Sample records for tailoring in-situ reinforced

  1. Multi-layered sensor yarns for in situ monitoring of textile reinforced composites

    NASA Astrophysics Data System (ADS)

    Haentzsche, E.; Onggar, T.; Nocke, A.; Hund, R. D.; Cherif, Ch

    2017-10-01

    In this contribution, the characteristic of yarns that have intrinsically conductivity as well as such with coaxial conductive coatings acting as in situ strain sensors are described. The objective of the based research projects is the real-time in situ sensing of both global stresses acting on fibre reinforced plastic (FRP) components and the detection of resulted local microscopic damages due to creep, delamination and micro-cracks in the fibre-matrix interphase of glass fibre (GFRP) and carbon fibre (CFRP) composites. Sensor materials similar to the particular FRP and its mechanical behaviour have been chosen. In the first approach, GF- and aramid-based sensor yarns have been developed with multiple tailored silver layer coating system capable to distinguish multiple scaled damage mechanism due to these effects globally and locally. The second approach bases on the piezoresistive effect of CF rovings for their usage as in situ strain sensors. In the next step, suitable fibre and polymer film-based cleading have been tested and evaluated, granting sufficient electrical isolation to avoid shortcircuits between the conductive sensor layers itself or between the sensor and intrinsically conductive CFRP respectively. Initially, the sensor performance of global strain measurement, means the accumulated strain along the integration length of the sensor yarn, has been evaluated during tensile stressing of FRP with integrated suchlike functionalised sensor yarns.

  2. Reinforced cementitous composite with in situ shrinking microfibers

    NASA Astrophysics Data System (ADS)

    Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh

    2017-03-01

    This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.

  3. Method of making in-situ whisker reinforced glass ceramic

    DOEpatents

    Brown, Jesse J.; Hirschfeld, Deidre A.; Lee, K. H.

    1993-02-16

    A heat processing procedure is used to create reinforcing whiskers of TiO.sub.2 in glass-ceramic materials in the LAS and MAS family. The heat processing procedure has particular application in creating TiO.sub.2 in-situ in a modified .beta.-eucryptite system.

  4. Evolution of In-Situ Generated Reinforcement Precipitates in Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kar, S. K.; Catalina, A. V.; Stefanescu, D. M.; Dhindaw, B. K.

    2004-01-01

    Due to certain inherent advantages, in-situ production of Metal Matrix Composites (MMCs) have received considerable attention in the recent past. ln-situ techniques typically involve a chemical reaction that results in precipitation of a ceramic reinforcement phase. The size and spatial distribution of these precipitates ultimately determine the mechanical properties of these MMCs. In this paper we will investigate the validity of using classical growth laws and analytical expressions to describe the interaction between a precipitate and a solid-liquid interface (SLI) to predict the size and spatial evolution of the in-situ generated precipitates. Measurements made on size and distribution of Tic precipitates in a Ni&I matrix will be presented to test the validity of such an approach.

  5. Plasma-Sprayed Ti6Al4V Alloy Composite Coatings Reinforced with In Situ Formed TiB-TiN

    NASA Astrophysics Data System (ADS)

    Anand, Akrity; Das, Mitun; Kundu, Biswanath; Balla, Vamsi Krishna; Bodhak, Subhadip; Gangadharan, S.

    2017-12-01

    Plasma spraying was used to deposit premixed Ti6Al4V + 15 wt.% BN powder on titanium substrate to fabricate Ti6Al4V matrix composite coatings reinforced with in situ synthesized TiB-TiN. The formation of in situ TiB-TiN reinforcements increased with plasma power. The in situ reaction appears to be complete under present experimental conditions but with considerable oxidation of Ti in the composite coatings. The hardness of composite coatings was 7 times higher (855HV), and the in vitro wear rate (2.4 × 10-5 mm3/N m) was one order of magnitude less than that of titanium substrate. However, the microstructural non-uniformity decreased the corrosion resistance of these composite coatings in Hank's balanced salt solution.

