Sample records for tagged photon spectrometer

  1. Associated Particle Tagging (APT) in Magnetic Spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation.more » In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design

  2. Photon-tagged and B-meson-tagged b-jet production at the LHC

    DOE PAGES

    Huang, Jinrui; Kang, Zhong -Bo; Vitev, Ivan; ...

    2015-09-18

    Tagged jet measurements in high energy hadronic and nuclear reactions provide constraints on the energy and parton flavor origin of the parton shower that recoils against the tagging particle. Such additional insight can be especially beneficial in illuminating the mechanisms of heavy flavor production in proton–proton collisions at the LHC and their modification in the heavy ion environment, which are not fully understood. With this motivation, we present theoretical results for isolated-photon-tagged and B-meson-tagged b-jet production at √s NN = 5.1 TeV for comparison to the upcoming lead–lead data. We find that photon-tagged b-jets exhibit smaller momentum imbalance shift inmore » nuclear matter, and correspondingly smaller energy loss, than photon-tagged light flavor jets. Our results show that B-meson tagging is most effective in ensuring that the dominant fraction of recoiling jets originate from prompt b-quarks. Furthermore, in this channel the large suppression of the cross section is not accompanied by a significant momentum imbalance shift.« less

  3. Neutral Kaon Spectrometer 2

    NASA Astrophysics Data System (ADS)

    Kaneta, M.; Beckford, B.; Fujii, T.; Fujii, Y.; Futatsukawa, K.; Han, Y. C.; Hashimoto, O.; Hirose, K.; Ishikawa, T.; Kanda, H.; Kimura, C.; Maeda, K.; Nakamura, S. N.; Suzuki, K.; Tsukada, K.; Yamamoto, F.; Yamazaki, H.

    2018-04-01

    A large-acceptance spectrometer, Neutral Kaon Spectrometer 2 (NKS2), was newly constructed to explore various photoproduction reactions in the gigaelectronvolt region at the Laboratory of Nuclear Science (LNS, currently ELPH), Tohoku University. The spectrometer consisted of a dipole magnet, drift chambers, and plastic scintillation counters. NKS2 was designed to separate pions and protons in a momentum range of less than 1 GeV/ c, and was placed in a tagged photon beamline. A cryogenic H2/D2 target fitted to the spectrometer were designed. The design and performance of the detectors are described. The results of the NKS2 experiment on analyzing strangeness photoproduction data using a 0.8-1.1 GeV tagged photon beam are also presented.

  4. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  5. Data Acquisition Software for Experiments at the MAMI-C Tagged Photon Facility

    NASA Astrophysics Data System (ADS)

    Oussena, Baya; Annand, John

    2013-10-01

    Tagged-photon experiments at Mainz use the electron beam of the MAMI (Mainzer MIcrotron) accelerator, in combination with the Glasgow Tagged Photon Spectrometer. The AcquDAQ DAQ system is implemented in the C + + language and makes use of CERN ROOT software libraries and tools. Electronic hardware is characterized in C + + classes, based on a general purpose class TDAQmodule and implementation in an object-oriented framework makes the system very flexible. The DAQ system provides slow control and event-by-event readout of the Photon Tagger, the Crystal Ball 4-pi electromagnetic calorimeter, central MWPC tracker and plastic-scintillator, particle-ID systems and the TAPS forward-angle calorimeter. A variety of front-end controllers running Linux are supported, reading data from VMEbus, FASTBUS and CAMAC systems. More specialist hardware, based on optical communication systems and developed for the COMPASS experiment at CERN, is also supported. AcquDAQ also provides an interface to configure and control the Mainz programmable trigger system, which uses FPGA-based hardware developed at GSI. Currently the DAQ system runs at data rates of up to 3MB/s and, with upgrades to both hardware and software later this year, we anticipate a doubling of that rate. This work was supported in part by the U.S. DOE Grant No. DE-FG02-99ER41110.

  6. Study of π 0 pair production in single-tag two-photon collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masuda, M.; Uehara, S.; Watanabe, Y.

    2016-02-01

    We report a measurement of the differential cross section of π^0 pair production in single-tag two-photon collisions, y*y->π^0π^0, in e+e- scattering. The cross section is measured for Q^2up to 30 GeV^2 is the negative of the invariant mass squared of the tagged photon

  7. Study on ultra-fast single photon counting spectrometer based on PCI

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-feng

    2010-10-01

    The time-correlated single photon counting spectrometer developed uses PCI bus technology. We developed the ultrafast data acquisition card based on PCI, replace multi-channel analyzer primary. The system theory and design of the spectrometer are presented in detail, and the process of operation is introduced with the integration of the system. Many standard samples have been measured and the data have been analyzed and contrasted. Experimental results show that the spectrometer, s sensitive is single photon counting, and fluorescence life-span and time resolution is picosecond level. And the instrument could measure time-resolved spectroscopy.

  8. Miniature Photonic Spectrometers and Filters for Astrophysics and Space Science

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    This project seeks to apply our recent breakthroughs in astrophotonics - photonics applied to astronomical instrumentation - to replace the large lenses, mirrors, and gratings of conventional astronomical spectrographs with optoelectronic components borrowed from the multi-billion dollar telecommunication industry. This will reduce the mass and volume of these instruments by two to three orders of magnitudes, shorten delivery times, lower the risk, and cut the cost proportionally. Photonic instruments are also more amenable to complex light manipulation and massive multiplexing, cheaper to mass produce, easier to control, much less susceptible to vibrations and flexures, and have higher throughput. The proposed effort directly addresses one of the technology gaps identified in the 2016 Cosmic Origins Technology Report, namely the need to develop "high-performance spectral dispersion components / devices." Using private funding, we have developed photonic near-infrared (1.4 - 1.6 microns) spectrometers where the dispersing optics are replaced by miniature ( 1 cubiccentimeter) arrayed waveguide gratings imprinted using buried silicon nitride (``nanocore'') technology, the leading solution for low-loss waveguides. We have also developed highly sophisticated photonics filters using complex waveguide Bragg gratings, produced on the same platform technology as the photonic spectrometers and equally small. These prototypes have been fabricated and tested using the state-of-the-art facilities of the Maryland NanoCenter and AstroPhotonics Lab, and the results of these tests have been published in refereed publications and conference proceedings. APRA funding is now needed to develop the next generation of photonics spectrometers and filters for astrophysics and space science applications. We will (1) broaden the wavelength range to 1 - 1.7 microns, (2) increase the spectral resolving power of our photonic spectrometers from R 1500 to 3000, (3) experiment with the aspect

  9. A TLD-based few-channel spectrometer for mixed photon, electron, and ion fields with high fluence rates.

    PubMed

    Behrens, R; Ambrosi, P

    2002-01-01

    A few-channel spectrometer for mixed photon, electron and ion radiation fields has been developed. It consists of a front layer of an etched-track detector foil for detecting protons and ions, a stack of PMMA with thermoluminescent detectors at different depths for gaining spectral information about electrons, and a stack of metallic filters with increasing cut-off photon energies, interspersed with thermoluminescent detectors for gaining spectral information about photons. From the reading of the TL detectors the spectral fluence of the electrons (400 keV to 9 MeV) and photons (20 keV to 2 MeV) can be determined by an unfolding procedure. The spectrometer can be used in pulsed radiation fields with extremely high momentary values of the fluence rate. Design and calibration of the spectrometer are described.

  10. Searching for Dark Photons with the SeaQuest Spectrometer

    NASA Astrophysics Data System (ADS)

    Uemura, Sho; SeaQuest Collaboration

    2017-09-01

    The existence of a dark sector, containing families of particles that do not couple directly to the Standard Model, is motivated as a possible model for dark matter. A ``dark photon'' - a massive vector boson that couples weakly to electric charge - is a common component of dark sector models. The SeaQuest spectrometer at Fermilab is designed to detect dimuon pairs produced by the interaction of a 120 GeV proton beam with a rotating set of thin fixed targets. An iron-filled magnet downstream of the target, 5 meters in length, serves as a beam dump. The SeaQuest spectrometer is sensitive to dark photons that are mostly produced in the beam dump and decay to dimuons, and a SeaQuest search for dark sector particles was approved as Fermilab experiment E1067. As part of E1067, a displaced-vertex trigger was built, installed and commissioned this year. This trigger uses two planes of extruded scintillators to identify dimuons originating far downstream of the target, and is sensitive to dark photons that travel deep inside the beam dump before decaying to dimuons. This trigger will be used to take data parasitically with the primary SeaQuest physics program. In this talk I will present the displaced-vertex trigger and its performance, and projected sensitivity from future running.

  11. Two-photon absorption dispersion spectrometer for 1.53 μm eye-safe Doppler LIDAR.

    PubMed

    Vance, J D

    2012-07-01

    Based upon resonant two-photon absorption within a rubidium cell and 780 nm pump light, a birefringent medium for 1.530 μm is induced that changes rapidly with frequency. The birefringence is exploited to build a spectrometer that is capable of measuring the Doppler shift of scattered photons.

  12. Scintillating fiber-based photon beam profiler for the Jefferson Lab tagged photon beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, C.; Barbosa, F.J.; Freyberger, A.

    2000-10-01

    A scintillating fiber hodoscope has been built for use as a photon beam profiler in the bremsstrahlung tagged photon beam in Hall B of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The device consists of a linear array of 64 2-2 mm2 scintillating fibers glued to a corresponding set of light guide fibers. Both fiber types use double-clad technology for maximum intensity. The light guide fibers are gently bent into a square array of holes and air-gap coupled to four compact position-sensitive photomultipliers (16 channel Hamamatsu R5900-M16). Custom electronics amplifies and converts the analog outputs to ECL pulses whichmore » are counted by VME-based scalars. The device consisting of the fibers, photomultipliers, and electronics is sealed within a light-tight aluminum box. Two modules make up a beam imaging 2-D system. The system has been tested successfully during an experimental run« less

  13. Study of KS0 pair production in single-tag two-photon collisions

    NASA Astrophysics Data System (ADS)

    Masuda, M.; Uehara, S.; Watanabe, Y.; Adachi, I.; Ahn, J. K.; Aihara, H.; Al Said, S.; Asner, D. M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bansal, V.; Behera, P.; Berger, M.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Červenkov, D.; Chen, A.; Cheon, B. G.; Chilikin, K.; Cho, K.; Choi, Y.; Choudhury, S.; Cinabro, D.; Czank, T.; Dash, N.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Garg, R.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gelb, M.; Giri, A.; Goldenzweig, P.; Guido, E.; Haba, J.; Hayasaka, K.; Hayashii, H.; Hedges, M. T.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, M.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jin, Y.; Joo, K. K.; Julius, T.; Kang, K. H.; Karyan, G.; Kawasaki, T.; Kichimi, H.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, S. H.; Kodyš, P.; Kotchetkov, D.; Križan, P.; Kroeger, R.; Krokovny, P.; Kulasiri, R.; Kuzmin, A.; Kwon, Y.-J.; Lee, I. S.; Lee, S. C.; Li, L. K.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Luo, T.; Matsuda, T.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moon, H. K.; Mori, T.; Mussa, R.; Nakao, M.; Nakazawa, H.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Ono, H.; Onuki, Y.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, H.; Paul, S.; Pedlar, T. K.; Pestotnik, R.; Piilonen, L. E.; Ritter, M.; Rostomyan, A.; Russo, G.; Sakai, Y.; Salehi, M.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seidl, R.; Seino, Y.; Senyo, K.; Seon, O.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shimizu, N.; Shiu, J.-G.; Shwartz, B.; Sokolov, A.; Solovieva, E.; Starič, M.; Strube, J. F.; Sumihama, M.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Teramoto, Y.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Van Hulse, C.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Vossen, A.; Wang, B.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, M.; Widmann, E.; Won, E.; Ye, H.; Yuan, C. Z.; Yusa, Y.; Zakharov, S.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2018-03-01

    We report a measurement of the cross section for KS0 pair production in single-tag two-photon collisions, γ*γ →KS0KS0, for Q2 up to 30 GeV2 , where Q2 is the negative of the invariant mass squared of the tagged photon. The measurement covers the kinematic range 1.0 GeV

  14. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palutke, S., E-mail: steffen.palutke@desy.de; Wurth, W.; Deutsches Elekronen Synchrotron

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emissionmore » process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators.« less

  15. Applications of Silicon-on-Insulator Photonic Crystal Structures in Miniature Spectrometer Designs

    NASA Astrophysics Data System (ADS)

    Gao, Boshen

    Optical spectroscopy is one of the most important fundamental scientific techniques. It has been widely adopted in physics, chemistry, biology, medicine and many other research fields. However, the size and weight of a spectrometer as well as the difficulty to align and maintain it have long limited spectroscopy to be a laboratory-only procedure. With the recent advancement in semiconductor electronics and photonics, miniaturized spectrometers have been introduced to complete many tasks in daily life where mobility and portability are necessary. This thesis focuses on the study of several photonic crystal (PC) nano-structures potentially suitable for miniaturized on-chip spectrometer designs. Chapter 1 briefly introduces the concept of PCs and their band structures. By analyzing the band structure, the origin of the superprism effect is explained. Defect-based PC nano-cavities are also discussed, as well as a type of coupled cavity waveguides (CCW) composed of PC nano-cavities. Chapter 2 is devoted to the optimization of a flat-band superprism structure for spectroscopy application using numerical simulations. Chapter 3 reports a fabricated broad-band superprism and the experimental characterization of its wavelength resolving performance. In chapter 4, the idea of composing a miniature spectrometer based on a single tunable PC nano-cavity is proposed. The rest of this chapter discusses the experimental study of this design. Chapter 5 examines the slow-light performance of a CCW and discusses its potential application in slow-light interferometry. Chapter 6 serves as a conclusion of this thesis and proposes directions for possible future work to follow up.

  16. Tagging Efficiency for Nuclear Physics Measurements at MAX-lab

    NASA Astrophysics Data System (ADS)

    Miller, Nevin; Elofson, David; Lewis, Codie; O'Brien, Erin; Buggelli, Kelsey; O'Connor, Kyle; O'Rielly, Grant; Maxtagg Team

    2014-09-01

    A careful study of the tagging efficiency during measurements of near threshold pion photoproduction and high energy Compton scattering has been performed. These experiments are being done at the MAX-lab tagged photon Facility during the June 2014 run period. The determination of the final results from these experiments depends on knowledge of the incident photon flux. The tagging efficiency is a critical part of the photon flux calculation. In addition to daily measurements of the tagging efficiency, a beam monitor was used during the production data runs to monitor the relative tagging efficiency. Two trigger types were used in the daily measurements; one was a logical OR from the tagger array and the other was from the Pb-glass photon detector. Investigations were made to explore the effect of the different trigger conditions and the differences between single and multi hit TDCs on the tagging efficiency. In addition the time evolution and overall uncertainty in the tagging efficiency for each tagger channel was determined. The results will be discussed.

  17. 3He(γ,pd) cross sections with tagged photons below the Δ resonance

    NASA Astrophysics Data System (ADS)

    Kolb, N. R.; Cairns, E. B.; Hackett, E. D.; Korkmaz, E.; Nakano, T.; Opper, A. K.; Quraan, M. A.; Rodning, N. L.; Rozon, F. M.; Asai, J.; Feldman, G.; Hallin, E.; O'rielly, G. V.; Pywell, R. E.; Skopik, D. M.

    1994-05-01

    The reaction cross section for 3He(γ,pd) has been measured using the Saskatchewan-Alberta Large Acceptance Detector (SALAD) with tagged photons in the energy range from 166 to 213 MeV. The energy and angle of the proton and the deuteron were measured with SALAD while the tagger determined the photon energy. Differential cross sections have been determined for 40°<θ*p<150°. The results are in agreement with the Bonn and Saclay photodisintegration measurements. The most recent photodisintegration measurement performed at Bates is higher by a factor of 1.3, which is just within the combined errors of the experiments. The proton capture results differ by a factor of 1.7 from the present experiment. Comparisons are made with microscopic calculations of the cross sections.

  18. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  19. Code CUGEL: A code to unfold Ge(Li) spectrometer polyenergetic gamma photon experimental distributions

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Born, U.

    1970-01-01

    A FORTRAN code was developed for the Univac 1108 digital computer to unfold lithium-drifted germanium semiconductor spectrometers, polyenergetic gamma photon experimental distributions. It was designed to analyze the combination continuous and monoenergetic gamma radiation field of radioisotope volumetric sources. The code generates the detector system response matrix function and applies it to monoenergetic spectral components discretely and to the continuum iteratively. It corrects for system drift, source decay, background, and detection efficiency. Results are presented in digital form for differential and integrated photon number and energy distributions, and for exposure dose.

  20. Method for designing gas tag compositions

    DOEpatents

    Gross, Kenny C.

    1995-01-01

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.

  1. Method for designing gas tag compositions

    DOEpatents

    Gross, K.C.

    1995-04-11

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node No. 1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node No. 2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred. 5 figures.

  2. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    PubMed

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  3. gPhoton: Time-tagged GALEX photon events analysis tools

    NASA Astrophysics Data System (ADS)

    Million, Chase C.; Fleming, S. W.; Shiao, B.; Loyd, P.; Seibert, M.; Smith, M.

    2016-03-01

    Written in Python, gPhoton calibrates and sky-projects the ~1.1 trillion ultraviolet photon events detected by the microchannel plates on the Galaxy Evolution Explorer Spacecraft (GALEX), archives these events in a publicly accessible database at the Mikulski Archive for Space Telescopes (MAST), and provides tools for working with the database to extract scientific results, particularly over short time domains. The software includes a re-implementation of core functionality of the GALEX mission calibration pipeline to produce photon list files from raw spacecraft data as well as a suite of command line tools to generate calibrated light curves, images, and movies from the MAST database.

  4. Photon Throughput Calculations for a Spherical Crystal Spectrometer

    NASA Astrophysics Data System (ADS)

    Gilman, C. J.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Hill, K.; Kraus, B.; Gao, L.; Pablant, N.

    2017-10-01

    X-ray imaging crystal spectrometers of the type described in Refs. have become a standard diagnostic for Doppler measurements of profiles of the ion temperature and the plasma flow velocities in magnetically confined, hot fusion plasmas. These instruments have by now been implemented on major tokamak and stellarator experiments in Korea, China, Japan, and Germany and are currently also being designed by PPPL for ITER. A still missing part in the present data analysis is an efficient code for photon throughput calculations to evaluate the chord-integrated spectral data. The existing ray tracing codes cannot be used for a data analysis between shots, since they require extensive and time consuming numerical calculations. Here, we present a detailed analysis of the geometrical properties of the ray pattern. This method allows us to minimize the extent of numerical calculations and to create a more efficient code. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466.

  5. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  6. X-ray spectrometer with a low-cost SiC photodiode

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Lioliou, G.; Barnett, A. M.

    2018-04-01

    A low-cost Commercial-Off-The-Shelf (COTS) 4H-SiC 0.06 mm2 UV p-n photodiode was coupled to a low-noise charge-sensitive preamplifier and used as photon counting X-ray spectrometer. The photodiode/spectrometer was investigated at X-ray energies from 4.95 keV to 21.17 keV: a Mo cathode X-ray tube was used to fluoresce eight high-purity metal foils to produce characteristic X-ray emission lines which were used to characterise the instrument. The energy resolution (full width at half maximum, FWHM) of the spectrometer was found to be 1.6 keV to 1.8 keV, across the energy range. The energy linearity of the detector/spectrometer (i.e. the detector's charge output per photon as a function of incident photon energy across the 4.95 keV to 21.17 keV energy range), as well as the count rate linearity of the detector/spectrometer (i.e. number of detected photons as a function of photon fluence at a specific energy) were investigated. The energy linearity of the detector/spectrometer was linear with an error < ± 0.7 %; the count rate linearity of the detector/spectrometer was linear with an error < ± 2 %. The use of COTS SiC photodiodes as detectors for X-ray spectrometers is attractive for nanosatellite/CubeSat applications (including solar flare monitoring), and for cost sensitive industrial uses.

  7. Perfluoro(Methylcyclohexane) Tracer Tagging Test and Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigman, M.E.

    On February 14 and 15, 2000, a demonstration of current perfluorocarbon tagging technology and the future potential of these methods was held at Oak Ridge National Laboratory (ORNL). The demonstration consisted of a brief technical discussion followed by a laboratory demonstration. The laboratory demonstrations included the detection of letters, parcels, briefcases and lockers containing perfluorocarbon-tagged papers. Discrimination between tagged and non-tagged items and between three perfluorocarbon tags was demonstrated along with the detection of perfluorocarbon in a background of non-fluorinated volatile organic solvent. All demonstrations involved real-time detection using a direct sampling ion trap mass spectrometer. The technical results obtainedmore » at ORNL during and in preparation for the demonstration are presented in Appendix 1 to assist Tracer Detection Technology Corp. in further evaluating their position on development and marketing of perfluorocarbon tracer technology.« less

  8. An Optics Free Spectrometer for the Extreme Ultraviolet

    NASA Technical Reports Server (NTRS)

    Judge, D. L.; Daybell, M. D.; Hoffman, J. R.; Gruntman, M. A.; Ogawa, H. S.; Samson, J. A. R.

    1994-01-01

    The optics-free spectrometer is a photon spectrometer. It provides the photon spectrum of a broadband source by converting photons of energy E into electrons of energy E', according to the Einstein relation, E' = E - Ei. E, is the ionization threshold of the gas target of interest (any of the rare gases are suitable) and E is the incoming photon energy. As is evident from the above equation, only a single order spectrum is produced throughout the energy range between the first and second ionization potentials of the rare gas used. Photons with energy above the second ionization potential produce two groups of electrons, but they are readily distinguished from each other. This feature makes this device extremely useful for determining the true spectrum of a continuum source or a many line source. The principle of operation and the laboratory results obtained with a representative configuration of the optics-free spectrometer are presented.

  9. Hong-Ou-Mandel Gravitational Wave Space spectrometER - HOMER mission

    NASA Astrophysics Data System (ADS)

    Jacinto de Matos, Clovis; Tajmar, Martin

    2018-06-01

    Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause the rotation of photon's linear polarization vector, thus disturbing the interference of entangled photons in Hong-Ou-Mandel (HOM) interferometers. Here one uses that physical phenomenon to devise a spectrometer for gravitational waves through the implementation of a Hong-Ou-Mandel interferometer in Earth geostationary orbit with a constellation of three different spacecraft in accurate formation flight. We call this mission, the Hong-Ou-Mandel Gravitational Waves Space SpectrometER (HOMER). HOMER will cover the part of the gravitational wave spectrum with wavelengths around λ =105 km, which falls between the long wavelength detection range of LISA, around λ =106 km, and of ground based detectors like LIGO, around λ =103 km. With respect to Michelson type detectors, the proposed concept for the detection and spectral analysis of gravitational waves has the advantage of operating without the need of drag free satellites, however it requires a relative precision of the attitude between satellites of the order of the gravitational waves amplitude δθ / θ ∼ h ∼10-20 , which makes the architecture of the HOMER mission as challenging as the Michelson type space detectors. The difficulty being however transferred from the monitoring of the relative distance between spacecraft (for Michelson antennas) to their relative attitude. By focusing on photons polarization instead of photons phase one can measure the spectrum of the detected gravitational signal. As a bonus, the proposed instrument could also investigate the influence of spacetime curvature on photons quantum entanglement, thus experimentally peering into the relation between general relativity and quantum mechanics, which is currently a subject of high interest in theoretical physics. This paper will describe the HOMER mission concept in general and

  10. Dual crystal x-ray spectrometer at 1.8 keV for high repetition-rate single-photon counting spectroscopy experiments

    DOE PAGES

    Gamboa, E. J.; Bachmann, B.; Kraus, D.; ...

    2016-08-01

    The recent development of high-repetition rate x-ray free electron lasers (FEL), makes it possible to perform x-ray scattering and emission spectroscopy measurements from thin foils or gasses heated to high-energy density conditions by integrating over many experimental shots. Since the expected signal may be weaker than the typical CCD readout noise over the region-of-interest, it is critical to the success of this approach to use a detector with high-energy resolution so that single x-ray photons may be isolated. We describe a dual channel x-ray spectrometer developed for the Atomic and Molecular Optics endstation at the Linac Coherent Light Source (LCLS)more » for x-ray spectroscopy near the K-edge of aluminum. The spectrometer is based on a pair of curved PET (002) crystals coupled to a single pnCCD detector which simultaneously measures x-ray scattering and emission in the forward and backward directions. Furthermore, the signals from single x-ray photons are accumulated permitting continuous single-shot acquisition at 120 Hz.« less

  11. 3He(γ,pp)n cross sections with tagged photons below the Δ resonance energy

    NASA Astrophysics Data System (ADS)

    Kolb, N. R.; Feldman, G.; O'rielly, G. V.; Pywell, R. E.; Skopik, D. M.; Hackett, E. D.; Quraan, M. A.; Rodning, N. L.

    1996-11-01

    Cross sections have been measured for the 3He(γ,pp)n reaction with tagged photons in the range Eγ =161-208 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The protons were detected over a range of polar angles of 40°-140° and azimuthal angles of 0°-360° with an energy threshold of 40 MeV. Comparisons are made with a microscopic calculation which includes one-, two-, and three-nucleon absorption mechanisms. One- and two-nucleon processes, including final-state interactions, are unable to account for the measured cross sections. The addition of three-nucleon absorption diagrams gives roughly the right strength, but the distribution in phase space is in disagreement with the data.

  12. Ring-patterned plasmonic photonic crystal thermal light source for miniaturized near-infrared spectrometers

    NASA Astrophysics Data System (ADS)

    Labib, Shady R.; Elsayed, Ahmed A.; Sabry, Yasser M.; Khalil, Diaa

    2018-02-01

    There is a growing number of spectroscopy applications in the near-infrared (NIR) range including gas sensing, food analysis, pharmaceutical and industrial applications that requires highly efficient, more compact and low-cost miniaturized spectrometers. One of the key components for such systems is the wideband light source that can be fabricated using Silicon technology and hence integrated with other components on the same chip. In this work, we report a ring-patterned plasmonic photonic crystal (PC) thermal light source for miniaturized near-infrared spectrometers. The design is based on silicon and tuned to achieve wavelength selectivity in the emitted spectrum. The design is optimized by using Rigorous Coupled-Wave Analysis (RCWA) simulation, which is used to compute the power reflectance and transmittance that are used to predict the emissivity of the structure. The design consists of a PC of silicon rings coated with platinum. The period of the structure is about 2 μm and the silicon is highly-doped with n-type doping level in the order of 1019-1020 cm-3 to enhance the free-carrier absorption. The ring etching depth, diameter and shell thickness are optimized to increase its emissivity within a specific wavelength range of interest. The simulation results show an emissivity exceeding 0.9 in the NIR range up to 2.5 μm, while the emissivity is decreased significantly for longer wavelengths suppressing the emission out of the range of interest, and hence increasing the efficiency for the source. The reported results open the door for black body radiation engineering in integrated silicon sources for spectrometer miniaturization.

  13. Search for the Θ+ Pentaquark in the γd→ΛnK+ Reaction Measured with the CLAS Spectrometer

    NASA Astrophysics Data System (ADS)

    Niccolai, S.; Mirazita, M.; Rossi, P.; Baltzell, N. A.; Carman, D. S.; Hicks, K.; McKinnon, B.; Mibe, T.; Stepanyan, S.; Tedeschi, D. J.; Adams, G.; Ambrozewicz, P.; Anefalos Pereira, S.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carnahan, B.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Dashyan, N.; Degtyarenko, P. V.; de Masi, R.; Deppman, A.; de Sanctis, E.; Deur, A.; Devita, R.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Feldman, G.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hardie, J.; Hersman, F. W.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Livingston, K.; Lu, H.; MacCormick, M.; Markov, N.; Mecking, B. A.; Mellor, J.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Moteabbed, M.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; de Oliveira Echeimberg, J.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shvedunov, N. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.

    2006-07-01

    For the first time, the reaction γd→ΛnK+ has been analyzed in order to search for the exotic pentaquark baryon Θ+(1540). The data were taken at Jefferson Laboratory, using the Hall-B tagged-photon beam of energy between 0.8 and 3.6 GeV and the CEBAF Large Acceptance Spectrometer (CLAS). No statistically significant structures were observed in the nK+ invariant-mass distribution. The upper limit on the γd→ΛΘ+ integrated cross section has been calculated and found to be between 5 and 25 nb, depending on the production model assumed. The upper limit on the differential cross section is also reported.

  14. A high-speed, reconfigurable, channel- and time-tagged photon arrival recording system for intensity-interferometry and quantum optics experiments

    NASA Astrophysics Data System (ADS)

    Girish, B. S.; Pandey, Deepak; Ramachandran, Hema

    2017-08-01

    We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function ( g 2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.

  15. The Search for Missing Baryons with Linearly Polarized Photons at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Cole, Philip

    2006-05-01

    The set of experiments forming the g8 run took place in Hall B of Jefferson Lab during the summers of 2001 and 2005 These experiments made use of a beam of linearly-polarized photons produced through coherent bremsstrahlung and represent the first time such a probe has been employed at Jefferson Lab. The scientific purpose of g8 is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. With the high-quality beam of the tagged and collimated linearly-polarized photons and the nearly complete angular coverage of the Hall-B spectrometer, we seek to extract the differential cross sections and attendant polarization observables for the photoproduction of vector mesons and kaons at photon energies ranging between 1.3 and 2.2 GeV. We achieved polarizations exceeding 90% and collected over six billion events, which, after our data cuts and analysis, should give us well over 100 times the world's data set. I shall report on the experimental details of establishing the Coherent Bremsstrahlung Facility and present some preliminary results from our first run.

  16. Ultra compact spectrometer apparatus and method using photonic crystals

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  17. A sensitive and quantitative element-tagged immunoassay with ICPMS detection.

    PubMed

    Baranov, Vladimir I; Quinn, Zoë; Bandura, Dmitry R; Tanner, Scott D

    2002-04-01

    We report a set of novel immunoassays in which proteins of interest can be detected using specific element-tagged antibodies. These immunoassays are directly coupled with an inductively coupled plasma mass spectrometer (ICPMS) to quantify the elemental (in this work, metal) component of the reacted tagged antibodies. It is demonstrated that these methods can detect levels of target proteins as low as 0.1-0.5 ng/mL and yield a linear response to protein concentration over 3 orders of magnitude.

  18. Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    NASA Astrophysics Data System (ADS)

    Niccolai, S.; Audit, G.; Berman, B. L.; Laget, J. M.; Strauch, S.; Adams, G.; Afanasev, A.; Ambrozewicz, P.; Anghinolfi, M.; Annand, J. R.; Armstrong, C.; Asavapibhop, B.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Ent, R.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Golovatch, E.; Gordon, C. I.; Gothe, R. W.; Griffioen, K.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hleiqawi, K.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Llieva, Y. Y.; Ireland, D.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Li, Ji; Lima, A. C.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Naseripour, R.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weygand, D. P.; Whisnant, C. S.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.

    2004-12-01

    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV . The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.

  19. π0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    NASA Astrophysics Data System (ADS)

    Dugger, M.; Ritchie, B. G.; Ball, J. P.; Collins, P.; Pasyuk, E.; Arndt, R. A.; Briscoe, W. J.; Strakovsky, I. I.; Workman, R. L.; Adams, G.; Amarian, M.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Baltzell, N. A.; Barrow, S.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Sanctis, E. De; Vita, R. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dhuga, K. S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuznetsov, V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; Maximon, L. C.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Slamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2007-08-01

    Differential cross sections for the reaction γp→pπ0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

  20. Tuning single-photon sources for telecom multi-photon experiments.

    PubMed

    Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip

    2018-02-05

    Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.

  1. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectramore » for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.« less

  2. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    PubMed Central

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  3. Photon beam asymmetry Σ for η and η' photoproduction from the proton

    DOE PAGES

    Collins, P.; Ritchie, B. G.; Dugger, M.; ...

    2017-05-18

    Measurements of the linearly-polarized photon beam asymmetrymore » $$\\Sigma$$ for photoproduction from the proton of $$\\eta$$ and $$\\eta^\\prime$$ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the $$\\gamma p \\to \\eta p$$ reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the $$\\gamma p \\to \\eta^\\prime p$$ reaction. For $$\\gamma p \\to \\eta p$$, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For $$\\gamma p \\to \\eta^\\prime p$$, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. In conclusion, initial analysis of the data reported here with the Bonn-Gatchina model strengthens the evidence for four nucleon resonances -- the $N(1895)1/2^-$, $N(1900)3/2^+$, $N(2100)1/2^+$ and $N(2120)3/2^-$ resonances -- which presently lack the "four-star" status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.« less

  4. Photon beam asymmetry Σ for η and η' photoproduction from the proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, P.; Ritchie, B. G.; Dugger, M.

    Measurements of the linearly-polarized photon beam asymmetrymore » $$\\Sigma$$ for photoproduction from the proton of $$\\eta$$ and $$\\eta^\\prime$$ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the $$\\gamma p \\to \\eta p$$ reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the $$\\gamma p \\to \\eta^\\prime p$$ reaction. For $$\\gamma p \\to \\eta p$$, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For $$\\gamma p \\to \\eta^\\prime p$$, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. In conclusion, initial analysis of the data reported here with the Bonn-Gatchina model strengthens the evidence for four nucleon resonances -- the $N(1895)1/2^-$, $N(1900)3/2^+$, $N(2100)1/2^+$ and $N(2120)3/2^-$ resonances -- which presently lack the "four-star" status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.« less

  5. A Study of the Photoproduction of the $$\\Lambda_c^+$$ Charmed Baryon at $$\\gamma$$ Energies of 40-160 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, Carl John

    Evidence for the Amore » $$+\\atop{c}$$ charmed baryon has been found in experiment E516 at the Tagged Photon Spectrometer in Fermilab. The experiment studied high energy IP interactions for photon energies in the range of 40-160 GeV by utilizing a large acceptance spectrometer system to study the forward reaction products and a unique, sophisticated recoil chamber to study the target fragments.« less

  6. g8: Physics with Linearly-Polarized Photons in Hall B of JLab

    NASA Astrophysics Data System (ADS)

    Cole, Philip L.

    2001-11-01

    The set of experiments forming the g8 run in Hall B took place this past summer (6/4/01-8/13/01) in Hall B of Jefferson Lab. These experiments make use of a beam of linearly-polarized photons produced through coherent bremsstrahlung and represent the first time such a probe has been employed at Jefferson Lab. Several new and upgraded Hall-B beamline devices were commissioned prior to the production running of g8. The scientific purpose of g8 is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. With the high-quality beam of the tagged and collimated linearly-polarized photons and the nearly complete angular coverage of the Hall-B spectrometer, we will extract the differential cross sections and polarization observables for the photoproduction of vector mesons and kaons at photon energies ranging between 1.9 and 2.1 GeV. We collected over 1.2 trillion triggers. After data cuts, we expect to have 500 times the world's data set on rhos and omegas produced via a beam of linearly-polarized photons. A report on the results of the commissioning of the beamline devices and the progress of the analysis of the g8 run will be presented.

  7. On-Chip Photonic Circuits for Atom-Light Interaction in Quantum Information and Integrated Optical Spectrometer for Astrophotonics

    NASA Astrophysics Data System (ADS)

    Meng, Yang

    Photonic circuits are becoming very promising in many different applications, such as optical amplification, optical switching and wavelength division multiplexing optical networks, lab-on-chip in bioengineering, atom-light interaction in quantum information processing, wavelength selecting and filtering in astronomy, etc. Thanks to major developments in the nanofabrication technology, smaller but more powerful photonic circuits can be made to realize more complex applications. Here we propose two on-chip photonic circuits: one is for atom-light interaction in quantum information, and the other is for an optical spectrometer in astronomy. Part I. The atom-light interaction can be used for a number of quantum based application, such as quantum information processing and atomic sensing. These significant applications make atom-light interaction a strong candidate for next-generation quantum computers and ultraprecise magnetic or navigation sensors. People have proposed various types of atom-photon interaction, and enhancing the interaction by using a small mode area has also been demonstrated in several platforms such as a hollow-core fiber, a hollow-core waveguide, a tapered fiber, and a nanowaveguide. In our work, we propose a nanowaveguide platform for collective atom-light interaction through the evanescent optical field coupling. We have demonstrated a centimeter-long silicon nitride nanowaveguide that has a sub-micrometer mode area and high fiber-to-waveguide coupling efficiencies for near-infrared wavelengths, working as evanescent field atom trapping/probing of an ensemble of 87Rb atoms. Inverse tapers are made at both ends of the waveguide that adiabatically transfer the weakly guided fiber-coupled mode to a strongly guided mode with an evanescent field for a better fiber-waveguide coupling efficiency. The coupling efficiency improves from around 2% to around 80% for both wavelengths. Trapping atoms by nanowaveguide modes is challenging because the small

  8. Photon beam asymmetry Σ for η and η‧ photoproduction from the proton

    NASA Astrophysics Data System (ADS)

    Collins, P.; Ritchie, B. G.; Dugger, M.; Anisovich, A. V.; Döring, M.; Klempt, E.; Nikonov, V. A.; Rönchen, D.; Sadasivan, D.; Sarantsev, A.; Adhikari, K. P.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Balossino, I.; Bashkanov, M.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, Frank Thanh; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wei, X.; Zachariou, N.; Zhang, J.

    2017-08-01

    Measurements of the linearly-polarized photon beam asymmetry Σ for photoproduction from the proton of η and η‧ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the γp → ηp reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the γp →η‧ p reaction. For γp → ηp, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For γp →η‧ p, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. Initial analysis of the data reported here with the Bonn-Gatchina model strengthens the evidence for four nucleon resonances - the N (1895) 1 /2-, N (1900) 3 /2+, N (2100) 1 /2+ and N (2120) 3 /2- resonances - which presently lack the ;four-star; status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.

  9. On-ground calibration of AGILE-GRID with a photon beam: results and lessons for the future

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Rappoldi, A.

    2013-06-01

    On the AGILE satellite, there is the Gamma Ray Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an Anti-Coincidence system of plastic scintillator bars. The ST needs a calibration with a γ-ray beam to validate the simulation used to calculate the detector response versus the energy and the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility of the Laboratori Nazionali of Frascati, generated by an electron beam through bremsstrahlung in a position-sensitive target. The γ-ray energy is deduced by the difference with the post-bremsstrahlung electron energy [P. W. Cattaneo, et al., Characterization of a tagged γ-ray beam line at the daΦne beam test facility, Nucl. Instr. and Meth. A 674 (2012) 55-66; P. W. Cattaneo, et al., First results about on-ground calibration of the silicon tracker for the agile satellite, Nucl. Instr. and Meth. A 630(1) (2011) 251-257.]. The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of position sensitive silicon strip detectors, the Photon Tagging System (PTS). In this paper the setup and the calibration of AGILE performed in 2005 are described.

  10. DESIGN, SYNTHESIS, AND APPLICATION OF THE TRIMETHOPRIM-BASED CHEMICAL TAG FOR LIVE CELL IMAGING

    PubMed Central

    Jing, Chaoran; Cornish, Virginia W.

    2013-01-01

    Over the past decade chemical tags have been developed to complement the use of fluorescent proteins in live cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon-output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E.coli dihydrofolatereductase and the antibiotic trimethoprim and subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live cell imaging. Alternative protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. PMID:23839994

  11. Design, synthesis, and application of the trimethoprim-based chemical tag for live-cell imaging.

    PubMed

    Jing, Chaoran; Cornish, Virginia W

    2013-01-01

    Over the past decade, chemical tags have been developed to complement the use of fluorescent proteins in live-cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E. coli dihydrofolate reductase and the antibiotic trimethoprim and was subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live-cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live-cell imaging. Alternate protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. © 2013 by John Wiley & Sons, Inc.

  12. Commissioning of the pair spectrometer of the GlueX experiment

    DOE PAGES

    Somov, A.; Tolstukhin, I.; Somov, S. V.; ...

    2017-03-07

    The main goal of the pair spectrometer of the GlueX experiment at Jefferson Lab is to determine the photon beam flux and to measure beam polarization. Here, we present the design of the pair spectrometer and the performance results during the first commissioning runs of the GlueX experiment.

  13. Photon structure studied at an electron ion collider

    DOE PAGES

    Chu, X.; Aschenauer, E. C.; Lee, J. H.; ...

    2017-10-30

    We report that a future electron ion collider (EIC) will be able to provide collisions of polarized electrons with protons and heavy ions over a wide range of center-of-mass energies (20 GeV to 140 GeV) at an instantaneous luminosity of 10 33 - 10 34cm -2s -1. One of its promising physics programs is the study of the partonic structure of quasireal photons. Measuring dijets in quasireal photoproduction events, one can effectively access the underlying parton dynamics of the photons. In this paper, we discuss the feasibility of tagging resolved photon processes and measuring the dijet cross section as a function of jet transverse momentum in the range of 0.01 < xmore » $$rec\\atop{γ}$$ < 1 at an EIC. Finally, it will be shown that both unpolarized and polarized parton distributions in the photon can be extracted, and that the flavor of the parton can be tagged at an EIC.« less

  14. Iodine Tagging Velocimetry in a Mach 10 Wake

    NASA Technical Reports Server (NTRS)

    Balla, Robert Jeffrey

    2013-01-01

    A variation on molecular tagging velocimetry (MTV) [1] designated iodine tagging velocimetry (ITV) is demonstrated. Molecular iodine is tagged by two-photon absorption using an Argon Fluoride (ArF) excimer laser. A single camera measures fluid displacement using atomic iodine emission at 206 nm. Two examples ofMTVfor cold-flowmeasurements areN2OMTV [2] and Femtosecond Laser Electronic Excitation Tagging [3]. These, like most MTV methods, are designed for atmospheric pressure applications. Neither can be implemented at the low pressures (0.1- 1 Torr) in typical hypersonic wakes. Of all the single-laser/singlecamera MTV approaches, only Nitric-Oxide Planar Laser Induced Fluorescence-based MTV [4] has been successfully demonstrated in a Mach 10 wake. Oxygen quenching limits transit times to 500 ns and accuracy to typically 30%. The present note describes the photophysics of the ITV method. Off-body velocimetry along a line is demonstrated in the aerothermodynamically important and experimentally challenging region of a hypersonic low-pressure near-wake in a Mach 10 air wind tunnel. Transit times up to 10 µs are demonstrated with conservative errors of 10%.

  15. Terahertz photonic crystals

    NASA Astrophysics Data System (ADS)

    Jian, Zhongping

    This thesis describes the study of two-dimensional photonic crystals slabs with terahertz time domain spectroscopy. In our study we first demonstrate the realization of planar photonic components to manipulate terahertz waves, and then characterize photonic crystals using terahertz pulses. Photonic crystal slabs at the scale of micrometers are first designed and fabricated free of defects. Terahertz time domain spectrometer generates and detects the electric fields of single-cycle terahertz pulses. By putting photonic crystals into waveguide geometry, we successfully demonstrate planar photonic components such as transmission filters, reflection frequency-selective filters, defects modes as well as superprisms. In the characterization study of out-of-plane properties of photonic crystal slabs, we observe very strong dispersion at low frequencies, guided resonance modes at middle frequencies, and a group velocity anomaly at high frequencies. We employ Finite Element Method and Finite-Difference Time-Domain method to simulate the photonic crystals, and excellent agreement is achieved between simulation results and experimental results.

