for allele discrimination and subsequent PCR for signal enhancement. In this study, four polymorphic loci were used to assess the ability of this technique to discriminate alleles in an artificially degraded sample of DNA with fragment sizes <100 bp. Our results showed clear allelic discrimination of single or multiple loci, suggesting that this method might aid in the analysis of extremely degraded samples in which allelic drop out of larger fragments is observed.

  20. Re-sequencing transgenic plants revealed rearrangements at T-DNA inserts, and integration of a short T-DNA fragment, but no increase of small mutations elsewhere.

    PubMed

    Schouten, Henk J; Vande Geest, Henri; Papadimitriou, Sofia; Bemer, Marian; Schaart, Jan G; Smulders, Marinus J M; Perez, Gabino Sanchez; Schijlen, Elio

    2017-03-01

    Transformation resulted in deletions and translocations at T-DNA inserts, but not in genome-wide small mutations. A tiny T-DNA splinter was detected that probably would remain undetected by conventional techniques. We investigated to which extent Agrobacterium tumefaciens-mediated transformation is mutagenic, on top of inserting T-DNA. To prevent mutations due to in vitro propagation, we applied floral dip transformation of Arabidopsis thaliana. We re-sequenced the genomes of five primary transformants, and compared these to genomic sequences derived from a pool of four wild-type plants. By genome-wide comparisons, we identified ten small mutations in the genomes of the five transgenic plants, not correlated to the positions or number of T-DNA inserts. This mutation frequency is within the range of spontaneous mutations occurring during seed propagation in A. thaliana, as determined earlier. In addition, we detected small as well as large deletions specifically at the T-DNA insert sites. Furthermore, we detected partial T-DNA inserts, one of these a tiny 50-bp fragment originating from a central part of the T-DNA construct used, inserted into the plant genome without flanking other T-DNA. Because of its small size, we named this fragment a T-DNA splinter. As far as we know this is the first report of such a small T-DNA fragment insert in absence of any T-DNA border sequence. Finally, we found evidence for translocations from other chromosomes, flanking T-DNA inserts. In this study, we showed that next-generation sequencing (NGS) is a highly sensitive approach to detect T-DNA inserts in transgenic plants.

  1. Sperm DNA fragmentation in the total and vital fractions before and after density gradient centrifugation: Significance in male fertility diagnosis.

    PubMed

    Punjabi, U; Van Mulders, H; Goovaerts, I; Peeters, K; Clasen, K; Janssens, P; Zemtsova, O; De Neubourg, D

    2018-05-21

    Sperm DNA fragmentation measured by different techniques make comparisons impossible due to lack of standardization. Induction of DNA damage after sperm preparation in the entire fraction has been observed on independent occasions but findings are not consistent. Men presenting at a University hospital setup for infertility treatment. DNA damage via TUNEL assay was validated on fresh semen samples, as conventional semen parameters, to reduce variability of results. Sperm motility in neat semen inversely correlated with sperm DNA fragmentation in the total fraction, but, total count, leukocytes and immature germ cells significantly affected the vital fraction. Sperm DNA fragmentation was observed both in normal and subnormal semen samples, but was significantly different in the total fraction of astheno-, asthenoterato- and oligoteratozoospermic men. After density gradient centrifugation, sperm DNA fragmentation increased significantly in the total but decreased in the vital fraction. Advancing male age significantly influenced damage in the total but not in the vital population. These findings provide opportunities to investigate the significance of the total and the vital fractions both in natural conception and after different assisted reproductive technologies. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes.

    PubMed

    Beattie, Thomas R; Bell, Stephen D

    2011-01-01

    Efficient processing of Okazaki fragments generated during discontinuous lagging-strand DNA replication is critical for the maintenance of genome integrity. In eukaryotes, a number of enzymes co-ordinate to ensure the removal of initiating primers from the 5'-end of each fragment and the generation of a covalently linked daughter strand. Studies in eukaryotic systems have revealed that the co-ordination of DNA polymerase δ and FEN-1 (Flap Endonuclease 1) is sufficient to remove the majority of primers. Other pathways such as that involving Dna2 also operate under certain conditions, although, notably, Dna2 is not universally conserved between eukaryotes and archaea, unlike the other core factors. In addition to the catalytic components, the DNA sliding clamp, PCNA (proliferating-cell nuclear antigen), plays a pivotal role in binding and co-ordinating these enzymes at sites of lagging-strand replication. Structural studies in eukaryotic and archaeal systems have revealed that PCNA-binding proteins can adopt different conformations when binding PCNA. This conformational malleability may be key to the co-ordination of these enzymes' activities.

  3. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.

    PubMed

    Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M

    1986-09-01

    The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.

  4. Fluorescent labeling of SNAP-tagged proteins in cells.

    PubMed

    Lukinavičius, Gražvydas; Reymond, Luc; Johnsson, Kai

    2015-01-01

    One of the most prominent self-labeling tags is SNAP-tag. It is an in vitro evolution product of the human DNA repair protein O (6)-alkylguanine-DNA alkyltransferase (hAGT) that reacts specifically with benzylguanine (BG) and benzylchloropyrimidine (CP) derivatives, leading to covalent labeling of SNAP-tag with a synthetic probe (Gronemeyer et al., Protein Eng Des Sel 19:309-316, 2006; Curr Opin Biotechnol 16:453-458, 2005; Keppler et al., Nat Biotechnol 21:86-89, 2003; Proc Natl Acad Sci U S A 101:9955-9959, 2004). SNAP-tag is well suited for the analysis and quantification of fused target protein using fluorescence microscopy techniques. It provides a simple, robust, and versatile approach to the imaging of fusion proteins under a wide range of experimental conditions.

  5. Mutations in the C-terminal fragment of DnaK affecting peptide binding.

    PubMed Central

    Burkholder, W F; Zhao, X; Zhu, X; Hendrickson, W A; Gragerov, A; Gottesman, M E

    1996-01-01

    Escherichia coli DnaK acts as a molecular chaperone through its ATP-regulated binding and release of polypeptide substrates. Overexpressing a C-terminal fragment (CTF) of DnaK (Gly-384 to Lys-638) containing the polypeptide substrate binding domain is lethal in wild-type E. coli. This dominant-negative phenotype may result from the nonproductive binding of CTF to cellular polypeptide targets of DnaK. Mutations affecting DnaK substrate binding were identified by selecting noncytotoxic CTF mutants followed by in vitro screening. The clustering of such mutations in the three-dimensional structure of CTF suggests the model that loops L1,2 and L4,5 form a rigid core structure critical for interactions with substrate. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855230

  6. [Cleavage of DNA fragments induced by UV nanosecond laser excitation at 193 nm].

    PubMed

    Vtiurina, N N; Grokhovskiĭ, S L; Filimonov, I V; Medvedkov, O I; Nechipurenko, D Iu; Vasil'ev, S A; Nechipurenko, Iu D

    2011-01-01

    The cleavage of dsDNA fragments in aqueous solution after irradiation with UV laser pulses at 193 nm has been studied. Samples were investigated using polyacrylamide gel electrophoresis. The intensity of damage of particular phosphodiester bond after hot alkali treatment was shown to depend on the base pair sequence. It was established that the probability of cleavage is twice higher for sites of DNA containing two or more successively running guanine residues. A possible mechanism of damage to the DNA molecule connected with the migration of holes along the helix is discussed.

  7. STS map of genes and anonymous DNA fragments on human chromosome 18 using a panel of somatic cell hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overhauser, J.; Mewar, R.; Rojas, K.

    1993-02-01

    Somatic cell hybrids containing different deleted regions of chromosome 18 derived form patients with balanced translocations or terminal deletions were used to create a deletion mapping panel. Twenty-four sequence-tagged sites (STSs) for 17 genes and 7 anonymous polymorphic DNA fragments were identified. These STSs were used to map the 24 loci to 18 defined regions of chromosome 18. Both ERV1, previously mapped to 18q22-q23, and YES1, previously mapped to 18q21.3, were found to map to 18p11.21-pter. Several genes previously mapped to 18q21 were found to be in the order cen-SSAV1-DCC-FECH-GRP-BCL2-PLANH2-tel. The precise mapping of genes to chromosome 18 should helpmore » in determining whether these genes may be involved in the etiology of specific chromosomal syndromes associated with chromosome 18. The mapping of the poloymorphic loci will assist in the integration of the physical map with the recombination map of chromosome 18. 43 refs., 2 figs., 1 tab.« less

  8. Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase.

    PubMed

    Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.

  9. Development of procedures for the identification of human papilloma virus DNA fragments in laser plume

    NASA Astrophysics Data System (ADS)

    Woellmer, Wolfgang; Meder, Tom; Jappe, Uta; Gross, Gerd; Riethdorf, Sabine; Riethdorf, Lutz; Kuhler-Obbarius, Christina; Loening, Thomas

    1996-01-01

    For the investigation of laser plume for the existence of HPV DNA fragments, which possibly occur during laser treatment of virus infected tissue, human papillomas and condylomas were treated in vitro with the CO2-laser. For the sampling of the laser plume a new method for the trapping of the material was developed by use of water-soluble gelatine filters. These samples were analyzed with the polymerase chain reaction (PCR) technique, which was optimized in regard of the gelatine filters and the specific primers. Positive PCR results for HPV DNA fragments up to the size of a complete oncogene were obtained and are discussed regarding infectiousity.

  10. Dynamics of sperm DNA fragmentation in raw boar semen and fertility.

    PubMed

    Batista, C; van Lier, E; Petrocelli, H

    2016-10-01

    The aims were to evaluate sperm DNA fragmentation (SDF) in boars through the dispersion of their chromatin in raw semen samples, quantifying the extent of SDF, and to assess dynamic aspects of sperm DNA damage after incubation to obtain the rate of sperm DNA fragmentation (rSDF) under thermal conditions similar to the uterus (37°C) over a period of up to 24 hr and to correlate the reproductive outcome of the sows with the SDF of the boars at ejaculation. The study was performed on a pig-breeding farm in southern Uruguay. Sixty-one ejaculates from five of the most frequently used hybrid boars were evaluated. Semen was collected weekly from each of the boars, using the gloved-hand technique and discarding the jelly-like fraction of the ejaculate. Fresh semen was kept in a water bath at 37°C and protected from light, and was thereafter processed with Sperm-Sus-Halomax(®) to evaluate SDF. The smears for time 0 (T0) were made on farm, and thereafter smears were made at the laboratory at 4 hr of obtaining the semen (T4), then every 2 hr (T6, T8, T10, T12) and a final fixation at 24 hr (T24). Differences in SDF were observed among exposure times for all boars (p < .05), but not between T10 and T12 (p = .7751) nor T4 and T24 (p = .9113). In none of the T24 samples, sperm heads could be seen with chromatin dispersion halos. Furthermore, there were differences among boars when comparing sperm rSDF (p < .05). Farrowing rate was not affected by SDF at T0 (r = .38, p = .75), nor was litter size (r = .16, p = .70). With the present experimental conditions, we have not been able to show a relationship between sperm DNA fragmentation at ejaculation and reproductive performance. However, this could be a result of the low number of ejaculates and boars used. © 2016 Blackwell Verlag GmbH.

  11. Hot Fusion: An Efficient Method to Clone Multiple DNA Fragments as Well as Inverted Repeats without Ligase

    PubMed Central

    Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825

  12. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com; Cheah, Yew-Hoong; Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action ofmore » xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.« less

  13. Biophysical modeling of fragment length distributions of DNA plasmids after X and heavy-ion irradiation analyzed by atomic force microscopy.

    PubMed

    Elsässer, Thilo; Brons, Stephan; Psonka, Katarzyna; Scholz, Michael; Gudowska-Nowak, Ewa; Taucher-Scholz, Gisela

    2008-06-01

    The investigation of fragment length distributions of plasmid DNA gives insight into the influence of localized energy distribution on the induction of DNA damage, particularly the clustering of double-strand breaks. We present an approach that determines the fragment length distributions of plasmid DNA after heavy-ion irradiation by using the Local Effect Model. We find a good agreement of our simulations with experimental fragment distributions derived from atomic force microscopy (AFM) studies by including experimental constraints typical for AFM. Our calculations reveal that by comparing the fragmentation in terms of fluence, we can uniquely distinguish the effect of different radiation qualities. For very high-LET irradiation using nickel or uranium ions, no difference between their fragment distributions can be expected for the same dose level. However, for carbon ions with an intermediate LET, the fragmentation pattern differs from the distribution for very high-LET particles. The results of the model calculations can be used to determine the optimal experimental parameters for a demonstration of the influence of track structure on primary radiation damage. Additionally, we compare the results of our model for two different plasmid geometries.

  14. Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress.

    PubMed

    Santos, Efrén; Remy, Serge; Thiry, Els; Windelinckx, Saskia; Swennen, Rony; Sági, László

    2009-06-24

    Next-generation transgenic plants will require a more precise regulation of transgene expression, preferably under the control of native promoters. A genome-wide T-DNA tagging strategy was therefore performed for the identification and characterization of novel banana promoters. Embryogenic cell suspensions of a plantain-type banana were transformed with a promoterless, codon-optimized luciferase (luc+) gene and low temperature-responsive luciferase activation was monitored in real time. Around 16,000 transgenic cell colonies were screened for baseline luciferase activity at room temperature 2 months after transformation. After discarding positive colonies, cultures were re-screened in real-time at 26 degrees C followed by a gradual decrease to 8 degrees C. The baseline activation frequency was 0.98%, while the frequency of low temperature-responsive luciferase activity was 0.61% in the same population of cell cultures. Transgenic colonies with luciferase activity responsive to low temperature were regenerated to plantlets and luciferase expression patterns monitored during different regeneration stages. Twenty four banana DNA sequences flanking the right T-DNA borders in seven independent lines were cloned via PCR walking. RT-PCR analysis in one line containing five inserts allowed the identification of the sequence that had activated luciferase expression under low temperature stress in a developmentally regulated manner. This activating sequence was fused to the uidA reporter gene and back-transformed into a commercial dessert banana cultivar, in which its original expression pattern was confirmed. This promoter tagging and real-time screening platform proved valuable for the identification of novel promoters and genes in banana and for monitoring expression patterns throughout in vitro development and low temperature treatment. Combination of PCR walking techniques was efficient for the isolation of candidate promoters even in a multicopy T-DNA line

  15. Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco.

    PubMed

    Nagaki, Kiyotaka; Shibata, Fukashi; Kanatani, Asaka; Kashihara, Kazunari; Murata, Minoru

    2012-04-01

    The centromere is a multi-functional complex comprising centromeric DNA and a number of proteins. To isolate unidentified centromeric DNA sequences, centromere-specific histone H3 variants (CENH3) and chromatin immunoprecipitation (ChIP) have been utilized in some plant species. However, anti-CENH3 antibody for ChIP must be raised in each species because of its species specificity. Production of the antibodies is time-consuming and costly, and it is not easy to produce ChIP-grade antibodies. In this study, we applied a HaloTag7-based chromatin affinity purification system to isolate centromeric DNA sequences in tobacco. This system required no specific antibody, and made it possible to apply a highly stringent wash to remove contaminated DNA. As a result, we succeeded in isolating five tandem repetitive DNA sequences in addition to the centromeric retrotransposons that were previously identified by ChIP. Three of the tandem repeats were centromere-specific sequences located on different chromosomes. These results confirm the validity of the HaloTag7-based chromatin affinity purification system as an alternative method to ChIP for isolating unknown centromeric DNA sequences. The discovery of more than two chromosome-specific centromeric DNA sequences indicates the mosaic structure of tobacco centromeres. © Springer-Verlag 2011

  16. Flexible bent rod model with a saturating induced dipole moment to study the electric linear dichroism of DNA fragments

    NASA Astrophysics Data System (ADS)

    Bertolotto, Jorge A.; Umazano, Juan P.

    2016-06-01

    In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.

  17. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1)

    PubMed Central

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-01-01

    Background A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. Methods The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3′end of the reporter gene and the VP2 start sequence to allow co-translational ‘cleavage’ of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Results Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. Conclusion NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication. PMID:29379384

  18. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1).

    PubMed

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-12-01

    A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

  19. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    NASA Astrophysics Data System (ADS)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  20. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog

    2016-01-01

    Abstract Aims: Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. Results: We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. Innovation: This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. Conclusion: MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072–1083. PMID:26935406

  1. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy.

    PubMed

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V

    2016-06-20

    Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

  2. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation.

    PubMed

    Anifandis, George; Katsanaki, Katerina; Lagodonti, Georgia; Messini, Christina; Simopoulou, Mara; Dafopoulos, Konstantinos; Daponte, Alexandros

    2018-05-30

    Glyphosate is the active ingredient of Roundup ® , which is one of the most popular herbicides worldwide. Although many studies have focused on the reproductive toxicity of glyphosate or glyphosate-based herbicides, the majority of them have concluded that the effect of the specific herbicide is negligible, while only a few studies indicate the male reproductive toxicity of glyphosate alone. The aim of the present study was to investigate the effect of 0.36 mg/L glyphosate on sperm motility and sperm DNA fragmentation (SDF). Thirty healthy men volunteered to undergo semen analysis for the purpose of the study. Sperm motility was calculated according to WHO 2010 guidelines at collection time (zero time) and 1 h post-treatment with glyphosate. Sperm DNA fragmentation was evaluated with Halosperm ® G2 kit for both the control and glyphosate-treated sperm samples. Sperm progressive motility of glyphosate-treated samples was significantly reduced after 1 h post-treatment in comparison to the respective controls, in contrast to the SDF of glyphosate-treated samples, which was comparable to the respective controls. Conclusively, under these in vitro conditions, at high concentrations that greatly exceed environmental exposures, glyphosate exerts toxic effects on sperm progressive motility but not on sperm DNA integrity, meaning that the toxic effect is limited only to motility, at least in the first hour.

  3. Impact of the Z potential technique on reducing the sperm DNA fragmentation index, fertilization rate and embryo development.

    PubMed

    Duarte, Carlos; Núñez, Víctor; Wong, Yat; Vivar, Carlos; Benites, Elder; Rodriguez, Urso; Vergara, Carlos; Ponce, Jorge

    2017-12-01

    In assisted reproduction procedures, we need to develop and enhance new protocols to optimize sperm selection. The aim of this study is to evaluate the ability of the Z potential technique to select sperm with intact DNA in non-normospermic patients and evaluate the impact of this selection on embryonic development. We analyzed a total of 174 human seminal samples with at least one altered parameter. We measured basal, post density gradients, and post density gradients + Z potential DNA fragmentation index. To evaluate the impact of this technique on embryo development, 54 cases were selected. The embryo development parameters evaluated were fertilization rate, cleavage rate, top quality embryos at the third day and blastocysts rate. We found significant differences in the study groups when we compared the sperm fragmentation index by adding the Z potential technique to density gradient selection vs. density gradients alone. Furthermore, there was no significant difference in the embryo development parameters between the low sperm fragmentation index group vs. the moderate and high sperm fragmentation index groups, when selecting sperms with this new technique. The Z potential technique is a very useful tool for sperm selection; it significantly reduces the DNA fragmentation index and improves the parameters of embryo development. This technique could be considered routine for its simplicity and low cost.

  4. Identification of DNA primase inhibitors via a combined fragment-based and virtual screening

    NASA Astrophysics Data System (ADS)

    Ilic, Stefan; Akabayov, Sabine R.; Arthanari, Haribabu; Wagner, Gerhard; Richardson, Charles C.; Akabayov, Barak

    2016-11-01

    The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.

  5. TagFinder for the quantitative analysis of gas chromatography--mass spectrometry (GC-MS)-based metabolite profiling experiments.

    PubMed

    Luedemann, Alexander; Strassburg, Katrin; Erban, Alexander; Kopka, Joachim

    2008-03-01

    Typical GC-MS-based metabolite profiling experiments may comprise hundreds of chromatogram files, which each contain up to 1000 mass spectral tags (MSTs). MSTs are the characteristic patterns of approximately 25-250 fragment ions and respective isotopomers, which are generated after gas chromatography (GC) by electron impact ionization (EI) of the separated chemical molecules. These fragment ions are subsequently detected by time-of-flight (TOF) mass spectrometry (MS). MSTs of profiling experiments are typically reported as a list of ions, which are characterized by mass, chromatographic retention index (RI) or retention time (RT), and arbitrary abundance. The first two parameters allow the identification, the later the quantification of the represented chemical compounds. Many software tools have been reported for the pre-processing, the so-called curve resolution and deconvolution, of GC-(EI-TOF)-MS files. Pre-processing tools generate numerical data matrices, which contain all aligned MSTs and samples of an experiment. This process, however, is error prone mainly due to (i) the imprecise RI or RT alignment of MSTs and (ii) the high complexity of biological samples. This complexity causes co-elution of compounds and as a consequence non-selective, in other words impure MSTs. The selection and validation of optimal fragment ions for the specific and selective quantification of simultaneously eluting compounds is, therefore, mandatory. Currently validation is performed in most laboratories under human supervision. So far no software tool supports the non-targeted and user-independent quality assessment of the data matrices prior to statistical analysis. TagFinder may fill this gap. TagFinder facilitates the analysis of all fragment ions, which are observed in GC-(EI-TOF)-MS profiling experiments. The non-targeted approach allows the discovery of novel and unexpected compounds. In addition, mass isotopomer resolution is maintained by TagFinder processing. This

  6. Pregnancy prediction by free sperm DNA and sperm DNA fragmentation in semen specimens of IVF/ICSI-ET patients.

    PubMed

    Bounartzi, Theofania; Dafopoulos, Konstantinos; Anifandis, George; Messini, Christina I; Koutsonikou, Chrysoula; Kouris, Spyros; Satra, Maria; Sotiriou, Sotirios; Vamvakopoulos, Nicholas; Messinis, Ioannis E

    2016-04-01

    The purpose of this study was to evaluate the predictive value of free sperm plasma DNA (f-spDNA) and sperm DNA fragmentation (SDF), in semen specimens from men undergoing in vitro fertilization/intracytoplasmic sperm injection-embryo transfer (IVF/ICSI-ET) treatments. Fifty-five semen samples were evaluated during 55 consecutive IVF/ICSI-ET cycles. F-spDNA was determined by conventional quantitative real-time PCR-Sybr green detection approach, while evaluation of sperm DNA damage was performed using the sperm chromatin dispersion (SCD) assay. While f-spDNA only correlated with total sperm count, SDF correlated with many semen parameters (including sperm concentration, total sperm count and the per cent of non-progressive sperm). Neither SDF nor the proportion of sperm with small or no halos correlated with f-spDNA. Interestingly, smoking status correlated with f-spDNA but not with SDF. Although these two factors seem to interact for the prediction of pregnancy, receiver-operating characteristics (ROC) analysis revealed that SDF had a stronger predictive value (AUC = 0.7, p < 0.05) than f-spDNA (AUC = 0.6, p > 0.05). SDF and f-spDNA may not be associated together but they interact at a significant level in order to exert their actions on pregnancy outcome. Among the two markers, SDF appears to have stronger and significantly predictive value for pregnancy success.

  7. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm.

    PubMed

    Zalata, Adel; El-Samanoudy, Ayman Z; Shaalan, Dalia; El-Baiomy, Youssef; Mostafa, Taymour

    2015-01-01

    Use of cellular phones emitting radiofrequency electromagnetic field (RF-EMF) has been increased exponentially and become a part of everyday life. This study aimed to investigate the effects of in vitro RF-EMF exposure emitted from cellular phones on sperm motility index, sperm DNA fragmentation and seminal clusterin (CLU) gene expression. In this prospective study, a total of 124 semen samples were grouped into the following main categories: i. normozoospermia (N, n=26), ii. asthenozoospermia (A, n=32), iii. asthenoteratozoospermia (AT, n=31) and iv. oligoasthenoteratozoospermia (OAT, n=35). The same semen samples were then divided into two portions non-exposed and exposed samples to cell phone radiation for 1 hour. Before and immediately after exposure, both aliquots were subjected to different assessments for sperm motility, acrosin activity, sperm DNA fragmentation and CLU gene expression. Statistical differences were analyzed using paired t student test for comparisons between two sub-groups where p<0.05 was set as significant. There was a significant decrease in sperm motility, sperm linear velocity, sperm linearity index, and sperm acrosin activity, whereas there was a significant increase in sperm DNA fragmentation percent, CLU gene expression and CLU protein levels in the exposed semen samples to RF-EMF compared with non-exposed samples in OAT>AT>A>N groups, respectively (p<0.05). Cell phone emissions have a negative impact on exposed sperm motility index, sperm acrosin activity, sperm DNA fragmentation and seminal CLU gene expression, especially in OAT cases.

  8. i-rDNA: alignment-free algorithm for rapid in silico detection of ribosomal gene fragments from metagenomic sequence data sets.

    PubMed

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Chadaram, Sudha; Mande, Sharmila S

    2011-11-30

    Obtaining accurate estimates of microbial diversity using rDNA profiling is the first step in most metagenomics projects. Consequently, most metagenomic projects spend considerable amounts of time, money and manpower for experimentally cloning, amplifying and sequencing the rDNA content in a metagenomic sample. In the second step, the entire genomic content of the metagenome is extracted, sequenced and analyzed. Since DNA sequences obtained in this second step also contain rDNA fragments, rapid in silico identification of these rDNA fragments would drastically reduce the cost, time and effort of current metagenomic projects by entirely bypassing the experimental steps of primer based rDNA amplification, cloning and sequencing. In this study, we present an algorithm called i-rDNA that can facilitate the rapid detection of 16S rDNA fragments from amongst millions of sequences in metagenomic data sets with high detection sensitivity. Performance evaluation with data sets/database variants simulating typical metagenomic scenarios indicates the significantly high detection sensitivity of i-rDNA. Moreover, i-rDNA can process a million sequences in less than an hour on a simple desktop with modest hardware specifications. In addition to the speed of execution, high sensitivity and low false positive rate, the utility of the algorithmic approach discussed in this paper is immense given that it would help in bypassing the entire experimental step of primer-based rDNA amplification, cloning and sequencing. Application of this algorithmic approach would thus drastically reduce the cost, time and human efforts invested in all metagenomic projects. A web-server for the i-rDNA algorithm is available at http://metagenomics.atc.tcs.com/i-rDNA/

  9. Generation of non-genomic oligonucleotide tag sequences for RNA template-specific PCR

    PubMed Central

    Pinto, Fernando Lopes; Svensson, Håkan; Lindblad, Peter

    2006-01-01

    Background In order to overcome genomic DNA contamination in transcriptional studies, reverse template-specific polymerase chain reaction, a modification of reverse transcriptase polymerase chain reaction, is used. The possibility of using tags whose sequences are not found in the genome further improves reverse specific polymerase chain reaction experiments. Given the absence of software available to produce genome suitable tags, a simple tool to fulfill such need was developed. Results The program was developed in Perl, with separate use of the basic local alignment search tool, making the tool platform independent (known to run on Windows XP and Linux). In order to test the performance of the generated tags, several molecular experiments were performed. The results show that Tagenerator is capable of generating tags with good priming properties, which will deliberately not result in PCR amplification of genomic DNA. Conclusion The program Tagenerator is capable of generating tag sequences that combine genome absence with good priming properties for RT-PCR based experiments, circumventing the effects of genomic DNA contamination in an RNA sample. PMID:16820068

  10. Sperm DNA Fragmentation Index and Hyaluronan Binding Ability in Men from Infertile Couples and Men with Testicular Germ Cell Tumor

    PubMed Central

    Filipiak, Eliza; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Sobkiewicz, Slawomir; Wojt, Malgorzata; Chmiel, Jacek; Kula, Krzysztof; Slowikowska-Hilczer, Jolanta

    2016-01-01

    Objective. To investigate sperm DNA fragmentation and sperm functional maturity in men from infertile couples (IC) and men with testicular germ cell tumor (TGCT). Materials and Methods. Semen samples were collected from 312 IC men and 23 men with TGCT before unilateral orchiectomy and oncological treatment. The sperm chromatin dispersion test was performed to determine DNA fragmentation index (DFI) and the ability of sperm to bind with hyaluronan (HA) was assessed. Results. In comparison with the IC men, the men with TGCT had a higher percentage of sperm with fragmented DNA (median 28% versus 21%; p < 0.01) and a lower percentage of HA-bound sperm (24% versus 66%; p < 0.001). Normal results of both analyses were observed in 24% of IC men and 4% of men with TGCT. Negative Spearman's correlations were found between DFI and the percentage of HA-bound sperm in the whole group and in IC subjects and those with TGCT analyzed separately. Conclusions. Approximately 76% of IC men and 96% with TGCT awaiting orchiectomy demonstrated DNA fragmentation and/or sperm immaturity. We therefore recommend sperm banking after unilateral orchiectomy, but before irradiation and chemotherapy; the use of such a deposit appears to be a better strategy to obtain functionally efficient sperms. PMID:27999814

  11. A universal TagModule collection for parallel genetic analysis of microorganisms

    PubMed Central

    Oh, Julia; Fung, Eula; Price, Morgan N.; Dehal, Paramvir S.; Davis, Ronald W.; Giaever, Guri; Nislow, Corey; Arkin, Adam P.; Deutschbauer, Adam

    2010-01-01

    Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era. PMID:20494978

  12. DNA tagged microparticles

    DOEpatents

    Farquar, George R.; Leif, Roald N.; Wheeler, Elizabeth

    2016-03-22

    In one embodiment, a product includes a plurality of particles, each particle including: a carrier that includes a non-toxic material; and at least one DNA barcode coupled to the carrier, where the particles each have a diameter in a range from about 1 nanometer to about 100 microns.

  13. Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies

    PubMed Central

    Richardson, Ruth E.; Suzuki, Yo

    2015-01-01

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six double-stranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. We demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work. PMID:26348330

  14. Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies

    DOE PAGES

    Kostylev, Maxim; Otwell, Anne E.; Richardson, Ruth E.; ...

    2015-09-08

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six doublestranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processesmore » associated with most common applications of DNA assembly. In addition, we demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work.« less

  15. Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostylev, Maxim; Otwell, Anne E.; Richardson, Ruth E.

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six doublestranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processesmore » associated with most common applications of DNA assembly. In addition, we demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work.« less

  16. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome.

    PubMed

    Sergeeva, Ekaterina M; Shcherban, Andrey B; Adonina, Irina G; Nesterov, Michail A; Beletsky, Alexey V; Rakitin, Andrey L; Mardanov, Andrey V; Ravin, Nikolai V; Salina, Elena A

    2017-11-14

    The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread

  17. [Applylication of new type combined fragments: nrDNA ITS+ nad 1-intron 2 for identification of Dendrobium species of Fengdous].

    PubMed

    Geng, Li-xia; Zheng, Rui; Ren, Jie; Niu, Zhi-tao; Sun, Yu-long; Xue, Qing-yun; Liu, Wei; Ding, Xiao-yu

    2015-08-01

    In this study, 17 kinds of Dendrobium species of Fengdous including 39 individuals were collected from 4 provinces. Mitochondrial gene sequences co I, nad 5, nad 1-intron 2 and chloroplast gene sequences rbcL, matK amd psbA-trnH were amplified from these materials, as well as nrDNA ITS. Furthermore, suitable sequences for identification of Dendrobium species of Fengdous were screened by K-2-P and P-distance. The results showed that during the mentioned 7 sequences, nrDNA ITS, nad 1-intron 2 and psbA-trnH which had a high degree of variability could be used to identify Dendrobium species of Fengdous. However, single fragment could not be used to distinguish D. moniliforme and D. huoshanense. Moreover, compared to other combined fragments, new type combined fragments nrDNA ITS+nad 1-intron 2 was more effective in identifying the original plants of Dendrobium species and could be used to identify D. huoshanense and D. moniliforme. Besides, according to the UPGMA tree constructed with nrDNA ITS+nad 1-intron 2, 3 inspected Dendrobium plants were identified as D. huoshanense, D. moniliforme and D. officinale, respectively. This study identified Dendrobium species of Fengdous by combined fragments nrDNA ITS+nad 1-intron 2 for the first time, which provided a more effective basis for identification of Dendrobium species. And this study will be helpful for regulating the market of Fengdous.

  18. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  19. Analysis of Endonuclease R·EcoRI Fragments of DNA from Lambdoid Bacteriophages and Other Viruses by Agarose-Gel Electrophoresis

    PubMed Central

    Helling, Robert B.; Goodman, Howard M.; Boyer, Herbert W.

    1974-01-01

    By means of agarose-gel electrophoresis, endonuclease R·EcoRI-generated fragments of DNA from various viruses were separated, their molecular weights were determined, and complete or partial fragment maps for lambda, φ80, and hybrid phages were constructed. Images PMID:4372397

  20. RAD tag sequencing as a source of SNP markers in Cynara cardunculus L

    PubMed Central

    2012-01-01

    Background The globe artichoke (Cynara cardunculus L. var. scolymus) genome is relatively poorly explored, especially compared to those of the other major Asteraceae crops sunflower and lettuce. No SNP markers are in the public domain. We have combined the recently developed restriction-site associated DNA (RAD) approach with the Illumina DNA sequencing platform to effect the rapid and mass discovery of SNP markers for C. cardunculus. Results RAD tags were sequenced from the genomic DNA of three C. cardunculus mapping population parents, generating 9.7 million reads, corresponding to ~1 Gbp of sequence. An assembly based on paired ends produced ~6.0 Mbp of genomic sequence, separated into ~19,000 contigs (mean length 312 bp), of which ~21% were fragments of putative coding sequence. The shared sequences allowed for the discovery of ~34,000 SNPs and nearly 800 indels, equivalent to a SNP frequency of 5.6 per 1,000 nt, and an indel frequency of 0.2 per 1,000 nt. A sample of heterozygous SNP loci was mapped by CAPS assays and this exercise provided validation of our mining criteria. The repetitive fraction of the genome had a high representation of retrotransposon sequence, followed by simple repeats, AT-low complexity regions and mobile DNA elements. The genomic k-mers distribution and CpG rate of C. cardunculus, compared with data derived from three whole genome-sequenced dicots species, provided a further evidence of the random representation of the C. cardunculus genome generated by RAD sampling. Conclusion The RAD tag sequencing approach is a cost-effective and rapid method to develop SNP markers in a highly heterozygous species. Our approach permitted to generate a large and robust SNP datasets by the adoption of optimized filtering criteria. PMID:22214349

  1. Low energy electron induced fragmentation and reactions of DNA and its molecular components

    NASA Astrophysics Data System (ADS)

    Bass, Andrew

    2005-05-01

    Much research has been stimulated by the recognition that ionizing radiation can, in condensed matter, generate large numbers of secondary electrons with energies less than 20 eV [1] and by the experimental demonstration that such electrons may induce both single and double strand breaks in plasmid DNA [2]. Identifying the underlying mechanisms involves several research methodologies, from further experiments with DNA to studies of the electron interaction with the component `sub-units' of DNA in both the gas and condensed phases [3]. In particular, understanding electron-induced strand break damage, the type of damage most difficult for organisms to repair, necessitates study of the sub-units of DNA back-bone, and here Tetrahyrofuran (THF) and its derivatives, provide a useful model for the furyl ring at the centre of the deoxyribose sugar. In this contribution, we review with particular reference to DNA and related molecules, the use of electron spectroscopy and mass spectrometry to study electron-induced fragmentation and reactions in thin molecular solids. We describe a newly completed instrument that combines laser post-ionization with a time-of-flight mass analyzer for highly sensitive ion and neutral detection. Use of the instrument is illustrated with results for THF and derivatives. Anion desorption measurements reveal the role of transient negative ions (TNI) and Dissociative Electron Attachment in significant molecular fragmentation and permit effective cross sections for this electron-induced damage to be obtained. The neutral yield functions also illustrate the importance of TNI, mirroring features seen in recently measured cross sections for electron induced aldehyde production in THF [4]. 1. J. A. Laverne and S. M. Pimblott, Radiat. Res. 141, 208 (1995) 2. B. Boudaiffa, et al, Science 287, 1658 (2000) 3. L. Sanche. Physica Scripta. 68, C108, (2003) 4. S.-P. Breton, et al.,J. Chem. Phys. 121, 11240 (2004)

  2. Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    PubMed Central

    Provost, Christopher R.; Sun, Luo

    2010-01-01

    SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. PMID:20485262

  3. Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition-fragmentation chain transfer polymerization.

    PubMed

    He, Peng; He, Lin

    2009-07-13

    We report here an approach to grafting DNA-polymer bioconjugates on a planar solid support using reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, a trithiocarbonate compound as the RAFT chain transfer agent (CTA) is attached to the distal point of a surface-immobilized oligonucleotide. Initiation of RAFT polymerization leads to controlled growth of polymers atop DNA molecules on the surface. Growth kinetics of poly(monomethoxy-capped oligo(ethylene glycol) methacrylate) atop DNA molecules is investigated by monitoring the change of polymer film thickness as a function of reaction time. The reaction conditions, including the polymerization temperature, the initiator concentration, the CTA surface density, and the selection of monomers, are varied to examine their impacts on the grafting efficiency of DNA-polymer conjugates. Comparing to polymer growth atop small molecules, the experimental results suggest that DNA molecules significantly accelerate polymer growth, which is speculated as a result of the presence of highly charged DNA backbones and purine/pyrimidine moieties surrounding the reaction sites.

  4. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress

    PubMed Central

    Muratori, Monica; Tamburrino, Lara; Marchiani, Sara; Cambi, Marta; Olivito, Biagio; Azzari, Chiara; Forti, Gianni; Baldi, Elisabetta

    2015-01-01

    Sperm DNA fragmentation (sDF) represents a threat to male fertility, human reproduction and the health of the offspring. The causes of sDF are still unclear, even if apoptosis, oxidative assault and defects in chromatin maturation are hypothesized. Using multicolor flow cytometry and sperm sorting, we challenged the three hypothesized mechanisms by simultaneously evaluating sDF and signs of oxidative damage (8-hydroxy, 2′-deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), apoptosis (caspase activity and cleaved poly[ADP-ribose] polymerase [cPARP]) and sperm immaturity (creatine phosphokinase [CK] and excess of residual histones). Active caspases and c-PARP were concomitant with sDF in a high percentage of spermatozoa (82.6% ± 9.1% and 53.5% ± 16.4%, respectively). Excess of residual histones was significantly higher in DNA-fragmented sperm versus sperm without DNA fragmentation (74.8% ± 17.5% and 37.3% ± 16.6%, respectively, p < 0.005), and largely concomitant with active caspases. Conversely, oxidative damage was scarcely concomitant with sDF in the total sperm population, at variance with live sperm, where 8-OHdG and MDA were clearly associated to sDF. In addition, most live cells with active caspase also showed 8-OHdG, suggesting activation of apoptotic pathways in oxidative-injured live cells. This is the first investigation on the origin of sDF directly evaluating the simultaneous presence of the signs of the hypothesized mechanisms with DNA breaks at the single cell level. The results indicate that the main pathway leading to sperm DNA breaks is a process of apoptosis, likely triggered by an impairment of chromatin maturation in the testis and by oxidative stress during the transit in the male genital tract. These findings are highly relevant for clinical studies on the effects of drugs on sDF and oxidative stress in infertile men and for the development of new therapeutic strategies. PMID:25786204

  5. Detecting host-parasitoid interactions in an invasive Lepidopteran using nested tagging DNA metabarcoding.

    PubMed

    Kitson, James J N; Hahn, Christoph; Sands, Richard J; Straw, Nigel A; Evans, Darren M; Lunt, David H

    2018-02-27

    Determining the host-parasitoid interactions and parasitism rates for invasive species entering novel environments is an important first step in assessing potential routes for biocontrol and integrated pest management. Conventional insect rearing techniques followed by taxonomic identification are widely used to obtain such data, but this can be time-consuming and prone to biases. Here, we present a next-generation sequencing approach for use in ecological studies which allows for individual-level metadata tracking of large numbers of invertebrate samples through the use of hierarchically organised molecular identification tags. We demonstrate its utility using a sample data set examining both species identity and levels of parasitism in late larval stages of the oak processionary moth (Thaumetopoea processionea-Linn. 1758), an invasive species recently established in the United Kingdom. Overall, we find that there are two main species exploiting the late larval stages of oak processionary moth in the United Kingdom with the main parasitoid (Carcelia iliaca-Ratzeburg, 1840) parasitising 45.7% of caterpillars, while a rare secondary parasitoid (Compsilura concinnata-Meigen, 1824) was also detected in 0.4% of caterpillars. Using this approach on all life stages of the oak processionary moth may demonstrate additional parasitoid diversity. We discuss the wider potential of nested tagging DNA metabarcoding for constructing large, highly resolved species interaction networks. © 2018 John Wiley & Sons Ltd.

  6. A simple and robust approach to immobilization of antibody fragments.

    PubMed

    Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J

    2016-08-01

    Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of cyanoacrylate fuming, time after recovery, and location of biological material on the recovery and analysis of DNA from post-blast pipe bomb fragments*.