  6. Characterization of in situ synthesized TiB 2 reinforcements in iron-based composite coating

    NASA Astrophysics Data System (ADS)

    Zhang, Panpan; Wang, Xibao; Guo, Lijie; Cai, Lijuan; Sun, Hongling

    2011-12-01

    TiB2 reinforced iron-based composite coatings can be fabricated on the mild steel substrate with a powder mixture of Ti and B4C by plasma transferred arc (PTA) powder surfacing process. Characterizations of the TiB2 reinforcements in the coated surface were investigated in this paper. The experimental work enables the following findings to be obtained: (i) acicular shaped and blocky formed TiB2 phases could be synthesized in situ using PTA powder surfacing process in the iron-based composite coating. (ii) Gradient distributions of TiB2 reinforcements appeared in the composite coating from both the vertical and horizontal direction of the coating's cross-section. Significant changes of the size, shape and volume fraction for TiB2 particles appeared in different regions of the surface coating, due to the effects of the dilution rate and mass density. (iii) Values of coating dilution could have profound impacts on the characterization of TiB2 reinforcements in the coated surfaces. With the increase of coating dilution, TiB2 grain tends to be acicular shaped at the edge of the surface coating, while it remains to be granular formed in the center of the composite coating.

  7. Laser-Deposited In Situ TiC-Reinforced Nickel Matrix Composites: 3D Microstructure and Tribological Properties (Postprint)

    DTIC Science & Technology

    2014-04-03

    reinforcements as well as nature of matrix reinforcement interface.2,8 In situ MMCs exhibit thermodynamic stability, good inter- facial bonding, and uniform...of these Ni-Ti-C composites. A dual-beam workstation (FEI Nova NanoSEM) equipped with a focused ion beam column employing a Gallium (Ga) liquid metal...commercially available solution thermodynamic models (PANDATTM from Compu- Therm), are shown in Fig. 5 a–d. The points corre- sponding to the Ni-17Ti-17C

  8. Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites.

    PubMed

    Liu, Shoujie; Li, Hejun; Su, Yangyang; Guo, Qian; Zhang, Leilei

    2017-01-01

    Carbon nanotubes (CNTs) possess excellent mechanical properties for their role playing in reinforcement as imparting strength to brittle hydroxyapatite (HA) bioceramic coating. However, there are few reports relating to the in-situ grown carbon nanotubes reinforced hydroxyapatite (CNTs-HA) coating. Here we demonstrate the potential application in reinforcing biomaterials by an attempt to use in-situ grown of CNTs strengthen HA coating, using a combined method composited of injection chemical vapor deposition (ICVD) and pulsed electrodeposition. The microstructure, phases and chemical compositions of CNTs-HA coatings were characterized by various advanced methods. The scanning electron microscopy (SEM) images indicated that CNTs-HA coatings avoided the inhomogeneous dispersion of CNTs inside HA coating. The result show that the interfacial shear strength between CNTs-HA coating and the C/C composite matrix reaches to 12.86±1.43MPa. Potenitodynamic polarization and electrochemical impedance spectroscopy (EIS) studies show that the content of CNTs affects the corrosion resistance of CNTs-HA coating. Cell culturing and simulated body fluid test elicit the biocompatibility with living cells and bioactivity of CNTs-HA coatings, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cost efficient carbon fibre reinforced thermoplastics with in-situ polymerization of polyamide

    NASA Astrophysics Data System (ADS)

    Köhler, T.; Akdere, M.; Röding, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight design has gained more and more relevance over the last decades. Especially in automotive industry it is of paramount importance to reduce weight and save fuel. At the same time the demand for safety and performance increases the components’ weight. To reach a trade-off between driving comfort and efficiency new lightweight materials have to be developed. One possible solution is the usage of carbon fibre reinforced thermoplastics (CFRTP) as a lightweight substitute material. In contrast to conventional carbon fibre reinforced plastics (CFRP), CFRTPs are cheaper and have a higher impact resistance. Furthermore they are characterized by hot forming ability, weldability and recyclability. However, the impregnation of the textile requires high pressure, because of the melted polymer’s high viscosity. A new innovative approach for CFRTP is the usage of in-situ polymerization with ɛ-caprolactam as matrix, which has a much lower viscosity and thus requires much lower pressure for impregnation and consolidation.

  10. Influence of Steel Reinforcement on In-Situ Stress Evaluation in Concrete Structures by the Core-Drilling Method

    NASA Astrophysics Data System (ADS)

    McGinnis, M. J.; Pessiki, S.

    2006-03-01

    The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation and industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement.

  11. Influence of Steel Reinforcement on In-Situ Stress Evaluation in Concrete Structures by the Core-Drilling Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, M. J.; Pessiki, S.