  16. Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.

    PubMed

    Hufziger, Kyle T; Bykov, Sergei V; Asher, Sanford A

    2017-02-01

    We constructed the first deep ultraviolet (UV) Raman standoff wide-field imaging spectrometer. Our novel deep UV imaging spectrometer utilizes a photonic crystal to select Raman spectral regions for detection. The photonic crystal is composed of highly charged, monodisperse 35.5 ± 2.9 nm silica nanoparticles that self-assemble in solution to produce a face centered cubic crystalline colloidal array that Bragg diffracts a narrow ∼1.0 nm full width at half-maximum (FWHM) UV spectral region. We utilize this photonic crystal to select and image two different spectral regions containing resonance Raman bands of pentaerythritol tetranitrate (PETN) and NH 4 NO 3 (AN). These two deep UV Raman spectral regions diffracted were selected by angle tuning the photonic crystal. We utilized this imaging spectrometer to measure 229 nm excited UV Raman images containing ∼10-1000 µg/cm 2 samples of solid PETN and AN on aluminum surfaces at 2.3 m standoff distances. We estimate detection limits of ∼1 µg/cm 2 for PETN and AN films under these experimental conditions.

  17. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  18. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives

    NASA Astrophysics Data System (ADS)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.

    2014-05-01

    With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.

  19. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less

  20. Development of a compact laser-based single photon ionization time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki

    2010-02-01

    We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.

  1. VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer.

    PubMed

    Seon, C R; Hong, J H; Song, I; Jang, J; Lee, H Y; An, Y H; Kim, B S; Jeon, T M; Park, J S; Choe, W; Lee, H G; Pak, S; Cheon, M S; Choi, J H; Kim, H S; Biel, W; Bernascolle, P; Barnsley, R

    2017-08-01

    The ITER vacuum ultra-violet (VUV) core survey spectrometer has been designed as a 5-channel spectral system so that the high spectral resolving power of 200-500 could be achieved in the wavelength range of 2.4-160 nm. To verify the design of the ITER VUV core survey spectrometer, a two-channel prototype spectrometer was developed. As a subsequent step of the prototype test, the prototype VUV spectrometer has been operated at KSTAR since the 2012 experimental campaign. From impurity injection experiments in the years 2015 and 2016, strong emission lines, such as Kr xxv 15.8 nm, Kr xxvi 17.9 nm, Ne vii 46.5 nm, Ne vi 40.2 nm, and an array of largely unresolved tungsten lines (14-32 nm) could be measured successfully, showing the typical photon number of 10 13 -10 15 photons/cm 2 s.

  2. gPhoton: The GALEX Photon Data Archive

    NASA Astrophysics Data System (ADS)

    Million, Chase; Fleming, Scott W.; Shiao, Bernie; Seibert, Mark; Loyd, Parke; Tucker, Michael; Smith, Myron; Thompson, Randy; White, Richard L.

    2016-12-01

    gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project’s stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope. This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command-line modules serve as a front end to interact with the database and to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time-domain science capabilities enabled by gPhoton, we show new flares from the known M-dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.

  3. gPhoton: THE GALEX PHOTON DATA ARCHIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Million, Chase; Fleming, Scott W.; Shiao, Bernie

    gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project’s stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope. This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command-line modules serve as a front end to interact with the database andmore » to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time-domain science capabilities enabled by gPhoton, we show new flares from the known M-dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.« less

  4. Compact focusing spectrometer: visible (1 eV) to hard x-rays (200 keV).

    PubMed

    Baronova, E O; Stepanenko, A M; Pereira, N R

    2014-11-01

    A low-cost spectrometer that covers a wide range of photon energies can be useful to teach spectroscopy, and for simple, rapid measurements of the photon spectrum produced by small plasma devices. The spectrometer here achieves its wide range, nominally from 1 eV to 200 keV, with a series of spherically and cylindrically bent gratings or crystals that all have the same shape and the same radius of curvature; they are complemented by matching apertures and diagnostics on the Rowland circle that serves as the circular part of the spectrometer's vacuum vessel. Spectral lines are easily identified with software that finds their positions from the dispersion of each diffractive element and the known energies of the lines.

  5. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  6. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senderovich, Igor

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning themmore » to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b 1 π → ω π +1 π -1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.« less

  7. Photon beam asymmetry Σ in the reaction γ → p → pω for Eγ = 1.152 to 1.876 GeV

    NASA Astrophysics Data System (ADS)

    Collins, P.; Ritchie, B. G.; Dugger, M.; Klein, F. J.; Anisovich, A. V.; Klempt, E.; Nikonov, V. A.; Sarantsev, A.; Adhikari, K. P.; Adhikari, S.; Adikaram, D.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Bashkanov, M.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, Frank Thanh; Cao, T.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Defurne, M.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Hollis, G.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Meziani, Z. E.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.

    2017-10-01

    Photon beam asymmetry Σ measurements for ω photoproduction in the reaction γ → p → ωp are reported for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The measurements obtained markedly increase the size of the database for this observable, extend coverage to higher energies, and resolve discrepancies in previously published data. Comparisons of these new results with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate the importance of interferences between t-channel meson exchange and s- and u-channel contributions, underscoring sensitivity to the nucleon resonances included in those descriptions. Comparisons with the Bonn-Gatchina partial-wave analysis indicate the Σ data reported here help to fix the magnitudes of the interference terms between the leading amplitudes in that calculation (Pomeron exchange and the resonant portion of the JP = 3 /2+ partial wave), as well as the resonant portions of the smaller partial waves with JP = 1 /2-, 3 /2-, and 5 /2+.

  8. Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2008-03-01

    An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.

  9. Informatics in Radiology: Dual-Energy Electronic Cleansing for Fecal-Tagging CT Colonography

    PubMed Central

    Kim, Se Hyung; Lee, June-Goo; Yoshida, Hiroyuki

    2013-01-01

    Electronic cleansing (EC) is an emerging technique for the removal of tagged fecal materials at fecal-tagging computed tomographic (CT) colonography. However, existing EC methods may generate various types of artifacts that severely impair the quality of the cleansed CT colonographic images. Dual-energy fecal-tagging CT colonography is regarded as a next-generation imaging modality. EC that makes use of dual-energy fecal-tagging CT colonographic images promises to be effective in reducing cleansing artifacts by means of applying the material decomposition capability of dual-energy CT. The dual-energy index (DEI), which is calculated from the relative change in the attenuation values of a material at two different photon energies, is a reliable and effective indicator for differentiating tagged fecal materials from various types of tissues on fecal-tagging CT colonographic images. A DEI-based dual-energy EC scheme uses the DEI to help differentiate the colonic lumen—including the luminal air, tagged fecal materials, and air-tagging mixture—from the colonic soft-tissue structures, and then segments the entire colonic lumen for cleansing of the tagged fecal materials. As a result, dual-energy EC can help identify partial-volume effects in the air-tagging mixture and inhomogeneous tagging in residual fecal materials, the major causes of EC artifacts. This technique has the potential to significantly improve the quality of EC and promises to provide images of a cleansed colon that are free of the artifacts commonly observed with conventional single-energy EC methods. © RSNA, 2013 PMID:23479680

  10. Fully integrated sub 100ps photon counting platform

    NASA Astrophysics Data System (ADS)

    Buckley, S. J.; Bellis, S. J.; Rosinger, P.; Jackson, J. C.

    2007-02-01

    Current state of the art high resolution counting modules, specifically designed for high timing resolution applications, are largely based on a computer card format. This has tended to result in a costly solution that is restricted to the computer it resides in. We describe a four channel timing module that interfaces to a computer via a USB port and operates with a resolution of less than 100 picoseconds. The core design of the system is an advanced field programmable gate array (FPGA) interfacing to a precision time interval measurement module, mass memory block and a high speed USB 2.0 serial data port. The FPGA design allows the module to operate in a number of modes allowing both continuous recording of photon events (time-tagging) and repetitive time binning. In time-tag mode the system reports, for each photon event, the high resolution time along with the chronological time (macro time) and the channel ID. The time-tags are uploaded in real time to a host computer via a high speed USB port allowing continuous storage to computer memory of up to 4 millions photons per second. In time-bin mode, binning is carried out with count rates up to 10 million photons per second. Each curve resides in a block of 128,000 time-bins each with a resolution programmable down to less than 100 picoseconds. Each bin has a limit of 65535 hits allowing autonomous curve recording until a bin reaches the maximum count or the system is commanded to halt. Due to the large memory storage, several curves/experiments can be stored in the system prior to uploading to the host computer for analysis. This makes this module ideal for integration into high timing resolution specific applications such as laser ranging and fluorescence lifetime imaging using techniques such as time correlated single photon counting (TCSPC).

  11. Johann Spectrometer for High Resolution X-ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machek, Pavel; Froeba, Michael; Welter, Edmund

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixedmore » Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.« less

  12. Photon beam asymmetry Σ in the reaction γ → p → p ω for E γ = 1.152 to 1.876 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, P.; Ritchie, B. G.; Dugger, M.

    Photon beam asymmetrymore » $$\\Sigma$$ measurements for $$\\omega$$ photoproduction in the reaction $$\\vec{\\gamma} p \\to \\omega p$$ are reported for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The measurements we obtained markedly increase the size of the database for this observable, extend coverage to higher energies, and resolve discrepancies in previously published data. Comparisons of these new results with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate the importance of interferences between $t$-channel meson exchange and $s$- and $u$-channel contributions, underscoring sensitivity to the nucleon resonances included in those descriptions. Comparisons with the Bonn-Gatchina partial-wave analysis indicate the $$\\Sigma$$ data reported here help to fix the magnitudes of the interference terms between the leading amplitudes in that calculation (Pomeron exchange and the resonant portion of the $J^P=3/2^+$ partial wave), as well as the resonant portions of the smaller partial waves with $J^P$= $1/2^-$, $3/2^-$, and $5/2^+$.« less

  13. Photon beam asymmetry Σ in the reaction γ → p → p ω for E γ = 1.152 to 1.876 GeV

    DOE PAGES

    Collins, P.; Ritchie, B. G.; Dugger, M.; ...

    2017-08-18

    Photon beam asymmetrymore » $$\\Sigma$$ measurements for $$\\omega$$ photoproduction in the reaction $$\\vec{\\gamma} p \\to \\omega p$$ are reported for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The measurements we obtained markedly increase the size of the database for this observable, extend coverage to higher energies, and resolve discrepancies in previously published data. Comparisons of these new results with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate the importance of interferences between $t$-channel meson exchange and $s$- and $u$-channel contributions, underscoring sensitivity to the nucleon resonances included in those descriptions. Comparisons with the Bonn-Gatchina partial-wave analysis indicate the $$\\Sigma$$ data reported here help to fix the magnitudes of the interference terms between the leading amplitudes in that calculation (Pomeron exchange and the resonant portion of the $J^P=3/2^+$ partial wave), as well as the resonant portions of the smaller partial waves with $J^P$= $1/2^-$, $3/2^-$, and $5/2^+$.« less

  14. A beta-ray spectrometer based on a two-or three silicon detector coincidence telescope

    NASA Astrophysics Data System (ADS)

    Horowitz, Y. S.; Weizman, Y.; Hirning, C. R.

    1996-02-01

    This report describes the operation of a beta-ray energy spectrometer based on a silicon detector telescope using two or three elements. The front detector is a planar, totally-depleted, silicon surface barrier detector that is 97 μm thick, the back detector is a room-temperature, lithium compensated, silicon detector that is 5000 μm thick, and the intermediate detector is similar to the front detector but 72 μm thick and intended to be used only in intense photon fields. The three detectors are mounted in a light-tight aluminum housing. The capability of the spectrometer to reject photons is based upon the fact that the incident photon will have a small probability of simultaneously losing detectable energy in two detectors, and an even smaller probability of losing detectable energy in all three detectors. Electrons will, however, almost always record measurable events in either the front two or all three detectors. A coincidence requirement between the detectors thus rejects photon induced events. With a 97 μm thick detector the lower energy coincidence threshold is approximately 110 keV. With an ultra-thin 40 μm thick front detector, and operated at 15°C, the spectrometer is capable of detecting even 60-70 keV electrons with a coincidence efficiency of 60%. The spectrometer has been used to measure beta radiation fields in CANDU reactor working environments, and the spectral information is intended to support dose algorithms for the LiF TLD chips used in the Ontario Hydro dosimetry program.

  15. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.

    PubMed

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Cochrane, Corey J; Rossman, George R

    2016-02-01

    We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability.

  16. Vector-boson-tagged jet production in heavy ion collisions at energies available at the CERN Large Hadron Collider [Vector boson-tagged jet production in heavy ion collisions at the LHC

    DOE PAGES

    Kang, Zhong -Bo; Vitev, Ivan Mateev; Xing, Hongxi

    2017-07-25

    Here, vector-boson-tagged jet production in collisions of heavy nuclei opens new opportunities to study parton shower formation and propagation in strongly interacting matter. It has been argued to provide a golden channel that can constrain the energy loss of jets in the quark-gluon plasma created in heavy ion reactions. We present theoretical results for isolated-photon-tagged and Z 0-boson-tagged jet production in Pb + Pb collisions with √s NN = 5.02TeV at the LHC. Specifically, we evaluate the transverse momentum imbalance x JV distribution and nuclear modification factor I AA of tagged jets and compare our theoretical calculations to recent experimentalmore » measurements by ATLAS and CMS collaborations. Our analysis, which includes both collisional and radiative energy losses, sheds light on their relative importance versus the strength of jet-medium interactions and helps quantify the amount of out-of-cone radiation of predominantly prompt quark-initiated jets.« less

  17. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    PubMed Central

    Huang, Yunguang; Li, Jinxu; Tang, Bin; Zhu, Liping; Hou, Keyong; Li, Haiyang

    2015-01-01

    A vacuum ultraviolet lamp based single photon ionization- (SPI-) photoelectron ionization (PEI) portable reflecting time-of-flight mass spectrometer (TOFMS) was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE) below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX), SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1) with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear. PMID:26587023

  18. Method of photon spectral analysis

    DOEpatents

    Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.

    1993-01-01

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.

  19. Method of photon spectral analysis

    DOEpatents

    Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.

    1993-04-27

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.

  20. A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Smith, Michael S. D.; Ko, Alex C. T.; Ridsdale, Andrew; Schattka, Bernie; Pegoraro, Adrian; Hewko, Mark D.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.

    2009-06-01

    In this study we compare the single-photon autofluorescence and multi-photon emission spectra obtained from the luminal surface of healthy segments of artery with segments where there are early atherosclerotic lesions. Arterial tissue was harvested from atherosclerosis-prone WHHL-MI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction), an animal model which mimics spontaneous myocardial infarction in humans. Single photon fluorescence emission spectra of samples were acquired using a simple spectrofluorometer set-up with 400 nm excitation. Samples were also investigated using a home built multi-photon microscope based on a Ti:sapphire femto-second oscillator. The excitation wavelength was set at 800 nm with a ~100 femto-second pulse width. Epi-multi-photon spectroscopic signals were collected through a fibre-optics coupled spectrometer. While the single-photon fluorescence spectra of atherosclerotic lesions show minimal spectroscopic difference from those of healthy arterial tissue, the multi-photon spectra collected from atherosclerotic lesions show marked changes in the relative intensity of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals when compared with those from healthy arterial tissue. The observed sharp increase of the relative SHG signal intensity in a plaque is in agreement with the known pathology of early lesions which have increased collagen content.

  1. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x

  2. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  3. Beam asymmetry Σ for π+ and π0 photoproduction on the proton for photon energies from 1.102 to 1.862 GeV

    NASA Astrophysics Data System (ADS)

    Dugger, M.; Ritchie, B. G.; Collins, P.; Pasyuk, E.; Briscoe, W. J.; Strakovsky, I. I.; Workman, R. L.; Azimov, Y.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; Vita, R. De; Sanctis, E. De; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weygand, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2013-12-01

    Beam asymmetries for the reactions γp →pπ0 and γp →nπ+ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged, linearly polarized photon beam with energies from 1.102-1.862 GeV. A Fourier moment technique for extracting beam asymmetries from experimental data is described. The results reported here possess greater precision and finer energy resolution than previous measurements. Our data for both pion reactions appear to favor the SAID and Bonn-Gatchina scattering analyses over the older Mainz MAID predictions. After incorporating the present set of beam asymmetries into the world database, exploratory fits made with the SAID analysis indicate that the largest changes from previous fits are for properties of the Δ(1700)3/2- and Δ(1905)5/2+ states.

  4. High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics

    PubMed Central

    2015-01-01

    Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479

  5. Far From ‘Easy’ Spectroscopy with the 8π and GRIFFIN Spectrometers at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Radich, A. J.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Bianco, L.; Bildstein, V.; Bidaman, H.; Braid, R.; Burbadge, C.; Chagnon-Lessard, S.; Cross, D. S.; Deng, G.; Demand, G. A.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Ilyushkin, S.; Jigmeddorj, B.; Kisliuk, D.; Kuhn, K.; Laffoley, A. T.; Leach, K. G.; MacLean, A. D.; Michetti-Wilson, J.; Miller, D.; Moore, W.; Olaizola, B.; Orce, J. N.; Pearson, C. J.; Pore, J. L.; Rajabali, M. M.; Rand, E. T.; Sarazin, F.; Smith, J. K.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Turko, J.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.; Zganjar, E. F.

    2015-09-01

    The 8π spectrometer, installed at the TRIUMF-ISAC facility, was the world's most sensitive γ-ray spectrometer dedicated to β-decay studies. A description is given of the 8π spectrometer and its auxiliary detectors including the plastic scintillator array SCEPTAR used for β-particle tagging and the Si(Li) array PACES for conversion electron measurements, its moving tape collector, and its data acquisition system. The recent investigation of the decay of 124Cs to study the nuclear structure of 124Xe, and how the β-decay measurements complemented previous Coulomb excitation studies, is highlighted, including the extraction of the deformation parameters for the excited 0+ bands in 124Xe. As a by-product, the decay scheme of the (7+) 124Cs isomeric state, for which the data from the PACES detectors were vital, was studied. Finally, a description of the new GRIFFIN spectrometer, which uses the same auxiliary detectors as the 8π spectrometer, is given.

  6. Radio tag retention and tag-related mortality among adult sockeye salmon

    USGS Publications Warehouse

    Ramstad, Kristina M.; Woody, Carol Ann

    2003-01-01

    Tag retention and tag-related mortality are concerns for any tagging study but are rarely estimated. We assessed retention and mortality rates for esophageal radio tag implants in adult sockeye salmon Oncorhynchus nerka. Migrating sockeye salmon captured at the outlet of Lake Clark, Alaska, were implanted with one of four different radio tags (14.5 × 43 mm (diameter × length), 14.5 × 49 mm, 16 × 46 mm, and 19 × 51 mm). Fish were observed for 15 to 35 d after tagging to determine retention and mortality rates. The overall tag retention rate was high (0.98; 95% confidence interval (CI), 0.92-1.00; minimum, 33 d), with one loss of a 19-mm × 51- mm tag. Mortality of tagged sockeye salmon (0.02; 95% CI, 0-0.08) was similar to that of untagged controls (0.03 (0-0.15)). Sockeye salmon with body lengths (mid-eye to tail fork) of 585-649 mm retained tags as large as 19 × 51 mm and those with body lengths of 499-628 mm retained tags as small as 14.5 × 43 mm for a minimum of 33 d with no increase in mortality. The tags used in this study represent a suite of radio tags that vary in size, operational life, and cost but that are effective in tracking adult anadromous salmon with little tag loss or increase in fish mortality.

  7. Extracting tag hierarchies.

    PubMed

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the "flat" organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search. Moreover

  8. Extracting Tag Hierarchies

    PubMed Central

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the “flat” organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search

  9. On the evaluation of the absolute photon energy of Cu Kα, β lines using 4-crystal X -ray spectrometer

    NASA Astrophysics Data System (ADS)

    Ito, Yoshiaki; Tochio, Tatsunori; Fukushima, Sei

    A 4-crystal X-ray spectrometer was designed based on a 2-crystal X-ray spectrometer to be able to perform the absolute measurement of Bragg angle. This basic thought based on 2 crystals dates back to the times to A.Compton etc.. Because a distortion to give the crystal by the adhesive when a crystal was glued, greatly affected the X-rays profile, we changed it to the channel cut crystal without a free distortion as for having made each crystal of 2-crystal a channel cut. The influence of the foot in the spectral profile is more suppressed because four times of reflections reflect it. It is a high resolution so as not to need to consider instrumental function by the reflection degree that a specific atomic analysis can be executed with the chemical state which it is possible for making the placement of the 4-crystal (+, +) setting. This type of spectrum device is first time in the world. Because the absolute measurement of 2 θ angles is enabled by (+,-) and (+, +) setting from the center of gravity position of the rocking curve and the center of gravity position of the X-rays spectrum, we may measure the absolute value of the X-ray photon energy. Because we evaluated the energy of the Cu Kα , β lines, we report it. We acknowledge financial support for the measurements of a part of the data by the REXDAB collaboration that was initiated within the International Fundamental Parameter Initiative.

  10. Shark Tagging Activities.

    ERIC Educational Resources Information Center

    Current: The Journal of Marine Education, 1998

    1998-01-01

    In this group activity, children learn about the purpose of tagging and how scientists tag a shark. Using a cut-out of a shark, students identify, measure, record data, read coordinates, and tag a shark. Includes introductory information about the purpose of tagging and the procedure, a data sheet showing original tagging data from Tampa Bay, and…

  11. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  12. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  13. Quantum tagging for tags containing secret classical data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian

    Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finitemore » key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.« less

  14. The CMS-TOTEM Precision Proton Spectrometer: CT-PPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrow, Michael G.

    The CMS-TOTEM Precison Proton Spectrometer, CT-PPS, is an approved project to add 3D silicon tracking and quartz Cherenkov timing detectors in Roman pots at z = ±204-215 m from the CMS collision point to study final states p+X + p. The central state X can be aW-pair from a photon-photon interaction, high ET jets from gluon collisions, etc., with M(X) obtained directly as well as from the two outgoing protons. The project is designed to operate at high luminosity, with up to about 50 interactions per 25 ns bunch crossing, and to be fully operational for physics in 2016.

  15. Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizawa, T., E-mail: nishizawa@wisc.edu; Nornberg, M. D.; Den Hartog, D. J.

    2016-11-15

    The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier’s cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

  16. Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Craig, D.

    2016-11-01

    The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier's cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

  17. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonidmore » Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  18. Ontologies and tag-statistics

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2012-05-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  19. Engineering and Characterizing Light-Matter Interactions in Photonic Crystals

    DTIC Science & Technology

    2010-01-01

    photonic crystal effects would occur at wavelengths in the infrared spectrum. These effects would not be easily measured by our available...spectrometers which operate in the visible and near- infrared , at wavelengths shorter than 1.6 microns. Similarly, the majority of interesting luminescent...periodicity of the photonic crystal is defined by the high -throughput method while the low-throughput method performs the complementary task of adding a

  20. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  1. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) two-photon exchange experiment

    NASA Astrophysics Data System (ADS)

    Rimal, Dipak

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = sigma(e +p)/sigma(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (epsilon). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high epsilon(epsilon > 0.8) and the $epsilon dependence of R at approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely

  2. Study of charged pion photoproduction on deuteron

    NASA Astrophysics Data System (ADS)

    Han, Yun-Cheng; Backford, B.; Chiga, N.; Fujii, T.; Fujibayashi, T.; Gogami, T.; Futatsukawa, K.; Hashimoto, O.; Hirose, K.; Hosomi, K.; Iguchi, A.; Ishikawa, T.; Kanda, H.; Kaneta, M.; Kawama, D.; Kawasaki, T.; Kimura, C.; Kiyokawa, S.; Koike, T.; Ma, Y.; Maeda, K.; Maruyama, N.; Matsumura, A.; Miyagi, Y.; Miwa, K.; Nakamura, S. N.; Okuyama, A.; Otani, T.; Sato, M.; Shichijo, A.; Shirotori, K.; Shimizu, H.; Suzuki, K.; Tamura, H.; Taniya, N.; Terada, N.; Yamamoto, T.; Yamamoto, T.; Yokota, K.; Tamae, T.; Wang, Tie-Shan; Yamazaki, H.

    2010-03-01

    Photoproduction of charged pion on deuteron, emphasis on channels γd→π-pp and γd→π+π-np, were measured with the second generation of Neutral Kaon Spectrometer. The photon beam was provided from the tagged photon facility at the Laboratory of Nuclear Science, Tohoku University. The energy range of photon is 0.8-1.1 GeV. The aim is to investigate the pion photoproduction process on the nucleus in the second and third resonance regions. The quasi-free process inside deuteron and also non-quasi-free contributions were derived individually.

  3. Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS

    NASA Astrophysics Data System (ADS)

    Theisen, Ch.; Jeanneau, F.; Sulignano, B.; Druillole, F.; Ljungvall, J.; Paul, B.; Virique, E.; Baron, P.; Bervas, H.; Clément, E.; Delagnes, E.; Dijon, A.; Dossat, E.; Drouart, A.; Farget, F.; Flouzat, Ch.; De France, G.; Görgen, A.; Houarner, Ch.; Jacquot, B.; Korten, W.; Lebertre, G.; Lecornu, B.; Legeard, L.; Lermitage, A.; Lhenoret, S.; Marry, C.; Maugeais, C.; Menager, L.; Meunier, O.; Navin, A.; Nizery, F.; Obertelli, A.; Rauly, E.; Raine, B.; Rejmund, M.; Ropert, J.; Saillant, F.; Savajols, H.; Schmitt, Ch.; Tripon, M.; Wanlin, E.; Wittwer, G.

    2014-05-01

    A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion-evaporation reaction 197Au(22Ne,5n)214Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.

  4. Dynamic optical tags

    NASA Astrophysics Data System (ADS)

    Griggs, Steven P.; Mark, Martin B.; Feldman, Barry J.

    2004-07-01

    The goal of the DARPA Dynamic Optical Tags (DOTs) program is to develop a small, robust, persistent, 2-way tagging, tracking and locating device that also supports communications at data rates greater than 100 kbps and can be interrogated at significant range. These tags will allow for two-way data exchange and tagging operations in friendly and denied areas. The DOTs will be passive and non-RF. To accomplish this, the DOTs program will develop small, thin, retro-reflecting modulators. The tags will operate for long periods of time (greater than two months) in real-world environmental conditions (-40° to +70° C) and allow for a wide interrogation angle (+/-60°). The tags will be passive (in the sleep mode) for most of the time and only become active when interrogated by a laser with the correct code. Once correctly interrogated, the tags will begin to modulate and retro-reflect the incoming beam. The program will also develop two tag specific transceiver systems that are eye-safe, employ automated scanning algorithms, and are capable of short search and interrogate times.

  5. A Dipolar Anthracene Dye: Synthesis, Optical Properties and Two-photon Tissue Imaging.

    PubMed

    Moon, Hyunsoo; Jun, Yong Woong; Kim, Dokyoung; Ryu, Hye Gun; Wang, Taejun; Kim, Ki Hean; Huh, Youngbuhm; Jung, Junyang; Ahn, Kyo Han

    2016-09-20

    Two-photon microscopy is a powerful tool for studying biological systems. In search of novel two-photon absorbing dyes for bioimaging, we synthesized a new anthracene-based dipolar dye (anthradan) and evaluated its two-photon absorbing and imaging properties. The new anthradan, 9,10-bis(o-dimethoxy-phenyl)-anthradan, absorbs and emits at longer wavelengths than acedan, a well-known two-photon absorbing dye. It is also stable under two-photon excitation conditions and biocompatible, and thus used for two-photon imaging of mouse organ tissues to show bright, near-red fluorescence along with negligible autofluorescence. Such an anthradan thus holds promise as a new class of two-photon absorbing dyes for the development of fluorescent probes and tags for biological systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low Noise Titanium Nitride KIDs for SuperSpec: A Millimeter-Wave On-Chip Spectrometer

    NASA Astrophysics Data System (ADS)

    Hailey-Dunsheath, S.; Shirokoff, E.; Barry, P. S.; Bradford, C. M.; Chapman, S.; Che, G.; Glenn, J.; Hollister, M.; Kovács, A.; LeDuc, H. G.; Mauskopf, P.; McKenney, C.; O'Brient, R.; Padin, S.; Reck, T.; Shiu, C.; Tucker, C. E.; Wheeler, J.; Williamson, R.; Zmuidzinas, J.

    2016-07-01

    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100-500), large bandwidth ({˜ }1.65:1), submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector operating at 100-200 MHz. We have tested a new prototype device that achieves the targeted R=100 resolving power, and has better detector sensitivity and optical efficiency than previous devices. We employ a new method for measuring photon noise using both coherent and thermal sources of radiation to cleanly separate the contributions of shot and wave noise. We report an upper limit to the detector NEP of 1.4× 10^{-17} W Hz^{-1/2}, within 10 % of the photon noise-limited NEP for a ground-based R=100 spectrometer.

  7. An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline

    2010-01-01

    High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.

  8. Characterization of a remote optical element with bi-photons

    NASA Astrophysics Data System (ADS)

    Puhlmann, D.; Henkel, C.; Heuer, A.; Pieplow, G.; Menzel, R.

    2016-02-01

    We present a simple setup that exploits the interference of entangled photon pairs. ‘Signal’ photons are sent through a Mach-Zehnder-like interferometer, while ‘idlers’ are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger-Yelin-Englert inequality between contrast and predictability.

  9. Thermal detectors as single photon X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Mather, J. C.; Mushotzky, R. F.; Szymkowiak, A. E.; Mccammon, D.

    1985-01-01

    In a thermal detector employed for X-ray spectroscopy applications, the energy of an X-ray is converted to heat in a small mass, and the energy of that X-ray inferred from the size of the temperature rise. The present investigation is concerned with the possibility to make an extremely low heat capacity calorimeter which can be employed as a thermal detector. Several types of calorimeters were fabricated and tested at temperatures as low as approximately 0.05 K. The obtained devices make use of thermistors constructed of melt-doped silicon, nuclear transmutation doped (NTD) germanium, and ion-implanted silicon with a variety of materials for the support and electrical leads. The utility of these microcalorimeters as X-ray spectrometers could be verified.

  10. A laboratory evaluation of tagging-related mortality and tag loss in juvenile humpback chub

    USGS Publications Warehouse

    Ward, David L.; Persons, William R.; Young, Kirk; Stone, Dennis M.; Van Haverbeke, Randy; Knight, William R.

    2015-01-01

    We quantified tag retention, survival, and growth in juvenile, captive-reared Humpback Chub Gila cypha marked with three different tag types: (1) Biomark 12.5-mm, 134.2-kHz, full duplex PIT tags injected into the body cavity with a 12-gauge needle; (2) Biomark 8.4-mm, 134.2-kHz, full duplex PIT tags injected with a 16-gauge needle; and (3) Northwest Marine Technology visible implant elastomer (VIE) tags injected under the skin with a 29-gauge needle. Estimates of tag loss, tagging-induced mortality, and growth were evaluated for 60 d with each tag type for four different size-groups of fish: 40–49 mm, 50–59 mm, 60–69 mm, and 70–79 mm TL. Total length was a significant predictor of the probability of PIT tag retention and mortality for both 8-mm and 12-mm PIT tags, and the smallest fish had the highest rates of tag loss (12.5–30.0%) and mortality (7.5–20.0%). Humpback Chub of sizes 40–49 mm TL and tagged with VIE tags had no mortality but did have a 17.5% tag loss. Growth rates of all tagged fish were similar to controls. Our data indicate Humpback Chub can be effectively tagged using either 8-mm or 12-mm PIT tags with little tag loss or mortality at sizes as low as 65 mm TL.

  11. A Fluorogenic TMP-tag for High Signal-to-Background Intracellular Live Cell Imaging

    PubMed Central

    Jing, Chaoran

    2013-01-01

    Developed to compliment the use of fluorescent proteins in live cell imaging, chemical tags enjoy the benefit of modular incorporation of organic fluorophores, opening the possibility of high photon output and special photophysical properties. However, the theoretical challenge in using chemical tags as opposed to fluorescent proteins for high-resolution imaging is background noise from unbound and/or non-specifically bound ligand-fluorophore. We envisioned we could overcome this limit by engineering fluorogenic trimethoprim-based chemical tags (TMP-tags) in which the fluorophore is quenched until binding with E. coli dihydrofolate reductase (eDHFR) tagged protein displaces the quencher. Thus, we began by building a non-fluorogenic, covalent TMP-tag based on a proximity-induced reaction known to achieve rapid and specific labeling both in vitro and inside of living cells. Here we take the final step and render the covalent TMP-tag fluorogenic. In brief, we designed a trimeric TMP-fluorophore-quencher molecule (TMP-Q-Atto520) with the quencher attached to a leaving group that, upon TMP binding to eDHFR, would be cleaved by a cysteine residue (Cys) installed just outside the binding pocket of eDHFR. We present the in vitro experiments showing that the eDHFR:L28C nucleophile cleaves the TMP-Q-Atto520 rapidly and efficiently, resulting in covalent labeling and remarkable fluorescence enhancement. Most significantly, while only our initial design, TMP-Q-Atto520 achieved the demanding goal of not only labeling highly abundant, localized intracellular proteins, but also less abundant, more dynamic cytoplasmic proteins. These results suggest that fluorogenic TMP-tag can significantly impact highresolution live cell imaging and further establish the potential of proximity-induced reactivity and organic chemistry more broadly as part of the growing toolbox for synthetic biology and cell engineering. PMID:23745575

  12. Assessment of PIT tag retention and post-tagging survival in metamorphosing juvenile Sea Lamprey

    USGS Publications Warehouse

    Simard, Lee G.; Sotola, V. Alex; Marsden, J. Ellen; Miehls, Scott M.

    2017-01-01

    Background: Passive integrated transponder (PIT) tags have been used to document and monitor the movement or behavior of numerous species of fishes. Data on short-term and long-term survival and tag retention are needed before initiating studies using PIT tags on a new species or life stage. We evaluated the survival and tag retention of 153 metamorphosing juvenile Sea Lamprey Petromyzon marinus tagged with 12 mm PIT tags on three occasions using a simple surgical procedure. Results: Tag retention was 100% and 98.6% at 24 h and 28-105 d post-tagging. Of the lamprey that retained their tags, 87.3% had incisions sufficiently healed to prevent further loss. Survival was 100% and 92.7% at 24 h and 41-118 d post-tagging with no significant difference in survival between tagged and untagged control lamprey. Of the 11 lamprey that died, four had symptoms that indicated their death was directly related to tagging. Survival was positively correlated with Sea Lamprey length. Conclusions: Given the overall high level of survival and tag retention in this study, future studies can utilize 12 mm PIT tags to monitor metamorphosing juvenile Sea Lamprey movement and migration patterns.

  13. Low-dose dual-energy electronic cleansing for fecal-tagging CT Colonography

    NASA Astrophysics Data System (ADS)

    Cai, Wenli; Zhang, Da; Lee, June-Goo; Yoshida, Hiroyuki

    2013-03-01

    Dual-energy electronic cleansing (DE-EC) provides a promising means for cleansing the tagged fecal materials in fecaltagging CT colonography (CTC). However, the increased radiation dose due to the double exposures in dual-energy CTC (DE-CTC) scanning is a major limitation for the use of DE-EC in clinical practice. The purpose of this study was to develop and evaluate a low-dose DE-EC scheme in fecal-tagging DE-CTC. In this study, a custom-made anthropomorphic colon phantom, which was filled with simulated tagged materials by non-ionic iodinated contrast agent (Omnipaque iohexol, GE Healthcare), was scanned by a dual-source CT scanner (SOMATON Definition Flash, Siemens Healthcare) at two photon energies: 80 kVp and 140 kVp with nine different tube current settings ranging from 12 to 74 mAs for 140 kVp, and then reconstructed by soft-tissue reconstruction kernel (B30f). The DE-CTC images were subjected to a low-dose DE-EC scheme. First, our image-space DE-CTC denoising filter was applied for reduction of image noise. Then, the noise-reduced images were processed by a virtual lumen tagging method for reduction of partial volume effect and tagging inhomogeneity. The results were compared with the registered CTC images of native phantom without fillings. Preliminary results showed that our low-dose DE-EC scheme achieved the cleansing ratios, defined by the proportion of the cleansed voxels in the tagging mask, between 93.18% (12 mAs) and 96.62% (74 mAs). Also, the soft-tissue preservation ratios, defined by the proportion of the persevered voxels in the soft-tissue mask, were maintained in the range between 94.67% and 96.41%.

  14. PIT Tagging Anurans

    USGS Publications Warehouse

    McCreary, Brome

    2008-01-01

    The following video demonstrates a procedure to insert a passive integrated transponder (PIT) tag under the skin of an anuran (frog or toad) for research and monitoring purposes. Typically, a 12.5 mm tag (0.5 in.) is used to uniquely identify individual anurans as smal as 40 mm (1.6 in.) in length from snout to vent. Smaller tags are also available and allow smaller anurans to be tagged. The procedure does not differ for other sizes of tages or other sizes of anurans. Anyone using this procedure should ensure that the tag is small enough to fit easily behind the sacral hump of the anuran, as shown in this video.

  15. Development of RAP Tag, a Novel Tagging System for Protein Detection and Purification.

    PubMed

    Fujii, Yuki; Kaneko, Mika K; Ogasawara, Satoshi; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Honma, Ryusuke; Kato, Yukinari

    2017-04-01

    Affinity tag systems, possessing high affinity and specificity, are useful for protein detection and purification. The most suitable tag for a particular purpose should be selected from many available affinity tag systems. In this study, we developed a novel affinity tag called the "RAP tag" system, which comprises a mouse antirat podoplanin monoclonal antibody (clone PMab-2) and the RAP tag (DMVNPGLEDRIE). This system is useful not only for protein detection in Western blotting, flow cytometry, and sandwich enzyme-linked immunosorbent assay, but also for protein purification.

  16. First results from the commissioning of the BGO-OD experiment at ELSA

    NASA Astrophysics Data System (ADS)

    Bella, Andreas

    2014-11-01

    The BGO-OD experiment at the ELSA accelerator facility in Bonn combines the highly segmented BGO calorimeter with a particle tracking magnetic spectrometer at forward angles. An extensive physics program using an energy tagged Bremsstrahlung photon beam is planned. The commissioning phase of the experiment is recently complete, enhancements for the BGO-OD experiment are nevertheless in development. Recent results from the analysis of the commissioning data, which includes particle track reconstruction in the forward spectrometer and momentum reconstruction with the BGO calorimeter are presented.

  17. A compact and versatile tender X-ray single-shot spectrometer for online XFEL diagnostics.

    PubMed

    Rehanek, Jens; Milne, Christopher J; Szlachetko, Jakub; Czapla-Masztafiak, Joanna; Schneider, Jörg; Huthwelker, Thomas; Borca, Camelia N; Wetter, Reto; Patthey, Luc; Juranić, Pavle

    2018-01-01

    One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10 -4 , within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.

  18. ezTag: tagging biomedical concepts via interactive learning.

    PubMed

    Kwon, Dongseop; Kim, Sun; Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong

    2018-05-18

    Recently, advanced text-mining techniques have been shown to speed up manual data curation by providing human annotators with automated pre-annotations generated by rules or machine learning models. Due to the limited training data available, however, current annotation systems primarily focus only on common concept types such as genes or diseases. To support annotating a wide variety of biological concepts with or without pre-existing training data, we developed ezTag, a web-based annotation tool that allows curators to perform annotation and provide training data with humans in the loop. ezTag supports both abstracts in PubMed and full-text articles in PubMed Central. It also provides lexicon-based concept tagging as well as the state-of-the-art pre-trained taggers such as TaggerOne, GNormPlus and tmVar. ezTag is freely available at http://eztag.bioqrator.org.

  19. A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  20. MilQuant: a free, generic software tool for isobaric tagging-based quantitation.

    PubMed

    Zou, Xiao; Zhao, Minzhi; Shen, Hongyan; Zhao, Xuyang; Tong, Yuanpeng; Wang, Qingsong; Wei, Shicheng; Ji, Jianguo

    2012-09-18

    Isobaric tagging techniques such as iTRAQ and TMT are widely used in quantitative proteomics and especially useful for samples that demand in vitro labeling. Due to diversity in choices of MS acquisition approaches, identification algorithms, and relative abundance deduction strategies, researchers are faced with a plethora of possibilities when it comes to data analysis. However, the lack of generic and flexible software tool often makes it cumbersome for researchers to perform the analysis entirely as desired. In this paper, we present MilQuant, mzXML-based isobaric labeling quantitator, a pipeline of freely available programs that supports native acquisition files produced by all mass spectrometer types and collection approaches currently used in isobaric tagging based MS data collection. Moreover, aside from effective normalization and abundance ratio deduction algorithms, MilQuant exports various intermediate results along each step of the pipeline, making it easy for researchers to customize the analysis. The functionality of MilQuant was demonstrated by four distinct datasets from different laboratories. The compatibility and extendibility of MilQuant makes it a generic and flexible tool that can serve as a full solution to data analysis of isobaric tagging-based quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Cutaneous skin tag

    MedlinePlus

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  2. Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.

    2012-01-01

    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.

  3. A non-invasive online photoionization spectrometer for FLASH2.

    PubMed

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon-matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer.

  4. Arrayed Micro-Ring Spectrometer System and Method of Use

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    A spectrometer system includes an array of micro-zone plates (MZP) each having coaxially-aligned ring gratings, a sample plate for supporting and illuminating a sample, and an array of photon detectors for measuring a spectral characteristic of the predetermined wavelength. The sample plate emits an evanescent wave in response to incident light, which excites molecules of the sample to thereby cause an emission of secondary photons. A method of detecting the intensity of a selected wavelength of incident light includes directing the incident light onto an array of MZP, diffracting a selected wavelength of the incident light onto a target focal point using the array of MZP, and detecting the intensity of the selected portion using an array of photon detectors. An electro-optic layer positioned adjacent to the array of MZP may be excited via an applied voltage to select the wavelength of the incident light.

  5. Slow light enhanced gas sensing in photonic crystals

    NASA Astrophysics Data System (ADS)

    Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.

    2018-02-01

    Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.

  6. Design and construction of a high-energy photon polarimeter

    NASA Astrophysics Data System (ADS)

    Dugger, M.; Ritchie, B. G.; Sparks, N.; Moriya, K.; Tucker, R. J.; Lee, R. J.; Thorpe, B. N.; Hodges, T.; Barbosa, F. J.; Sandoval, N.; Jones, R. T.