    PubMed

    Bille, Todd W; Cromartie, Carter; Farr, Matthew

    2009-09-01

    This study investigated the effects of time, cyanoacrylate fuming, and location of the biological material on DNA analysis of post-blast pipe bomb fragments. Multiple aliquots of a cell suspension (prepared by soaking buccal swabs in water) were deposited on components of the devices prior to assembly. The pipe bombs were then deflagrated and the fragments recovered. Fragments from half of the devices were cyanoacrylate fumed. The cell spots on the fragments were swabbed and polymerase chain reaction/short tandem repeat analysis was performed 1 week and 3 months after deflagration. A significant decrease in the amount of DNA recovered was observed between samples collected and analyzed within 1 week compared with the samples collected and analyzed 3 months after deflagration. Cyanoacrylate fuming did not have a measurable effect on the success of the DNA analysis at either time point. Greater quantities of DNA were recovered from the pipe nipples than the end caps. Undeflagrated controls showed that the majority (>95%) of the DNA deposited on the devices was not recovered at a week or 3 months.

  8. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    PubMed

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  9. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes.

    PubMed

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted "bidirectional analysis," which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples.

  10. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation

    PubMed Central

    Roldan, Eduardo R. S.

    2016-01-01

    Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage. PMID:26936246

  11. A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs.

    PubMed

    Chen, Yuqi; Song, Yanyan; Wu, Fan; Liu, Wenting; Fu, Boshi; Feng, Bingkun; Zhou, Xiang

    2015-04-25

    A conveniently amplified DNA AND logic gate platform was designed for the highly sensitive detection of low-abundance DNA fragment inputs based on strand displacement reaction and rolling circle amplification strategy. Compared with others, this system can detect miRNAs in biological samples. The success of this strategy demonstrates the potential of DNA logic gates in disease diagnosis.

  12. Structures of minimal catalytic fragments of topoisomerase V reveals conformational changes relevant for DNA binding

    PubMed Central

    Rajan, Rakhi; Taneja, Bhupesh; Mondragón, Alfonso

    2010-01-01

    Summary Topoisomerase V is an archaeal type I topoisomerase that is unique among topoisomerases due to presence of both topoisomerase and DNA repair activities in the same protein. It is organized as an N-terminal topoisomerase domain followed by 24 tandem helix hairpin helix (HhH) motifs. Structural studies have shown that the active site is buried by the (HhH) motifs. Here we show that the N-terminal domain can relax DNA in the absence of any HhH motifs and that the HhH motifs are required for stable protein-DNA complex formation. Crystal structures of various topoisomerase V fragments show changes in the relative orientation of the domains mediated by a long bent linker helix, and these movements are essential for the DNA to enter the active site. Phosphate ions bound to the protein near the active site helped model DNA in the topoisomerase domain and shows how topoisomerase V may interact with DNA. PMID:20637419

  13. Mapped DNA probes from Ioblolly pine can be used for restriction fragment length polymorphism mapping in other conifers

    Treesearch

    M.R. Ahuja; M.E. Devey; A.T. Groover; K.D. Jermstad; D.B Neale

    1994-01-01

    A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm....

  14. FSH treatment in infertile males candidate to assisted reproduction improved sperm DNA fragmentation and pregnancy rate.

    PubMed

    Garolla, Andrea; Ghezzi, Marco; Cosci, Ilaria; Sartini, Barbara; Bottacin, Alberto; Engl, Bruno; Di Nisio, Andrea; Foresta, Carlo

    2017-05-01

    The purpose of this study is to evaluate whether follicle-stimulating hormone treatment improves sperm DNA parameters and pregnancy outcome in infertile male candidates to in-vitro fertilization.Observational study in 166 infertile male partners of couples undergoing in-vitro fertilization. Eighty-four patients were receiving follicle-stimulating hormone treatment (cases) and 82 refused treatment (controls). Semen parameters, sexual hormones, and sperm nucleus (fluorescence in-situ hybridization, acridine orange, TUNEL, and γH2AX) were evaluated at baseline (T0) and after 3 months (T1), when all subjects underwent assisted reproduction techniques. Statistical analysis was performed by analysis of variance.Compared to baseline, cases showed significant improvements in seminal parameters and DNA fragmentation indexes after follicle-stimulating hormone therapy (all P < 0.05), whereas no changes were observed in controls. Within cases, follicle-stimulating hormone treatment allowed to perform intrauterine insemination in 35 patients with a pregnancy rate of 23.2 %. Intracytoplasmic sperm injection was performed in all controls and in 49 patients from cases, with pregnancy rates of 23.2 and 40.8 %, respectively (P < 0.05). After 3 months (T0 vs. T1) of follicle-stimulating hormone therapy, cases with positive outcome had reduced DNA fragmentation index and lower double strand breaks (P < 0.05 and P < 0.001 vs. negative outcome, respectively).In this observational study, we showed that follicle-stimulating hormone treatment improves sperm DNA fragmentation, which in turn leads to increased pregnancy rates in infertile males undergoing in-vitro fertilization. In particular, double strand breaks (measured with γH2AX test) emerged as the most sensible parameter to follicle-stimulating hormone treatment in predicting reproductive outcome.

  15. The measurement of molecular fragments from DNA components using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Akamatsu, K.; Yokoya, A.

    2003-03-01

    Photon-stimulated desorption of positive ions from thin film DNA components, 2-deoxy- D-ribose, thymine and guanine, were investigated in the oxygen K-edge excitation region. H +, CH 2+, C 2H 2+, CHO +, C 3H 3+ and C 2HO + were desorbed mainly from the 2-deoxy- D-ribose thin film following oxygen K-edge excitation. The ion yields were obtained as a function of the photon energy. Each spectrum showed a prominent peak structure coinciding with the O 1 s→ σ∗(C-O) excitation energy. These results indicate that the observed ions are produced not only by direct photodecomposition but also by the impact of secondary electrons that the core excitation generates. On the other hand, H + has been observed by irradiation of thymine and guanine thin films, while only insignificant amounts of the other ions were observed. It is shown that the core excitation more drastically degraded the 2-deoxy- D-ribose molecule into small fragments than is the case with the nucleobases. The sugar moiety in DNA is likely to be one of the nor fragile molecular sites, conducive to a single-strand DNA break.

  16. A DNA-scaffold platform enhances a multi-enzymatic cycling reaction.

    PubMed

    Mashimo, Yasumasa; Mie, Masayasu; Kobatake, Eiry

    2018-04-01

    We explored the co-localization of multiple enzymes on a DNA backbone via a DNA-binding protein, Gene-A* (A*-tag) to increase the efficiency of cascade enzymatic reactions. Firefly luciferase (FLuc) and pyruvate orthophosphate dikinase (PPDK) were genetically fused with A*-tag and modified with single-stranded (ss) DNA via A*-tag. The components were assembled on ssDNA by hybridization, thereby enhancing the efficiency of the cascading bioluminescent reaction producing light emission from pyrophosphate. The activity of A*-tag in each enzyme was investigated with dye-labeled DNA. Co-localization of the enzymes via hybridization was examined using a gel shift assay. The multi-enzyme complex showed significant improvement in the overall efficiency of the cascading reaction in comparison to a mixture of free enzymes. A*-tag is highly convenient for ssDNA modification of versatile enzymes, and it can be used for construction of functional DNA-enzyme complexes.

  17. Quantification of apoptotic DNA fragmentation in a transformed uterine epithelial cell line, HRE-H9, using capillary electrophoresis with laser-induced fluorescence detector (CE-LIF).

    PubMed

    Fiscus, R R; Leung, C P; Yuen, J P; Chan, H C

    2001-01-01

    Apoptotic cell death of uterine epithelial cells is thought to play an important role in the onset of menstruation and the successful implantation of an embryo during early pregnancy. Abnormal apoptosis in these cells can result in dysmenorrhoea and infertility. In addition, decreased rate of epithelial apoptosis likely contributes to endometriosis. A key step in the onset of apoptosis in these cells is cleavage of the genomic DNA between nucleosomes, resulting in polynucleosomal-sized fragments of DNA. The conventional technique for assessing apoptotic DNA fragmentation uses agarose (slab) gel electrophoresis (i.e. DNA laddering). However, recent technological advances in the use of capillary electrophoresis (CE), particularly the introduction of the laser-induced fluorescence detector (LIF), has made it possible to perform DNA laddering with improved automation and much greater sensitivity. In the present study, we have further developed the CE-LIF technique by using a DNA standard curve to quantify accurately the amount of DNA in the apoptotic DNA fragments and have applied this new quantitative technique to study apoptosis in a transformed uterine epithelial cell line, the HRE-H9 cells. Apoptosis was induced in the HRE-H9 cells by serum deprivation for 5, 7 and 24 h, resulting in increased DNA fragmentation of 2.2-, 3.1- and 6.2-fold, respectively, above the 0 h or plus-serum controls. This ultrasensitive CE-LIF technique provides a novel method for accurately measuring the actions of pro- or anti-apoptotic agents or conditions on uterine epithelial cell lines. Copyright 2001 Academic Press.

  18. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes

    PubMed Central

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted “bidirectional analysis,” which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples. PMID:28052096

  19. Divergent dispersion behavior of ssDNA fragments during microchip electrophoresis in pDMA and LPA entangled polymer networks

    PubMed Central

    Fredlake, Christopher P.; Hert, Daniel G.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Barron, Annelise E.

    2015-01-01

    Resolution of DNA fragments separated by electrophoresis in polymer solutions (“matrices”) is determined by both the spacing between peaks and the width of the peaks. Prior research on the development of high-performance separation matrices has been focused primarily on optimizing DNA mobility and matrix selectivity, and gave less attention to peak broadening. Quantitative data are rare for peak broadening in systems in which high electric field strengths are used (> 150 V/cm), which is surprising since capillary and microchip-based systems commonly run at these field strengths. Here, we report results for a study of band broadening behavior for ssDNA fragments on a glass microfluidic chip, for electric field strengths up to 320 V/cm. We compare dispersion coefficients obtained in a poly(N,N-dimethylacrylamide) (pDMA) separation matrix that was developed for chip-based DNA sequencing with a commercially available linear polyacrylamide (LPA) matrix commonly used in capillaries. Much larger DNA dispersion coefficients were measured in the LPA matrix as compared to the pDMA matrix, and the dependences of dispersion coefficient on DNA size and electric field strength were found to differ quite starkly in the two matrices. These observations lead us to propose that DNA migration mechanisms differ substantially in our custom pDMA matrix compared to the commercially available LPA matrix. We discuss the implications of these results in terms of developing optimal matrices for specific separation (microchip or capillary) platforms. PMID:22648809

  20. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses.

    PubMed

    Zepeda-Mendoza, Marie Lisandra; Bohmann, Kristine; Carmona Baez, Aldo; Gilbert, M Thomas P

    2016-05-03

    DNA metabarcoding is an approach for identifying multiple taxa in an environmental sample using specific genetic loci and taxa-specific primers. When combined with high-throughput sequencing it enables the taxonomic characterization of large numbers of samples in a relatively time- and cost-efficient manner. One recent laboratory development is the addition of 5'-nucleotide tags to both primers producing double-tagged amplicons and the use of multiple PCR replicates to filter erroneous sequences. However, there is currently no available toolkit for the straightforward analysis of datasets produced in this way. We present DAMe, a toolkit for the processing of datasets generated by double-tagged amplicons from multiple PCR replicates derived from an unlimited number of samples. Specifically, DAMe can be used to (i) sort amplicons by tag combination, (ii) evaluate PCR replicates dissimilarity, and (iii) filter sequences derived from sequencing/PCR errors, chimeras, and contamination. This is attained by calculating the following parameters: (i) sequence content similarity between the PCR replicates from each sample, (ii) reproducibility of each unique sequence across the PCR replicates, and (iii) copy number of the unique sequences in each PCR replicate. We showcase the insights that can be obtained using DAMe prior to taxonomic assignment, by applying it to two real datasets that vary in their complexity regarding number of samples, sequencing libraries, PCR replicates, and used tag combinations. Finally, we use a third mock dataset to demonstrate the impact and importance of filtering the sequences with DAMe. DAMe allows the user-friendly manipulation of amplicons derived from multiple samples with PCR replicates built in a single or multiple sequencing libraries. It allows the user to: (i) collapse amplicons into unique sequences and sort them by tag combination while retaining the sample identifier and copy number information, (ii) identify sequences carrying

  1. A novel strategy for screening-out raw milk contaminated with Mycobacterium bovis on dairy farms by double-tagging PCR and electrochemical genosensing.

    PubMed

    Lermo, Anabel; Liébana, Susana; Campoy, Susana; Fabiano, Silvia; García, M Inés; Soutullo, Adriana; Zumárraga, Martín J; Alegret, Salvador; Pividori, M Isabel

    2010-06-01

    A highly sensitive assay for rapidly screening-out Mycobacterium bovis in contaminated samples was developed based on electrochemical genosensing. The assay consists of specific amplification and double-tagging of the IS6110 fragment, highly related to M. bovis, followed by electrochemical detection of the amplified product. PCR amplification was carried out using a labeled set of primers and resulted in a amplicon tagged at each terminus with both biotin and digoxigenin. Two different electrochemical platforms for the detection of the double-tagged amplicon were evaluated: (i) an avidin biocomposite (Av-GEB) and (ii) a magneto sensor (m-GEC) combined with streptavidin magnetic beads. In both cases, the double- tagged amplicon was immobilized through its biotinylated end and electrochemically detected, using an antiDig-HRP conjugate, through its digoxigenin end. The assay was determined to be highly sensitive, based on the detection of 620 and 10 fmol of PCR amplicon using the Av-GEB and m-GEC strategies, respectively. Moreover, the m-GEC assay showed promising features for the detection of M. bovis on dairy farms by screening for the presence of the bacterium's DNA in milk samples. The obtained results are discussed and compared with respect to those of inter-laboratory PCR assays and tuberculin skin testing.

  2. Positive and negative ion mode comparison for the determination of DNA/peptide noncovalent binding sites through the formation of "three-body" noncovalent fragment ions.

    PubMed

    Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra

    2018-02-01

    Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.

  3. Cell-free DNA fragment-size distribution analysis for non-invasive prenatal CNV prediction.

    PubMed

    Arbabi, Aryan; Rampášek, Ladislav; Brudno, Michael

    2016-06-01

    Non-invasive detection of aneuploidies in a fetal genome through analysis of cell-free DNA circulating in the maternal plasma is becoming a routine clinical test. Such tests, which rely on analyzing the read coverage or the allelic ratios at single-nucleotide polymorphism (SNP) loci, are not sensitive enough for smaller sub-chromosomal abnormalities due to sequencing biases and paucity of SNPs in a genome. We have developed an alternative framework for identifying sub-chromosomal copy number variations in a fetal genome. This framework relies on the size distribution of fragments in a sample, as fetal-origin fragments tend to be smaller than those of maternal origin. By analyzing the local distribution of the cell-free DNA fragment sizes in each region, our method allows for the identification of sub-megabase CNVs, even in the absence of SNP positions. To evaluate the accuracy of our method, we used a plasma sample with the fetal fraction of 13%, down-sampled it to samples with coverage of 10X-40X and simulated samples with CNVs based on it. Our method had a perfect accuracy (both specificity and sensitivity) for detecting 5 Mb CNVs, and after reducing the fetal fraction (to 11%, 9% and 7%), it could correctly identify 98.82-100% of the 5 Mb CNVs and had a true-negative rate of 95.29-99.76%. Our source code is available on GitHub at https://github.com/compbio-UofT/FSDA CONTACT: : brudno@cs.toronto.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

  5. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method).

    PubMed

    He, M; Taussig, M J

    2001-08-01

    We describe a format for production of protein arrays termed 'protein in situ array' (PISA). A PISA is rapidly generated in one step directly from PCR-generated DNA fragments by cell-free protein expression and in situ immobilisation at a surface. The template for expression is DNA encoding individual proteins or domains, which is produced by PCR using primers designed from information in DNA databases. Coupled transcription and translation is carried out on a surface to which the tagged protein adheres as soon as it is synthesised. Because proteins generated by cell-free synthesis are usually soluble and functional, this method can overcome problems of insolubility or degradation associated with bacterial expression of recombinant proteins. Moreover, the use of PCR-generated DNA enables rapid production of proteins or domains based on genome information alone and will be particularly useful where cloned material is not available. Here we show that human single-chain antibody fragments (three domain, V(H)/K form) and an enzyme (luciferase) can be functionally arrayed by the PISA method.

  6. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma.

    PubMed

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-05-11

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mφ) direct trauma-induced inflammation, and Mφ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mφ and the subsequent regulation of Mφ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)-TLR4-MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mφ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mφ. However, autophagy activation also suppressed Mφ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mφ homeostasis in response to trauma.

  7. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma

    PubMed Central

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-01-01

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mϕ) direct trauma-induced inflammation, and Mϕ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mϕ and the subsequent regulation of Mϕ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)–TLR4–MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mϕ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mϕ. However, autophagy activation also suppressed Mϕ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mϕ homeostasis in response to trauma. PMID:28492546

  8. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods

    NASA Astrophysics Data System (ADS)

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.

  9. Distinguishing aspartic and isoaspartic acids in peptides by several mass spectrometric fragmentation methods

    PubMed Central

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-01-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post source decay (PSD), MALDI 157 nm photodissociation, TMPP charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues. PMID:27613306

  10. Annexin V-MACS in infertile couples as method for separation of sperm without DNA fragmentation.

    PubMed

    Troya, Jhon; Zorrilla, Ingrid

    2015-05-01

    To determine the effect of using MACS technology on clinical pregnancy, as a method for separation of damaged sperm in infertile patients. 136 infertile men having normal semen parameters in accordance with WHO 2010 criterion, undergoing ICSI cycle were enrolled during the course of the study. The patients were prospectively randomized and enrolled after oocyte retrieval and were assigned to the ICSI group, PICSI group or MACS group. Embryo development and clinical pregnancy were assessed. In 17 randomized MACS patients, sperm DNA fragmentation was tested in the presumptive apoptotic and no apoptotic spermatozoa fractions. Similar results were obtained between groups for the following parameters: fertilization rates of 78.97% (95% confidence interval [CI]:74.37-83.57), 70.15 %(95% CI:63.98-76.33) and 80.28%(95% CI:73.74-86.81) for ICSI, PICSI and MACS group, respectively; Number of Day-3 embryos was 5.04 (95% CI:4.09-5.98), 5.17(95% CI:4.24-6.10) and 5.59(95% CI:4.31-6.87) for ICSI, PICSI and MACS group, respectively; number of freezing embryos in blastocyst stage was 0.78 (95% CI:0.25- 1.31), 0.70(95% CI:0.27-1.14) and 1 (95% CI:0.37-1.6) for ICSI, PICSI and MACS group, respectively. However, clinical pregnancy rates of 58.1% for MACS group versus 40.4% and 27.3% for PICSI and ICSI group, respectively, were showed statistical difference (P=0.019). DNA fragmentation index for the two sperm MACS fraction showed statistical differences (P=0.000), MACS reduced the D.F.I of the sperm sample. The use of MACS technology improves the clinical pregnancy on infertile couples and can be applied as a method for sperm separation, discriminating sperm with high DNA fragmentation.

  11. DR-78, a novel Drosophila melanogaster genomic DNA fragment highly homologous to the DNA-binding domain of thyroid hormone-retinoic acid-vitamin D receptor subfamily.

    PubMed

    Martín-Blanco, E; Kornberg, T B

    1993-11-16

    Degenerate oligodeoxyribonucleotides were designed for both ends of the DNA-binding domain of members of the nuclear receptor superfamily. PCR amplified Drosophila melanogaster DNA was purified and cloned (DR plasmids). Genomic lambda DASH clones were identified at high stringency with an amplified DR-78 plasmid DNA and isolated. The partial sequence shows a very probable open reading frame which would encode a peptide highly homologous to members of the thyroid hormone-retinoic acid-vitamin D receptor subfamily. The fragment corresponds to a single copy gene and was mapped at position 78D of chromosome three by in situ hybridization.

  12. DNA Barcoding for Identification of ‘Candidatus Phytoplasmas’ Using a Fragment of the Elongation Factor Tu Gene

    PubMed Central

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta; Kawube, Geofrey; Bertaccini, Assunta; Nicolaisen, Mogens

    2012-01-01

    Background Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported. Methodology/Principal Findings We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter−/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases. Conclusions/Significance This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification. PMID:23272216

  13. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome.

    PubMed

    Partier, A; Gay, G; Tassy, C; Beckert, M; Feuillet, C; Barret, P

    2017-10-01

    A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.

  14. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics

    PubMed Central

    Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2011-01-01

    Current algorithms for quantifying peptide identification confidence in the accurate mass and time (AMT) tag approach assume that the AMT tags themselves have been correctly identified. However, there is uncertainty in the identification of AMT tags, as this is based on matching LC-MS/MS fragmentation spectra to peptide sequences. In this paper, we incorporate confidence measures for the AMT tag identifications into the calculation of probabilities for correct matches to an AMT tag database, resulting in a more accurate overall measure of identification confidence for the AMT tag approach. The method is referred to as Statistical Tools for AMT tag Confidence (STAC). STAC additionally provides a Uniqueness Probability (UP) to help distinguish between multiple matches to an AMT tag and a method to calculate an overall false discovery rate (FDR). STAC is freely available for download as both a command line and a Windows graphical application. PMID:21692516

  15. Fragmentation of DNA components by hyperthermal heavy ion (Ar+ and Xe+) impact in the condensed phase

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Sarvenaz Sarabipour, Ms; Michaud, Marc; Deng, Zongwu; Huels, Michael A.

    The overriding environmental factor that presently limits human endeavors in space is exposure to heavy ion radiation. While knowledge of its damage to living tissue is essential for radiation protection and risk estimates for astronauts, very little data exists at the molecular level regarding the nascent DNA damage by the primary particle track, or by secondary species during subsequent reaction cascades. This persistent lack of a basic understanding of nascent damage induced by such low dose, high LET radiation, introduces unacceptable errors in radiation risk estimates (based mainly on extrapolation from high dose, low LET radiation), particularly for long term exposure. Mutagenic effects induced by heavy ion radiation to cells are largely due to DNA damage by secondary transient species, i.e. secondary ballistic ions, electrons and radicals generated along the ion tracks; the secondary ions have hyperthermal energies up to several 100 eV, which they will deposit within a few nm in the surrounding medium; thus their LET is very high, and yields lethal clustered DNA lesions. We present measurements of molecular damage induced in films of DNA components by ions with precisely such low energies (1-100 eV) and compare results to conventional electron impact measurements. Experiments are conducted in UHV using a mass selected low energy ion source, and a high-resolution quadrupole MS to monitor ion yields desorbing from molecular films. Among the major fragments, NH4 + is identified in the desorption mass spectra of irradiated films of Adenine, Guanine, Cytosine, indicating efficient deamination; in cells this results in pre-mutagenic lesions. Experiments with 5-amino-Uracil, and comparison to previous results on uracil and thymine show that deamination is a key step in the NH4 + fragment formation. For Adenine, we also observe formation of amine aducts in the films, viz. amination of Adenine, and global fragmentation in all ion impact mass spectra, attributed

  16. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods.

    PubMed

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H 2 O, are present in PSD, photodissociation, and charge tagging. c • +57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues. Graphical Abstract ᅟ.

  17. The effect of two pre-cryopreservation single layer colloidal centrifugation protocols in combination with different freezing extenders on the fragmentation dynamics of thawed equine sperm DNA

    PubMed Central

    2012-01-01

    Background Variability among stallions in terms of semen cryopreservation quality renders it difficult to arrive at a standardized cryopreservation method. Different extenders and processing techniques (such us colloidal centrifugation) are used in order to optimize post-thaw sperm quality. Sperm chromatin integrity analysis is an effective tool for assessing such quality. The aim of the present study was to compare the effect of two single layer colloidal centrifugation protocols (prior to cryopreservation) in combination with three commercial freezing extenders on the post-thaw chromatin integrity of equine sperm samples at different post-thaw incubation (37°C) times (i.e., their DNA fragmentation dynamics). Results Post-thaw DNA fragmentation levels in semen samples subjected to either of the colloidal centrifugation protocols were significantly lower (p<0.05) immediately after thawing and after 4 h of incubation at 37°C compared to samples that underwent standard (control) centrifugation. The use of InraFreeze® extender was associated with significantly less DNA fragmentation than the use of Botu-Crio® extender at 6 h of incubation, and than the use of either Botu-Crio® or Gent® extender at 24 h of incubation (p<0.05). Conclusions These results suggest that single layer colloidal centrifugation performed with extended or raw semen prior to cryopreservation reduces DNA fragmentation during the first four hours after thawing. Further studies are needed to determine the influence of freezing extenders on equine sperm DNA fragmentation dynamics. PMID:23217215

  18. Fragmentation of contaminant and endogenous DNA in ancient samples determined by shotgun sequencing; prospects for human palaeogenomics.

    PubMed

    García-Garcerà, Marc; Gigli, Elena; Sanchez-Quinto, Federico; Ramirez, Oscar; Calafell, Francesc; Civit, Sergi; Lalueza-Fox, Carles

    2011-01-01

    Despite the successful retrieval of genomes from past remains, the prospects for human palaeogenomics remain unclear because of the difficulty of distinguishing contaminant from endogenous DNA sequences. Previous sequence data generated on high-throughput sequencing platforms indicate that fragmentation of ancient DNA sequences is a characteristic trait primarily arising due to depurination processes that create abasic sites leading to DNA breaks. METHODOLOGY/PRINCIPALS FINDINGS: To investigate whether this pattern is present in ancient remains from a temperate environment, we have 454-FLX pyrosequenced different samples dated between 5,500 and 49,000 years ago: a bone from an extinct goat (Myotragus balearicus) that was treated with a depurinating agent (bleach), an Iberian lynx bone not subjected to any treatment, a human Neolithic sample from Barcelona (Spain), and a Neandertal sample from the El Sidrón site (Asturias, Spain). The efficiency of retrieval of endogenous sequences is below 1% in all cases. We have used the non-human samples to identify human sequences (0.35 and 1.4%, respectively), that we positively know are contaminants. We observed that bleach treatment appears to create a depurination-associated fragmentation pattern in resulting contaminant sequences that is indistinguishable from previously described endogenous sequences. Furthermore, the nucleotide composition pattern observed in 5' and 3' ends of contaminant sequences is much more complex than the flat pattern previously described in some Neandertal contaminants. Although much research on samples with known contaminant histories is needed, our results suggest that endogenous and contaminant sequences cannot be distinguished by the fragmentation pattern alone.

  19. Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA.

    PubMed

    Weiberg, Arne; Pöhler, Dirk; Morgenstern, Burkhard; Karlovsky, Petr

    2008-10-13

    cDNA-AFLP is a transcriptomics technique which does not require prior sequence information and can therefore be used as a gene discovery tool. The method is based on selective amplification of cDNA fragments generated by restriction endonucleases, electrophoretic separation of the products and comparison of the band patterns between treated samples and controls. Unequal distribution of restriction sites used to generate cDNA fragments negatively affects the performance of cDNA-AFLP. Some transcripts are represented by more than one fragment while other escape detection, causing redundancy and reducing the coverage of the analysis, respectively. With the goal of improving the coverage of cDNA-AFLP without increasing its redundancy, we designed a modified cDNA-AFLP protocol. Immobilized cDNA is sequentially digested with several restriction endonucleases and the released DNA fragments are collected in mutually exclusive pools. To investigate the performance of the protocol, software tool MECS (Multiple Enzyme cDNA-AFLP Simulation) was written in Perl. cDNA-AFLP protocols described in the literature and the new sequential digestion protocol were simulated on sets of cDNA sequences from mouse, human and Arabidopsis thaliana. The redundancy and coverage, the total number of PCR reactions, and the average fragment length were calculated for each protocol and cDNA set. Simulation revealed that sequential digestion of immobilized cDNA followed by the partitioning of released fragments into mutually exclusive pools outperformed other cDNA-AFLP protocols in terms of coverage, redundancy, fragment length, and the total number of PCRs. Primers generating 30 to 70 amplicons per PCR provided the highest fraction of electrophoretically distinguishable fragments suitable for normalization. For A. thaliana, human and mice transcriptome, the use of two marking enzymes and three sequentially applied releasing enzymes for each of the marking enzymes is recommended.

  20. Viability and DNA fragmentation of rainbow trout embryos (Oncorhynchus mykiss) obtained from eggs stored at 4 °C.

    PubMed

    Ubilla, A; Valdebenito, I; Árias, M E; Risopatrón, J

    2016-05-01

    In vitro storage of salmonid eggs leads to aging of the cells causing a decline in quality and reducing their capacity to develop and produce embryos. The quality of salmonid embryos is assessed by morphologic analyses; however, data on the application of biomarkers to determine the cell viability and DNA integrity of embryos in these species are limited. The aim of this study was to evaluate the effect on embryo development, viability and DNA fragmentation in the embryonic cells of in vitro storage time at 4 °C of rainbow trout (Oncorhynchus mykiss) eggs. The embryos were obtained by IVF from eggs stored for 0 (control), 48, and 96 hours at 4 °C. At 72 hours after fertilization, dechorionated embryos were examined to determine percentages of developed embryos (embryos with normal cell division morphology), viability (LIVE/DEAD sperm viability kit), and DNA integrity (terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay). The percentage of developing embryos decreased (P < 0.05) with storage time of the eggs (95.10 ± 2.55; 88.14 ± 4.50; 79.99 ± 6.60 for 0, 48, and 96 hours, respectively). Similarly, cell viability decreased (P < 0.05; 96.07 ± 7.15; 80.42 ± 8.55; 77.47 ± 7.88 for 0, 48, and 96 hours, respectively), and an increase (P < 0.05) in DNA fragmentation in the embryos was observed at 96-hour storage. A positive correlation was found between cell DNA fragmentation and storage time (r = 0.8173; P < 0.0001). The results revealed that terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay technique is reliable mean to assess the state of the DNA in salmonid embryos and that in vitro eggs storage for 96h reduces embryo development and cell DNA integrity. DNA integrity evaluation constitutes a biomarker of the quality of the ova and resulting embryos so as to predict their capacity to produce good-quality embryos in salmonids, particularly under culture conditions. Copyright © 2016 Elsevier Inc

  1. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    NASA Technical Reports Server (NTRS)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Peptides derivatized with bicyclic quaternary ammonium ionization tags. Sequencing via tandem mass spectrometry.

    PubMed

    Setner, Bartosz; Rudowska, Magdalena; Klem, Ewelina; Cebrat, Marek; Szewczuk, Zbigniew

    2014-10-01

    Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1-azabicyclo[2.2.2]octane (ABCO) or 1,4-diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI-MS) and longer retention times on the reverse-phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision-induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a- and b-type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision-induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI-MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.

  3. HaloTag Technology: A Versatile Platform for Biomedical Applications

    PubMed Central

    2015-01-01

    Exploration of protein function and interaction is critical for discovering links among genomics, proteomics, and disease state; yet, the immense complexity of proteomics found in biological systems currently limits our investigational capacity. Although affinity and autofluorescent tags are widely employed for protein analysis, these methods have been met with limited success because they lack specificity and require multiple fusion tags and genetic constructs. As an alternative approach, the innovative HaloTag protein fusion platform allows protein function and interaction to be comprehensively analyzed using a single genetic construct with multiple capabilities. This is accomplished using a simplified process, in which a variable HaloTag ligand binds rapidly to the HaloTag protein (usually linked to the protein of interest) with high affinity and specificity. In this review, we examine all current applications of the HaloTag technology platform for biomedical applications, such as the study of protein isolation and purification, protein function, protein–protein and protein–DNA interactions, biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the HaloTag platform are briefly discussed along with potential future applications. PMID:25974629

  4. Crystal structure of an Okazaki fragment at 2-A resolution

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Zhang, S. G.; Rich, A.

    1992-01-01

    In DNA replication, Okazaki fragments are formed as double-stranded intermediates during synthesis of the lagging strand. They are composed of the growing DNA strand primed by RNA and the template strand. The DNA oligonucleotide d(GGGTATACGC) and the chimeric RNA-DNA oligonucleotide r(GCG)d(TATACCC) were combined to form a synthetic Okazaki fragment and its three-dimensional structure was determined by x-ray crystallography. The fragment adopts an overall A-type conformation with 11 residues per turn. Although the base-pair geometry, particularly in the central TATA part, is distorted, there is no evidence for a transition from the A- to the B-type conformation at the junction between RNA.DNA hybrid and DNA duplex. The RNA trimer may, therefore, lock the complete fragment in an A-type conformation.

  5. Morphometric comparison by the ISAS® CASA-DNAf system of two techniques for the evaluation of DNA fragmentation in human spermatozoa

    PubMed Central

    Sadeghi, Sara; García-Molina, Almudena; Celma, Ferran; Valverde, Anthony; Fereidounfar, Sogol; Soler, Carles

    2016-01-01

    DNA fragmentation has been shown to be one of the causes of male infertility, particularly related to repeated abortions, and different methods have been developed to analyze it. In the present study, two commercial kits based on the SCD technique (Halosperm® and SDFA) were evaluated by the use of the DNA fragmentation module of the ISAS® v1 CASA system. Seven semen samples from volunteers were analyzed. To compare the results between techniques, the Kruskal–Wallis test was used. Data were used for calculation of Principal Components (two PCs were obtained), and subsequent subpopulations were identified using the Halo, Halo/Core Ratio, and PC data. Results from both kits were significantly different (P < 0.001). In each case, four subpopulations were obtained, independently of the classification method used. The distribution of subpopulations differed depending on the kit used. From the PC data, a discriminant analysis matrix was obtained and a good a posteriori classification was obtained (97.1% for Halosperm and 96.6% for SDFA). The present results are the first approach on morphometric evaluation of DNA fragmentation from the SCD technique. This approach could be used for the future definition of a classification matrix surpassing the current subjective evaluation of this important sperm factor. PMID:27678463

  6. Morphometric comparison by the ISAS® CASA-DNAf system of two techniques for the evaluation of DNA fragmentation in human spermatozoa.

    PubMed

    Sadeghi, Sara; García-Molina, Almudena; Celma, Ferran; Valverde, Anthony; Fereidounfar, Sogol; Soler, Carles

    2016-01-01

    DNA fragmentation has been shown to be one of the causes of male infertility, particularly related to repeated abortions, and different methods have been developed to analyze it. In the present study, two commercial kits based on the SCD technique (Halosperm ® and SDFA) were evaluated by the use of the DNA fragmentation module of the ISAS ® v1 CASA system. Seven semen samples from volunteers were analyzed. To compare the results between techniques, the Kruskal-Wallis test was used. Data were used for calculation of Principal Components (two PCs were obtained), and subsequent subpopulations were identified using the Halo, Halo/Core Ratio, and PC data. Results from both kits were significantly different (P < 0.001). In each case, four subpopulations were obtained, independently of the classification method used. The distribution of subpopulations differed depending on the kit used. From the PC data, a discriminant analysis matrix was obtained and a good a posteriori classification was obtained (97.1% for Halosperm and 96.6% for SDFA). The present results are the first approach on morphometric evaluation of DNA fragmentation from the SCD technique. This approach could be used for the future definition of a classification matrix surpassing the current subjective evaluation of this important sperm factor.

  7. Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA.

    PubMed

    Finster, Sabrina; Eggert, Erik; Zoschke, Reimo; Weihe, Andreas; Schmitz-Linneweber, Christian

    2013-12-01

    Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  8. Profiling cellular protein complexes by proximity ligation with dual tag microarray readout.

    PubMed

    Hammond, Maria; Nong, Rachel Yuan; Ericsson, Olle; Pardali, Katerina; Landegren, Ulf

    2012-01-01

    Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.

  9. Characterization of HIFU ablation using DNA fragmentation labeling as apoptosis stain

    NASA Astrophysics Data System (ADS)

    Anquez, Jeremie; Corréas, Jean-Michel; Pau, Bernard; Lacoste, François; Yon, Sylvain

    2012-11-01

    The goal of this work was to compare modalities to precisely quantify the extent of thermally induced lesions: gross pathology vs. histopathology vs. devascularization. Liver areas of 14 rabbits were targeted with HIFU and RF ablations in an acute study. Contrast enhanced computorized tomography (CE-CT) scan images were acquired two hours after HIFU and RF treatment to obtain the devascularized volumes of the livers. The animals were then euthanized and deep frozen. The livers were sliced and each slice was photographed and stacked yielding a volume of gross pathology. The volume VGP of the HIFU lesions were derived. The area AGP of the lesions were computed on a particular slice. The lesions were segmented as hypo intense (devascularized) regions on CE-CT images and their volumes VC were computed. The ratios VC/VGP were computed for all the HIFU lesions on all the 14 subjects with a mean value of 1.2. Histology was performed on the livers using Hematoxyline Eosine Staining (HES) and DNA Fragmentation labeling (TUNEL® technology) which characterizes apoptosis. Apoptotic regions of area AT were segmented on the images stained by TUNEL®. No necrosis was identified on the HES data. While TUNEL® did not mark the cores of the RF lesions as apoptotic, the periphery of HIFU and RF lesions was always recognized with TUNEL® as apoptotic. The ratio AGP/AT was computed. The mean value was 0.95 and 0.25 for HIFU and RF lesions respectively. These findings show that the devascularized territory seen on CE-CT scan coincide with the coagulated territories seen with gross pathology. Those actually correspond to cells in apoptosis. It is confirmed that HES stain does not show necrosis 2 hours after thermal ablation. TUNEL® technology for DNA fragmentation labeling appears as a useful marker for thermally induced acute lesions in the liver.

  10. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. II. Probing individual notI fragments by hybridization.

    PubMed

    Löbrich, M; Rydberg, B; Cooper, P K

    1994-08-01

    The initial yields of DNA double-strand breaks induced by energetic heavy ions (425 MeV/u neon and 250, 400 and 600 MeV/u iron) in comparison to X rays were measured in normal human diploid fibroblast cells within three small areas of the genome, defined by NotI fragments of 3.2, 2.0 and 1.2 Mbp. The methodology involves NotI restriction endonuclease digestion of DNA from irradiated cells, followed by pulsed-field gel electrophoresis, Southern blotting and hybridization with probes recognizing single-copy sequences within the three NotI fragments. The gradual disappearance of the full-size NotI fragment with dose and the appearance of a smear of broken DNA molecules are quantified. Assuming Poisson statistics for the number of double-strand breaks induced per NotI fragment of known size, absolute yields of DNA double-strand breaks were calculated and determined to be linear with dose in all cases, with the neon ion (LET 32 keV/microns) producing 4.4 x 10(-3) breaks/Mbp/Gy and all three iron-ion beams (LETs from 190 to 350 keV/microns) producing 2.8 x 10(-3) breaks/Mbp/Gy, giving RBE values for production of double-strand breaks of 0.76 for neon and 0.48 for iron in comparison to our previously determined X-ray induction rate of 5.8 x 10(-3) breaks/Mbp/Gy. These RBE values are in good agreement with results of measurements over the whole genome as reported in the accompanying paper (B. Rydberg, M. Löbrich and P. Cooper, Radiat. Res. 139, 133-141, 1994). The distribution of broken DNA molecules was similar for the various radiations, supporting a random distribution of double-strand breaks induced by the heavy ions over Mbp distances; however, correlated breaks (clusters) over much smaller distances are not ruled out. Reconstitution of the 3.2 Mbp NotI fragment was studied during postirradiation incubation of the cells as a measure of rejoining of correct DNA ends. The proportion of breaks repaired decreased with increasing LET.

  11. Preparation of His-tagged armored RNA phage particles as a control for real-time reverse transcription-PCR detection of severe acute respiratory syndrome coronavirus.

    PubMed

    Cheng, Yangjian; Niu, Jianjun; Zhang, Yongyou; Huang, Jianwei; Li, Qingge

    2006-10-01

    Armored RNA has been increasingly used as both an external and internal positive control in nucleic acid-based assays for RNA virus. In order to facilitate armored RNA purification, a His6 tag was introduced into the loop region of the MS2 coat protein, which allows the exposure of multiple His tags on the surface during armored RNA assembly. The His-tagged armored RNA particles were purified to homogeneity and verified to be free of DNA contamination in a single run of affinity chromatography. A fragment of severe acute respiratory syndrome coronavirus (SARS-CoV) genome targeted for SARS-CoV detection was chosen for an external positive control preparation. A plant-specific gene sequence was chosen for a universal noncompetitive internal positive control preparation. Both controls were purified by Co2+ affinity chromatography and were included in a real-time reverse transcription-PCR assay for SARS-CoV. The noncompetitive internal positive control can be added to clinical samples before RNA extraction and enables the identification of potential inhibitive effects without interfering with target amplification. The external control could be used for the quantification of viral loads in clinical samples.

  12. Paramecium putrinum (Ciliophora, Protozoa): the first insight into the variation of two DNA fragments - molecular support for the existence of cryptic species.

    PubMed

    Tarcz, Sebastian; Rautian, Maria; Potekhin, Alexey; Sawka, Natalia; Beliavskaya, Alexandra; Kiselev, Andrey; Nekrasova, Irina; Przyboś, Ewa

    2014-04-01

    Paramecium putrinum (Claparede & Lachmann 1858) is one of the smallest (80-140 μm long) species of the genus Paramecium. Although it commonly occurs in freshwater reservoirs, no molecular studies of P. putrinum have been conducted to date. Herein we present an assessment of molecular variation in 27 strains collected from widely separated populations by using two selected DNA fragments (ITS1-5.8S-ITS2-5'LSU rDNA and COI mtDNA). Both the trees and haplotype networks reconstructed for both genome fragments show that the studied strains of P. putrinum form five main haplogroups. The mean distance between the studied strains is p-distance=0.007/0.068 (rDNA/COI) and exhibits similar variability as that between P. bursaria syngens. Based on these data, one could hypothesize that the clusters revealed in the present study may correspond to previously reported syngens and that there are at least five cryptic species within P. putrinum. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Sperm Chromatin Structure Assay (SCSA(®)) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility.