    2006-03-06

    The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation andmore » industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement.« less

  12. In situ reinforced polymers using low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems

  13. a Study on Microstructure Characteristics of IN SITU Formed TiC Reinforced Composite Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Guo, Wei; Luo, Hui

    2012-04-01

    In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrate, and the micro-hardness of the Al-Ni-Cr-C laser-cladded coating was in the range of 1200-1450 HV0.2, which was 3-4 times higher than that of Ti-6Al-4V substrate. Furthermore, the reinforcement of theAl-Ni-Cr-C laser-cladded coating were mainly contributed to the action of the TiC, Ti3Al, Cr7C3, Al8Cr5 phases and the solution strengthening.

  14. Fracture Response Enhancement Of Aluminum Using In-Situ Selective Reinforcement

    NASA Technical Reports Server (NTRS)

    Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.

    2006-01-01

    A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the unreinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.

  15. Masonry arches retrofitted with steel reinforced grout materials: In-situ experimental tests and advanced FE simulations

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Carozzi, Francesca Giulia; Milani, Gabriele; Poggi, Carlo

    2017-11-01

    The paper presents the results of a series of in-situ tests carried out on two masonry arches, one unreinforced and the other reinforced with SRG (Steel Reinforced Grout). The arches are built adopting a peculiar construction technique using common Italian bricks with dimensions 250 × 120 × 55 mm3 and 10 mm thick mortar joints. One of the two arches has been reinforced with an SRG material constituted by an inox grid embedded into a layer of lime mortar, whereas the second one is maintained unreinforced for comparison purposes. The experimental set-up is designed to apply an eccentric vertical load placed at ¼ of the span in a series of loading and unloading cycles up to the failure. The numerical analyses have been performed using a sophisticated heterogeneous micro-modeling technique, where bricks, mortar joints and the strengthening have been modeled separately. Finally, the numerical outcomes have been comparatively assessed with respect to the experimental results and the crack patterns obtained at the end of the tests, showing a satisfactory agreement in terms of the global behavior of the arches and their collapse mechanisms.

  16. Fabrication of Nanocarbon Composites Using In Situ Chemical Vapor Deposition and Their Applications.

    PubMed

    He, Chunnian; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun

    2015-09-23

    Nanocarbon (carbon nanotubes (CNTs) and graphene (GN)) composites attract considerable research interest due to their fascinating applications in many fields. Here, recent developments in the field of in situ chemical vapor deposition (CVD) for the design and controlled preparation of advanced nanocarbon composites are highlighted, specifically, CNT-reinforced bulk structural composites, as well as CNT, GN, and CNT/GN functional composites, together with their practical and potential applications. In situ CVD is a very attractive approach for the fabrication of composites because of its engaging features, such as its simplicity, low-cost, versatility, and tunability. The morphologies, structures, dispersion, and interface of the resulting nanocarbon composites can be easily modulated by varying the experimental parameters (such as temperature, catalysts, carbon sources, templates or template catalysts, etc.), which enables a great potential for the in situ synthesis of high-quality nanocarbons with tailored size and dimension for constructing high-performance composites, which has not yet been achieved by conventional methods. In addition, new trends of the in situ CVD toward nanocarbon composites are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    NASA Astrophysics Data System (ADS)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  18. Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding.

    PubMed

    Göken, Mathias; Höppel, Heinz Werner

    2011-06-17

    Accumulative roll bonding (ARB) is a very attractive process for processing large sheets to achieve ultrafine-grained microstructure and high strength. Commercial purity Al and many Al alloys from the 5xxx and the precipitation strengthened 6xxx alloy series have been successfully processed by the ARB process into an ultrafine-grained state and superior ductility have been achieved for some materials like technical purity Al. It has also been shown that the ARB process can be successfully used to produce multi-component materials with tailored properties by reinforcement or grading, respectively. This allows optimizing the properties based on two or more materials/alloys. For example, to achieve high corrosion resistance and good visual surface properties it is interesting to produce a composite of two different Al alloys, where for example a high strength alloy of the 5xxx series is used as the core material and a 6xxx series alloy as the clad material. It has been shown that such a composite achieves more or less the same strength as the core material although 50% of the composite consists of the significant softer clad alloy. Furthermore, it has been found, that the serrated yielding which typically appears in 5xxx series alloys and limits applications as outer skin materials completely disappears. Moreover, the ARB process allows many other attractive ways to design new composites and graded material structures with unique properties by the introduction of particles, fibres and sheets. Strengthening with nanoparticles for example is a very attractive way to improve the properties and accelerate the grain refining used in the severe plastic deformation process. With an addition of only 0.1 vol.-% Al2O3 nanoparticles a significantly accelerated grain refinement has been found which reduces the number of ARB passes necessary to achieve the maximum in strength. The paper provides a short review on recent developments in the field of ARB processing for producing