    2017-09-01

    We report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. The polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power ΣA for the device using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in ΣA of 1.5%.

  7. Photon-counting intensified random-access charge injection device

    NASA Astrophysics Data System (ADS)

    Norton, Timothy J.; Morrissey, Patrick F.; Haas, Patrick; Payne, Leslie J.; Carbone, Joseph; Kimble, Randy A.

    1999-11-01

    At NASA GSFC we are developing a high resolution solar-blind photon counting detector system for UV space based astronomy. The detector comprises a high gain MCP intensifier fiber- optically coupled to a charge injection device (CID). The detector system utilizes an FPGA based centroiding system to locate the center of photon events from the intensifier to high accuracy. The photon event addresses are passed via a PCI interface with a GPS derived time stamp inserted per frame to an integrating memory. Here we present imaging performance data which show resolution of MCP tube pore structure at an MCP pore diameter of 8 micrometer. This data validates the ICID concept for intensified photon counting readout. We also discuss correction techniques used in the removal of fixed pattern noise effects inherent in the centroiding algorithms used and present data which shows the local dynamic range of the device. Progress towards development of a true random access CID (RACID 810) is also discussed and astronomical data taken with the ICID detector system demonstrating the photon event time-tagging mode of the system is also presented.

  8. Lamprey Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison; Deters, Kate

    2017-05-26

    Pacific Northwest National Laboratory has developed a super-small acoustic tracking tag designed just for juvenile lamprey. In this video, PNNL researcher Alison Colotelo describes how she and her colleague Kate Deters inject young lamprey with the PNNL tag.

  9. Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Seon, Changrae; Hong, Joohwan; Song, Inwoo; Jang, Juhyeok; Lee, Hyeonyong; An, Younghwa; Kim, Bosung; Jeon, Taemin; Park, Jaesun; Choe, Wonho; Lee, Hyeongon; Pak, Sunil; Cheon, MunSeong; Choi, Jihyeon; Kim, Hyeonseok; Biel, Wolfgang; Bernascolle, Philippe; Barnsley, Robin; O'Mullane, Martin

    2017-12-01

    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6-32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5-25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  10. Experimental results from an X-ray imaging crystal spectrometer utilizing multi-wire proportional counter for KSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. G., E-mail: sglee@nfri.re.kr; Kim, Y. S.; Yoo, J. W.

    2016-11-15

    The inconsistency of the first experimental results from the X-ray imaging crystal spectrometer for the Korea Superconducting Tokamak Advanced Research device utilizing a multi-wire proportional counter (MWPC) is clarified after improving the photon-count rate of the data acquisition system for the MWPC and ground loop isolator for the whole spectrometer system. The improved MWPC is successfully applied to pure Ohmic plasmas as well as plasmas with high confinement modes.

  11. Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5 and 3 GeV

    NASA Astrophysics Data System (ADS)

    Mirazita, M.; Ronchetti, F.; Rossi, P.; de Sanctis, E.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bertozzi, W.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Vita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deppman, A.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gai, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuhn, J.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lima, A. C.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McCarthy, J.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stokes, B.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhou, Z.

    2004-07-01

    Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10° 160° . The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.

  12. Tag-to-Tag Interference Suppression Technique Based on Time Division for RFID.

    PubMed

    Khadka, Grishma; Hwang, Suk-Seung

    2017-01-01

    Radio-frequency identification (RFID) is a tracking technology that enables immediate automatic object identification and rapid data sharing for a wide variety of modern applications using radio waves for data transmission from a tag to a reader. RFID is already well established in technical areas, and many companies have developed corresponding standards and measurement techniques. In the construction industry, effective monitoring of materials and equipment is an important task, and RFID helps to improve monitoring and controlling capabilities, in addition to enabling automation for construction projects. However, on construction sites, there are many tagged objects and multiple RFID tags that may interfere with each other's communications. This reduces the reliability and efficiency of the RFID system. In this paper, we propose an anti-collision algorithm for communication between multiple tags and a reader. In order to suppress interference signals from multiple neighboring tags, the proposed algorithm employs the time-division (TD) technique, where tags in the interrogation zone are assigned a specific time slot so that at every instance in time, a reader communicates with tags using the specific time slot. We present representative computer simulation examples to illustrate the performance of the proposed anti-collision technique for multiple RFID tags.

  13. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarilymore » increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.« less

  14. Resonance Search for a Heavy Photon in the 2015 Engineering Run Data of the Heavy Photon Search Experiment

    NASA Astrophysics Data System (ADS)

    Moreno, Omar; Heavy Photon Search Collaboration

    2017-01-01

    The Heavy Photon Search (HPS) experiment at Jefferson Lab is searching for a new U(1) vector boson (``heavy photon'',``dark photon'' or A') in the mass range of 20-500 MeV/c2. An A' in this mass range is theoretically favorable and may also mediate dark matter interactions. The A' couples to the ordinary photon through kinetic mixing, which induces their coupling to electric charge. Since heavy photons couple to electrons, they can be produced through a process analogous to bremsstrahlung, subsequently decaying to an e+e- , which can be observed as a narrow resonance above the dominant QED trident background. For suitably small couplings, heavy photons travel detectable distances before decaying, providing a second signature. Using the CEBAF electron beam at Jefferson Lab incident on a thin tungsten target, along with a compact, large acceptance forward spectrometer consisting of a silicon vertex tracker and lead tungstate electromagnetic calorimeter, HPS is accessing unexplored regions in the mass-coupling phase space. The HPS engineering run took place in spring of 2015 using a 1.056 GeV, 50 nA beam and collected 1165 nb-1 (7.29 mC) of data. This talk will present the results of a resonance search for a heavy photon using the engineering run data.

  15. Photonic patterns printed in chiral nematic mesoporous resins.

    PubMed

    Khan, Mostofa K; Bsoul, Anas; Walus, Konrad; Hamad, Wadood Y; MacLachlan, Mark J

    2015-03-27

    Chiral nematic mesoporous phenol-formaldehyde resins, which were prepared using cellulose nanocrystals as a template, can be used as a substrate to produce latent photonic images. These resins undergo swelling, which changes their reflected color. By writing on the films with chemical inks, the density of methylol groups in the resin changes, subsequently affecting their degree of swelling and, consequently, their color. Writing on the films gives latent images that are revealed only upon swelling of the films. Using inkjet printing, it is possible to make higher resolution photonic patterns both as text and images that can be visualized by swelling and erased by drying. This novel approach to printing photonic patterns in resin films may be applied to anti-counterfeit tags, signage, and decorative applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An Evaluation of a Passively Cooled Cylindrical Spectrometer Array in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Waggoner, Jason

    2014-01-01

    This thesis will evaluate a passively cooled cylindrical spectrometer array in lunar orbit characterizing the thermal response in order to provide context for decision-making to scientists and engineers. To provide perspective on thermal issues and controls of space science instruments, a background search of historical lunar missions is provided. Next, a trial science mission is designed and analyzed which brings together the elements of the background search, lunar orbit environment and passive cooling. Finally, the trial science mission analysis results are provided along with the conclusions drawn. Scintillators are materials that when struck by particle radiation, absorb the particle energy which is then reemitted as light in or near the visible range. Nuclear astrophysics utilizes scintillating materials for observation of high-energy photons which are generated by sources such as solar flares, supernovae and neutron stars. SPMs are paired with inorganic scintillators to detect the light emitted which is converted into electronic signals. The signals are captured and analyzed in order to map the number and location of the high-energy sources. The SPM is utilized as it has single photon sensitivity, low voltage requirements and a fast response. SPMs are also compact, relatively inexpensive and allow the usage of lower-cost scintillating materials within the spectrometer. These characteristics permit large-area arrays while lowering cost and power requirements. The ability of a spectrometer to record and identify the interaction of high-energy photons for scientific return is not a trivial matter. Background noise is generated when particles that have not originated from the desired distant source impact the spectrometer. Additionally, thermally induced electrical signals are randomly generated within the SPM even in the absence of light which is referred to as dark current. Overcoming these obstacles requires greater light emittance and energy resolution with

  17. Design and construction of a high-energy photon polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugger, M.; Ritchie, B. G.; Sparks, N.

    Here, we report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. Furthermore, the polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power Σ A for the devicemore » using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in Σ A of 1.5%.« less

  18. Design and construction of a high-energy photon polarimeter

    DOE PAGES

    Dugger, M.; Ritchie, B. G.; Sparks, N.; ...

    2017-06-12

    Here, we report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. Furthermore, the polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power Σ A for the devicemore » using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in Σ A of 1.5%.« less

  19. Understanding why users tag: A survey of tagging motivation literature and results from an empirical study.

    PubMed

    Strohmaier, Markus; Körner, Christian; Kern, Roman

    2012-12-01

    While recent progress has been achieved in understanding the structure and dynamics of social tagging systems, we know little about the underlying user motivations for tagging, and how they influence resulting folksonomies and tags. This paper addresses three issues related to this question. (1) What distinctions of user motivations are identified by previous research, and in what ways are the motivations of users amenable to quantitative analysis? (2) To what extent does tagging motivation vary across different social tagging systems? (3) How does variability in user motivation influence resulting tags and folksonomies? In this paper, we present measures to detect whether a tagger is primarily motivated by categorizing or describing resources, and apply these measures to datasets from seven different tagging systems. Our results show that (a) users' motivation for tagging varies not only across, but also within tagging systems, and that (b) tag agreement among users who are motivated by categorizing resources is significantly lower than among users who are motivated by describing resources . Our findings are relevant for (1) the development of tag-based user interfaces, (2) the analysis of tag semantics and (3) the design of search algorithms for social tagging systems.

  20. Understanding why users tag: A survey of tagging motivation literature and results from an empirical study

    PubMed Central

    Strohmaier, Markus; Körner, Christian; Kern, Roman

    2012-01-01

    While recent progress has been achieved in understanding the structure and dynamics of social tagging systems, we know little about the underlying user motivations for tagging, and how they influence resulting folksonomies and tags. This paper addresses three issues related to this question. (1) What distinctions of user motivations are identified by previous research, and in what ways are the motivations of users amenable to quantitative analysis? (2) To what extent does tagging motivation vary across different social tagging systems? (3) How does variability in user motivation influence resulting tags and folksonomies? In this paper, we present measures to detect whether a tagger is primarily motivated by categorizing or describing resources, and apply these measures to datasets from seven different tagging systems. Our results show that (a) users’ motivation for tagging varies not only across, but also within tagging systems, and that (b) tag agreement among users who are motivated by categorizing resources is significantly lower than among users who are motivated by describing resources. Our findings are relevant for (1) the development of tag-based user interfaces, (2) the analysis of tag semantics and (3) the design of search algorithms for social tagging systems. PMID:23471473

  1. Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.

    PubMed

    MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J

    2018-02-02

    Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.

  2. Sensing systems using chip-based spectrometers

    NASA Astrophysics Data System (ADS)

    Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.

    2014-06-01

    Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.

  3. Tag retention, growth, and survival of red swamp crayfish marked with a visible implant tag

    USGS Publications Warehouse

    Isely, J.J.; Stockett, P.E.

    2001-01-01

    Eighty juvenile (means: 42.4 mm total length, 1.6 g) red swamp crayfish Procambarus clarkii were implanted with sequentially numbered visible implant tags and held in the laboratory. Tags were injected transversely into the musculature just beneath the exoskeleton of the third abdominal segment from the cephalothorax; tags were visible upon inspection. An additional 20 crayfish were left untagged and served as controls. After 150 d, tag retention was 80% and all tags were readable. No tagged crayfish died during the study, and no differences in total length or weight were detected between tagged and control crayfish. All individuals molted at least three times during the 150-d study, and some individuals molted up to six times, suggesting that most tags would be permanently retained. The readability in the field without specialized equipment makes the visible implant tag ideal for studies of crayfish ecology, management, and culture.

  4. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    PubMed

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  5. Multi-Threaded DNA Tag/Anti-Tag Library Generator for Multi-Core Platforms

    DTIC Science & Technology

    2009-05-01

    base pair)  Watson ‐ Crick  strand pairs that bind perfectly within pairs, but poorly across pairs. A variety  of  DNA  strand hybridization metrics...AFRL-RI-RS-TR-2009-131 Final Technical Report May 2009 MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE PLATFORMS...TYPE Final 3. DATES COVERED (From - To) Jun 08 – Feb 09 4. TITLE AND SUBTITLE MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE

  6. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for

  7. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    NASA Astrophysics Data System (ADS)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point

  8. Antenna for passive RFID tags

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  9. The aerogel Ring Imaging Cherenkov system at the Belle II spectrometer

    NASA Astrophysics Data System (ADS)

    Pestotnik, R.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    In the forward end-cap of the Belle II spectrometer, a proximity focusing Ring Imaging Cherenkov counter with an aerogel radiator will be installed. The detector will occupy a limited space inside solenoid magnet with longitudinal field of 1.5 T. It will consist of a double layer aerogel radiator, an expansion volume and a photon detector. 420 Hamamatsu hybrid avalanche photo sensors with 144 channels each will be used to read out single Cherenkov photons with high efficiency. More than 60,000 analog signals will be digitized and processed in the front end electronics and send to the unified experiment data acquisition system. The detector components have been successfully produced and are now being installed in the spectrometer. Tested before on the bench, they are currently being installed in the mechanical frame. Part of the detector have been commissioned and connected to the acquisition system to register the cosmic ray particles. The first preliminary results are in accordance with previous expectations. We expect an excellent performance of the device which will allow at least a 4σ separation of pions from kaons in the experiment kinematic region from 0.5 GeV/c to 4 GeV/c.

  10. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  11. WebTag: Web browsing into sensor tags over NFC.

    PubMed

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Alvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm.

  12. WebTag: Web Browsing into Sensor Tags over NFC

    PubMed Central

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Álvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm. PMID:23012511

  13. Pseudoslit Spectrometer

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; McCabe, George H.

    2004-01-01

    The pseudoslit spectrometer is a conceptual optoelectronic instrument that would offer some of the advantages, without the disadvantages, of prior linear-variable etalon (LVE) spectrometers and prior slit spectrometers. The pseudoslit spectrometer is so named because it would not include a slit, but the combined effects of its optical components would include a spatial filtering effect approximately equivalent to that of a slit. Like a prior LVE spectrometer, the pseudoslit spectrometer would include an LVE (essentially, a wedge-like narrowband- pass filter, the pass wavelength of which varies linearly with position in one dimension) in a focal plane covering an imaging planar array of photodetectors. However, the pseudoslit spectrometer would be more efficient because unlike a prior LVE spectrometer, the pseudoslit spectrometer would not have to be scanned across an entire field of view to obtain the spectrum of an object of interest that may occupy only a small portion of the field of view. Like a prior slit spectrometer, the pseudoslit spectrometer could acquire the entire spectrum of such a small object without need for scanning. However, the pseudoslit spectrometer would be optically and mechanically simpler: it would have fewer components and, hence, would pose less of a problem of alignment of components and would be less vulnerable to misalignment.

  14. Tag loss and short-term mortality associated with passive integrated transponder tagging of juvenile Lost River suckers

    USGS Publications Warehouse

    Burdick, Summer M.

    2011-01-01

    Passive integrated transponder (PIT) tags are commonly used to mark small catostomids, but tag loss and the effect of tagging on mortality have not been assessed for juveniles of the endangered Lost River sucker Deltistes luxatus. I evaluated tag loss and short-term (34-d) mortality associated with the PIT tagging of juvenile Lost River suckers in the laboratory by using a completely randomized design and three treatment groups (PIT tagged, positive control, and control). An empty needle was inserted into each positive control fish, whereas control fish were handled but not tagged. Only one fish expelled its PIT tag. Mortality rate averaged 9.8 ± 3.4% (mean ± SD) for tagged fish; mortality was 0% for control and positive control fish. All tagging mortalities occurred in fish with standard lengths of 71 mm or less, and most of the mortalities occurred within 48 h of tagging. My results indicate that 12.45- × 2.02-mm PIT tags provide a viable method of marking juvenile Lost River suckers that are 72 mm or larger.

  15. Survival and tag loss in Moapa White River springfish implanted with passive integrated transponder tags

    USGS Publications Warehouse

    Dixon, Christopher J.; Mesa, Matthew G.

    2011-01-01

    We monitored survival and tag loss among Moapa White River springfish Crenichthys baileyi moapae that were surgically implanted with passive integrated transponder (PIT; 9 × 2 mm) tags. The fish used in the study ranged from 40 to 67 mm in total length and from 1.0 to 6.5 g in mass; the PIT tag: body weight ratios were 1.0–6.1%. Fish were held for 41 d in live cages within a small, warm desert stream. Survival did not differ between untagged control fish (94.5%) and tagged fish (95.6%). Survival did not appear to be influenced by fish size or PIT tag: body weight ratio, but the small number of fish that died precluded a detailed analysis. Tag retention was 100% among the 86 fish that survived over the 41 d. Our results suggest that surgically implanting 9-mm PIT tags into Moapa White River springfish as small as 40 mm is an effective method for marking them because it has minimal impacts on survival and tag retention is high. More work is needed on the effects of PIT tagging on growth and other performance metrics of springfish and other small desert fishes.

  16. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Li, Haixing; Hu, Hui

    2015-08-01

    This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tagging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field measurements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and thermometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow velocity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to examine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convection regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achieve simultaneous droplet size, velocity and temperature measurements of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.

  17. Social Tagging of Mission Data

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; hide

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  18. Micromanipulation and physiological monitoring of cells using two-photon excited fluorescence in cw laser tweezers

    NASA Astrophysics Data System (ADS)

    Sonek, Gregory J.; Liu, Yagang; Berns, Michael W.; Tromberg, Bruce J.

    1996-05-01

    We report the observation of two-photon fluorescence excitation and cell confinement, simultaneously, in a continuous-wave (cw) single-beam gradient force optical trap, and demonstrate its use as an in-situ probe to study the physiological state of an optically confined cell sample. At the wavelength of 1064 nm, a single focused gaussian laser beam is used to simultaneously confine, and excite visible fluorescence from, a human sperm cell that has been tagged with propidium iodide, a exogenous fluorescent dye that functions as a viability assay of cellular physiological state. The intensity at the dye peak emission wavelength of 620 nm exhibits a near-square-law dependence on incident trapping beam photon laser power, a behavior consistent with a two-photon absorption process. In addition, for a sperm cell held stationary in the optical tweezers for a period of several minutes at a constant trapping power, red fluorescence emission was observed to increase the time, indicating that the cell has gradually transitioned between a live and dead state. Two-photon excited fluorescence was also observed in chinese hamster ovary cells that were confined by cw laser tweezers and stained with either propidium iodide or Snarf, a pH-sensitive dye probe. These results suggest that, for samples suitably tagged with fluorescent probes and vital stains, optical tweezers can be used to generate their own in-situ diagnostic optical probes of cellular viability or induced photodamage, via two-photon processes.

  19. Genetically encoded fluorescent tags

    PubMed Central

    Thorn, Kurt

    2017-01-01

    Genetically encoded fluorescent tags are protein sequences that can be fused to a protein of interest to render it fluorescent. These tags have revolutionized cell biology by allowing nearly any protein to be imaged by light microscopy at submicrometer spatial resolution and subsecond time resolution in a live cell or organism. They can also be used to measure protein abundance in thousands to millions of cells using flow cytometry. Here I provide an introduction to the different genetic tags available, including both intrinsically fluorescent proteins and proteins that derive their fluorescence from binding of either endogenous or exogenous fluorophores. I discuss their optical and biological properties and guidelines for choosing appropriate tags for an experiment. Tools for tagging nucleic acid sequences and reporter molecules that detect the presence of different biomolecules are also briefly discussed. PMID:28360214

  20. Review on SAW RFID tags.

    PubMed

    Plessky, Victor P; Reindl, Leonhard M

    2010-03-01

    SAW tags were invented more than 30 years ago, but only today are the conditions united for mass application of this technology. The devices in the 2.4-GHz ISM band can be routinely produced with optical lithography, high-resolution radar systems can be built up using highly sophisticated, but low-cost RF-chips, and the Internet is available for global access to the tag databases. The "Internet of Things," or I-o-T, will demand trillions of cheap tags and sensors. The SAW tags can overcome semiconductor-based analogs in many aspects: they can be read at a distance of a few meters with readers radiating power levels 2 to 3 orders lower, they are cheap, and they can operate in robust environments. Passive SAW tags are easily combined with sensors. Even the "anti-collision" problem (i.e., the simultaneous reading of many nearby tags) has adequate solutions for many practical applications. In this paper, we discuss the state-of-the-art in the development of SAW tags. The design approaches will be reviewed and optimal tag designs, as well as encoding methods, will be demonstrated. We discuss ways to reduce the size and cost of these devices. A few practical examples of tags using a time-position coding with 10(6) different codes will be demonstrated. Phase-coded devices can additionally increase the number of codes at the expense of a reduction of reading distance. We also discuss new and exciting perspectives of using ultra wide band (UWB) technology for SAW-tag systems. The wide frequency band available for this standard provides a great opportunity for SAW tags to be radically reduced in size to about 1 x 1 mm(2) while keeping a practically infinite number of possible different codes. Finally, the reader technology will be discussed, as well as detailed comparison made between SAW tags and IC-based semiconductor device.

  1. Tag retention, growth, and survival of red swamp crayfish Procambarus clarkii marked with coded wire tags

    USGS Publications Warehouse

    Isely, J.J.; Eversole, A.G.

    1998-01-01

    Juvenile red swamp crayfish (or crawfish), Procambarus clarkii (20-41 mm in total length) were collected from a crayfish culture pond by dipnetting and tagged with sequentially numbered, standard length, binary-coded wire tags. Four replicates of 50 crayfish were impaled perpendicular to the long axis of the abdomen with a fixed needle. Tags were injected transversely into the ventral surface of the first or second abdominal segment and were imbedded in the musculature just beneath the abdominal sternum. Tags were visible upon inspection. Additionally, two replicates of 50 crayfish were not tagged and were used as controls. Growth, survival, and tag retention were evaluated after 7 d in individual containers, after 100 d in aquaria, and after 200 d in field cages. Tag retention during each sample period was 100%, and average mortality of tagged crayfish within 7 d of tagging was 1%. Mortality during the remainder of the study was high (75-91%) but was similar between treatment and control samples. Most of the deaths were probably due to cannibalism. Average total length increased threefold during the course of the study, and crayfish reached maturity. Because crayfish were mature by the end of the study, we concluded that the coded wire tag was retained through the life history of the crayfish.

  2. Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    The process ppmore » $$\\to\\ell^+\\ell^-$$p$$^{(*)}$$, with $$\\ell^+\\ell^-$$ a muon or an electron pair produced at midrapidity with mass larger than 110 GeV, has been observed for the first time at the LHC in pp collisions at $$\\sqrt{s} =$$ 13 TeV. One of the two scattered protons is measured in the CMS-TOTEM precision proton spectrometer (CT-PPS), which operated for the first time in 2016. The second proton either remains intact or is excited and then dissociates into a low-mass state p$$^{*}$$, which is undetected. The measurement is based on an integrated luminosity of 9.4 fb$$^{-1}$$ collected during standard, high-luminosity LHC operation. A total of 12 $$\\mu^+\\mu^-$$ and 8 e$^+$e$^-$ pairs with $$m(\\ell^{+}\\ell^{-}) >$$ 110 GeV, and matching forward proton kinematics, are observed, with expected backgrounds of 1.49 $$\\pm$$ 0.07 (stat) $$\\pm$$ 0.53 (syst) and 2.36 $$\\pm$$ 0.09 (stat) $$\\pm$$ 0.47 (syst), respectively. This corresponds to an excess of more than five standard deviations over the expected background. The present result constitutes the first observation of proton-tagged $$\\gamma\\gamma$$ collisions at the electroweak scale. This measurement also demonstrates that CT-PPS performs according to the design specifications.« less

  3. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  4. Directional Radio-Frequency Identification Tag Reader

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John D.; Henderson, John J.

    2004-01-01

    A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).

  5. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    DOE PAGES

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; ...

    2016-06-06

    Here, we have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improvedmore » spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.« less

  6. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Chen, H.; Emig, J.; Hell, N.; Bitter, M.; Hill, K. W.; Allan, P.; Brown, C. R. D.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.

  7. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.

    2016-06-15

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectralmore » resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.« less

  8. Strangeness Photoproduction at the BGO-OD Experiment

    NASA Astrophysics Data System (ADS)

    Jude, T. C.; Alef, S.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Boese, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.; Zimmermann, T.

    BGO-OD is a newly commissioned experiment to investigate the internal structure of the nucleon, using an energy tagged bremsstrahlung photon beam at the ELSA electron facility. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating meson photoproduction. The extensive physics programme for open strangeness photoproduction is introduced, and preliminary analysis presented.

  9. Evaluation of Intercontinental Transport of Ozone Using Full-tagged, Tagged-N and Sensitivity Methods

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Liu, J.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Fan, S.; Li, X.; Tao, S.

    2014-12-01

    Long-range transport of ozone is of great concern, yet the source-receptor relationships derived previously depend strongly on the source attribution techniques used. Here we describe a new tagged ozone mechanism (full-tagged), the design of which seeks to take into account the combined effects of emissions of ozone precursors, CO, NOx and VOCs, from a particular source, while keeping the current state of chemical equilibrium unchanged. We label emissions from the target source (A) and background (B). When two species from A and B sources react with each other, half of the resulting products are labeled A, and half B. Thus the impact of a given source on downwind regions is recorded through tagged chemistry. We then incorporate this mechanism into the Model for Ozone and Related chemical Tracers (MOZART-4) to examine the impact of anthropogenic emissions within North America, Europe, East Asia and South Asia on ground-level ozone downwind of source regions during 1999-2000. We compare our results with two previously used methods -- the sensitivity and tagged-N approaches. The ozone attributed to a given source by the full-tagged method is more widely distributed spatially, but has weaker seasonal variability than that estimated by the other methods. On a seasonal basis, for most source/receptor pairs, the full-tagged method estimates the largest amount of tagged ozone, followed by the sensitivity and tagged-N methods. In terms of trans-Pacific influence of ozone pollution, the full-tagged method estimates the strongest impact of East Asian (EA) emissions on the western U.S. (WUS) in MAM and JJA (~3 ppbv), which is substantially different in magnitude and seasonality from tagged-N and sensitivity studies. This difference results from the full-tagged method accounting for the maintenance of peroxy radicals (e.g., CH3O2, CH3CO3, and HO2), in addition to NOy, as effective reservoirs of EA source impact across the Pacific, allowing for a significant contribution to

  10. The Investigation of Strangeness Photoproduction in the Threshold Region at Lns-Tohoku

    NASA Astrophysics Data System (ADS)

    Kaneta, M.; Beckford, B.; Ejima, M.; Fujii, T.; Fujii, Y.; Fujibayashi, T.; Gogami, T.; Futatsukawa, K.; Hashimoto, O.; Hosomi, K.; Hirose, K.; Iguchi, A.; Kameoka, S.; Kanda, H.; Kato, H.; Kawama, D.; Kawasaki, T.; Kimura, C.; Kiyokawa, S.; Koike, T.; Kon, T.; Ma, Y.; Maeda, K.; Maruyama, N.; Matsumura, A.; Miyagi, Y.; Miura, Y.; Miwa, K.; Nakamura, S. N.; Nomura, H.; Okuyama, A.; Ohtani, A.; Sato, M.; Shichijo, A.; Shirotori, K.; Takahashi, T.; Tamura, H.; Taniya, N.; Tsubota, H.; Tsukada, K.; Terada, N.; Ukai, M.; Uchida, D.; Watanabe, T.; Yamamoto, T. O.; Yamauchi, H.; Ishikawa, T.; Kinoshita, T.; Miyahara, H.; Nakabayashi, T.; Shimizu, H.; Suzuki, K.; Tamae, T.; Terasawa, T.; Yamazaki, H.; Han, Y. C.; Wang, T. S.; Sasaki, A.; Konno, O.; Bydžovský, P.; Sotona, M.

    2010-09-01

    The strangeness photoproduction process has been intensively studied based on the high-quality data of the charged kaon channel, γ + p → K+ + Λ(Σ0). On the other hand, there was no reliable data for the neutral kaon channel γ+n → K0+Λ(Σ0). The theoretical investigations suffer seriously from the lack of the data. A Substantial effort has been made to measure the γ+n → K0 + Σ process in the KS0 -> π ^ + π ^ - decay channel, using a liquid deuterium target and a tagged photon beam (Eγ = 0.8-1.1 GeV ) in the threshold region at Laboratory of Nuclear Science (LNS), Tohoku University. We have taken exploratory data quite successfully with use of Neutral Kaon Spectrometer (NKS) at LNS-Tohoku in 2003 and 2004. The data is compared theoretical models and it indicates a hint that the K0 differential cross section has a backward peak in the energy region. The second generation of the experiment, named NKS2, is designed to extend the NKS experiment by considerably upgrading the original neutral kaon spectrometer, fully replacing the spectrometer magnet, tracking detectors and all the trigger counters. The new spectrometer NKS2 has significantly larger acceptance for neutral kaons compared with NKS, particularly covering forward angles and much better invariant mass resolution. The estimated acceptance of NKS2 is three (ten) times larger for KS0 (Λ ) than that of NKS. The spectrometer is newly constructed and installed at LNS, Tohoku University in 2005. The deuterium target data was taken with the tagged photon beam in 2006-2007. We will report recent results of NKS2 in this paper. Additionally, a status of the upgrade project that gives us larger acceptance and capability of K0+Λ coincidence measurement will be repsented.

  11. HPLC-APCI-MS analysis of triacylglycerols (TAGs) in historical pharmaceutical ointments from the eighteenth century.

    PubMed

    Saliu, Francesco; Modugno, Francesca; Orlandi, Marco; Colombini, Maria Perla

    2011-10-01

    The lipid fractions of residues from historical pharmaceutical ointments were analysed by reversed-phase liquid chromatography coupled with atmospheric pressure chemical ionization and mass spectrometer detection. The residues were contained in a series of historical apothecary jars, dating from the eighteenth century and conserved at the "Aboca Museum" in Sansepolcro (Arezzo, Italy) and at the pharmacy of the "Real Cartuja de Valldemossa" in Palma de Majorca (Spain). The analytical protocol was set up using a comparative study based on the evaluation of triacylglycerol (TAG) compositions in raw natural lipid materials and in laboratory-reproduced ointments. These ointments were prepared following pharmaceutical recipes reported in historical treatises and used as reference materials. The reference materials were also subjected to stress treatments in order to evaluate the modification occurring in the TAG profiles as an effect of ageing. TAGs were successfully detected in the reproduced formulations even in mixtures of up to ten ingredients and after harsh degradative treatments, and also in real historical samples. No particular interferences were detected from other non-lipid ingredients of the formulations. The TAG compositions detected in the historical ointments indicated a predominant use of olive oil and pig adipose material as lipid ingredients. The detection of a high level of tristearine and myristyl-palmitoyl-stearyl glycerol in two of the samples suggested the presence of a fatty material of a different origin (maybe a ruminant). On the basis of the positional isomer ratio, sn-PPO/sn-POP, it was possible to hypothesize an exclusive use of pig fat in one sample. We also evaluated the application of principal component analysis of TAG profiles as an approach for the multivariate statistical comparison of the reference and historical ointments.

  12. Absolute activity measurements with the windowless 4π-CsI(Tl)-sandwich spectrometer

    NASA Astrophysics Data System (ADS)

    Denecke, B.

    1994-01-01

    The windowless 4π-CsI(Tl)-sandwich spectrometer consists of two scintillation crystals sandwiching radioactive sources deposited on thin plastic foils. This configuration has a solid angle very close to 4π sr. The detectors are sensitive to charged particles with energies > 15 keV and measure photons of 15-200 keV with a probability > 98%. Disintegration rates of samples of radionuclides with complex decay modes can be determined directly from the measured count rates with uncertainties below 0.3%. Radionuclide solutions of 57Co, 109Cd, 125I, 152Eu and 192Ir were standardised, partly in the framework of international comparisons. A detailed description of the spectrometer and the measurement procedure is given.

  13. Fast time-domain measurements on telecom single photons

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Vigh, Gesche; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Brecht, Benjamin; Silberhorn, Christine

    2017-09-01

    Direct measurements on the temporal envelope of quantum light are a challenging task and not many examples are known because most classical pulse characterisation methods do not work on the single-photon level. Knowledge of both spectrum and timing can, however, give insights on properties that cannot be determined by the spectral intensity alone. While temporal measurements on single photons on timescales of tens of picoseconds are possible with superconducting photon detectors, and picosecond measurements have been performed using streak cameras, there are no commercial single-photon sensitive devices with femtosecond resolution available. While time-domain sampling using sum-frequency generation has already been exploited for such a measurement, inefficient conversion has necessitated long integration times to build the temporal profile. We demonstrate a highly efficient waveguided sum-frequency generation process in Lithium Niobate to measure the temporal envelope of single photons with femtosecond resolution with short enough acquisition time to provide a live-view of the measurement. We demonstrate the measurement technique and combine it with spectral measurements using a dispersive-fibre time-of-flight spectrometer to determine upper and lower bounds for the spectral purity of heralded single photons. The approach complements the joint spectral intensity measurements as a measure on the purity can be given without knowledge of the spectral phase.

  14. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  15. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO 4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed justmore » 10 cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.« less

  16. The Heavy Photon Search beamline and its performance

    DOE PAGES

    Baltzell, N.; Egiyan, H.; Ehrhart, M.; ...

    2017-07-01

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  17. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  18. Buddy Tag CONOPS and Requirements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brotz, Jay Kristoffer; Deland, Sharon M.

    2015-12-01

    This document defines the concept of operations (CONOPS) and the requirements for the Buddy Tag, which is conceived and designed in collaboration between Sandia National Laboratories and Princeton University under the Department of State Key VerificationAssets Fund. The CONOPS describe how the tags are used to support verification of treaty limitations and is only defined to the extent necessary to support a tag design. The requirements define the necessary functions and desired non-functional features of the Buddy Tag at a high level

  19. A non-invasive online photoionization spectrometer for FLASH2

    PubMed Central

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  20. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) spectrometer design and performance

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chrisp, Michael P.

    1987-01-01

    The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.

  1. Mini and micro spectrometers pave the way to on-field advanced analytics

    NASA Astrophysics Data System (ADS)

    Bouyé, Clémentine; Kolb, Hugo; d'Humières, Benoît.

    2016-03-01

    First introduced in the 1990's, miniature optical spectrometers were compact, portable devices brought on the market by the desire to move from time-consuming lab-based analyses to on-field and in situ measurements. This goal of getting spectroscopy into the hands of non-specialists is driving current technical and application developments, the ultimate goal being, in a far future, the integration of a spectrometer into a smartphone or any other smart device (tablet, watch, …). In this article, we present the results of our study on the evolution of the compact spectrometers market towards widespread industrial use and consumer applications. Presently, the main market of compact spectrometers remains academic labs. However, they have been adopted on some industrial applications such as optical source characterization (mainly laser and LEDs). In a near future, manufacturers of compact spectrometers target the following industrial applications: agriculture crop monitoring, food process control or pharmaceuticals quality control. Next steps will be to get closer to the consumer market with point-of-care applications such as glucose detection for diabetics, for example. To reach these objectives, technological breakthroughs will be necessary. Recent progresses have already allowed the release of micro-spectrometers. They take advantage of new micro-technologies such as MEMS (MicroElectroMechanical Systems), MOEMS (Micro-Opto-Electro-Mechanical Systems), micro-mirrors arrays to reduce cost and size while allowing good performance and high volume manufacturability. Integrated photonics is being investigated for future developments. It will also require new business models and new market approaches. Indeed, spreading spectroscopy to more industrial and consumer applications will require spectrometers manufacturers to get closer to the end-users and develop application-oriented products.

  2. SparkClouds: visualizing trends in tag clouds.

    PubMed

    Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash

    2010-01-01

    Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

  3. UV photoprocessing of CO2 ice: a complete quantification of photochemistry and photon-induced desorption processes

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Manzano-Santamaría, J.; Muñoz Caro, G. M.; Cruz-Díaz, G. A.; Chen, Y.-J.; Herrero, V. J.; Tanarro, I.

    2015-12-01

    Context. Ice mantles that formed on top of dust grains are photoprocessed by the secondary ultraviolet (UV) field in cold and dense molecular clouds. UV photons induce photochemistry and desorption of ice molecules. Experimental simulations dedicated to ice analogs under astrophysically relevant conditions are needed to understand these processes. Aims: We present UV-irradiation experiments of a pure CO2 ice analog. Calibration of the quadrupole mass spectrometer allowed us to quantify the photodesorption of molecules to the gas phase. This information was added to the data provided by the Fourier transform infrared spectrometer on the solid phase to obtain a complete quantitative study of the UV photoprocessing of an ice analog. Methods: Experimental simulations were performed in an ultra-high vacuum chamber. Ice samples were deposited onto an infrared transparent window at 8K and were subsequently irradiated with a microwave-discharged hydrogen flow lamp. After irradiation, ice samples were warmed up until complete sublimation was attained. Results: Photolysis of CO2 molecules initiates a network of photon-induced chemical reactions leading to the formation of CO, CO3, O2, and O3. During irradiation, photon-induced desorption of CO and, to a lesser extent, O2 and CO2 took place through a process called indirect desorption induced by electronic transitions, with maximum photodesorption yields (Ypd) of ~1.2 × 10-2 molecules incident photon-1, ~9.3 × 10-4 molecules incident photon-1, and ~1.1 × 10-4 molecules incident photon-1, respectively. Conclusions: Calibration of mass spectrometers allows a direct quantification of photodesorption yields instead of the indirect values that were obtained from infrared spectra in most previous works. Supplementary information provided by infrared spectroscopy leads to a complete quantification, and therefore a better understanding, of the processes taking place in UV-irradiated ice mantles. Appendix A is available in

  4. A rare gas optics-free absolute photon flux and energy analyzer to provide absolute photoionization rates of inflowing interstellar neutrals

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  5. Survival, growth, and tag retention in age-0 Chinook Salmon implanted with 8-, 9-, and 12-mm PIT tags

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Perry, Russell W.; Connor, William P.; Mullins, Frank L.; Rabe, Craig; Nelson, Doug D

    2015-01-01

    The ability to represent a population of migratory juvenile fish with PIT tags becomes difficult when the minimum tagging size is larger than the average size at which fish begin to move downstream. Tags that are smaller (e.g., 8 and 9 mm) than the commonly used 12-mm PIT tags are currently available, but their effects on survival, growth, and tag retention in small salmonid juveniles have received little study. We evaluated growth, survival, and tag retention in age-0 Chinook Salmon Oncorhynchus tshawytscha of three size-groups: 40–49-mm fish were implanted with 8- and 9-mm tags, and 50– 59-mm and 60–69-mm fish were implanted with 8-, 9-, and 12-mm tags. Survival 28 d after tagging ranged from 97.8% to 100% across all trials, providing no strong evidence for a fish-size-related tagging effect or a tag size effect. No biologically significant effects of tagging on growth in FL (mm/d) or weight (g/d) were observed. Although FL growth in tagged fish was significantly reduced for the 40–49-mm and 50–59-mm groups over the first 7 d, growth rates were not different thereafter, and all fish were similar in size by the end of the trials (day 28). Tag retention across all tests ranged from 93% to 99%. We acknowledge that actual implantation of 8- or 9-mm tags into small fish in the field will pose additional challenges (e.g., capture and handling stress) beyond those observed in our laboratory. However, we conclude that experimental use of the smaller tags for small fish in the field is supported by our findings.

  6. Comparing the hierarchy of author given tags and repository given tags in a large document archive

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Palla, Gergely

    2016-10-01

    Folksonomies - large databases arising from collaborative tagging of items by independent users - are becoming an increasingly important way of categorizing information. In these systems users can tag items with free words, resulting in a tripartite item-tag-user network. Although there are no prescribed relations between tags, the way users think about the different categories presumably has some built in hierarchy, in which more special concepts are descendants of some more general categories. Several applications would benefit from the knowledge of this hierarchy. Here we apply a recent method to check the differences and similarities of hierarchies resulting from tags given by independent individuals and from tags given by a centrally managed repository system. The results from our method showed substantial differences between the lower part of the hierarchies, and in contrast, a relatively high similarity at the top of the hierarchies.

  7. Iodine Tagging Velocimetry and Mechanism in the Hypersonic Near Wake of a MultiPurpose Crew Vehicle

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey

    2013-01-01

    This study demonstrates a new molecular tagging velocimetry (MTV) method for velocity measurements of high speed flow. It demonstrates offbody Iodine Tagging Velocimetry (ITV) in the hypersonic near wake of a MultiPurpose Crew Vehicle (MPCV) model. Experiments are performed in the NASA-Langley 31-inch Mach 10 air wind tunnel. A 0.5% I2 / N2 mixture is seeded on the leeward backshell of the model using a pressure tap. I2 laser-induced fluorescence is excited along a 5.5 mm line using an ArF excimer laser near 193 nm. Results indicate I2 absorbs at least 2 photons to produce iodine ions and electrons. These recombine as the tagged region is displaced downstream to produce I (2P3/2) whose emission is monitored at 206 nm. Results at P0 = 2.41 MPa (350 psi), T0 = 990K, and 10 micro-sec transit times produce velocities from 630-820 m/sec across the I2 seeded jet at a distance of 38.2 mm (25.5 jet diameters) downstream from the jet orifice. Maximum wake jet velocities near the shear layer are 59% of freestream velocity.

  8. Notes on SAW Tag Interrogation Techniques

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2010-01-01

    We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only

  9. Transport of Neutrons and Photons Through Iron and Water Layers

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Cvachovec, František; Ošmera, Bohumil; Hansen, Wolfgang; Noack, Klaus

    2009-08-01

    The neutron and photon spectra were measured after iron and water plates placed at the horizontal channel of the Dresden University reactor AK-2. The measurements have been performed with the multiparameter spectrometer [1] with a stilbene cylindrical crystal, 10 × 10 mm or 45 × 45 mm; the neutron and photon spectra have been measured simultaneously. The calculations were performed with the MCNP code and nuclear data libraries ENDF/B VI.2, ENDF/BVII.0, JENDL 3.3 and JEFF 3.1. The measured channel leakage spectrum was used as the input spectrum for the transport calculation. Photons, the primary photons from the reactor - as well as the ones induced by neutron interaction - were calculated. The comparison of the measurements and calculations through 10 cm of iron and 20 cm thickness of water are presented. Besides that, the attenuation of the radiation mixed field by iron layers from 5 to 30 cm is presented; the measured and calculated data are compared.