    PubMed

    Evenson, Donald P

    2016-06-01

    Thirty-five years ago the pioneering paper in Science (240:1131) on the relationship between sperm DNA integrity and pregnancy outcome was featured as the cover issue showing a fluorescence photomicrograph of red and green stained sperm. The flow cytometry data showed a very significant difference in sperm DNA integrity between fertile and subfertile bulls and men. This study utilized heat (100°C, 5min) to denature DNA at sites of DNA strand breaks followed by staining with acridine orange (AO) and measurements of 5000 individual sperm of green double strand (ds) DNA and red single strand (ss) DNA fluorescence. Later, the heat protocol was changed to a low pH protocol to denature the DNA at sites of strand breaks; the heat and acid procedures produced the same results. SCSA data are very advantageously dual parameter with 1024 channels (degrees) of both red and green fluorescence. Hundreds of publications on the use of the SCSA test in animals and humans have validated the SCSA as a highly useful test for determining male breeding soundness. The SCSA test is a rapid, non-biased flow cytometer machine measurement providing robust statistical data with exceptional precision and repeatability. Many genotoxic experiments showed excellent dose response data with very low coefficient of variation that further validated the SCSA as being a highly powerful assay for sperm DNA integrity. Twelve years following the introduction of the SCSA test, the terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labelling (TUNEL) test (1993) for sperm was introduced as the only other flow cytometric assay for sperm DNA fragmentation. However, the TUNEL test can also be done by light microscopy with much less statistical robustness. The COMET (1998) and Sperm Chromatin Dispersion (SCD; HALO) (2003) tests were introduced as light microscope tests that don't require a flow cytometer. Since these tests measure only 50-200 sperm per sample, they suffer from the lack of

  14. Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay.

    PubMed

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.

  15. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.

    2000-01-01

    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to < 0.01 Mbp, is modeled using computer simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  16. Directly Transforming PCR-Amplified DNA Fragments into Plant Cells Is a Versatile System That Facilitates the Transient Expression Assay

    PubMed Central

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells. PMID:23468926

  17. Recruitment of DNA methyltransferase I to DNA repair sites.

    PubMed

    Mortusewicz, Oliver; Schermelleh, Lothar; Walter, Joachim; Cardoso, M Cristina; Leonhardt, Heinrich

    2005-06-21

    In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair.

  18. A tag-based approach for high-throughput analysis of CCWGG methylation.

    PubMed

    Denisova, Oksana V; Chernov, Andrei V; Koledachkina, Tatyana Y; Matvienko, Nicholas I

    2007-10-15

    Non-CpG methylation occurring in the context of CNG sequences is found in plants at a large number of genomic loci. However, there is still little information available about non-CpG methylation in mammals. Efficient methods that would allow detection of scarcely localized methylated sites in small quantities of DNA are required to elucidate the biological role of non-CpG methylation in both plants and animals. In this study, we tested a new whole genome approach to identify sites of CCWGG methylation (W is A or T), a particular case of CNG methylation, in genomic DNA. This technique is based on digestion of DNAs with methylation-sensitive restriction endonucleases EcoRII-C and AjnI. Short DNAs flanking methylated CCWGG sites (tags) are selectively purified and assembled in tandem arrays of up to nine tags. This allows high-throughput sequencing of tags, identification of flanking regions, and their exact positions in the genome. In this study, we tested specificity and efficiency of the approach.

  19. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation.

    PubMed

    Avendaño, Conrado; Mata, Ariela; Sanchez Sarmiento, César A; Doncel, Gustavo F

    2012-01-01

    To evaluate the effects of laptop computers connected to local area networks wirelessly (Wi-Fi) on human spermatozoa. Prospective in vitro study. Center for reproductive medicine. Semen samples from 29 healthy donors. Motile sperm were selected by swim up. Each sperm suspension was divided into two aliquots. One sperm aliquot (experimental) from each patient was exposed to an internet-connected laptop by Wi-Fi for 4 hours, whereas the second aliquot (unexposed) was used as control, incubated under identical conditions without being exposed to the laptop. Evaluation of sperm motility, viability, and DNA fragmentation. Donor sperm samples, mostly normozoospermic, exposed ex vivo during 4 hours to a wireless internet-connected laptop showed a significant decrease in progressive sperm motility and an increase in sperm DNA fragmentation. Levels of dead sperm showed no significant differences between the two groups. To our knowledge, this is the first study to evaluate the direct impact of laptop use on human spermatozoa. Ex vivo exposure of human spermatozoa to a wireless internet-connected laptop decreased motility and induced DNA fragmentation by a nonthermal effect. We speculate that keeping a laptop connected wirelessly to the internet on the lap near the testes may result in decreased male fertility. Further in vitro and in vivo studies are needed to prove this contention. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. A Saccharomyces cerevisiae mitochondrial DNA fragment activates Reg1p-dependent glucose-repressible transcription in the nucleus.

    PubMed

    Santangelo, G M; Tornow, J

    1997-12-01

    As part of an effort to identify random carbon-source-regulated promoters in the Saccharomyces cerevisiae genome, we discovered that a mitochondrial DNA fragment is capable of directing glucose-repressible expression of a reporter gene. This fragment (CR24) originated from the mitochondrial genome adjacent to a transcription initiation site. Mutational analyses identified a GC cluster within the fragment that is required for transcriptional induction. Repression of nuclear CR24-driven transcription required Reg1p, indicating that this mitochondrially derived promoter is a member of a large group of glucose-repressible nuclear promoters that are similarly regulated by Reg1p. In vivo and in vitro binding assays indicated the presence of factors, located within the nucleus and the mitochondria, that bind to the GC cluster. One or more of these factors may provide a regulatory link between the nucleus and mitochondria.

  1. Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm DNA fragmentation: a SWOT analysis

    PubMed Central

    Esteves, Sandro C; Roque, Matheus; Garrido, Nicolás

    2018-01-01

    Spermatozoa retrieved from the testis of men with high levels of sperm DNA fragmentation (SDF) in the neat semen tend to have better DNA quality. Given the negative impact of SDF on the outcomes of Assisted Reproductive Technology (ART), an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (Testi-ICSI). In this article, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this intervention. The rationale of Testi-ICSI is bypass posttesticular DNA fragmentation caused by oxidative stress during sperm transit through the epididymis. Hence, oocyte fertilization by genomically intact testicular spermatozoa may be optimized, thus increasing the chances of creating a normal embryonic genome and the likelihood of achieving a live birth, as recently demonstrated in men with high SDF. However, there is still limited evidence as regards the clinical efficacy of Testi-ICSI, thus creating opportunities for further confirmatory clinical research as well as investigation of Testi-ICSI in clinical scenarios other than high SDF. Furthermore, Testi-ICSI can be compared to other laboratory preparation methods for deselecting sperm with damaged DNA. At present, the available literature supports the use of testicular sperm when performing ICSI in infertile couples whose male partners have posttesticular SDF. Due to inherent risks of sperm retrieval, Testi-ICSI should be offered when less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required concerning the health of generated offspring and the potential complications of sperm retrieval. PMID:28440264

  2. Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm DNA fragmentation: a SWOT analysis.

    PubMed

    Esteves, Sandro C; Roque, Matheus; Garrido, Nicolás

    2018-01-01

    Spermatozoa retrieved from the testis of men with high levels of sperm DNA fragmentation (SDF) in the neat semen tend to have better DNA quality. Given the negative impact of SDF on the outcomes of Assisted Reproductive Technology (ART), an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (Testi-ICSI). In this article, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this intervention. The rationale of Testi-ICSI is bypass posttesticular DNA fragmentation caused by oxidative stress during sperm transit through the epididymis. Hence, oocyte fertilization by genomically intact testicular spermatozoa may be optimized, thus increasing the chances of creating a normal embryonic genome and the likelihood of achieving a live birth, as recently demonstrated in men with high SDF. However, there is still limited evidence as regards the clinical efficacy of Testi-ICSI, thus creating opportunities for further confirmatory clinical research as well as investigation of Testi-ICSI in clinical scenarios other than high SDF. Furthermore, Testi-ICSI can be compared to other laboratory preparation methods for deselecting sperm with damaged DNA. At present, the available literature supports the use of testicular sperm when performing ICSI in infertile couples whose male partners have posttesticular SDF. Due to inherent risks of sperm retrieval, Testi-ICSI should be offered when less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required concerning the health of generated offspring and the potential complications of sperm retrieval.

  3. An anti-DNA antibody prefers damaged dsDNA over native.

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2017-01-01

    DNA-protein interactions, including DNA-antibody complexes, have both fundamental and practical significance. In particular, antibodies against double-stranded DNA play an important role in the pathogenesis of autoimmune diseases. Elucidation of structural mechanisms of an antigen recognition and interaction of anti-DNA antibodies provides a basis for understanding the role of DNA-containing immune complexes in human pathologies and for new treatments. Here we used Molecular Dynamic simulations of bimolecular complexes of a segment of dsDNA with a monoclonal anti-DNA antibody's Fab-fragment to obtain detailed structural and physical characteristics of the dynamic intermolecular interactions. Using a computationally modified crystal structure of a Fab-DNA complex (PDB: 3VW3), we studied in silico equilibrium Molecular Dynamics of the Fab-fragment associated with two homologous dsDNA fragments, containing or not containing dimerized thymine, a product of DNA photodamage. The Fab-fragment interactions with the thymine dimer-containing DNA was thermodynamically more stable than with the native DNA. The amino acid residues constituting a paratope and the complementary nucleotide epitopes for both Fab-DNA constructs were identified. Stacking and electrostatic interactions were shown to play the main role in the antibody-dsDNA contacts, while hydrogen bonds were less significant. The aggregate of data show that the chemically modified dsDNA (containing a covalent thymine dimer) has a higher affinity toward the antibody and forms a stronger immune complex. These findings provide a mechanistic insight into formation and properties of the pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus, associated with skin photosensibilization and DNA photodamage.

  4. Scar-less multi-part DNA assembly design automation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Nathan J.

    The present invention provides a method of a method of designing an implementation of a DNA assembly. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding flanking homology sequences to each of the DNA oligos. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which tomore » assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding optimized overhang sequences to each of the DNA oligos.« less

  5. DNA Binding Peptide Directed Synthesis of Continuous DNA Nanowires for Analysis of Large DNA Molecules by Scanning Electron Microscope.

    PubMed

    Kim, Kyung-Il; Lee, Seonghyun; Jin, Xuelin; Kim, Su Ji; Jo, Kyubong; Lee, Jung Heon

    2017-01-01

    Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Epstein-Barr virus recombinants from overlapping cosmid fragments.

    PubMed

    Tomkinson, B; Robertson, E; Yalamanchili, R; Longnecker, R; Kieff, E

    1993-12-01

    Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the

  7. Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaeser, Cynthia Jeanne

    Aerosols are an ever-present part of our daily environment and have extensive effects on both human and environmental health. Particles in the inhalable range (1-10 μm diameter) are of particular concern because their deposition in the lung can lead to a variety of illnesses including allergic reactions, viral or bacterial infections, and cancer. Understanding the transport of inhalable aerosols across both short and long distances is necessary to predict human exposures to aerosols. To assess the transport of hazardous aerosols, surrogate tracer particles are required to measure their transport through occupied spaces. These tracer particles must not only possess similarmore » transport characteristics to those of interest but also be easily distinguished from the background at low levels and survive the environmental conditions of the testing environment. A previously-developed DNA-tagged particle (DNATrax), composed of food-grade sugar and a DNA oligonucleotide as a “barcode” label, shows promise as a new aerosol tracer. Herein, the use of DNATrax material is validated for use in both indoor and outdoor environments. Utilizing passive samplers made of materials commonly found in indoor environments followed by quantitative polymerase chain reaction (qPCR) assay for endpoint particle detection, particles detection was achieved up to 90 m from the aerosolization location and across shorter distances with high spatial resolution. The unique DNA label and PCR assay specificity were leveraged to perform multiple simultaneous experiments. This allowed the assessment of experimental reproducibility, a rare occurrence among aerosol field tests. To transition to outdoor testing, the solid material provides some protection of the DNA label when exposed to ultraviolet (UV) radiation, with 60% of the DNA remaining intact after 60 minutes under a germicidal lamp and the rate of degradation declining with irradiation time. Additionally, exposure of the DNATrax material

  8. Analysis of DNA from post-blast pipe bomb fragments for identification and determination of ancestry.

    PubMed

    Tasker, Esiri; LaRue, Bobby; Beherec, Charity; Gangitano, David; Hughes-Stamm, Sheree

    2017-05-01

    Improvised explosive devices (IEDs) such as pipe bombs are weapons used to detrimentally affect people and communities. A readily accessible brand of exploding targets called Tannerite® has been identified as a potential material for abuse as an explosive in pipe bombs. The ability to recover and genotype DNA from such weapons may be vital in the effort to identify suspects associated with these devices. While it is possible to recover DNA from post-blast fragments using short tandem repeat markers (STRs), genotyping success can be negatively affected by low quantities of DNA, degradation, and/or PCR inhibitors. Alternative markers such as insertion/null (INNULs) and single nucleotide polymorphisms (SNPs) are bi-allelic genetic markers that are shorter genomic targets than STRs for amplification, which are more likely to resist degradation. In this study, we constructed pipe bombs that were spiked with known amounts of biological material to: 1) recover "touch" DNA from the surface of the device, and 2) recover traces of blood from the ends of wires (simulated finger prick). The bombs were detonated with the binary explosive Tannerite® using double-base smokeless powder to initiate the reaction. DNA extracted from the post-blast fragments was quantified with the Quantifiler® Trio DNA Quantification Kit. STR analysis was conducted using the GlobalFiler® Amplification Kit, INNULs were amplified using an early-access version of the InnoTyper™ 21 Kit, and SNP analysis via massively parallel sequencing (MPS) was performed using the HID-Ion Ampliseq™ Identity and Ancestry panels using the Ion Chef and Ion PGM sequencing system. The results of this study showed that INNUL markers resulted in the most complete genetic profiles when compared to STR and SNP profiles. The random match probabilities calculated for samples using INNULs were lower than with STRs when less than 14 STR alleles were reported. These results suggest that INNUL analysis may be well suited for

  9. Adenovirus type 2 DNA replication. I. Evidence for discontinuous DNA synthesis.

    PubMed Central

    Winnacker, E L

    1975-01-01

    Isolated nuclei from adenovirus type 2-infected HeLa cells catalyze the incorporation of all four deoxyribonucleoside triphosphates into viral DNA. The observed DNA synthesis occurs via a transient formation of DNA fragments with a sedimentation coefficient of 10S. The fragments are precursors to unit-length viral DNA, they are self-complementary to an extent of at least 70%, and they are distributed along most of the viral chromosome. In addition, accumulation of 10S DNA fragments is observed either in intact, virus-infected HeLa cells under conditions where viral DNA synthesis is inhibited by hydroxyurea or in isolated nuclei from virus-infected HeLa cells at low concentrations of deoxyribonucleotides. Under these suboptimal conditions for DNA synthesis in isolated nuclei, ribonucleoside triphosphates determine the size distribution of DNA intermediates. The evidence presented suggests that a ribonucleoside-dependent initiation step as well at two DNA polymerase catalyzed reactions are involved in the discontinuous replication of adenovirus type 2 DNA. PMID:1117487

  10. Efficient production of Trastuzumab Fab antibody fragments in Brevibacillus choshinensis expression system.

    PubMed

    Mizukami, Makoto; Onishi, Hiromasa; Hanagata, Hiroshi; Miyauchi, Akira; Ito, Yuji; Tokunaga, Hiroko; Ishibashi, Matsujiro; Arakawa, Tsutomu; Tokunaga, Masao

    2018-10-01

    The Brevibacillus expression system has been successfully employed for the efficient productions of a variety of recombinant proteins, including enzymes, cytokines, antigens and antibody fragments. Here, we succeeded in secretory expression of Trastuzumab Fab antibody fragments using B. choshinensis/BIC (Brevibacillus in vivocloning) expression system. In the fed-batch high-density cell culture, recombinant Trastuzumab Fab with amino-terminal His-tag (His-BcFab) was secreted at high level, 1.25 g/liter, and Fab without His-tag (BcFab) at ∼145 mg/L of culture supernatant. His-BcFab and BcFab were purified to homogeneity using combination of conventional column chromatographies with a yield of 10-13%. This BcFab preparation exhibited native structure and functions evaluated by enzyme-linked immunosorbent assay, surface plasmon resonance, circular dichroism measurements and size exclusion chromatography. To our knowledge, this is the highest production of Fab antibody fragments in gram-positive bacterial expression/secretion systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A novel helper phage for HaloTag-mediated co-display of enzyme and substrate on phage.

    PubMed

    Delespaul, Wouter; Peeters, Yves; Herdewijn, Piet; Robben, Johan

    2015-05-01

    Phage display is an established technique for the molecular evolution of peptides and proteins. For the selection of enzymes based on catalytic activity however, simultaneous coupling of an enzyme and its substrate to the phage surface is required. To facilitate this process of co-display, we developed a new helper phage displaying HaloTag, a modified haloalkane dehalogenase that binds specifically and covalently to functionalized haloalkane ligands. The display of functional HaloTag was demonstrated by capture on streptavidin-coated magnetic beads, after coupling a biotinylated haloalkane ligand, or after on-phage extension of a DNA oligonucleotide primer with a biotinylated nucleotide by phi29 DNA polymerase. We also achieved co-display of HaloTag and phi29 DNA polymerase, thereby opening perspectives for the molecular evolution of this enzyme (and others) towards new substrate specificities. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Screening and identification of male-specific DNA fragments in common carps Cyprinus carpio using suppression subtractive hybridization.

    PubMed

    Chen, J J; Du, Q Y; Yue, Y Y; Dang, B J; Chang, Z J

    2010-08-01

    In this study, a sex subtractive genomic DNA library was constructed using suppression subtractive hybridization (SSH) between male and female Cyprinus carpio. Twenty-two clones with distinguishable hybridization signals were selected and sequenced. The specific primers were designed based on the sequence data. Those primers were then used to amplify the sex-specific fragments from the genomic DNA of male and female carp. The amplified fragments from two clones showed specificity to males but not to females, which were named as Ccmf2 [387 base pairs (bp)] and Ccmf3 (183 bp), respectively. The sex-specific pattern was analysed in a total of 40 individuals from three other different C. carpio. stocks and grass carp Ctenopharyngodon idella using Ccmf2 and Ccmf3 as dot-blotting probes. The results revealed that the molecular diversity exists on the Y chromosome of C. carpio. No hybridization signals, however, were detected from individuals of C. idella, suggesting that the two sequences are specific to C. carpio. No significant homologous sequences of Ccmf2 and Ccmf3 were found in GenBank. Therefore, it was interpreted that the results as that Ccmf2 and Ccmf3 are two novel male-specific sequences; and both fragments could be used as markers to rapidly and accurately identify the genetic sex of part of C. carpio. This may provide a very efficient selective tool for practically breeding monosex female populations in aquacultural production.

  13. In vivo generation of DNA sequence diversity for cellular barcoding

    PubMed Central

    Peikon, Ian D.; Gizatullina, Diana I.; Zador, Anthony M.

    2014-01-01

    Heterogeneity is a ubiquitous feature of biological systems. A complete understanding of such systems requires a method for uniquely identifying and tracking individual components and their interactions with each other. We have developed a novel method of uniquely tagging individual cells in vivo with a genetic ‘barcode’ that can be recovered by DNA sequencing. Our method is a two-component system comprised of a genetic barcode cassette whose fragments are shuffled by Rci, a site-specific DNA invertase. The system is highly scalable, with the potential to generate theoretical diversities in the billions. We demonstrate the feasibility of this technique in Escherichia coli. Currently, this method could be employed to track the dynamics of populations of microbes through various bottlenecks. Advances of this method should prove useful in tracking interactions of cells within a network, and/or heterogeneity within complex biological samples. PMID:25013177

  14. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  15. Precise Sequential DNA Ligation on A Solid Substrate: Solid-Based Rapid Sequential Ligation of Multiple DNA Molecules

    PubMed Central

    Takita, Eiji; Kohda, Katsunori; Tomatsu, Hajime; Hanano, Shigeru; Moriya, Kanami; Hosouchi, Tsutomu; Sakurai, Nozomu; Suzuki, Hideyuki; Shinmyo, Atsuhiko; Shibata, Daisuke

    2013-01-01

    Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation. PMID:23897972

  16. Protective role of probiotic lactic acid bacteria against dietary fumonisin B1-induced toxicity and DNA-fragmentation in sprague-dawley rats.

    PubMed

    Khalil, Ashraf A; Abou-Gabal, Ashgan E; Abdellatef, Amira A; Khalid, Ahmed E

    2015-08-18

    The genus Fusarium, especially F. verticillioides and F. proliferatum, has been found in several agricultural products worldwide, especially in maize. Regardless the occurrence of symptoms, the presence of Fusarium in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effect on rats, swine, and equines and already classified as possible carcinogens to humans. The toxicity of incremental levels of fumonisin B1 (FB1), that is, 50, 100, and 200 mg FB1/kg diet, and the role of Lactobacillus delbrueckii subsp. lactis DSM 20076 (LL) and Pediococcus acidilactici NNRL B-5627 (PA) supplementation in counteracting the FB1 effects in intoxicated rats were monitored over a period of 4 weeks. Effects on the feed intake and body weight gain were noticed. A significant (p ≤ 0.05) increase in the level of liver and kidney functions markers and DNA fragmentation was also noticed in rat groups T100 and T200. The lactic acid bacteria (LAB) supplementation could bring back the normal serum biochemical parameters in rats fed on fumonisin B1-contaminated diets (T50 and T100) compared to FB1-treated groups. In rats of high-dosage dietary groups supplemented with LAB (T200-LL and T200-PA), the supplementation reduced the serum activity levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and creatinine by 11.3, 11.9, 32, and 20%, respectively. DNA fragmentations were observed in the rat group treated with 200 mg FB1 after 3 weeks, while fragmentation was noticed in treated groups with 100 and 200 mg FB1 after 4 weeks. No DNA fragmentation was apparent in FB1-treated rats co-administered the LL or PA strain. These results suggest that in male rats consuming diets containing FB1, there is a time- and dose-dependent increase in serum enzyme activities and DNA lesions. Moreover, Lb. delbrueckii subsp. lactis (LL) and P. acidilactici (PA) strains have a protective effect

  17. Correlation between sperm DNA fragmentation index and CMA3 positive spermatozoa in globozoospermic patients.

    PubMed

    Hosseinifar, H; Yazdanikhah, S; Modarresi, T; Totonchi, M; Sadighi Gilani, M A; Sabbaghian, M

    2015-05-01

    The absence of the acrosome causes the situation which is called globozoospermia. There are a few studies, mostly as case reports, about correlation between levels of sperm DNA damage in patients with total round-headed spermatozoa. We investigated this correlation as well as CMA3 positive spermatozoa in 20 globozoospermic men (with more than 90% round-headed spermatozoa) attending to Royan Institute. Semen samples divided into three parts to semen analysis, to measure DNA fragmentation index (DFI) using sperm chromatin structure assay (SCSA) and to detect CMA3(+) sperm cells by chromomycin A3 staining and fluorescent microscopy. Our results showed that there were significant differences in sperm concentration, total sperm motility, and normal morphology between patients and controls group (p < 0.001). Moreover, the average of DFI and CMA3 positive spermatozoa in patients group significantly increases compared with control group (p < 0.001). A significant correlation between DFI and CMA3(+) in total population was also detected in patients group (r = 0.45, p = 0.046). To our knowledge, this is the largest study about correlation between DNA damage levels and CMA3 positive spermatozoa with round head sperm cells in total globozoospermic men. It seems that the increase in DNA damage may be because of defective sperm DNA compaction, as we detected CMA3 positive sperm cells in these patients. © 2015 American Society of Andrology and European Academy of Andrology.

  18. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage.

    PubMed

    Mallik, Sarita; Popodi, Ellen M; Hanson, Andrew J; Foster, Patricia L

    2015-09-01

    Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence

  19. Increase in the astaxanthin synthase gene (crtS) dose by in vivo DNA fragment assembly in Xanthophyllomyces dendrorhous

    PubMed Central

    2013-01-01

    Background Xanthophyllomyces dendrorhous is a basidiomycetous yeast that is relevant to biotechnology, as it can synthesize the carotenoid astaxanthin. However, the astaxanthin levels produced by wild-type strains are low. Although different approaches for promoting increased astaxanthin production have been attempted, no commercially competitive results have been obtained thus far. A promising alternative to facilitate the production of carotenoids in this yeast involves the use of genetic modification. However, a major limitation is the few available molecular tools to manipulate X. dendrorhous. Results In this work, the DNA assembler methodology that was previously described in Saccharomyces cerevisiae was successfully applied to assemble DNA fragments in vivo and integrate these fragments into the genome of X. dendrorhous by homologous recombination in only one transformation event. Using this method, the gene encoding astaxanthin synthase (crtS) was overexpressed in X. dendrorhous and a higher level of astaxanthin was produced. Conclusions This methodology could be used to easily and rapidly overexpress individual genes or combinations of genes simultaneously in X. dendrorhous, eliminating numerous steps involved in conventional cloning methods. PMID:24103677

  20. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    PubMed

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  1. Development of a PCR/LDR/flow-through hybridization assay using a capillary tube, probe DNA-immobilized magnetic beads and chemiluminescence detection.

    PubMed

    Hommatsu, Manami; Okahashi, Hisamitsu; Ohta, Keisuke; Tamai, Yusuke; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-01-01

    A polymerase chain reaction (PCR)/ligase detection reaction (LDR)/flow-through hybridization assay using chemiluminescence (CL) detection was developed for analyzing point mutations in gene fragments with high diagnostic value for colorectal cancers. A flow-through hybridization format using a capillary tube, in which probe DNA-immobilized magnetic beads were packed, provided accelerated hybridization kinetics of target DNA (i.e. LDR product) to the probe DNA. Simple fluid manipulations enabled both allele-specific hybridization and the removal of non-specifically bound DNA in the wash step. Furthermore, the use of CL detection greatly simplified the detection scheme, since CL does not require a light source for excitation of the fluorescent dye tags on the LDR products. Preliminary results demonstrated that this analytical system could detect both homozygous and heterozygous mutations, without the expensive instrumentation and cumbersome procedures required by conventional DNA microarray-based methods.

  2. Treatment with the non-ionic surfactant poloxamer P188 reduces DNA fragmentation in cells from bovine chondral explants exposed to injurious unconfined compression.

    PubMed

    Baars, D C; Rundell, S A; Haut, R C

    2006-06-01

    Excessive mechanical loading to a joint has been linked with the development of post-traumatic osteoarthritis (OA). Among the suspected links between impact trauma to a joint and associated degeneration of articular cartilage is an acute reduction in chondrocyte viability. Recently, the non-ionic surfactant poloxamer 188 (P188) has been shown to reduce by approximately 50% the percentage of non-viable chondrocytes 24 h post-injury in chondral explants exposed to 25 MPa of unconfined compression. There is a question whether these acutely 'saved' chondrocytes will continue to degrade over time, as P188 is only thought to act by acute repair of damaged cell membranes. In order to investigate the degradation of traumatized chondrocytes in the longer term, the current study utilized TUNEL staining to document the percentage of cells suffering DNA fragmentation with and without an immediate 24 h period of exposure of the explants to P188 surfactant. In the current study, as in the previous study by this laboratory, chondral explants were excised from bovine metacarpophalangeal joints and subjected to 25 MPa of unconfined compression. TUNEL staining was performed at 1 h, 4 days, and 7 days post-impact. The current study found that P188 was effective in reducing the percentage of cells with DNA fragmentation in impacted explants by approximately 45% at 4 and 7 days post-impact. These data suggest that early P188 intervention was effective in preventing DNA fragmentation of injured chondrocytes. The current hypothesis is that this process was mitigated by the acute repair of damaged plasma membranes by the non-ionic surfactant P188, and that most repaired cells did not continue to degrade as measured by the fragmentation of their DNA.

  3. Studies with infections fragments of phage DNA. Final report, January 1, 1970--June 30, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schachtele, C. F.

    The minute, virulent and structurally intricate Bacillus subtilis bacteriophage phi 29 was utilized to study in vivo viral development. Purified strands of phi 29 DNA were used to analyze transcription of the viral genome. Early mRNA hybridizes to the light DNA strand which controls DNA replication and other early functions. Late mRNA hybridizes to the heavy DNA strand which codes for phage structural proteins. The temporal sequence of specific viral protein synthesis was analyzed by gel electrophoresis and was shown to directly correlate with the RNA transcription pattern. The genes carried by phi 29 have been marked with ts andmore » sus mutations and mapped by appropriate crosses yielding a linear map of 17 cistrons. Fragments of the phi 29 DNA were shown to retain their biological activity and marker rescue studies indicated that gene transfer could be performed with pieces having a molecular weight of less than 1 million daltons. Mutant infection under nonpermissive conditions and the analysis of precursor structures has allowed the formation of a tentative morphogenetic pathway leading to the formation of infectious particles. Work with phi 29 has established this virus as an advantageous model system for studying a variety of problems in molecular biology and approximately a dozen laboratories in the country and abroad are working with this phage.« less

  4. Fragman: an R package for fragment analysis.

    PubMed

    Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Salazar, Walter; Zalapa, Juan

    2016-04-21

    Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and quantitative trait loci (QTL) mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available software programs exist for fragment analysis; however, most of them are platform dependent and lack high-throughput applicability. We present the R package Fragman to serve as a freely available and platform independent resource for automatic scoring of DNA fragment lengths diversity panels and biparental populations. The program analyzes DNA fragment lengths generated in Applied Biosystems® (ABI) either manually or automatically by providing panels or bins. The package contains additional tools for converting the allele calls to GenAlEx, JoinMap® and OneMap software formats mainly used for genetic diversity and generating linkage maps in plant and animal populations. Easy plotting functions and multiplexing friendly capabilities are some of the strengths of this R package. Fragment analysis using a unique set of cranberry (Vaccinium macrocarpon) genotypes based on microsatellite markers is used to highlight the capabilities of Fragman. Fragman is a valuable new tool for genetic analysis. The package produces equivalent results to other popular software for fragment analysis while possessing unique advantages and the possibility of automation for high-throughput experiments by exploiting the power of R.

  5. Molecular dynamics simulations demonstrate the regulation of DNA-DNA attraction by H4 histone tail acetylations and mutations.

    PubMed

    Korolev, Nikolay; Yu, Hang; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2014-10-01

    The positively charged N-terminal histone tails play a crucial role in chromatin compaction and are important modulators of DNA transcription, recombination, and repair. The detailed mechanism of the interaction of histone tails with DNA remains elusive. To model the unspecific interaction of histone tails with DNA, all-atom molecular dynamics (MD) simulations were carried out for systems of four DNA 22-mers in the presence of 20 or 16 short fragments of the H4 histone tail (variations of the 16-23 a. a. KRHRKVLR sequence, as well as the unmodified fragment a. a.13-20, GGAKRHRK). This setup with high DNA concentration, explicit presence of DNA-DNA contacts, presence of unstructured cationic peptides (histone tails) and K(+) mimics the conditions of eukaryotic chromatin. A detailed account of the DNA interactions with the histone tail fragments, K(+) and water is presented. Furthermore, DNA structure and dynamics and its interplay with the histone tail fragments binding are analysed. The charged side chains of the lysines and arginines play major roles in the tail-mediated DNA-DNA attraction by forming bridges and by coordinating to the phosphate groups and to the electronegative sites in the minor groove. Binding of all species to DNA is dynamic. The structure of the unmodified fully-charged H4 16-23 a.a. fragment KRHRKVLR is dominated by a stretched conformation. The H4 tail a. a. fragment GGAKRHRK as well as the H4 Lys16 acetylated fragment are highly flexible. The present work allows capturing typical features of the histone tail-counterion-DNA structure, interaction and dynamics. © 2014 Wiley Periodicals, Inc.

  6. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios

    PubMed Central

    Majzoub, Ahmad; Esteves, Sandro C.; Ko, Edmund; Ramasamy, Ranjith; Zini, Armand

    2016-01-01

    Sperm DNA fragmentation (SDF) has been generally acknowledged as a valuable tool for male fertility evaluation. While its detrimental implications on sperm function were extensively investigated, little is known about the actual indications for performing SDF analysis. This review delivers practice based recommendations on commonly encountered scenarios in the clinic. An illustrative description of the different SDF measurement techniques is presented. SDF testing is recommended in patients with clinical varicocele and borderline to normal semen parameters as it can better select varicocelectomy candidates. High SDF is also linked with recurrent spontaneous abortion (RSA) and can influence outcomes of different assisted reproductive techniques. Several studies have shown some benefit in using testicular sperm rather than ejaculated sperm in men with high SDF, oligozoospermia or recurrent in vitro fertilization (IVF) failure. Infertile men with evidence of exposure to pollutants can benefit from sperm DNA testing as it can help reinforce the importance of lifestyle modification (e.g., cessation of cigarette smoking, antioxidant therapy), predict fertility and monitor the patient’s response to intervention. PMID:28078226

  7. A recombinant estrogen receptor fragment-based homogeneous fluorescent assay for rapid detection of estrogens.

    PubMed

    Wang, Dan; Xie, Jiangbi; Zhu, Xiaocui; Li, Jinqiu; Zhao, Dongqin; Zhao, Meiping

    2014-05-15

    In this work, we demonstrate a novel estrogenic receptor fragment-based homogeneous fluorescent assay which enables rapid and sensitive detection of 17β-estradiol (E2) and other highly potent estrogens. A modified human estrogenic receptor fragment (N-His × 6-hER270-595-C-Strep tag II) has been constructed that contains amino acids 270-595 of wild-type human estrogenic receptor α (hER270-595) and two specific tags (6 × His and Strep tag II) fused to the N and C terminus, respectively. The designed receptor protein fragment could be easily produced by prokaryotic expression with high yield and high purity. The obtained protein exhibits high binding affinity to E2 and the two tags greatly facilitate the application of the recombinant protein. Taking advantage of the unique spectroscopic properties of coumestrol (CS), a fluorescent phytoestrogen, a CS/hER270-595-based fluorescent assay has been developed which can sensitively respond to E2 within 1.0 min with a linear working range from 0.1 to 20 ng/mL and a limit of detection of 0.1 ng/mL. The assay was successfully applied for rapid detection of E2 in the culture medium of rat hippocampal neurons. The method also holds great potential for high-throughput monitoring the variation of estrogen levels in complex biological fluids, which is crucial for investigation of the molecular basis of various estrogen-involved processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, Chad A.; Rutagarama, Pierrot; Ahmad, Tanveer

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increasedmore » levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. - Graphical abstract: Oxidants and possibly reactive properties of metal particles in E-cig aerosols impart mitochondrial oxidative stress and DNA damage. These biological effects accompany inflammatory response which may raise concern regarding long term E-cig use. Mitochondria may be particularly sensitive to reactive properties of E-cig aerosols in addition to the potential for them to induce genotoxic stress by generating increased ROS. - Highlights: • Mitochondria are sensitive to both E-cig aerosols and metal nanoparticles. • Increased mtROS by E-cig aerosol is associated with disrupted mitochondrial energy. • E-cig causes nuclear DNA fragmentation. • E-cig aerosols induce pro-inflammatory response in human fibroblasts.« less

  9. Fatty acid fragmentation of triacylglycerol isolated from crude nyamplung oil

    NASA Astrophysics Data System (ADS)

    Aparamarta, Hakun Wirawasista; Anggraini, Desy; Istianingsih, Della; Susanto, David Febrilliant; Widjaja, Arief; Ju, Yi-Hsu; Gunawan, Setiyo

    2017-05-01

    Nyamplung (Calophylluminophyllum) has many benefits ranging from roots, stems, leaves, until seeds. In this seed, C. inophyllum contained significantly high amount of crude oil (70.4%). C. inophyllum oil is known as non edible. Therefore Indonesian people generally only know that seeds can produce oil that can be used for biodiesel. In this work, the fragmentation of fatty acid in triacylglycerols (TAG) was studied. The isolation process was started with separation of non polar lipid fraction (NPLF) from crude C. inophyllum oil via batchwise multistage liquid extraction. TAG was obtained in high purity (99%) and was analyzed by Thin Layer Chromatography (TLC) and Gas Chromatography - Mass Spectrometry (GCMS). It was found that fatty acids of TAG are palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1c), linoleic acid (C18:2c), and linolenic acid (C18:3c). Moreover, TAG isolated from C. inophyllum oil was promising as edible oil.

  10. High Throughput Biological Analysis Using Multi-bit Magnetic Digital Planar Tags

    NASA Astrophysics Data System (ADS)

    Hong, B.; Jeong, J.-R.; Llandro, J.; Hayward, T. J.; Ionescu, A.; Trypiniotis, T.; Mitrelias, T.; Kopper, K. P.; Steinmuller, S. J.; Bland, J. A. C.

    2008-06-01

    We report a new magnetic labelling technology for high-throughput biomolecular identification and DNA sequencing. Planar multi-bit magnetic tags have been designed and fabricated, which comprise a magnetic barcode formed by an ensemble of micron-sized thin film Ni80Fe20 bars encapsulated in SU8. We show that by using a globally applied magnetic field and magneto-optical Kerr microscopy the magnetic elements in the multi-bit magnetic tags can be addressed individually and encoded/decoded remotely. The critical steps needed to show the feasibility of this technology are demonstrated, including fabrication, flow transport, remote writing and reading, and successful functionalization of the tags as verified by fluorescence detection. This approach is ideal for encoding information on tags in microfluidic flow or suspension, for such applications as labelling of chemical precursors during drug synthesis and combinatorial library-based high-throughput multiplexed bioassays.

  11. Excessive Cytosolic DNA Fragments as a Potential Trigger of Graves’ Disease: An Encrypted Message Sent by Animal Models

    PubMed Central

    Luo, Yuqian; Yoshihara, Aya; Oda, Kenzaburo; Ishido, Yuko; Suzuki, Koichi

    2016-01-01

    Graves’ hyperthyroidism is caused by autoantibodies directed against the thyroid-stimulating hormone receptor (TSHR) that mimic the action of TSH. The establishment of Graves’ hyperthyroidism in experimental animals has proven to be an important approach to dissect the mechanisms of self-tolerance breakdown that lead to the production of thyroid-stimulating TSHR autoantibodies (TSAbs). “Shimojo’s model” was the first successful Graves’ animal model, wherein immunization with fibroblasts cells expressing TSHR and a major histocompatibility complex (MHC) class II molecule, but not either alone, induced TSAb production in AKR/N (H-2k) mice. This model highlights the importance of coincident MHC class II expression on TSHR-expressing cells in the development of Graves’ hyperthyroidism. These data are also in agreement with the observation that Graves’ thyrocytes often aberrantly express MHC class II antigens via mechanisms that remain unclear. Our group demonstrated that cytosolic self-genomic DNA fragments derived from sterile injured cells can induce aberrant MHC class II expression and production of multiple inflammatory cytokines and chemokines in thyrocytes in vitro, suggesting that severe cell injury may initiate immune responses in a way that is relevant to thyroid autoimmunity mediated by cytosolic DNA signaling. Furthermore, more recent successful Graves’ animal models were primarily established by immunizing mice with TSHR-expressing plasmids or adenovirus. In these models, double-stranded DNA vaccine contents presumably exert similar immune-activating effect in cells at inoculation sites and thus might pave the way toward successful Graves’ animal models. This review focuses on evidence suggesting that cell injury-derived self-DNA fragments could act as Graves’ disease triggers. PMID:27895620

  12. Radio tag retention and tag-related mortality among adult sockeye salmon

    USGS Publications Warehouse

    Ramstad, Kristina M.; Woody, Carol Ann

    2003-01-01

    Tag retention and tag-related mortality are concerns for any tagging study but are rarely estimated. We assessed retention and mortality rates for esophageal radio tag implants in adult sockeye salmon Oncorhynchus nerka. Migrating sockeye salmon captured at the outlet of Lake Clark, Alaska, were implanted with one of four different radio tags (14.5 × 43 mm (diameter × length), 14.5 × 49 mm, 16 × 46 mm, and 19 × 51 mm). Fish were observed for 15 to 35 d after tagging to determine retention and mortality rates. The overall tag retention rate was high (0.98; 95% confidence interval (CI), 0.92-1.00; minimum, 33 d), with one loss of a 19-mm × 51- mm tag. Mortality of tagged sockeye salmon (0.02; 95% CI, 0-0.08) was similar to that of untagged controls (0.03 (0-0.15)). Sockeye salmon with body lengths (mid-eye to tail fork) of 585-649 mm retained tags as large as 19 × 51 mm and those with body lengths of 499-628 mm retained tags as small as 14.5 × 43 mm for a minimum of 33 d with no increase in mortality. The tags used in this study represent a suite of radio tags that vary in size, operational life, and cost but that are effective in tracking adult anadromous salmon with little tag loss or increase in fish mortality.