  19. Tailored interphase structure for improved strength and energy absorption of composites

    NASA Astrophysics Data System (ADS)

    Gao, Xiao

    Fiber reinforced polymeric composites are lightweight, high-strength and high impact-resistant materials used widely for various applications. It has been shown that the mechanical performance of composites are dependent on the interphase, a three-dimensional region of nanometer size in the vicinity of the fiber-matrix boundary that possesses properties different from those of either the fiber reinforcement or the matrix resin and governs the load transfer from matrix to fiber. This research conducts a systematic study on glass fiber-epoxy interphase structure by tailoring adhesion between constituents and the creation of textures to control strength and energy absorption through mechanical interlocking between glass fiber and epoxy matrix. Our objective is to establish the foundation for microstructural design and optimization of the composite's structural and impact performance. Two ways of roughening the glass fiber surface have been studied to create the mechanical interlocking between fiber and resin; the first technique involves forming in-situ islands on the glass fiber surface by using silane blends of Glycidoxypropyltrimethoxy silane (GPS) and Tetraethoxy silane (TEOS); the second technique applies a silane coupling agents based sizing with the incorporation of silica nanoparticles (Ludox TMA, 22 nm) onto the fiber surface. The microdroplet test was selected to characterize the influence of adhesion and mechanical interlocking effects on interphase properties of different sizing sized glass fiber reinforced epoxy systems. A suitable data reduction scheme enables the strength and specified energy absorbed due to debonding, dynamic sliding, and quasi-static sliding to be quantified. In order to validate the effect of tailored interphase structure, which is induced by creating mechanical interlocking between fiber and resin, on macroscopic composite properties, composite panels were made from these four different sizing sized glass fibers and tested using the

  20. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.

    PubMed

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-10-10

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites' quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films' electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  1. Microstructures and Properties of Plasma Sprayed Ni Based Coatings Reinforced by TiN/C1-xNxTi Generated from In-Situ Solid-Gas Reaction.

    PubMed

    Wang, Wenquan; Li, Wenmo; Xu, Hongyong

    2017-07-11

    The strengthening hard phases TiN/C 1- x N x Ti were generated by in-situ solid-gas reaction in Ni-based composite coatings prepared using a plasma spray welding process to reinforce the wear resistance of the coatings. The microstructures and properties of the coatings were investigated. The results showed that the coatings mainly consisted of phases such as TiN, C 1- x N x Ti, TiC, etc. A small amount of CrB, M₇C₃, and M 23 C₆ were also detected in the coatings by micro-analysis method. Compared with the originally pure NiCrBSi coatings, the hardness of the NiCrBSi coatings reinforced by in-situ solid-gas reaction was 900 HV 0.5 , increased by more than 35%. Consequently, the wear resistance of the reinforced coatings was greatly improved due to the finely and uniformly dispersed hard phases mentioned above. The weight losses after wear test for the two kinds of coatings were 15 mg and 8 mg, respectively.

  2. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization.

    PubMed

    Yu, Juan; Wang, Chunpeng; Wang, Jifu; Chu, Fuxiang

    2016-05-05

    Recently, the utilization of cellulose nanocrystals (CNCs) as a reinforcing material has received a great attention due to its high elastic modulus. In this article, a novel strategy for the synthesis of self-reinforced CNCs based thermoplastic elastomers (CTPEs) is presented. CNCs were first surface functionalized with an initiator for surface-initiated atom transfer radical polymerization (SI-ATRP). Subsequently, SI-ATRP of methyl methacrylate (MMA) and butyl acrylate (BA) was carried out in the presence of sacrificial initiator to form CTPEs in situ. The CTPEs together with the simple blends of CNCs and linear poly(MMA-co-BA) copolymer (P(MMA-co-BA)) were characterized for comparative study. The results indicated that P(MMA-co-BA) was successfully grafted onto the surface of CNCs and the compatibility between CNCs and the polymer matrix in CTPEs was greatly enhanced. Specially, the CTPEs containing 2.15wt% CNCs increased Tg by 19.2°C and tensile strength by 100% as compared to the linear P(MMA-co-BA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex

    PubMed Central

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-01-01

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time. PMID:28994733

  4. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability

    NASA Astrophysics Data System (ADS)

    Lyu, Shaoyi; Chang, Huanjun; Fu, Feng; Hu, La; Huang, Jingda; Wang, Siqun

    2016-09-01

    A paper-based wearable supercapacitor with excellent foldability and tailorability is fabricated from a chopped carbon fiber (CCF)-reinforced cellulose paper electrode material by coating with reduced graphene oxide (RGO) and polypyrrole (PPy) via in situ polymerization. The CCFs not only form an interpenetrating conducting network that acts as highly conductive electron transfer highways for the RGO/PPy layer in the paper electrode, but also endow the resulting electrode with an excellent areal capacitance of 363 mF cm-2 and a volumetric energy density of 0.28 mW h cm-3. Further, the CCFs give the electrode remarkable mechanical robustness, guaranteeing foldability and tailorability, with only slight loss of capacitance after repeated folding 600 times. Even after being subjected to severe cut-in fracture, the capacitance retention is up to 84%, indicating outstanding damage tolerance. The present study reveals a promising candidate for flexible wearable energy storage devices that are required to function in harsh environments.

  5. Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion.

    PubMed

    Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah

    2016-11-14

    Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics.

  6. Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion

    PubMed Central

    Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah

    2016-01-01

    Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics. PMID:27841314

  7. Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah

    2016-11-01

    Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics.

  8. Tailoring the Electrochemical Properties of Carbon Nanotube Modified Indium Tin Oxide via in Situ Grafting of Aryl Diazonium.

    PubMed

    Hicks, Jacqueline M; Wong, Zhi Yi; Scurr, David J; Silman, Nigel; Jackson, Simon K; Mendes, Paula M; Aylott, Jonathan W; Rawson, Frankie J

    2017-05-23

    Our ability to tailor the electronic properties of surfaces by nanomodification is paramount for various applications, including development of sensing, fuel cell, and solar technologies. Moreover, in order to improve the rational design of conducting surfaces, an improved understanding of structure/function relationships of nanomodifications and effect they have on the underlying electronic properties is required. Herein, we report on the tuning and optimization of the electrochemical properties of indium tin oxide (ITO) functionalized with single-walled carbon nanotubes (SWCNTs). This was achieved by controlling in situ grafting of aryl amine diazonium films on the nanoscale which were used to covalently tether SWCNTs. The structure/function relationship of these nanomodifications on the electronic properties of ITO was elucidated via time-of-flight secondary ion mass spectrometry and electrochemical and physical characterization techniques which has led to new mechanistic insights into the in situ grafting of diazonium. We discovered that the connecting bond is a nitro group which is covalently linked to a carbon on the aryl amine. The increased understanding of the surface chemistry gained through these studies enabled us to fabricate surfaces with optimized electron transfer kinetics. The knowledge gained from these studies allows for the rational design and tuning of the electronic properties of ITO-based conducting surfaces important for development of various electronic applications.

  9. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less

  10. Influence of Sintering Temperature on the Microstructure and Mechanical Properties of In Situ Reinforced Titanium Composites by Inductive Hot Pressing

    PubMed Central

    Arévalo, Cristina; Montealegre-Meléndez, Isabel; Ariza, Enrique; Kitzmantel, Michael; Rubio-Escudero, Cristina; Neubauer, Erich

    2016-01-01

    This research is focused on the influence of processing temperature on titanium matrix composites reinforced through Ti, Al, and B4C reactions. In order to investigate the effect of Ti-Al based intermetallic compounds on the properties of the composites, aluminum powder was incorporated into the starting materials. In this way, in situ TixAly were expected to form as well as TiB and TiC. The specimens were fabricated by the powder metallurgy technique known as inductive hot pressing (iHP), using a temperature range between 900 °C and 1400 °C, at 40 MPa for 5 min. Raising the inductive hot pressing temperature may affect the microstructure and properties of the composites. Consequently, the variations of the reinforcing phases were investigated. X-ray diffraction, microstructural analysis, and mechanical properties (Young’s modulus and hardness) of the specimens were carried out to evaluate and determine the significant influence of the processing temperature on the behavior of the composites. PMID:28774039