  10. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  11. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  12. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  13. Free-Space Quantum Key Distribution using Polarization Entangled Photons

    NASA Astrophysics Data System (ADS)

    Kurtsiefer, Christian

    2007-06-01

    We report on a complete experimental implementation of a quantum key distribution protocol through a free space link using polarization-entangled photon pairs from a compact parametric down-conversion source [1]. Based on a BB84-equivalent protocol, we generated without interruption over 10 hours a secret key free-space optical link distance of 1.5 km with a rate up to 950 bits per second after error correction and privacy amplification. Our system is based on two time stamp units and relies on no specific hardware channel for coincidence identification besides an IP link. For that, initial clock synchronization with an accuracy of better than 2 ns is achieved, based on a conventional NTP protocol and a tiered cross correlation of time tags on both sides. Time tags are used to servo a local clock, allowing a streamed measurement on correctly identified photon pairs. Contrary to the majority of quantum key distribution systems, this approach does not require a trusted large-bandwidth random number generator, but integrates that into the physical key generation process. We discuss our current progress of implementing a key distribution via an atmospherical link during daylight conditions, and possible attack scenarios on a physical timing information side channel to a entanglement-based key distribution system. [1] I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, Appl. Phys. Lett. 89, 101122 (2006).

  14. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials

    DOE PAGES

    Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro; ...

    2017-01-27

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less

  15. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less

  16. A Compton scatter attenuation gamma ray spectrometer

    NASA Technical Reports Server (NTRS)

    Austin, W. E.

    1972-01-01

    A Compton scatter attenuation gamma ray spectrometer conceptual design is discussed for performing gamma spectral measurements in monodirectional gamma fields from 100 R per hour to 1,000,000 R per hour. Selectable Compton targets are used to scatter gamma photons onto an otherwise heavily shielded detector with changeable scattering efficiencies such that the count rate is maintained between 500 and 10,000 per second. Use of two sum-Compton coincident detectors, one for energies up to 1.5 MeV and the other for 600 keV to 10 MeV, will allow good peak to tail pulse height ratios to be obtained over the entire spectrum and reduces the neutron recoil background rate.

  17. Micro spectrometer for parallel light and method of use

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.

  18. Soldier Data Tag Study Effort.

    DTIC Science & Technology

    1985-06-10

    interested in protecting it. The tag itself is difficult--though not impossible--to counterfeit . Also, it (’• iii 71 -, potentially improves the data...attacks during the design, manufacture, and distribution processes, counterfeiting , unauthorized access/alteration of tag data, and use of the tag to...45 3.3.2 Hijacking of SOT System Shipments, or Large- Scale Counterfeit of SOT Systems ....................... 46 3.3.3 Unauthorized Alteration

  19. Uncertainty of exploitation estimates made from tag returns

    USGS Publications Warehouse

    Miranda, L.E.; Brock, R.E.; Dorr, B.S.

    2002-01-01

    Over 6,000 crappies Pomoxis spp. were tagged in five water bodies to estimate exploitation rates by anglers. Exploitation rates were computed as the percentage of tags returned after adjustment for three sources of uncertainty: postrelease mortality due to the tagging process, tag loss, and the reporting rate of tagged fish. Confidence intervals around exploitation rates were estimated by resampling from the probability distributions of tagging mortality, tag loss, and reporting rate. Estimates of exploitation rates ranged from 17% to 54% among the five study systems. Uncertainty around estimates of tagging mortality, tag loss, and reporting resulted in 90% confidence intervals around the median exploitation rate as narrow as 15 percentage points and as broad as 46 percentage points. The greatest source of estimation error was uncertainty about tag reporting. Because the large investments required by tagging and reward operations produce imprecise estimates of the exploitation rate, it may be worth considering other approaches to estimating it or simply circumventing the exploitation question altogether.

  20. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses

    PubMed Central

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A. Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  1. The Complete Heavy-Atom Structure of a Cp-Ftmw Chiral Tag Precursor, Verbenone

    NASA Astrophysics Data System (ADS)

    Marshall, Frank E.; West, Channing; Sedo, Galen; Pate, Brooks; Grubbs, G. S., II

    2017-06-01

    The microwave spectrum of the chiral molecule verbenone has been recorded from 2-18 GHz using two CP-FTMW spectrometers. 2-8 GHz data has been acquired on a 2-8 GHz CP-FTMW located at the University of Virginia and 8-18 data has been acquired on a 6-18 GHz spectrometer located at Missouri S&T. From the experiments the authors were able to assign and fit isotopologues corresponding to each heavy atom position (either ^{13}C or ^{18}O), providing for the heavy-atom structure. Previous studies by Evans and coworkers have been added to these measurements in a global fit of the parent species. The measurement and assignment of these transitions provide preliminary information needed for enatiomeric excess experiments using CP-FTMW van der Waals-type chiral tagging processes already being performed at UVa. Details of the experiment, fits, and structure will be discussed. C. J. Evans, S. M. Allpress, P. D. Godfrey, D. McNaughton, 67th International Symposium on Molecular Spectroscopy, 2012, RH13 S. M. Allpress, Spectroscopic and Computational Chemistry Studies on Terpene Related Compounds, University of Leicester, 2015, Chapter 6: Microwave Spectroscopy of Verbenone

  2. Balloon-borne photoionization mass spectrometer for measurement of stratospheric gases

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Maier, E. J. R.

    1978-01-01

    A balloon-borne photoionization mass spectrometer used to measure stratospheric trace gases is described. Ions are created with photons from high-intensity krypton discharge lamps and a quadrupole mass analyzer is employed for ion identification. Differential pumping is achieved with liquid helium cryopumping. To insure measurement of unperturbed stratospheric air, the entire system is contained in a sealed gondola and the atmospheric sample is taken some distance away during descent. The photoionization technique allows the detection of a low ionization potential constituent, such as nitric oxide, at less than a part in one billion in the presence of the major atmospheric gases and their isotopes. Operation of the mass spectrometer system was demonstrated during a daytime flight from Palestine, Texas on 26 April 1977. The sensitivity achieved and the unique selectivity afforded by this technique offer a capability for trace constituent measurement not possible with the more conventional electron impact ionization approach.

  3. On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liapis, Andreas C., E-mail: andreas.liapis@gmail.com; Gao, Boshen; Siddiqui, Mahmudur R.

    2016-01-11

    Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectrometer. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances.

  4. The use of tags and tag clouds to discern credible content in online health message forums.

    PubMed

    O'Grady, Laura; Wathen, C Nadine; Charnaw-Burger, Jill; Betel, Lisa; Shachak, Aviv; Luke, Robert; Hockema, Stephen; Jadad, Alejandro R

    2012-01-01

    Web sites with health-oriented content are potentially harmful if inaccurate or inappropriate medical information is used to make health-related decisions. Checklists, rating systems and guidelines have been developed to help people determine what is credible, but recent Internet technologies emphasize applications that are collaborative in nature, including tags and tag clouds, where site users 'tag' or label online content, each using their own labelling system. Concepts such as the date, reference, author, testimonial and quotations are considered predictors of credible content. An understanding of these descriptive tools, how they relate to the depiction of credibility and how this relates to overall efforts to label data in relation to the semantic web has yet to emerge. This study investigates how structured (pre-determined) and unstructured (user-generated) tags and tag clouds with a multiple word search feature are used by participants to assess credibility of messages posted in online message forums. The targeted respondents were those using web sites message forums for disease self-management. We also explored the relevancy of our findings to the labelling or indexing of data in the context of the semantic web. Diabetes was chosen as the content area in this study, since (a) this is a condition with increasing prevalence and (b) diabetics have been shown to actively use the Internet to manage their condition. From January to March 2010 participants were recruited using purposive sampling techniques. A screening instrument was used to determine eligibility. The study consisted of a demographic and computer usage survey, a series of usability tests and an interview. We tested participants (N=22) on two scenarios, each involving tasks that assessed their ability to tag content and search using a tag cloud that included six structured credibility terms (statistics, date, reference, author, testimonial and quotations). MORAE Usability software (version 3

  5. Z-path SAW RFID tag.

    PubMed

    Härmä, Sanna; Plessky, Victor P; Hartmann, Clinton S; Steichen, William

    2008-01-01

    Surface acoustic wave (SAW) radio-frequency identification (RFID) tags are soon expected to be produced in very high volumes. The size and cost of a SAW RFID tag will be key parameters for many applications. Therefore, it is of primary importance to reduce the chip size. In this work, we describe the design principles of a 2.4-GHz SAW RFID tag that is significantly smaller than earlier reported tags. We also present simulated and experimental results. The coded signal should arrive at the reader with a certain delay (typically about 1 micros), i.e., after the reception of environmental echoes. If the tag uses a bidirectional interdigital transducer (IDT), space for the initial delay is needed on both sides of the IDT. In this work, we replace the bidirectional IDT by a unidirectional one. This halves the space required by the initial delay because all the code reflectors must now be placed on the same side of the IDT. We reduce tag size even further by using a Z-path geometry in which the same space in x-direction is used for both the initial delay and the code reflectors. Chip length is thus determined only by the space required by the code reflectors.

  6. An introduction to mass cytometry: fundamentals and applications.

    PubMed

    Tanner, Scott D; Baranov, Vladimir I; Ornatsky, Olga I; Bandura, Dmitry R; George, Thaddeus C

    2013-05-01

    Mass cytometry addresses the analytical challenges of polychromatic flow cytometry by using metal atoms as tags rather than fluorophores and atomic mass spectrometry as the detector rather than photon optics. The many available enriched stable isotopes of the transition elements can provide up to 100 distinguishable reporting tags, which can be measured simultaneously because of the essential independence of detection provided by the mass spectrometer. We discuss the adaptation of traditional inductively coupled plasma mass spectrometry to cytometry applications. We focus on the generation of cytometry-compatible data and on approaches to unsupervised multivariate clustering analysis. Finally, we provide a high-level review of some recent benchmark reports that highlight the potential for massively multi-parameter mass cytometry.

  7. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  8. Scalable Faceted Ranking in Tagging Systems

    NASA Astrophysics Data System (ADS)

    Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.

    Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.

  9. A new time and space resolved transmission spectrometer for research in inertial confinement fusion and radiation source development.

    PubMed

    Knapp, P F; Ball, C; Austin, K; Hansen, S B; Kernaghan, M D; Lake, P W; Ampleford, D J; McPherson, L A; Sandoval, D; Gard, P; Wu, M; Bourdon, C; Rochau, G A; McBride, R D; Sinars, D B

    2017-01-01

    We describe the design and function of a new time and space resolved x-ray spectrometer for use in Z-pinch inertial confinement fusion and radiation source development experiments. The spectrometer is designed to measure x-rays in the range of 0.5-1.5 Å (8-25 keV) with a spectral resolution λ/Δλ ∼ 400. The purpose of this spectrometer is to measure the time- and one-dimensional space-dependent electron temperature and density during stagnation. These relatively high photon energies are required to escape the dense plasma created at stagnation and to obtain sensitivity to electron temperatures ≳3 keV. The spectrometer is of the Cauchois type, employing a large 30 × 36 mm 2 , transmissive quartz optic for which a novel solid beryllium holder was designed. The performance of the crystal was verified using offline tests, and the integrated system was tested using experiments on the Z pulsed power accelerator.

  10. Tags, wireless communication systems, tag communication methods, and wireless communications methods

    DOEpatents

    Scott,; Jeff W. , Pratt; Richard, M [Richland, WA

    2006-09-12

    Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.

  11. Ultralow noise up-conversion detector and spectrometer for the telecom band.

    PubMed

    Shentu, Guo-Liang; Pelc, Jason S; Wang, Xiao-Dong; Sun, Qi-Chao; Zheng, Ming-Yang; Fejer, M M; Zhang, Qiang; Pan, Jian-Wei

    2013-06-17

    We demonstrate up-conversion single-photon detection for the 1550-nm telecommunications band using a PPLN waveguide, long-wavelength pump, and narrowband filtering using a volume Bragg grating. We achieve total-system detection efficiency of around 30% with noise at the dark-count level of a Silicon APD. Based on the new detector, a single-pixel up-conversion infrared spectrometer with a noise equivalent power of -142 dBm Hz(-1/2) was demonstrated, which was as good as a liquid nitrogen cooled CCD camera.

  12. The FERMIatElettra FEL Photon Transport System

    NASA Astrophysics Data System (ADS)

    Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.

    2010-06-01

    The FERMI@Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI@Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.

  13. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko

    2007-04-15

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.

  14. A Remote Laser Mass Spectrometer for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Williams, M. D.

    1992-01-01

    The use of lasers as a source of excitation for surface mass spectroscopy has been investigated for some time. Since the laser can be focused to a small spot with intensity, it can vaporize and accelerate atoms of material. Using this phenomenon with a time-of-flight mass spectrometer allows a surface elemental mass analysis of a small region with each laser pulse. While the technique has been well developed for Earth applications, space applications are less developed. NASA Langley recently began a research program to investigate the use of a laser to create ions from the lunar surface and to analyze the ions at an orbiting spacecraft. A multijoule, Q-switched Nd:YAG laser would be focused to a small spot on the lunar surface, creating a dense plasma. This plasma would eject high-energy ions, as well as neutrals, electrons, and photons. An experiment is being set up to determine the characteristics of such a laser mass spectrometer at long flight distances. This experiment will determine the character of a future flight instrument for lunar resource assessment.

  15. Comparison of migration rate and survival between radio-tagged and PIT-tagged migrant yearling chinook salmon in the Snake and Columbia rivers

    USGS Publications Warehouse

    Hockersmith, E.E.; Muir, W.D.; Smith, S.G.; Sandford, B.P.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2003-01-01

    A study was conducted to compare the travel times, detection probabilities, and survival of migrant hatchery-reared yearling chinook salmon Oncorhynchus tshawytscha tagged with either gastrically or surgically implanted sham radio tags (with an imbedded passive integrated transponder [PIT] tag) with those of their cohorts tagged only with PIT tags in the Snake and Columbia rivers. Juvenile chinook salmon with gastrically implanted radio tags migrated significantly faster than either surgically radio-tagged or PIT-tagged fish, while migration rates were similar among surgically radio-tagged and PIT-tagged fish. The probabilities of PIT tag detection at downstream dams varied by less than 5% and were not significantly different among the three groups. Survival was similar among treatments for median travel times of less than approximately 6 d (migration distance of 106 km). However, for both gastrically and surgically radio-tagged fish, survival was significantly less than for PIT-tagged fish, for which median travel times exceeded approximately 10 d (migration distance of 225 km). The results of this study support the use of radio tags to estimate the survival of juvenile chinook salmon having a median fork length of approximately 150 mm (range, 127-285 mm) and a median travel time of migration of less than approximately 6 d.

  16. Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Markovic, Bojan; Di Sieno, Laura; Contini, Davide; Bassi, Andrea; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2013-12-01

    We present a compact time-resolved spectrometer suitable for optical spectroscopy from 400 nm to 1 μm wavelengths. The detector consists of a monolithic array of 16 high-precision Time-to-Digital Converters (TDC) and Single-Photon Avalanche Diodes (SPAD). The instrument has 10 ps resolution and reaches 70 ps (FWHM) timing precision over a 160 ns full-scale range with a Differential Non-Linearity (DNL) better than 1.5 % LSB. The core of the spectrometer is the application-specific integrated chip composed of 16 pixels with 250 μm pitch, containing a 20 μm diameter SPAD and an independent TDC each, fabricated in a 0.35 μm CMOS technology. In front of this array a monochromator is used to focus different wavelengths into different pixels. The spectrometer has been used for fluorescence lifetime spectroscopy: 5 nm spectral resolution over an 80 nm bandwidth is achieved. Lifetime spectroscopy of Nile blue is demonstrated.

  17. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.

    PubMed

    Subach, Oksana M; Malashkevich, Vladimir N; Zencheck, Wendy D; Morozova, Kateryna S; Piatkevich, Kiryl D; Almo, Steven C; Verkhusha, Vladislav V

    2010-04-23

    We determined the 2.2 A crystal structures of the red fluorescent protein TagRFP and its derivative, the blue fluorescent protein mTagBFP. The crystallographic analysis is consistent with a model in which TagRFP has the trans coplanar anionic chromophore with the conjugated pi-electron system, similar to that of DsRed-like chromophores. Refined conformation of mTagBFP suggests the presence of an N-acylimine functionality in its chromophore and single C(alpha)-C(beta) bond in the Tyr64 side chain. Mass spectrum of mTagBFP chromophore-bearing peptide indicates a loss of 20 Da upon maturation, whereas tandem mass spectrometry reveals that the C(alpha)-N bond in Leu63 is oxidized. These data indicate that mTagBFP has a new type of the chromophore, N-[(5-hydroxy-1H-imidazole-2-yl)methylidene]acetamide. We propose a chemical mechanism in which the DsRed-like chromophore is formed via the mTagBFP-like blue intermediate. (c) 2010 Elsevier Ltd. All rights reserved.

  18. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    DOE PAGES

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; ...

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy

  19. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy

  20. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Fang, Y.; Fischer, D. A.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Jaye, C.; McChesney, J. L.; Miaja-Avila, L.; Morgan, K. M.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Rodolakis, F.; Schmidt, D. R.; Tatsuno, H.; Uhlig, J.; Vale, L. R.; Ullom, J. N.; Swetz, D. S.

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering

  1. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science.

    PubMed

    Doriese, W B; Abbamonte, P; Alpert, B K; Bennett, D A; Denison, E V; Fang, Y; Fischer, D A; Fitzgerald, C P; Fowler, J W; Gard, J D; Hays-Wehle, J P; Hilton, G C; Jaye, C; McChesney, J L; Miaja-Avila, L; Morgan, K M; Joe, Y I; O'Neil, G C; Reintsema, C D; Rodolakis, F; Schmidt, D R; Tatsuno, H; Uhlig, J; Vale, L R; Ullom, J N; Swetz, D S

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering

  2. Tag-mediated cooperation with non-deterministic genotype-phenotype mapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Chen, Shu

    2016-01-01

    Tag-mediated cooperation provides a helpful framework for resolving evolutionary social dilemmas. However, most of the previous studies have not taken into account genotype-phenotype distinction in tags, which may play an important role in the process of evolution. To take this into consideration, we introduce non-deterministic genotype-phenotype mapping into a tag-based model with spatial prisoner's dilemma. By our definition, the similarity between genotypic tags does not directly imply the similarity between phenotypic tags. We find that the non-deterministic mapping from genotypic tag to phenotypic tag has non-trivial effects on tag-mediated cooperation. Although we observe that high levels of cooperation can be established under a wide variety of conditions especially when the decisiveness is moderate, the uncertainty in the determination of phenotypic tags may have a detrimental effect on the tag mechanism by disturbing the homophilic interaction structure which can explain the promotion of cooperation in tag systems. Furthermore, the non-deterministic mapping may undermine the robustness of the tag mechanism with respect to various factors such as the structure of the tag space and the tag flexibility. This observation warns us about the danger of applying the classical tag-based models to the analysis of empirical phenomena if genotype-phenotype distinction is significant in real world. Non-deterministic genotype-phenotype mapping thus provides a new perspective to the understanding of tag-mediated cooperation.

  3. Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millecchia, M.; Regan, S. P.; Bahr, R. E.

    2012-10-15

    The streaked x-ray spectrometer (SXS) is used with streak cameras [D. H. Kalantar, P. M. Bell, R. L. Costa, B. A. Hammel, O. L. Landen, T. J. Orzechowski, J. D. Hares, and A. K. L. Dymoke-Bradshaw, in 22nd International Congress on High-Speed Photography and Photonics, edited by D. L. Paisley and A. M. Frank (SPIE, Bellingham, WA, 1997), Vol. 2869, p. 680] positioned with a ten-inch manipulator on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] and OMEGA EP [L. J. Waxer et al., Presented at CLEO/QELS 2008, San Jose, CA, 4-9 May 2008 (Paper JThB1)] formore » time-resolved, x-ray spectroscopy of laser-produced plasmas in the 1.4- to 20-keV photon-energy range. These experiments require measuring a portion of this photon-energy range to monitor a particular emission or absorption feature of interest. The SXS relies on a pinned mechanical reference system to create a discrete set of Bragg reflection geometries for a variety of crystals. A wide selection of spectral windows is achieved accurately and efficiently using this technique. It replaces the previous spectrometer designs that had a continuous Bragg angle adjustment and required a tedious alignment calibration procedure. The number of spectral windows needed for the SXS was determined by studying the spectral ranges selected by OMEGA users over the last decade. These selections are easily configured in the SXS using one of the 25 discrete Bragg reflection geometries and one of the six types of Bragg crystals, including two curved crystals.« less

  4. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  5. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, Kenny C.; Laug, Matthew T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  6. Accounting for tagging-to-harvest mortality in a Brownie tag-recovery model by incorporating radio-telemetry data.

    PubMed

    Buderman, Frances E; Diefenbach, Duane R; Casalena, Mary Jo; Rosenberry, Christopher S; Wallingford, Bret D

    2014-04-01

    The Brownie tag-recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known-fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward-tagged animals in a Brownie tag-recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging-to-harvest survival rates from >20 individuals with radio transmitters combined with 50-100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo, to estimate harvest rates, and data from white-tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known-fate tag-recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.

  7. Accounting for tagging-to-harvest mortality in a Brownie tag-recovery model by incorporating radio-telemetry data

    USGS Publications Warehouse

    Buderman, Frances E.; Diefenbach, Duane R.; Casalena, Mary Jo; Rosenberry, Christopher S.; Wallingford, Bret D.

    2014-01-01

    The Brownie tag-recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known-fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward-tagged animals in a Brownie tag-recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging-to-harvest survival rates from >20 individuals with radio transmitters combined with 50–100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo,to estimate harvest rates, and data from white-tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known-fate tag-recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.

  8. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.

    PubMed

    Holeman, G R; Price, K W; Friedman, L F; Nath, R

    1977-01-01

    High-energy x-ray radiotherapy machines in the supermegavoltage region generate complex neutron energy spectra which make an exact evaluation of neutron shielding difficult. Fast neutrons resulting from photonuclear reactions in the x-ray target and collimators undergo successive collisions in the surrounding materials and are moderated by varying amounts. In order to examine the neutron radiation exposures quantitatively, the neutron energy spectra have been measured inside and outside the treatment room of a Sagittaire medical linear accelerator (25-MV x rays) located at Yale-New Haven Hospital. The measurements were made using a Bonner spectrometer consisting of 2-, 3-, 5-, 8-, 10- and 12-in.-diameter polyethylene spheres with 6Li and 7Li thermoluminescent dosimeter (TLD) chips at the centers, in addition to bare and cadmium-covered chips. The individual TLD chips were calibrated for neutron and photon response. The spectrometer was calibrated using a known PuBe spectrum Spectrometer measurements were made at Yale Electron Accelerator Laboratory and results compared with a neutron time-of-flight spectrometer and an activation technique. The agreement between the results from these independent methods is found to be good, except for the measurements in the direct photon beam. Quality factors have been inferred for the neutron fields inside and outside the treatment room. Values of the inferred quality factors fall primarily between 4 and 8, depending on location.

  9. Absolute sensitivity calibration of an extreme ultraviolet spectrometer for tokamak measurements

    NASA Astrophysics Data System (ADS)

    Guirlet, R.; Schwob, J. L.; Meyer, O.; Vartanian, S.

    2017-01-01

    An extreme ultraviolet spectrometer installed on the Tore Supra tokamak has been calibrated in absolute units of brightness in the range 10-340 Å. This has been performed by means of a combination of techniques. The range 10-113 Å was absolutely calibrated by using an ultrasoft-X ray source emitting six spectral lines in this range. The calibration transfer to the range 113-182 Å was performed using the spectral line intensity branching ratio method. The range 182-340 Å was calibrated thanks to radiative-collisional modelling of spectral line intensity ratios. The maximum sensitivity of the spectrometer was found to lie around 100 Å. Around this wavelength, the sensitivity is fairly flat in a 80 Å wide interval. The spatial variations of sensitivity along the detector assembly were also measured. The observed trend is related to the quantum efficiency decrease as the angle of the incoming photon trajectories becomes more grazing.

  10. A suite of standard post-tagging evaluation metrics can help assess tag retention for field-based fish telemetry research

    USGS Publications Warehouse

    Gerber, Kayla M.; Mather, Martha E.; Smith, Joseph M.

    2017-01-01

    Telemetry can inform many scientific and research questions if a context exists for integrating individual studies into the larger body of literature. Creating cumulative distributions of post-tagging evaluation metrics would allow individual researchers to relate their telemetry data to other studies. Widespread reporting of standard metrics is a precursor to the calculation of benchmarks for these distributions (e.g., mean, SD, 95% CI). Here we illustrate five types of standard post-tagging evaluation metrics using acoustically tagged Blue Catfish (Ictalurus furcatus) released into a Kansas reservoir. These metrics included: (1) percent of tagged fish detected overall, (2) percent of tagged fish detected daily using abacus plot data, (3) average number of (and percent of available) receiver sites visited, (4) date of last movement between receiver sites (and percent of tagged fish moving during that time period), and (5) number (and percent) of fish that egressed through exit gates. These metrics were calculated for one to three time periods: early (<10 d), during (weekly), and at the end of the study (5 months). Over three-quarters of our tagged fish were detected early (85%) and at the end (85%) of the study. Using abacus plot data, all tagged fish (100%) were detected at least one day and 96% were detected for > 5 days early in the study. On average, tagged Blue Catfish visited 9 (50%) and 13 (72%) of 18 within-reservoir receivers early and at the end of the study, respectively. At the end of the study, 73% of all tagged fish were detected moving between receivers. Creating statistical benchmarks for individual metrics can provide useful reference points. In addition, combining multiple metrics can inform ecology and research design. Consequently, individual researchers and the field of telemetry research can benefit from widespread, detailed, and standard reporting of post-tagging detection metrics.

  11. Tagging as a Social Literacy Practice

    ERIC Educational Resources Information Center

    MacGillivray, Laurie; Curwen, Margaret Sauceda

    2007-01-01

    Tagging is not simply an act of vandalism or violence; it is a social practice with its own rules and codes--a literacy practice imbued with intent and meaning. Three aspects of tagging reflect its nature as a literate practice: (1) The purpose of tagging to achieve particular social goals and group affiliations; (2) The role of talent to be…

  12. Delta-Doped CCDs as Detector Arrays in Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd; Jewell, April; Sinha, Mahadeva

    2007-01-01

    In a conventional mass spectrometer, charged particles (ions) are dispersed through a magnetic sector onto an MCP at an output (focal) plane. In the MCP, the impinging charged particles excite electron cascades that afford signal gain. Electrons leaving the MCP can be read out by any of a variety of means; most commonly, they are post-accelerated onto a solid-state detector array, wherein the electron pulses are converted to photons, which, in turn, are converted to measurable electric-current pulses by photodetectors. Each step in the conversion from the impinging charged particles to the output 26 NASA Tech Briefs, February 2007 current pulses reduces spatial resolution and increases noise, thereby reducing the overall sensitivity and performance of the mass spectrometer. Hence, it would be preferable to make a direct measurement of the spatial distribution of charged particles impinging on the focal plane. The utility of delta-doped CCDs as detectors of charged particles was reported in two articles in NASA Tech Briefs, Vol. 22, No. 7 (July 1998): "Delta-Doped CCDs as Low-Energy-Particle Detectors" (NPO-20178) on page 48 and "Delta- Doped CCDs for Measuring Energies of Positive Ions" (NPO-20253) on page 50. In the present developmental miniature mass spectrometers, the above mentioned miniaturization and performance advantages contributed by the use of delta-doped CCDs are combined with the advantages afforded by the Mattauch-Herzog design. The Mattauch- Herzog design is a double-focusing spectrometer design involving an electric and a magnetic sector, where the ions of different masses are spatially separated along the focal plane of magnetic sector. A delta-doped CCD at the focal plane measures the signals of all the charged-particle species simultaneously at high sensitivity and high resolution, thereby nearly instantaneously providing a complete, high-quality mass spectrum. The simultaneous nature of the measurement of ions stands in contrast to that of a

  13. X-ray spectrophotometer SphinX and particle spectrometer STEP-F of the satellite experiment CORONAS-PHOTON. Preliminary results of the joint data analysis

    NASA Astrophysics Data System (ADS)

    Dudnik, O. V.; Podgorski, P.; Sylwester, J.; Gburek, S.; Kowalinski, M.; Siarkowski, M.; Plocieniak, S.; Bakala, J.

    2012-04-01

    A joint analysis is carried out of data obtained with the help of the solar X-ray SphinX spectrophotometer and the electron and proton satellite telescope STEP-F in May 2009 in the course of the scientific space experiment CORONAS-PHOTON. In order to determine the energies and particle types, in the analysis of spectrophotometer records data are used on the intensities of electrons, protons, and secondary γ-radiation, obtained by the STEP-F telescope, which was located in close proximity to the SphinX spectrophotometer. The identical reaction of both instruments is noted at the intersection of regions of the Brazilian magnetic anomaly and the Earth's radiation belts. It is shown that large area photodiodes, serving as sensors of the X-ray spectrometer, reliably record electron fluxes of low and intermediate energies, as well as fluxes of the secondary gamma radiation from construction materials of detector modules, the TESIS instrument complex, and the spacecraft itself. The dynamics of electron fluxes, recorded by the SphinX spectrophotometer in the vicinity of a weak geomagnetic storm, supplements the information about the processes of radial diffusion of electrons, which was studied using the STEP-F telescope.

  14. Spectrometer Development in Support of Thomson Scattering Investigations for the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2016-10-01

    Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  15. Surface Acoustic Wave Tag-Based Coherence Multiplexing

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Malocha, Donald (Inventor); Saldanha, Nancy (Inventor)

    2016-01-01

    A surface acoustic wave (SAW)-based coherence multiplexing system includes SAW tags each including a SAW transducer, a first SAW reflector positioned a first distance from the SAW transducer and a second SAW reflector positioned a second distance from the SAW transducer. A transceiver including a wireless transmitter has a signal source providing a source signal and circuitry for transmitting interrogation pulses including a first and a second interrogation pulse toward the SAW tags, and a wireless receiver for receiving and processing response signals from the SAW tags. The receiver receives scrambled signals including a convolution of the wideband interrogation pulses with response signals from the SAW tags and includes a computing device which implements an algorithm that correlates the interrogation pulses or the source signal before transmitting against the scrambled signals to generate tag responses for each of the SAW tags.

  16. 48 CFR 908.7101-7 - Government license tags.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Government license tags... Government license tags. (a) Government license tags shall be procured and assignments recorded by DOE... the District of Columbia, official Government tags shall be obtained from the Department of...

  17. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  18. Toroidal Optical Microresonators as Single-Particle Absorption Spectrometers

    NASA Astrophysics Data System (ADS)

    Heylman, Kevin D.

    Single-particle and single-molecule measurements are invaluable tools for characterizing structural and energetic properties of molecules and nanomaterials. Photothermal microscopy in particular is an ultrasensitive technique capable of single-molecule resolution. In this thesis I introduce a new form of photothermal spectroscopy involving toroidal optical microresonators as detectors and a pair of non-interacting lasers as pump and probe for performing single-target absorption spectroscopy. The first three chapters will discuss the motivation, design principles, underlying theory, and fabrication process for the microresonator absorption spectrometer. With an early version of the spectrometer, I demonstrate photothermal mapping and all-optical tuning with toroids of different geometries in Chapter 4. In Chapter 5, I discuss photothermal mapping and measurement of the absolute absorption cross-sections of individual carbon nanotubes. For the next generation of measurements I incorporate all of the advances described in Chapter 2, including a double-modulation technique to improve detection limits and a tunable pump laser for spectral measurements on single gold nanoparticles. In Chapter 6 I observe sharp Fano resonances in the spectra of gold nanoparticles and describe them with a theoretical model. I continued to study this photonic-plasmonic hybrid system in Chapter 7 and explore the thermal tuning of the Fano resonance phase while quantifying the Fisher information. The new method of photothermal single-particle absorption spectroscopy that I will discuss in this thesis has reached record detection limits for microresonator sensing and is within striking distance of becoming the first single-molecule room-temperature absorption spectrometer.

  19. Neutral Kaon Photoproduction at LNS, Tohoku University

    NASA Astrophysics Data System (ADS)

    Kaneta, M.; Chiga, N.; Beckford, B.; Ejima, M.; Fujii, T.; Fujii, Y.; Fujibayashi, T.; Gogami, T.; Futatsukawa, K.; Hashimoto, O.; Hosomi, K.; Hirose, K.; Iguchi, A.; Kameoka, S.; Kanda, H.; Kato, H.; Kawama, D.; Kawasaki, T.; Kimura, C.; Kiyokawa, S.; Koike, T.; Kon, T.; Ma, Y.; Maeda, K.; Maruyama, N.; Matsumura, A.; Miyagi, Y.; Miura, Y.; Miwa, K.; Nakamura, S. N.; Nomura, H.; Okuyama, A.; Ohtani, A.; Otani, T.; Sato, M.; Shichijo, A.; Shirotori, K.; Takahashi, T.; Tamura, H.; Taniya, N.; Tsubota, H.; Tsukada, K.; Terada, N.; Ukai, M.; Uchida, D.; Watanabe, T.; Yamamoto, T.; Yamauchi, H.; Yokota, K.; Ishikawa, T.; Kinoshita, T.; Miyahara, H.; Nakabayashi, T.; Shimizu, H.; Suzuki, K.; Tamae, T.; Terasawa, T.; Yamazaki, H.; Han, Y. C.; Wang, T. S.; Sasaki, A.; Konno, O.; Bydžovský, P.; Sotona, M.

    2010-10-01

    The elementary photo-strangeness production process has been intensively studied based on the high-quality data of the charged kaon channel, γ + p → K+ + Λ(Σ0). However, there had been no reliable data for the neutral kaon channel γ + n → K0 + Λ(Σ0) and the theoretical investigations suffer seriously from the lack of the data. In order to have reliable data for the neutral kaon photo-production data, substantial effort has been made to measure the γ + n → K0 + Λ process in the π+π- decay channel, using a liquid deuterium target and a tagged photon beam (Eγ = 0.8-1.1 GeV) in the threshold region at the Laboratory of Nuclear Science (LNS), Tohoku University. We have taken exploratory data quite successfully with the use of Neutral Kaon Spectrometer (NKS) at LNS-Tohoku in 2003 and 2004. The data is compared to theoretical models and it indicates a hint that the K0 differential cross section has a backward peak in the energy region. The second generation of the experiment, NKS2, is designed to extend the NKS experiment by considerably upgrading the original neutral kaon spectrometer, fully replacing the spectrometer magnet, tracking detectors and all the trigger counters. The new spectrometer NKS2 has significantly larger acceptance for neutral kaons compared with NKS, particularly covering forward angles and much better invariant mass resolution. The estimated acceptance of NKS2 is three (ten) times larger for KS0 (Λ ) than that of NKS. The spectrometer is newly constructed and installed at the Laboratory of Nuclear Science, Tohoku University in 2005. The deuterium target data was taken with tagged photon beam in 2006-2007. We will report recent results of NKS2 in this paper. Additionally, a status of the upgrade project that gives us larger acceptance and capability of K0 + Λ coincidence measurement will be presented.

  20. Neutral Kaon Photoproduction at LNS, Tohoku University

    NASA Astrophysics Data System (ADS)

    Kaneta, M.; Chiga, N.; Beckford, B.; Ejima, M.; Fujii, T.; Fujii, Y.; Fujibayashi, T.; Gogami, T.; Futatsukawa, K.; Hashimoto, O.; Hosomi, K.; Hirose, K.; Iguchi, A.; Kameoka, S.; Kanda, H.; Kato, H.; Kawama, D.; Kawasaki, T.; Kimura, C.; Kiyokawa, S.; Koike, T.; Kon, T.; Ma, Y.; Maeda, K.; Maruyama, N.; Matsumura, A.; Miyagi, Y.; Miura, Y.; Miwa, K.; Nakamura, S. N.; Nomura, H.; Okuyama, A.; Ohtani, A.; Otani, T.; Sato, M.; Shichijo, A.; Shirotori, K.; Takahashi, T.; Tamura, H.; Taniya, N.; Tsubota, H.; Tsukada, K.; Terada, N.; Ukai, M.; Uchida, D.; Watanabe, T.; Yamamoto, T.; Yamauchi, H.; Yokota, K.; Ishikawa, T.; Kinoshita, T.; Miyahara, H.; Nakabayashi, T.; Shimizu, H.; Suzuki, K.; Tamae, T.; Terasawa, T.; Yamazaki, H.; Han, Y. C.; Wang, T. S.; Sasaki, A.; Konno, O.; Bydžovský, P.; Sotona, M.

    The elementary photo-strangeness production process has been intensively studied based on the high-quality data of the charged kaon channel, γ + p → K+ + Λ(Σ0). However, there had been no reliable data for the neutral kaon channel γ + n → K0 + Λ(Σ0) and the theoretical investigations suffer seriously from the lack of the data. In order to have reliable data for the neutral kaon photo-production data, substantial effort has been made to measure the γ + n → K0 + Λ process in the π+π- decay channel, using a liquid deuterium target and a tagged photon beam (Eγ = 0.8-1.1 GeV) in the threshold region at the Laboratory of Nuclear Science (LNS), Tohoku University. We have taken exploratory data quite successfully with the use of Neutral Kaon Spectrometer (NKS) at LNS-Tohoku in 2003 and 2004. The data is compared to theoretical models and it indicates a hint that the K0 differential cross section has a backward peak in the energy region. The second generation of the experiment, NKS2, is designed to extend the NKS experiment by considerably upgrading the original neutral kaon spectrometer, fully replacing the spectrometer magnet, tracking detectors and all the trigger counters. The new spectrometer NKS2 has significantly larger acceptance for neutral kaons compared with NKS, particularly covering forward angles and much better invariant mass resolution. The estimated acceptance of NKS2 is three (ten) times larger for KS0 (Λ ) than that of NKS. The spectrometer is newly constructed and installed at the Laboratory of Nuclear Science, Tohoku University in 2005. The deuterium target data was taken with tagged photon beam in 2006-2007. We will report recent results of NKS2 in this paper. Additionally, a status of the upgrade project that gives us larger acceptance and capability of K0 + Λ coincidence measurement will be presented.

  1. Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels

    NASA Astrophysics Data System (ADS)

    Wahl, Michael; Rahn, Hans-Jürgen; Gregor, Ingo; Erdmann, Rainer; Enderlein, Jörg

    2007-03-01

    Time-correlated single photon counting is a powerful method for sensitive time-resolved fluorescence measurements down to the single molecule level. The method is based on the precisely timed registration of single photons of a fluorescence signal. Historically, its primary goal was the determination of fluorescence lifetimes upon optical excitation by a short light pulse. This goal is still important today and therefore has a strong influence on instrument design. However, modifications and extensions of the early designs allow for the recovery of much more information from the detected photons and enable entirely new applications. Here, we present a new instrument that captures single photon events on multiple synchronized channels with picosecond resolution and over virtually unlimited time spans. This is achieved by means of crystal-locked time digitizers with high resolution and very short dead time. Subsequent event processing in programmable logic permits classical histogramming as well as time tagging of individual photons and their streaming to the host computer. Through the latter, any algorithms and methods for the analysis of fluorescence dynamics can be implemented either in real time or offline. Instrument test results from single molecule applications will be presented.

  2. 48 CFR 908.7101-7 - Government license tags.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Government license tags... Government license tags. (a) Government license tags shall be procured and assignments recorded by DOE... local laws, regulations, and procedures. (d) In the District of Columbia, official Government tags shall...

  3. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  4. Behavioral tagging of extinction learning.

    PubMed

    de Carvalho Myskiw, Jociane; Benetti, Fernando; Izquierdo, Iván

    2013-01-15

    Extinction of contextual fear in rats is enhanced by exposure to a novel environment at 1-2 h before or 1 h after extinction training. This effect is antagonized by administration of protein synthesis inhibitors anisomycin and rapamycin into the hippocampus, but not into the amygdala, immediately after either novelty or extinction training, as well as by the gene expression blocker 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole administered after novelty training, but not after extinction training. Thus, this effect can be attributed to a mechanism similar to synaptic tagging, through which long-term potentiation can be enhanced by other long-term potentiations or by exposure to a novel environment in a protein synthesis-dependent fashion. Extinction learning produces a tag at the appropriate synapses, whereas novelty learning causes the synthesis of plasticity-related proteins that are captured by the tag, strengthening the synapses that generated this tag.

  5. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  6. Measurement of tag confidence in user generated contents retrieval

    NASA Astrophysics Data System (ADS)

    Lee, Sihyoung; Min, Hyun-Seok; Lee, Young Bok; Ro, Yong Man

    2009-01-01

    As online image sharing services are becoming popular, the importance of correctly annotated tags is being emphasized for precise search and retrieval. Tags created by user along with user-generated contents (UGC) are often ambiguous due to the fact that some tags are highly subjective and visually unrelated to the image. They cause unwanted results to users when image search engines rely on tags. In this paper, we propose a method of measuring tag confidence so that one can differentiate confidence tags from noisy tags. The proposed tag confidence is measured from visual semantics of the image. To verify the usefulness of the proposed method, experiments were performed with UGC database from social network sites. Experimental results showed that the image retrieval performance with confidence tags was increased.

  7. Improved Satellite-Monitored Radio Tags for Large Whales: Dependable ARGOS Location-Only Tags and a GPS-Linked Tag to Reveal 3-Dimensional Body-Orientation and Surface Movements

    DTIC Science & Technology

    2012-09-30

    migration routes and on sperm whales in 2010 and 2011 (funded by BP and NOAA-NRDA) to follow-up on the consequences of the Deepwater Horizon (DWH...dive behavior to especially examine sperm whale foraging behavior. The data will be downloaded from recovered tags to evaluate complex foraging...with the WC Location-only tags off Sakhalin Island, Russia to determine migration routes and tag a small number of sperm whales in the Gulf of Mexico

  8. Direct measurement of clinical mammographic x-ray spectra using a CdTe spectrometer.

    PubMed

    Santos, Josilene C; Tomal, Alessandra; Furquim, Tânia A; Fausto, Agnes M F; Nogueira, Maria S; Costa, Paulo R

    2017-07-01

    To introduce and evaluate a method developed for the direct measurement of mammographic x-ray spectra using a CdTe spectrometer. The assembly of a positioning system and the design of a simple and customized alignment device for this application is described. A positioning system was developed to easily and accurately locate the CdTe detector in the x-ray beam. Additionally, an alignment device to line up the detector with the central axis of the radiation beam was designed. Direct x-ray spectra measurements were performed in two different clinical mammography units and the measured x-ray spectra were compared with computer-generated spectra. In addition, the spectrometer misalignment effect was evaluated by comparing the measured spectra when this device is aligned relatively to when it is misaligned. The positioning and alignment of the spectrometer have allowed the measurements of direct mammographic x-ray spectra in agreement with computer-generated spectra. The most accurate x-ray spectral shape, related with the minimal HVL value, and high photon fluence for measured spectra was found with the spectrometer aligned according to the proposed method. The HVL values derived from both simulated and measured x-ray spectra differ at most 1.3 and 4.5% for two mammography devices evaluated in this study. The experimental method developed in this work allows simple positioning and alignment of a spectrometer for x-ray spectra measurements given the geometrical constraints and maintenance of the original configurations of mammography machines. © 2017 American Association of Physicists in Medicine.