  13. DNA fragmentation and oxidative stress compromise sperm motility and survival in late pregnancy exposure to omega-9 fatty acid in rats

    PubMed Central

    Oluwakemi, Oyelowo; Olufeyisipe, Adegoke

    2016-01-01

    Objective(s): The aim of this study was to evaluate the oxidative status and DNA integrity in testes of wistar rat offspring exposed to omega-9 monounsaturated (MUFA) at different times of late organogenesis. Materials and Methods: Sixty female rats were divided into six groups of 10 animals. The first group served as control and received the drug vehicle, olive oil (1 ml/kg/day). The second, third, fourth, fifth and sixth group received 1000 mg/kg of oleic acid on gestation day 15 (D15), 16 (D16), 17 (D17), 18 (D18) and 19 (D19), respectively. Male pups were allowed to attain puberty and thereafter, blood was taken for hormonal analyses. Sperm count and motility were assessed. Testes homogenate was used for the determination of biochemical variables. Testes DNA was also determined. Results: The results showed that sperm count and motility were significantly decreased in the treated groups as compared to the control. There was a marked increase in the malondialdehyde level in rat testes from all of the treated groups as compared to the control (P<0.05). DNA from the testes of rats of D19 had the highest level of fragmentation as compared to the control. Conclusion: Omega-9 MUFA exposure in utero imposes negative effects on sperm variables and increases the level of sperm DNA fragmentation and oxidative stress. PMID:27403258

  14. Identifying organism involved in new and regenerated production using TAG-SIP

    NASA Astrophysics Data System (ADS)

    Morando, M.; Capone, D. G.

    2016-02-01

    The coupling of stable isotope probing (SIP) with high throughput sequencing (TAG-SIP), allows examination of DNA from individual taxa for the incorporation of a specific isotopically labeled substrate, facilitating an in-depth investigation of the activity and functional diversity of in situ microbial communities. This approach was applied to the monthly San Pedro Ocean Time-series (SPOT), during April of 2014 in order to characterize the organisms involved in new and regenerated production by investigating the assimilation of 15N-NO3-, 15N-NH4+, and 15N-urea at several light depths throughout the euphotic zone. Overall, very little variation was seen between the DNA banding patterns and density of each discrete OTU compared over multiple control treatments, i.e. unlabeled substrate was added to each control and so any disparity between the DNA banding of these OTU replicates reflects methodological variation. The lack of disparity found here further demonstrates TAG-SIP's high precision, accuracy, and more importantly validates the TAG-SIP's reproducibility in both gradient formation and DNA sedimentation with respect to density. The mean density of these discrete control OTU DNA bands (n=7) were then compared to those of their isotopically treated equivalent OTU after a 24h incubation in order to accurately assess and identify significant shifts in DNA density. Therefore we are confident that differences in density between control and treated sample DNA greater than the variation quantified among the controls themselves, is direct evidence of `heavy' isotope incorporation, i.e. metabolic activity and growth. Direct evidence of activity was found in a broad range of taxa, thought not every treatment yielded positive results. As expected the majority of the organisms identified as assimilators were found within the 15N-NH4+ treatments. Many taxa displayed evidence of uptake in one or more but not all treatments providing evidence on which taxa are metabolizing a

  15. Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint.

    PubMed

    Budd, Martin E; Antoshechkin, Igor A; Reis, Clara; Wold, Barbara J; Campbell, Judith L

    2011-05-15

    Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27 (ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset.

  16. Extracting tag hierarchies.

    PubMed

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the "flat" organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search. Moreover

  17. Extracting Tag Hierarchies

    PubMed Central

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the “flat” organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search

  18. Shark Tagging Activities.

    ERIC Educational Resources Information Center

    Current: The Journal of Marine Education, 1998

    1998-01-01

    In this group activity, children learn about the purpose of tagging and how scientists tag a shark. Using a cut-out of a shark, students identify, measure, record data, read coordinates, and tag a shark. Includes introductory information about the purpose of tagging and the procedure, a data sheet showing original tagging data from Tampa Bay, and…

  19. Quantum tagging for tags containing secret classical data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian

    Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finitemore » key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.« less

  20. Enzyme-linked electrochemical DNA ligation assay using magnetic beads.

    PubMed

    Stejskalová, Eva; Horáková, Petra; Vacek, Jan; Bowater, Richard P; Fojta, Miroslav

    2014-07-01

    DNA ligases are essential enzymes in all cells and have been proposed as targets for novel antibiotics. Efficient DNA ligase activity assays are thus required for applications in biomedical research. Here we present an enzyme-linked electrochemical assay based on two terminally tagged probes forming a nicked junction upon hybridization with a template DNA. Nicked DNA bearing a 5' biotin tag is immobilized on the surface of streptavidin-coated magnetic beads, and ligated product is detected via a 3' digoxigenin tag recognized by monoclonal antibody-alkaline phosphatase conjugate. Enzymatic conversion of napht-1-yl phosphate to napht-1-ol enables sensitive detection of the voltammetric signal on a pyrolytic graphite electrode. The technique was tested under optimal conditions and various situations limiting or precluding the ligation reaction (such as DNA substrates lacking 5'-phosphate or containing a base mismatch at the nick junction, or application of incompatible cofactor), and utilized for the analysis of the nick-joining activity of a range of recombinant Escherichia coli DNA ligase constructs. The novel technique provides a fast, versatile, specific, and sensitive electrochemical assay of DNA ligase activity.

  1. Synchronization of DNA array replication kinetics

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  2. Autophagy as a trigger for cell death: autophagic degradation of inhibitor of apoptosis dBruce controls DNA fragmentation during late oogenesis in Drosophila.

    PubMed

    Nezis, Ioannis P; Shravage, Bhupendra V; Sagona, Antonia P; Johansen, Terje; Baehrecke, Eric H; Stenmark, Harald

    2010-11-01

    Autophagy has been reported to contribute to cell death, but the underlying mechanisms remain largely unknown and controversial. We have: been studying oogenesis in Drosophila melanogaster as a model system to understand the interplay between autophagy and cell death. Using a novel autophagy reporter we found that autophagy occurs during developmental cell death of nurse cells in late oogenesis. Genetic inhibition: of autophagy-related genes atg1, atg13 and vps34 results in late-stage egg chambers containing persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. We found that Drosophila inhibitor of apoptosis dBruce is degraded by autophagy and this degradation promotes DNA fragmentation and subsequent nurse cell death. These studies demonstrate that autophagic degradation of an inhibitor: of apoptosis is a novel mechanism of triggering cell death.

  3. Expression, purification, and DNA-binding activity of the Herbaspirillum seropedicae RecX protein.

    PubMed

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2004-06-01

    The Herbaspirillum seropedicae RecX protein participates in the SOS response: a process in which the RecA protein plays a central role. The RecX protein of the H. seropedicae, fused to a His-tag sequence (RecX His-tagged), was over-expressed in Escherichia coli and purified by metal-affinity chromatography to yield a highly purified and active protein. DNA band-shift assays showed that the RecX His-tagged protein bound to both circular and linear double-stranded DNA and also to circular single-stranded DNA. The apparent affinity of RecX for DNA decreased in the presence of Mg(2+) ions. The ability of RecX to bind DNA may be relevant to its function in the SOS response.

  4. DNA-based species detection capabilities using laser transmission spectroscopy

    PubMed Central

    Mahon, A. R.; Barnes, M. A.; Li, F.; Egan, S. P.; Tanner, C. E.; Ruggiero, S. T.; Feder, J. L.; Lodge, D. M.

    2013-01-01

    Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications. PMID:23015524

  5. Improved methods of DNA extraction from human spermatozoa that mitigate experimentally-induced oxidative DNA damage.

    PubMed

    Xavier, Miguel J; Nixon, Brett; Roman, Shaun D; Aitken, Robert John

    2018-01-01

    Current approaches for DNA extraction and fragmentation from mammalian spermatozoa provide several challenges for the investigation of the oxidative stress burden carried in the genome of male gametes. Indeed, the potential introduction of oxidative DNA damage induced by reactive oxygen species, reducing agents (dithiothreitol or beta-mercaptoethanol), and DNA shearing techniques used in the preparation of samples for chromatin immunoprecipitation and next-generation sequencing serve to cofound the reliability and accuracy of the results obtained. Here we report optimised methodology that minimises, or completely eliminates, exposure to DNA damaging compounds during extraction and fragmentation procedures. Specifically, we show that Micrococcal nuclease (MNase) digestion prior to cellular lysis generates a greater DNA yield with minimal collateral oxidation while randomly fragmenting the entire paternal genome. This modified methodology represents a significant improvement over traditional fragmentation achieved via sonication in the preparation of genomic DNA from human spermatozoa for downstream applications, such as next-generation sequencing. We also present a redesigned bioinformatic pipeline framework adjusted to correctly analyse this form of data and detect statistically relevant targets of oxidation.

  6. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonidmore » Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  7. Mitochondrial outer membrane permeabilization increases reactive oxygen species production and decreases mean sperm velocity but is not associated with DNA fragmentation in human sperm.

    PubMed

    Treulen, F; Uribe, P; Boguen, R; Villegas, J V

    2016-02-01

    Does induction of mitochondrial outer membrane permeabilization (MOMP) in vitro affect specific functional parameters of human spermatozoa? Our findings show that MOMP induction increases intracellular reactive oxygen species (ROS) and decreases mean sperm velocity but does not alter DNA integrity. MOMP in somatic cells is related to a variety of apoptotic traits, such as alteration of mitochondrial membrane potential (ΔΨm), and increase in ROS production and DNA fragmentation. Although the presence of these apoptotic features has been reported in spermatozoa, to date the effects of MOMP on sperm function and DNA integrity have not been analysed. The study included spermatozoa from fertile donors. Motile sperm were obtained using the swim-up method. The highly motile sperm were collected and diluted with human tubal fluid to a final cell concentration of 5 × 10(6) ml(-1). To induce MOMP, selected sperm were treated at 37°C for 4 h with a mimetic of a Bcl-2 pro-apoptotic protein, ABT-737. MOMP was evaluated by relocating of cytochrome c. In addition, the effect of ABT-737 on mitochondrial inner membrane permeabilization was assessed using the calcein-AM/cobalt chloride method. In turn, ΔΨm was evaluated with JC-1 staining, intracellular ROS production with dihydroethidium, sperm motility was analysed by computer-assisted sperm analysis and DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay. Measurements were performed by flow cytometry. MOMP was associated with ΔΨm dissipation (P < 0.05), increased ROS production (P < 0.05) and decreased mean sperm velocity (P < 0.05), but it was not associated with DNA fragmentation. MOMP did not induce a large increase in ROS, which could explain the negligible effect of MOMP on sperm DNA fragmentation under our experimental conditions. The study was carried out in vitro using highly motile sperm, selected by swim-up, from healthy donors. The results obtained in this

  8. Ontologies and tag-statistics

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2012-05-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  9. Isolation of a complementary DNA clone for the human complement protein C2 and its use in the identification of a restriction fragment length polymorphism.

    PubMed Central

    Woods, D E; Edge, M D; Colten, H R

    1984-01-01

    Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718

  10. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2006-01-01

    PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed. PMID:16613587

  11. Solid Lipid Curcumin Particles Induce More DNA Fragmentation and Cell Death in Cultured Human Glioblastoma Cells than Does Natural Curcumin

    PubMed Central

    Al-Gharaibeh, Abeer; Kolli, Nivya

    2017-01-01

    Despite recent advancements in cancer therapies, glioblastoma multiforme (GBM) remains largely incurable. Curcumin (Cur), a natural polyphenol, has potent anticancer effects against several malignancies, including metastatic brain tumors. However, its limited bioavailability reduces its efficiency for treating GBM. Recently, we have shown that solid lipid Cur particles (SLCPs) have greater bioavailability and brain tissue penetration. The present study compares the efficiency of cell death by Cur and/or SLCPs in cultured GBM cells derived from human (U-87MG) and mouse (GL261) tissues. Several cell viability and cell death assays and marker proteins (MTT assay, annexin-V staining, TUNEL staining, comet assay, DNA gel electrophoresis, and Western blot) were investigated following the treatment of Cur and/or SLCP (25 μM) for 24–72 h. Relative to Cur, the use of SLCP increased cell death and DNA fragmentation, produced longer DNA tails, and induced more fragmented nuclear lobes. In addition, cultured GBM cells had increased levels of caspase-3, Bax, and p53, with decreases in Bcl2, c-Myc, and both total Akt, as well as phosphorylated Akt, when SLCP, rather Cur, was used. Our in vitro work suggests that the use of SLCP may be a promising strategy for reversing or preventing GBM growth, as compared to using Cur. PMID:29359011

  12. Fluorescence-labeled methylation-sensitive amplified fragment length polymorphism (FL-MS-AFLP) analysis for quantitative determination of DNA methylation and demethylation status.

    PubMed

    Kageyama, Shinji; Shinmura, Kazuya; Yamamoto, Hiroko; Goto, Masanori; Suzuki, Koichi; Tanioka, Fumihiko; Tsuneyoshi, Toshihiro; Sugimura, Haruhiko

    2008-04-01

    The PCR-based DNA fingerprinting method called the methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis is used for genome-wide scanning of methylation status. In this study, we developed a method of fluorescence-labeled MS-AFLP (FL-MS-AFLP) analysis by applying a fluorescence-labeled primer and fluorescence-detecting electrophoresis apparatus to the existing method of MS-AFLP analysis. The FL-MS-AFLP analysis enables quantitative evaluation of more than 350 random CpG loci per run. It was shown to allow evaluation of the differences in methylation level of blood DNA of gastric cancer patients and evaluation of hypermethylation and hypomethylation in DNA from gastric cancer tissue in comparison with adjacent non-cancerous tissue.

  13. Illuminating the Sites of Enterovirus Replication in Living Cells by Using a Split-GFP-Tagged Viral Protein

    PubMed Central

    van der Schaar, H. M.; Melia, C. E.; van Bruggen, J. A. C.; Strating, J. R. P. M.; van Geenen, M. E. D.; Koster, A. J.; Bárcena, M.

    2016-01-01

    ABSTRACT Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition

  14. Illuminating the Sites of Enterovirus Replication in Living Cells by Using a Split-GFP-Tagged Viral Protein.

    PubMed

    van der Schaar, H M; Melia, C E; van Bruggen, J A C; Strating, J R P M; van Geenen, M E D; Koster, A J; Bárcena, M; van Kuppeveld, F J M

    2016-01-01

    Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for

  15. Dynamic optical tags

    NASA Astrophysics Data System (ADS)

    Griggs, Steven P.; Mark, Martin B.; Feldman, Barry J.

    2004-07-01

    The goal of the DARPA Dynamic Optical Tags (DOTs) program is to develop a small, robust, persistent, 2-way tagging, tracking and locating device that also supports communications at data rates greater than 100 kbps and can be interrogated at significant range. These tags will allow for two-way data exchange and tagging operations in friendly and denied areas. The DOTs will be passive and non-RF. To accomplish this, the DOTs program will develop small, thin, retro-reflecting modulators. The tags will operate for long periods of time (greater than two months) in real-world environmental conditions (-40° to +70° C) and allow for a wide interrogation angle (+/-60°). The tags will be passive (in the sleep mode) for most of the time and only become active when interrogated by a laser with the correct code. Once correctly interrogated, the tags will begin to modulate and retro-reflect the incoming beam. The program will also develop two tag specific transceiver systems that are eye-safe, employ automated scanning algorithms, and are capable of short search and interrogate times.

  16. How much DNA is lost? Measuring DNA loss of short-tandem-repeat length fragments targeted by the PowerPlex 16® system using the Qiagen MinElute Purification Kit.

    PubMed

    Kemp, Brian M; Winters, Misa; Monroe, Cara; Barta, Jodi Lynn

    2014-01-01

    The success in recovering genetic profiles from aged and degraded biological samples is diminished by fundamental aspects of DNA extraction, as well as its long-term preservation, that are not well understood. While numerous studies have been conducted to determine whether one extraction method was superior to others, nearly all of them were initiated with no knowledge of the actual starting DNA quantity in the samples prior to extraction, so they ultimately compared the outcome of all methods relative to the best. Using quantitative PCR to estimate the copy count of synthetic standards before (i.e., "copies in") and after (i.e., "copies out") purification by the Qiagen MinElute PCR Purification Kit, we documented DNA loss within a pool of 16 different-sized fragments ranging from 106 to 409 bp in length, corresponding to those targeted by the PowerPlex 16 System (Promega, Madison, WI). Across all standards from 10(4) to 10(7) copies/μL, loss averaged between 21.75% and 60.56% (mean, 39.03%), which is not congruent with Qiagen's claim that 80% of 70 bp to 4 kb fragments are retained using this product (i.e., 20% loss). Our study also found no clear relationship either between DNA strand length and retention or between starting copy number and retention. This suggests that there is no molecule bias across the MinElute column membrane and highlights the need for manufacturers to clearly and accurately describe on what their claims are based, and should also encourage researchers to document DNA retention efficiencies of their own methods and protocols. Understanding how and where to reduce loss of molecules during extraction and purification will serve to generate clearer and more accurate data, which will enhance the utility of ancient and low-copy-number DNA as a tool for closing forensic cases or in reconstructing the evolutionary history of humans and other organisms.

  17. Candidate DNA Barcode Tags Combined With High Resolution Melting (Bar-HRM) Curve Analysis for Authentication of Senna alexandrina Mill. With Validation in Crude Drugs.

    PubMed

    Mishra, Priyanka; Shukla, Ashutosh K; Sundaresan, Velusamy

    2018-01-01

    Senna alexandrina (Fabaceae) is a globally recognized medicinal plant for its laxative properties as well as the only source of sennosides, and is highly exported bulk herb from India. Its major procurement is exclusively from limited cultivation, which leads to risks of deliberate or unintended adulteration. The market raw materials are in powdered or finished product form, which lead to difficulties in authentication. Here, DNA barcode tags based on chloroplast genes ( rbcL and matK ) and intergenic spacers ( psbA-trnH and ITS ) were developed for S. alexandrina along with the allied species. The ability and performance of the ITS1 region to discriminate among the Senna species resulted in the present proposal of the ITS1 tags as successful barcode. Further, these tags were coupled with high-resolution melting (HRM) curve analysis in a real-time PCR genotyping method to derive Bar-HRM (Barcoding-HRM) assays. Suitable HRM primer sets were designed through SNP detection and mutation scanning in genomic signatures of Senna species. The melting profiles of S. alexandrina and S . italica subsp. micrantha were almost identical and the remaining five species were clearly separated so that they can be differentiated by HRM method. The sensitivity of the method was utilized to authenticate market samples [Herbal Sample Assays (HSAs)]. HSA01 ( S. alexandrina crude drug sample from Bangalore) and HSA06 ( S. alexandrina crude drug sample from Tuticorin, Tamil Nadu, India) were found to be highly contaminated with S . italica subsp. micrantha . Species admixture samples mixed in varying percentage was identified sensitively with detection of contamination as low as 1%. The melting profiles of PCR amplicons are clearly distinct, which enables the authentic differentiation of species by the HRM method. This study reveals that DNA barcoding coupled with HRM is an efficient molecular tool to authenticate Senna herbal products in the market for quality control in the drug supply

  18. Candidate DNA Barcode Tags Combined With High Resolution Melting (Bar-HRM) Curve Analysis for Authentication of Senna alexandrina Mill. With Validation in Crude Drugs

    PubMed Central

    Mishra, Priyanka; Shukla, Ashutosh K.; Sundaresan, Velusamy

    2018-01-01

    Senna alexandrina (Fabaceae) is a globally recognized medicinal plant for its laxative properties as well as the only source of sennosides, and is highly exported bulk herb from India. Its major procurement is exclusively from limited cultivation, which leads to risks of deliberate or unintended adulteration. The market raw materials are in powdered or finished product form, which lead to difficulties in authentication. Here, DNA barcode tags based on chloroplast genes (rbcL and matK) and intergenic spacers (psbA-trnH and ITS) were developed for S. alexandrina along with the allied species. The ability and performance of the ITS1 region to discriminate among the Senna species resulted in the present proposal of the ITS1 tags as successful barcode. Further, these tags were coupled with high-resolution melting (HRM) curve analysis in a real-time PCR genotyping method to derive Bar-HRM (Barcoding-HRM) assays. Suitable HRM primer sets were designed through SNP detection and mutation scanning in genomic signatures of Senna species. The melting profiles of S. alexandrina and S. italica subsp. micrantha were almost identical and the remaining five species were clearly separated so that they can be differentiated by HRM method. The sensitivity of the method was utilized to authenticate market samples [Herbal Sample Assays (HSAs)]. HSA01 (S. alexandrina crude drug sample from Bangalore) and HSA06 (S. alexandrina crude drug sample from Tuticorin, Tamil Nadu, India) were found to be highly contaminated with S. italica subsp. micrantha. Species admixture samples mixed in varying percentage was identified sensitively with detection of contamination as low as 1%. The melting profiles of PCR amplicons are clearly distinct, which enables the authentic differentiation of species by the HRM method. This study reveals that DNA barcoding coupled with HRM is an efficient molecular tool to authenticate Senna herbal products in the market for quality control in the drug supply chain

  19. Parallel gene analysis with allele-specific padlock probes and tag microarrays

    PubMed Central

    Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats

    2003-01-01

    Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977

  20. Electronic transport in methylated fragments of DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  1. Electronic transport in methylated fragments of DNA

    NASA Astrophysics Data System (ADS)

    de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.

    2015-11-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  2. Instantaneous characterization of vegetable oils via TAG and FFA profiles by easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Simas, Rosineide C; Catharino, Rodrigo R; Cunha, Ildenize B S; Cabral, Elaine C; Barrera-Arellano, Daniel; Eberlin, Marcos N; Alberici, Rosana M

    2010-04-01

    A fast and reliable method is presented for the analysis of vegetable oils. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to efficiently desorb and ionize the main oil constituents from an inert surface under ambient conditions and to provide comprehensive triacylglyceride (TAG) and free fatty acid (FFA) profiles detected mainly as either [TAG + Na](+) or [FFA-H](-) ions. EASI(+/-)-MS analysis is simple, easily implemented, requires just a tiny droplet of the oil and is performed without any pre-separation or chemical manipulation. It also causes no fragmentation of TAG ions hence diacylglyceride (DAG) and monoacylglyceride (MAG) profiles and contents can also be measured. The EASI(+/-)-MS profiles of TAG and FFA permit authentication and quality control and can be used, for instance, to access levels of adulteration, acidity, oxidation or hydrolysis of vegetable oils in general.

  3. A laboratory evaluation of tagging-related mortality and tag loss in juvenile humpback chub

    USGS Publications Warehouse

    Ward, David L.; Persons, William R.; Young, Kirk; Stone, Dennis M.; Van Haverbeke, Randy; Knight, William R.

    2015-01-01

    We quantified tag retention, survival, and growth in juvenile, captive-reared Humpback Chub Gila cypha marked with three different tag types: (1) Biomark 12.5-mm, 134.2-kHz, full duplex PIT tags injected into the body cavity with a 12-gauge needle; (2) Biomark 8.4-mm, 134.2-kHz, full duplex PIT tags injected with a 16-gauge needle; and (3) Northwest Marine Technology visible implant elastomer (VIE) tags injected under the skin with a 29-gauge needle. Estimates of tag loss, tagging-induced mortality, and growth were evaluated for 60 d with each tag type for four different size-groups of fish: 40–49 mm, 50–59 mm, 60–69 mm, and 70–79 mm TL. Total length was a significant predictor of the probability of PIT tag retention and mortality for both 8-mm and 12-mm PIT tags, and the smallest fish had the highest rates of tag loss (12.5–30.0%) and mortality (7.5–20.0%). Humpback Chub of sizes 40–49 mm TL and tagged with VIE tags had no mortality but did have a 17.5% tag loss. Growth rates of all tagged fish were similar to controls. Our data indicate Humpback Chub can be effectively tagged using either 8-mm or 12-mm PIT tags with little tag loss or mortality at sizes as low as 65 mm TL.

  4. Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles.

    PubMed

    Unzueta, Ugutz; Ferrer-Miralles, Neus; Cedano, Juan; Zikung, Xu; Pesarrodona, Mireia; Saccardo, Paolo; García-Fruitós, Elena; Domingo-Espín, Joan; Kumar, Pradeep; Gupta, Kailash C; Mangues, Ramón; Villaverde, Antonio; Vazquez, Esther

    2012-11-01

    Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ).

    PubMed

    Butler, Georgina S; Dean, Richard A; Morrison, Charlotte J; Overall, Christopher M

    2010-01-01

    Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.

  6. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes.

    PubMed

    Simon, Luke; Castillo, Judit; Oliva, Rafael; Lewis, Sheena E M

    2011-12-01

    The exchange of histones with protamines in sperm DNA results in sperm chromatin compaction and protection. Variations in sperm protamine expression are associated with male infertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content (P1-DNA, P2-DNA, P1+P2-DNA) decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content (P1-DNA, P2-DNA, P1+P2-DNA) or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. [Construction of large fragment metagenome library of natural mangrove soil].

    PubMed

    Jiang, Yun-Xia; Zheng, Tian-Ling

    2007-11-01

    Applying our optimized direct extraction method, the percentage of large fragment DNA in the total extracted mangrove soil DNA was significant increased. The large fragment metagenome library derived from natural mangrove soil over four seasons was successfully constructed by the optimized DNA extraction and electro elution purification method. All of the clones had recombinant Cosmids and each differed in their fragment profiles when Cosmid DNA was extracted from 12 randomly picked colonies and digested with BamHI. The average insert size for this library was larger than 35 kbp. This culturing-independent library at least encompassed 335 Mbp valuable genetic information of mangrove soil microbes. It allowed mining of valuable intertidal microbial resource to become a reality. It is a recommended method for those researchers who have still not circumvented the large insert environmental libraries or for those beginning research in this field, so as to avoid them attempting repetitive, fussy work.

  8. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries.

    PubMed

    Franzini, Raphael M; Neri, Dario; Scheuermann, Jörg

    2014-04-15

    DNA-encoded chemical libraries (DECLs) represent a promising tool in drug discovery. DECL technology allows the synthesis and screening of chemical libraries of unprecedented size at moderate costs. In analogy to phage-display technology, where large antibody libraries are displayed on the surface of filamentous phage and are genetically encoded in the phage genome, DECLs feature the display of individual small organic chemical moieties on DNA fragments serving as amplifiable identification barcodes. The DNA-tag facilitates the synthesis and allows the simultaneous screening of very large sets of compounds (up to billions of molecules), because the hit compounds can easily be identified and quantified by PCR-amplification of the DNA-barcode followed by high-throughput DNA sequencing. Several approaches have been used to generate DECLs, differing both in the methods used for library encoding and for the combinatorial assembly of chemical moieties. For example, DECLs can be used for fragment-based drug discovery, displaying a single molecule on DNA or two chemical moieties at the extremities of complementary DNA strands. DECLs can vary substantially in the chemical structures and the library size. While ultralarge libraries containing billions of compounds have been reported containing four or more sets of building blocks, also smaller libraries have been shown to be efficient for ligand discovery. In general, it has been found that the overall library size is a poor predictor for library performance and that the number and diversity of the building blocks are rather important indicators. Smaller libraries consisting of two to three sets of building blocks better fulfill the criteria of drug-likeness and often have higher quality. In this Account, we present advances in the DECL field from proof-of-principle studies to practical applications for drug discovery, both in industry and in academia. DECL technology can yield specific binders to a variety of target

  9. Frameshifting in the p6 cDNA phage display system.

    PubMed

    Govarts, Cindy; Somers, Klaartje; Stinissen, Piet; Somers, Veerle

    2010-12-20

    Phage display is a powerful technique that enables easy identification of targets for any type of ligand. Targets are displayed at the phage surface as a fusion protein to one of the phage coat proteins. By means of a repeated process of affinity selection on a ligand, specific enrichment of displayed targets will occur. In our studies using C-terminal display of cDNA fragments to phage coat protein p6, we noticed the occasional enrichment of targets that do not contain an open reading frame. This event has previously been described in other phage display studies using N-terminal display of targets to phage coat proteins and was due to uncommon translational events like frameshifting. The aim of this study was to examine if C-terminal display of targets to p6 is also subjected to frameshifting. To this end, an enriched target not containing an open reading frame was selected and an E-tag was coupled at the C-terminus in order to measure target display at the surface of the phage. The tagged construct was subsequently expressed in 3 different reading frames and display of both target and E-tag measured to detect the occurrence of frameshifting. As a result, we were able to demonstrate display of the target both in the 0 and in the +1 reading frame indicating that frameshifting can also take place when C-terminal fusion to minor coat protein p6 is applied.

  10. Restarting and recentering genetic algorithm variations for DNA fragment assembly: The necessity of a multi-strategy approach.

    PubMed

    Hughes, James Alexander; Houghten, Sheridan; Ashlock, Daniel

    2016-12-01

    DNA Fragment assembly - an NP-Hard problem - is one of the major steps in of DNA sequencing. Multiple strategies have been used for this problem, including greedy graph-based algorithms, deBruijn graphs, and the overlap-layout-consensus approach. This study focuses on the overlap-layout-consensus approach. Heuristics and computational intelligence methods are combined to exploit their respective benefits. These algorithm combinations were able to produce high quality results surpassing the best results obtained by a number of competitive algorithms specially designed and tuned for this problem on thirteen of sixteen popular benchmarks. This work also reinforces the necessity of using multiple search strategies as it is clearly observed that algorithm performance is dependent on problem instance; without a deeper look into many searches, top solutions could be missed entirely. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. Seasonal changes of DNA fragmentation and quality of raw and cold-stored stallion spermatozoa.

    PubMed

    Wach-Gygax, L; Burger, D; Malama, E; Bollwein, H; Fleisch, A; Jeannerat, E; Thomas, S; Schuler, G; Janett, F

    2017-09-01

    In this study annual fluctuations of DNA fragmentation and quality of cold-stored equine sperm were evaluated. Ejaculates were collected weekly during one year from 15 stallions. Ejaculate volume, sperm concentration and total sperm count were determined and semen was then extended and cold-stored for 48 h. Sperm motility was evaluated by CASA before and after 24 as well as 48 h of cold storage. In addition, the percentages of sperm with intact plasma membrane and acrosome (PMAI %) and with low intracellular Ca 2+ level were determined in cold-stored semen (24 h, 48 h). SCSA™ was performed to assess mean DFI, SD of DFI and % DFI in raw frozen-thawed as well as in extended sperm after 24 and 48 h of storage. The month of semen collection affected (P < 0.05) all parameters evaluated in raw semen and all criteria except progressive motility as well as rapid cells in semen stored for 24 and 48 h, respectively. Ejaculate volume was higher and sperm concentration lower in summer compared to winter and motility lower in July than in any other month of the year (P < 0.05). In semen processed in April and stored for 24 h the percentage of rapid cells was improved compared to January and after 48 h of storage progressive motility (%) was higher in January and October than in July (P < 0.05). After 24 h of cold storage PMAI % was higher in October than in January and after 48 h values were higher in September compared to January and February as well as from April to July (P < 0.05). Regarding sperm with low intracellular Ca +2 level (%) after storage for 24 and 48 h, higher values were measured in winter and in October compared to April, June and July (P < 0.01). Seasonal changes in DNA fragmentation were most evident with respect to mean DFI. In raw frozen-thawed semen mean DFI was lower from August to November than in June and July (P < 0.001). Values were lower during winter compared to spring and early summer (P < 0.05) and lower in December

  12. Assessment of PIT tag retention and post-tagging survival in metamorphosing juvenile Sea Lamprey

    USGS Publications Warehouse

    Simard, Lee G.; Sotola, V. Alex; Marsden, J. Ellen; Miehls, Scott M.

    2017-01-01

    Background: Passive integrated transponder (PIT) tags have been used to document and monitor the movement or behavior of numerous species of fishes. Data on short-term and long-term survival and tag retention are needed before initiating studies using PIT tags on a new species or life stage. We evaluated the survival and tag retention of 153 metamorphosing juvenile Sea Lamprey Petromyzon marinus tagged with 12 mm PIT tags on three occasions using a simple surgical procedure. Results: Tag retention was 100% and 98.6% at 24 h and 28-105 d post-tagging. Of the lamprey that retained their tags, 87.3% had incisions sufficiently healed to prevent further loss. Survival was 100% and 92.7% at 24 h and 41-118 d post-tagging with no significant difference in survival between tagged and untagged control lamprey. Of the 11 lamprey that died, four had symptoms that indicated their death was directly related to tagging. Survival was positively correlated with Sea Lamprey length. Conclusions: Given the overall high level of survival and tag retention in this study, future studies can utilize 12 mm PIT tags to monitor metamorphosing juvenile Sea Lamprey movement and migration patterns.

  13. Involvement of Escherichia coli DNA Polymerase IV in Tolerance of Cytotoxic Alkylating DNA Lesions in Vivo

    PubMed Central

    Bjedov, Ivana; Dasgupta, Chitralekha Nag; Slade, Dea; Le Blastier, Sophie; Selva, Marjorie; Matic, Ivan

    2007-01-01

    Escherichia coli PolIV, a DNA polymerase capable of catalyzing synthesis past replication-blocking DNA lesions, belongs to the most ubiquitous branch of Y-family DNA polymerases. The goal of this study is to identify spontaneous DNA damage that is bypassed specifically and accurately by PolIV in vivo. We increased the amount of spontaneous DNA lesions using mutants deficient for different DNA repair pathways and measured mutation frequency in PolIV-proficient and -deficient backgrounds. We found that PolIV performs an error-free bypass of DNA damage that accumulates in the alkA tag genetic background. This result indicates that PolIV is involved in the error-free bypass of cytotoxic alkylating DNA lesions. When the amount of cytotoxic alkylating DNA lesions is increased by the treatment with chemical alkylating agents, PolIV is required for survival in an alkA tag-proficient genetic background as well. Our study, together with the reported involvement of the mammalian PolIV homolog, Polκ, in similar activity, indicates that Y-family DNA polymerases from the DinB branch can be added to the list of evolutionarily conserved molecular mechanisms that counteract cytotoxic effects of DNA alkylation. This activity is of major biological relevance because alkylating agents are continuously produced endogenously in all living cells and are also present in the environment. PMID:17483416

  14. Free-solution electrophoretic separations of DNA–drag-tag conjugates on glass microchips with no polymer network and no loss of resolution at increased electric field strength

    PubMed Central

    Albrecht, Jennifer Coyne; Kerby, Matthew B.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Wang, Xiaoxiao; Barron, Annelise E.

    2012-01-01

    Here, we demonstrate the potential for high-resolution electrophoretic separations of ssDNA-protein conjugates in borosilicate glass microfluidic chips, with no sieving media and excellent repeatability. Using polynucleotides of two different lengths conjugated to moderately cationic protein polymer drag-tags, we measured separation efficiency as a function of applied electric field. In excellent agreement with prior theoretical predictions of Slater et al., resolution is found to remain constant as applied field is increased up to 700 V/cm, the highest field we were able to apply. This remarkable result illustrates the fundamentally different physical limitations of Free-Solution Conjugate Electrophoresis (FSCE)-based DNA separations relative to matrix-based DNA electrophoresis. Single-stranded DNA separations in “gels” have always shown rapidly declining resolution as the field strength is increased; this is especially true for ssDNA > 400 bases in length. FSCE’s ability to decouple DNA peak resolution from applied electric field suggests the future possibility of ultra-rapid FSCE sequencing on chips. We investigated sources of peak broadening for FSCE separations on borosilicate glass microchips, using six different protein polymer drag-tags. For drag-tags with four or more positive charges, electrostatic and adsorptive interactions with pHEA-coated microchannel walls led to appreciable band-broadening, while much sharper peaks were seen for bioconjugates with nearly charge-neutral protein drag-tags. PMID:21500207

  15. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells.

    PubMed

    Arora, Shagun; Tandon, Simran

    2015-01-01

    In the present study, we investigated the anti-cancer effect of various potencies of Ruta graveolens (Ruta) on COLO-205 cell line, as evidenced by cytotoxicity, migration, clonogenecity, morphological and biochemical changes and modification in the levels of genes associated with apoptosis and cell cycle. On treatment of COLO-205 cells maximal effects were seen with mother tincture (MT) and 30C potencies, wherein decrease in cell viability along with reduced clonogenecity and migration capabilities were noted. In addition morphological and biochemical alterations such as nuclear changes (fragmented nuclei with condensed chromatin) and DNA ladder-like pattern (increased amount of fragmented DNA) in COLO-205 cells indicating apoptotic related cell death were seen. The expression of apoptosis and cell-cycle related regulatory genes assessed by reverse transcriptase-PCR revealed an up-regulation of caspase 9, caspase-3, Bax, p21 and p27 expression and down-regulation of Bcl-2 expression in treated cells. The mode of cell death was suggestive of intrinsic apoptotic pathway along with cell cycle arrest at the G2/M of the cell cycle. Our findings indicate that phytochemicals present in Ruta showed potential for natural therapeutic product development for colon carcinoma. Copyright © 2014 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  16. Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments.

    PubMed

    Boeneman, Kelly; Fossum, Solveig; Yang, Yanhua; Fingland, Nicholas; Skarstad, Kirsten; Crooke, Elliott

    2009-05-01

    DnaA initiates chromosomal replication in Escherichia coli at a well-regulated time in the cell cycle. To determine how the spatial distribution of DnaA is related to the location of chromosomal replication and other cell cycle events, the localization of DnaA in living cells was visualized by confocal fluorescence microscopy. The gfp gene was randomly inserted into a dnaA-bearing plasmid via in vitro transposition to create a library that included internally GFP-tagged DnaA proteins. The library was screened for the ability to rescue dnaA(ts) mutants, and a candidate gfp-dnaA was used to replace the dnaA gene of wild-type cells. The resulting cells produce close to physiological levels of GFP-DnaA from the endogenous promoter as their only source of DnaA and somewhat under-initiate replication with moderate asynchrony. Visualization of GFP-tagged DnaA in living cells revealed that DnaA adopts a helical pattern that spirals along the long axis of the cell, a pattern also seen in wild-type cells by immunofluorescence with affinity purified anti-DnaA antibody. Although the DnaA helices closely resemble the helices of the actin analogue MreB, co-visualization of GFP-tagged DnaA and RFP-tagged MreB demonstrates that DnaA and MreB adopt discrete helical structures along the length of the longitudinal cell axis.

  17. Nanofluidic Lab-On-Chip Technology for DNA Identification

    DTIC Science & Technology

    2013-09-30

    samples Fluorescently labeled (FAM tag) DNA oligomers (10, 20, and 50 bases long) were purchased with standard desalting and additional HPLC purification...A.2 DNA samples: DNA oligomers (10, 20, 50 nt long) were purchased with standard desalting and additional HPLC purification for the 50 base

  18. PIT Tagging Anurans

    USGS Publications Warehouse

    McCreary, Brome

    2008-01-01

    The following video demonstrates a procedure to insert a passive integrated transponder (PIT) tag under the skin of an anuran (frog or toad) for research and monitoring purposes. Typically, a 12.5 mm tag (0.5 in.) is used to uniquely identify individual anurans as smal as 40 mm (1.6 in.) in length from snout to vent. Smaller tags are also available and allow smaller anurans to be tagged. The procedure does not differ for other sizes of tages or other sizes of anurans. Anyone using this procedure should ensure that the tag is small enough to fit easily behind the sacral hump of the anuran, as shown in this video.

  19. Relationship between nuclear DNA fragmentation, mitochondrial DNA damage and standard sperm parameters in spermatozoa of fertile and sub-fertile men before and after freeze-thawing procedure.

    PubMed

    Amor, H; Zeyad, A; Alkhaled, Y; Laqqan, M; Saad, A; Ben Ali, H; Hammadeh, M E

    2018-06-01

    The aim of this study was to assess the stability of nuclear and mitochondrial DNA (n-DNA and mt-DNA) of spermatozoa under freeze-thawing and to find out the correlation between them and their association with standard sperm parameters. Forty-three semen samples were collected from fertile (G.1; n = 29) and sub-fertile (G.2; n = 14). N-DNA fragmentation was determined by TUNEL assay and mt-DNA using caspase 3 staining. Each semen sample was frozen at -196°C by the programmed freezer. Freeze-thawing decrease vitality, total motility and membrane integrity from (43.02 ± 22.74%; 31.63 ± 18.15%; 51.5 ± 24.82%) to (22.71 ± 17.3%; 9.21 ± 6.61%; 34.64 ± 19.92% respectively [p < .001]). G.1 native spermatozoa stained positive with TUNEL and caspase 3 were (14.85 ± 17.6% and 5.8 ± 11.59%) and increased after freeze-thawing to 27.54 ± 19.74% (p = .004) and 7.3 ± 6.13% (p = .01) respectively. In G.2, TUNEL and caspase 3 were (19.84 ± 17.52% and 7.53 ± 8.56%) and increased to (29.48 ± 16.97% [p = .03] and 10.21 ± 11.73%). In conclusion, freeze-thawing process affects not only semen parameters but also n-DNA and mt-DNA. Therefore, n-DNA and mt-DNA could be used as sensitive parameters for assessment of the cryodamage of human spermatozoa. © 2018 Blackwell Verlag GmbH.