  11. Fabrication of in-situ grown graphene reinforced Cu matrix composites

    NASA Astrophysics Data System (ADS)

    Chen, Yakun; Zhang, Xiang; Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun; Nash, Philip; Zhao, Naiqin

    2016-01-01

    Graphene/Cu composites were fabricated through a graphene in-situ grown approach, which involved ball-milling of Cu powders with PMMA as solid carbon source, in-situ growth of graphene on flaky Cu powders and vacuum hot-press sintering. SEM and TEM characterization results indicated that graphene in-situ grown on Cu powders guaranteed a homogeneous dispersion and a good combination between graphene and Cu matrix, as well as the intact structure of graphene, which was beneficial to its strengthening effect. The yield strength of 244 MPa and tensile strength of 274 MPa were achieved in the composite with 0.95 wt.% graphene, which were separately 177% and 27.4% enhancement over pure Cu. Strengthening effect of in-situ grown graphene in the matrix was contributed to load transfer and dislocation strengthening.

  12. Development of laminated fiber-reinforced nanocomposites for bone regeneration

    NASA Astrophysics Data System (ADS)

    Xu, Weijie

    There have been numerous efforts to develop synthetic and/or natural tissue engineering scaffolds that are suitable for bone regeneration applications to replace autograft and allograft bones. Current biomaterials as a scaffold for bone regeneration are limited by the extent of degradation concurrent with bone formation, mechanical strength, and the extent of osteogenic differentiation of marrow stromal cells migrating from the surrounding tissues. In this project, a novel laminated nanocomposite scaffold is fabricated, consisting of poly (L-lactide ethylene oxide fumarate) (PLEOF) hydrogel reinforced with poly (L-lactic acid) (PLLA) electrospun nanofibers and hydroxyapatite (HA) nanoparticles. PLEOF is a novel in situ crosslinkable macromer synthesized from biocompatible building units which can be functionalized with bioactive peptides like the cell-adhesive Arg--Gly--Asp (RGD) amino acid sequence. The hydrophilicity and degradation rate of the macromer can be tailored to a particular application by controlling the ratio of PEG to PLA blocks in the macromer and the unsaturated fumarate units can be used for in-situ crosslinking. The PLLA nanofibers were electrospun from high molecular weight PLLA. The laminated nanocomposites were fabricated by dry-hand lay up technique followed by compression molding and thermal crosslinking. The laminated nanocomposites were evaluated with respect to degradation, water uptake, mechanical strength, and the extent of osteogenic differentiation of bone marrow stromal (BMS) cells. Laminates with or without HA nanoparticles showed modulus values much higher than that of trabecular bone (50-100 MPa). The effect of laminated nanocomposites on osteogenic differentiation of BMS cells was determined in terms of cell number, ALPase activity and calcium content. Our results demonstrate that grafting RGD peptide and HA nanoparticles to a PLEOF hydrogel reinforced with PLLA nanofibers synergistically enhance osteogenic differentiation of BMS

  13. Microstructure and mechanical properties investigation of in situ TiB2 and ZrB2 reinforced Al-4Cu composites

    NASA Astrophysics Data System (ADS)

    Lutfi Anis, Ahmad; Ramli, Rosmamuhammadani; Darham, Widyani; Zakaria, Azlan; Talari, Mahesh Kumar

    2016-02-01

    Conventional Al-Cu alloys exhibit coarse grain structure leading to inferior mechanical properties in as-cast condition. Expensive thermo-mechanical treatments are needed to improve microstructure and corresponding mechanical properties. In situ Al-based composites were developed to improve mechanical properties by dispersion strengthening and grain refinement obtained by the presence of particulates in the melt during solidification. In this work Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 in situ composites were prepared by liquid casting method. XRD, electron microscopy and mechanical tests were performed on suitably sectioned and metallographically prepared surfaces to investigate the phase distribution, hardness and tensile properties. It was found that the reinforcement particles were segregated along the grain boundaries of Al dendrites. Tensile fracture morphology for both Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 were analyzed and compared to determine the fracture propagation mechanism in the composites. Al-4Cu-3ZrB2 in situ composites displayed higher strength and hardness compared to Al-4Cu-3TiB2 which could be ascribed to the stronger interfacial bonding between the Al dendrites and ZrB2 particulates as evidenced from fractographs.

  14. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  15. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    NASA Technical Reports Server (NTRS)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  16. Tailor making high performance graphite fiber reinforced PMR polyimides

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Vannucci, R. D.