  9. Overview of Fusion Tags for Recombinant Proteins.

    PubMed

    Kosobokova, E N; Skrypnik, K A; Kosorukov, V S

    2016-03-01

    Virtually all recombinant proteins are now prepared using fusion domains also known as "tags". The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.

  10. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography

    PubMed Central

    Yurtsever, Günay; Považay, Boris; Alex, Aneesh; Zabihian, Behrooz; Drexler, Wolfgang; Baets, Roel

    2014-01-01

    Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm2. It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT. PMID:24761288

  11. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review

    PubMed Central

    Cunningham, B.T.; Zhang, M.; Zhuo, Y.; Kwon, L.; Race, C.

    2016-01-01

    Photonic crystal surfaces that are designed to function as wavelength-selective optical resonators have become a widely adopted platform for label-free biosensing, and for enhancement of the output of photon-emitting tags used throughout life science research and in vitro diagnostics. While some applications, such as analysis of drug-protein interactions, require extremely high resolution and the ability to accurately correct for measurement artifacts, others require sensitivity that is high enough for detection of disease biomarkers in serum with concentrations less than 1 pg/ml. As the analysis of cells becomes increasingly important for studying the behavior of stem cells, cancer cells, and biofilms under a variety of conditions, approaches that enable high resolution imaging of live cells without cytotoxic stains or photobleachable fluorescent dyes are providing new tools to biologists who seek to observe individual cells over extended time periods. This paper will review several recent advances in photonic crystal biosensor detection instrumentation and device structures that are being applied towards direct detection of small molecules in the context of high throughput drug screening, photonic crystal fluorescence enhancement as utilized for high sensitivity multiplexed cancer biomarker detection, and label-free high resolution imaging of cells and individual nanoparticles as a new tool for life science research and single-molecule diagnostics. PMID:27642265

  12. Dual-energy index value of luminal air in fecal-tagging computed tomography colonography: findings and impact on electronic cleansing.

    PubMed

    Cai, Wenli; Zhang, Da; Lee, June-Goo; Shirai, Yu; Kim, Se Hyung; Yoshida, Hiroyuki

    2013-01-01

    The purpose of our study was to measure the dual-energy index (DEI) value of colonic luminal air in both phantom and clinical fecal-tagging dual-energy computed tomography (CT) colonography (DE-CTC) images and to demonstrate its impact on dual-energy electronic cleansing. For the phantom study, a custom-ordered colon phantom was scanned by a dual-energy CT scanner (SOMATON Definition Flash; Siemens Healthcare, Forchheim, Germany) at two photon energies: 80 and 140 kVp. Before imaging, the phantom was filled with a 300-mL mixture of simulated fecal materials tagged by a nonionic iodinated contrast agent at three contrast concentrations: 20, 40, and 60 mg/mL. Ten regions-of-interest (ROIs) were randomly placed in each of the colonic luminal air, abdominal fat, bony structure, and tagged material in each scan. For the clinical study, 22 DE-CTC (80 and 140 kVp) patient cases were collected, who underwent a low-fiber, low-residue diet bowel preparation and orally administered iodine-based fecal tagging. Twenty ROIs were randomly placed in each of the colonic luminal air, abdominal fat, abdominal soft tissue, and tagged fecal material in each scan. For each ROI, the mean CT values in both 80- and 140-kVp images were measured, and then its DEI was calculated. In the phantom study, the mean DEI values of luminal air were 0.270, 0.298, 0.386, and 0.402 for the four groups of tagging conditions: no tagged material and tagged with three groups of contrast concentrations at 20, 40, and 60 mg/mL. In the clinical study, the mean DEI values were 0.341, -0.012, -0.002, and 0.188 for colonic luminal air, abdominal fat, abdominal soft tissue, and tagged fecal material, respectively. In our study, we observed that the DEI values of colonic luminal air in DE-CTC images (>0.10) were substantially higher than the theoretical value of 0.0063. In addition, the observed DEI values of colonic luminal air were significantly higher than those of soft tissue. These findings have an important

  13. Ear tag

    MedlinePlus

    ... an ear tag or pit are: An inherited tendency to have this facial feature A genetic syndrome ... Elsevier Churchill Livingstone; 2016:chap 19. Review Date 4/24/2017 Updated by: Liora C Adler, MD, ...

  14. Evaluation of Tag Attachments on Small Cetaceans

    DTIC Science & Technology

    2013-09-30

    silicon-based antifouling coating, “Propspeed,” as a means to further reduce drag and improve tag performance. Examples of the experimental tags are...the TDR tags, prepared by Wildlife Computers (Figure 1). Half of these were treated with Propspeed antifouling coating, and the other half were left

  15. PIT tags increase effectiveness of freshwater mussel recaptures

    USGS Publications Warehouse

    Kurth, J.; Loftin, C.; Zydlewski, Joseph D.; Rhymer, Judith

    2007-01-01

    Translocations are used increasingly to conserve populations of rare freshwater mussels. Recovery of translocated mussels is essential to accurate assessment of translocation success. We designed an experiment to evaluate the use of passive integrated transponder (PIT) tags to mark and track individual freshwater mussels. We used eastern lampmussels (Lampsilis radiata radiata) as a surrogate for 2 rare mussel species. We assessed internal and external PIT-tag retention in the laboratory and field. Internal tag retention was high (75-100%), and tag rejection occurred primarily during the first 3 wk after tagging. A thin layer of nacre coated internal tags 3 to 4 mo after insertion, suggesting that long-term retention is likely. We released mussels with external PIT tags at 3 field study sites and recaptured them with a PIT pack (mobile interrogation unit) 8 to 10 mo and 21 to 23 mo after release. Numbers of recaptured mussels differed among study sites; however, we found more tagged mussels with the PIT-pack searches with visual confirmation (72-80%) than with visual searches alone (30-47%) at all sites. PIT tags offer improved recapture of translocated mussels and increased accuracy of posttranslocation monitoring. ?? 2007 by The North American Benthological Society.

  16. Determination of glucose concentrations using photonic crystal LEDs

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Yang; Chen, Yung-Tsan; Chang, Cheng-Yu; Lan, Wen-Yi; Huang, Jian-Jang

    2016-09-01

    As internet of things (IOT) has become a popular topic in current consumer electronics, there is a demand for cost-effective sensors to monitor bio-signals. Traditional optical sensors employ low-dimensional gratings and high-resolution spectrometers to detect the refractive index changes of the solutions. In this work, we develop an alternative approach to correlate the concentration of molecules to the band diagrams of the photonic crystals. A relatively low-resolution spectrum analyzer can be employed, yet achieves higher sensitivity than traditional approaches.

  17. Overview of Hall D Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudakov, Eugene A.

    Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillatormore » hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is about 7

  18. White dwarf variability with gPhoton: pulsators

    NASA Astrophysics Data System (ADS)

    Tucker, Michael A.; Fleming, Scott W.; Pelisoli, Ingrid; Romero, Alejandra; Bell, Keaton J.; Kepler, S. O.; Caton, Daniel B.; Debes, John; Montgomery, Michael H.; Thompson, Susan E.; Koester, Detlev; Million, Chase; Shiao, Bernie

    2018-04-01

    We present results from a search for short time-scale white dwarf variability using gPhoton, a time-tagged data base of GALEX photon events and associated software package. We conducted a survey of 320 white dwarf stars in the McCook-Sion catalogue, inspecting each for photometric variability with particular emphasis on variability over time-scales less than ˜30 min. From that survey, we present the discovery of a new pulsating white dwarf: WD 2246-069. A Ca II K line is found in archival ESO spectra and an IR excess is seen in WISE W1 and W2 bands. Its independent modes are identified in follow-up optical photometry and used to model its interior structure. Additionally, we detect UV pulsations in four previously known pulsating ZZ Ceti-type (DAVs). Included in this group is the simultaneous fitting of the pulsations of WD 1401-147 in optical, near-ultraviolet and far-ultraviolet bands using nearly concurrent Whole Earth Telescope and GALEX data, providing observational insight into the wavelength dependence of white dwarf pulsation amplitudes.

  19. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less

  20. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    DOE PAGES

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne

    2015-11-24

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D 2-tagged GlyGlyH +·(H 2O) 1–4 are presented. As a result, they display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less

  1. 9 CFR 2.53 - Use of tags.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Use of tags. 2.53 Section 2.53 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.53 Use of tags. Official tags obtained by a dealer...

  2. 9 CFR 2.53 - Use of tags.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Use of tags. 2.53 Section 2.53 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.53 Use of tags. Official tags obtained by a dealer...

  3. 9 CFR 2.53 - Use of tags.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Use of tags. 2.53 Section 2.53 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.53 Use of tags. Official tags obtained by a dealer...

  4. 9 CFR 2.53 - Use of tags.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Use of tags. 2.53 Section 2.53 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.53 Use of tags. Official tags obtained by a dealer...

  5. 9 CFR 2.53 - Use of tags.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Use of tags. 2.53 Section 2.53 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.53 Use of tags. Official tags obtained by a dealer...

  6. Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration

    PubMed Central

    Peyrot, Donald A.; Lefort, Claire; Steffenhagen, Marie; Mansuryan, Tigran; Ducourthial, Guillaume; Abi-Haidar, Darine; Sandeau, Nicolas; Vever-Bizet, Christine; Kruglik, Sergei G.; Thiberville, Luc; Louradour, Frédéric; Bourg-Heckly, Geneviève

    2012-01-01

    Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle. PMID:22567579

  7. Sentiment topic mining based on comment tags

    NASA Astrophysics Data System (ADS)

    Zhang, Daohai; Liu, Xue; Li, Juan; Fan, Mingyue

    2018-03-01

    With the development of e-commerce, various comments based on tags are generated, how to extract valuable information from these comment tags has become an important content of business management decisions. This study takes HUAWEI mobile phone tags as an example using the sentiment analysis and topic LDA mining method. The first step is data preprocessing and classification of comment tag topic mining. And then make the sentiment classification for comment tags. Finally, mine the comments again and analyze the emotional theme distribution under different sentiment classification. The results show that HUAWEI mobile phone has a good user experience in terms of fluency, cost performance, appearance, etc. Meanwhile, it should pay more attention to independent research and development, product design and development. In addition, battery and speed performance should be enhanced.

  8. Harvesting Intelligence in Multimedia Social Tagging Systems

    NASA Astrophysics Data System (ADS)

    Giannakidou, Eirini; Kaklidou, Foteini; Chatzilari, Elisavet; Kompatsiaris, Ioannis; Vakali, Athena

    As more people adopt tagging practices, social tagging systems tend to form rich knowledge repositories that enable the extraction of patterns reflecting the way content semantics is perceived by the web users. This is of particular importance, especially in the case of multimedia content, since the availability of such content in the web is very high and its efficient retrieval using textual annotations or content-based automatically extracted metadata still remains a challenge. It is argued that complementing multimedia analysis techniques with knowledge drawn from web social annotations may facilitate multimedia content management. This chapter focuses on analyzing tagging patterns and combining them with content feature extraction methods, generating, thus, intelligence from multimedia social tagging systems. Emphasis is placed on using all available "tracks" of knowledge, that is tag co-occurrence together with semantic relations among tags and low-level features of the content. Towards this direction, a survey on the theoretical background and the adopted practices for analysis of multimedia social content are presented. A case study from Flickr illustrates the efficiency of the proposed approach.

  9. Multidimensional spectrometer

    DOEpatents

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  10. Specifically and wash-free labeling of SNAP-tag fused proteins with a hybrid sensor to monitor local micro-viscosity.

    PubMed

    Wang, Chao; Song, Xinbo; Chen, Lingcheng; Xiao, Yi

    2017-05-15

    Viscosity, as one of the major factors of intracellular microenvironment, influences the function of proteins. To detect local micro-viscosity of a protein, it is a precondition to apply a viscosity sensor for specifically target to proteins. However, all the reported small-molecule probes are just suitable for sensing/imaging of macro-viscosity in biological fluids of entire cells or organelles. To this end, we developed a hybrid sensor BDP-V BG by connecting a viscosity-sensitive boron-dipyrromethene (BODIPY) molecular rotor (BDP-V) to O 6 -benzylguanine (BG) for specific detection of local micro-viscosity of SNAP-tag fused proteins. We measured and calculated the reaction efficiency between the sensor and SNAP-tag protein in vitro to confirm the high labeling specificity. We also found that the labeling reaction results in a 53-fold fluorescence enhancement for the rotor, which qualifies it as a wash-free sensor with ignorable background fluorescence. The high sensitivity of protein labeled sensor (BDP-V-SNAP) to the changes of local viscosity was evaluated by detecting the enhancement of fluorescence lifetimes. Further, with the sensor BDP-V BG, we achieved high specific labeling of cells expressing two SNAP-tag fused proteins (nuclear histone H2B and mitochondrial COX8A). Two-photon excited fluorescence lifetime imaging revealed that, the micro-viscosities nearby the SNAP-tag fused two proteins are distinct. The different changes of local micro-viscosity of SNAP-tag fused histone protein in apoptosis induced by three nucleus-targeted drugs were also characterized for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Communication methods, systems, apparatus, and devices involving RF tag registration

    DOEpatents

    Burghard, Brion J [W. Richland, WA; Skorpik, James R [Kennewick, WA

    2008-04-22

    One technique of the present invention includes a number of Radio Frequency (RF) tags that each have a different identifier. Information is broadcast to the tags from an RF tag interrogator. This information corresponds to a maximum quantity of tag response time slots that are available. This maximum quantity may be less than the total number of tags. The tags each select one of the time slots as a function of the information and a random number provided by each respective tag. The different identifiers are transmitted to the interrogator from at least a subset of the RF tags.

  12. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. [49 FR 3384, Jan. 26, 1984] Inspections and Tests; All Systems ...

  13. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. [49 FR 3384, Jan. 26, 1984] Inspections and Tests; All Systems ...

  14. Time domain diffuse Raman spectrometer based on a TCSPC camera for the depth analysis of diffusive media.

    PubMed

    Konugolu Venkata Sekar, S; Mosca, S; Tannert, S; Valentini, G; Martelli, F; Binzoni, T; Prokazov, Y; Turbin, E; Zuschratter, W; Erdmann, R; Pifferi, A

    2018-05-01

    We present a time domain diffuse Raman spectrometer for depth probing of highly scattering media. The system is based on, to the best of our knowledge, a novel time-correlated single-photon counting (TCSPC) camera that simultaneously acquires both spectral and temporal information of Raman photons. A dedicated non-contact probe was built, and time domain Raman measurements were performed on a tissue mimicking bilayer phantom. The fluorescence contamination of the Raman signal was eliminated by early time gating (0-212 ps) the Raman photons. Depth sensitivity is achieved by time gating Raman photons at different delays with a gate width of 106 ps. Importantly, the time domain can provide time-dependent depth sensitivity leading to a high contrast between two layers of Raman signal. As a result, an enhancement factor of 2170 was found for our bilayer phantom which is much higher than the values obtained by spatial offset Raman spectroscopy (SORS), frequency offset Raman spectroscopy (FORS), or hybrid FORS-SORS on a similar phantom.

  15. Enhanced UHF RFID tags for drug tracing.

    PubMed

    Catarinucci, Luca; Colella, Riccardo; De Blasi, Mario; Patrono, Luigi; Tarricone, Luciano

    2012-12-01

    Radio Frequency Identification (RFID) technology is playing a crucial role for item-level tracing systems in healthcare scenarios. The pharmaceutical supply chain is a fascinating application context, where RFID can guarantee transparency in the drug flow, supporting both suppliers and consumers against the growing counterfeiting problem. In such a context, the choice of the most adequate RFID tag, in terms of shape, frequency, size and reading range, is crucial. The potential presence of items containing materials hostile to the electromagnetic propagation exasperates the problem. In addition, the peculiarities of the different RFID-based checkpoints make even more stringent the requirements for the tag. In this work, the performance of several commercial UHF RFID tags in each step of the pharmaceutical supply chain has been evaluated, confirming the expected criticality. On such basis, a guideline for the electromagnetic design of new high-performance tags capable to overcome such criticalities has been defined. Finally, driven by such guidelines, a new enhanced tag has been designed, realized and tested. Due to patent pending issues, the antenna shape is not shown. Nevertheless, the optimal obtained results do not lose their validity. Indeed, on the one hand they demonstrate that high performance item level tracing systems can actually be implemented also in critical operating conditions. On the other hand, they encourage the tag designer to follow the identified guidelines so to realize enhanced UHF tags.

  16. Photon Tagger Timing Calibration for the Rad Phi Experiment

    NASA Astrophysics Data System (ADS)

    Russell, Mammei; Smith, Elton

    2000-10-01

    Vector mesons provide a rich laboratory for the study of fundamental physics and radiative decays probe the very nature of the internal structure of these mesons, which possess the same quantum numbers of photons. Experiment E94-016, which collected data this past summer in Hall B of the Thomas Jefferson National Accelerator Facility (JLab), has measured the the branching ratios for rare radiative decays of the phi meson, i.e. φarrow f_0(975)γ arrow π^0π^0γ, φ arrow a_0(980)γ arrow π0 η γ, and φ arrow η'γ. A lead glass calorimeter, in concert with several detectors, measured these decays. A tagged beam of bremsstrahlung photons was directed upon a solid Beryllium target. A three-level trigger was then employed to preferentially select radiative decays of the φ meson. We calibrated timing of each detector by referencing individual detectors to one another. Tight timing will enhance signal relative to background.

  17. Observation of medium induced modifications of jet fragmentation in PbPb collisions using isolated-photon-tagged jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Measurements of fragmentation functions for jets associated with an isolated photon are presented for the first time in pp and PbPb collisions. The analysis uses data collected with the CMS detector at the CERN LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Fragmentation functions are obtained for jets with pmore » $$_\\mathrm{T}^\\text{jet} >$$ 30 GeV in events containing an isolated photon with p$$_\\mathrm{T}^\\gamma>$$ 60 GeV, using charged tracks with transverse momentum p$$_\\mathrm{T}^\\text{trk} >$$ 1 GeV in a cone around the jet axis. The association with an isolated photon constrains the initial p$$_\\mathrm{T}$$ and azimuthal angle of the parton whose shower produced the jet. For central PbPb collisions, modifications of the jet fragmentation functions are observed when compared to those measured in pp collisions, while no significant differences are found in the 50% most peripheral collisions. Jets in central PbPb events show an excess (depletion) of low (high) p$$_\\mathrm{T}$$ particles, with a transition around 3 GeV.« less

  18. Pushing photonic ideas into innovation through crowdfunding

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2015-07-01

    It is known today that crowdfunding is a very popular approach that simultaneously assists in rapidly disseminating creative ideas, performing worldwide market survey, getting the fund, and eventually starting the business. Hence, this article highlights some of the photonics-related ideas that are explored through the promising crowdfunding approach. These include microlenses for mobile devices, specially designed lenses for helmets and solar cells, three-dimensional optical scanners, optical spectrometers, and surface plasmon resonance-based optical sensors. Most of them looks simple and yet are very creative backing up with interesting stories behind them to persuade the target customers to participate.

  19. Measuring and Predicting Tag Importance for Image Retrieval.

    PubMed

    Li, Shangwen; Purushotham, Sanjay; Chen, Chen; Ren, Yuzhuo; Kuo, C-C Jay

    2017-12-01

    Textual data such as tags, sentence descriptions are combined with visual cues to reduce the semantic gap for image retrieval applications in today's Multimodal Image Retrieval (MIR) systems. However, all tags are treated as equally important in these systems, which may result in misalignment between visual and textual modalities during MIR training. This will further lead to degenerated retrieval performance at query time. To address this issue, we investigate the problem of tag importance prediction, where the goal is to automatically predict the tag importance and use it in image retrieval. To achieve this, we first propose a method to measure the relative importance of object and scene tags from image sentence descriptions. Using this as the ground truth, we present a tag importance prediction model to jointly exploit visual, semantic and context cues. The Structural Support Vector Machine (SSVM) formulation is adopted to ensure efficient training of the prediction model. Then, the Canonical Correlation Analysis (CCA) is employed to learn the relation between the image visual feature and tag importance to obtain robust retrieval performance. Experimental results on three real-world datasets show a significant performance improvement of the proposed MIR with Tag Importance Prediction (MIR/TIP) system over other MIR systems.

  20. Reversible chemoselective tagging and functionalization of methionine containing peptides.

    PubMed

    Kramer, Jessica R; Deming, Timothy J

    2013-06-07

    Reagents were developed to allow chemoselective tagging of methionine residues in peptides and polypeptides, subsequent bioorthogonal functionalization of the tags, and cleavage of the tags when desired. This methodology can be used for triggered release of therapeutic peptides, or release of tagged protein digests from affinity columns.

  1. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  2. Clone tag detection in distributed RFID systems

    PubMed Central

    Kamaludin, Hazalila; Mahdin, Hairulnizam

    2018-01-01

    Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy. PMID:29565982

  3. Clone tag detection in distributed RFID systems.

    PubMed

    Kamaludin, Hazalila; Mahdin, Hairulnizam; Abawajy, Jemal H

    2018-01-01

    Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy.

  4. The SPEDE spectrometer

    NASA Astrophysics Data System (ADS)

    Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    2018-03-01

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

  5. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  6. A Radio Tag for Big Whales

    ERIC Educational Resources Information Center

    Watkins, William A.

    1978-01-01

    Radio tags to track wildlife have been used for years. However, such tagging of whales has been more complicated and less successful. This article explores the latest technology that is designed to give information over a long period of time. (MA)

  7. POS-Tagging for informal language (study in Indonesian tweets)

    NASA Astrophysics Data System (ADS)

    Suryawati, Endang; Munandar, Devi; Riswantini, Dianadewi; Fatchuttamam Abka, Achmad; Arisal, Andria

    2018-03-01

    This paper evaluates Part-of-Speech Tagging for the formal Indonesian language can be used for the tagging process of Indonesian tweets. In this study, we add five additional tags which reflect to social media attributes to the existing original tagset. Automatic POS tagging process is done by stratified training process with 1000, 1600, and 1800 of annotated tweets. It shows that the process can achieve up to 66.36% accuracy. The experiment with original tagset gives slightly better accuracy (67.39%) than the experiment with five additional tags, but will lose important informations which given by the five additional tagset.POS-Tagging for Informal Language (Study in Indonesian Tweets).

  8. Learning to rank image tags with limited training examples.

    PubMed

    Songhe Feng; Zheyun Feng; Rong Jin

    2015-04-01

    With an increasing number of images that are available in social media, image annotation has emerged as an important research topic due to its application in image matching and retrieval. Most studies cast image annotation into a multilabel classification problem. The main shortcoming of this approach is that it requires a large number of training images with clean and complete annotations in order to learn a reliable model for tag prediction. We address this limitation by developing a novel approach that combines the strength of tag ranking with the power of matrix recovery. Instead of having to make a binary decision for each tag, our approach ranks tags in the descending order of their relevance to the given image, significantly simplifying the problem. In addition, the proposed method aggregates the prediction models for different tags into a matrix, and casts tag ranking into a matrix recovery problem. It introduces the matrix trace norm to explicitly control the model complexity, so that a reliable prediction model can be learned for tag ranking even when the tag space is large and the number of training images is limited. Experiments on multiple well-known image data sets demonstrate the effectiveness of the proposed framework for tag ranking compared with the state-of-the-art approaches for image annotation and tag ranking.

  9. Neutron detection with a NaI spectrometer using high-energy photons

    NASA Astrophysics Data System (ADS)

    Holm, Philip; Peräjärvi, Kari; Sihvonen, Ari-Pekka; Siiskonen, Teemu; Toivonen, Harri

    2013-01-01

    Neutrons can be indirectly detected by high-energy photons. The performance of a 4″×4″×16″ NaI portal monitor was compared to a 3He-based portal monitor with a comparable cross-section of the active volume. Measurements were performed with bare and shielded 252Cf and AmBe sources. With an optimum converter and moderator structure for the NaI detector, the detection efficiencies and minimum detectable activities of the portal monitors were similar. The NaI portal monitor preserved its detection efficiency much better with shielded sources, making the method very interesting for security applications. For heavily shielded sources, the NaI detector was 2-3 times more sensitive than the 3He-based detector.

  10. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, Kenneth C.; Laug, Matthew T.; Lambert, John D. B.; Herzog, James P.

    1997-01-01

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  11. Simulation of a tagged neutron inspection system prototype

    NASA Astrophysics Data System (ADS)

    Donzella, A.; Boghen, G.; Bonomi, G.; Fontana, A.; Formisano, P.; Pesente, S.; Sudac, D.; Valkovic, V.; Zenoni, A.

    2006-05-01

    The illicit trafficking of explosive materials in cargo containers has become, in recent years, a serious problem. Currently used X-ray or γ-ray based systems provide only limited information about the elemental composition of the inspected cargo items. During the last years, a new neutron interrogation technique, named TNIS (Tagged Neutron Inspection System), has been developed, which should permit to determine the chemical composition of the suspect item by coincidence measurements between alpha particles and photons produced. A prototype of such a system for container inspection has been built, at the Institute Ruder Boskovic (IRB) in Zagreb, Croatia, for the European Union 6FP EURITRACK project. We present the results of a detailed simulation of the IRB prototype performed with the MCNP Monte Carlo program and a comparison with beam attenuation calculations performed with GEANT3/MICAP. Detector signals, rates and signal over background ratios have been calculated for 100 kg of TNT explosive located inside a cargo container filled with a metallic matrix of density 0.2 g/cm3. The case of an organic filling material is discussed too.

  12. 48 CFR 908.7101-7 - Government license tags.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Government license tags... ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7101-7 Government license tags. (a) Government license tags shall be procured and assignments recorded by DOE...

  13. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.

    2012-10-15

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirrormore » and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.« less

  14. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility.

    PubMed

    Reverdin, Charles; Thais, Frédéric; Loisel, Guillaume; Busquet, M; Bastiani-Ceccotti, S; Blenski, T; Caillaud, T; Ducret, J E; Foelsner, W; Gilles, D; Gilleron, F; Pain, J C; Poirier, M; Serres, F; Silvert, V; Soullie, G; Turck-Chieze, S; Villette, B

    2012-10-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  15. Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination

    NASA Astrophysics Data System (ADS)

    Marks, Fay A.; Tomlinson, Harold W.; Brooksby, Glen W.

    1993-09-01

    A new technique called Ultrasound Tagging of Light (UTL) for imaging breast tissue is described. In this approach, photon localization in turbid tissue is achieved by cross- modulating a laser beam with focussed, pulsed ultrasound. Light which passes through the ultrasound focal spot is `tagged' with the frequency of the ultrasound pulse. The experimental system uses an Argon-Ion laser, a single PIN photodetector, and a 1 MHz fixed-focus pulsed ultrasound transducer. The utility of UTL as a photon localization technique in scattering media is examined using tissue phantoms consisting of gelatin and intralipid. In a separate study, in vivo optical reflectance spectrophotometry was performed on human breast tumors implanted intramuscularly and subcutaneously in nineteen nude mice. The validity of applying a quadruple wavelength breast cancer discrimination metric (developed using breast biopsy specimens) to the in vivo condition was tested. A scatter diagram for the in vivo model tumors based on this metric is presented using as the `normal' controls the hands and fingers of volunteers. Tumors at different growth stages were studied; these tumors ranged in size from a few millimeters to two centimeters. It is expected that when coupled with a suitable photon localization technique like UTL, spectral discrimination methods like this one will prove useful in the detection of breast cancer by non-ionizing means.

  16. The research of data acquisition system for Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Guo, Pan; Zhang, Yinchao; Chen, Siying; Chen, He; Chen, Wenbo

    2011-11-01

    Raman spectrometer has been widely used as an identification tool for analyzing material structure and composition in many fields. However, Raman scattering echo signal is very weak, about dozens of photons at most in one laser plus signal. Therefore, it is a great challenge to design a Raman spectrum data acquisition system which could accurately receive the weak echo signal. The system designed in this paper receives optical signals with the principle of photon counter and could detect single photon. The whole system consists of a photoelectric conversion module H7421-40 and a photo counting card including a field programmable gate array (FPGA) chip and a PCI9054 chip. The module H7421-40 including a PMT, an amplifier and a discriminator has high sensitivity on wavelength from 300nm to 720nm. The Center Wavelength is 580nm which is close to the excitation wavelength (532nm), QE 40% at peak wavelength, Count Sensitivity is 7.8*105(S-1PW-1) and Count Linearity is 1.5MHZ. In FPGA chip, the functions are divided into three parts: parameter setting module, controlling module, data collection and storage module. All the commands, parameters and data are transmitted between FPGA and computer by PCI9054 chip through the PCI interface. The result of experiment shows that the Raman spectrum data acquisition system is reasonable and efficient. There are three primary advantages of the data acquisition system: the first one is the high sensitivity with single photon detection capability; the second one is the high integrated level which means all the operation could be done by the photo counting card; and the last one is the high expansion ability because of the smart reconfigurability of FPGA chip.

  17. Helicity Asymmetry in gamma p -> pi+ n with FROST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen Strauch

    2012-04-01

    The main objective of the FROST experiment at Jefferson Lab is the study of baryon resonances. The polarization observable E for the reaction gamma p to pi+n has been measured as part of this program. A circularly polarized tagged photon beam with energies from 0.35 to 2.35 GeV was incident on a longitudinally polarized frozen-spin butanol target. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer. Preliminary polarization data agree fairly well with present SAID and MAID partial-wave analyses at low photon energies. In most of the covered energy range, however, significant deviations are observed. These discrepancies underlinemore » the crucial importance of polarization observables to further constrain these analyses.« less

  18. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  19. Testing archival tag technology in coho salmon

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Richards, Philip; Tingey, Thor; Wilson, Derek; Zimmerman, Chris

    2004-01-01

    Archive tags with temperature and light-geolocation sensors will be monitored for post-smolt coho salmon in Cook Inlet. Light/location relationships specific to the Gulf of Alaska developed under Project 00478 will be applied in this study of movement and migration paths for coho salmon during maturation in ocean environments in Cook Inlet. Salmon for this study will be reared in captivity (at the Alaska Department of Fish and Game hatchery at Fort Richardson) to 1+ year of age (200-250mm) and released in Cook Inlet as part of the department's Ship Creek sport-fishing hatchery release. FY 01 includes pilot studies of tag retention, behavior, and growth for coho in captivity. Ship Creek coho will be tagged mid-May. A spring release experiment in the first year will be contingent on the successful implementation and retention of these tags. Surveys for early jack recoveries will be done at the Ship Creek weir and among sport fishers. Monitoring for adult tag recoveries will be done in the coho commercial fishery in Cook Inlet and the derby sport fishery on Ship Creek. Archive tagged fish will be used to document coho salmon use of marine habitats, migration routes, contribution to the sport fishery, and hatchery/wild interactions for salmon in Cook Inlet.

  20. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  1. Myocardial motion estimation of tagged cardiac magnetic resonance images using tag motion constraints and multi-level b-splines interpolation.

    PubMed

    Liu, Hong; Yan, Meng; Song, Enmin; Wang, Jie; Wang, Qian; Jin, Renchao; Jin, Lianghai; Hung, Chih-Cheng

    2016-05-01

    Myocardial motion estimation of tagged cardiac magnetic resonance (TCMR) images is of great significance in clinical diagnosis and the treatment of heart disease. Currently, the harmonic phase analysis method (HARP) and the local sine-wave modeling method (SinMod) have been proven as two state-of-the-art motion estimation methods for TCMR images, since they can directly obtain the inter-frame motion displacement vector field (MDVF) with high accuracy and fast speed. By comparison, SinMod has better performance over HARP in terms of displacement detection, noise and artifacts reduction. However, the SinMod method has some drawbacks: 1) it is unable to estimate local displacements larger than half of the tag spacing; 2) it has observable errors in tracking of tag motion; and 3) the estimated MDVF usually has large local errors. To overcome these problems, we present a novel motion estimation method in this study. The proposed method tracks the motion of tags and then estimates the dense MDVF by using the interpolation. In this new method, a parameter estimation procedure for global motion is applied to match tag intersections between different frames, ensuring specific kinds of large displacements being correctly estimated. In addition, a strategy of tag motion constraints is applied to eliminate most of errors produced by inter-frame tracking of tags and the multi-level b-splines approximation algorithm is utilized, so as to enhance the local continuity and accuracy of the final MDVF. In the estimation of the motion displacement, our proposed method can obtain a more accurate MDVF compared with the SinMod method and our method can overcome the drawbacks of the SinMod method. However, the motion estimation accuracy of our method depends on the accuracy of tag lines detection and our method has a higher time complexity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. 29 CFR 1915.89 - Control of hazardous energy (lockout/tags-plus).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... employee: (A) Sign a group tag (or a group tag equivalent), attach a personal identification device to a... group tag (or the group tag equivalent), remove the personal identification device, or perform a... safe exposure status of each authorized employee, and (b) signs a group tag (or a group tag equivalent...

  3. 29 CFR 1915.89 - Control of hazardous energy (lockout/tags-plus).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... employee: (A) Sign a group tag (or a group tag equivalent), attach a personal identification device to a... group tag (or the group tag equivalent), remove the personal identification device, or perform a... safe exposure status of each authorized employee, and (b) signs a group tag (or a group tag equivalent...

  4. 29 CFR 1915.89 - Control of hazardous energy (lockout/tags-plus).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... employee: (A) Sign a group tag (or a group tag equivalent), attach a personal identification device to a... group tag (or the group tag equivalent), remove the personal identification device, or perform a... safe exposure status of each authorized employee, and (b) signs a group tag (or a group tag equivalent...

  5. Single-photon technique for the detection of periodic extraterrestrial laser pulses.

    PubMed

    Leeb, W R; Poppe, A; Hammel, E; Alves, J; Brunner, M; Meingast, S

    2013-06-01

    To draw humankind's attention to its existence, an extraterrestrial civilization could well direct periodic laser pulses toward Earth. We developed a technique capable of detecting a quasi-periodic light signal with an average of less than one photon per pulse within a measurement time of a few tens of milliseconds in the presence of the radiation emitted by an exoplanet's host star. Each of the electronic events produced by one or more single-photon avalanche detectors is tagged with precise time-of-arrival information and stored. From this we compute a histogram displaying the frequency of event-time differences in classes with bin widths on the order of a nanosecond. The existence of periodic laser pulses manifests itself in histogram peaks regularly spaced at multiples of the-a priori unknown-pulse repetition frequency. With laser sources simulating both the pulse source and the background radiation, we tested a detection system in the laboratory at a wavelength of 850 nm. We present histograms obtained from various recorded data sequences with the number of photons per pulse, the background photons per pulse period, and the recording time as main parameters. We then simulated a periodic signal hypothetically generated on a planet orbiting a G2V-type star (distance to Earth 500 light-years) and show that the technique is capable of detecting the signal even if the received pulses carry as little as one photon on average on top of the star's background light.

  6. The Princeton equipment on board. [Copernicus satellite borne telescope-spectrometer

    NASA Technical Reports Server (NTRS)

    Drake, J. F.

    1974-01-01

    The Princeton telescope-spectrometer on the Copernicus satellite scans stellar spectra between 950 and 1450 A in second order with a resolution of about 0.05 A. The resolution in first order, between 1650 and 3000 A, is twice that in second order. The equipment may be used down to a nominal limit of 5th magnitude with the photometric precision in second order limited only by the statistics of photon counts. At 1100 A, a rate of 1,000 per 14 sec is obtained on an unreddened B 1 star with a visual magnitude of 5.0. In the first order, phototube noise from cosmic rays limits observations to stars brighter than visual magnitude 3.0 in general.

  7. Comparison of Luminex NxTAG Respiratory Pathogen Panel and xTAG Respiratory Viral Panel FAST Version 2 for the Detection of Respiratory Viruses

    PubMed Central

    Lee, Chun Kiat; Lee, Hong Kai; Ng, Christopher Wei Siong; Chiu, Lily; Tang, Julian Wei-Tze; Loh, Tze Ping

    2017-01-01

    Owing to advancements in molecular diagnostics, recent years have seen an increasing number of laboratories adopting respiratory viral panels to detect respiratory pathogens. In December 2015, the NxTAG respiratory pathogen panel (NxTAG RPP) was approved by the United States Food and Drug Administration. We compared the clinical performance of this new assay with that of the xTAG respiratory viral panel (xTAG RVP) FAST v2 using 142 clinical samples and 12 external quality assessment samples. Discordant results were resolved by using a laboratory-developed respiratory viral panel. The NxTAG RPP achieved 100% concordant negative results and 86.6% concordant positive results. It detected one coronavirus 229E and eight influenza A/H3N2 viruses that were missed by the xTAG RVP FAST v2. On the other hand, the NxTAG RPP missed one enterovirus/rhinovirus and one metapneumovirus that were detected by FAST v2. Both panels correctly identified all the pathogens in the 12 external quality assessment samples. Overall, the NxTAG RPP demonstrated good diagnostic performance. Of note, it was better able to subtype the influenza A/H3N2 viruses compared with the xTAG RVP FAST v2. PMID:28224774

  8. 50 CFR 635.33 - Archival tags.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Archival tags. 635.33 Section 635.33 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES Management Measures § 635.33 Archival tags. (a...

  9. 50 CFR 20.81 - Tagging requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Migratory Bird Preservation Facilities § 20.81 Tagging requirement. No migratory bird preservation facility shall receive or have in custody any migratory game birds unless such birds are tagged as required by § 20.36. [41 FR 31537, July 29, 1976] ...

  10. 50 CFR 20.81 - Tagging requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Migratory Bird Preservation Facilities § 20.81 Tagging requirement. No migratory bird preservation facility shall receive or have in custody any migratory game birds unless such birds are tagged as required by § 20.36. [41 FR 31537, July 29, 1976] ...

  11. Serotype determination of Salmonella by xTAG assay.

    PubMed

    Zheng, Zhibei; Zheng, Wei; Wang, Haoqiu; Pan, Jincao; Pu, Xiaoying

    2017-10-01

    Currently, no protocols or commercial kits are available to determine the serotypes of Salmonella by using Luminex MAGPIX®. In this study, an xTAG assay for serotype determination of Salmonella suitable for Luminex MAGPIX® is described and 228 Salmonella isolates were serotype determined by this xTAG assay. The xTAG assay consists of two steps: 1) Multiplex PCR to amplify simultaneously O, H and Vi antigen genes of Salmonella, and 2) Magplex-TAG™ microsphere hybridization to identify accurately the specific PCR products of different antigens. Compared with the serotyping results of traditional serum agglutination test, the sensitivity and specificity of the xTAG assay were 95.1% and 100%, respectively. The agreement rate of these two assays was 95.2%. Compared with Luminex xMAP® Salmonella Serotyping Assay (SSA) kit, the advantages of this xTAG assay are: First, the magnetic beads make it applicable to both the Luminex®100/200™ and MAGPIX® systems. Second, only primers rather than both primers and probes are needed in the xTAG assay, and the process of coupling antigen-specific oligonucleotide probes to beads is circumvented, which make the xTAG assay convenient to be utilized by other laboratories. The xTAG assay may serve as a rapid alternative or complementary method for traditional Salmonella serotyping tests, especially for laboratories that utilize the MAGPIX® systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Compton spectroscopy in the diagnostic x-ray energy range. I. Spectrometer design.

    PubMed

    Matscheko, G; Carlsson, G A

    1989-02-01

    The optimal design of a Compton spectrometer for measuring photon energy spectra from x-ray tubes in a clinical laboratory is analysed. The demands are: (i) coherent and multiple scattering distort the measurements and must be avoided; (ii) the measuring time should be as short as possible to avoid unnecessary wear on the x-ray tube; and (iii) the impairment in energy resolution due to the scattering geometry should be kept minimal. A scattering angle of 90 degrees is advocated. Scatterers (of low-atomic-number material) in the shape of long circular rods (0.5-4 mm diameter, 20-40 mm long) are preferable to scattering foils. Use of a short focus-scatterer distance (approximately 200 mm) is to be preferred compared to using a large detector area (greater than or equal to 4 mm diameter) in order to establish a sufficiently high count rate in the detector. Short focal distances and a 90 degrees scattering angle are advantages in measuring energy spectra in the gantry of CT machines where the available space is limited. To limit the geometrical energy broadening to less than 1 keV, the spread in scattering angles of registered photons must not exceed 1-2 degrees for incident photon energies of 100-150 keV.

  13. Effects of coded-wire-tagging on stream-dwelling Sea Lamprey larvae

    USGS Publications Warehouse

    Johnson, Nicholas; Swink, William D.; Dawson, Heather A.; Jones, Michael L.

    2016-01-01

    The effects of coded wire tagging Sea Lamprey Petromyzon marinus larvae from a known-aged stream-dwelling population were assessed. Tagged larvae were significantly shorter on average than untagged larvae from 3 to 18 months after tagging. However, 30 months after tagging, the length distribution of tagged and untagged larvae did not differ and tagged Sea Lampreys were in better condition (i.e., higher condition factor) and more likely to have undergone metamorphosis than the untagged population. The reason why tagged larvae were more likely to metamorphose is not clear, but the increased likelihood of metamorphosis could have been a compensatory response to the period of slower growth after tagging. Slower growth after tagging was consistent across larval size-classes, so handling and displacement from quality habitat during the early part of the growing season was likely the cause rather than the tag burden. The tag effects observed in this study, if caused by displacement and handling, may be minimized in future studies if tagging is conducted during autumn after growth has concluded for the year.

  14. The MPGD-based photon detectors for the upgrade of COMPASS RICH-1

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Azevedo, C. D. R.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Finger, M.; Finger, M.; Fischer, H.; Gobbo, B.; Gregori, M.; Hamar, G.; Herrmann, F.; Levorato, S.; Maggiora, A.; Makke, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A. B.; Santos, C. A.; Sbrizzai, G.; Schopferer, S.; Slunecka, M.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.

    2017-12-01

    The RICH-1 Detector of the COMPASS experiment at CERN SPS has undergone an important upgrade for the 2016 physics run. Four new photon detectors, based on Micro Pattern Gaseous Detector technology and covering a total active area larger than 1.2 m2 have replaced the previously used MWPC-based photon detectors. The upgrade answers the challenging efficiency and stability quest for the new phase of the COMPASS spectrometer physics programme. The new detector architecture consists in a hybrid MPGD combination of two Thick Gas Electron Multipliers and a MicroMegas stage. Signals, extracted from the anode pad by capacitive coupling, are read-out by analog F-E based on the APV25 chip. The main aspects of the COMPASS RICH-1 photon detectors upgrade are presented focussing on detector design, engineering aspects, mass production, the quality assessment and assembly challenges of the MPGD components. The status of the detector commissioning is also presented.

  15. 9 CFR 2.51 - Form of official tag.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Form of official tag. 2.51 Section 2.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.51 Form of official tag. (a) The official tag...