  20. Development of RAP Tag, a Novel Tagging System for Protein Detection and Purification.

    PubMed

    Fujii, Yuki; Kaneko, Mika K; Ogasawara, Satoshi; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Honma, Ryusuke; Kato, Yukinari

    2017-04-01

    Affinity tag systems, possessing high affinity and specificity, are useful for protein detection and purification. The most suitable tag for a particular purpose should be selected from many available affinity tag systems. In this study, we developed a novel affinity tag called the "RAP tag" system, which comprises a mouse antirat podoplanin monoclonal antibody (clone PMab-2) and the RAP tag (DMVNPGLEDRIE). This system is useful not only for protein detection in Western blotting, flow cytometry, and sandwich enzyme-linked immunosorbent assay, but also for protein purification.

  1. Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat

    PubMed Central

    Zhang, Wei; Fan, Xiaoli; Gao, Yingjie; Liu, Lei; Sun, Lijing; Su, Qiannan; Han, Jie; Zhang, Na; Cui, Fa; Ji, Jun; Tong, Yiping; Li, Junming

    2017-01-01

    Plastic glutamine synthetase (GS2) is responsible for ammonium assimilation. The reason that TaGS2 homoeologs in hexaploid wheat experience different selection pressures in the breeding process remains unclear. TaGS2 were minimally expressed in roots but predominantly expressed in leaves, and TaGS2-B had higher expression than TaGS2-A and TaGS2-D. ChIP assays revealed that the activation of TaGS2-B expression in leaves was correlated with increased H3K4 trimethylation. The transcriptional silencing of TaGS2 in roots was correlated with greater cytosine methylation and less H3K4 trimethylation. Micrococcal nuclease and DNase I accessibility experiments indicated that the promoter region was more resistant to digestion in roots than leaves, which indicated that the closed nucleosome conformation of the promoter region was important to the transcription initiation for the spatial-temporal expression of TaGS2. In contrast, the transcribed regions possess different nuclease accessibilities of three TaGS2 homoeologs in the same tissue, suggesting that nucleosome conformation of the transcribed region was part of the fine adjustment of TaGS2 homoeologs. This study provides evidence that histone modification, DNA methylation and nuclease accessibility coordinated the control of the transcription of TaGS2 homoeologs. Our results provided important evidence that TaGS2-B experienced the strongest selection pressures during the breeding process. PMID:28300215

  2. ezTag: tagging biomedical concepts via interactive learning.

    PubMed

    Kwon, Dongseop; Kim, Sun; Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong

    2018-05-18

    Recently, advanced text-mining techniques have been shown to speed up manual data curation by providing human annotators with automated pre-annotations generated by rules or machine learning models. Due to the limited training data available, however, current annotation systems primarily focus only on common concept types such as genes or diseases. To support annotating a wide variety of biological concepts with or without pre-existing training data, we developed ezTag, a web-based annotation tool that allows curators to perform annotation and provide training data with humans in the loop. ezTag supports both abstracts in PubMed and full-text articles in PubMed Central. It also provides lexicon-based concept tagging as well as the state-of-the-art pre-trained taggers such as TaggerOne, GNormPlus and tmVar. ezTag is freely available at http://eztag.bioqrator.org.

  3. Cutaneous skin tag

    MedlinePlus

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  4. Modeling misidentification errors that result from use of genetic tags in capture-recapture studies

    USGS Publications Warehouse

    Yoshizaki, J.; Brownie, C.; Pollock, K.H.; Link, W.A.

    2011-01-01

    Misidentification of animals is potentially important when naturally existing features (natural tags) such as DNA fingerprints (genetic tags) are used to identify individual animals. For example, when misidentification leads to multiple identities being assigned to an animal, traditional estimators tend to overestimate population size. Accounting for misidentification in capture-recapture models requires detailed understanding of the mechanism. Using genetic tags as an example, we outline a framework for modeling the effect of misidentification in closed population studies when individual identification is based on natural tags that are consistent over time (non-evolving natural tags). We first assume a single sample is obtained per animal for each capture event, and then generalize to the case where multiple samples (such as hair or scat samples) are collected per animal per capture occasion. We introduce methods for estimating population size and, using a simulation study, we show that our new estimators perform well for cases with moderately high capture probabilities or high misidentification rates. In contrast, conventional estimators can seriously overestimate population size when errors due to misidentification are ignored. ?? 2009 Springer Science+Business Media, LLC.

  5. Toehold-mediated DNA displacement-based surface-enhanced Raman scattering DNA sensor utilizing an Au-Ag bimetallic nanodendrite substrate.

    PubMed

    Kim, Saetbyeol; Tran Ngoc, Huan; Kim, Joohoon; Yoo, So Young; Chung, Hoeil

    2015-07-23

    A simple and sensitive surface enhanced Raman scattering (SERS)-based DNA sensor that utilizes the toehold-mediated DNA displacement reaction as a target-capturing scheme has been demonstrated. For a SERS substrate, Au-Ag bimetallic nanodendrites were electrochemically synthesized and used as a sensor platform. The incorporation of both Ag and Au was employed to simultaneously secure high sensitivity and stability of the substrate. An optimal composition of Ag and Au that satisfied these needs was determined. A double-strand composed of 'a probe DNA (pDNA)' complementary to 'a target DNA (tDNA)' and 'an indicator DNA tagged with a Raman reporter (iDNA)' was conjugated on the substrate. The conjugation made the reporter molecule close to the surface and induced generation of the Raman signal. The tDNA released the pre-hybridized iDNA from the pDNA via toehold-mediated displacement, and the displacement of the iDNA resulted in the decrease of Raman intensity. The variation of percent intensity change was sensitive and linear in the concentration range from 200fM to 20nM, and the achieved limit of detection (LOD) was 96.3fM, superior to those reported in previous studies that adopted different signal taggings based on such as fluorescence and electrochemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Method for identifying mutagenic agents which induce large, multilocus deletions in DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, W.E.C.; Belouchi, A.; Dewyse, P.

    1993-07-13

    A method of identifying a mutagenic agent is described which includes a large, multilocus deletions in DNA in mammalian cells comprising: (i) exposing a class III heterozygous CHO cell line to a potential mutagenic agent under investigation, and allowing any mutation of the cell line to proceed, said cell line being characterized in that a restriction fragment length variation exists in on mutation it becomes resistant to 2,6-diaminopurine and in that the DNA sequence adjacent to the two alleles of the APRT gene such that the DNA sequence adjacent to one of the two alleles can be digested with themore » enzyme BclI but the DNA sequence variation adjacent to the other of the two alleles cannot be digested with BclI, (ii) isolating induced mutations of the cell line deficient in APRT function, (iii) isolating DNA from the induced mutants, (iv) digesting the isolated DNA with BclI enzyme to produce digested fragments including a 19 kb fragment and any 2 kb fragment, which fragments hybridize with the labeled probe derived from DNA fragment PDI, (v) separating any digested fragments, (vi) transferring the separated fragments of (v) to a solid support, (vii) hybridizing the supported separated fragments with a labeled probe derived from the clone DNA fragment PD 1, (viii) determining fragments having undergone loss of the 2 kb band identified by the probe, as an identification of parent mutants in which the loss occurred, and (ix) evaluating the mutating ability of the potential mutagenic agent.« less

  7. Construction of a cDNA library and preliminary analysis of expressed sequence tags in Piper hainanense.

    PubMed

    Fan, R; Ling, P; Hao, C Y; Li, F P; Huang, L F; Wu, B D; Wu, H S

    2015-10-19

    Black pepper is a perennial climbing vine. It is widely cultivated because its berries can be utilized not only as a spice in food but also for medicinal use. This study aimed to construct a standardized, high-quality cDNA library to facilitated identification of new Piper hainanense transcripts. For this, 262 unigenes were used to generate raw reads. The average length of these 262 unigenes was 774.8 bp. Of these, 94 genes (35.9%) were newly identified, according to the NCBI protein database. Thus, identification of new genes may broaden the molecular knowledge of P. hainanense on the basis of Clusters of Orthologous Groups and Gene Ontology categories. In addition, certain basic genes linked to physiological processes, which can contribute to disease resistance and thereby to the breeding of black pepper. A total of 26 unigenes were found to be SSR markers. Dinucleotide SSR was the main repeat motif, accounting for 61.54%, followed by trinucleotide SSR (23.07%). Eight primer pairs successfully amplified DNA fragments and detected significant amounts of polymorphism among twenty-one piper germplasm. These results present a novel sequence information of P. hainanense, which can serve as the foundation for further genetic research on this species.

  8. The mechanism of thioacetamide-induced apoptosis in the L37 albumin-SV40 T-antigen transgenic rat hepatocyte-derived cell line occurs without DNA fragmentation.

    PubMed

    Bulera, S J; Sattler, C A; Gast, W L; Heath, S; Festerling, T A; Pitot, H C

    1998-10-01

    The hepatotoxicant thioacetamide (TH) has classically been used as a model to study hepatic necrosis; however, recent studies have shown that TH can also induce apoptosis. In this report we demonstrate that 2.68+/-0.54% of the albumin-SV40 T-antigen transgenic rat hepatocytes undergo TH-induced apoptosis, a level comparable to other in vivo models of liver apoptosis. In addition, TH could induce apoptosis and necrosis in the L37 albumin-SV40 T-antigen transgenic rat liver-derived cell line. Examination of dying L37 cells treated with 100 mM TH by electron microscopy revealed distinct morphological characteristics that could be attributed to apoptosis. Quantitation of apoptosis by FACS analysis 24 h after treatment with 100 mM TH revealed that 81.3+/-1.6% of the cells were undergoing apoptosis. In contrast, when L37 cells were treated with 250 mM TH, cells exhibited characteristics consistent with necrotic cell death. DNA fragmentation ladders were produced by growth factor withdrawal-induced apoptosis; however, in 100 mM TH-induced apoptosis, DNA fragmentation ladders were not observed. Analysis of endonuclease activity in L37 cells revealed that the enzymes were not inactivated in the presence of 100 mM TH. The data presented in this report indicate that the L37 cell line could be used to study the mechanism of TH-induced apoptosis that was not mediated through a mechanism requiring DNA fragmentation.

  9. Global Analysis of Transcription Factor-Binding Sites in Yeast Using ChIP-Seq

    PubMed Central

    Lefrançois, Philippe; Gallagher, Jennifer E. G.; Snyder, Michael

    2016-01-01

    Transcription factors influence gene expression through their ability to bind DNA at specific regulatory elements. Specific DNA-protein interactions can be isolated through the chromatin immunoprecipitation (ChIP) procedure, in which DNA fragments bound by the protein of interest are recovered. ChIP is followed by high-throughput DNA sequencing (Seq) to determine the genomic provenance of ChIP DNA fragments and their relative abundance in the sample. This chapter describes a ChIP-Seq strategy adapted for budding yeast to enable the genome-wide characterization of binding sites of transcription factors (TFs) and other DNA-binding proteins in an efficient and cost-effective way. Yeast strains with epitope-tagged TFs are most commonly used for ChIP-Seq, along with their matching untagged control strains. The initial step of ChIP involves the cross-linking of DNA and proteins. Next, yeast cells are lysed and sonicated to shear chromatin into smaller fragments. An antibody against an epitope-tagged TF is used to pull down chromatin complexes containing DNA and the TF of interest. DNA is then purified and proteins degraded. Specific barcoded adapters for multiplex DNA sequencing are ligated to ChIP DNA. Short DNA sequence reads (28–36 base pairs) are parsed according to the barcode and aligned against the yeast reference genome, thus generating a nucleotide-resolution map of transcription factor-binding sites and their occupancy. PMID:25213249

  10. Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1.

    PubMed

    Gloor, Jason W; Balakrishnan, Lata; Campbell, Judith L; Bambara, Robert A

    2012-08-01

    In eukaryotic Okazaki fragment processing, the RNA primer is displaced into a single-stranded flap prior to removal. Evidence suggests that some flaps become long before they are cleaved, and that this cleavage involves the sequential action of two nucleases. Strand displacement characteristics of the polymerase show that a short gap precedes the flap during synthesis. Using biochemical techniques, binding and cleavage assays presented here indicate that when the flap is ∼ 30 nt long the nuclease Dna2 can bind with high affinity to the flap and downstream double strand and begin cleavage. When the polymerase idles or dissociates the Dna2 can reorient for additional contacts with the upstream primer region, allowing the nuclease to remain stably bound as the flap is further shortened. The DNA can then equilibrate to a double flap that can bind Dna2 and flap endonuclease (FEN1) simultaneously. When Dna2 shortens the flap even more, FEN1 can displace the Dna2 and cleave at the flap base to make a nick for ligation.

  11. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth

    PubMed Central

    Glocke, Isabelle; Meyer, Matthias

    2017-01-01

    The number of DNA fragments surviving in ancient bones and teeth is known to decrease with fragment length. Recent genetic analyses of Middle Pleistocene remains have shown that the recovery of extremely short fragments can prove critical for successful retrieval of sequence information from particularly degraded ancient biological material. Current sample preparation techniques, however, are not optimized to recover DNA sequences from fragments shorter than ∼35 base pairs (bp). Here, we show that much shorter DNA fragments are present in ancient skeletal remains but lost during DNA extraction. We present a refined silica-based DNA extraction method that not only enables efficient recovery of molecules as short as 25 bp but also doubles the yield of sequences from longer fragments due to improved recovery of molecules with single-strand breaks. Furthermore, we present strategies for monitoring inefficiencies in library preparation that may result from co-extraction of inhibitory substances during DNA extraction. The combination of DNA extraction and library preparation techniques described here substantially increases the yield of DNA sequences from ancient remains and provides access to a yet unexploited source of highly degraded DNA fragments. Our work may thus open the door for genetic analyses on even older material. PMID:28408382

  12. Ultra-low background DNA cloning system.

    PubMed

    Goto, Kenta; Nagano, Yukio

    2013-01-01

    Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r)). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r) 5' UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r) 3' UTR. This cassette allowed conversion of the Amp(r)-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r) sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.

  13. Lamprey Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison; Deters, Kate

    2017-05-26

    Pacific Northwest National Laboratory has developed a super-small acoustic tracking tag designed just for juvenile lamprey. In this video, PNNL researcher Alison Colotelo describes how she and her colleague Kate Deters inject young lamprey with the PNNL tag.

  14. GSyellow, a Multifaceted Tag for Functional Protein Analysis in Monocot and Dicot Plants.

    PubMed

    Besbrugge, Nienke; Van Leene, Jelle; Eeckhout, Dominique; Cannoot, Bernard; Kulkarni, Shubhada R; De Winne, Nancy; Persiau, Geert; Van De Slijke, Eveline; Bontinck, Michiel; Aesaert, Stijn; Impens, Francis; Gevaert, Kris; Van Damme, Daniel; Van Lijsebettens, Mieke; Inzé, Dirk; Vandepoele, Klaas; Nelissen, Hilde; De Jaeger, Geert

    2018-06-01

    The ability to tag proteins has boosted the emergence of generic molecular methods for protein functional analysis. Fluorescent protein tags are used to visualize protein localization, and affinity tags enable the mapping of molecular interactions by, for example, tandem affinity purification or chromatin immunoprecipitation. To apply these widely used molecular techniques on a single transgenic plant line, we developed a multifunctional tandem affinity purification tag, named GS yellow , which combines the streptavidin-binding peptide tag with citrine yellow fluorescent protein. We demonstrated the versatility of the GS yellow tag in the dicot Arabidopsis ( Arabidopsis thaliana ) using a set of benchmark proteins. For proof of concept in monocots, we assessed the localization and dynamic interaction profile of the leaf growth regulator ANGUSTIFOLIA3 (AN3), fused to the GS yellow tag, along the growth zone of the maize ( Zea mays ) leaf. To further explore the function of ZmAN3, we mapped its DNA-binding landscape in the growth zone of the maize leaf through chromatin immunoprecipitation sequencing. Comparison with AN3 target genes mapped in the developing maize tassel or in Arabidopsis cell cultures revealed strong conservation of AN3 target genes between different maize tissues and across monocots and dicots, respectively. In conclusion, the GS yellow tag offers a powerful molecular tool for distinct types of protein functional analyses in dicots and monocots. As this approach involves transforming a single construct, it is likely to accelerate both basic and translational plant research. © 2018 American Society of Plant Biologists. All rights reserved.

  15. The role of heat shock protein 70 (Hsp 70) in male infertility: is it a line of defense against sperm DNA fragmentation?

    PubMed

    Erata, Gül Ozdemirler; Koçak Toker, Necla; Durlanik, Ozgür; Kadioğlu, Ateş; Aktan, Gülşen; Aykaç Toker, Gülçin

    2008-08-01

    To clarify the role of heat shock protein 70 (Hsp 70) and its relation with DNA damage in male infertility. Prospective study. Andrology laboratory of Istanbul Medical Faculty. Semen samples from 37 infertile men and 13 fertile men (as controls). The percentage of DNA fragmentation was assayed with the use of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). Sperm Hsp 70 expression was determined by using Western blot analysis. Both the percentages of sperm DNA fragmentation and Hsp 70 expression were correlated with semen analysis parameters. TUNEL-positive spermatozoa in the infertile group (18.7% for asthenospermics and 13.0% for oligoasthenospermics) were higher than the fertile group (4.9%). Significant inverse correlations were detected between percentage of TUNEL-positive cells and both concentration (r = -0.487) and motility (r = -0.377) of spermatozoa. No expression of Hsp 70 was observed in azospermic group, whereas Hsp 70 levels were found increased significantly in infertile group (U = 62 for asthenospermics and U = 38 for oligoasthenospermics) compared to fertile group as analyzed by using Mann-Whitney U Wilcoxon rank sum test. Furthermore, significant positive correlation was found between percentage of TUNEL-positive cells and Hsp 70 expression (r = 0.357). Hsp 70 expression may have been increased as a protective mechanism against apoptosis in spermatozoa of infertile men.

  16. Decision Tree Algorithm-Generated Single-Nucleotide Polymorphism Barcodes of rbcL Genes for 38 Brassicaceae Species Tagging.

    PubMed

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2018-01-01

    DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.

  17. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    PubMed

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  18. Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.

    PubMed

    Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He

    2009-05-01

    DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.

  19. Tag-to-Tag Interference Suppression Technique Based on Time Division for RFID.

    PubMed

    Khadka, Grishma; Hwang, Suk-Seung

    2017-01-01

    Radio-frequency identification (RFID) is a tracking technology that enables immediate automatic object identification and rapid data sharing for a wide variety of modern applications using radio waves for data transmission from a tag to a reader. RFID is already well established in technical areas, and many companies have developed corresponding standards and measurement techniques. In the construction industry, effective monitoring of materials and equipment is an important task, and RFID helps to improve monitoring and controlling capabilities, in addition to enabling automation for construction projects. However, on construction sites, there are many tagged objects and multiple RFID tags that may interfere with each other's communications. This reduces the reliability and efficiency of the RFID system. In this paper, we propose an anti-collision algorithm for communication between multiple tags and a reader. In order to suppress interference signals from multiple neighboring tags, the proposed algorithm employs the time-division (TD) technique, where tags in the interrogation zone are assigned a specific time slot so that at every instance in time, a reader communicates with tags using the specific time slot. We present representative computer simulation examples to illustrate the performance of the proposed anti-collision technique for multiple RFID tags.

  20. Photon-tagged and B-meson-tagged b-jet production at the LHC

    DOE PAGES

    Huang, Jinrui; Kang, Zhong -Bo; Vitev, Ivan; ...

    2015-09-18

    Tagged jet measurements in high energy hadronic and nuclear reactions provide constraints on the energy and parton flavor origin of the parton shower that recoils against the tagging particle. Such additional insight can be especially beneficial in illuminating the mechanisms of heavy flavor production in proton–proton collisions at the LHC and their modification in the heavy ion environment, which are not fully understood. With this motivation, we present theoretical results for isolated-photon-tagged and B-meson-tagged b-jet production at √s NN = 5.1 TeV for comparison to the upcoming lead–lead data. We find that photon-tagged b-jets exhibit smaller momentum imbalance shift inmore » nuclear matter, and correspondingly smaller energy loss, than photon-tagged light flavor jets. Our results show that B-meson tagging is most effective in ensuring that the dominant fraction of recoiling jets originate from prompt b-quarks. Furthermore, in this channel the large suppression of the cross section is not accompanied by a significant momentum imbalance shift.« less

  1. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    PubMed

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.

  2. AFEAP cloning: a precise and efficient method for large DNA sequence assembly.

    PubMed

    Zeng, Fanli; Zang, Jinping; Zhang, Suhua; Hao, Zhimin; Dong, Jingao; Lin, Yibin

    2017-11-14

    Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist's toolbox.

  3. Visualization of DNA in highly processed botanical materials.

    PubMed

    Lu, Zhengfei; Rubinsky, Maria; Babajanian, Silva; Zhang, Yanjun; Chang, Peter; Swanson, Gary

    2018-04-15

    DNA-based methods have been gaining recognition as a tool for botanical authentication in herbal medicine; however, their application in processed botanical materials is challenging due to the low quality and quantity of DNA left after extensive manufacturing processes. The low amount of DNA recovered from processed materials, especially extracts, is "invisible" by current technology, which has casted doubt on the presence of amplifiable botanical DNA. A method using adapter-ligation and PCR amplification was successfully applied to visualize the "invisible" DNA in botanical extracts. The size of the "invisible" DNA fragments in botanical extracts was around 20-220 bp compared to fragments of around 600 bp for the more easily visualized DNA in botanical powders. This technique is the first to allow characterization and visualization of small fragments of DNA in processed botanical materials and will provide key information to guide the development of appropriate DNA-based botanical authentication methods in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation.

    PubMed

    Martínez-Soto, Juan Carlos; Domingo, Joan Carles; Cordobilla, Begoña; Nicolás, María; Fernández, Laura; Albero, Pilar; Gadea, Joaquín; Landeras, José

    2016-12-01

    The purpose of this study was to evaluate the effect of docosahexaenoic acid (DHA) dietary supplementation on semen quality, fatty acid composition, antioxidant capacity, and DNA fragmentation. In this randomized, double blind, placebo-controlled, parallel-group study, 74 subjects were recruited and randomly assigned to either the placebo group (n=32) or to the DHA group (n=42) to consume three 500-mg capsules of oil per day over 10 weeks. The placebo group received 1,500 mg/day of sunflower oil and the DHA group 1,500 mg/day of DHA-enriched oil. Seminal parameters (semen volume, sperm concentration, motility, morphology, and vitality), total antioxidant capacity, deoxyribonucleic acid fragmentation, and lipid composition were evaluated prior to the treatment and after 10 weeks. Finally, 57 subjects were included in the study with 25 in the placebo group and 32 in the DHA group. No differences were found in traditional sperm parameters or lipid composition of the sperm membrane after treatment. However, an increase in DHA and Omega-3 fatty acid content in seminal plasma, an improvement in antioxidant status, and a reduction in the percentage of spermatozoa with deoxyribonucleic acid damage were observed in the DHA group after 10 weeks of treatment.

  5. A DNA fragment of Leptospira interrogans encodes a protein which shares epitopes with equine cornea.

    PubMed

    Lucchesi, P M; Parma, A E

    1999-11-30

    Horses infected with Leptospira interrogans present several clinical disorders, one of them being recurrent uveitis. An antigenic relationship between this bacterium and equine cornea has been described in previous studies. With the aim to make progress on defining the molecular basis and pathogenesis of equine recurrent uveitis, here we describe the cloning of one DNA fragment from a Leptospira interrogans serovar pomona genomic lambda gt11 library. Although there are references of transcription of leptospiral genes in E. coli from their own leptospiral promoters, in this recombinant construction the leptospiral DNA was located under the control of lacZ promoter since no expression could be detected in the absence of IPTG. This clone, isolated by expression screening with polyclonal serum raised against equine corneal proteins, encodes a 90 kDa protein of L. interrogans which crossreacts with equine cornea as proved Western-blotting. Antibodies directed against this leptospiral protein strongly recognised a 66 kDa equine corneal protein, one of those recognised by an anti-equine cornea serum. Our findings suggest that an immune response to 90 kDa protein participates in pathogenesis of equine uveitis.

  6. Solution structure of the DNA-binding domain of RPA from Saccharomyces cerevisiae and its interaction with single-stranded DNA and SV40 T antigen

    PubMed Central

    Park, Chin-Ju; Lee, Joon-Hwa; Choi, Byong-Seok

    2005-01-01

    Replication protein A (RPA) is a three-subunit complex with multiple roles in DNA metabolism. DNA-binding domain A in the large subunit of human RPA (hRPA70A) binds to single-stranded DNA (ssDNA) and is responsible for the species-specific RPA–T antigen (T-ag) interaction required for Simian virus 40 replication. Although Saccharomyces cerevisiae RPA70A (scRPA70A) shares high sequence homology with hRPA70A, the two are not functionally equivalent. To elucidate the similarities and differences between these two homologous proteins, we determined the solution structure of scRPA70A, which closely resembled the structure of hRPA70A. The structure of ssDNA-bound scRPA70A, as simulated by residual dipolar coupling-based homology modeling, suggested that the positioning of the ssDNA is the same for scRPA70A and hRPA70A, although the conformational changes that occur in the two proteins upon ssDNA binding are not identical. NMR titrations of hRPA70A with T-ag showed that the T-ag binding surface is separate from the ssDNA-binding region and is more neutral than the corresponding part of scRPA70A. These differences might account for the species-specific nature of the hRPA70A–T-ag interaction. Our results provide insight into how these two homologous RPA proteins can exhibit functional differences, but still both retain their ability to bind ssDNA. PMID:16043636

  7. Genes tagging and molecular diversity of red rot susceptible/tolerant sugarcane hybrids using c-DNA and unigene derived markers.

    PubMed

    Singh, R K; Singh, R B; Singh, S P; Sharma, M L

    2012-04-01

    Sugarcane is an important international commodity as a valuable agricultural crop especially in tropical and subtropical countries. Two bulked DNA used to screen polymorphic primers from commercial hybrids (varieties) with moderately resistant and highly susceptible to red rot disease. Among 145 simple sequence repeat and unigene primers screened, 37 (25%) were found to be highly robust and polymorphic with Polymorphism Information Content values ranging from 0.50 to 1.00 with the mean value of 0.82. Among these microsatellites, twenty one were used in the study of genetic relationships and marker identification in sugarcane varieties for red rot resistance. A total of 105 polymorphic DNA bands were identified, with their fragment size ranging from 54 to 1,280 bp. Jaccard's similarity coefficient value recorded between closely related hybrids was 0.986 while lowest coefficient value of 0.341 was detected with distantly related hybrids. The average similarity coefficient among these hybrids was 0.663. Cluster analysis resulted in a dendrogram with two major clusters separating the moderately resistant varieties from highly susceptible varieties. Three group specific fragments amplified by unigene Saccharum microsatellite primers viz; two markers UGSM316(850) and UGSM316(60) were closely associated with moderately resistant varieties by appearing bands in this region but the bands were absent in highly susceptible varieties. Similarly UGSM316(400) marker was tightly linked with highly susceptible varieties by amplifying uniformly in sugarcane varieties showing highly susceptible reaction to red rot but it was absent in moderately resistant varietal groups. Validation of red rot resistance/susceptibility associated markers on a group of different mapping populations for red rot resistant/susceptible traits is in progress.

  8. Plant genotyping using fluorescently tagged inter-simple sequence repeats (ISSRs): basic principles and methodology.

    PubMed

    Prince, Linda M

    2015-01-01

    Inter-simple sequence repeat PCR (ISSR-PCR) is a fast, inexpensive genotyping technique based on length variation in the regions between microsatellites. The method requires no species-specific prior knowledge of microsatellite location or composition. Very small amounts of DNA are required, making this method ideal for organisms of conservation concern, or where the quantity of DNA is extremely limited due to organism size. ISSR-PCR can be highly reproducible but requires careful attention to detail. Optimization of DNA extraction, fragment amplification, and normalization of fragment peak heights during fluorescent detection are critical steps to minimizing the downstream time spent verifying and scoring the data.

  9. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a smallmore » change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.« less

  10. Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array

    PubMed Central

    Stranges, P. Benjamin; Palla, Mirkó; Kalachikov, Sergey; Nivala, Jeff; Dorwart, Michael; Trans, Andrew; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Tao, Chuanjuan; Morozova, Irina; Li, Zengmin; Shi, Shundi; Aberra, Aman; Arnold, Cleoma; Yang, Alexander; Aguirre, Anne; Harada, Eric T.; Korenblum, Daniel; Pollard, James; Bhat, Ashwini; Gremyachinskiy, Dmitriy; Bibillo, Arek; Chen, Roger; Davis, Randy; Russo, James J.; Fuller, Carl W.; Roever, Stefan; Ju, Jingyue; Church, George M.

    2016-01-01

    Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin–polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform. PMID:27729524

  11. Comparison of particle production in quark and gluon fragmentation at s˜10GeV

    NASA Astrophysics Data System (ADS)

    Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Weinberger, M.; Athar, S. B.; Patel, R.; Potlia, V.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Naik, P.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Swift, H. K.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Aquines, O.; Li, Z.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Coan, T. E.; Gao, Y. S.; Artuso, M.; Blusk, S.; Butt, J.; Li, J.; Menaa, N.; Moneti, G. C.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, K.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.

    2007-07-01

    Using e+e-→hadrons data collected with the CLEO-III detector at the Cornell Electron Storage Ring, we study the inclusive production of baryons/antibaryons (p,Λ) and mesons (ϕ and f2(1270)) in gluon-fragmentation and quark-fragmentation processes. We first corroborate previous per-event total particle yields in Υ(1S)→ggg compared with nearby continuum (e+e-→qq¯) indicating greater (˜×2) per-event yields of baryons in 3-gluon fragmentation. We find similar results when we extend that comparison to include the Υ(2S) and Υ(3S) resonances. With higher statistics, we now also probe the momentum dependence of these per-event particle yields. Next, we compare particle production in the photon-tagged process Υ(1S)→ggγ with that in e+e-→qq¯γ events, to allow comparison of two-parton with three-parton particle-specific fragmentation. For each particle, we determine the “enhancement” ratio, defined as the ratio of particle yields per gluon-fragmentation event compared to quark-fragmentation event. Thus defined, an enhancement of 1.0 implies equal per-event production in gluon and quark fragmentation. In the photon-tagged analysis (Υ(1S)→ggγ compared to e+e-→qq¯γ), we find almost no enhancement for protons (˜1.2±0.1), but a significant enhancement (˜1.9±0.3) for Λ’s. This small measured proton enhancement rate is supported by a study of baryon production in χb2→gg→p+X relative to χb1→qq¯g→p+X. Overall, per-event baryon production in radiative two-gluon fragmentation is somewhat smaller than that observed in three-gluon decays of the Υ(1S). Our results for baryon production are inconsistent with the predictions of the JETSET (7.3) fragmentation model.

  12. p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression

    PubMed Central

    Drayman, Nir; Ben-nun-Shaul, Orly; Butin-Israeli, Veronika; Srivastava, Rohit; Rubinstein, Ariel M.; Mock, Caroline S.; Elyada, Ela; Ben-Neriah, Yinon; Lahav, Galit; Oppenheim, Ariella

    2016-01-01

    SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection. Using live cell imaging and single cell analyses we found that p53 dynamics are variable among individual cells, with only a subset of cells activating p53 immediately after SV40 infection. This cell-to-cell variabilty had clear consequences on the outcome of the infection. None of the cells with elevated p53 at the beginning of the infection proceeded to express T-ag, suggesting a p53-dependent decision between abortive and productive infection. In addition, we show that artificial elevation of p53 levels prior to the infection reduces infection efficiency, supporting a role for p53 in defending against SV40. We further found that the p53-mediated host defense mechanism against SV40 is not facilitated by apoptosis nor via interferon-stimulated genes. Instead p53 binds to the viral DNA at the T-ag promoter region, prevents its transcriptional activation by Sp1, and halts the progress of the infection. These findings shed new light on the long studied struggle between SV40 T-ag and p53, as developed during virus-host coevolution. Our studies indicate that the fate of SV40 infection is determined as soon as the viral DNA enters the nucleus, before the onset of viral gene expression. PMID:27462916

  13. Bag3-Induced Autophagy Is Associated with Degradation of JCV Oncoprotein, T-Ag

    PubMed Central

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C.; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases. PMID:22984599

  14. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    PubMed

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  15. Fluorescence studies with DNA probes: dynamic aspects of DNA structure and DNA-protein interactions

    NASA Astrophysics Data System (ADS)

    Millar, David P.; Carver, Theodore E.

    1994-08-01

    Time-resolved fluorescence measurements of optical probes incorporated at specific sites in DNA provides a new approach to studies of DNA structure and DNA:protein interactions. This approach can be used to study complex multi-state behavior, such as the folding of DNA into alternative higher order structures or the transfer of DNA between multiple binding sites on a protein. In this study, fluorescence anisotropy decay of an internal dansyl probe attached to 17/27-mer oligonucleotides was used to monitor the distribution of DNA 3' termini bound at either the polymerase of 3' to 5' exonuclease sites of the Klenow fragment of DNA polymerase I. Partitioning of the primer terminus between the two active sites of the enzyme resulted in a heterogeneous probe environment, reflected in the associative behavior of the fluorescence anisotropy decay. Analysis of the anisotropy decay with a two state model of solvent-exposed and protein-associated dansyl probes was used to determine the fraction of DNA bound at each site. We examined complexes of Klenow fragment with DNAs containing various base mismatches. Single mismatches at the primer terminus caused a 3-fold increase in the equilibrium partitioning of DNA into the exonuclease site, while two or more consecutive G:G mismatches caused the DNA to bind exclusively at the exonuclease site, with a partitioning constant at least 250- fold greater than that of the corresponding matched DNA sequence. Internal single mismatches located up to four bases from the primer terminus produced larger effects than the same mismatch at the primer terminus. These results provide insight into the recognition mechanisms that enable DNA polymerases to proofread misincorporated bases during DNA replication.

  16. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    PubMed

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  17. Bacterial DNA in water and dialysate: detection and significance for patient outcomes.

    PubMed

    Handelman, Garry J; Megdal, Peter A; Handelman, Samuel K

    2009-01-01

    The fluid used for hemodialysis may contain DNA fragments from bacteria, which could be harmful for patient outcomes. DNA fragments from bacteria, containing the nonmethylated CpG motif, can trigger inflammation through the monocyte and lymphocyte Toll-like receptor 9, and these DNA fragments have been observed in dialysate. The fragments may transfer across the dialyzer into the patient's bloodstream during hemodialysis treatment. During hemodiafiltration, the fragments would be introduced directly into the bloodstream. The DNA fragments may arise from biofilm in the pipes of the water system, from growth of bacteria in the water, or as contaminants in the bicarbonate and salt mixture used for preparation of dialysate. Current filtration methods, such as Diasafe filters, are not able to remove these fragments. It would be prudent to seek to reduce or eliminate these contaminants. However, the cost and effort of decreasing bacterial DNA content may ultimately require substantial facility improvements; we therefore need to fund research studies to determine if modifications to reduce bacterial DNA content are clinically warranted. This research will require methods to accurately determine the species of bacteria that contribute the DNA, since this information will allow the source to be established as biofilm, bicarbonate mixtures, or other problems in the dialysis system such as bacterial growth or leakage during water preparation. In this review, the evidence for bacterial DNA fragments will be examined and suggestions for further studies will be described.

  18. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment

    PubMed Central

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  19. Understanding why users tag: A survey of tagging motivation literature and results from an empirical study.

    PubMed

    Strohmaier, Markus; Körner, Christian; Kern, Roman

    2012-12-01

    While recent progress has been achieved in understanding the structure and dynamics of social tagging systems, we know little about the underlying user motivations for tagging, and how they influence resulting folksonomies and tags. This paper addresses three issues related to this question. (1) What distinctions of user motivations are identified by previous research, and in what ways are the motivations of users amenable to quantitative analysis? (2) To what extent does tagging motivation vary across different social tagging systems? (3) How does variability in user motivation influence resulting tags and folksonomies? In this paper, we present measures to detect whether a tagger is primarily motivated by categorizing or describing resources, and apply these measures to datasets from seven different tagging systems. Our results show that (a) users' motivation for tagging varies not only across, but also within tagging systems, and that (b) tag agreement among users who are motivated by categorizing resources is significantly lower than among users who are motivated by describing resources . Our findings are relevant for (1) the development of tag-based user interfaces, (2) the analysis of tag semantics and (3) the design of search algorithms for social tagging systems.

  20. Understanding why users tag: A survey of tagging motivation literature and results from an empirical study

    PubMed Central

    Strohmaier, Markus; Körner, Christian; Kern, Roman

    2012-01-01

    While recent progress has been achieved in understanding the structure and dynamics of social tagging systems, we know little about the underlying user motivations for tagging, and how they influence resulting folksonomies and tags. This paper addresses three issues related to this question. (1) What distinctions of user motivations are identified by previous research, and in what ways are the motivations of users amenable to quantitative analysis? (2) To what extent does tagging motivation vary across different social tagging systems? (3) How does variability in user motivation influence resulting tags and folksonomies? In this paper, we present measures to detect whether a tagger is primarily motivated by categorizing or describing resources, and apply these measures to datasets from seven different tagging systems. Our results show that (a) users’ motivation for tagging varies not only across, but also within tagging systems, and that (b) tag agreement among users who are motivated by categorizing resources is significantly lower than among users who are motivated by describing resources. Our findings are relevant for (1) the development of tag-based user interfaces, (2) the analysis of tag semantics and (3) the design of search algorithms for social tagging systems. PMID:23471473

  1. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, Mark; Weiss, Christian

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  2. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE PAGES

    Strikman, Mark; Weiss, Christian

    2018-03-27

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  3. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    NASA Astrophysics Data System (ADS)

    Strikman, M.; Weiss, C.

    2018-03-01

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future electron-ion collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation to the tagged DIS cross section contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSIs) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSIs, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with an EIC. We discuss possible extensions of the FSI model to other kinematic regions (large/small x ). In tagged DIS at x ≪0.1 FSIs resulting from diffractive scattering on the nucleons become important and require separate treatment.

  4. Tag retention, growth, and survival of red swamp crayfish marked with a visible implant tag

    USGS Publications Warehouse

    Isely, J.J.; Stockett, P.E.

    2001-01-01

    Eighty juvenile (means: 42.4 mm total length, 1.6 g) red swamp crayfish Procambarus clarkii were implanted with sequentially numbered visible implant tags and held in the laboratory. Tags were injected transversely into the musculature just beneath the exoskeleton of the third abdominal segment from the cephalothorax; tags were visible upon inspection. An additional 20 crayfish were left untagged and served as controls. After 150 d, tag retention was 80% and all tags were readable. No tagged crayfish died during the study, and no differences in total length or weight were detected between tagged and control crayfish. All individuals molted at least three times during the 150-d study, and some individuals molted up to six times, suggesting that most tags would be permanently retained. The readability in the field without specialized equipment makes the visible implant tag ideal for studies of crayfish ecology, management, and culture.

  5. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    PubMed Central

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-01-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result. PMID:7853501

  6. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    PubMed

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  7. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  8. Isolation and characterization of the DNA-binding protein (DBP) of the Autographa californica multiple nucleopolyhedrovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailov, Victor S.; N. K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808; Vanarsdall, Adam L.

    2008-01-20

    DNA-binding protein (DBP) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed as an N-terminal His{sub 6}-tag fusion using a recombinant baculovirus and purified to near homogeneity. Purified DBP formed oligomers that were crosslinked by redox reagents resulting in predominantly protein dimers and tetramers. In gel retardation assays, DBP showed a high affinity for single-stranded oligonucleotides and was able to compete with another baculovirus SSB protein, LEF-3, for binding sites. DBP binding protected ssDNA against hydrolysis by a baculovirus alkaline nuclease AN/LEF-3 complex. Partial proteolysis by trypsin revealed a domain structure of DBP that is required for interaction with DNA andmore » that can be disrupted by thermal treatment. Binding to ssDNA, but not to dsDNA, changed the pattern of proteolytic fragments of DBP indicating adjustments in protein structure upon interaction with ssDNA. DBP was capable of unwinding short DNA duplexes and also promoted the renaturation of long complementary strands of ssDNA into duplexes. The unwinding and renaturation activities of DBP, as well as the DNA binding activity, were sensitive to sulfhydryl reagents and were inhibited by oxidation of thiol groups with diamide or by alkylation with N-ethylmaleimide. A high affinity of DBP for ssDNA and its unwinding and renaturation activities confirmed identification of DBP as a member of the SSB/recombinase family. These activities and a tight association with subnuclear structures suggests that DBP is a component of the virogenic stroma that is involved in the processing of replicative intermediates.« less

  9. Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea.

    PubMed

    Jaramillo-Correa, J P; Bousquet, J; Beaulieu, J; Isabel, N; Perron, M; Bouillé, M

    2003-05-01

    Primers previously developed to amplify specific non-coding regions of the mitochondrial genome in Angiosperms, and new primers for additional non-coding mtDNA regions, were tested for their ability to direct DNA amplification in 12 conifer taxa and to detect sequence-tagged-site (STS) polymorphisms within and among eight species in Picea. Out of 12 primer pairs, nine were successful at amplifying mtDNA in most of the taxa surveyed. In conifers, indels and substitutions were observed for several loci, allowing them to distinguish between families, genera and, in some cases, between species within genera. In Picea, interspecific polymorphism was detected for four loci, while intraspecific variation was observed for three of the mtDNA regions studied. One of these (SSU rRNA V1 region) exhibited indel polymorphisms, and the two others ( nad1 intron b/c and nad5 intron1) revealed restriction differences after digestion with Sau3AI (PCR-RFLP). A fourth locus, the nad4L- orf25 intergenic region, showed a multibanding pattern for most of the spruce species, suggesting a possible gene duplication. Maternal inheritance, expected for mtDNA in conifers, was observed for all polymorphic markers except the intergenic region nad4L- orf25. Pooling of the variation observed with the remaining three markers resulted in two to six different mtDNA haplotypes within the different species of Picea. Evidence for intra-genomic recombination was observed in at least two taxa. Thus, these mitotypes are likely to be more informative than single-locus haplotypes. They should be particularly useful for the study of biogeography and the dynamics of hybrid zones.