  16. The Effects of Target Audience on Social Tagging

    ERIC Educational Resources Information Center

    Alsarhan, Hesham

    2013-01-01

    Online social bookmarking systems allow users to assign tags (i.e., keywords) to represent the content of resources. Research on the effects of target audience on social tagging suggests that taggers select different tags for themselves, their community (e.g., family, friends, colleagues), and the general public (Panke & Gaiser, 2009; Pu &…

  17. 9 CFR 2.51 - Form of official tag.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Form of official tag. 2.51 Section 2.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.51 Form of official tag. (a) The official tag...

  18. 9 CFR 2.51 - Form of official tag.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Form of official tag. 2.51 Section 2.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.51 Form of official tag. (a) The official tag...

  19. 9 CFR 2.51 - Form of official tag.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Form of official tag. 2.51 Section 2.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.51 Form of official tag. (a) The official tag...

  20. 9 CFR 2.51 - Form of official tag.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Form of official tag. 2.51 Section 2.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.51 Form of official tag. (a) The official tag...

  1. Anti-collision radio-frequency identification system using passive SAW tags

    NASA Astrophysics Data System (ADS)

    Sorokin, A. V.; Shepeta, A. P.

    2017-06-01

    Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.

  2. Current test results for the Athena radar responsive tag

    NASA Astrophysics Data System (ADS)

    Ormesher, Richard C.; Martinez, Ana; Plummer, Kenneth W.; Erlandson, David; Delaware, Sheri; Clark, David R.

    2006-05-01

    Sandia National Laboratories has teamed with General Atomics and Sierra Monolithics to develop the Athena tag for the Army's Radar Tag Engagement (RaTE) program. The radar-responsive Athena tag can be used for Blue Force tracking and Combat Identification (CID) as well as data collection, identification, and geolocation applications. The Athena tag is small (~4.5" x 2.4" x 4.2"), battery-powered, and has an integral antenna. Once remotely activated by a Synthetic Aperture Radar (SAR) or Moving Target Indicator (MTI) radar, the tag transponds modulated pulses to the radar at a low transmit power. The Athena tag can operate Ku-band and X-band airborne SAR and MTI radars. This paper presents results from current tag development testing activities. Topics covered include recent field tests results from the AN/APY-8 Lynx, F16/APG-66, and F15E/APG-63 V(1) radars and other Fire Control radars. Results show that the Athena tag successfully works with multiple radar platforms, in multiple radar modes, and for multiple applications. Radar-responsive tags such as Athena have numerous applications in military and government arenas. Military applications include battlefield situational awareness, combat identification, targeting, personnel recovery, and unattended ground sensors. Government applications exist in nonproliferation, counter-drug, search-and-rescue, and land-mapping activities.

  3. Retention of internal anchor tags by juvenile striped bass

    USGS Publications Warehouse

    Van Den Avyle, M.J.; Wallin, J.E.

    2001-01-01

    We marked hatchery-reared striped bass Morone saxatilis (145-265 mm total length) with internal anchor tags and monitored retention for 28 months after stocking in the Savannah River, Georgia and South Carolina. Anchor tags (with an 18-mm, T-shaped anchor and 42-mm streamer) were surgically implanted ventrally, and coded wire tags (1 mm long and 0.25 mm in diameter) were placed into the cheek muscle to help identify subsequent recaptures. The estimated probability of retention (SD) of anchor tags was 0.94 (0.05) at 4 months, 0.64 (0.13) at 16 months, and 0.33 (0.19) at 28 months. Of 10 fish recaptured with only coded wire tags, 5 showed an externally visible wound or scar near the point of anchor tag insertion. The incidence of wounds or scars, which we interpreted as evidence of tag shedding, increased to 50% in recaptures taken at 28 months (three of six fish). Our estimates for retention of anchor tags were generally lower than those in other studies of striped bass, possibly because of differences in the style of anchor or sizes of fish used. Because of its low rate of retention, the type of anchor tag we used may not be suitable for long-term assessments of stock enhancement programs that use striped bass of the sizes we evaluated.

  4. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  5. Tagging Water Sources in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Bosilovich, M.

    2003-01-01

    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  6. Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array

    NASA Astrophysics Data System (ADS)

    Hunacek, J.; Bock, J.; Bradford, C. M.; Butler, V.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Frez, C.; Hailey-Dunsheath, S.; Hoscheit, B.; Kim, D. W.; Li, C.-T.; Marrone, D.; Moncelsi, L.; Shirokoff, E.; Steinbach, B.; Sun, G.; Trumper, I.; Turner, A.; Uzgil, B.; Weber, A.; Zemcov, M.

    2018-04-01

    TIME is a mm-wavelength grating spectrometer array that will map fluctuations of the 157.7-μm emission line of singly ionized carbon ([CII]) during the epoch of reionization (redshift z ˜ 5-9). Sixty transition-edge sensor (TES) bolometers populate the output arc of each of the 32 spectrometers, for a total of 1920 detectors. Each bolometer consists of gold absorber on a ˜ 3 × 3 mm silicon nitride micro-mesh suspended near the corners by 1 × 1 × 500 μm silicon nitride legs targeting a photon-noise-dominated NEP ˜ 1 × 10^{-17} W/√{Hz} . Hafnium films are explored as a lower-T_c alternative to Ti (500 mK) for TIME TESs, allowing thicker support legs for improved yield. Hf T_c is shown to vary between 250 and 450 mK when varying the resident Ar pressure during deposition. Magnetic shielding designs and simulations are presented for the TIME first-stage SQUIDs. Total axial field suppression is predicted to be 5 × 10^7.

  7. Barium Tagging for nEXO

    NASA Astrophysics Data System (ADS)

    Fudenberg, Daniel; Brunner, Thomas; Varentsov, Victor; Devoe, Ralph; Dilling, Jens; Gratta, Giorgio; nEXO Collaboration

    2015-10-01

    nEXO is a next-generation experiment designed to search for 0 νββ -decay of Xe-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a Majorana particle In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, Ba-136. ``Tagging'' may be available for a 2nd phase of nEXO and will push the sensitivity beyond the inverted neutrino-mass hierarchy. Tagging methods in testing for this phase include Ba-ion capture on a probe with identification by resonance ionization laser spectroscopy, and Ba capture in solid xenon on a cold probe with identification by fluorescence. In addition, Ba tagging for a gas-phase detector, appropriate for a later stage, is being tested. Here efficient ion extraction from heavy carrier gases is key. Detailed gas-dynamic and ion transport calculations have been performed to optimize for ion extraction. An apparatus to extract Ba ions from up to 10 bar xenon gas into vacuum using an RF-only funnel has been constructed and demonstrates extraction of ions from noble gases. We will present this system's status along with results of this R&D program.

  8. Searching for Dark Photons in the SeaQuest Experiment

    NASA Astrophysics Data System (ADS)

    Mesquita de Medeiros, Michelle

    2017-01-01

    The SeaQuest/E906 experiment at Fermilab was designed to study anti-quark distributions in the nucleon and nuclei by using Drell-Yan interactions between the 120 GeV proton beam from the Main Injector and different fixed targets. The front face of an iron magnet placed next to the targets serves as a beam dump while the muon pairs generated from these interactions are detected downstream. In the absorption process in the dump many particles are produced, including, possibly, dark photons through processes such as proton bremsstrahlung and eta decay. The dark photons could scape the dump and then decay into dimuons after travelling a certain distance determined by the coupling to the EM sector. The decay vertex is therefore significantly displaced, allowing for a very low background search. By detecting the dimuons with the SeaQuest spectrometer and analyzing their invariant mass distribution, one can search for signatures of these exotic processes. The present status of the dark photon search analysis will be presented. This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  9. 9 CFR 2.54 - Lost tags.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Lost tags. 2.54 Section 2.54 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.54 Lost tags. Each dealer or exhibitor shall be held...

  10. 9 CFR 2.54 - Lost tags.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Lost tags. 2.54 Section 2.54 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.54 Lost tags. Each dealer or exhibitor shall be held...

  11. 9 CFR 2.54 - Lost tags.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Lost tags. 2.54 Section 2.54 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.54 Lost tags. Each dealer or exhibitor shall be held...

  12. 9 CFR 2.54 - Lost tags.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Lost tags. 2.54 Section 2.54 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.54 Lost tags. Each dealer or exhibitor shall be held...

  13. 9 CFR 2.54 - Lost tags.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Lost tags. 2.54 Section 2.54 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.54 Lost tags. Each dealer or exhibitor shall be held...

  14. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) Two-Photon Exchange Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimal, Dipak

    2014-05-01

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q 2) and the virtual photon polarization parameter (ε).

  15. Electronic tagging and integrated product intelligence

    NASA Astrophysics Data System (ADS)

    Swerdlow, Martin; Weeks, Brian

    1996-03-01

    The advent of 'intelligent,' electronic data bearing tags is set to revolutionize the way industrial and retail products are identified and tracked throughout their life cycles. The dominant system for unique identification today is the bar code, which is based on printed symbology and regulated by the International Article Numbering Association. Bar codes provide users with significant operational advantages and generate considerable added value to packaging companies, product manufacturers, distributors and retailers, across supply chains in many different sectors, from retailing, to baggage handling and industrial components, e.g., for vehicles or aircraft. Electronic tags offer the potential to: (1) record and store more complex data about the product or any modifications which occur during its life cycle; (2) access (and up-date) stored data in real time in a way which does not involve contact with the product or article; (3) overcome the limitations imposed by systems which rely on line-of-sight access to stored data. Companies are now beginning to consider how electronic data tags can be used, not only to improve the efficiency of their supply chain processes, but also to revolutionize the way they do business. This paper reviews the applications and business opportunities for electronic tags and outlines CEST's strategy for achieving an 'open' standard which will ensure that tags from different vendors can co-exist on an international basis.

  16. Preparation of dart tags for use in the field

    USGS Publications Warehouse

    Higham, Joseph R.

    1966-01-01

    Tagging in the field requires an efficient method of preparing the tags for dispensation under a wide range of conditions. The method described here was very efficient in an extensive tagging program on Oahe Reservoir, South Dakota.

  17. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  18. Passive UHF RFID Tag with Multiple Sensing Capabilities

    PubMed Central

    Fernández-Salmerón, José; Rivadeneyra, Almudena; Martínez-Martí, Fernando; Capitán-Vallvey, Luis Fermín; Palma, Alberto J.; Carvajal, Miguel A.

    2015-01-01

    This work presents the design, fabrication, and characterization of a printed radio frequency identification tag in the ultra-high frequency band with multiple sensing capabilities. This passive tag is directly screen printed on a cardboard box with the aim of monitoring the packaging conditions during the different stages of the supply chain. This tag includes a commercial force sensor and a printed opening detector. Hence, the force applied to the package can be measured as well as the opening of the box can be detected. The architecture presented is a passive single-chip RFID tag. An electronic switch has been implemented to be able to measure both sensor magnitudes in the same access without including a microcontroller or battery. Moreover, the chip used here integrates a temperature sensor and, therefore, this tag provides three different parameters in every reading. PMID:26506353

  19. Perception without self-matching in conditional tag based cooperation.

    PubMed

    McAvity, David M; Bristow, Tristen; Bunker, Eric; Dreyer, Alex

    2013-09-21

    We consider a model for the evolution of cooperation in a population where individuals may have one of a number of different heritable and distinguishable markers or tags. Individuals interact with each of their neighbors on a square lattice by either cooperating by donating some benefit at a cost to themselves or defecting by doing nothing. The decision to cooperate or defect is contingent on each individual's perception of its interacting partner's tag. Unlike in other tag-based models individuals do not compare their own tag to that of their interaction partner. That is, there is no self-matching. When perception is perfect the cooperation rate is substantially higher than in the usual spatial prisoner's dilemma game when the cost of cooperation is high. The enhancement in cooperation is positively correlated with the number of different tags. The more diverse a population is the more cooperative it becomes. When individuals start with an inability to perceive tags the population evolves to a state where individuals gain at least partial perception. With some reproduction mechanisms perfect perception evolves, but with others the ability to perceive tags is imperfect. We find that perception of tags evolves to lower levels when the cost of cooperation is higher. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Fully printed flexible and disposable wireless cyclic voltammetry tag.

    PubMed

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-29

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  1. Fully printed flexible and disposable wireless cyclic voltammetry tag

    NASA Astrophysics Data System (ADS)

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  2. CdZnTe γ detector for deep inelastic neutron scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Andreani, C.; D'Angelo, A.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Rhodes, N. J.; Schooneveld, E. M.; Senesi, R.; Tardocchi, M.

    In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal ( 25 meV) to epithermal ( 70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in 238U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional 6Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to 6Li glass, allowing us to measure F(y) up to the fourth 238U absorption energy (Er=66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy (ω>1 eV) and low wavevector (q <10 Å-1) transfers.

  3. 77 FR 51761 - Proposed Information Collection; Comment Request; Groundfish Tagging Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... required by the Paperwork Reduction Act of 1995. DATES: Written comments must be submitted on or before... are two general categories of tags. Simple plastic tags (spaghetti tags) are external tags... fish. Archival tags are microchips with sensors encased in plastic cylinders that record the depth...

  4. Photon-Counting Kinetic Inductance Detectors (KID) for Far/Mid-Infrared Space Spectroscopy with the Origins Space Telescope (OST)

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid; Barrentine, Emily M.; Stevenson, Thomas R.; Brown, Ari D.; Moseley, Samuel Harvey; Wollack, Edward; Pontoppidan, Klaus Martin; U-Yen, Konpop; Mikula, Vilem

    2018-01-01

    Photon-counting detectors are highly desirable for reaching the ~ 10-20 W/√Hz power sensitivity permitted by the Origins Space Telescope (OST). We are developing unique Kinetic Inductance Detectors (KIDs) with photon counting capability in the far/mid-IR. Combined with an on-chip far-IR spectrometer onboard OST these detectors will enable a new data set for exploring galaxy evolution and the growth of structure in the Universe. Mid-IR spectroscopic surveys using these detectors will enable mapping the composition of key volatiles in planet-forming material around protoplanetary disks and their evolution into solar systems. While these OST science objectives represent a well-organized community agreement they are impossible to reach without a significant leap forward in detector technology, and the OST is likely not to be recommended if a path to suitable detectors does not exist.To reach the required sensitivity we are experimenting with superconducting resonators made from thin aluminum films on single-crystal silicon substrates. Under the right conditions, small-volume inductors made from these films can become ultra-sensitive to single photons >90 GHz. Understanding the physics of these superconductor-dielectric systems is critical to performance. We achieved a very high quality factor of 0.5 x 106 for a 10-nm Al resonator at n ~ 1 microwave photon drive power, by far the highest value for such thin films in the literature. We measured a residual electron density of < 5 /µm3 and extremely long lifetime of ~ 6.0 ms, both within requirements for photon-counting. To realize an optically coupled device, we are integrating these films with our on-chip spectrometer (μ-Spec) fabrication process. Using a detailed model we simulated the detector when illuminated with randomly arriving photon events. Our results show that photon counting with >95% efficiency at 0.5 - 1.0 THz is achievable.We report on these developments and discuss plans to test in our facility

  5. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Burns, Kimberly Ann

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of coupled Monte Carlo-deterministic methods for the simulation of neutron-induced photons for high-resolution gamma-ray spectroscopy applications. RAdiation Detection Scenario Analysis Toolbox (RADSAT), a code which couples deterministic and Monte Carlo transport to perform radiation detection scenario analysis in three dimensions [1], was used as the building block for the methods derived in this work. RADSAT was capable of performing coupled deterministic-Monte Carlo simulations for gamma-only and neutron-only problems. The purpose of this work was to develop the methodology necessary to perform coupled neutron-photon calculations and add this capability to RADSAT. Performing coupled neutron-photon calculations requires four main steps: the deterministic neutron transport calculation, the neutron-induced photon spectrum calculation, the deterministic photon transport calculation, and the Monte Carlo detector response calculation. The necessary requirements for each of these steps were determined. A major challenge in utilizing multigroup deterministic transport methods for neutron-photon problems was maintaining the discrete neutron-induced photon signatures throughout the simulation. Existing coupled neutron-photon

  6. Improving Attachments of Remotely-Deployed Dorsal Fin-Mounted Tags: Tissue Structure, Hydrodynamics, in situ Performance, and Tagged-Animal Follow-up

    DTIC Science & Technology

    2014-09-30

    TERM GOALS We recently developed small satellite-linked telemetry tags that are anchored with small attachment darts to the dorsal fins of small ...monitor the movements of numerous species not previously accessible because they were too large or difficult to capture safely, but too small for tags...cetaceans that provides the data needed to answer critical conservation and management questions without an adverse effect on the tagged animal. Therefore

  7. Sequence tagging reveals unexpected modifications in toxicoproteomics

    PubMed Central

    Dasari, Surendra; Chambers, Matthew C.; Codreanu, Simona G.; Liebler, Daniel C.; Collins, Ben C.; Pennington, Stephen R.; Gallagher, William M.; Tabb, David L.

    2010-01-01

    Toxicoproteomic samples are rich in posttranslational modifications (PTMs) of proteins. Identifying these modifications via standard database searching can incur significant performance penalties. Here we describe the latest developments in TagRecon, an algorithm that leverages inferred sequence tags to identify modified peptides in toxicoproteomic data sets. TagRecon identifies known modifications more effectively than the MyriMatch database search engine. TagRecon outperformed state of the art software in recognizing unanticipated modifications from LTQ, Orbitrap, and QTOF data sets. We developed user-friendly software for detecting persistent mass shifts from samples. We follow a three-step strategy for detecting unanticipated PTMs in samples. First, we identify the proteins present in the sample with a standard database search. Next, identified proteins are interrogated for unexpected PTMs with a sequence tag-based search. Finally, additional evidence is gathered for the detected mass shifts with a refinement search. Application of this technology on toxicoproteomic data sets revealed unintended cross-reactions between proteins and sample processing reagents. Twenty five proteins in rat liver showed signs of oxidative stress when exposed to potentially toxic drugs. These results demonstrate the value of mining toxicoproteomic data sets for modifications. PMID:21214251

  8. Fully printed flexible and disposable wireless cyclic voltammetry tag

    PubMed Central

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250

  9. A Review of Some Superconducting Technologies for AtLAST: Parametric Amplifiers, Kinetic Inductance Detectors, and On-Chip Spectrometers

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    2018-01-01

    The current state of the art for some superconducting technologies will be reviewed in the context of a future single-dish submillimeter telescope called AtLAST. The technologies reviews include: 1) Kinetic Inductance Detectors (KIDs), which have now been demonstrated in large-format kilo-pixel arrays with photon background-limited sensitivity suitable for large field of view cameras for wide-field imaging. 2) Parametric amplifiers - specifically the Traveling-Wave Kinetic Inductance (TKIP) amplifier - which has enormous potential to increase sensitivity, bandwidth, and mapping speed of heterodyne receivers, and 3) On-chip spectrometers, which combined with sensitive direct detectors such as KIDs or TESs could be used as Multi-Object Spectrometers on the AtLAST focal plane, and could provide low-medium resolution spectroscopy of 100 objects at a time in each field of view.

  10. Method for nonlinear optimization for gas tagging and other systems

    DOEpatents

    Chen, Ting; Gross, Kenny C.; Wegerich, Stephan

    1998-01-01

    A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

  11. HaloTag Technology: A Versatile Platform for Biomedical Applications

    PubMed Central

    2015-01-01

    Exploration of protein function and interaction is critical for discovering links among genomics, proteomics, and disease state; yet, the immense complexity of proteomics found in biological systems currently limits our investigational capacity. Although affinity and autofluorescent tags are widely employed for protein analysis, these methods have been met with limited success because they lack specificity and require multiple fusion tags and genetic constructs. As an alternative approach, the innovative HaloTag protein fusion platform allows protein function and interaction to be comprehensively analyzed using a single genetic construct with multiple capabilities. This is accomplished using a simplified process, in which a variable HaloTag ligand binds rapidly to the HaloTag protein (usually linked to the protein of interest) with high affinity and specificity. In this review, we examine all current applications of the HaloTag technology platform for biomedical applications, such as the study of protein isolation and purification, protein function, protein–protein and protein–DNA interactions, biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the HaloTag platform are briefly discussed along with potential future applications. PMID:25974629

  12. Evolving effective behaviours to interact with tag-based populations

    NASA Astrophysics Data System (ADS)

    Yucel, Osman; Crawford, Chad; Sen, Sandip

    2015-07-01

    Tags and other characteristics, externally perceptible features that are consistent among groups of animals or humans, can be used by others to determine appropriate response strategies in societies. This usage of tags can be extended to artificial environments, where agents can significantly reduce cognitive effort spent on appropriate strategy choice and behaviour selection by reusing strategies for interacting with new partners based on their tags. Strategy selection mechanisms developed based on this idea have successfully evolved stable cooperation in games such as the Prisoner's Dilemma game but relies upon payoff sharing and matching methods that limit the applicability of the tag framework. Our goal is to develop a general classification and behaviour selection approach based on the tag framework. We propose and evaluate alternative tag matching and adaptation schemes for a new, incoming individual to select appropriate behaviour against any population member of an existing, stable society. Our proposed approach allows agents to evolve both the optimal tag for the environment as well as appropriate strategies for existing agent groups. We show that these mechanisms will allow for robust selection of optimal strategies by agents entering a stable society and analyse the various environments where this approach is effective.

  13. A Hybrid Probabilistic Model for Unified Collaborative and Content-Based Image Tagging.

    PubMed

    Zhou, Ning; Cheung, William K; Qiu, Guoping; Xue, Xiangyang

    2011-07-01

    The increasing availability of large quantities of user contributed images with labels has provided opportunities to develop automatic tools to tag images to facilitate image search and retrieval. In this paper, we present a novel hybrid probabilistic model (HPM) which integrates low-level image features and high-level user provided tags to automatically tag images. For images without any tags, HPM predicts new tags based solely on the low-level image features. For images with user provided tags, HPM jointly exploits both the image features and the tags in a unified probabilistic framework to recommend additional tags to label the images. The HPM framework makes use of the tag-image association matrix (TIAM). However, since the number of images is usually very large and user-provided tags are diverse, TIAM is very sparse, thus making it difficult to reliably estimate tag-to-tag co-occurrence probabilities. We developed a collaborative filtering method based on nonnegative matrix factorization (NMF) for tackling this data sparsity issue. Also, an L1 norm kernel method is used to estimate the correlations between image features and semantic concepts. The effectiveness of the proposed approach has been evaluated using three databases containing 5,000 images with 371 tags, 31,695 images with 5,587 tags, and 269,648 images with 5,018 tags, respectively.

  14. Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement.

    PubMed

    Tang, Jinhui; Shu, Xiangbo; Qi, Guo-Jun; Li, Zechao; Wang, Meng; Yan, Shuicheng; Jain, Ramesh

    2017-08-01

    Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus on exploring the visual and tag information, without considering the user information, which often reveals important hints on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically, the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-the-art methods.

  15. OSIRIS-REx Touch-And-Go (TAG) Navigation Performance

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Antreasian, Peter; Moreau, Michael C.; May, Alex; Sutter, Brian

    2015-01-01

    The Origins Spectral Interpretation Resource identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) Bennu in late 2018. Following an extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site, OSIRIES-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid's surface to obtain a regolith sample. The paper summarizes the mission design of the TAG sequence, the propulsive required to achieve the trajectory, and the sequence of events leading up to the TAG event. The paper will summarize the Monte-Carlo simulation of the TAG sequence and present analysis results that demonstrate the ability to conduct the TAG within 25 meters of the selected sample site and +-2 cms of the targeted contact velocity. The paper will describe some of the challenges associated with conducting precision navigation operations and ultimately contacting a very small asteroid.

  16. OSIRI-REx Touch and Go (TAG) Navigation Performance

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Antreasian, Peter; Moreau, Michael C.; May, Alex; Sutter, Brian

    2015-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) Bennu in late 2018. Following an extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site, OSIRIS-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid's surface to obtain a regolith sample. The paper summarizes the mission design of the TAG sequence, the propulsive maneuvers required to achieve the trajectory, and the sequence of events leading up to the TAG event. The paper also summarizes the Monte-Carlo simulation of the TAG sequence and presents analysis results that demonstrate the ability to conduct the TAG within 25 meters of the selected sample site and 2 cm/s of the targeted contact velocity. The paper describes some of the challenges associated with conducting precision navigation operations and ultimately contacting a very small asteroid.

  17. Integrated Management and Visualization of Electronic Tag Data with Tagbase

    PubMed Central

    Lam, Chi Hin; Tsontos, Vardis M.

    2011-01-01

    Electronic tags have been used widely for more than a decade in studies of diverse marine species. However, despite significant investment in tagging programs and hardware, data management aspects have received insufficient attention, leaving researchers without a comprehensive toolset to manage their data easily. The growing volume of these data holdings, the large diversity of tag types and data formats, and the general lack of data management resources are not only complicating integration and synthesis of electronic tagging data in support of resource management applications but potentially threatening the integrity and longer-term access to these valuable datasets. To address this critical gap, Tagbase has been developed as a well-rounded, yet accessible data management solution for electronic tagging applications. It is based on a unified relational model that accommodates a suite of manufacturer tag data formats in addition to deployment metadata and reprocessed geopositions. Tagbase includes an integrated set of tools for importing tag datasets into the system effortlessly, and provides reporting utilities to interactively view standard outputs in graphical and tabular form. Data from the system can also be easily exported or dynamically coupled to GIS and other analysis packages. Tagbase is scalable and has been ported to a range of database management systems to support the needs of the tagging community, from individual investigators to large scale tagging programs. Tagbase represents a mature initiative with users at several institutions involved in marine electronic tagging research. PMID:21750734

  18. Efficient selection of tagging single-nucleotide polymorphisms in multiple populations.

    PubMed

    Howie, Bryan N; Carlson, Christopher S; Rieder, Mark J; Nickerson, Deborah A

    2006-08-01

    Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.

  19. ExoMars Raman laser spectrometer for Exomars

    NASA Astrophysics Data System (ADS)

    Rull, F.; Sansano, A.; Díaz, E.; Canora, C. P.; Moral, A. G.; Tato, C.; Colombo, M.; Belenguer, T.; Fernández, M.; Manfredi, J. A. R.; Canchal, R.; Dávila, B.; Jiménez, A.; Gallego, P.; Ibarmia, S.; Prieto, J. A. R.; Santiago, A.; Pla, J.; Ramos, G.; Díaz, C.; González, C.

    2011-10-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. ExoMars 2018 main Scientific objective is "Searching for evidence of past and present life on Mars". Raman Spectroscopy is used to analyze the vibrational modes of a substance either in the solid, liquid or gas state. It relies on the inelastic scattering (Raman Scattering) of monochromatic light produced by atoms and molecules. The radiation-matter interaction results in the energy of the exciting photons to be shifted up or down. The shift in energy appears as a spectral distribution and therefore provides an unique fingerprint by which the substances can be identified and structurally analyzed. The RLS is being developed by an European Consortium composed by Spanish, French, German and UK partners. It will perform Raman spectroscopy on crushed powdered samples inside the Rover's Analytical Laboratory Drawer. Instrument performances are being evaluated by means of simulation tools and development of an instrument prototype.

  20. Balloon Borne Ultraviolet Spectrometer.

    DTIC Science & Technology

    1978-12-28

    n.c.aaary ond lden lfy by block numb.r) ultraviolet ground support equipment (GSE) spectrometers flight electronics instrumentation balloons \\ solar ...Assembly 4 Fig. 3 Solar Balloon Experiment Ass ’y 7 Fig. 4 Mechanical Interface , UV Spectrometer 8 Fig . 5 Spectrometer Body Assemb ly 10 Fig. 6...Diagram, GSE )bnitor 48 Selector and Battery Charger Fig. 25 Schematic Diagram, GSE Serial to 49 Parallel Data Converter Fig. 26 Schematic Diagram

  1. Tag-KEM from Set Partial Domain One-Way Permutations

    NASA Astrophysics Data System (ADS)

    Abe, Masayuki; Cui, Yang; Imai, Hideki; Kurosawa, Kaoru

    Recently a framework called Tag-KEM/DEM was introduced to construct efficient hybrid encryption schemes. Although it is known that generic encode-then-encrypt construction of chosen ciphertext secure public-key encryption also applies to secure Tag-KEM construction and some known encoding method like OAEP can be used for this purpose, it is worth pursuing more efficient encoding method dedicated for Tag-KEM construction. This paper proposes an encoding method that yields efficient Tag-KEM schemes when combined with set partial one-way permutations such as RSA and Rabin's encryption scheme. To our knowledge, this leads to the most practical hybrid encryption scheme of this type. We also present an efficient Tag-KEM which is CCA-secure under general factoring assumption rather than Blum factoring assumption.

  2. Some Fundamental Limits on SAW RFID Tag Information Capacity and Collision Resolution

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2013-01-01

    In this paper, we apply results from multi-user information theory to study the limits of information capacity and collision resolution for SAW RFID tags. In particular, we derive bounds on the achievable data rate per tag as a function of fundamental parameters such as tag time-bandwidth product, tag signal-to-noise ratio (SNR), and number of tags in the environment. We also discuss the implications of these bounds for tag waveform design and tag interrogation efficiency

  3. Method for nonlinear optimization for gas tagging and other systems

    DOEpatents

    Chen, T.; Gross, K.C.; Wegerich, S.

    1998-01-06

    A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.

  4. Design, implementation, and performance of the Astro-H soft x-ray spectrometer aperture assembly and blocking filters

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kripps, Kari L.; Lairson, Bruce M.; Leutenegger, Maurice A.; Lopez, Heidi C.; McCammon, Dan; McGuinness, Daniel S.; Mitsuda, Kazuhisa; Moseley, Samuel J.; Porter, F. Scott; Schweiss, Andrea N.; Takei, Yoh; Thorpe, Rosemary Schmidt; Watanabe, Tomomi; Yamasaki, Noriko Y.; Yoshida, Seiji

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that made the SXS array a powerful x-ray spectrometer also made it sensitive to photons from the entire electromagnetic band as well as particles. If characterized as a bolometer, it would have had a noise equivalent power of <4 × 10 ? 18 W / (Hz)0.5. Thus, it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. In addition, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs were addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that blocked long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly was a system of barriers, baffles, filter carriers, and filter mounts that supported the filters and inhibited their potential contamination. The three outer filters also had been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  5. Automated Data Tagging in the HLA

    NASA Astrophysics Data System (ADS)

    Gaffney, N. I.; Miller, W. W.

    2008-08-01

    One of the more powerful and popular forms of data organization implemented in most popular information sharing web applications is data tagging. With a rich user base from which to gather and digest tags, many interesting and often unanticipated yet very useful associations are revealed. With regard to an existing information, the astronomical community has a rich pool of existing digitally stored and searchable data than any of the currently popular web community, such as You Tube or My Space, had when they started. In initial experiments with the search engine for the Hubble Legacy Archive, we have created a simple yet powerful scheme by which the information from a footprint service, the NED and SIMBAD catalog services, and the ADS abstracts and keywords can be used to initially tag data with standard keywords. By then ingesting this into a public ally available information search engine, such as Apache Lucene, one can create a simple and powerful data tag search engine and association system. By then augmenting this with user provided keys and usage pattern analysis, one can produce a powerful modern data mining system for any astronomical data warehouse.

  6. The use of tags in monitoring limits on mobile missiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetter, S.

    1987-03-01

    Three tagging systems were considered in this paper: as a supplement to on-site inspection (OSI), as a supplement to national technical means (NTM), and as a supplement to site surveillance systems. Each system would require a different type of tag, perhaps ranging from microchip tags with infrared transponders to navigation receivers. Use of tags as a supplement to OSIs may be the simplest system to implement because it places the least demands on technology. Tags may make OSI more acceptable by replacing humans with remote sensors, thereby decreasing the perceived potential for espionage. Using tags as a supplement to NTMmore » decreases the necessity for human OSI even further, but places higher demands on technology and may affect the normal operation of deployment areas. Site surveillance systems using tags have the potential for excellent missile verification, but they may be excessively intrusive and expensive, and could have a large effect on the normal operation of declared facilities.« less

  7. Tag gas capsule with magnetic piercing device

    DOEpatents

    Nelson, Ira V.

    1976-06-22

    An apparatus for introducing a tag (i.e., identifying) gas into a tubular nuclear fuel element. A sealed capsule containing the tag gas is placed in the plenum in the fuel tube between the fuel and the end cap. A ferromagnetic punch having a penetrating point is slidably mounted in the plenum. By external electro-magnets, the punch may be caused to penetrate a thin rupturable end wall of the capsule and release the tag gas into the fuel element. Preferably the punch is slidably mounted within the capsule, which is in turn loaded as a sealed unit into the fuel element.

  8. Improved gas tagging and cover gas combination for nuclear reactor

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1983-09-26

    The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.

  9. Effects of tag loss on direct estimates of population growth rate

    USGS Publications Warehouse

    Rotella, J.J.; Hines, J.E.

    2005-01-01

    The temporal symmetry approach of R. Pradel can be used with capture-recapture data to produce retrospective estimates of a population's growth rate, lambda(i), and the relative contributions to lambda(i) from different components of the population. Direct estimation of lambda(i) provides an alternative to using population projection matrices to estimate asymptotic lambda and is seeing increased use. However, the robustness of direct estimates of lambda(1) to violations of several key assumptions has not yet been investigated. Here, we consider tag loss as a possible source of bias for scenarios in which the rate of tag loss is (1) the same for all marked animals in the population and (2) a function of tag age. We computed analytic approximations of the expected values for each of the parameter estimators involved in direct estimation and used those values to calculate bias and precision for each parameter estimator. Estimates of lambda(i) were robust to homogeneous rates of tag loss. When tag loss rates varied by tag age, bias occurred for some of the sampling situations evaluated, especially those with low capture probability, a high rate of tag loss, or both. For situations with low rates of tag loss and high capture probability, bias was low and often negligible. Estimates of contributions of demographic components to lambda(i) were not robust to tag loss. Tag loss reduced the precision of all estimates because tag loss results in fewer marked animals remaining available for estimation. Clearly tag loss should be prevented if possible, and should be considered in analyses of lambda(i), but tag loss does not necessarily preclude unbiased estimation of lambda(i).

  10. Nucleon Resonance Decay by the K0Σ+ Channel

    NASA Astrophysics Data System (ADS)

    Castelijns, R.; Bacelar, J.; Löhner, H.; Messchendorp, J. G. M.; Shende, S.

    2006-06-01

    At the tagged photon beam of the ELSA electron synchrotron at the University of Bonn in Germany the Crystal Barrel and TAPS photon spectrometers have been combined to provide a 4π detector for multi-neutral-particle final states from photonuclear reactions. In a series of experiments on single and multiple neutral meson emission we have concentrated on the hyperon production off the proton, and in particular on the K0Σ+ channel. High-quality excitation function, recoil polarizations, and angular distributions from the KΣ threshold up to 2.3 GeV c.m. energy were obtained. Particular care was taken to establish the cross section normalization. The experimental results are compared with predictions aof a recent coupled-channels calculation within the K-matrix formalism by A. Usov and O. Scholten1.

  11. 48 CFR 52.208-7 - Tagging of Leased Vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Tagging of Leased Vehicles....208-7 Tagging of Leased Vehicles. As prescribed in 8.1104(d), insert a clause substantially as follows: Tagging of Leased Vehicles (MAY 1986) While it is the intent that vehicles leased under this contract will...

  12. A composite thin vacuum window for the CLAS photon tagger at Jefferson lab

    NASA Astrophysics Data System (ADS)

    Matthews, S. K.; Crannell, Hall; O'Brien, J. T.; Sober, D. I.

    1999-01-01

    The construction of a thin vacuum window, currently in use on the CLAS photon tagging system at the Thomas Jefferson National Accelerator Facility, is described. A layer of woven Kevlar cloth supports a much thinner membrane of aluminized Mylar. Notable features of this particular window include its overall length (9.6 m), and the fact that the entire load is supported by the epoxy seal with no mechanical clamping around the edges. Results from a diverse program of materials testing, including a clear dependence of leak rate on relative humidity, are also reported.

  13. Imaging Spectrometer on a Chip

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Zheng, Xinyu

    2007-01-01

    A proposed visible-light imaging spectrometer on a chip would be based on the concept of a heterostructure comprising multiple layers of silicon-based photodetectors interspersed with long-wavelength-pass optical filters. In a typical application, this heterostructure would be replicated in each pixel of an image-detecting integrated circuit of the active-pixel-sensor type (see figure). The design of the heterostructure would exploit the fact that within the visible portion of the spectrum, the characteristic depth of penetration of photons increases with wavelength. Proceeding from the front toward the back, each successive long-wavelength-pass filter would have a longer cutoff wavelength, and each successive photodetector would be made thicker to enable it to absorb a greater proportion of incident longer-wavelength photons. Incident light would pass through the first photodetector and encounter the first filter, which would reflect light having wavelengths shorter than its cutoff wavelength and pass light of longer wavelengths. A large portion of the incident and reflected shorter-wavelength light would be absorbed in the first photodetector. The light that had passed through the first photodetector/filter pair of layers would pass through the second photodetector and encounter the second filter, which would reflect light having wavelengths shorter than its cutoff wavelength while passing light of longer wavelengths. Thus, most of the light reflected by the second filter would lie in the wavelength band between the cutoff wavelengths of the first and second filters. Thus, further, most of the light absorbed in the second photodetector would lie in this wavelength band. In a similar manner, each successive photodetector would detect, predominantly, light in a successively longer wavelength band bounded by the shorter cutoff wavelength of the preceding filter and the longer cutoff wavelength of the following filter.

  14. Phase Transitions of Thermoelectric TAGS-85.

    PubMed

    Kumar, Anil; Vermeulen, Paul A; Kooi, Bart J; Rao, Jiancun; van Eijck, Lambert; Schwarzmüller, Stefan; Oeckler, Oliver; Blake, Graeme R

    2017-12-18

    The alloys (GeTe) x (AgSbTe 2 ) 100-x , commonly known as TAGS-x, are among the best performing p-type thermoelectric materials for the composition range 80 ≤ x ≤ 90 and in the temperature range 200-500 °C. They adopt a rhombohedrally distorted rocksalt structure at room temperature and are reported to undergo a reversible phase transition to a cubic structure at ∼250 °C. However, we show that, for the optimal x = 85 composition (TAGS-85), both the structural and thermoelectric properties are highly sensitive to the initial synthesis method employed. Single-phase rhombohedral samples exhibit the best thermoelectric properties but can only be obtained after an annealing step at 600 °C during initial cooling from the melt. Under faster cooling conditions, the samples obtained are inhomogeneous, containing multiple rhombohedral phases with a range of lattice parameters and exhibiting inferior thermoelectric properties. We also find that when the room-temperature rhombohedral phase is heated, an intermediate trigonal structure containing ordered cation vacancy layers is formed at ∼200 °C, driven by the spontaneous precipitation of argyrodite-type Ag 8 GeTe 6 which alters the stoichiometry of the TAGS-85 matrix. The rhombohedral and trigonal phases of TAGS-85 coexist up to 380 °C, above which a single cubic phase is obtained and the Ag 8 GeTe 6 precipitates redissolve into the matrix. On subsequent cooling a mixture of rhombohedral, trigonal, and Ag 8 GeTe 6 phases is again obtained. Initially single-phase samples exhibit thermoelectric power factors of up to 0.0035 W m -1 K -2 at 500 °C, a value that is maintained on subsequent thermal cycling and which represents the highest power factor yet reported for undoped TAGS-85. Therefore, control over the structural homogeneity of TAGS-85 as demonstrated here is essential in order to optimize the thermoelectric performance.

  15. Improved Satellite-Monitored Radio Tags for Large Whales: Dependable ARGOS Location-Only Tags and a GPS-Linked ARGOS Tag Reveal 3-Dimensional Body-Orientation and Surface Movements

    DTIC Science & Technology

    2013-09-30

    funded tags have been used on a variety of projects: western gray whales in Russia, Pacific Coast Feeding Group (PCFG) gray whales, and sperm whales...provide an accurate, long duration, depiction of underwater dive behavior and especially to examine sperm whale foraging behavior. The data will be...an acoustic dosimeter. Eleven GPS/TDR tags containing three axis accelerometers were deployed on sperm whales in the Gulf of Mexico in July/Aug

  16. Linear reduction methods for tag SNP selection.

    PubMed

    He, Jingwu; Zelikovsky, Alex

    2004-01-01

    It is widely hoped that constructing a complete human haplotype map will help to associate complex diseases with certain SNP's. Unfortunately, the number of SNP's is huge and it is very costly to sequence many individuals. Therefore, it is desirable to reduce the number of SNP's that should be sequenced to considerably small number of informative representatives, so called tag SNP's. In this paper, we propose a new linear algebra based method for selecting and using tag SNP's. Our method is purely combinatorial and can be combined with linkage disequilibrium (LD) and block based methods. We measure the quality of our tag SNP selection algorithm by comparing actual SNP's with SNP's linearly predicted from linearly chosen tag SNP's. We obtain an extremely good compression and prediction rates. For example, for long haplotypes (>25000 SNP's), knowing only 0.4% of all SNP's we predict the entire unknown haplotype with 2% accuracy while the prediction method is based on a 10% sample of the population.

  17. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  18. The Searching Effectiveness of Social Tagging in Museum Websites

    ERIC Educational Resources Information Center

    Cho, Chung-Wen; Yeh, Ting-Kuang; Cheng, Shu-Wen; Chang, Chun-Yen

    2012-01-01

    This paper explores the search effectiveness of social tagging which allows the public to freely tag resources, denoted as keywords, with any words as well as to share personal opinions on those resources. Social tagging potentially helps users to organize, manage, and retrieve resources. Efficient retrieval can help users put more of their focus…

  19. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    PubMed

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  20. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  1. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  2. Social Image Tag Ranking by Two-View Learning

    NASA Astrophysics Data System (ADS)

    Zhuang, Jinfeng; Hoi, Steven C. H.

    Tags play a central role in text-based social image retrieval and browsing. However, the tags annotated by web users could be noisy, irrelevant, and often incomplete for describing the image contents, which may severely deteriorate the performance of text-based image retrieval models. In order to solve this problem, researchers have proposed techniques to rank the annotated tags of a social image according to their relevance to the visual content of the image. In this paper, we aim to overcome the challenge of social image tag ranking for a corpus of social images with rich user-generated tags by proposing a novel two-view learning approach. It can effectively exploit both textual and visual contents of social images to discover the complicated relationship between tags and images. Unlike the conventional learning approaches that usually assumes some parametric models, our method is completely data-driven and makes no assumption about the underlying models, making the proposed solution practically more effective. We formulate our method as an optimization task and present an efficient algorithm to solve it. To evaluate the efficacy of our method, we conducted an extensive set of experiments by applying our technique to both text-based social image retrieval and automatic image annotation tasks. Our empirical results showed that the proposed method can be more effective than the conventional approaches.