  10. CCQM-K86/P113.1: Relative quantification of genomic DNA fragments extracted from a biological tissue

    NASA Astrophysics Data System (ADS)

    Corbisier, P.; Vincent, S.; Schimmel, H.; Kortekaas, A.-M.; Trapmann, S.; Burns, M.; Bushell, C.; Akgoz, M.; Akyürek, S.; Dong, L.; Fu, B.; Zhang, L.; Wang, J.; Pérez Urquiza, M.; Bautista, J. L.; Garibay, A.; Fuller, B.; Baoutina, A.; Partis, L.; Emslie, K.; Holden, M.; Chum, W. Y.; Kim, H.-H.; Phunbua, N.; Milavec, M.; Zel, J.; Vonsky, M.; Konopelko, L. A.; Lau, T. L. T.; Yang, B.; Hui, M. H. K.; Yu, A. C. H.; Viroonudomphol, D.; Prawettongsopon, C.; Wiangnon, K.; Takabatake, R.; Kitta, K.; Kawaharasaki, M.; Parkes, H.

    2012-01-01

    Key comparison CCQM-K86 was performed to demonstrate and document the capacity of interested national metrology institutes (NMIs) and designated institutes (DIs) in the determination of the relative quantity of two specific genomic DNA fragments present in a biological tissue. The study provides the support for the following measurement claim: "Quantification of the ratio of the number of copies of specified intact sequence fragments of a length in the range of 70 to 100 nucleotides in a single genomic DNA extract from ground maize seed materials". The study was carried out under the auspices of the Bioanalysis Working Group (BAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) and was piloted by the Institute for Reference Materials and Methods (IRMM) in Geel (Belgium). The following laboratories (in alphabetical order) participated in this key comparison: AIST (Japan), CENAM (Mexico), DMSc (Thailand), GLHK (Hong Kong), IRMM (European Union), KRISS (Republic of Korea), LGC (United Kingdom), MIRS/NIB (Slovenia), NIM (PR China), NIST (USA), NMIA (Australia), TÜBITAK UME (Turkey) and VNIIM (Russian Federation). The following laboratories (in alphabetical order) participated in a pilot study that was organized in parallel: LGC (United Kingdom), PKU (PR China), NFRI (Japan) and NIMT (Thailand). Good agreement was observed between the reported results of eleven participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  11. Use of Conserved Randomly Amplified Polymorphic DNA (RAPD) Fragments and RAPD Pattern for Characterization of Lactobacillus fermentum in Ghanaian Fermented Maize Dough

    PubMed Central

    Hayford, Alice E.; Petersen, Anne; Vogensen, Finn K.; Jakobsen, Mogens

    1999-01-01

    The present work describes the use of randomly amplified polymorphic DNA (RAPD) for the characterization of 172 dominant Lactobacillus isolates from present and previous studies of Ghanaian maize fermentation. Heterofermentative lactobacilli dominate the fermentation flora, since approximately 85% of the isolates belong to this group. Cluster analysis of the RAPD profiles obtained showed the presence of two main clusters. Cluster 1 included Lactobacillus fermentum, whereas cluster 2 comprised the remaining Lactobacillus spp. The two distinct clusters emerged at the similarity level of <50%. All isolates in cluster 1 showed similarity in their RAPD profile to the reference strains of L. fermentum included in the study. These isolates, yielding two distinct bands of approximately 695 and 773 bp with the primers used, were divided into four subclusters, indicating that several strains are involved in the fermentation and remain dominant throughout the process. The two distinct RAPD fragments were cloned, sequenced, and used as probes in Southern hybridization experiments. With one exception, Lactobacillus reuteri LMG 13045, the probes hybridized only to fragments of different sizes in EcoRI-digested chromosomal DNA of L. fermentum strains, thus indicating the specificity of the probes and variation within the L. fermentum isolates. PMID:10388723

  12. Analysis and Functional Annotation of an Expressed Sequence Tag Collection for Tropical Crop Sugarcane

    PubMed Central

    Vettore, André L.; da Silva, Felipe R.; Kemper, Edson L.; Souza, Glaucia M.; da Silva, Aline M.; Ferro, Maria Inês T.; Henrique-Silva, Flavio; Giglioti, Éder A.; Lemos, Manoel V.F.; Coutinho, Luiz L.; Nobrega, Marina P.; Carrer, Helaine; França, Suzelei C.; Bacci, Maurício; Goldman, Maria Helena S.; Gomes, Suely L.; Nunes, Luiz R.; Camargo, Luis E.A.; Siqueira, Walter J.; Van Sluys, Marie-Anne; Thiemann, Otavio H.; Kuramae, Eiko E.; Santelli, Roberto V.; Marino, Celso L.; Targon, Maria L.P.N.; Ferro, Jesus A.; Silveira, Henrique C.S.; Marini, Danyelle C.; Lemos, Eliana G.M.; Monteiro-Vitorello, Claudia B.; Tambor, José H.M.; Carraro, Dirce M.; Roberto, Patrícia G.; Martins, Vanderlei G.; Goldman, Gustavo H.; de Oliveira, Regina C.; Truffi, Daniela; Colombo, Carlos A.; Rossi, Magdalena; de Araujo, Paula G.; Sculaccio, Susana A.; Angella, Aline; Lima, Marleide M.A.; de Rosa, Vicente E.; Siviero, Fábio; Coscrato, Virginia E.; Machado, Marcos A.; Grivet, Laurent; Di Mauro, Sonia M.Z.; Nobrega, Francisco G.; Menck, Carlos F.M.; Braga, Marilia D.V.; Telles, Guilherme P.; Cara, Frank A.A.; Pedrosa, Guilherme; Meidanis, João; Arruda, Paulo

    2003-01-01

    To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged. PMID:14613979

  13. Telomere Restriction Fragment (TRF) Analysis.

    PubMed

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    While telomerase is expressed in ~90% of primary human tumors, most somatic tissue cells except transiently proliferating stem-like cells do not have detectable telomerase activity (Shay and Wright, 1996; Shay and Wright, 2001). Telomeres progressively shorten with each cell division in normal cells, including proliferating stem-like cells, due to the end replication (lagging strand synthesis) problem and other causes such as oxidative damage, therefore all somatic cells have limited cell proliferation capacity (Hayflick limit) (Hayflick and Moorhead, 1961; Olovnikov, 1973). The progressive telomere shortening eventually leads to growth arrest in normal cells, which is known as replicative senescence (Shay et al. , 1991). Once telomerase is activated in cancer cells, telomere length is stabilized by the addition of TTAGGG repeats to the end of chromosomes, thus enabling the limitless continuation of cell division (Shay and Wright, 1996; Shay and Wright, 2001). Therefore, the link between aging and cancer can be partially explained by telomere biology. There are many rapid and convenient methods to study telomere biology such as Telomere Restriction Fragment (TRF), Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015b) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this protocol paper we describe Telomere Restriction Fragment (TRF) analysis to determine average telomeric length of cells. Telomeric length can be indirectly measured by a technique called Telomere Restriction Fragment analysis (TRF). This technique is a modified Southern blot, which measures the heterogeneous range of telomere lengths in a cell population using the length distribution of the terminal restriction fragments (Harley et al. , 1990; Ouellette et al. , 2000). This method can be used in eukaryotic cells. The description below focuses on the measurement of human cancer cells telomere length. The principle of this method relies on the lack of

  14. Antenna for passive RFID tags

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  15. Bone fragments a body can make

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, S.D.; Ross, L.M. Jr.

    Data obtained from various analytical techniques applied to a number of small bone fragments recovered from a crime scene were used to provide evidence for the occurrence of a fatality. Microscopic and histomorphometric analyses confirmed that the fragments were from a human skull. X-ray microanalysis of darkened areas on the bone fragments revealed a chemical signature that matched the chemical signature of a shotgun pellet recovered at the scene of the crime. The above findings supported the deoxyribonucleic acid (DNA) fingerprint evidence which, along with other evidence, was used to convict a man for the murder of his wife, evenmore » though her body was never recovered.« less

  16. Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments.

    PubMed

    Neumann, M; Herten, D P; Dietrich, A; Wolfrum, J; Sauer, M

    2000-02-25

    The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.

  17. Sedimentation properties in density gradients correspond with levels of sperm DNA fragmentation, chromatin compaction and binding affinity to hyaluronic acid.

    PubMed

    Torabi, Forough; Binduraihem, Adel; Miller, David

    2017-03-01

    Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. Immature spermatozoa may be unable to interact because they do not express the appropriate hyaladherins on their surface. Fresh human semen samples were fractionated using differential density gradient centrifugation (DDGC) and the ability of these fractions to bind hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 was located mainly on the acrosome and equatorial segment and became more restricted to the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronic acid conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm populations obtained after DDGC or after interaction with hyaluronic acid were assessed for DNA fragmentation and chromatin maturity. Strong relationships between both measures and sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation enhanced hyaluronic acid binding of both DDGC-pelleted sperm and sperm washed free of seminal fluid. In conclusion, hyaladherins were detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA fragmentation and better chromatin maturity. Capacitation induced changes in the distribution and presence of hyaladherins may enhance hyaluronic-acid-binding. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Screening of Israeli Holstein-Friesian cattle for restriction fragment length polymorphisms using homologous and heterologous deoxyribonucleic acid probes.

    PubMed

    Hallerman, E M; Nave, A; Soller, M; Beckmann, J S

    1988-12-01

    Genomic DNA of Israeli Holstein-Friesian dairy cattle were screened with a battery of 17 cloned or subcloned DNA probes in an attempt to document restriction fragment length polymorphisms at a number of genetic loci. Restriction fragment length polymorphisms were observed at the chymosin, oxytocin-neurophysin I, lutropin beta, keratin III, keratin VI, keratin VII, prolactin, and dihydrofolate reductase loci. Use of certain genomic DNA fragments as probes produced hybridization patterns indicative of satellite DNA at the respective loci. Means for distinguishing hybridizations to coding sequences for unique genes from those to satellite DNA were developed. Results of this study are discussed in terms of strategy for the systematic development of large numbers of bovine genomic polymorphisms.

  19. Resistance of Spiroplasma citri Lines to the Virus SVTS2 Is Associated with Integration of Viral DNA Sequences into Host Chromosomal and Extrachromosomal DNA.

    PubMed

    Sha, Y; Melcher, U; Davis, R E; Fletcher, J

    1995-11-01

    Spiroplasmavirus SVTS2, isolated from Spiroplasma melliferum TS2, produces plaques when inoculated onto lawns of Spiroplasma citri M200H, a derivative of the type strain Maroc R8A2. S. citri strains MR2 and MR3, originally selected as colonies growing within plaques on a lawn of M200H inoculated with SVTS2, were resistant to SVTS2. Genomic DNA fingerprints and electrophoretic protein profiles of M200H, MR2, and MR3 were similar, but three proteins present in M200H were missing or significantly reduced in both resistant lines. None of these three polypeptides reacted with antiserum against S. citri membrane proteins, indicating that they probably are not surface-located virus receptors. Electroporation with SVTS2 DNA produced 1.5 x 10(sup5) transfectants per (mu)g of DNA in M200H but none in MR2 or MR3, suggesting that resistance may result from inhibition of viral replication. The digestion patterns of the extrachromosomal double-stranded (ds) DNA of these lines were similar. Three TaqI fragments of MR2 extrachromosomal DNA that were not present in M200H extrachromosomal DNA hybridized strongly to an SVTS2 probe, and two of these fragments plus an additional one hybridized with the MR3 extrachromosomal DNA, indicating that a fragment of SVTS2 DNA was present in the extrachromosomal ds DNA of MR2 and MR3 but not of M200H. When the restricted genomes of all three lines were probed with SVTS2 DNA, strong hybridization to two EcoRI fragments of chromosomal MR2 and MR3 DNA but not M200H DNA indicated that SVTS2 DNA had integrated into the genomes of MR2 and MR3 but not of M200H. When MR3 extrachromosomal ds DNA containing a 2.1-kb SVTS2 DNA fragment was transfected into M200H, the transformed spiroplasmas were resistant to SVTS2. These results suggest that SVTS2 DNA fragments, possibly integrated into the chromosomal or extrachromosomal DNA of a previously susceptible spiroplasma, may function as viral incompatibility elements, providing resistance to superinfection by

  20. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  1. Post-Fragmentation Whole Genome Amplification-Based Method

    NASA Technical Reports Server (NTRS)

    Benardini, James; LaDuc, Myron T.; Langmore, John

    2011-01-01

    This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (<400 bp) constitute a library of DNA fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have

  2. Method for designing gas tag compositions

    DOEpatents

    Gross, Kenny C.

    1995-01-01

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.

  3. Method for designing gas tag compositions

    DOEpatents

    Gross, K.C.

    1995-04-11

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node No. 1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node No. 2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred. 5 figures.

  4. Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection

    PubMed Central

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2008-01-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive and multiplex format, an alternative surface enhanced Raman scattering (SERS) based probe was designed and fabricated to covalently attach both DNA probing sequence and non-fluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the non-fluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA (ssDNA) to its complementary targets was successfully accomplished with a long-term goal to use non-fluorescent RTags in a Raman-based DNA microarray platform. PMID:17465531

  5. Metabolic Enhancer Piracetam Attenuates the Translocation of Mitochondrion-Specific Proteins of Caspase-Independent Pathway, Poly [ADP-Ribose] Polymerase 1 Up-regulation and Oxidative DNA Fragmentation.

    PubMed

    Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Sivarama Raju, K; Wahajuddin, Mu; Singh, Sarika

    2018-03-12

    Piracetam, a nootropic drug, has been clinically used for decades; however, its mechanism of action still remains enigmatic. The present study was undertaken to evaluate the role of mitochondrion-specific factors of caspase-independent pathway like apoptotic-inducing factor (AIF) and endonuclease-G (endo-G) in piracetam-induced neuroprotection. N2A cells treated with lipopolysaccharide (LPS) exhibited significant cytotoxicity, impaired mitochondrial activity, and reactive oxygen species generation which was significantly attenuated with piracetam co-treatment. Cells co-treated with LPS and piracetam exhibited significant uptake of piracetam in comparison to only piracetam-treated cells as estimated by liquid chromatography-mass spectrometry (LC-MSMS). LPS treatment caused significant translocation of AIF and endonuclease-G in neuronal N2A cells which were significantly attenuated with piracetam co-treatment. Significant over-expression of proinflammatory cytokines was also observed after treatment of LPS to cells which was inhibited with piracetam co-treatment demonstrating its anti-inflammatory property. LPS-treated cells exhibited significant oxidative DNA fragmentation and poly [ADP-ribose] polymerase-1 (PARP-1) up-regulation in nucleus, both of which were attenuated with piracetam treatment. Antioxidant melatonin but not z-VAD offered the inhibited LPS-induced DNA fragmentation indicating the involvement of oxidative DNA fragmentation. Further, we did not observe the altered caspase-3 level after LPS treatment initially while at a later time point, significantly augmented level of caspase-3 was observed which was not inhibited with piracetam treatment. In total, our findings indicate the interference of piracetam in mitochondrion-mediated caspase-independent pathway, as well as its anti-inflammatory and antioxidative properties. Graphical Abstract Graphical abstract indicating the novel interference of metabolic enhancer piracetam (P) in neuronal death

  6. WebTag: Web browsing into sensor tags over NFC.

    PubMed

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Alvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm.

  7. WebTag: Web Browsing into Sensor Tags over NFC

    PubMed Central

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Álvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm. PMID:23012511

  8. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.

    PubMed

    Phillips, A L; Ward, D A; Uknes, S; Appleford, N E; Lange, T; Huttly, A K; Gaskin, P; Graebe, J E; Hedden, P

    1995-07-01

    Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.

  9. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag

    PubMed Central

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as

  10. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag.

    PubMed

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as

  11. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCVmore » DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.« less

  12. Tag loss and short-term mortality associated with passive integrated transponder tagging of juvenile Lost River suckers

    USGS Publications Warehouse

    Burdick, Summer M.

    2011-01-01

    Passive integrated transponder (PIT) tags are commonly used to mark small catostomids, but tag loss and the effect of tagging on mortality have not been assessed for juveniles of the endangered Lost River sucker Deltistes luxatus. I evaluated tag loss and short-term (34-d) mortality associated with the PIT tagging of juvenile Lost River suckers in the laboratory by using a completely randomized design and three treatment groups (PIT tagged, positive control, and control). An empty needle was inserted into each positive control fish, whereas control fish were handled but not tagged. Only one fish expelled its PIT tag. Mortality rate averaged 9.8 ± 3.4% (mean ± SD) for tagged fish; mortality was 0% for control and positive control fish. All tagging mortalities occurred in fish with standard lengths of 71 mm or less, and most of the mortalities occurred within 48 h of tagging. My results indicate that 12.45- × 2.02-mm PIT tags provide a viable method of marking juvenile Lost River suckers that are 72 mm or larger.

  13. Computer-based image analysis of one-dimensional electrophoretic gels used for the separation of DNA restriction fragments.

    PubMed Central

    Gray, A J; Beecher, D E; Olson, M V

    1984-01-01

    A stand-alone, interactive computer system has been developed that automates the analysis of ethidium bromide-stained agarose and acrylamide gels on which DNA restriction fragments have been separated by size. High-resolution digital images of the gels are obtained using a camera that contains a one-dimensional, 2048-pixel photodiode array that is mechanically translated through 2048 discrete steps in a direction perpendicular to the gel lanes. An automatic band-detection algorithm is used to establish the positions of the gel bands. A color-video graphics system, on which both the gel image and a variety of operator-controlled overlays are displayed, allows the operator to visualize and interact with critical stages of the analysis. The principal interactive steps involve defining the regions of the image that are to be analyzed and editing the results of the band-detection process. The system produces a machine-readable output file that contains the positions, intensities, and descriptive classifications of all the bands, as well as documentary information about the experiment. This file is normally further processed on a larger computer to obtain fragment-size assignments. Images PMID:6320097

  14. Rapid in silico cloning of genes using expressed sequence tags (ESTs).

    PubMed

    Gill, R W; Sanseau, P

    2000-01-01

    Expressed sequence tags (ESTs) are short single-pass DNA sequences obtained from either end of cDNA clones. These ESTs are derived from a vast number of cDNA libraries obtained from different species. Human ESTs are the bulk of the data and have been widely used to identify new members of gene families, as markers on the human chromosomes, to discover polymorphism sites and to compare expression patterns in different tissues or pathologies states. Information strategies have been devised to query EST databases. Since most of the analysis is performed with a computer, the term "in silico" strategy has been coined. In this chapter we will review the current status of EST databases, the pros and cons of EST-type data and describe possible strategies to retrieve meaningful information.

  15. Survival and tag loss in Moapa White River springfish implanted with passive integrated transponder tags

    USGS Publications Warehouse

    Dixon, Christopher J.; Mesa, Matthew G.

    2011-01-01

    We monitored survival and tag loss among Moapa White River springfish Crenichthys baileyi moapae that were surgically implanted with passive integrated transponder (PIT; 9 × 2 mm) tags. The fish used in the study ranged from 40 to 67 mm in total length and from 1.0 to 6.5 g in mass; the PIT tag: body weight ratios were 1.0–6.1%. Fish were held for 41 d in live cages within a small, warm desert stream. Survival did not differ between untagged control fish (94.5%) and tagged fish (95.6%). Survival did not appear to be influenced by fish size or PIT tag: body weight ratio, but the small number of fish that died precluded a detailed analysis. Tag retention was 100% among the 86 fish that survived over the 41 d. Our results suggest that surgically implanting 9-mm PIT tags into Moapa White River springfish as small as 40 mm is an effective method for marking them because it has minimal impacts on survival and tag retention is high. More work is needed on the effects of PIT tagging on growth and other performance metrics of springfish and other small desert fishes.

  16. Stable isotope, site-specific mass tagging for protein identification

    DOEpatents

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  17. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA

    PubMed Central

    Lukinavičius, Gražvydas; Lapinaitė, Audronė; Urbanavičiūtė, Giedrė; Gerasimaitė, Rūta; Klimašauskas, Saulius

    2012-01-01

    DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA. PMID:23042683

  18. Pyrylium-based dye and charge tagging in proteomics.

    PubMed

    Bayer, Malte; König, Simone

    2016-11-01

    The pyrylium group is a selective reagent for ε-amino groups in proteins. In particular, for fluorescence labeling, a number of advantages over traditional N-hydroxysuccinimidyl ester chemistry were recognized such as the rapid prestaining procedure. Here, we have investigated the labeling reaction for the fluorogenic pyrylium dye Py-1 using liquid chromatography coupled to MS with the aim of determining its specificity and possible side products. Peptides containing no, one, and two lysine residue and a choice of no or one cysteine residue were labeled with Py-1 at yields > 30%. Gas phase fragmentation proved both labeling of lysine residues as well as that of the N-terminus also in peptides that contained a lysine residue. Evidence for cysteine labeling was not found, but several other products were detected such as the results of rearrangements with adjacent acidic amino acids. Apart from the use as a fluorogenic label, Py-1 recommends itself for N-terminal charge tagging as alternative to the commonly used quaternary ammonium salts. Predominantly a- and b-type ion series were observed for N-terminally labeled peptides. Further applications include chromophore tagging since the labeled product is not only fluorescent but also colored red. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Social Tagging of Mission Data

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; hide

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  20. Sperm DNA damage has a negative association with live-birth rates after IVF.

    PubMed

    Simon, L; Proutski, I; Stevenson, M; Jennings, D; McManus, J; Lutton, D; Lewis, S E M

    2013-01-01

    Sperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment (ART). The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with <25% sperm DNA fragmentation had a live-birth rate of 33%; in contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Sperm DNA damage has a negative impact on assisted reproduction treatment outcome, in particular, on pregnancy rates. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage and treatment outcome. Following IVF, couples with <25% sperm DNA fragmentation had a live birth rate of 33%. In contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13% following IVF. Following ICSI

  1. Rapid estimation of microbial populations in fish samples by using terminal restriction fragment length polymorphism analysis of 16S rDNA.

    PubMed

    Tanaka, Yuichiro; Takahashi, Hajime; Kitazawa, Nao; Kimura, Bon

    2010-01-01

    A rapid system using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting 16S rDNA is described for microbial population analysis in edible fish samples. The defined terminal restriction fragment database was constructed by collecting 102 strains of bacteria representing 53 genera that are associated with fish. Digestion of these 102 strains with two restriction enzymes, HhaI and MspI, formed 54 pattern groups with discrimination to the genus level. This T-RFLP system produced results comparable to those from a culture-based method in six natural fish samples with a qualitative correspondence of 71.4 to 92.3%. Using the T-RFLP system allowed an estimation of the microbial population within 7 h. Rapid assay of the microbial population is advantageous for food manufacturers and testing laboratories; moreover, the strategy presented here allows adaptation to specific testing applications.

  2. The intervening removable affinity tag (iRAT) production system facilitates Fv antibody fragment‐mediated crystallography

    PubMed Central

    Nomura, Yayoi; Sato, Yumi; Suno, Ryoji; Horita, Shoichiro

    2016-01-01

    Abstract Fv antibody fragments have been used as co‐crystallization partners in structural biology, particularly in membrane protein crystallography. However, there are inherent technical issues associated with the large‐scale production of soluble, functional Fv fragments through conventional methods in various expression systems. To circumvent these problems, we developed a new method, in which a single synthetic polyprotein consisting of a variable light (VL) domain, an intervening removable affinity tag (iRAT), and a variable heavy (VH) domain is expressed by a Gram‐positive bacterial secretion system. This method ensures stoichiometric expression of VL and VH from the monocistronic construct followed by proper folding and assembly of the two variable domains. The iRAT segment can be removed by a site‐specific protease during the purification process to yield tag‐free Fv fragments suitable for crystallization trials. In vitro refolding step is not required to obtain correctly folded Fv fragments. As a proof of concept, we tested the iRAT‐based production of multiple Fv fragments, including a crystallization chaperone for a mammalian membrane protein as well as FDA‐approved therapeutic antibodies. The resulting Fv fragments were functionally active and crystallized in complex with the target proteins. The iRAT system is a reliable, rapid and broadly applicable means of producing milligram quantities of Fv fragments for structural and biochemical studies. PMID:27595817

  3. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.

  4. Chromosome-specific physical localisation of expressed sequence tag loci in Corchorus olitorius L.

    PubMed

    Joshi, A; Das, S K; Samanta, P; Paria, P; Sen, S K; Basu, A

    2014-11-01

    Jute (Corchorus spp.), as a natural fibre-producing species, ranks next only to cotton. Inadequate understanding of its genetic architecture is a major lacuna for genetic improvement of this crop in terms of yield and quality. Establishment of a physical map provides a genomic tool that helps in positional cloning of valuable genes. In this report, an attempt was initiated to study association and localisation of single copy expressed sequence tag (EST) loci in the genome of Corchorus olitorius. The chromosome-specific association of EST was determined based on the appearance of an extra signal for a single copy cDNA probe in mitotic interphase nuclei of specific trisomic(s) for fluorescence in situ hybridisation, and validated using a cDNA fragment of the 26S rRNA gene (600 bp) as molecular probe. The probe exhibited three signals in meiotic interphase nuclei of trisomic 5, instead of two as observed in diploids and other trisomics, indicating its association with chromosome 5. Subsequent hybridisation of the same probe on the pachytene chromosomes of diploids confirmed that 26S rRNA occupies the terminal end of the short arm of chromosome 5 in C. olitorius. Subsequently, chromosome-specific association of 63 single copy EST and their physical localisation were determined on chromosomes 2, 4, 5 and 7. The study describes chromosome-specific physical localisation of genes in jute. The approach used here could be a step towards construction of genome-wide physical maps for any recalcitrant plant species like jute. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Methods of introducing nucleic acids into cellular DNA

    DOEpatents

    Lajoie, Marc J.; Gregg, Christopher J.; Mosberg, Joshua A.; Church, George M.

    2017-06-27

    A method of introducing a nucleic acid sequence into a cell is provided where the cell has impaired or inhibited or disrupted DnaG primase activity or impaired or inhibited or disrupted DnaB helicase activity, or larger or increased gaps or distance between Okazaki fragments or lowered or reduced frequency of Okazaki fragment initiation, or the cell has increased single stranded DNA (ssDNA) on the lagging strand of the replication fork including transforming the cell through recombination with a nucleic acid oligomer.

  6. Genetically encoded fluorescent tags

    PubMed Central

    Thorn, Kurt

    2017-01-01

    Genetically encoded fluorescent tags are protein sequences that can be fused to a protein of interest to render it fluorescent. These tags have revolutionized cell biology by allowing nearly any protein to be imaged by light microscopy at submicrometer spatial resolution and subsecond time resolution in a live cell or organism. They can also be used to measure protein abundance in thousands to millions of cells using flow cytometry. Here I provide an introduction to the different genetic tags available, including both intrinsically fluorescent proteins and proteins that derive their fluorescence from binding of either endogenous or exogenous fluorophores. I discuss their optical and biological properties and guidelines for choosing appropriate tags for an experiment. Tools for tagging nucleic acid sequences and reporter molecules that detect the presence of different biomolecules are also briefly discussed. PMID:28360214

  7. Multisegment nanowire sensors for the detection of DNA molecules.

    PubMed

    Wang, Xu; Ozkan, Cengiz S

    2008-02-01

    We describe a novel application for detecting specific single strand DNA sequences using multisegment nanowires via a straightforward surface functionalization method. Nanowires comprising CdTe-Au-CdTe segments are fabricated using electrochemical deposition, and electrical characterization indicates a p-type behavior for the multisegment nanostructures, in a back-to-back Schottky diode configuration. Such nanostructures modified with thiol-terminated probe DNA fragments could function as high fidelity sensors for biomolecules at very low concentration. The gold segment is utilized for functionalization and binding of single strand DNA (ssDNA) fragments while the CdTe segments at both ends serve to modulate the equilibrium Fermi level of the heterojunction device upon hybridization of the complementary DNA fragments (cDNA) to the ssDNA over the Au segment. Employing such multisegment nanowires could lead to the fabrication more sophisticated and high multispecificity biosensors via selective functionalization of individual segments for biowarfare sensing and medical diagnostics applications.

  8. Expression and purification of a novel therapeutic single-chain variable fragment antibody against BNP from inclusion bodies of Escherichia coli.

    PubMed

    Bu, Dawei; Zhou, Yuwei; Tang, Jian; Jing, Fang; Zhang, Wei

    2013-12-01

    Abnormal brain natriuretic peptide (BNP) secretion is regarded as the dominating mechanism of cerebral salt wasting syndrome (CSW), which results from a renal loss of sodium and water during intracranial disease leading to hyponatremia. Scale preparation of therapeutic single-chain variable fragment (scFv) that can neutralize elevated circulating BNP may have potential value for clinical use. In this report, we used a recently isolated humanized anti-BNP scFv fragment (3C1) as model antibody (Ab) to evaluate the potential of scale production of this therapeutic protein. The truncated gene encoding for scFv fragment cloned in pET22b (+) was mainly overexpressed as inclusion bodies in Escherichia coli (E. coli) Rosetta (DE3) pLysS cells. The insoluble fragment was solubilized and purified by Ni-NTA agarose resin under denaturation conditions, and recovered via an effective refolding buffer containing 50 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 1 mM EDTA, 0.5 M arginine, 2 mM GSH, 1 mM GSSG, and 5% glycerol. The refolded scFv fragment was concentrated by PEG20000, and dialyzed in PBS (containing 5% glycerol, pH 7.4). The final yield was approximately 10.2 mg active scFv fragment per liter of culture (3.4 g wet weight cells). The scFv fragment was more than 95% pure assessed by SDS-PAGE assay. Recombinant scFv fragment with His tag displayed its immunoreactivity with anti-His tag Ab by western blotting. ELISA showed the scFv fragment specifically bound to BNP, and it displayed similar activity as the traditional anti-BNP monoclonal Ab (mAb). Thus, the current strategy allows convenient small-scale production of this therapeutic protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. [Value of specific 16S rDNA fragment of algae in diagnosis of drowning: an experiment with rabbits].

    PubMed

    Li, Peng; Xu, Qu-Yi; Chen, Ling; Liu, Chao; Zhao, Jian; Wang, Yu-Zhong; Yu, Zheng-Liang; Hu, Sun-Lin; Wang, Hui-Jun

    2015-08-01

    To establish a method for amplifying specific 16S rDNA fragment of algae related with drowning and test its value in drowning diagnosis. Thirty-five rabbits were randomly divided into 3 the drowning group (n=15), postmortem water immersion group (n=15, subjected to air embolism before seawater immersion), and control group(n=5, with air embolism only). Twenty samples of the liver tissues from human corpses found in water were also used, including 14 diatom-positive and 6 diatom-negative samples identified by microwave digestion-vacuum filtration-automated scanning electron microscopy (MD-VF-Auto SEM). Seven known species of algae served as the control algae (Melosira sp, Nitzschia sp, Synedra sp, Navicula sp, Microcystis sp, Cyclotella meneghiniana, and Chlorella sp). The total DNA was extracted from the tissues and algae to amplify the specific fragment of algae followed by 8% polyacrylamide gelelectrophoresis and sliver-staining. In the drowning group, algae was detected in the lungs (100%), liver (86%), and kidney (86%); algae was detected in the lungs in 2 rabbits in the postmortem group (13%) and none in the control group. The positivity rates of algae were significantly higher in the drowning group than in the postmortem group (P<0.05). Of the 20 tissue samples from human corps found in water, 15 were found positive for algae, including sample that had been identified as diatom-negative by MD-VF-Auto SEM. All the 7 control algae samples yielded positive results in PCR. The PCR-based method has a high sensitivity in algae detection for drowning diagnosis and allows simultaneous detection of multiple algae species related with drowning.

  10. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, T.

    1994-04-26

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.

  11. Improving enrichment of circulating fetal DNA for genetic testing: size fractionation followed by whole gene amplification.

    PubMed

    Jorgez, Carolina J; Bischoff, Farideh Z

    2009-01-01

    Among the pitfalls of using cell-free fetal DNA in plasma for prenatal diagnosis is quality of the recovered DNA fragments and concomitant presence of maternal DNA (>95%). Our objective is to provide alternative methods for achieving enrichment and high-quality fetal DNA from plasma. Cell-free DNA from 31 pregnant women and 18 controls (10 males and 8 females) were size separated using agarose gel electrophoresis. DNA fragments of 100-300, 500-700 and 1,500-2,000 bp were excised and extracted, followed by whole genome amplification (WGA) of recovered fragments. Levels of beta-globin and DYS1 were measured. Distribution of beta-globin size fragments was similar among pregnant women and controls. Among control male cases, distribution of size fragments was the same for both beta-globin and DYS1. Among maternal cases confirmed to be male, the smallest size fragment (100-300 bp) accounted for nearly 50% (39.76 +/- 17.55%) of the recovered DYS1-DNA (fetal) and only 10% (10.40 +/- 6.49%) of beta-globin (total) DNA. After WGA of plasma fragments from pregnant women, DYS1 sequence amplification was best observed when using the 100-300 bp fragments as template. Combination of electrophoresis for size separation and WGA led to enriched fetal DNA from plasma. This novel combination of strategies is more likely to permit universal clinical applications of cell-free fetal DNA. Copyright 2009 S. Karger AG, Basel.

  12. Review on SAW RFID tags.

    PubMed

    Plessky, Victor P; Reindl, Leonhard M

    2010-03-01

    SAW tags were invented more than 30 years ago, but only today are the conditions united for mass application of this technology. The devices in the 2.4-GHz ISM band can be routinely produced with optical lithography, high-resolution radar systems can be built up using highly sophisticated, but low-cost RF-chips, and the Internet is available for global access to the tag databases. The "Internet of Things," or I-o-T, will demand trillions of cheap tags and sensors. The SAW tags can overcome semiconductor-based analogs in many aspects: they can be read at a distance of a few meters with readers radiating power levels 2 to 3 orders lower, they are cheap, and they can operate in robust environments. Passive SAW tags are easily combined with sensors. Even the "anti-collision" problem (i.e., the simultaneous reading of many nearby tags) has adequate solutions for many practical applications. In this paper, we discuss the state-of-the-art in the development of SAW tags. The design approaches will be reviewed and optimal tag designs, as well as encoding methods, will be demonstrated. We discuss ways to reduce the size and cost of these devices. A few practical examples of tags using a time-position coding with 10(6) different codes will be demonstrated. Phase-coded devices can additionally increase the number of codes at the expense of a reduction of reading distance. We also discuss new and exciting perspectives of using ultra wide band (UWB) technology for SAW-tag systems. The wide frequency band available for this standard provides a great opportunity for SAW tags to be radically reduced in size to about 1 x 1 mm(2) while keeping a practically infinite number of possible different codes. Finally, the reader technology will be discussed, as well as detailed comparison made between SAW tags and IC-based semiconductor device.

  13. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    PubMed

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Tag retention, growth, and survival of red swamp crayfish Procambarus clarkii marked with coded wire tags

    USGS Publications Warehouse

    Isely, J.J.; Eversole, A.G.

    1998-01-01

    Juvenile red swamp crayfish (or crawfish), Procambarus clarkii (20-41 mm in total length) were collected from a crayfish culture pond by dipnetting and tagged with sequentially numbered, standard length, binary-coded wire tags. Four replicates of 50 crayfish were impaled perpendicular to the long axis of the abdomen with a fixed needle. Tags were injected transversely into the ventral surface of the first or second abdominal segment and were imbedded in the musculature just beneath the abdominal sternum. Tags were visible upon inspection. Additionally, two replicates of 50 crayfish were not tagged and were used as controls. Growth, survival, and tag retention were evaluated after 7 d in individual containers, after 100 d in aquaria, and after 200 d in field cages. Tag retention during each sample period was 100%, and average mortality of tagged crayfish within 7 d of tagging was 1%. Mortality during the remainder of the study was high (75-91%) but was similar between treatment and control samples. Most of the deaths were probably due to cannibalism. Average total length increased threefold during the course of the study, and crayfish reached maturity. Because crayfish were mature by the end of the study, we concluded that the coded wire tag was retained through the life history of the crayfish.

  15. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing.

    PubMed

    Portune, Kevin J; Pérez, M Carmen; Álvarez-Hornos, F Javier; Gabaldón, Carmen

    2015-01-01

    Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.

  16. Protective effects of Opuntia ficus-indica extract on ram sperm quality, lipid peroxidation and DNA fragmentation during liquid storage.

    PubMed

    Allai, Larbi; Druart, Xavier; Öztürk, Mehmet; BenMoula, Anass; Nasser, Boubker; El Amiri, Bouchra

    2016-12-01

    The present study aimed to assess the phenolic composition of the acetone extract from Opuntia ficus indica cladodes (ACTEX) and its effects on ram semen variables, lipid peroxidation and DNA fragmentation during liquid storage at 5°C for up to 72h in skim milk and Tris egg yolk extenders. Semen samples from five rams were pooled extended with Tris-egg yolk (TEY) or skim milk (SM) extenders containing ACTEX (0%, 1%, 2%, 4% and 8%) at a final concentration of 0.8×10 9 sperm/ml and stored for up to 72h at 5°C. The sperm variables were evaluated at different time periods (8, 24, 48 and 72h). Sperm total motility and viability were superior in TEY than in SM whereas the progressive motility, membrane integrity, abnormality and spontaneous lipid peroxidation were greater in SM compared to TEY (P<0.05). The results also indicated that the inclusion of 1% ACTEX in the SM or TEY extender increased the sperm motility, viability, membrane integrity, and decreased the abnormality, lipids peroxidation up to 72h in storage compared to control group. Similarly, even at 72h of storage, 1% ACTEX can efficiently decrease the negative effects of liquid storage on sperm DNA fragmentation (P<0.05). In conclusion, SM and TEY supplemented with 1% of ACTEX can improve the quality of ram semen. Further studies are required to identify the active components in ACTEX involved in its effect on ram sperm preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. DNA Extraction from Museum Specimens of Parasitic Hymenoptera

    PubMed Central

    Andersen, Jeremy C.; Mills, Nicholas J.

    2012-01-01

    At the same time that molecular researchers are improving techniques to extract DNA from museum specimens, this increased demand for access to museum specimens has created tension between the need to preserve specimens for maintaining collections and morphological research and the desire to conduct molecular analyses. To address these concerns, we examined the suitability of non-invasive DNA extraction techniques on three species of parasitic Hymenoptera (Braconidae), and test the effects of body size (parasitoid species), age (time since collection), and DNA concentration from each extract on the probability of amplifying meaningful fragments of two commonly used genetic loci. We found that age was a significant factor for determining the probability of success for sequencing both 28S and COI fragments. While the size of the braconid parasitoids significantly affected the total amount of extracted DNA, neither size nor DNA concentration were significant factors for the amplification of either gene region. We also tested several primer combinations of various lengths, but were unable to amplify fragments longer than ∼150 base pairs. These short fragments of 28S and COI were however sufficient for species identification, and for the discovery of within species genetic variation. PMID:23077493

  18. Performances of Different Fragment Sizes for Reduced Representation Bisulfite Sequencing in Pigs.

    PubMed

    Yuan, Xiao-Long; Zhang, Zhe; Pan, Rong-Yang; Gao, Ning; Deng, Xi; Li, Bin; Zhang, Hao; Sangild, Per Torp; Li, Jia-Qi

    2017-01-01

    Reduced representation bisulfite sequencing (RRBS) has been widely used to profile genome-scale DNA methylation in mammalian genomes. However, the applications and technical performances of RRBS with different fragment sizes have not been systematically reported in pigs, which serve as one of the important biomedical models for humans. The aims of this study were to evaluate capacities of RRBS libraries with different fragment sizes to characterize the porcine genome. We found that the Msp I-digested segments between 40 and 220 bp harbored a high distribution peak at 74 bp, which were highly overlapped with the repetitive elements and might reduce the unique mapping alignment. The RRBS library of 110-220 bp fragment size had the highest unique mapping alignment and the lowest multiple alignment. The cost-effectiveness of the 40-110 bp, 110-220 bp and 40-220 bp fragment sizes might decrease when the dataset size was more than 70, 50 and 110 million reads for these three fragment sizes, respectively. Given a 50-million dataset size, the average sequencing depth of the detected CpG sites in the 110-220 bp fragment size appeared to be deeper than in the 40-110 bp and 40-220 bp fragment sizes, and these detected CpG sties differently located in gene- and CpG island-related regions. In this study, our results demonstrated that selections of fragment sizes could affect the numbers and sequencing depth of detected CpG sites as well as the cost-efficiency. No single solution of RRBS is optimal in all circumstances for investigating genome-scale DNA methylation. This work provides the useful knowledge on designing and executing RRBS for investigating the genome-wide DNA methylation in tissues from pigs.

  19. A large scale analysis of cDNA in Arabidopsis thaliana: generation of 12,028 non-redundant expressed sequence tags from normalized and size-selected cDNA libraries.

    PubMed

    Asamizu, E; Nakamura, Y; Sato, S; Tabata, S

    2000-06-30

    For comprehensive analysis of genes expressed in the model dicotyledonous plant, Arabidopsis thaliana, expressed sequence tags (ESTs) were accumulated. Normalized and size-selected cDNA libraries were constructed from aboveground organs, flower buds, roots, green siliques and liquid-cultured seedlings, respectively, and a total of 14,026 5'-end ESTs and 39,207 3'-end ESTs were obtained. The 3'-end ESTs could be clustered into 12,028 non-redundant groups. Similarity search of the non-redundant ESTs against the public non-redundant protein database indicated that 4816 groups show similarity to genes of known function, 1864 to hypothetical genes, and the remaining 5348 are novel sequences. Gene coverage by the non-redundant ESTs was analyzed using the annotated genomic sequences of approximately 10 Mb on chromosomes 3 and 5. A total of 923 regions were hit by at least one EST, among which only 499 regions were hit by the ESTs deposited in the public database. The result indicates that the EST source generated in this project complements the EST data in the public database and facilitates new gene discovery.

  20. Global combined precursor isotopic labeling and isobaric tagging (cPILOT) approach with selective MS(3) acquisition.

    PubMed

    Evans, Adam R; Robinson, Renã A S

    2013-11-01

    Recently, we reported a novel proteomics quantitation scheme termed "combined precursor isotopic labeling and isobaric tagging (cPILOT)" that allows for the identification and quantitation of nitrated peptides in as many as 12-16 samples in a single experiment. cPILOT offers enhanced multiplexing and posttranslational modification specificity, however excludes global quantitation for all peptides present in a mixture and underestimates reporter ion ratios similar to other isobaric tagging methods due to precursor co-isolation. Here, we present a novel chemical workflow for cPILOT that can be used for global tagging of all peptides in a mixture. Specifically, through low pH precursor dimethylation of tryptic or LysC peptides followed by high pH tandem mass tags, the same reporter ion can be used twice in a single experiment. Also, to improve triple-stage mass spectrometry (MS(3) ) data acquisition, a selective MS(3) method that focuses on product selection of the y1 fragment of lysine-terminated peptides is incorporated into the workflow. This novel cPILOT workflow has potential for global peptide quantitation that could lead to enhanced sample multiplexing and increase the number of quantifiable spectra obtained from MS(3) acquisition methods. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Directional Radio-Frequency Identification Tag Reader

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John D.; Henderson, John J.

    2004-01-01

    A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).

  2. Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples

    PubMed Central

    Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel

    2017-01-01

    Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837

  3. Caged Molecular Glues as Photoactivatable Tags for Nuclear Translocation of Guests in Living Cells.

    PubMed

    Arisaka, Akio; Mogaki, Rina; Okuro, Kou; Aida, Takuzo

    2018-02-21

    We developed dendritic caged molecular glues ( Caged Glue-R) as tags for nucleus-targeted drug delivery, whose multiple guanidinium ion (Gu + ) pendants are protected by an anionic photocleavable unit (butyrate-substituted nitroveratryloxycarbonyl; BA NVOC). Negatively charged Caged Glue-R hardly binds to anionic biomolecules because of their electrostatic repulsion. However, upon exposure of Caged Glue-R to UV light or near-infrared (NIR) light, the BA NVOC groups of Caged Glue-R are rapidly detached to yield an uncaged molecular glue ( Uncaged Glue-R) that carries multiple Gu + pendants. Because Gu + forms a salt bridge with PO 4 - , Uncaged Glue-R tightly adheres to anionic biomolecules such as DNA and phospholipids in cell membranes by a multivalent salt-bridge formation. When tagged with Caged Glue-R, guests can be taken up into living cells via endocytosis and hide in endosomes. However, when the Caged Glue-R tag is photochemically uncaged to form Uncaged Glue-R, the guests escape from the endosome and migrate into the cytoplasm followed by the cell nucleus. We demonstrated that quantum dots (QDs) tagged with Caged Glue-R can be delivered efficiently to cell nuclei eventually by irradiation with light.

  4. Evaluation of Intercontinental Transport of Ozone Using Full-tagged, Tagged-N and Sensitivity Methods

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Liu, J.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Fan, S.; Li, X.; Tao, S.

    2014-12-01

    Long-range transport of ozone is of great concern, yet the source-receptor relationships derived previously depend strongly on the source attribution techniques used. Here we describe a new tagged ozone mechanism (full-tagged), the design of which seeks to take into account the combined effects of emissions of ozone precursors, CO, NOx and VOCs, from a particular source, while keeping the current state of chemical equilibrium unchanged. We label emissions from the target source (A) and background (B). When two species from A and B sources react with each other, half of the resulting products are labeled A, and half B. Thus the impact of a given source on downwind regions is recorded through tagged chemistry. We then incorporate this mechanism into the Model for Ozone and Related chemical Tracers (MOZART-4) to examine the impact of anthropogenic emissions within North America, Europe, East Asia and South Asia on ground-level ozone downwind of source regions during 1999-2000. We compare our results with two previously used methods -- the sensitivity and tagged-N approaches. The ozone attributed to a given source by the full-tagged method is more widely distributed spatially, but has weaker seasonal variability than that estimated by the other methods. On a seasonal basis, for most source/receptor pairs, the full-tagged method estimates the largest amount of tagged ozone, followed by the sensitivity and tagged-N methods. In terms of trans-Pacific influence of ozone pollution, the full-tagged method estimates the strongest impact of East Asian (EA) emissions on the western U.S. (WUS) in MAM and JJA (~3 ppbv), which is substantially different in magnitude and seasonality from tagged-N and sensitivity studies. This difference results from the full-tagged method accounting for the maintenance of peroxy radicals (e.g., CH3O2, CH3CO3, and HO2), in addition to NOy, as effective reservoirs of EA source impact across the Pacific, allowing for a significant contribution to

  5. [Understanding mitochondrial genome fragmentation in parasitic lice (Insecta: Phthiraptera)].

    PubMed

    Dong, Wen-Ge; Guo, Xian-Guo; Jin, Dao-Chao; Xue, Shi-Peng; Qin, Feng; Simon, Song; Stephen, C Barker; Renfu, Shao

    2013-07-01

    Lice are obligate ectoparasites of mammals and birds. Extensive fragmentation of mitochondrial genomes has been found in some louse species in the families Pediculidae, Pthiridae, Philopteridae and Trichodectidae. For example, the mt genomes of human body louse (Pediculus humanus), head louse (Pediculus capitis), and public louse (Pthirus pubis) have 20, 20 and 14 mini-chromosomes, respectively. These mini-chromosomes might be the results of deletion and recombination of mt genes. The factors and mechanisms of mitochondrial genome fragmentation are currently unknown. The fragmentation might be the results of evolutionary selection or random genetic drift or it is probably related to the lack of mtSSB (mitochondrial single-strand DNA binding protein). Understanding the fragmentation of mitochondrial genomes is of significance for understanding the origin and evolution of mitochondria. This paper reviews the recent advances in the studies of mito-chondrial genome fragmentation in lice, including the phenomena of mitochondrial genome fragmentation, characteristics of fragmented mitochondrial genomes, and some factors and mechanisms possibly leading to the mitochondrial genome fragmentation of lice. Perspectives for future studies on fragmented mt genomes are also discussed.

  6. Detection of restriction fragment length polymorphisms in clinical isolates and serially passaged Pseudomonas aeruginosa strains.

    PubMed Central

    Hjelm, L N; Branstrom, A A; Warren, R L

    1990-01-01

    An 800-base-pair HindIII-PstI fragment that flanks a hot spot for Tn7 insertion was isolated from the chromosome of Pseudomonas aeruginosa and cloned into pUC12. The fragment was used to probe XhoI digests of genomic DNA from 18 P. aeruginosa isolates collected from sputum samples of seven cystic fibrosis patients. Only two XhoI restriction fragment length polymorphisms (RFLPs), of 3.7 and 7.7 kilobases (kb), were detected. Isolate WSU3531-1 (3.7-kb XhoI fragment) and WSU3860 (7.7-kb XhoI fragment), while isolated from the same patient, showed different RFLPs. Serial passages of isolate WSU3531-1 demonstrated that this strain was phenotypically stable. In contrast, colony and pigment variants were readily isolated at a frequency of 1% from serial passages of isolate WSU3860. When XhoI-digested genomic DNA from phenotypic variants of serially passaged WSU3860 were probed with the 800-base-pair HindIII-PstI fragment, the probe hybridized to a 10.4-kb XhoI fragment from three isolates. Restriction analysis of the genomic DNA digested with a variety of restriction enzymes showed that a 2.7-kb insertion occurred in the same region for all three isolates. There appeared to be no correlation between changes in the RFLP and changes in colony morphology. Images PMID:1977762

  7. Restriction fragment length polymorphism among Israeli Holstein-Friesian dairy bulls.

    PubMed

    Beckmann, J S; Kashi, Y; Hallerman, E M; Nave, A; Soller, M

    1986-01-01

    Israeli Holstein-Friesian dairy bulls were screened for restriction fragment length polymorphisms by hybridizing cloned DNA probes for bovine growth hormone, for chymosin, and for rat muscle beta-actin to restriction endonuclease-digested DNA immobilized on nitrocellulose filters. The population proved to be polymorphic at the growth hormone locus, with evidence consistent with the phenotypes being inherited in allelic fashion. A low level of polymorphism was also observed at one of the beta-actin gene family loci. The chymosin locus was monomorphic with the restriction enzymes utilized. The results illustrate the power of restriction fragment length polymorphism methodology in visualizing genetic variability in dairy cattle populations.

  8. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility

    PubMed Central

    Cho, Chak-Lam; Majzoub, Ahmad; Esteves, Sandro C.

    2017-01-01

    Sperm DNA fragmentation (SDF) testing has been emerging as a valuable tool for male fertility evaluation. While the essential role of sperm DNA integrity in human reproduction was extensively studied, the clinical indication of SDF testing is less clear. This clinical practice guideline provides recommendations of clinical utility of the test supported by evidence. It is intended to serve as a reference for fertility specialists in identifying the circumstances in which SDF testing should be of greatest clinical value. SDF testing is recommended in patients with clinical varicocele and borderline to normal semen parameters as it can better select varicocelectomy candidates. Outcomes of natural pregnancy and assisted reproductive techniques (ART) can be predicted by result of SDF tests. High SDF is also linked with recurrent pregnancy loss (RPL) and failure of ART. Result of SDF testing may change the management decision by selecting the most appropriate ART with the highest success rate for infertile couples. Several studies have demonstrated the benefit in using testicular instead of ejaculated sperm in men with high SDF, oligozoospermia or recurrent in vitro fertilization (IVF) failure. Infertile men with modifiable lifestyle factor may benefit from SDF testing by reinforcing risk factor modification and monitoring patient’s progress to intervention. PMID:29082206

  9. Extrapolation of the dna fragment-size distribution after high-dose irradiation to predict effects at low doses

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.

    2001-01-01

    The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.

  10. Rapid labeling of intracellular His-tagged proteins in living cells

    PubMed Central

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A.; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-01-01

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni2+-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni2+-NTA–based probes. Unfortunately, previous Ni-NTA–based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni2+ ions. The probe, driven by Ni2+-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells. PMID:25713372

  11. Rapid labeling of intracellular His-tagged proteins in living cells.

    PubMed

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-03-10

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.

  12. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli

    PubMed Central

    2012-01-01

    Background The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. Conclusions Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller Sef

  13. Sodium phenylbutyrate ameliorates focal cerebral ischemic/reperfusion injury associated with comorbid type 2 diabetes by reducing endoplasmic reticulum stress and DNA fragmentation.

    PubMed

    Srinivasan, Krishnamoorthy; Sharma, Shyam S

    2011-11-20

    Endoplasmic reticulum (ER) stress has been postulated to play a crucial role in the pathophysiology of cerebral ischemic/reperfusion (I/R) injury and diabetes. Diabetes is a major risk factor and also common amongst the people who suffer from stroke. In this study, we have investigated the neuroprotective potential of sodium 4-phenylbutyrate (SPB; 30-300mg/kg), a chemical chaperone by targeting ER stress in a rat model of transient focal cerebral ischemia associated with comorbid type 2 diabetes. Intraperitoneal treatment with SPB (100 and 300mg/kg) significantly ameliorated brain I/R damage as evidenced by reduction in cerebral infarct and edema volume. It also significantly improved the functional recovery of various neurobehavioral impairments (neurological deficit score, grip strength and rota rod) evoked by I/R compared with vehicle-treatment. Further, SPB (100mg/kg) significantly reduced the DNA fragmentation as shown by prominent reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells. This effect was observed concomitantly with significant attenuation in upregulation of 78kDa glucose regulated protein (GRP78), CCAAT/enhancer binding protein homologous protein or growth arrest DNA damage-inducible gene 153 (CHOP/GADD153) and activation of caspase-12, specific markers of ER stress/apoptosis. The neuroprotection observed with SPB was independent of its effect on cerebral blood flow and blood glucose. In conclusion, this study demonstrates the neuroprotective effect of SPB owing to amelioration of ER stress and DNA fragmentation. It also suggest that targeting ER stress might offer a promising therapeutic approach and benefits against ischemic stroke associated with comorbid type 2 diabetes. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect of different doses of nandrolone decanoate on lipid peroxidation, DNA fragmentation, sperm abnormality and histopathology of testes of male Wister rats.

    PubMed

    Mohamed, Hanaa Mahmoud; Mohamed, Manal Abdul-Hamid

    2015-01-01

    The present study aims of to investigate the effects of low and high doses of nandrolone decanoate (ND) on histopathology and apoptosis of the spermatogenic cells as well as lipid peroxidation, antioxidant enzyme activities, sperm abnormality and DNA fragmentation. Eighteen animals were divided into three groups each group contain six animals. The rats were divided into three groups as following: Group 1 was administered saline (control). Group 2, received nandrolone decanoate (3 mg/kg/weekly) (low dose) with intramuscular injection. Group 3, received intramuscular injection dose of nandrolone decanoate (10 mg/kg/weekly) (high dose). After 8 weeks, caspase-3 assay was used to determine the apoptotic cells. The sperm parameters, lipid peroxidation, antioxidant enzyme activities and testosterone concentration were also investigated in the experimental groups of both low and high dose compared to the control groups. Treated group with high dose showed degenerated germinal epithelial cells sloughed in the lumina of seminiferous tubules, where almost seminiferous tubules were devoid of spermatids and spermatozoa compared to control and group treated with low dose. Also, a significant increase of lipid peroxidation levels and heat shock proteins was observed in two groups administrated with two different doses of ND while, antioxidant enzyme activities, and testosterone concentration was significantly decreased in two treated group when compared with control. Administration of ND at high and low doses leads to deteriorated sperm parameters, DNA fragmentation and testicular apoptosis. In conclusion, the administration ND at high doses more effective on lipid peroxidation, antioxidant enzyme activities, sperm abnormality, histopathology, apoptotic and DNA changes compared to low dose group and to control group. Published by Elsevier GmbH.

  15. Fragman: an R package for fragment analysis

    USDA-ARS?s Scientific Manuscript database

    Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and QTL mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available softw...

  16. Pulsewidth-dependent nature of laser-induced DNA damage in RPE cells

    NASA Astrophysics Data System (ADS)

    Hall, Rebecca M.; Glickman, Randolph D.; Rockwell, Benjamin A.; Kumar, Neeru; Noojin, Gary D.

    2001-07-01

    Ultrashort pulse laser radiation may produce cellular damage through unique mechanisms. Primary cultures of bovine retinal pigment epithelial (RPE) cells were exposed to the out put of a Ti:Sapphire laser producing 30 fs (mode-locked) pulses, 44 amplified fs pulses, or continuous wave exposures at 800 nm. Laser exposures at and below the damage threshold were studied. DNA damage was detected using single cell gel electrophoresis (comet assay). Unexposed (control) cells produced short tails with low tail moments. In contrast, all laser-exposed cells showed some degree of DNA fragmentation, but the size and shape of the resulting comets differed among the various modalities. CW-exposed cells produced generally light and relatively compact tails, suggesting fewer and larger DNA fragments, while mode-locked laser exposures (30 fs pulses) resulted in large and diffuse comets, indicating the DNA was fragmented into many very small pieces. Work is continuing to define the relationship of laser pulsewidth and intensity with the degree of DNA fragmentation. These results suggest that DNA damage may result from multiple mechanisms of laser-cell interaction, including multiphoton absorption.

  17. Differential Inflammatory-Response Kinetics of Human Keratinocytes upon Cytosolic RNA- and DNA-Fragment Induction.

    PubMed

    Danis, Judit; Janovák, Luca; Gubán, Barbara; Göblös, Anikó; Szabó, Kornélia; Kemény, Lajos; Bata-Csörgő, Zsuzsanna; Széll, Márta

    2018-03-08

    Keratinocytes are non-professional immune cells contributing actively to innate immune responses partially by reacting to a wide range of molecular patterns by activating pattern recognition receptors. Cytosolic nucleotide fragments as pathogen- or self-derived trigger factors are activating inflammasomes and inducing anti-viral signal transduction pathways as well as inducing expression of inflammatory cytokines. We aimed to compare the induced inflammatory reactions in three keratinocyte cell types-normal human epidermal keratinocytes, the HaCaT cell line and the HPV-KER cell line-upon exposure to the synthetic RNA and DNA analogues poly(I:C) and poly(dA:dT) to reveal the underlying signaling events. Both agents induced the expression of interleukin-6 and tumor necrosis factor α in all cell types; however, notable kinetic and expression level differences were found. Western blot analysis revealed rapid activation of the nuclear factor κB (NF-κB), mitogen activated protein kinase and signal transducers of activator of transcription (STAT) signal transduction pathways in keratinocytes upon poly(I:C) treatment, while poly(dA:dT) induced slower activation. Inhibition of NF-κB, p38, STAT-1 and STAT-3 signaling resulted in decreased cytokine expression, whereas inhibition of mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling showed a negative feedback role in both poly(I:C)- and poly(dA:dT)-induced cytokine expression. Based on our in vitro results nucleotide fragments are able to induce inflammatory reactions in keratinocytes, but with different rate and kinetics of cytokine expression, explained by faster activation of signaling routes by poly(I:C) than poly(dA:dT).

  18. Differential Inflammatory-Response Kinetics of Human Keratinocytes upon Cytosolic RNA- and DNA-Fragment Induction

    PubMed Central

    Danis, Judit; Janovák, Luca; Gubán, Barbara; Göblös, Anikó; Szabó, Kornélia; Bata-Csörgő, Zsuzsanna; Széll, Márta

    2018-01-01

    Keratinocytes are non-professional immune cells contributing actively to innate immune responses partially by reacting to a wide range of molecular patterns by activating pattern recognition receptors. Cytosolic nucleotide fragments as pathogen- or self-derived trigger factors are activating inflammasomes and inducing anti-viral signal transduction pathways as well as inducing expression of inflammatory cytokines. We aimed to compare the induced inflammatory reactions in three keratinocyte cell types—normal human epidermal keratinocytes, the HaCaT cell line and the HPV-KER cell line—upon exposure to the synthetic RNA and DNA analogues poly(I:C) and poly(dA:dT) to reveal the underlying signaling events. Both agents induced the expression of interleukin-6 and tumor necrosis factor α in all cell types; however, notable kinetic and expression level differences were found. Western blot analysis revealed rapid activation of the nuclear factor κB (NF-κB), mitogen activated protein kinase and signal transducers of activator of transcription (STAT) signal transduction pathways in keratinocytes upon poly(I:C) treatment, while poly(dA:dT) induced slower activation. Inhibition of NF-κB, p38, STAT-1 and STAT-3 signaling resulted in decreased cytokine expression, whereas inhibition of mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling showed a negative feedback role in both poly(I:C)- and poly(dA:dT)-induced cytokine expression. Based on our in vitro results nucleotide fragments are able to induce inflammatory reactions in keratinocytes, but with different rate and kinetics of cytokine expression, explained by faster activation of signaling routes by poly(I:C) than poly(dA:dT). PMID:29518010

  19. Sperm DNA fragmentation and morphological degeneration in chilled elephant (Elephas maximus and Loxodonta Africana) semen collected by transrectal massage.

    PubMed

    O'Brien, J K; Steinman, K J; Montano, G A; Love, C C; Robeck, T R

    2013-05-01

    Ejaculates from nine Asian and two African elephants were analysed to gain a further understanding of mechanisms underlying variable semen quality after transrectal massage. Semen analysis was performed after collection (0 h; subjective motility parameters only) and after 24 h of chilled storage at 10 °C (24 h; all ejaculate and sperm characteristics). Ejaculates with ≤50% total motility (TM) at 24 h, which represented >90% of collection attempts, contained a sperm population with a high degree of DNA damage (64.2 ± 19.2% fragmented DNA) and an elevated incidence of detached heads (43.3 ± 22.5%). In contrast, good quality ejaculates designated as those with >50% TM at 24 h displayed higher (p < 0.05) values of sperm kinetic parameters, DNA integrity and normal morphology. Fertility potential was high for good quality ejaculates from two males (one Asian and one African bull) based on in vitro characteristics after chilled storage for up to 48 h post-collection. Urine contamination of semen, as assessed quantitatively by creatinine concentration, was confirmed as a significant factor in reduced elephant ejaculate quality. However, the identification of considerable DNA damage and morphological degeneration in the majority of ejaculates after only 24 h of chilled storage indicates that sperm ageing could be a primary contributor to inconsistent semen quality in the elephant. © 2013 American Society of Andrology and European Academy of Andrology.

  20. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  1. What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan

    2017-12-01

    Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.

  2. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pröpper, Kevin; Instituto de Biologia Molecular de Barcelona; Meindl, Kathrin

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite themore » fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.« less

  3. Buddy Tag CONOPS and Requirements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brotz, Jay Kristoffer; Deland, Sharon M.

    2015-12-01

    This document defines the concept of operations (CONOPS) and the requirements for the Buddy Tag, which is conceived and designed in collaboration between Sandia National Laboratories and Princeton University under the Department of State Key VerificationAssets Fund. The CONOPS describe how the tags are used to support verification of treaty limitations and is only defined to the extent necessary to support a tag design. The requirements define the necessary functions and desired non-functional features of the Buddy Tag at a high level

  4. Detection of sequence variation in parasite ribosomal DNA by electrophoresis in agarose gels supplemented with a DNA-intercalating agent.

    PubMed

    Zhu, X Q; Chilton, N B; Gasser, R B

    1998-05-01

    This study evaluated the use of a commercially available DNA intercalating agent (Resolver Gold) in agarose gels for the direct detection of sequence variation in ribosomal DNA (rDNA). This agent binds preferentially to AT sequence motifs in DNA. Regions of nuclear rDNA, known to provide genetic markers for the identification of species of parasitic ascarid nematodes (order Ascaridida), were amplified by polymerase chain reaction (PCR) and subjected to electrophoresis in standard agarose gels versus gels supplemented with Resolver Gold. Individual taxa examined could not be distinguished reliably based on the size of their amplicons in standard agarose gels, whereas they could be readily delineated based on mobility using Resolver Gold-supplemented gels. The latter was achieved because of differences (approximately 0.1-8.2%) in the AT content of the fragments among different taxa, which were associated with significant interspecific differences (approximately 11-39%) in the rDNA sequences employed. There was a tendency for fragments with higher AT content to migrate slower in supplemented agarose gels compared with those of lower AT content. The results indicate the usefulness of this electrophoretic approach to rapidly screen for sequence variability within or among PCR-amplified rDNA fragments of similar sizes but differing AT contents. Although evaluated on rDNA of parasites, the approach has potential to be applied to a range of genes of different groups of infectious organisms.

  5. New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag.

    PubMed

    Biancucci, Marco; Dolores, Jazel S; Wong, Jennifer; Grimshaw, Sarah; Anderson, Wayne F; Satchell, Karla J F; Kwon, Keehwan

    2017-01-05

    Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called "the CPD-tag". The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins.

  6. SparkClouds: visualizing trends in tag clouds.

    PubMed

    Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash

    2010-01-01

    Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

  7. Sperm DNA damage or progressive motility: which one is the better predictor of fertilization in vitro?

    PubMed

    Simon, Luke; Lewis, Sheena E M

    2011-06-01

    Sperm progressive motility has been reported to be one of the key factors influencing in vitro fertilization rates. However, recent studies have shown that sperm DNA fragmentation is a more robust predictor of assisted reproductive outcomes including reduced fertilization rates, embryo quality, and pregnancy rates. This study aimed to compare the usefulness of sperm progressive motility and DNA damage as predictive tools of in vitro fertilization rates. Here, 136 couples provided 1,767 eggs with an overall fertilization rate of 64.2%. The fertilization rate in vitro correlated with both sperm progressive motility (r² = 0.236; P = 0.002) and DNA fragmentation (r² = -0.318; P < 0.001). The relative risk of a poor fertilization rate was 9.5 times higher in sperm of men with high DNA fragmentation (>40%) compared with 2.6 times in sperm with poor motility (<40%). Further, sperm DNA fragmentation gave a higher specificity (93.3%) in predicting the fertilization rate than progressive motility (77.8%). Finally, the odds ratio to determine fertilization rate (>70%) was 4.81 (1.89-12.65) using progressive motility compared with 24.18 (5.21-154.51) using DNA fragmentation. This study shows that fertilization rates are directly dependent upon both sperm progressive motility and DNA fragmentation, but sperm DNA fragmentation is a much stronger test.

  8. Survival, growth, and tag retention in age-0 Chinook Salmon implanted with 8-, 9-, and 12-mm PIT tags

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Perry, Russell W.; Connor, William P.; Mullins, Frank L.; Rabe, Craig; Nelson, Doug D

    2015-01-01

    The ability to represent a population of migratory juvenile fish with PIT tags becomes difficult when the minimum tagging size is larger than the average size at which fish begin to move downstream. Tags that are smaller (e.g., 8 and 9 mm) than the commonly used 12-mm PIT tags are currently available, but their effects on survival, growth, and tag retention in small salmonid juveniles have received little study. We evaluated growth, survival, and tag retention in age-0 Chinook Salmon Oncorhynchus tshawytscha of three size-groups: 40–49-mm fish were implanted with 8- and 9-mm tags, and 50– 59-mm and 60–69-mm fish were implanted with 8-, 9-, and 12-mm tags. Survival 28 d after tagging ranged from 97.8% to 100% across all trials, providing no strong evidence for a fish-size-related tagging effect or a tag size effect. No biologically significant effects of tagging on growth in FL (mm/d) or weight (g/d) were observed. Although FL growth in tagged fish was significantly reduced for the 40–49-mm and 50–59-mm groups over the first 7 d, growth rates were not different thereafter, and all fish were similar in size by the end of the trials (day 28). Tag retention across all tests ranged from 93% to 99%. We acknowledge that actual implantation of 8- or 9-mm tags into small fish in the field will pose additional challenges (e.g., capture and handling stress) beyond those observed in our laboratory. However, we conclude that experimental use of the smaller tags for small fish in the field is supported by our findings.

  9. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology

    PubMed Central

    2010-01-01

    Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1) DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2) Miniprep DNA from E. coli can be eluted with as little as 5 μl water, leading to high DNA concentrations (>1 μg/μl) for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG)-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3) Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4) High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research. PMID:20180960

  10. Comparing the hierarchy of author given tags and repository given tags in a large document archive

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Palla, Gergely

    2016-10-01

    Folksonomies - large databases arising from collaborative tagging of items by independent users - are becoming an increasingly important way of categorizing information. In these systems users can tag items with free words, resulting in a tripartite item-tag-user network. Although there are no prescribed relations between tags, the way users think about the different categories presumably has some built in hierarchy, in which more special concepts are descendants of some more general categories. Several applications would benefit from the knowledge of this hierarchy. Here we apply a recent method to check the differences and similarities of hierarchies resulting from tags given by independent individuals and from tags given by a centrally managed repository system. The results from our method showed substantial differences between the lower part of the hierarchies, and in contrast, a relatively high similarity at the top of the hierarchies.

  11. Amino Acids 257 to 288 of Mouse p48 Control the Cooperation of Polyomavirus Large T Antigen, Replication Protein A, and DNA Polymerase α-Primase To Synthesize DNA In Vitro

    PubMed Central

    Kautz, Armin R.; Weisshart, Klaus; Schneider, Annerose; Grosse, Frank; Nasheuer, Heinz-Peter

    2001-01-01

    Although p48 is the most conserved subunit of mammalian DNA polymerase α-primase (pol-prim), the polypeptide is the major species-specific factor for mouse polyomavirus (PyV) DNA replication. Human and murine p48 contain two regions (A and B) that show significantly lower homology than the rest of the protein. Chimerical human-murine p48 was prepared and coexpressed with three wild-type subunits of pol-prim, and four subunit protein complexes were purified. All enzyme complexes synthesized DNA on single-stranded (ss) DNA and replicated simian virus 40 DNA. Although the recombinant protein complexes physically interacted with PyV T antigen (Tag), we determined that the murine region A mediates the species specificity of PyV DNA replication in vitro. More precisely, the nonconserved phenylalanine 262 of mouse p48 is crucial for this activity, and pol-prim with mutant p48, h-S262F, supports PyV DNA replication in vitro. DNA synthesis on RPA-bound ssDNA revealed that amino acid (aa) 262, aa 266, and aa 273 to 288 are involved in the functional cooperation of RPA, pol-prim, and PyV Tag. PMID:11507202

  12. Trapping and breaking of in vivo nicked DNA during pulsed-field gel electrophoresis

    PubMed Central

    Khan, Sharik R.; Kuzminov, Andrei

    2013-01-01

    Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percent of chromosomal DNA entering the gel. The degree of separation in PFG depends upon the size of DNA, as well as various conditions of electrophoresis, such as electric field strength (FS), time of electrophoresis, switch time and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that sub-chromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single strand interruptions results in artefactual decrease in molecular weight of linear DNA making accurate determination of the number of double strand breaks difficult. While breakage of nicked sub-chromosomal fragments is FS-independent, some high molecular weight sub-chromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage. PMID:23770235

  13. Studies on DNA damage: discordant responses of rate of DNA disentanglement (viscosimetrically evaluated) and alkaline elution rate, obtained for several compounds. Possible explanations of the discrepancies.

    PubMed

    Parodi, S; Balbi, C; Abelmoschi, M L; Pala, M; Russo, P; Santi, L

    1983-12-01

    Alkaline elution is a well-known method for detecting DNA damage. Recently we have developed a viscosimetric method that is even more sensitive than alkaline elution. Here we report that the two methods, although apparently both revealing alkaline DNA fragmentation, can give dramatically different results for a significant series of compounds. We suspect that alkaline elution might reveal not only DNA fragmentation but also the extent of disentanglement of chromatin structure, whereas this DNA disentanglement rate, when evaluated viscosimetrically , is more strictly correlated with the initiation of DNA unwinding.

  14. Characterization of the repetitive DNA elements in the genome of fish lymphocystis disease viruses.

    PubMed

    Schnitzler, P; Darai, G

    1989-09-01

    The complete DNA nucleotide sequence of the repetitive DNA elements in the genome of fish lymphocystis disease virus (FLDV) isolated from two different species (flounder and dab) was determined. The size of these repetitive DNA elements was found to be 1413 bp which corresponds to the DNA sequences of the 5' terminus of the EcoRI DNA fragment B (0.034 to 0.052 m.u.) and to the EcoRI DNA fragment M (0.718 to 0.736 m.u.) of the FLDV genome causing lymphocystis disease in flounder and plaice. The degree of DNA nucleotide homology between both regions was found to be 99%. The repetitive DNA element in the genome of FLDV isolated from other fish species (dab) was identified and is located within the EcoRI DNA fragment B and J of the viral genome. The DNA nucleotide sequence of one duplicate of this repetition (EcoRI DNA fragment J) was determined (1410 bp) and compared to the DNA nucleotide sequences of the repetitive DNA elements of the genome of FLDV isolated from flounder. It was found that the repetitive DNA elements of the genome of FLDV derived from two different fish species are highly conserved and possess a degree of DNA sequence homology of 94%. The DNA sequences of each strand of the individual repetitive element possess one open reading frame.

  15. Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens.

    PubMed

    Weiß, Clemens L; Schuenemann, Verena J; Devos, Jane; Shirsekar, Gautam; Reiter, Ella; Gould, Billie A; Stinchcombe, John R; Krause, Johannes; Burbano, Hernán A

    2016-06-01

    Herbaria archive a record of changes of worldwide plant biodiversity harbouring millions of specimens that contain DNA suitable for genome sequencing. To profit from this resource, it is fundamental to understand in detail the process of DNA degradation in herbarium specimens. We investigated patterns of DNA fragmentation and nucleotide misincorporation by analysing 86 herbarium samples spanning the last 300 years using Illumina shotgun sequencing. We found an exponential decay relationship between DNA fragmentation and time, and estimated a per nucleotide fragmentation rate of 1.66 × 10(-4) per year, which is six times faster than the rate estimated for ancient bones. Additionally, we found that strand breaks occur specially before purines, and that depurination-driven DNA breakage occurs constantly through time and can to a great extent explain decreasing fragment length over time. Similar to what has been found analysing ancient DNA from bones, we found a strong correlation between the deamination-driven accumulation of cytosine to thymine substitutions and time, which reinforces the importance of substitution patterns to authenticate the ancient/historical nature of DNA fragments. Accurate estimations of DNA degradation through time will allow informed decisions about laboratory and computational procedures to take advantage of the vast collection of worldwide herbarium specimens.

  16. Fragment length polymorphisms among independent isolates of Epstein-Barr virus from immunocompromised and normal hosts.

    PubMed

    Katz, B Z; Niederman, J C; Olson, B A; Miller, G

    1988-02-01

    DNA restriction fragment length polymorphisms of Epstein-Barr virus (EBV) DNA were used as a molecular epidemiological tool to study multiple isolates of virus from the same and different individuals. We studied 35 EBV isolates: 19 from seven immunocompromised children and 16 from seven college students with mononucleosis. Analysis of the fragment length polymorphisms in this collection of isolates permitted several conclusions. Sites of polymorphism were most often encountered in regions with repetitive DNA. Epidemiologically unrelated patients harbored viruses that could be readily distinguished; by contrast, two infants and their mothers harbored similar viruses. Isolates from different sites in the same patient were similar. Variations between different clinical isolates of EBV mimic those found between different laboratory strains of the virus. Fragment length polymorphisms thus provide a useful marker for studying transmission and pathogenesis of EBV infections.

  17. Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state.

    PubMed

    Kypr, J; Chládková, J; Zimulová, M; Vorlícková, M

    1999-09-01

    We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.

  18. Reconstructing the history of a fragmented and heavily exploited red deer population using ancient and contemporary DNA.

    PubMed

    Rosvold, Jørgen; Røed, Knut H; Hufthammer, Anne Karin; Andersen, Reidar; Stenøien, Hans K

    2012-09-26

    Red deer (Cervus elaphus) have been an important human resource for millennia, experiencing intensive human influence through habitat alterations, hunting and translocation of animals. In this study we investigate a time series of ancient and contemporary DNA from Norwegian red deer spanning about 7,000 years. Our main aim was to investigate how increasing agricultural land use, hunting pressure and possibly human mediated translocation of animals have affected the genetic diversity on a long-term scale. We obtained mtDNA (D-loop) sequences from 73 ancient specimens. These show higher genetic diversity in ancient compared to extant samples, with the highest diversity preceding the onset of agricultural intensification in the Early Iron Age. Using standard diversity indices, Bayesian skyline plot and approximate Bayesian computation, we detected a population reduction which was more prolonged than, but not as severe as, historic documents indicate. There are signs of substantial changes in haplotype frequencies primarily due to loss of haplotypes through genetic drift. There is no indication of human mediated translocations into the Norwegian population. All the Norwegian sequences show a western European origin, from which the Norwegian lineage diverged approximately 15,000 years ago. Our results provide direct insight into the effects of increasing habitat fragmentation and human hunting pressure on genetic diversity and structure of red deer populations. They also shed light on the northward post-glacial colonisation process of red deer in Europe and suggest increased precision in inferring past demographic events when including both ancient and contemporary DNA.

  19. Notes on SAW Tag Interrogation Techniques

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2010-01-01

    We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only

  20. Cytosolic expression of functional Fab fragments in Escherichia coli using a novel combination of dual SUMO expression cassette and EnBase® cultivation mode.

    PubMed

    Rezaie, F; Davami, F; Mansouri, K; Agha Amiri, S; Fazel, R; Mahdian, R; Davoudi, N; Enayati, S; Azizi, M; Khalaj, V

    2017-05-08

    The Escherichia coli expression system is highly effective in producing recombinant proteins. However, there are some limitations in this system, especially in obtaining correctly folded forms of some complex proteins such as Fab fragments. To improve the solubility and folding quality of Fab fragments, we have examined the effect of simultaneous application of a SUMO fusion tag, EnBase ® cultivation mode and a redox mutant strain in the E. coli expression system. A bicistronic gene construct was designed to express an antivascular endothelial growth factor (VEGF) Fab fragment as a model system. The construct contained a dual SUMO fusion gene fragment to encode SUMO-tagged heavy and light chains. While the expression of the construct in batch cultures of BL21 or SHuffle ® transformants produced insoluble and unfolded products, the induction of the transformants in EnBase ® medium resulted in soluble and correctly folded Fab fragment, reaching as high as 19% of the total protein in shuffle strain. The functional assays indicated that the biological activity of the target Fab is similar to the commercial anti-VEGF, Lucentis ® . This study demonstrated that the combination of SUMO fusion technology, EnBase ® cultivation system and recruiting a redox mutant of E. coli can efficiently enhance the solubility and productivity of recombinant Fab fragments. The presented strategy provides not only a novel method to produce soluble and active form of an anti-VEGF Fab but also may use in the efficient production of other antibody fragments. © 2017 The Society for Applied Microbiology.

  1. Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase

    PubMed Central

    Roberts, Victoria A.; Pique, Michael E.; Hsu, Simon; Li, Sheng; Slupphaug, Geir; Rambo, Robert P.; Jamison, Jonathan W.; Liu, Tong; Lee, Jun H.; Tainer, John A.; Ten Eyck, Lynn F.; Woods, Virgil L.

    2012-01-01

    X-ray crystallography provides excellent structural data on protein–DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein–DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein–DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG–DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210–220 and 251–264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG–DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway. PMID:22492624

  2. Labeling milk along its production chain with DNA encapsulated in silica.

    PubMed

    Bloch, Madeleine S; Paunescu, Daniela; Stoessel, Philipp R; Mora, Carlos A; Stark, Wendelin J; Grass, Robert N

    2014-10-29

    The capability of tracing a food product along its production chain is important to ensure food safety and product authenticity. For this purpose and as an application example, recently developed Silica Particles with Encapsulated DNA (SPED) were added to milk at concentrations ranging from 0.1 to 100 ppb (μg per kg milk). Thereby the milk, as well as the milk-derived products yoghurt and cheese, could be uniquely labeled with a DNA tag. Procedures for the extraction of the DNA tags from the food matrixes were elaborated and allowed identification and quantification of previously marked products by quantitative polymerase chain reaction (qPCR) with detection limits below 1 ppb of added particles. The applicability of synthetic as well as naturally occurring DNA sequences was shown. The usage of approved food additives as DNA carrier (silica = E551) and the low cost of the technology (<0.1 USD per ton of milk labeled with 10 ppb of SPED) display the technical applicability of this food labeling technology.

  3. Nucleotide exchange and excision technology DNA shuffling and directed evolution.

    PubMed

    Speck, Janina; Stebel, Sabine C; Arndt, Katja M; Müller, Kristian M

    2011-01-01

    Remarkable success in optimizing complex properties within DNA and proteins has been achieved by directed evolution. In contrast to various random mutagenesis methods and high-throughput selection methods, the number of available DNA shuffling procedures is limited, and protocols are often difficult to adjust. The strength of the nucleotide exchange and excision technology (NExT) DNA shuffling described here is the robust, efficient, and easily controllable DNA fragmentation step based on random incorporation of the so-called 'exchange nucleotides' by PCR. The exchange nucleotides are removed enzymatically, followed by chemical cleavage of the DNA backbone. The oligonucleotide pool is reassembled into full-length genes by internal primer extension, and the recombined gene library is amplified by standard PCR. The technique has been demonstrated by shuffling a defined gene library of chloramphenicol acetyltransferase variants using uridine as fragmentation defining exchange nucleotide. Substituting 33% of the dTTP with dUTP in the incorporation PCR resulted in shuffled clones with an average parental fragment size of 86 bases and revealed a mutation rate of only 0.1%. Additionally, a computer program (NExTProg) has been developed that predicts the fragment size distribution depending on the relative amount of the exchange nucleotide.