  3. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources

    PubMed Central

    Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can

    2016-01-01

    In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance. PMID:27759085

  4. CT colonography with rectal iodine tagging: Feasibility and comparison with oral tagging in a colorectal cancer screening population.

    PubMed

    Neri, Emanuele; Mantarro, Annalisa; Faggioni, Lorenzo; Scalise, Paola; Bemi, Pietro; Pancrazi, Francesca; D'Ippolito, Giuseppe; Bartolozzi, Carlo

    2015-09-01

    To evaluate feasibility, diagnostic performance, patient acceptance, and overall examination time of CT colonography (CTC) performed through rectal administration of iodinated contrast material. Six-hundred asymptomatic subjects (male:female=270:330; mean 63 years) undergoing CTC for colorectal cancer screening on an individual basis were consecutively enrolled in the study. Out of them, 503 patients (group 1) underwent CTC with rectal tagging, of which 55 had a total of 77 colonic lesions. The remaining 97 patients (group 2) were randomly selected to receive CTC with oral tagging of which 15 had a total of 20 colonic lesions. CTC findings were compared with optical colonoscopy, and per-segment image quality was visually assessed using a semi-quantitative score (1=poor, 2=adequate, 3=excellent). In 70/600 patients (11.7%), CTC was performed twice with both types of tagging over a 5-year follow-up cancer screening program. In this subgroup, patient acceptance was rated via phone interview two weeks after CTC using a semi-quantitative scale (1=poor, 2=fair, 3=average, 4=good, 5=excellent). Mean per-polyp sensitivity, specificity, positive and negative predictive values of CTC with rectal vs oral tagging were 96.1% (CI95% 85.4÷99.3%) vs 89.4% (CI95% 65.4÷98.1%), 95.3% (CI95% 90.7÷97.8%) vs 95.8% (CI95% 87.6÷98.9%), 86.0% (CI95% 73.6÷93.3) vs 85.0% (CI95% 61.1÷96.0%), and 98.8% (CI95% 95.3÷99.8%) vs 97.2% (CI95% 89.4÷99.5%), respectively (p>0.05). Polyp detection rates were not statistically different between groups 1 and 2 (p>0.05). Overall examination time was significantly shorter with rectal than with oral tagging (18.3±3.5 vs 215.6±10.3 minutes, respectively; p<0.0001). Rectal iodine tagging can be an effective alternative to oral tagging for CTC with the advantages of greater patient acceptance and lower overall examination time. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  6. A Tool for Conditions Tag Management in ATLAS

    NASA Astrophysics Data System (ADS)

    Sharmazanashvili, A.; Batiashvili, G.; Gvaberidze, G.; Shekriladze, L.; Formica, A.; Atlas Collaboration

    2014-06-01

    ATLAS Conditions data include about 2 TB in a relational database and 400 GB of files referenced from the database. Conditions data is entered and retrieved using COOL, the API for accessing data in the LCG Conditions Database infrastructure. It is managed using an ATLAS-customized python based tool set. Conditions data are required for every reconstruction and simulation job, so access to them is crucial for all aspects of ATLAS data taking and analysis, as well as by preceding tasks to derive optimal corrections to reconstruction. Optimized sets of conditions for processing are accomplished using strict version control on those conditions: a process which assigns COOL Tags to sets of conditions, and then unifies those conditions over data-taking intervals into a COOL Global Tag. This Global Tag identifies the set of conditions used to process data so that the underlying conditions can be uniquely identified with 100% reproducibility should the processing be executed again. Understanding shifts in the underlying conditions from one tag to another and ensuring interval completeness for all detectors for a set of runs to be processed is a complex task, requiring tools beyond the above mentioned python utilities. Therefore, a JavaScript /PHP based utility called the Conditions Tag Browser (CTB) has been developed. CTB gives detector and conditions experts the possibility to navigate through the different databases and COOL folders; explore the content of given tags and the differences between them, as well as their extent in time; visualize the content of channels associated with leaf tags. This report describes the structure and PHP/ JavaScript classes of functions of the CTB.

  7. New trends and affinity tag designs for recombinant protein purification.

    PubMed

    Wood, David W

    2014-06-01

    Engineered purification tags can facilitate very efficient purification of recombinant proteins, resulting in high yields and purities in a few standard steps. Over the years, many different purification tags have been developed, including short peptides, epitopes, folded protein domains, non-chromatographic tags and more recently, compound multifunctional tags with optimized capabilities. Although classic proteases are still primarily used to remove the tags from target proteins, new self-cleaving methods are gaining traction as a highly convenient alternative. In this review, we discuss some of these emerging trends, and examine their potential impacts and remaining challenges in recombinant protein research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Implementing traceability using particle randomness-based textile printed tags

    NASA Astrophysics Data System (ADS)

    Agrawal, T. K.; Koehl, L.; Campagne, C.

    2017-10-01

    This article introduces a random particle-based traceability tag for textiles. The proposed tag not only act as a unique signature for the corresponding textile product but also possess the features such as easy to manufacture and hard to copy. It seeks applications in brand authentication and traceability in textile and clothing (T&C) supply chain. A prototype has been developed by screen printing process, in which micron-scale particles were mixed with the printing paste and printed on cotton fabrics to attain required randomness. To encode the randomness, the image of the developed tag was taken and analyzed using image processing. The randomness of the particles acts as a product key or unique signature which is required to decode the tag. Finally, washing and abrasion resistance tests were conducted to check the durability of the printed tag.

  9. Anglers' beliefs about tag-and-release programs

    Treesearch

    Maureen P. Donnelly; Jerry J. Vaske

    1992-01-01

    Scientific research and the popular literature have emphasized the biological value of tag-and-release fishing. Relatively few publications, however, have examined the anglers' beliefs about the importance of this activity. This paper summarizes sport fishermen's behavior and attitudes related to tag-and-release programs. The data were collected from three...

  10. Diffraction gratings metrology and ray-tracing results for an XUV Raman spectrometer at FLASH

    PubMed Central

    Dziarzhytski, Siarhei; Siewert, Frank; Gwalt, Grzegorz; Seliger, Tino; Rübhausen, Michael; Weigelt, Holger; Brenner, Günter

    2018-01-01

    The extreme-ultraviolet double-stage imaging Raman spectrometer is a permanent experimental endstation at the plane-grating monochromator beamline branch PG1 at FLASH at DESY in Hamburg, Germany. This unique instrument covers the photon energy range from 20 to 200 eV with high energy resolution of about 2 to 20 meV (design values) featuring an efficient elastic line suppression as well as effective stray light rejection. Such a design enables studies of low-energy excitations like, for example, phonons in solids close to the vicinity of the elastic line. The Raman spectrometer effectively operates with four reflective off-axial parabolic mirrors and two plane-grating units. The optics quality and their precise alignment are crucial to guarantee best performance of the instrument. Here, results on a comprehensive investigation of the quality of the spectrometer diffraction gratings are presented. The gratings have been characterized by ex situ metrology at the BESSY-II Optics Laboratory, employing slope measuring deflectometry and interferometry as well as atomic force microscopy studies. The efficiency of these key optical elements has been measured at the at-wavelength metrology laboratory using the reflectometer at the BESSY-II Optics beamline. Also, the metrology results are discussed with respect to the expected resolving power of the instrument by including them in ray-tracing studies of the instrument. PMID:29271763

  11. Fish tag recovery from Anaho Island nesting colony, Pyramid Lake, Nevada

    USGS Publications Warehouse

    Scoppettone, G. Gary; Fabes, Mark C.; Rissler, Peter H.; Withers, Donna

    2016-01-06

    In 2001, tags applied to the federally endangered species cui-ui (Chasmistes cujus) to study their population dynamics were discovered strewn throughout the American White Pelican (Pelecanus erythrorhynchos) nesting colony on Anaho Island, Pyramid Lake, Nevada. Cui-ui are endemic to Pyramid Lake, and Anaho Island harbors one of North America’s largest nesting colonies of American White Pelican. Cui-ui are consumed by pelicans during the fish’s spring migration into the Truckee River to reproduce. The predatory success of pelican has been validated by determining the odds of finding a tag from a predated cui-ui within the Anaho Island nesting colony. It is unknown how many cui-ui tags are eliminated by birds before arrival to the colony versus how many are brought to the colony but never recovered. The focus of this study was to improve the estimate of the chances of collecting a tag from a predated adult cui-ui in the pelican nesting colony by feeding dead tagged Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) and common carp (Cyprinus carpio) to pelican and subsequently searching for these tags within the colony. We also randomly deployed 1,000 dispersal tags throughout the nesting colony, searching for these after one and two breeding seasons. After adding 1,027 fed fish to 547 previously fed fish, we estimated 5.3 percent of the tagged cui-ui taken by pelican were recovered during tag searches. A study of dispersal tags randomly deployed within the pelican nesting colony showed that 51.5 percent would be expected to be recovered after at least one breeding season after being deployed. Results of our studies indicate that more than 90 percent of tags from adult cui-ui are eliminated by birds outside the pelican nesting colony. Tags recovered from other species and the site at which they were tagged are also reported. Most notable were recovered Lahontan cutthroat trout tags, which were the highest in number, but their proximity to double

  12. Electronics for a Spectrometer

    NASA Image and Video Library

    2014-01-24

    NASA has provided part of the electronics package for an instrument called the Double Focusing Mass Spectrometer, which is part of the Swiss-built Rosetta Orbiter Spectrometer for Ion and Neutral Analysis ROSINA instrument.

  13. Cetacean Tag Design Workshop Held in Arlington, Virginia on 16-17 March 2009

    DTIC Science & Technology

    2009-03-01

    tagging to assess tag performance and animal health . • Examine performance of current tag attachment designs by assessing holding power and anchoring...tag attachment performance, and potentially adversely affect animal health . The second recommended step was to test and collect baseline data on...the tag attachment site to assess animal health and tag performance. Best to test tags on populations that are not listed as threatened or

  14. Phase modulation in RF tag

    DOEpatents

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2007-02-20

    A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.

  15. Tags to Track Illicit Uranium and Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haire, M. Jonathan; Forsberg, Charles W.

    2007-07-01

    With the expansion of nuclear power, it is essential to avoid nuclear materials from falling into the hands of rogue nations, terrorists, and other opportunists. This paper examines the idea of detection and attribution tags for nuclear materials. For a detection tag, it is proposed to add small amounts [about one part per billion (ppb)] of {sup 232}U to enriched uranium to brighten its radioactive signature. Enriched uranium would then be as detectable as plutonium and thus increase the likelihood of intercepting illicit enriched uranium. The use of rare earth oxide elements is proposed as a new type of 'attribution'more » tag for uranium and thorium from mills, uranium and plutonium fuels, and other nuclear materials. Rare earth oxides are chosen because they are chemically compatible with the fuel cycle, can survive high-temperature processing operations in fuel fabrication, and can be chosen to have minimal neutronic impact within the nuclear reactor core. The mixture of rare earths and/or rare earth isotopes provides a unique 'bar code' for each tag. If illicit nuclear materials are recovered, the attribution tag can identify the source and lot of nuclear material, and thus help police reduce the possible number of suspects in the diversion of nuclear materials based on who had access. (authors)« less

  16. Fluorescent labeling of SNAP-tagged proteins in cells.

    PubMed

    Lukinavičius, Gražvydas; Reymond, Luc; Johnsson, Kai

    2015-01-01

    One of the most prominent self-labeling tags is SNAP-tag. It is an in vitro evolution product of the human DNA repair protein O (6)-alkylguanine-DNA alkyltransferase (hAGT) that reacts specifically with benzylguanine (BG) and benzylchloropyrimidine (CP) derivatives, leading to covalent labeling of SNAP-tag with a synthetic probe (Gronemeyer et al., Protein Eng Des Sel 19:309-316, 2006; Curr Opin Biotechnol 16:453-458, 2005; Keppler et al., Nat Biotechnol 21:86-89, 2003; Proc Natl Acad Sci U S A 101:9955-9959, 2004). SNAP-tag is well suited for the analysis and quantification of fused target protein using fluorescence microscopy techniques. It provides a simple, robust, and versatile approach to the imaging of fusion proteins under a wide range of experimental conditions.

  17. III-V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2-4 μm Wavelength Range.

    PubMed

    Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther

    2017-08-04

    The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.

  18. Cross section asymmetry of two-body carbon disintegration 12C (γ , p)11B with polarized photons at energy 40-50 MeV

    NASA Astrophysics Data System (ADS)

    Burdeinyi, D.; Brudvik, J.; Fissum, K.; Ganenko, V.; Hansen, K.; Isaksson, L.; Livingston, K.; Lundin, M.; Nilsson, B.; Schroder, B.

    2017-01-01

    The cross section asymmetry of 12C (γ ,p01)11B and 12C (γ ,p2-6)11B reactions has been studied at the energy range 40-55 MeV, using linearly polarized tagged photons of the MAX-lab facility. The asymmetry of the 12C (γ ,p01)11B processes, which assume the one-body mechanism of the reaction, is Σ ≈ 0.82 ± 0.05 for photon energies 45-50 MeV. The asymmetry for the 12C (γ ,p2-6)11B reactions, which produce a maximum at excitation energy ∼ 6 MeV, is Σ ≈ 0.53 ± 0.13 for a photon energy 49 MeV. It is close to the asymmetry of reaction of the free deuteron photodisintegration, and can be resulted from the two-body mechanism of the photon absorption.

  19. Comparison of three nonlinear models to describe long-term tag shedding by lake trout

    USGS Publications Warehouse

    Fabrizio, Mary C.; Swanson, Bruce L.; Schram, Stephen T.; Hoff, Michael H.

    1996-01-01

    We estimated long-term tag-shedding rates for lake trout Salvelinus namaycush using two existing models and a model we developed to account for the observed permanence of some tags. Because tag design changed over the course of the study, we examined tag-shedding rates for three types of numbered anchor tags (Floy tags FD-67, FD-67C, and FD-68BC) and an unprinted anchor tag (FD-67F). Lake trout from the Gull Island Shoal region, Lake Superior, were double-tagged, and subsequent recaptures were monitored in annual surveys conducted from 1974 to 1992. We modeled tag-shedding rates, using time at liberty and probabilities of tag shedding estimated from fish released in 1974 and 1978–1983 and later recaptured. Long-term shedding of numbered anchor tags in lake trout was best described by a nonlinear model with two parameters: an instantaneous tag-shedding rate and a constant representing the proportion of tags that were never shed. Although our estimates of annual shedding rates varied with tag type (0.300 for FD-67, 0.441 for FD-67C, and 0.656 for FD-68BC), differences were not significant. About 36% of tags remained permanently affixed to the fish. Of the numbered tags that were shed (about 64%), two mechanisms contributed to tag loss: disintegration and dislodgment. Tags from about 11% of recaptured fish had disintegrated, but most tags were dislodged. Unprinted tags were shed at a significant but low rate immediately after release, but the long-term, annual shedding rate of these tags was only 0.013. Compared with unprinted tags, numbered tags dislodged at higher annual rates; we hypothesized that this was due to the greater frictional drag associated with the larger cross-sectional area of numbered tags.

  20. Crosstalk between Diverse Synthetic Protein Degradation Tags in Escherichia coli.

    PubMed

    Butzin, Nicholas C; Mather, William H

    2018-01-19

    Recently, a synthetic circuit in E. coli demonstrated that two proteins engineered with LAA tags targeted to the native protease ClpXP are susceptible to crosstalk due to competition for degradation between proteins. To understand proteolytic crosstalk beyond the single protease regime, we investigated in E. coli a set of synthetic circuits designed to probe the dynamics of existing and novel degradation tags fused to fluorescent proteins. These circuits were tested using both microplate reader and single-cell assays. We first quantified the degradation rates of each tag in isolation. We then tested if there was crosstalk between two distinguishable fluorescent proteins engineered with identical or different degradation tags. We demonstrated that proteolytic crosstalk was indeed not limited to the LAA degradation tag, but was also apparent between other diverse tags, supporting the complexity of the E. coli protein degradation system.

  1. Systems, Apparatuses and Methods for Beamforming RFID Tags

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)

    2017-01-01

    A radio frequency identification (RFID) system includes an RFID interrogator and an RFID tag having a plurality of information sources and a beamforming network. The tag receives electromagnetic radiation from the interrogator. The beamforming network directs the received electromagnetic radiation to a subset of the plurality of information sources. The RFID tag transmits a response to the received electromagnetic radiation, based on the subset of the plurality of information sources to which the received electromagnetic radiation was directed. Method and other embodiments are also disclosed.

  2. Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags

    PubMed Central

    2017-01-01

    We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magnitude for each additional His6-tag on the TagRFP proteins. All TagRFP variants with His6-tags located on only one side of the barrel-shaped protein yielded a 1.5 times higher surface coverage compared to variants with His6-tags on opposite sides of the so-called β-barrel. Time-resolved fluorescence anisotropy measurements supported by polarized infrared spectroscopy verified that the orientation (and thus coverage and functionality) of proteins on surfaces can be controlled by strategic placement of a His6-tag on the protein. Molecular dynamics simulations show how the differently tagged proteins reside at the surface in “end-on” and “side-on” orientations with each His6-tag contributing to binding. Also, not every dihistidine subunit in a given His6-tag forms a full coordination bond with the Ni2+:NTA SAMs, which varied with the position of the His6-tag on the protein. At equal valency but different tag positions on the protein, differences in binding were caused by probing for Ni2+:NTA moieties and by additional electrostatic interactions between different fractions of the β-barrel structure and charged NTA moieties. Potential of mean force calculations indicate there is no specific single-protein interaction mode that provides a clear preferential surface orientation, suggesting that the experimentally measured preference for the end-on orientation is a supra-protein, not a single-protein, effect. PMID:28850777

  3. Improving Large Cetacean Implantable Satellite Tag Designs to Maximize Tag Robustness and Minimize Health Effects to Individual Animals

    DTIC Science & Technology

    2013-09-30

    Designs to Maximize Tag Robustness and Minimize Health Effects to Individual Animals Alexandre N. Zerbini Cascadia Research Collective 218 ½ 4th...the blubber-muscle interface and minimize physical and physiological effects of body penetrating tags to individual animals . OBJECTIVES (1...integrity of designs created in Objective (1) during laboratory experiments and in cetacean carcasses ; (3) Examine structural tissue damage in the

  4. The hard X-ray burst spectrometer on the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Orwig, L. E.; Frost, K. J.; Dennis, B. R.

    1979-01-01

    The primary scientific objective of the spectrometer is to provide a greater understanding of the role of energetic electrons in solar flares. This will be achieved by observations of high energy X-rays in the energy range from 20 to 200 keV with time resolution of 0.128s on a continuous basis and as short as 1 ms for limited intervals. The X-ray detector is an actively shielded CsI(Na) crystal with a thickness of 0.635 cm and a sensitive area of 71 sq cm. In the first year after launch, it is expected that approximately 1000 flares above the sensitivity threshold of 0.2 photons/(sq cm s) lasting for one second, will be detected.

  5. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  6. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  7. A wireless sensor tag platform for container security and integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. Thismore » allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.« less

  8. A wireless sensor tag platform for container security and integrity

    NASA Astrophysics Data System (ADS)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    2011-04-01

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. This allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.

  9. Polarised Photon Beams for the BGO-OD Experiment at ELSA

    NASA Astrophysics Data System (ADS)

    Zimmermann, T.; Bella, A.; Alef, S.; Bayadilov, D.; Beck, R.; Becker, M.; Bielefeldt, P.; Boese, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.

    The new BGO-OD experiment at the electron accelerator ELSA, of the University of Bonn, is designed to study the reaction dynamics of nucleon excitations in meson photoproduction. It consists of a central BGO calorimeter with a magnetic spectrometer in forward direction. The physics programme includes the measurement of polarisation observables using linearly and circularly polarised photon beams. Linear polarisation is obtained by coherent bremsstrahlung off a diamond crystal, and circular polarisation is obtained via bremsstrahlung from longitudinally polarised electrons. The degree of linear polarisation is determined from the bremsstrahlung spectrum itself. To determine the polarisation of the circularly polarised photon beam, the polarisation of the electron beam is measured by a Møller polarimeter. As a preliminary consistency check, the (linear) polarisation observable, Σ, was compared to world data for π0 and η photoproduction. To determine the degree of circular polarisation, a Møller polarimeter was setup and first measurements of the electron beam polarisation performed.

  10. Synaptic Tagging During Memory Allocation

    PubMed Central

    Rogerson, Thomas; Cai, Denise; Frank, Adam; Sano, Yoshitake; Shobe, Justin; Aranda, Manuel L.; Silva, Alcino J.

    2014-01-01

    There is now compelling evidence that the allocation of memory to specific neurons (neuronal allocation) and synapses (synaptic allocation) in a neurocircuit is not random and that instead specific mechanisms, such as increases in neuronal excitability and synaptic tagging and capture, determine the exact sites where memories are stored. We propose an integrated view of these processes, such that neuronal allocation, synaptic tagging and capture, spine clustering and metaplasticity reflect related aspects of memory allocation mechanisms. Importantly, the properties of these mechanisms suggest a set of rules that profoundly affect how memories are stored and recalled. PMID:24496410

  11. A universal TagModule collection for parallel genetic analysis of microorganisms

    PubMed Central

    Oh, Julia; Fung, Eula; Price, Morgan N.; Dehal, Paramvir S.; Davis, Ronald W.; Giaever, Guri; Nislow, Corey; Arkin, Adam P.; Deutschbauer, Adam

    2010-01-01

    Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era. PMID:20494978

  12. Novel and efficient tag SNPs selection algorithms.

    PubMed

    Chen, Wen-Pei; Hung, Che-Lun; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2014-01-01

    SNPs are the most abundant forms of genetic variations amongst species; the association studies between complex diseases and SNPs or haplotypes have received great attention. However, these studies are restricted by the cost of genotyping all SNPs; thus, it is necessary to find smaller subsets, or tag SNPs, representing the rest of the SNPs. In fact, the existing tag SNP selection algorithms are notoriously time-consuming. An efficient algorithm for tag SNP selection was presented, which was applied to analyze the HapMap YRI data. The experimental results show that the proposed algorithm can achieve better performance than the existing tag SNP selection algorithms; in most cases, this proposed algorithm is at least ten times faster than the existing methods. In many cases, when the redundant ratio of the block is high, the proposed algorithm can even be thousands times faster than the previously known methods. Tools and web services for haplotype block analysis integrated by hadoop MapReduce framework are also developed using the proposed algorithm as computation kernels.

  13. Food Iron Absorption Measured by an Extrinsic Tag

    PubMed Central

    Cook, J. D.; Layrisse, M.; Martinez-Torres, C.; Walker, R.; Monsen, E.; Finch, C. A.

    1972-01-01

    The paper describes the use of an extrinsic tag of inorganic radioiron to determine the total absorption of nonheme iron from a complete meal. The method was developed by measuring the iron absorbed from vegetable foods containing biosynthetically incorporated 55Fe (intrinsic tag) and from 59Fe added as a small dose of inorganic iron to the same meal (extrinsic tag). In studies with maize, black bean, and wheat, a consistent extrinsic: intrinsic radioiron absorption ratio averaging 1.10 was observed. Similar results were obtained with either ferrous or ferric iron as the extrinsic tag, and with doses of the latter ranging from 0.001 to 0.5 mg iron added to a test meal containing 2-4 mg of food iron. Adding the radioiron at different stages in preparation of the test meal also had little effect. Separate administration of the extrinsic tag was less satisfactory when small portions of a single food were employed, but with a complete meal, the separate dose was preferable. The extrinsic tag provided a valid measure of absorption despite marked differences in the iron status of the subject, and with wide changes in absorption imposed by adding desferrioxamine or ascorbic acid to the test meal. These findings indicate that there is a common pool of nonheme iron, the absorption of which is influenced by various blocking or enhancing substances present in the meal. PMID:5062612

  14. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  15. Detector modules and spectrometers for the TIME-Pilot [CII] intensity mapping experiment

    NASA Astrophysics Data System (ADS)

    Hunacek, Jonathon; Bock, James; Bradford, C. Matt; Bumble, Bruce; Chang, Tzu-Ching; Cheng, Yun-Ting; Cooray, Asantha; Crites, Abigail; Hailey-Dunsheath, Steven; Gong, Yan; Li, Chao-Te; O'Brient, Roger; Shirokoff, Erik; Shiu, Corwin; Sun, Jason; Staniszewski, Zachary; Uzgil, Bade; Zemcov, Michael

    2016-07-01

    This proceeding presents the current TIME-Pilot instrument design and status with a focus on the close-packed modular detector arrays and spectrometers. Results of laboratory tests with prototype detectors and spectrometers are discussed. TIME-Pilot is a new mm-wavelength grating spectrometer array under development that will study the Epoch of Reionization (the period of time when the first stars and galaxies ionized the intergalactic medium) by mapping the fluctuations of the redshifted 157:7 μm emission line of singly ionized carbon ([CII]) from redshift z 5:2 to 8:5. As a tracer of star formation, the [CII] power spectrum can provide information on the sources driving reionization and complements 21 cm data (which traces neutral hydrogen in the intergalactic medium). Intensity mapping provides a measure of the mean [CII] intensity without the need to resolve and detect faint sources individually. We plan to target a 1 degree by 0.35 arcminute field on the sky and a spectral range of 199-305 GHz, producing a spatial-spectral slab which is 140 Mpc by 0.9 Mpc on-end and 1230 Mpc in the redshift direction. With careful removal of intermediate-redshift CO sources, we anticipate a detection of the halo-halo clustering term in the [CII] power spectrum consistent with current models for star formation history in 240 hours on the JCMT. TIME-Pilot will use two stacks of 16 parallel-plate waveguide spectrometers (one stack per polarization) with a resolving power R 100 and a spectral range of 183 to 326 GHz. The range is divided into 60 spectral channels, of which 16 at the band edges on each spectrometer serve as atmospheric monitors. The diffraction gratings are curved to produce a compact instrument, each focusing the diffracted light onto an output arc sampled by the 60 bolometers. The bolometers are built in buttable dies of 8 (low freqeuency) or 12 (high frequency) spectral channels by 8 spatial channels and are mated to the spectrometer stacks. Each detector

  16. Charged pions tagged with polarized photons probing strong C P violation in a chiral-imbalance medium

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Mamiya; Harada, Masayasu; Matsuzaki, Shinya; Ouyang, Ruiwen

    2017-06-01

    It is expected that in a hot QCD system, a local parity-odd domain can be produced due to nonzero chirality, which is induced from the difference of winding numbers carried by the gluon topological configuration (QCD sphaleron). This local domain is called the chiral-imbalance medium, characterized by nonzero chiral chemical potential, which can be interpreted as the time variation of the strong C P phase. We find that the chiral chemical potential generates the parity breaking term in the electromagnetic form factor of charged pions. Heavy ion collision experiments could observe the phenomenological consequence of this parity-odd form factor through the elastic scattering of a pion and a photon in the medium. Then we quantify the asymmetry rate of the parity violation by measuring the polarization of the photon associated with the pion, and discuss how it could be measured in a definite laboratory frame. We roughly estimate the typical size of the asymmetry, just by picking up the pion resonant process, and find that the signal can be sufficiently larger than possible background events from parity-breaking electroweak process. Our findings might provide a novel possibility to make a manifest detection for the remnant of the strong C P violation.

  17. On energy harvesting for augmented tags

    NASA Astrophysics Data System (ADS)

    Allane, Dahmane; Duroc, Yvan; Andia Vera, Gianfranco; Touhami, Rachida; Tedjini, Smail

    2017-02-01

    In this paper, the harmonic signals generated by UHF RFID chips, usually considered as spurious effects and unused, are exploited. Indeed, the harmonic signals are harvested to feed a supplementary circuitry associated with a passive RFID tag. Two approaches are presented and compared. In the first one, the third-harmonic signal is combined with an external 2.45-GHz Wi-Fi signal. The integration is done in such a way that the composite signal boosts the conversion efficiency of the energy harvester. In the second approach, the third-harmonic signal is used as the only source of a harvester that energizes a commercial temperature sensor associated with the tag. The design procedures of the two "augmented-tag" approaches are presented. The performance of each system is simulated with ADS software, and using Harmonic Balance tool (HB), the results obtained in simulation and measurements are compared also. xml:lang="fr"

  18. Evaluation of methods for attaching PIT tags and biotelemetry devices to freshwater mussels

    USGS Publications Warehouse

    Young, S.P.; Isely, J.J.

    2008-01-01

    We evaluated methods to attach PIT tags and transmitters to freshwater mussels. Mussels received externally-mounted PIT tags using cyanoacrylate or underwater epoxy, and a sub-group of those with PIT tags attached using cyanoacrylate also received dummy transmitters. Tag retention and survival were 100% after a 30 day laboratory observation period for each method. During the subsequent 18 months of field observation, underwater epoxy and cyanoacrylate proved to be adequate adhesives for attaching PIT tags and transmitters. Epoxy performed best with 100% PIT tag retention. Cyanoacrylate also provided high retention rates of PIT tags and transmitters, >90%. Mortality was minimal at 4.7% for all relocated mussels over 18 months. All mortalities were those tagged with cyanoacrylate. Three of the mortalities occurred among mussels fitted with dummy transmitters, and seven among PIT tags only. Percent recapture of the different tag/adhesive combinations ranged from 48 - 77.5% during 6- and 18-month surveys. Results suggest both adhesives provide a reliable method for external attachment of tags during freshwater mussel research; however, epoxy may be better suited because of slightly higher tag retention and reduced emersion times during attachment. Copyright ?? 2008 Malacological Society of Australasia.

  19. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.

    PubMed

    D'Angelo, Francesco; Mics, Zoltán; Bonn, Mischa; Turchinovich, Dmitry

    2014-05-19

    Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science.

  20. InkTag: Secure Applications on an Untrusted Operating System.

    PubMed

    Hofmann, Owen S; Kim, Sangman; Dunn, Alan M; Lee, Michael Z; Witchel, Emmett

    2013-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification , a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes.

  1. Synaptic Tagging, Evaluation of Memories, and the Distal Reward Problem

    ERIC Educational Resources Information Center

    Papper, Marc; Kempter, Richard; Leibold, Christian

    2011-01-01

    Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with…

  2. Array processing for RFID tag localization exploiting multi-frequency signals

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin; Li, Xin; Amin, Moeness G.

    2009-05-01

    RFID is an increasingly valuable business and technology tool for electronically identifying, locating, and tracking products, assets, and personnel. As a result, precise positioning and tracking of RFID tags and readers have received considerable attention from both academic and industrial communities. Finding the position of RFID tags is considered an important task in various real-time locating systems (RTLS). As such, numerous RFID localization products have been developed for various applications. The majority of RFID positioning systems is based on the fusion of pieces of relevant information, such as the range and the direction-of-arrival (DOA). For example, trilateration can determine the tag position by using the range information of the tag estimated from three or more spatially separated reader antennas. Triangulation is another method to locate RFID tags that use the direction-of-arrival (DOA) information estimated at multiple spatially separated locations. The RFID tag positions can also be determined through hybrid techniques that combine the range and DOA information. The focus of this paper to study the design and performance of the localization of passive RFID tags using array processing techniques in a multipath environment, and exploiting multi-frequency CW signals. The latter are used to decorrelate the coherent multipath signals for effective DOA estimation and for the purpose of accurate range estimation. Accordingly, the spatial and frequency dimensionalities are fully utilized for robust and accurate positioning of RFID tags.

  3. Postprandial phase time influences the uptake of TAG from postprandial TAG-rich lipoproteins by THP-1 macrophages.

    PubMed

    Cabello-Moruno, Rosana; Sinausia, Laura; Botham, Kathleen M; Montero, Emilio; Avella, Michael; Perona, Javier S

    2014-11-14

    Postprandial TAG-rich lipoproteins (TRL) can be taken up by macrophages, leading to the formation of foam cells, probably via receptor-mediated pathways. The present study was conducted to investigate whether the postprandial time point at which TRL are collected modulates this process. A meal containing refined olive oil was given to nine healthy young men and TRL were isolated from their serum at 2, 4 and 6 h postprandially. The lipid class and apoB compositions of TRL were determined by HPLC and SDS-PAGE, respectively. The accumulation of lipids in macrophages was determined after the incubation of THP-1 macrophages with TRL. The gene expression of candidate receptors was measured by real-time PCR. The highest concentrations of TAG, apoB48 and apoB100 in TRL were observed at 2 h after the consumption of the test meal. However, excessive intracellular TAG accumulation in THP-1 macrophages was observed in response to incubation with TRL isolated at 4 h, when their particle size (estimated as the TAG:apoB ratio) was intermediate. The abundance of mRNA transcripts in macrophages in response to incubation with TRL was down-regulated for LDL receptor (LDLR), slightly up-regulated for VLDL receptor and remained unaltered for LDLR-related protein, but no effect of the postprandial time point was observed. In contrast, the mRNA expression of scavenger receptors SRB1, SRA2 and CD36 was higher when cells were incubated with TRL isolated at 4 h after the consumption of the test meal. In conclusion, TRL led to excessive intracellular TAG accumulation in THP-1 macrophages, which was greater when cells were incubated with intermediate-sized postprandial TRL isolated at 4 h and was associated with a significant increase in the mRNA expression of scavenger receptors.

  4. Methyl-CpG island-associated genome signature tags

    DOEpatents

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  5. Extended-Range Passive RFID and Sensor Tags

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Kennedy, Timothy F.; Lin, Gregory Y.; Barton, Richard

    2012-01-01

    Extended-range passive radio-frequency identification (RFID) tags and related sensor tags are undergoing development. A tag of this type incorporates a retroreflective antenna array, so that it reflects significantly more signal power back toward an interrogating radio transceiver than does a comparable passive RFID tag of prior design, which does not incorporate a retroreflective antenna array. Therefore, for a given amount of power radiated by the transmitter in the interrogating transceiver, a tag of this type can be interrogated at a distance greater than that of the comparable passive RFID or sensor tag of prior design. The retroreflective antenna array is, more specifically, a Van Atta array, named after its inventor and first published in a patent issued in 1959. In its simplest form, a Van Atta array comprises two antenna elements connected by a transmission line so that the signal received by each antenna element is reradiated by the other antenna element (see Figure 1). The phase relationships among the received and reradiated signals are such as to produce constructive interference of the reradiated signals; that is, to concentrate the reradiated signal power in a direction back toward the source. Hence, an RFID tag equipped with a Van Atta antenna array automatically tracks the interrogating transceiver. The effective gain of a Van Atta array is the same as that of a traditional phased antenna array having the same number of antenna elements. Additional pairs of antenna elements connected by equal-length transmission lines can be incorporated into a Van Atta array to increase its directionality. Like some RFID tags here-to-fore commercially available, an RFID or sensor tag of the present developmental type includes one-port surface-acoustic-wave (SAW) devices. In simplified terms, the mode of operation of a basic one-port SAW device as used heretofore in an RFID device is the following: An interrogating radio signal is converted, at an input end, from

  6. Movements of striped mullet, Mugil cephalus, tagged in Everglades National Park, Florida

    USGS Publications Warehouse

    Funicelli, N.A.; Meineke, D.A.; Bryant, H.E.; Dewey, M.R.; Ludwig, G.M.; Mengel, L.S.

    1989-01-01

    The movements of striped mullet, Mugil cephalus, were studied from fish tagged in Everglades National Park. Florida. A total of 16,604 fish were tagged from March 1984 to September 1985. During the period December 1984 through February 1985 recaptured tagged fish moved significantly further and more northerly out of the Park's waters than they did the rest of the year. Tags were returned from 2.8% of the fish tagged along the west coast and from 0.3% of the fish tagged in Florida Bay and west coast mullet form a series of spatially overlapping stocks.

  7. Passive UHF RFID Tag for Multispectral Assessment

    PubMed Central

    Escobedo, Pablo; Carvajal, Miguel A.; Capitán-Vallvey, Luis F.; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J.

    2016-01-01

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening. PMID:27428973

  8. Passive UHF RFID Tag for Multispectral Assessment.

    PubMed

    Escobedo, Pablo; Carvajal, Miguel A; Capitán-Vallvey, Luis F; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J

    2016-07-14

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening.

  9. Design considerations and tradeoffs for passive RFID tags

    NASA Astrophysics Data System (ADS)

    Hussien, Faisal A.; Turker, Didem Z.; Srinivasan, Rangakrishnan; Mobarak, Mohamed S.; Cortes, Fernando P.; Sanchez-Sinencio, Edgar

    2005-06-01

    Radio Frequency Identification (RFID) systems are widely used in a variety of tracking, security and tagging applications. Their operation in non line-of-sight environments makes them superior over similar devices such as barcode and infrared tags. RFID systems span a wide range of applications: medical history storage, dental prosthesis tracking, oil drilling pipe and concrete stress monitoring, toll ways services, animal tracking applications, etc. Passive RFID tags generate their power from the incoming signal; therefore, they do not require a power source. Accordingly, minimizing the power consumption and the implementation area are usually the main design considerations. This paper presents a complete analysis on designing a passive RFID tag. A system design methodology is introduced including the main issues and tradeoffs between different design parameters. The uplink modulation techniques used (ASK, PSK, FSK, and PWM) are illustrated showing how to choose the appropriate signaling scheme for a specific data rate, a certain distance of operation and a limited power consumption budget. An antenna system (transmitter and receiver) is proposed providing the maximum distance of operation with the transmitted power stated by FCC regulations. The backscatter modulation scheme used in the downlink is shown whether to be ASK-BM or PSK-BM and the differences between them are discussed. The key building blocks such as the charge pump, voltage reference, and the regulator used to generate the DC supply voltage from the incoming RF signal are discussed along with their design tradeoffs. A complete architecture for a passive RFID tag is provided as an example to illustrate the proposed RFID tag design methodology.

  10. Sensitive Carbohydrate Detection using Surface Enhanced Raman Tagging

    PubMed Central

    Vangala, Karthikeshwar; Yanney, Michael; Hsiao, Cheng-Te; Wu, Wells W.; Shen, Rong-Fong; Zou, Sige; Sygula, Andrzej; Zhang, Dongmao

    2010-01-01

    Glycomic analysis is an increasingly important field in biological and biomedical research as glycosylation is one of the most important protein post-translational modifications. We have developed a new technique to detect carbohydrates using surface enhanced Raman spectroscopy (SERS) by designing and applying a Rhodamine B derivative as the SERS tag. Using a reductive amination reaction, the Rhodamine-based tag (RT) was successfully conjugated to three model carbohydrates (glucose, lactose and glucuronic acid). SERS detection limits obtained with 632 nm HeNe laser were ~1 nM in concentration for all the RT-carbohydrate conjugates and ~10 fmol in total sample consumption. The dynamic range of the SERS method is about 4 orders of magnitude, spanning from 1 nM to 5 µM. Ratiometric SERS quantification using isotope-substituted SERS internal references also allows comparative quantifications of carbohydrates labeled with RT and deuterium/hydrogen substituted RT tags, respectively. In addition to enhancing the SERS detection of the tagged carbohydrates, the Rhodamine tagging facilitates fluorescence and mass spectrometric detection of carbohydrates. Current fluorescence sensitivity of RT-carbohydrates is ~ 3 nM in concentration while the mass spectrometry (MS) sensitivity is about 1 fmol that was achieved with linear ion trap electrospray ionization (ESI)-MS instrument. Potential applications that take advantage of the high SERS, fluorescence and MS sensitivity of this SERS tagging strategy are discussed for practical glycomic analysis where carbohydrates may be quantified with a fluorescence and SERS technique, and then identified with ESI-MS techniques. PMID:21082777

  11. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  12. Diffraction of real and virtual photons in a pyrolytic graphite crystal as source of intensive quasimonochromatic X-ray beam

    NASA Astrophysics Data System (ADS)

    Bogomazova, E. A.; Kalinin, B. N.; Naumenko, G. A.; Padalko, D. V.; Potylitsyn, A. P.; Sharafutdinov, A. F.; Vnukov, I. E.

    2003-01-01

    A series of experiments on the parametric X-rays radiation (PXR) generation and radiation soft component diffraction of relativistic electrons in pyrolytic graphite (PG) crystals have been carried out at the Tomsk synchrotron. It is shown that the experimental results with PG crystals are explained by the kinematic PXR theory if we take into account a contribution of the real photons diffraction (transition radiation, bremsstrahlung and PXR photons as well). The measurements of the emission spectrum of channeled electrons in the photon energy range much smaller than the characteristic energy of channeling radiation have been performed with a crystal-diffraction spectrometer. For electrons incident along the <1 1 0> axis of a silicon crystal, the radiation intensity in the energy range 30⩽ ω⩽360 keV exceeds the bremsstrahlung one almost by an order of magnitude. Different possibilities to create an effective source of the monochromatic X-ray beam based on the real and virtual photons diffraction in the PG crystals have been considered.

  13. Resolution-enhanced Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

    1993-01-01

    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

  14. A 2 m inelastic x-ray scattering spectrometer at CMC-XOR, Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J. P.; Coburn, D. S.; Kim, Y. J.

    2007-07-01

    The design and commissioning of an inelastic X-ray scattering instrument at CMC-XOR at the Advanced Photon Source is reported. The instrument features a 2 m vertical-scattering arm with a novel counterweight design to reduce the twisting moment as the arm is moved in the scattering plane. A Ge(733) spherical analyzer was fabricated and an overall resolution of 118 meV (FWHM) was obtained with a Si(444) monochromator and a Si(111) pre-monochromator. Early results from a representative cuprate, La{sub 2}CuO{sub 4}, are reported.

  15. 40 CFR 35.4165 - When does EPA award a TAG?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false When does EPA award a TAG? 35.4165... does EPA award a TAG? (a) EPA may award TAGs throughout the Superfund process, including during... the site is proposed for listing on the NPL. (b) Based on the availability of funds, EPA may delay...

  16. ITER-relevant calibration technique for soft x-ray spectrometer.

    PubMed

    Rzadkiewicz, J; Książek, I; Zastrow, K-D; Coffey, I H; Jakubowska, K; Lawson, K D

    2010-10-01

    The ITER-oriented JET research program brings new requirements for the low-Z impurity monitoring, in particular for the Be—the future main wall component of JET and ITER. Monitoring based on Bragg spectroscopy requires an absolute sensitivity calibration, which is challenging for large tokamaks. This paper describes both “component-by-component” and “continua” calibration methods used for the Be IV channel (75.9 Å) of the Bragg rotor spectrometer deployed on JET. The calibration techniques presented here rely on multiorder reflectivity calculations and measurements of continuum radiation emitted from helium plasmas. These offer excellent conditions for the absolute photon flux calibration due to their low level of impurities. It was found that the component-by-component method gives results that are four times higher than those obtained by means of the continua method. A better understanding of this discrepancy requires further investigations.

  17. Wireless SAW passive tag temperature measurement in the collision case

    NASA Astrophysics Data System (ADS)

    Sorokin, A.; Shepeta, A.; Wattimena, M.