  4. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags

    PubMed Central

    Gorodkin, Jan; Cirera, Susanna; Hedegaard, Jakob; Gilchrist, Michael J; Panitz, Frank; Jørgensen, Claus; Scheibye-Knudsen, Karsten; Arvin, Troels; Lumholdt, Steen; Sawera, Milena; Green, Trine; Nielsen, Bente J; Havgaard, Jakob H; Rosenkilde, Carina; Wang, Jun; Li, Heng; Li, Ruiqiang; Liu, Bin; Hu, Songnian; Dong, Wei; Li, Wei; Yu, Jun; Wang, Jian; Stærfeldt, Hans-Henrik; Wernersson, Rasmus; Madsen, Lone B; Thomsen, Bo; Hornshøj, Henrik; Bujie, Zhan; Wang, Xuegang; Wang, Xuefei; Bolund, Lars; Brunak, Søren; Yang, Huanming; Bendixen, Christian; Fredholm, Merete

    2007-01-01

    Background Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages. Results Using the Distiller package, the ESTs were assembled to roughly 48,000 contigs and 73,000 singletons, of which approximately 25% have a high confidence match to UniProt. Approximately 6,000 new porcine gene clusters were identified. Expression analysis based on the non-normalized libraries resulted in the following findings. The distribution of cluster sizes is scaling invariant. Brain and testes are among the tissues with the greatest number of different expressed genes, whereas tissues with more specialized function, such as developing liver, have fewer expressed genes. There are at least 65 high confidence housekeeping gene candidates and 876 cDNA library-specific gene candidates. We identified differential expression of genes between different tissues, in particular brain/spinal cord, and found patterns of correlation between genes that share expression in pairs of libraries. Finally, there was remarkable agreement in expression between specialized tissues according to Gene Ontology categories. Conclusion This EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies. PMID:17407547

  5. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  6. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  7. Electrochemical detection of synthetic DNA and native 16S rRNA fragments on a microarray using a biotinylated intercalator as coupling site for an enzyme label.

    PubMed

    Zimdars, Andreas; Gebala, Magdalena; Hartwich, Gerhard; Neugebauer, Sebastian; Schuhmann, Wolfgang

    2015-10-01

    The direct electrochemical detection of synthetic DNA and native 16S rRNA fragments isolated from Escherichia coli is described. Oligonucleotides are detected via selective post-labeling of double stranded DNA and DNA-RNA duplexes with a biotinylated intercalator that enables high-specific binding of a streptavidin/alkaline phosphatase conjugate. The alkaline phosphatase catalyzes formation of p-aminophenol that is subsequently oxidized at the underlying gold electrode and hence enables the detection of complementary hybridization of the DNA capture strands due to the enzymatic signal amplification. The hybridization assay was performed on microarrays consisting of 32 individually addressable gold microelectrodes. Synthetic DNA strands with sequences representing six different pathogens which are important for the diagnosis of urinary tract infections could be detected at concentrations of 60 nM. Native 16S rRNA isolated from the different pathogens could be detected at a concentration of 30 fM. Optimization of the sensing surface is described and influences on the assay performance are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains.

    PubMed

    Lee, David J; Bingle, Lewis E H; Heurlier, Karin; Pallen, Mark J; Penn, Charles W; Busby, Stephen J W; Hobman, Jon L

    2009-12-09

    Homologous recombination mediated by the lambda-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the lambda-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these lambda-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains. Our goal was to develop a high-throughput recombineering system, primarily for the coupling of genes to epitope tags, which could also be used for deletion of genes in both pathogenic and K-12 E. coli strains. To that end we have designed a series of donor plasmids for use with the lambda-Red recombination system, which when cleaved in vivo by the I-SceI meganuclease generate a discrete linear DNA fragment, allowing for C-terminal tagging of chromosomal genes with a 6xHis, 3xFLAG, 4xProteinA or GFP tag or for the deletion of chromosomal regions. We have enhanced existing protocols and technologies by inclusion of a cassette conferring kanamycin resistance and, crucially, by including the sacB gene on the donor plasmid, so that all but true recombinants are counter-selected on kanamycin and sucrose containing media, thus eliminating the need for extensive screening. This method has the added advantage of limiting the exposure of cells to the potential damaging effects of the lambda-Red system, which can lead to unwanted secondary alterations to

  9. Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence-specific DNA detection in blood serum.

    PubMed

    Cash, Kevin J; Heeger, Alan J; Plaxco, Kevin W; Xiao, Yi

    2009-01-15

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem's loop forms part of the second stem, is modified with a methylene blue redox tag at its 3' terminus and covalently attached to a gold electrode via the 5' terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density ( approximately 1.8 x 10(13) molecules/cm(2) apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3' stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3' loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum.

  10. Optimization of a Reusable, DNA Pseudoknot-Based Electrochemical Sensor for Sequence-Specific DNA Detection in Blood Serum

    PubMed Central

    Cash, Kevin J.; Heeger, Alan J.; Plaxco, Kevin W.; Xiao, Yi

    2010-01-01

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem’s loop forms part of the second stem, is modified with a methylene blue redox tag at its 3′ terminus and covalently attached to a gold electrode via the 5′ terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density (~1.8 × 1013 molecules/cm2 apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3′ stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3′ loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum. PMID:19093760

  11. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    PubMed Central

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  12. Soldier Data Tag Study Effort.

    DTIC Science & Technology

    1985-06-10

    interested in protecting it. The tag itself is difficult--though not impossible--to counterfeit . Also, it (’• iii 71 -, potentially improves the data...attacks during the design, manufacture, and distribution processes, counterfeiting , unauthorized access/alteration of tag data, and use of the tag to...45 3.3.2 Hijacking of SOT System Shipments, or Large- Scale Counterfeit of SOT Systems ....................... 46 3.3.3 Unauthorized Alteration

  13. Graphene Field-Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene-Tagged DNA Aptamer.

    PubMed

    Wu, Guangfu; Dai, Ziwen; Tang, Xin; Lin, Zihong; Lo, Pik Kwan; Meyyappan, M; Lai, King Wai Chiu

    2017-10-01

    This study reports biosensing using graphene field-effect transistors with the aid of pyrene-tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe-modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG-FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Concepts in Biochemistry: Chemical Synthesis of DNA.

    ERIC Educational Resources Information Center

    Caruthers, Marvin H.

    1989-01-01

    Outlines the chemistry of the rapid synthesis of relatively large DNA fragments (100-200 monomers each) with yields exceeding 99 percent per coupling. DNA synthesis methodologies are outlined and a polymer-supported synthesis of DNA using deoxynucleoside phosphoramidites is described with structural formulas. (YP)

  15. Clinical Factors Associated with Sperm DNA Fragmentation in Male Patients with Infertility

    PubMed Central

    Komiya, Akira; Kato, Tomonori; Kawauchi, Yoko; Watanabe, Akihiko; Fuse, Hideki

    2014-01-01

    Objective. The clinical factors associated with sperm DNA fragmentation (SDF) were investigated in male patients with infertility. Materials and Methods. Fifty-four ejaculates from infertile Japanese males were used. Thirty-three and twenty-one were from the patients with varicoceles and idiopathic causes of infertility, respectively. We performed blood tests, including the serum sex hormone levels, and conventional and computer-assisted semen analyses. The sperm nuclear vacuolization (SNV) was evaluated using a high-magnification microscope. The SDF was evaluated using the sperm chromatin dispersion test (SCDt) to determine the SDF index (SDFI). The SDFI was compared with semen parameters and other clinical variables, including lifestyle factors. Results. The SDFI was 41.3 ± 22.2% (mean ± standard deviation) and did not depend on the cause of infertility. Chronic alcohol use increased the SDFI to 49.6 ± 23.3% compared with 33.9 ± 18.0% in nondrinkers. The SDFI was related to adverse conventional semen parameters and sperm motion characteristics and correlated with the serum FSH level. The SNV showed a tendency to increase with the SDFI. The multivariate analysis revealed that the sperm progressive motility and chronic alcohol use were significant predictors of the SDF. Conclusion. The SCDt should be offered to chronic alcohol users and those with decreased sperm progressive motility. PMID:25165747

  16. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1

    PubMed Central

    Sun, Fei; Huang, Li

    2013-01-01

    Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3–4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation. PMID:23821667

  17. Relationship of leptin administration with production of reactive oxygen species, sperm DNA fragmentation, sperm parameters and hormone profile in the adult rat.

    PubMed

    Abbasihormozi, Shima; Shahverdi, Abdolhossein; Kouhkan, Azam; Cheraghi, Javad; Akhlaghi, Ali Asghar; Kheimeh, Abolfazl

    2013-06-01

    Leptin, an adipose tissue-derived hormone, plays an important role in energy homeostasis and metabolism, and in the neuroendocrine and reproductive systems. The function of leptin in male reproduction is unclear; however, it is known to affect sex hormones, sperm motility and its parameters. Leptin induces mitochondrial superoxide production in aortic endothelia and may increase oxidative stress and abnormal sperm production in leptin-treated rats. This study aims to evaluate whether exogenous leptin affects sperm parameters, hormone profiles, and the production of reactive oxygen species (ROS) in adult rats. A total of 65 Sprague-Dawley rats were divided into three treated groups and a control group. Treated rats received daily intraperitoneal injections of 5, 10 and 30 μg/kg of leptin administered for a duration of 7, 15, and 42 days. Control rats were given 0.1 mL of 0.9 % normal saline for the same period. One day after final drug administration, we evaluated serum specimens for follicle-stimulating hormone (FSH), leutinizing hormone (LH), free testosterone (FT), and total testosterone (TT) levels. Samples from the rat epididymis were also evaluated for sperm parameters and motility characteristics by a Computer-Aided Semen Analysis (CASA) system. Samples were treated with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) and analyzed using flow cytometry and TUNEL to determine the impact of leptin administration on sperm DNA fragmentation. According to CASA, significant differences in all sperm parameters in leptin-treated rats and their age-matched controls were detected, except for TM, ALH and BCF. Serum FSH and LH levels were significantly higher in rats that received 10 and 30 μg/kg of leptin compared to those treated with 5 μg/kg of leptin in the same group and control rats (P < 0.05). ROS and sperm DNA fragmentation was significantly higher in rats injected with 10 and 30 μg/kg of leptin for 7 and 15 days compared with rats treated with 5 μg/kg of

  18. Uncertainty of exploitation estimates made from tag returns

    USGS Publications Warehouse

    Miranda, L.E.; Brock, R.E.; Dorr, B.S.

    2002-01-01

    Over 6,000 crappies Pomoxis spp. were tagged in five water bodies to estimate exploitation rates by anglers. Exploitation rates were computed as the percentage of tags returned after adjustment for three sources of uncertainty: postrelease mortality due to the tagging process, tag loss, and the reporting rate of tagged fish. Confidence intervals around exploitation rates were estimated by resampling from the probability distributions of tagging mortality, tag loss, and reporting rate. Estimates of exploitation rates ranged from 17% to 54% among the five study systems. Uncertainty around estimates of tagging mortality, tag loss, and reporting resulted in 90% confidence intervals around the median exploitation rate as narrow as 15 percentage points and as broad as 46 percentage points. The greatest source of estimation error was uncertainty about tag reporting. Because the large investments required by tagging and reward operations produce imprecise estimates of the exploitation rate, it may be worth considering other approaches to estimating it or simply circumventing the exploitation question altogether.

  19. Construction of an agglutination tool: recombinant Fab fragments biotinylated in vitro.

    PubMed

    Czerwinski, Marcin; Krop-Watorek, Anna; Wasniowska, Kazimiera; Smolarek, Dorota; Spitalnik, Steven L

    2009-11-30

    The pComb3H vector system is used for constructing and panning recombinant antibody libraries. It allows for expression of monovalent Fab fragments, either on the surface of M13 phage, or in the form of soluble proteins secreted into the periplasmic space of bacteria. We constructed a modified pComb3H vector containing cDNA encoding for a 23-amino acid fragment of the Escherichia coli biotin carboxy carrier protein (BCCP), which is an acceptor sequence for biotinylation. The vector was used to express the Fab fragment recognizing human glycophorin A. The purified Fab fragment containing this biotin acceptor sequence was effectively biotinylated in vitro using biotin ligase (BirA). The specificity and avidity of the biotinylated Fab fragments were similar to the previously produced, unmodified Fab fragments. An avidin-alkaline phosphatase conjugate was used to detect the recombinant Fab fragments, instead of secondary antibody. In addition, when biotinylated Fab fragments were mixed with avidin, red blood cells were directly agglutinated.

  20. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses

    PubMed Central

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A. Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  1. Detection of DNA "fingerprints" of cultivated rice by hybridization with a human minisatellite DNA probe.

    PubMed

    Dallas, J F

    1988-09-01

    A human minisatellite DNA probe detects several restriction fragment length polymorphisms in cultivars of Asian and African rice. Certain fragments appear to be inherited in a Mendelian fashion and may represent unlinked loci. The hybridization patterns appear to be cultivar-specific and largely unchanged after the regeneration of plants from tissue culture. The results suggest that these regions of the rice genome may be used to generate cultivar-specific DNA fingerprints. The demonstration of similarity between a human minisatellite sequence and polymorphic regions in the rice genome suggests that such regions also occur in the genomes of many other plant species.

  2. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  3. DNA book.

    PubMed

    Kawai, Jun; Hayashizaki, Yoshihide

    2003-06-01

    We propose herein a new method of DNA distribution, whereby DNA clones or PCR products are printed directly onto the pages of books and delivered to users along with relevant scientific information. DNA sheets, comprising water-soluble paper onto which DNA is spotted, can be bound into books. Readers can easily extract the DNA fragments from DNA sheets and amplify them using PCR. We show that DNA sheets can withstand various conditions that may be experienced during bookbinding and delivery, such as high temperatures and humidity. Almost all genes (95%-100% of randomly selected RIKEN mouse cDNA clones) were recovered successfully by use of PCR. Readers can start their experiments after a 2-h PCR amplification without waiting for the delivery of DNA clones. The DNA Book thus provides a novel method for delivering DNA in a timely and cost-effective manner. A sample DNA sheet (carrying RIKEN mouse cDNA clones encoding genes of enzymes for the TCA cycle) is included in this issue for field-testing. We would greatly appreciate it if readers could attempt to extract DNA and report the results and whether the DNA sheet was shipped to readers in good condition.

  4. The use of tags and tag clouds to discern credible content in online health message forums.

    PubMed

    O'Grady, Laura; Wathen, C Nadine; Charnaw-Burger, Jill; Betel, Lisa; Shachak, Aviv; Luke, Robert; Hockema, Stephen; Jadad, Alejandro R

    2012-01-01

    Web sites with health-oriented content are potentially harmful if inaccurate or inappropriate medical information is used to make health-related decisions. Checklists, rating systems and guidelines have been developed to help people determine what is credible, but recent Internet technologies emphasize applications that are collaborative in nature, including tags and tag clouds, where site users 'tag' or label online content, each using their own labelling system. Concepts such as the date, reference, author, testimonial and quotations are considered predictors of credible content. An understanding of these descriptive tools, how they relate to the depiction of credibility and how this relates to overall efforts to label data in relation to the semantic web has yet to emerge. This study investigates how structured (pre-determined) and unstructured (user-generated) tags and tag clouds with a multiple word search feature are used by participants to assess credibility of messages posted in online message forums. The targeted respondents were those using web sites message forums for disease self-management. We also explored the relevancy of our findings to the labelling or indexing of data in the context of the semantic web. Diabetes was chosen as the content area in this study, since (a) this is a condition with increasing prevalence and (b) diabetics have been shown to actively use the Internet to manage their condition. From January to March 2010 participants were recruited using purposive sampling techniques. A screening instrument was used to determine eligibility. The study consisted of a demographic and computer usage survey, a series of usability tests and an interview. We tested participants (N=22) on two scenarios, each involving tasks that assessed their ability to tag content and search using a tag cloud that included six structured credibility terms (statistics, date, reference, author, testimonial and quotations). MORAE Usability software (version 3

  5. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation.

    PubMed

    Musharova, Olga; Klimuk, Evgeny; Datsenko, Kirill A; Metlitskaya, Anastasia; Logacheva, Maria; Semenova, Ekaterina; Severinov, Konstantin; Savitskaya, Ekaterina

    2017-04-07

    During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Z-path SAW RFID tag.

    PubMed

    Härmä, Sanna; Plessky, Victor P; Hartmann, Clinton S; Steichen, William

    2008-01-01

    Surface acoustic wave (SAW) radio-frequency identification (RFID) tags are soon expected to be produced in very high volumes. The size and cost of a SAW RFID tag will be key parameters for many applications. Therefore, it is of primary importance to reduce the chip size. In this work, we describe the design principles of a 2.4-GHz SAW RFID tag that is significantly smaller than earlier reported tags. We also present simulated and experimental results. The coded signal should arrive at the reader with a certain delay (typically about 1 micros), i.e., after the reception of environmental echoes. If the tag uses a bidirectional interdigital transducer (IDT), space for the initial delay is needed on both sides of the IDT. In this work, we replace the bidirectional IDT by a unidirectional one. This halves the space required by the initial delay because all the code reflectors must now be placed on the same side of the IDT. We reduce tag size even further by using a Z-path geometry in which the same space in x-direction is used for both the initial delay and the code reflectors. Chip length is thus determined only by the space required by the code reflectors.

  7. 2000 Year-old ancient equids: an ancient-DNA lesson from pompeii remains.

    PubMed

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Galderisi, Umberto; Cipollaro, Marilena

    2004-11-15

    Ancient DNA extracted from 2000 year-old equine bones was examined in order to amplify mitochondrial and nuclear DNA fragments. A specific equine satellite-type sequence representing 3.7%-11% of the entire equine genome, proved to be a suitable target to address the question of the presence of aDNA in ancient bones. The PCR strategy designed to investigate this specific target also allowed us to calculate the molecular weight of amplifiable DNA fragments. Sequencing of a 370 bp DNA fragment of mitochondrial control region allowed the comparison of ancient DNA sequences with those of modern horses to assess their genetic relationship. The 16S rRNA mitochondrial gene was also examined to unravel the post-mortem base modification feature and to test the status of Pompeian equids taxon on the basis of a Mae III restriction site polymorphism. Copyright 2004 Wiley-Liss, Inc.

  8. Analyses of Expressed Sequence Tags from Apple1

    PubMed Central

    Newcomb, Richard D.; Crowhurst, Ross N.; Gleave, Andrew P.; Rikkerink, Erik H.A.; Allan, Andrew C.; Beuning, Lesley L.; Bowen, Judith H.; Gera, Emma; Jamieson, Kim R.; Janssen, Bart J.; Laing, William A.; McArtney, Steve; Nain, Bhawana; Ross, Gavin S.; Snowden, Kimberley C.; Souleyre, Edwige J.F.; Walton, Eric F.; Yauk, Yar-Khing

    2006-01-01

    The domestic apple (Malus domestica; also known as Malus pumila Mill.) has become a model fruit crop in which to study commercial traits such as disease and pest resistance, grafting, and flavor and health compound biosynthesis. To speed the discovery of genes involved in these traits, develop markers to map genes, and breed new cultivars, we have produced a substantial expressed sequence tag collection from various tissues of apple, focusing on fruit tissues of the cultivar Royal Gala. Over 150,000 expressed sequence tags have been collected from 43 different cDNA libraries representing 34 different tissues and treatments. Clustering of these sequences results in a set of 42,938 nonredundant sequences comprising 17,460 tentative contigs and 25,478 singletons, together representing what we predict are approximately one-half the expressed genes from apple. Many potential molecular markers are abundant in the apple transcripts. Dinucleotide repeats are found in 4,018 nonredundant sequences, mainly in the 5′-untranslated region of the gene, with a bias toward one repeat type (containing AG, 88%) and against another (repeats containing CG, 0.1%). Trinucleotide repeats are most common in the predicted coding regions and do not show a similar degree of sequence bias in their representation. Bi-allelic single-nucleotide polymorphisms are highly abundant with one found, on average, every 706 bp of transcribed DNA. Predictions of the numbers of representatives from protein families indicate the presence of many genes involved in disease resistance and the biosynthesis of flavor and health-associated compounds. Comparisons of some of these gene families with Arabidopsis (Arabidopsis thaliana) suggest instances where there have been duplications in the lineages leading to apple of biosynthetic and regulatory genes that are expressed in fruit. This resource paves the way for a concerted functional genomics effort in this important temperate fruit crop. PMID:16531485

  9. Role of DNA polymerase I-associated 5'-exonuclease in replication of coliphage M13 replicative-form DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, S.; Mitra, S.

    The conversion of both parental- and progeny-nascent open circular M13 RF DNA into covalently closed RF I is drastically reduced in an E. coli mutant deficient in the 5' ..-->.. 3' exonuclease associated with DNA polymerase I. The nascent progeny RF DNA also contains a significant proportion of fragments of smaller than unit length.

  10. Differences in the ovine HSP90AA1 gene expression rates caused by two linked polymorphisms at its promoter affect rams sperm DNA fragmentation under environmental heat stress conditions.

    PubMed

    Salces-Ortiz, Judit; Ramón, Manuel; González, Carmen; Pérez-Guzmán, M Dolores; Garde, J Julián; García-Álvarez, Olga; Maroto-Morales, Alejandro; Calvo, Jorge H; Serrano, M Magdalena

    2015-01-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram's fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and

  11. Transposon tagging and the study of root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Olson, M. L.; Fedoroff, N. V.

    1998-01-01

    The maize Ac-Ds transposable element family has been used as the basis of transposon mutagenesis systems that function in a variety of plants, including Arabidopsis. We have developed modified transposons and methods which simplify the detection, cloning and analysis of insertion mutations. We have identified and are analyzing two plant lines in which genes expressed either in the root cap cells or in the quiescent cells, cortex/endodermal initial cells and columella cells of the root cap have been tagged with a transposon carrying a reporter gene. A gene expressed in root cap cells tagged with an enhancer-trap Ds was isolated and its corresponding EST cDNA was identified. Nucleotide and deduced amino acid sequences of the gene show no significant similarity to other genes in the database. Genetic ablation experiments have been done by fusing a root cap-specific promoter to the diphtheria toxin A-chain gene and introducing the fusion construct into Arabidopsis plants. We find that in addition to eliminating gravitropism, root cap ablation inhibits elongation of roots by lowering root meristematic activities.

  12. Scalable Faceted Ranking in Tagging Systems

    NASA Astrophysics Data System (ADS)

    Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.

    Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.

  13. PCR-based detection of a rare linear DNA in cell culture.

    PubMed

    Saveliev, Sergei V.

    2002-11-11

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 10(7) or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.

  14. PCR-based detection of a rare linear DNA in cell culture

    PubMed Central

    2002-01-01

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 107 or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials. PMID:12734566

  15. Tags, wireless communication systems, tag communication methods, and wireless communications methods

    DOEpatents

    Scott,; Jeff W. , Pratt; Richard, M [Richland, WA

    2006-09-12

    Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.

  16. Ecobody technology: rapid monoclonal antibody screening method from single B cells using cell-free protein synthesis for antigen-binding fragment formation.

    PubMed

    Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo

    2017-10-25

    We report a rapid and cost-effective monoclonal antibody screening method from single animal B cells using reverse transcription (RT)-PCR and Escherichia coli cell-free protein synthesis (CFPS), which allows evaluation of antibodies within 2 working days. This process is named "Ecobody technology". The method includes strategies to isolate B cells that specifically bind an antigen from the peripheral blood of immunised animals, and single-cell RT-PCR to generate DNA fragments of the V H and V L genes, followed by CFPS for production of fragments of antigen binding (Fab). In the CFPS step, we employed our techniques: 1) 'Zipbody' as a method for producing Fab, in which the association of heavy and light chains is facilitated by adhesive leucine zipper peptides fused at the C-termini of the Fab; and 2) an N-terminal SKIK peptide tag that can increase protein expression levels. Using Ecobody technology, we obtained highly-specific monoclonal antibodies for the antigens Vibrio parahaemolyticus and E. coli O26. The anti-V. parahaemolyticus Zipbody mAb was further produced in E. coli strain SHuffle T7 Express in inclusion bodies and refolded by a conventional method, resulting in significant antigen-binding activity (K D  = 469 pM) and productivity of 8.5 mg purified antibody/L-culture.

  17. Microchannel DNA Sequencing by End-Labelled Free Solution Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, A.

    2005-09-29

    The further development of End-Labeled Free-Solution Electrophoresis will greatly simplify DNA separation and sequencing on microfluidic devices. The development and optimization of drag-tags is critical to the success of this research.

  18. TagDigger: user-friendly extraction of read counts from GBS and RAD-seq data.

    PubMed

    Clark, Lindsay V; Sacks, Erik J

    2016-01-01

    In genotyping-by-sequencing (GBS) and restriction site-associated DNA sequencing (RAD-seq), read depth is important for assessing the quality of genotype calls and estimating allele dosage in polyploids. However, existing pipelines for GBS and RAD-seq do not provide read counts in formats that are both accurate and easy to access. Additionally, although existing pipelines allow previously-mined SNPs to be genotyped on new samples, they do not allow the user to manually specify a subset of loci to examine. Pipelines that do not use a reference genome assign arbitrary names to SNPs, making meta-analysis across projects difficult. We created the software TagDigger, which includes three programs for analyzing GBS and RAD-seq data. The first script, tagdigger_interactive.py, rapidly extracts read counts and genotypes from FASTQ files using user-supplied sets of barcodes and tags. Input and output is in CSV format so that it can be opened by spreadsheet software. Tag sequences can also be imported from the Stacks, TASSEL-GBSv2, TASSEL-UNEAK, or pyRAD pipelines, and a separate file can be imported listing the names of markers to retain. A second script, tag_manager.py, consolidates marker names and sequences across multiple projects. A third script, barcode_splitter.py, assists with preparing FASTQ data for deposit in a public archive by splitting FASTQ files by barcode and generating MD5 checksums for the resulting files. TagDigger is open-source and freely available software written in Python 3. It uses a scalable, rapid search algorithm that can process over 100 million FASTQ reads per hour. TagDigger will run on a laptop with any operating system, does not consume hard drive space with intermediate files, and does not require programming skill to use.

  19. Construction of a Full-Length Enriched cDNA Library and Preliminary Analysis of Expressed Sequence Tags from Bengal Tiger Panthera tigris tigris

    PubMed Central

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-01-01

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers. PMID:23708105

  20. Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from Bengal Tiger Panthera tigris tigris.

    PubMed

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-05-24

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers.

  1. Observation of medium induced modifications of jet fragmentation in PbPb collisions using isolated-photon-tagged jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Measurements of fragmentation functions for jets associated with an isolated photon are presented for the first time in pp and PbPb collisions. The analysis uses data collected with the CMS detector at the CERN LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Fragmentation functions are obtained for jets with pmore » $$_\\mathrm{T}^\\text{jet} >$$ 30 GeV in events containing an isolated photon with p$$_\\mathrm{T}^\\gamma>$$ 60 GeV, using charged tracks with transverse momentum p$$_\\mathrm{T}^\\text{trk} >$$ 1 GeV in a cone around the jet axis. The association with an isolated photon constrains the initial p$$_\\mathrm{T}$$ and azimuthal angle of the parton whose shower produced the jet. For central PbPb collisions, modifications of the jet fragmentation functions are observed when compared to those measured in pp collisions, while no significant differences are found in the 50% most peripheral collisions. Jets in central PbPb events show an excess (depletion) of low (high) p$$_\\mathrm{T}$$ particles, with a transition around 3 GeV.« less

  2. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    PubMed

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  3. Heterologous mitochondrial DNA recombination in human cells.

    PubMed

    D'Aurelio, Marilena; Gajewski, Carl D; Lin, Michael T; Mauck, William M; Shao, Leon Z; Lenaz, Giorgio; Moraes, Carlos T; Manfredi, Giovanni

    2004-12-15

    Inter-molecular heterologous mitochondrial DNA (mtDNA) recombination is known to occur in yeast and plants. Nevertheless, its occurrence in human cells is still controversial. To address this issue we have fused two human cytoplasmic hybrid cell lines, each containing a distinct pathogenic mtDNA mutation and specific sets of genetic markers. In this hybrid model, we found direct evidence of recombination between these two mtDNA haplotypes. Recombinant mtDNA molecules in the hybrid cells were identified using three independent experimental approaches. First, recombinant molecules containing genetic markers from both parental alleles were demonstrated with restriction fragment length polymorphism of polymerase chain reaction products, by measuring the relative frequencies of each marker. Second, fragments of recombinant mtDNA were cloned and sequenced to identify the regions involved in the recombination events. Finally, recombinant molecules were demonstrated directly by Southern blot using appropriate combinations of polymorphic restriction sites and probes. This combined approach confirmed the existence of heterogeneous species of recombinant mtDNA molecules in the hybrid cells. These findings have important implications for mtDNA-related diseases, the interpretation of human evolution and population genetics and forensic analyses based on mtDNA genotyping.

  4. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts.

    PubMed

    Lerner, Chad A; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K; Elder, Alison; Rahman, Irfan

    2016-09-02

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Speed genome editing by transient CRISPR/Cas9 targeting and large DNA fragment deletion.

    PubMed

    Luo, Jing; Lu, Liaoxun; Gu, Yanrong; Huang, Rong; Gui, Lin; Li, Saichao; Qi, Xinhui; Zheng, Wenping; Chao, Tianzhu; Zheng, Qianqian; Liang, Yinming; Zhang, Lichen

    2018-06-07

    Genetic engineering of cell lines and model organisms has been facilitated enormously by the CRISPR/Cas9 system. However, in cell lines it remains labor intensive and time consuming to obtain desirable mutant clones due to the difficulties in isolating the mutated clones and sophisticated genotyping. In this study, we have validated fluorescent protein reporter aided cell sorting which enables the isolation of maximal diversity in mutant cells. We further applied two spectrally distinct fluorescent proteins DsRed2 and ECFP as reporters for independent CRISPR/Cas9 mediated targeting, which allows for one-cell-one-well sorting of the mutant cells. Because of ultra-high efficiency of the CRISPR/Cas9 system with dual reporters and large DNA fragment deletion resulting from independent loci cleavage, monoclonal mutant cells could be easily identified by conventional PCR. In the speed genome editing method presented here, sophisticated genotyping methods are not necessary to identify loss of function mutations after CRISPR/Cas9 genome editing, and desirable loss of function mutant clones could be obtained in less than one month following transfection. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Comparison of migration rate and survival between radio-tagged and PIT-tagged migrant yearling chinook salmon in the Snake and Columbia rivers

    USGS Publications Warehouse

    Hockersmith, E.E.; Muir, W.D.; Smith, S.G.; Sandford, B.P.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2003-01-01

    A study was conducted to compare the travel times, detection probabilities, and survival of migrant hatchery-reared yearling chinook salmon Oncorhynchus tshawytscha tagged with either gastrically or surgically implanted sham radio tags (with an imbedded passive integrated transponder [PIT] tag) with those of their cohorts tagged only with PIT tags in the Snake and Columbia rivers. Juvenile chinook salmon with gastrically implanted radio tags migrated significantly faster than either surgically radio-tagged or PIT-tagged fish, while migration rates were similar among surgically radio-tagged and PIT-tagged fish. The probabilities of PIT tag detection at downstream dams varied by less than 5% and were not significantly different among the three groups. Survival was similar among treatments for median travel times of less than approximately 6 d (migration distance of 106 km). However, for both gastrically and surgically radio-tagged fish, survival was significantly less than for PIT-tagged fish, for which median travel times exceeded approximately 10 d (migration distance of 225 km). The results of this study support the use of radio tags to estimate the survival of juvenile chinook salmon having a median fork length of approximately 150 mm (range, 127-285 mm) and a median travel time of migration of less than approximately 6 d.

  7. Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers

    PubMed Central

    Frolova, L. Yu.; Metelyev, V. G.; Ratmanova, K. I.; Smirnov, V. D.; Shabarova, Z. A.; Prokofyev, M. A.; Berzin, V. M.; Jansone, I. V.; Gren, E. J.; Kisselev, L. L.

    1977-01-01

    DNA synthesis catalysed by RNA-directed DNA-polymerase (reverse transcriptase) was found to proceed on the RNA template of an MS2 phage in the presence of heteropolymeric synthetic octa- and nonadeoxyribonucleotide primers complementary to the intercistronic region (coat protein binding site) and the region of the coat protein cistron, respectively. The product of synthesis consists of discrete DNA fractions of different length, including transcripts longer than 1,000 nucleotides. The coat protein inhibits DNA synthesis if it is initiated at its binding site, but has no effect on DNA synthesis initiated at the coat protein cistron. It has been suggested that, in this system, the initiation of DNA synthesis by synthetic primers is topographically specific. The MS2 coat protein binding site (an RNA fragment of 59 nucleotides) serves as a template for polydeoxyribonucleotide synthesis in the presence of octanucleotide primer and reverse transcriptase. The product of synthesis is homogenous and its length corresponds to the length of the template. The effective and complete copying of the fragment having a distinct secondary structure proves that the secondary structure does not interfere, in principle, with RNA being a template in the system of reverse transcription. PMID:71713

  8. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.

    PubMed

    Subach, Oksana M; Malashkevich, Vladimir N; Zencheck, Wendy D; Morozova, Kateryna S; Piatkevich, Kiryl D; Almo, Steven C; Verkhusha, Vladislav V

    2010-04-23

    We determined the 2.2 A crystal structures of the red fluorescent protein TagRFP and its derivative, the blue fluorescent protein mTagBFP. The crystallographic analysis is consistent with a model in which TagRFP has the trans coplanar anionic chromophore with the conjugated pi-electron system, similar to that of DsRed-like chromophores. Refined conformation of mTagBFP suggests the presence of an N-acylimine functionality in its chromophore and single C(alpha)-C(beta) bond in the Tyr64 side chain. Mass spectrum of mTagBFP chromophore-bearing peptide indicates a loss of 20 Da upon maturation, whereas tandem mass spectrometry reveals that the C(alpha)-N bond in Leu63 is oxidized. These data indicate that mTagBFP has a new type of the chromophore, N-[(5-hydroxy-1H-imidazole-2-yl)methylidene]acetamide. We propose a chemical mechanism in which the DsRed-like chromophore is formed via the mTagBFP-like blue intermediate. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Accurate phylogenetic classification of DNA fragments based onsequence composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequencemore » characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.« less

  10. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.

    PubMed

    Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie

    2015-06-17

    High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This

  11. Tag-mediated cooperation with non-deterministic genotype-phenotype mapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Chen, Shu

    2016-01-01

    Tag-mediated cooperation provides a helpful framework for resolving evolutionary social dilemmas. However, most of the previous studies have not taken into account genotype-phenotype distinction in tags, which may play an important role in the process of evolution. To take this into consideration, we introduce non-deterministic genotype-phenotype mapping into a tag-based model with spatial prisoner's dilemma. By our definition, the similarity between genotypic tags does not directly imply the similarity between phenotypic tags. We find that the non-deterministic mapping from genotypic tag to phenotypic tag has non-trivial effects on tag-mediated cooperation. Although we observe that high levels of cooperation can be established under a wide variety of conditions especially when the decisiveness is moderate, the uncertainty in the determination of phenotypic tags may have a detrimental effect on the tag mechanism by disturbing the homophilic interaction structure which can explain the promotion of cooperation in tag systems. Furthermore, the non-deterministic mapping may undermine the robustness of the tag mechanism with respect to various factors such as the structure of the tag space and the tag flexibility. This observation warns us about the danger of applying the classical tag-based models to the analysis of empirical phenomena if genotype-phenotype distinction is significant in real world. Non-deterministic genotype-phenotype mapping thus provides a new perspective to the understanding of tag-mediated cooperation.

  12. Introducing Human Population Biology through an Easy Laboratory Exercise on Mitochondrial DNA

    ERIC Educational Resources Information Center

    Pardinas, Antonio F.; Dopico, Eduardo; Roca, Agustin; Garcia-Vazquez, Eva; Lopez, Belen

    2010-01-01

    This article describes an easy and cheap laboratory exercise for students to discover their own mitochondrial haplogroup. Students use buccal swabs to obtain mucosa cells as noninvasive tissue samples, extract DNA, and with a simple polymerase chain reaction-restriction fragment length polymorphism analysis they can obtain DNA fragments of…

  13. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  14. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, Kenny C.; Laug, Matthew T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  15. DNA Book

    PubMed Central

    Kawai, Jun; Hayashizaki, Yoshihide

    2003-01-01

    We propose herein a new method of DNA distribution, whereby DNA clones or PCR products are printed directly onto the pages of books and delivered to users along with relevant scientific information. DNA sheets, comprising water-soluble paper onto which DNA is spotted, can be bound into books. Readers can easily extract the DNA fragments from DNA sheets and amplify them using PCR. We show that DNA sheets can withstand various conditions that may be experienced during bookbinding and delivery, such as high temperatures and humidity. Almost all genes (95%–100% of randomly selected RIKEN mouse cDNA clones) were recovered successfully by use of PCR. Readers can start their experiments after a 2-h PCR amplification without waiting for the delivery of DNA clones. The DNA Book thus provides a novel method for delivering DNA in a timely and cost-effective manner. A sample DNA sheet (carrying RIKEN mouse cDNA clones encoding genes of enzymes for the TCA cycle) is included in this issue for field-testing. We would greatly appreciate it if readers could attempt to extract DNA and report the results and whether the DNA sheet was shipped to readers in good condition. PMID:12819147

  16. Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome.

    PubMed

    Ponce, M R; Quesada, V; Micol, J L

    1998-05-01

    An improvement to previous methods for recovering Arabidopsis thaliana genomic DNA flanking T-DNA insertions is presented that allows for the avoidance of some of the cloning difficulties caused by the concatameric nature of T-DNA inserts. The principle of the procedure is to categorize by size restriction fragments of mutant DNA, produced in separate digestions with NdeI and Bst1107I. Given that the sites for these two enzymes are contiguous within the pGV3850:1003 T-DNA construct, the restriction fragments obtained fall into two categories: those showing identical size in both digestions, which correspond to sequences internal to T-DNA concatamers; and those of different sizes, that contain the junctions between plant DNA and the T-DNA insert. Such a criterion makes it possible to easily distinguish the digestion products corresponding to internal T-DNA parts, which do not deserve further attention, and those which presumably include a segment of the locus of interest. Discrimination between restriction fragments of genomic mutant DNA can be made on rescued plasmids, inverse PCR amplification products or bands in a genomic blot.

  17. Dose- and time-dependent effects of a novel (-)-hydroxycitric acid extract on body weight, hepatic and testicular lipid peroxidation, DNA fragmentation and histopathological data over a period of 90 days.

    PubMed

    Shara, Michael; Ohia, Sunny E; Yasmin, Taharat; Zardetto-Smith, Andrea; Kincaid, Anthony; Bagchi, Manashi; Chatterjee, Archana; Bagchi, Debasis; Stohs, Sidney J

    2003-12-01

    (-)-Hydroxycitric acid (HCA), a natural extract from the dried fruit rind of Garcinia cambogia (family Guttiferae), is a popular supplement for weight management. The dried fruit rind has been used for centuries as a condiment in Southeastern Asia to make food more filling and satisfying. A significant number of studies highlight the efficacy of Super CitriMax (HCA-SX, a novel 60% calcium-potassium salt of HCA derived from Garcinia cambogia) in weight management. These studies also demonstrate that HCA-SX promotes fat oxidation, inhibits ATP-citrate lyase (a building block for fat synthesis), and lowers the level of leptin in obese subjects. Acute oral, acute dermal, primary dermal irritation and primary eye irritation toxicity studies have demonstrated the safety of HCA-SX. However, no long-term safety of HCA-SX or any other (-)-hydroxycitric acid extract has been previously assessed. In this study, we have evaluated the dose- and time-dependent effects of HCA-SX in Sprague-Dawley rats on body weight, hepatic and testicular lipid peroxidation, DNA fragmentation, liver and testis weight, expressed as such and as a % of body weight and brain weight, and histopathological changes over a period of 90 days. The animals were treated with 0, 0.2, 2.0 and 5.0% HCA-SX as feed intake and the animals were sacrificed on 30, 60 or 90 days of treatment. The feed and water intake were assessed and correlated with the reduction in body weight. HCA-SX supplementation demonstrated a reduction in body weight in both male and female rats over a period of 90 days as compared to the corresponding control animals. An advancing age-induced marginal increase in hepatic lipid peroxidation was observed in both male and female rats as compared to the corresponding control animals. However, no such difference in hepatic DNA fragmentation and testicular lipid peroxidation and DNA fragmentation was observed. Furthermore, liver and testis weight, expressed as such and as a percentage of body

  18. Accounting for tagging-to-harvest mortality in a Brownie tag-recovery model by incorporating radio-telemetry data.

    PubMed

    Buderman, Frances E; Diefenbach, Duane R; Casalena, Mary Jo; Rosenberry, Christopher S; Wallingford, Bret D

    2014-04-01

    The Brownie tag-recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known-fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward-tagged animals in a Brownie tag-recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging-to-harvest survival rates from >20 individuals with radio transmitters combined with 50-100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo, to estimate harvest rates, and data from white-tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known-fate tag-recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.

  19. Accounting for tagging-to-harvest mortality in a Brownie tag-recovery model by incorporating radio-telemetry data

    USGS Publications Warehouse

    Buderman, Frances E.; Diefenbach, Duane R.; Casalena, Mary Jo; Rosenberry, Christopher S.; Wallingford, Bret D.

    2014-01-01

    The Brownie tag-recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known-fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward-tagged animals in a Brownie tag-recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging-to-harvest survival rates from >20 individuals with radio transmitters combined with 50–100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo,to estimate harvest rates, and data from white-tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known-fate tag-recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.

  20. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    NASA Technical Reports Server (NTRS)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.