    2018-04-01

    This paper describes temperature measurement in the multisensor systems based on the radio-frequency identification SAW passive tags which are currently applied in the electric power systems and the switchgears. Different approaches of temperature measurement in the collision case are shown here. The study is based on the tag model with specific topology, which allows us to determine temperature through the response signal with time-frequency information. This research considers the collision case for several passive tags as the temperature sensors which are placed in the switchgear. This research proposal is to analyze the possibility of using several SAW passive sensors in the collision case. We consider the using of the different typical elements for passive surface acoustic wave tag which applies as an anticollision passive sensor. These wireless sensors based on the surface acoustic waves tags contain specifically coded structures. This topology makes possible the reliability of increasing tag identification and the temperature measurement in the collision case. As the results for this case we illustrate simultaneous measurement of at least six sensors.

  18. Electron/proton spectrometer certification documentation analyses

    NASA Technical Reports Server (NTRS)

    Gleeson, P.

    1972-01-01

    A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.

  19. Measuring Transmission Efficiencies Of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1989-01-01

    Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.

  20. First measurement of the polarization observable E in the p → (γ → ,π+) n reaction up to 2.25 GeV

    NASA Astrophysics Data System (ADS)

    Strauch, S.; Briscoe, W. J.; Döring, M.; Klempt, E.; Nikonov, V. A.; Pasyuk, E.; Rönchen, D.; Sarantsev, A. V.; Strakovsky, I.; Workman, R.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Anefalos Pereira, S.; Anisovich, A. V.; Badui, R. A.; Ball, J.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Benmouna, N.; Biselli, A. S.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; Dashyan, N.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; O'Rielly, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Peng, P.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seely, M. L.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stoler, P.; Stepanyan, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Tucker, R.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-11-01

    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction γ → p → →π+ n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, Jülich-Bonn, and SAID groups.

  1. First measurement of the polarization observable E in the p →(y →π +)n reaction up to 2.25 GeV

    DOE PAGES

    Strauch, Steffen

    2015-08-28

    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E , for the reaction y →p →→π +n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have beenmore » included in new multipole analyses resulting in updated nucleon resonance parameters. Lastly, we report updated fits from the Bonn–Gatchina, Jülich–Bonn, and SAID groups.« less

  2. Photons, photon jets, and dark photons at 750 GeV and beyond.

    PubMed

    Dasgupta, Basudeb; Kopp, Joachim; Schwaller, Pedro

    2016-01-01

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to "photon jets". For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance [Formula: see text] can be mimicked by a process of the form [Formula: see text], where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an [Formula: see text] pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to [Formula: see text], where there are no photons at all but the dark photon [Formula: see text] decays to [Formula: see text] pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  3. InkTag: Secure Applications on an Untrusted Operating System

    PubMed Central

    Hofmann, Owen S.; Kim, Sangman; Dunn, Alan M.; Lee, Michael Z.; Witchel, Emmett

    2014-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification, a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes. PMID:24429939

  4. Feasibility of Surgically Implanting Acoustic Tags into Pacific Herring

    USGS Publications Warehouse

    Hershberger, Paul K.; Gregg, Jacob L.; Seitz, A.C.; Norcross, Brenda L.; Payne, J.C.; Kagley, A.N.; Meloy, B

    2010-01-01

    Internally implanted acoustic tags represent a potentially valuable approach to assessing the seasonal migration and distribution patterns of Pacific herring Clupea palasii. We examined the feasibility of implanting two sizes of dummy acoustic tags (9 mm in diameter × 21 mm long, 1.6 g; and 7 mm in diameter × 18 mm long, 0.7 g) in Pacific herring that had been held in captivity for nearly a year and that ranged from 165 to 215 mm in fork length (FL) and from 41.6 to 142.6 g. Relatively low mortality (4%) and tag shedding (4%), as well as growth similar to that observed in control fish after 135 d, indicate that, with proper handling, Pacific herring are amenable to surgical implantation of acoustic tags.

  5. 15 pixels digital autocorrelation spectrometer system

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Kim, Hyo-Ryung; Kim, Kwang-Dong; Chung, Mun-Hee; Timoc, C.

    2006-06-01

    In this paper describes the system configuration and the some performance test results of the 15 pixels digital autocorrelation spectrometer to be used at the Taeduk Radio Astronomy Observatory (TRAO) of Korea. This autocorrelation spectrometer instrument enclosed in a 3-slot VXI module and controlled via a USB port by a backend PC. This spectrometer system consists of the 4 band-pass filters unit, the digitizer, the 512 lags correlator, the clock distribution unit, and USB controller. And here we describe the frequency accuracy and the root-mean-square noise characteristic of this spectrometer. After some calibration procedure, this spectrometer can be use as the back-end system at TRAO for the 3x5 focal plane array receivers.

  6. Design and Calibration of a Dispersive Imaging Spectrometer Adaptor for a Fast IR Camera on NSTX-U

    NASA Astrophysics Data System (ADS)

    Reksoatmodjo, Richard; Gray, Travis; Princeton Plasma Physics Laboratory Team

    2017-10-01

    A dispersive spectrometer adaptor was designed, constructed and calibrated for use on a fast infrared camera employed to measure temperatures on the lower divertor tiles of the NSTX-U tokamak. This adaptor efficiently and evenly filters and distributes long-wavelength infrared photons between 8.0 and 12.0 microns across the 128x128 pixel detector of the fast IR camera. By determining the width of these separated wavelength bands across the camera detector, and then determining the corresponding average photon count for each photon wavelength, a very accurate measurement of the temperature, and thus heat flux, of the divertor tiles can be calculated using Plank's law. This approach of designing an exterior dispersive adaptor for the fast IR camera allows accurate temperature measurements to be made of materials with unknown emissivity. Further, the relative simplicity and affordability of this adaptor design provides an attractive option over more expensive, slower, dispersive IR camera systems. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  7. Solid tags for identifying failed reactor components

    DOEpatents

    Bunch, Wilbur L.; Schenter, Robert E.

    1987-01-01

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  8. RAMTaB: Robust Alignment of Multi-Tag Bioimages

    PubMed Central

    Raza, Shan-e-Ahmed; Humayun, Ahmad; Abouna, Sylvie; Nattkemper, Tim W.; Epstein, David B. A.; Khan, Michael; Rajpoot, Nasir M.

    2012-01-01

    Background In recent years, new microscopic imaging techniques have evolved to allow us to visualize several different proteins (or other biomolecules) in a visual field. Analysis of protein co-localization becomes viable because molecules can interact only when they are located close to each other. We present a novel approach to align images in a multi-tag fluorescence image stack. The proposed approach is applicable to multi-tag bioimaging systems which (a) acquire fluorescence images by sequential staining and (b) simultaneously capture a phase contrast image corresponding to each of the fluorescence images. To the best of our knowledge, there is no existing method in the literature, which addresses simultaneous registration of multi-tag bioimages and selection of the reference image in order to maximize the overall overlap between the images. Methodology/Principal Findings We employ a block-based method for registration, which yields a confidence measure to indicate the accuracy of our registration results. We derive a shift metric in order to select the Reference Image with Maximal Overlap (RIMO), in turn minimizing the total amount of non-overlapping signal for a given number of tags. Experimental results show that the Robust Alignment of Multi-Tag Bioimages (RAMTaB) framework is robust to variations in contrast and illumination, yields sub-pixel accuracy, and successfully selects the reference image resulting in maximum overlap. The registration results are also shown to significantly improve any follow-up protein co-localization studies. Conclusions For the discovery of protein complexes and of functional protein networks within a cell, alignment of the tag images in a multi-tag fluorescence image stack is a key pre-processing step. The proposed framework is shown to produce accurate alignment results on both real and synthetic data. Our future work will use the aligned multi-channel fluorescence image data for normal and diseased tissue specimens to

  9. Experimental validation of a coupled neutron-photon inverse radiation transport solver

    NASA Astrophysics Data System (ADS)

    Mattingly, John; Mitchell, Dean J.; Harding, Lee T.

    2011-10-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  10. Influence of the Distribution of Tag IDs on RFID Memoryless Anti-Collision Protocols

    PubMed Central

    Cmiljanic, Nikola; Landaluce, Hugo; Perallos, Asier; Arjona, Laura

    2017-01-01

    In recent years, Radio Frequency Identification (RFID) has become very popular. The main feature of this technology is that RFID tags do not require close handling and no line of sight is required between the reader and the tags. RFID is a technology that uses radio frequencies in order to identify tags, which do not need to be positioned accurately relative to the reader. Tags share the communication channel, increasing the likelihood of causing a problem, viz., a message collision. Tree based protocols can resolve these collisions, but require a uniform tag ID distribution. This means they are very dependent of the distribution of the IDs of the tags. Tag IDs are written in the tag and contain a predefined bit string of data. A study of the influence of the tag ID distribution on the protocols’ behaviour is proposed here. A new protocol, called the Flexible Query window Tree (FQwT) is presented to estimate the tag ID distribution, taking into consideration the type of distribution. The aim is to create a flexible anti-collision protocol in order to identify a set of tags that constitute an ID distribution. As a result, the reader classifies tags into groups determined by using a distribution estimator. Simulations show that the FQwT protocol contributes to significant reductions in identification time and energy consumption regardless of the type of ID distribution. PMID:28817070

  11. Influence of the Distribution of Tag IDs on RFID Memoryless Anti-Collision Protocols.

    PubMed

    Cmiljanic, Nikola; Landaluce, Hugo; Perallos, Asier; Arjona, Laura

    2017-08-17

    In recent years, Radio Frequency Identification (RFID) has become very popular. The main feature of this technology is that RFID tags do not require close handling and no line of sight is required between the reader and the tags. RFID is a technology that uses radio frequencies in order to identify tags, which do not need to be positioned accurately relative to the reader. Tags share the communication channel, increasing the likelihood of causing a problem, viz., a message collision. Tree based protocols can resolve these collisions, but require a uniform tag ID distribution. This means they are very dependent of the distribution of the IDs of the tags. Tag IDs are written in the tag and contain a predefined bit string of data. A study of the influence of the tag ID distribution on the protocols' behaviour is proposed here. A new protocol, called the Flexible Query window Tree (FQwT) is presented to estimate the tag ID distribution, taking into consideration the type of distribution. The aim is to create a flexible anti-collision protocol in order to identify a set of tags that constitute an ID distribution. As a result, the reader classifies tags into groups determined by using a distribution estimator. Simulations show that the FQwT protocol contributes to significant reductions in identification time and energy consumption regardless of the type of ID distribution.

  12. Imaging spectrometer/camera having convex grating

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2000-01-01

    An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.

  13. Expected scientific performance of the three spectrometers on the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Jelinsky, P.; Vedder, P. W.; Malina, R. F.

    1990-01-01

    The expected in-orbit performance of the three spectrometers included on the Extreme Ultraviolet Explorer astronomical satellite is presented. Recent calibrations of the gratings, mirrors and detectors using monochromatic and continuum EUV light sources allow the calculation of the spectral resolution and throughput of the instrument. An effective area range of 0.2 to 2.8 sq cm is achieved over the wavelength range 70-600 A with a peak spectral resolution (FWHM) of 360 assuming a spacecraft pointing knowledge of 10 arc seconds (FWHM). For a 40,000 sec observation, the average 3 sigma sensitivity to a monochromatic line source is 0.003 photons/sq cm s. Simulated observations of known classes of EUV sources, such as hot white dwarfs, and cataclysmic variables are also presented.

  14. Three-photon N00N states generated by photon subtraction from double photon pairs.

    PubMed

    Kim, Heonoh; Park, Hee Su; Choi, Sang-Kyung

    2009-10-26

    We describe an experimental demonstration of a novel three-photon N00N state generation scheme using a single source of photons based on spontaneous parametric down-conversion (SPDC). The three-photon entangled state is generated when a photon is subtracted from a double pair of photons and detected by a heralding counter. Interference fringes measured with an emulated three-photon detector reveal the three-photon de Broglie wavelength and exhibit visibility > 70% without background subtraction.

  15. Technique for the application of a streamer-type fish tag

    USGS Publications Warehouse

    Joeris, Leonard S.

    1953-01-01

    Principal features of the technique are: attachment of the plastic tag by means of a nylon-thread loop prepared in advance of field work; use of a curved surgical needle with cutting edge and a split eye for application of the tag. The procedures for splitting the needle's eye and for applying the tag are described and illustrated by a series of photographs.

  16. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  17. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  18. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  19. The use of archived tags in retrospective genetic analysis of fish.

    PubMed

    Bonanomi, Sara; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Hemmer-Hansen, Jakob; Nielsen, Einar E

    2014-05-01

    Collections of historical tissue samples from fish (e.g. scales and otoliths) stored in museums and fisheries institutions are precious sources of DNA for conducting retrospective genetic analysis. However, in some cases, only external tags used for documentation of spatial dynamics of fish populations have been preserved. Here, we test the usefulness of fish tags as a source of DNA for genetic analysis. We extract DNA from historical tags from cod collected in Greenlandic waters between 1950 and 1968. We show that the quantity and quality of DNA recovered from tags is comparable to DNA from archived otoliths from the same individuals. Surprisingly, levels of cross-contamination do not seem to be significantly higher in DNA from external (tag) than internal (otolith) sources. Our study therefore demonstrates that historical tags can be a highly valuable source of DNA for retrospective genetic analysis of fish. © 2013 John Wiley & Sons Ltd.

  20. Single photon source with individualized single photon certifications

    NASA Astrophysics Data System (ADS)

    Migdall, Alan L.; Branning, David A.; Castelletto, Stefania; Ware, M.

    2002-12-01

    As currently implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand. The scheme uses a heralded photon source based on parametric downconversion, but by effectively breaking the trigger detector area into multiple regions, we are able to extract more information about a heralded photon than is possible with a conventional arrangement. This scheme allows photons to be produced along with a quantitative 'certification' that they are single photons. Some of the single-photon certifications can be significantly better than what is possible with conventional downconversion sources, as well as being better than faint laser sources. With such a source of more tightly certified single photons, it should be possible to improve the maximum secure bit rate possible over a quantum cryptographic link. We present an analysis of the relative merits of this method over the conventional arrangement.

  1. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  2. Tagging and Playback Studies to Toothed Whales

    DTIC Science & Technology

    2013-09-30

    different deep-diving species, long-finned pilot whales (Globicephala melas ). b) Compare responses of beaked whales vs other odontocetes to playbacks of...deployments Playbacks Globicephala melas 1 0 Med10 Tag deployments Playbacks Globicephala melas 16 0 Ziphius cavirostris Two days of attempts 0 Med11...Tag deployments Playbacks Globicephala melas 19 8 (4 animals, KW + PRN) 3 RESULTS Over the past three years, we have developed a powerful

  3. Steady-state free precession with myocardial tagging: CSPAMM in a single breathhold.

    PubMed

    Zwanenburg, Jaco J M; Kuijer, Joost P A; Marcus, J Tim; Heethaar, Robert M

    2003-04-01

    A method is presented that combines steady-state free precession (SSFP) cine imaging with myocardial tagging. Before the tagging preparation at each ECG-R wave, the steady-state magnetization is stored as longitudinal magnetization by an alpha/2 flip-back pulse. Imaging is continued immediately after tagging preparation, using linearly increasing startup angles (LISA) with a rampup over 10 pulses. Interleaved segmented k-space ordering is used to prevent artifacts from the increasing signal during the LISA rampup. First, this LISA-SSFP method was evaluated regarding ghost artifacts from the steady-state interruption by comparing LISA with an alpha/2 startup method. Next, LISA-SSFP was compared with spoiled gradient echo (SGRE) imaging, regarding tag contrast-to-noise ratio and tag persistence. The measurements were performed in phantoms and in six subjects applying breathhold cine imaging with tagging (temporal resolution 51 ms). The results show that ghost artifacts are negligible for the LISA method. Compared to the SGRE reference, LISA-SSFP was two times faster, with a slightly better tag contrast-to-noise. Additionally, the tags persisted 126 ms longer with LISA-SSFP than with SGRE imaging. The high efficiency of LISA-SSFP enables the acquisition of complementary tagged (CSPAMM) images in a single breathhold. Copyright 2003 Wiley-Liss, Inc.

  4. efficient association study design via power-optimized tag SNP selection

    PubMed Central

    HAN, BUHM; KANG, HYUN MIN; SEO, MYEONG SEONG; ZAITLEN, NOAH; ESKIN, ELEAZAR

    2008-01-01

    Discovering statistical correlation between causal genetic variation and clinical traits through association studies is an important method for identifying the genetic basis of human diseases. Since fully resequencing a cohort is prohibitively costly, genetic association studies take advantage of local correlation structure (or linkage disequilibrium) between single nucleotide polymorphisms (SNPs) by selecting a subset of SNPs to be genotyped (tag SNPs). While many current association studies are performed using commercially available high-throughput genotyping products that define a set of tag SNPs, choosing tag SNPs remains an important problem for both custom follow-up studies as well as designing the high-throughput genotyping products themselves. The most widely used tag SNP selection method optimizes over the correlation between SNPs (r2). However, tag SNPs chosen based on an r2 criterion do not necessarily maximize the statistical power of an association study. We propose a study design framework that chooses SNPs to maximize power and efficiently measures the power through empirical simulation. Empirical results based on the HapMap data show that our method gains considerable power over a widely used r2-based method, or equivalently reduces the number of tag SNPs required to attain the desired power of a study. Our power-optimized 100k whole genome tag set provides equivalent power to the Affymetrix 500k chip for the CEU population. For the design of custom follow-up studies, our method provides up to twice the power increase using the same number of tag SNPs as r2-based methods. Our method is publicly available via web server at http://design.cs.ucla.edu. PMID:18702637

  5. Recoveries of tagged, hatchery-reared lake trout from Lake Superior

    USGS Publications Warehouse

    Buettner, Howard J.

    1961-01-01

    Plantings that totaled 13,384 tagged, hatchery-reared lake trout (Salvelinus namaycush)—18, 25, 30, or 37 months old—were made at four Lake Superior localities in 1955-57 to: measure possible increases of return from rearing to greater size and age; study the effect of season of planting on the rate of return; compare returns from different types of tags; and follow the movements of hatchery-reared fish. The great advantage of spring over fall planting, demonstrated for fingerling lake trout in earlier experiments, did not hold for fish planted at ages of 18 to 37 months. The improvement of recovery rates with increase of age over the same 18- to 37-month interval appears to be too small to justify the cost of rearing to the higher ages. The recovery rates were closely similar (3.9 to 4.8 percent) for lower-jaw tags and two types of nylon-streamer tags but were much lower than the rate for Petersen tags (12.4 percent). The pins of Petersen tags render the fish highly vulnerable to entanglement in the webbing of gill nets, the principal gear in Lake Superior. Recoveries of Petersen tags also came earlier after planting than did those of other tags. The time between planting and recovery and the distance traveled by the fish were clearly but not closely correlated. Mean distance between points of planting and recovery increased with time out, and average time out increased with the number of miles traveled. More than half of the recoveries of fish that had been at liberty over 2 years were made within 25 miles of the point of release.

  6. HapMap tagSNP transferability in multiple populations: general guidelines

    PubMed Central

    Xing, Jinchuan; Witherspoon, David J.; Watkins, W. Scott; Zhang, Yuhua; Tolpinrud, Whitney; Jorde, Lynn B.

    2008-01-01

    This PDF receipt will only be used as the basis for generating PubMed Central (PMC) documents. PMC documents will be made available for review after conversion (approx. 2–3 weeks time). Any corrections that need to be made will be done at that time. No materials will be released to PMC without the approval of an author. Only the PMC documents will appear on PubMed Central -- this PDF Receipt will not appear on PubMed Central. Linkage disequilibrium (LD) has received much recent attention because of its value in localizing disease-causing genes. Due to the extensive LD between neighboring loci in the human genome, it is believed that a subset of the single nucleotide polymorphisms in a region (tagSNPs) can be selected to capture most of the remaining SNP variants. In this study, we examined LD patterns and HapMap tagSNP transferability in more than 300 individuals. A South Indian and an African Mbuti Pygmy population sample were included to evaluate the performance of HapMap tagSNPs in geographically distinct and genetically isolated populations. Our results show that HapMap tagSNPs selected with r2 >= 0.8 can capture more than 85% of the SNPs in populations that are from the same continental group. Combined tagSNPs from HapMap CEU and CHB+JPT serve as the best reference for the Indian sample. The HapMap YRI are a sufficient reference for tagSNP selection in the Pygmy sample. In addition to our findings, we reviewed over 25 recent studies of tagSNP transferability and propose a general guideline for selecting tagSNPs from HapMap populations. PMID:18482828

  7. Utility of biological sensor tags in animal conservation.

    PubMed

    Wilson, A D M; Wikelski, M; Wilson, R P; Cooke, S J

    2015-08-01

    Electronic tags (both biotelemetry and biologging platforms) have informed conservation and resource management policy and practice by providing vital information on the spatial ecology of animals and their environments. However, the extent of the contribution of biological sensors (within electronic tags) that measure an animal's state (e.g., heart rate, body temperature, and details of locomotion and energetics) is less clear. A literature review revealed that, despite a growing number of commercially available state sensor tags and enormous application potential for such devices in animal biology, there are relatively few examples of their application to conservation. Existing applications fell under 4 main themes: quantifying disturbance (e.g., ecotourism, vehicular and aircraft traffic), examining the effects of environmental change (e.g., climate change), understanding the consequences of habitat use and selection, and estimating energy expenditure. We also identified several other ways in which sensor tags could benefit conservation, such as determining the potential efficacy of management interventions. With increasing sensor diversity of commercially available platforms, less invasive attachment techniques, smaller device sizes, and more researchers embracing such technology, we suggest that biological sensor tags be considered a part of the necessary toolbox for conservation. This approach can measure (in real time) the state of free-ranging animals and thus provide managers with objective, timely, relevant, and accurate data to inform policy and decision making. © 2015 Society for Conservation Biology.

  8. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Predicting floods with Flickr tags.

    PubMed

    Tkachenko, Nataliya; Jarvis, Stephen; Procter, Rob

    2017-01-01

    Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags '#Sandy' or '#flooding'), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak.

  10. Predicting floods with Flickr tags

    PubMed Central

    Jarvis, Stephen; Procter, Rob

    2017-01-01

    Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags ‘#Sandy’ or ‘#flooding’), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak. PMID:28235035

  11. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range

    PubMed Central

    Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther

    2017-01-01

    The availability of silicon photonic integrated circuits (ICs) in the 2–4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III–V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III–V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy. PMID:28777291

  12. Search for Production of Invisible Final States in Single-Photon Decays of Υ(1S)

    NASA Astrophysics Data System (ADS)

    Del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Chistiakova, M. V.; Jensen, F.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Karbach, T. M.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-07-01

    We search for single-photon decays of the Υ(1S) resonance, Υ→γ+invisible, where the invisible state is either a particle of definite mass, such as a light Higgs boson A0, or a pair of dark matter particles, χχ¯. Both A0 and χ are assumed to have zero spin. We tag Υ(1S) decays with a dipion transition Υ(2S)→π+π-Υ(1S) and look for events with a single energetic photon and significant missing energy. We find no evidence for such processes in the mass range mA0≤9.2GeV and mχ≤4.5GeV in the sample of 98×106 Υ(2S) decays collected with the BABAR detector and set stringent limits on new physics models that contain light dark matter states.

  13. Role of attentional tags in working memory-driven attentional capture.

    PubMed

    Kuo, Chun-Yu; Chao, Hsuan-Fu

    2014-08-01

    Recent studies have demonstrated that the contents of working memory capture attention when performing a visual search task. However, it remains an intriguing and unresolved question whether all kinds of items stored in working memory capture attention. The present study investigated this issue by manipulating the attentional tags (target or distractor) associated with information maintained in working memory. The results showed that working memory-driven attentional capture is a flexible process, and that attentional tags associated with items stored in working memory do modulate attentional capture. When items were tagged as a target, they automatically captured attention; however, when items were tagged as a distractor, attentional capture was reduced.

  14. 9 CFR 2.52 - How to obtain tags.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false How to obtain tags. 2.52 Section 2.52 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.52 How to obtain tags. Dealers or exhibitors may obtain...

  15. 9 CFR 2.52 - How to obtain tags.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false How to obtain tags. 2.52 Section 2.52 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.52 How to obtain tags. Dealers or exhibitors may obtain...

  16. 9 CFR 2.52 - How to obtain tags.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false How to obtain tags. 2.52 Section 2.52 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.52 How to obtain tags. Dealers or exhibitors may obtain...

  17. 9 CFR 2.52 - How to obtain tags.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false How to obtain tags. 2.52 Section 2.52 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.52 How to obtain tags. Dealers or exhibitors may obtain...

  18. 9 CFR 2.52 - How to obtain tags.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false How to obtain tags. 2.52 Section 2.52 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Identification of Animals § 2.52 How to obtain tags. Dealers or exhibitors may obtain...

  19. Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    PubMed Central

    Provost, Christopher R.; Sun, Luo

    2010-01-01

    SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. PMID:20485262

  20. On-chip photonic microsystem for optical signal processing based on silicon and silicon nitride platforms

    NASA Astrophysics Data System (ADS)

    Li, Yu; Li, Jiachen; Yu, Hongchen; Yu, Hai; Chen, Hongwei; Yang, Sigang; Chen, Minghua

    2018-04-01

    The explosive growth of data centers, cloud computing and various smart devices is limited by the current state of microelectronics, both in terms of speed and heat generation. Benefiting from the large bandwidth, promising low power consumption and passive calculation capability, experts believe that the integrated photonics-based signal processing and transmission technologies can break the bottleneck of microelectronics technology. In recent years, integrated photonics has become increasingly reliable and access to the advanced fabrication process has been offered by various foundries. In this paper, we review our recent works on the integrated optical signal processing system. We study three different kinds of on-chip signal processors and use these devices to build microsystems for the fields of microwave photonics, optical communications and spectrum sensing. The microwave photonics front receiver was demonstrated with a signal processing range of a full-band (L-band to W-band). A fully integrated microwave photonics transceiver without the on-chip laser was realized on silicon photonics covering the signal frequency of up 10 GHz. An all-optical orthogonal frequency division multiplexing (OFDM) de-multiplier was also demonstrated and used for an OFDM communication system with the rate of 64 Gbps. Finally, we show our work on the monolithic integrated spectrometer with a high resolution of about 20 pm at the central wavelength of 1550 nm. These proposed on-chip signal processing systems potential applications in the fields of radar, 5G wireless communication, wearable devices and optical access networks.

  1. Pseudo-orthogonal frequency coded wireless SAW RFID temperature sensor tags.

    PubMed

    Saldanha, Nancy; Malocha, Donald C

    2012-08-01

    SAW sensors are ideal for various wireless, passive multi-sensor applications because they are small, rugged, radiation hard, and offer a wide range of material choices for operation over broad temperature ranges. The readable distance of a tag in a multi-sensor environment is dependent on the insertion loss of the device and the processing gain of the system. Single-frequency code division multiple access (CDMA) tags that are used in high-volume commercial applications must have universal coding schemes and large numbers of codes. The use of a large number of bits at the common center frequency to achieve sufficient code diversity in CDMA tags necessitates reflector banks with >30 dB loss. Orthogonal frequency coding is a spread-spectrum approach that employs frequency and time diversity to achieve enhanced tag properties. The use of orthogonal frequency coded (OFC) SAW tags reduces adjacent reflector interactions for low insertion loss, increased range, complex coding, and system processing gain. This work describes a SAW tag-sensor platform that reduces device loss by implementing long reflector banks with optimized spectral coding. This new pseudo-OFC (POFC) coding is defined and contrasted with the previously defined OFC coding scheme. Auto- and cross-correlation properties of the chips and their relation to reflectivity per strip and reflector length are discussed. Results at 250 MHz of 8-chip OFC and POFC SAW tags will be compared. The key parameters of insertion loss, cross-correlation, and autocorrelation of the two types of frequency-coded tags will be analyzed, contrasted, and discussed. It is shown that coded reflector banks can be achieved with near-zero loss and still maintain good coding properties. Experimental results and results predicted by the coupling of modes model are presented for varying reflector designs and codes. A prototype 915-MHz POFC sensor tag is used as a wireless temperature sensor and the results are shown.

  2. Real time spectrometer for thermal neutrons from radiotherapic accelerators

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bartesaghi, G.; Bolognini, D.; Conti, V.; Mascagna, V.; Prest, M.; Scazzi, S.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Bevilacqua, R.; Giannini, G.; Totaro, P.; Vallazza, E.

    2007-10-01

    Radiotherapy accelerators can produce high energy photon beams for deep tumour treatments. Photons with energies greater than 8 MeV produce neutrons via photoproduction. The PHONES (PHOto NEutron Source) project is developing a neutron moderator to use the photoproduced neutrons for BNCT (Boron Neutron Capture Therapy) in hospital environments. In this framework we are developing a real time spectrometer for thermal neutrons exploiting the bunch structure of the beam. Since the beam is produced by a linear accelerator, in fact, particles are sent to the patient in bunches with a rate of 150-300 Hz depending on the beam type and energy. The neutron spectrum is usually measured with integrating detectors such as bubble dosimeters or TLDs, which integrate over a time interval and an energy one. We are developing a scintillator detector to measure the neutron spectrum in real time in the interval between bunches, that is in the thermal region. The signals from the scintillator are discriminated and sampled by a dedicated clock in a Cyclone II FPGA by Altera, thus obtaining the neutron time of flight spectrum. The exploited physical process in ordinary plastic scintillators is neutron capture by H with a subsequent γ emission. The measured TOF spectrum has been compared with a BF 3 counter one. A dedicated simulation with MCNP is being developed to extract the energy spectrum from the TOF one. The paper will present the results of the prototype measurements and the status of the simulation.

  3. Preening behavior of adult gyrfalcons tagged with backpack transmitters

    USGS Publications Warehouse

    Booms, T.L.; Schempf, P.F.; Fuller, M.R.

    2011-01-01

    Radio transmitters provide data that enhance understanding of raptor biology (Walls and Kenward 2007) and are now used to answer a multitude of research questions (Meyburg and Fuller 2007). However, transmitters affect the birds that carry them (Barron et al. 2010), and it is important to document and evaluate such effects (Casper 2009). For example, decreased survival has been documented in Prairie Falcons (Falco mexicanus; Steenhof et al. 2006), Northern Goshawks (Accipiter gentilis; Reynolds et al. 2004), and Spotted Owls (Strix occidentalis; Paton et al. 1991) tagged with radio transmitters. However, no such effects were reported for Peregrine Falcons (Falco peregrinus; Fuller et al. 1998, McGrady et al. 2002) and a number of other species (Kenward 2001). White and Garrott (1990) noted that in general, animals tagged with radio transmitters often altered their behaviors for 1–14 d after release during an adjustment period that included increased preening and grooming frequencies. Although more than 90 Gyrfalcons (Falco rusticolus) have been tagged with radio transmitters (e.g., Burnham 2007, McIntyre et al. 2009, T. Booms unpubl. data), the effects of transmitters on this species are not well documented. Anecdotal information suggests some Gyrfalcons might be negatively affected by radio-tagging (Booms et al. 2008). As part of a study investigating Gyrfalcon breeding biology, we conducted opportunistic, focused observations on two radio-tagged adult female Gyrfalcons and their unmarked mates. We here describe and quantify preening behavior of Gyrfalcons shortly after radio-tagging.

  4. HaloTag technology for specific and covalent labeling of fusion proteins.

    PubMed

    Benink, Hélène A; Urh, Marjeta

    2015-01-01

    Appending proteins of interest to fluorescent protein tags such as GFP has revolutionized how proteins are studied in the cellular environment. Over the last few decades many varieties of fluorescent proteins have been generated, each bringing new capability to research. However, taking full advantage of standard fluorescent proteins with advanced and differential features requires significant effort on the part of the researcher. This approach necessitates that many genetic fusions be generated and confirmed to function properly in cells with the same protein of interest. To lessen this burden, a newer category of protein fusion tags termed "self-labeling protein tags" has been developed. This approach utilizes a single protein tag, the function of which can be altered by attaching various chemical moieties (fluorescent labels, affinity handles, etc.). In this way a single genetically encoded protein fusion can easily be given functional diversity and adaptability as supplied by synthetic chemistry. Here we present protein labeling methods using HaloTag technology; comprised of HaloTag protein and the collection of small molecules designed to bind it specifically and provide it with varied functionalities. For imaging purposes these small molecules, termed HaloTag ligands, contain distinct fluorophores. Due to covalent and rapid binding between HaloTag protein and its ligands, labeling is permanent and efficient. Many of these ligands have been optimized for permeability across cellular membranes allowing for live cell labeling and imaging analysis. Nonpermeable ligands have also been developed for specific labeling of surface proteins. Overall, HaloTag is a versatile technology that empowers the end user to label a protein of interest with the choice of different fluorophores while alleviating the need for generation of multiple genetic fusions.

  5. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol.

    PubMed

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function.

  6. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol

    PubMed Central

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function. PMID:26491714

  7. Tag-Based Social Image Search: Toward Relevant and Diverse Results

    NASA Astrophysics Data System (ADS)

    Yang, Kuiyuan; Wang, Meng; Hua, Xian-Sheng; Zhang, Hong-Jiang

    Recent years have witnessed a great success of social media websites. Tag-based image search is an important approach to access the image content of interest on these websites. However, the existing ranking methods for tag-based image search frequently return results that are irrelevant or lack of diversity. This chapter presents a diverse relevance ranking scheme which simultaneously takes relevance and diversity into account by exploring the content of images and their associated tags. First, it estimates the relevance scores of images with respect to the query term based on both visual information of images and semantic information of associated tags. Then semantic similarities of social images are estimated based on their tags. Based on the relevance scores and the similarities, the ranking list is generated by a greedy ordering algorithm which optimizes Average Diverse Precision (ADP), a novel measure that is extended from the conventional Average Precision (AP). Comprehensive experiments and user studies demonstrate the effectiveness of the approach.

  8. Challenges and opportunities in the purification of recombinant tagged proteins.

    PubMed

    Pina, Ana Sofia; Lowe, Christopher R; Roque, Ana Cecília A

    2014-01-01

    The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Baryon spectroscopy with polarization observables from CLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauch, Steffen

    The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS). These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results willmore » be given.« less

  10. Skeletal accumulation of fluorescently tagged zoledronate is higher in animals with early stage chronic kidney disease.

    PubMed

    Swallow, E A; Aref, M W; Chen, N; Byiringiro, I; Hammond, M A; McCarthy, B P; Territo, P R; Kamocka, M M; Winfree, S; Dunn, K W; Moe, S M; Allen, M R

    2018-06-11

    This work examines the skeletal accumulation of fluorescently tagged zoledronate in an animal model of chronic kidney disease. The results show higher accumulation in 24-h post-dose animals with lower kidney function due to greater amounts of binding at individual surfaces. Chronic kidney disease (CKD) patients suffer from increased rates of skeletal-related mortality from changes driven by biochemical abnormalities. Bisphosphonates are commonly used in reducing fracture risk in a variety of diseases, yet their use is not recommended in advanced stages of CKD. This study aimed to characterize the accumulation of a single dose of fluorescently tagged zoledronate (FAM-ZOL) in the setting of reduced kidney function. At 25 weeks of age, FAM-ZOL was administered to normal and CKD rats. Twenty-four hours later, multiple bones were collected and assessed using bulk fluorescence imaging, two-photon imaging, and dynamic histomorphometry. CKD animals had significantly higher levels of FAM-ZOL accumulation in the proximal tibia, radius, and ulna, but not in lumbar vertebral body or mandible, based on multiple measurement modalities. Although a majority of trabecular bone surfaces were covered with FAM-ZOL in both normal and CKD animals, the latter had significantly higher levels of fluorescence per unit bone surface in the proximal tibia. These results provide new data regarding how reduced kidney function affects drug accumulation in rat bone.

  11. Tagging RDT&E. Volume 1. Technology Assessment and Development Reports

    DTIC Science & Technology

    1994-03-01

    weapon system component could have a unique, counterfeit and transfer resistant, and tamper indicating identifier (or tag), inspectors could...the random nature of the reflective surfaces on each particle, the tag is highly resistant to counterfeiting . Sym t, n- BDM Jnvolvement RPT Sandia...layers) that tampering has occurred. A reflective particle (RP) disk was added by PNL to increase the difficulty of counterfeiting the tag and to make

  12. [Optimum design of imaging spectrometer based on toroidal uniform-line-spaced (TULS) spectrometer].

    PubMed

    Xue, Qing-Sheng; Wang, Shu-Rong

    2013-05-01

    Based on the geometrical aberration theory, a optimum-design method for designing an imaging spectrometer based on toroidal uniform grating spectrometer is proposed. To obtain the best optical parameters, twice optimization is carried out using genetic algorithm(GA) and optical design software ZEMAX A far-ultraviolet(FUV) imaging spectrometer is designed using this method. The working waveband is 110-180 nm, the slit size is 50 microm x 5 mm, and the numerical aperture is 0.1. Using ZEMAX software, the design result is analyzed and evaluated. The results indicate that the MTF for different wavelengths is higher than 0.7 at Nyquist frequency 10 lp x mm(-1), and the RMS spot radius is less than 14 microm. The good imaging quality is achieved over the whole working waveband, the design requirements of spatial resolution 0.5 mrad and spectral resolution 0.6 nm are satisfied. It is certificated that the optimum-design method proposed in this paper is feasible. This method can be applied in other waveband, and is an instruction method for designing grating-dispersion imaging spectrometers.

  13. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2006-04-18

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  14. Extending birthday paradox theory to estimate the number of tags in RFID systems.

    PubMed

    Shakiba, Masoud; Singh, Mandeep Jit; Sundararajan, Elankovan; Zavvari, Azam; Islam, Mohammad Tariqul

    2014-01-01

    The main objective of Radio Frequency Identification systems is to provide fast identification for tagged objects. However, there is always a chance of collision, when tags transmit their data to the reader simultaneously. Collision is a time-consuming event that reduces the performance of RFID systems. Consequently, several anti-collision algorithms have been proposed in the literature. Dynamic Framed Slotted ALOHA (DFSA) is one of the most popular of these algorithms. DFSA dynamically modifies the frame size based on the number of tags. Since the real number of tags is unknown, it needs to be estimated. Therefore, an accurate tag estimation method has an important role in increasing the efficiency and overall performance of the tag identification process. In this paper, we propose a novel estimation technique for DFSA anti-collision algorithms that applies birthday paradox theory to estimate the number of tags accurately. The analytical discussion and simulation results prove that the proposed method increases the accuracy of tag estimation and, consequently, outperforms previous schemes.

  15. Broadband SLED-based light source (BeST-SLEDTM) and spectrometer

    NASA Astrophysics Data System (ADS)

    Yadid-Pecht, Orly; Dattner, Yonathan

    2016-03-01

    A small footprint, low power, cost effective single mode fiber coupled broadband light source and spectrometer is presented. It is based on Super Luminescent Diode (SLED) devices and a compact design enables coverage of the 1250 nm-1750 nm region with a total optical power of 50 mW at the output of the fiber. This Broad Spectrum Tunable Super Luminescent (BeST-SLEDTM) light source can operate at temperatures ranging from -40°C to 60°C, and resides in a custom designed 26-pin package. The fiber is a polarization maintaining fiber with a FC/APC connector at the output. Three variations of the BeST-SLEDTM were developed, BEST-SLED™ Bands, BeST-SLEDTM Tunable and BeST-SLEDTM FTNIR. In the Bands version six SLEDs were packaged allowing for one SLED on at a time or any combination of the SLEDs on. In the Tunable version an Acoustic Optical Tunable Filter (AOTF) was integrated into the package allowing the user to select one wavelength at a time to pass into the fiber with resolution of ~1 nm @1550nm. In the FTNIR version, a Silicon Photonic based interferometer (the Nano-SpecTM) was integrated into the package for a Fourier Transform Near Infrared based Spectrometer and light source. The BeST-SLEDTM is being used in process control applications such as steam quality measurements, oil in water, gas composition and air quality monitoring.

  16. 78 FR 16133 - Availability of E-Tag Information to Commission Staff

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... available to the Commission pursuant to Order No. 771 as being submitted pursuant to a request for... Intra-Balancing Authority e-Tags in the same manner as interchange e-Tags; and the requirement on... Commission as an addressee on the e-Tags. In response to this rule, requests for rehearing and/or...

  17. Spectrometers for compact neutron sources

    NASA Astrophysics Data System (ADS)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  18. Far-infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Boreiko, Rita T.; Betz, Al L.

    1995-01-01

    A far-infrared heterodyne spectrometer was designed and built by our group for observations of atomic and molecular lines from interstellar clouds. Linewidths as narrow as 1 km/s can be expected from such regions, and so the spectrometer is designed with sub-km/s resolution so that observed line profiles will be resolved. Since its debut on the Kuiper Airborne Observatory (KAO) in 1985, the instrument has been used in regular annual flight programs from both Moffett Field, CA and Christchurch, NZ. The basic plan of the spectrometer remains unchanged from the original design presented at the previous airborne science symposium. Numerous improvements and updates to the technical capability have of course been included over the many years of operational service.

  19. Method for calibrating mass spectrometers

    DOEpatents

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  20. Survival of Seaward-Migrating PIT and Acoustic-Tagged Juvenile Chinook Salmon in the Snake and Columbia Rivers: An Evaluation of Length-Specific Tagging Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Oldenburg, Eric W.; Seaburg, Adam

    Studies examining the survival of juvenile salmon as they emigrate to the ocean provide important information regarding the management of regulated river systems. Acoustic telemetry is a widely used tool for evaluating the behavior and survival of juvenile salmonids in the Columbia River basin. Thus, it is important to understand how the surgical tagging process and the presence of a transmitter affect survival so any biases can be accounted for or eliminated. This study evaluated the effects of fish length and tag type on the survival of yearling and subyearling Chinook salmon during their seaward migrations through the Snake andmore » Columbia rivers during 2006, 2007, and 2008. Fish were collected at Lower Granite Dam on the Snake River (river kilometer 695) and implanted with either only a passive integrated transponder (PIT) tag (PIT fish) or both a PIT tag and an acoustic transmitter (AT fish). Survival was estimated from release at Lower Granite Dam to multiple downstream locations (dams) using the Cormack–Jolly–Seber single release model, and analysis of variance was used to test for differences among length-classes and between tag types. No length-specific tag effect was detected between PIT and AT fish (i.e., length affected the survival of PIT fish in a manner similar to which it affected the survival of AT fish). Survival among the smallest length class (i.e., 80–89 mm) of both PIT and AT subyearling Chinook salmon was markedly low (i.e., 4%). Fish length was positively correlated with the survival of both PIT and AT fish. Significant differences in survival were detected between tag types; the survival of PIT fish was generally greater than that of AT fish. However, confounding variables warrant caution in making strong inferences regarding this factor. Further, results suggest that tag effects may be due to the process of surgically implanting the transmitter rather than the presence of the transmitter.« less