    1974-01-01

    Studies performed to demonstrate the feasibility of using the polymerization of monomer reactants (PMR) approach to tailor make processable polyimide matrix resins are described. Monomeric reactant solutions containing the dimethyl ester of 3,3',4,4' -benzophenonetetracarboxylic acid, 4, 4' -methylenedianiline and the monomethyl ester of 5-norbornene-2, 3-dicarboxylic acid were used to impregnate Hercules HTS graphite fiber. Six different monomeric reactant stoichiometries were studied. The processing characteristics and elevated temperature mechanical properties of the PMR polyimide/HTS graphite fiber composites are described.

  17. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula; Sharma, Vimal, E-mail: manjula.physics@gmail.com

    2016-05-23

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, Raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  18. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Li, Yani; Yu, Bo

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-sitemore » silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.« less

  19. Quantitative radiographic analysis of fiber reinforced polymer composites.

    PubMed

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  20. Hot pressing titanium metal matrix composites reinforced with graphene nanoplatelets through an in-situ reactive method

    NASA Astrophysics Data System (ADS)

    Mu, X. N.; Zhang, H. M.; Cai, H. N.; Fan, Q. B.; Wu, Y.; Fu, Z. J.; Wang, Q. X.

    2017-05-01

    This study proposed an in-situ reactive method that uses graphene as a reinforcement to fabricate titanium metal matrix composites (TiMMCs) through powder metallurgy processing route. The volume fraction of graphene nanoplatelets was 1.8%vol, and the pure titanium was used as a matrix. The Archimedes density, hardness, microstructure and mechanical properties of specimens were compared under different ball milling times (20 min and 2.5 h) and hot pressing temperatures (900°C, 1150°C, and 1300°C,). The ultimate tensile strength of 630 MPa, which demonstrated a 27.3% increase compared with pure Ti, was achieved under a ball milling time of 20 min. Elongation increased with increasing temperature. When the ball milling time and hot pressing temperature were increased to 2.5 h and 1300 °C, respectively, the ultimate tensile strength of the composites reached 750 MPa, showing an increase of 51.5% compared with pure Ti.

  1. PEDOT:PSS-Based Piezo-Resistive Sensors Applied to Reinforcement Glass Fibres for in Situ Measurement during the Composite Material Weaving Process

    PubMed Central

    Trifigny, Nicolas; Kelly, Fern M.; Cochrane, Cédric; Boussu, François; Koncar, Vladan; Soulat, Damien

    2013-01-01

    The quality of fibrous reinforcements used in composite materials can be monitored during the weaving process. Fibrous sensors previously developed in our laboratory, based on PEDOT:PSS, have been adapted so as to directly measure the mechanical stress on fabrics under static or dynamic conditions. The objective of our research has been to develop new sensor yarns, with the ability to locally detect mechanical stresses all along the warp or weft yarn. This local detection is undertaken inside the weaving loom in real time during the weaving process. Suitable electronic devices have been designed in order to record in situ measurements delivered by this new fibrous sensor yarn. PMID:23959238

  2. Composites reinforced via mechanical interlocking of surface-roughened microplatelets within ductile and brittle matrices.

    PubMed

    Libanori, R; Carnelli, D; Rothfuchs, N; Binelli, M R; Zanini, M; Nicoleau, L; Feichtenschlager, B; Albrecht, G; Studart, A R

    2016-04-12

    Load-bearing reinforcing elements in a continuous matrix allow for improved mechanical properties and can reduce the weight of structural composites. As the mechanical performance of composite systems are heavily affected by the interfacial properties, tailoring the interactions between matrices and reinforcing elements is a crucial problem. Recently, several studies using bio-inspired model systems suggested that interfacial mechanical interlocking is an efficient mechanism for energy dissipation in platelet-reinforced composites. While cheap and effective solutions are available at the macroscale, the modification of surface topography in micron-sized reinforcing elements still represents a challenging task. Here, we report a simple method to create nanoasperities with tailored sizes and densities on the surface of alumina platelets and investigate their micromechanical effect on the energy dissipation mechanisms of nacre-like materials. Composites reinforced with roughened platelets exhibit improved mechanical properties for both organic ductile epoxy and inorganic brittle cement matrices. Mechanical interlocking increases the modulus of toughness (area under the stress-strain curve) by 110% and 56% in epoxy and cement matrices, respectively, as compared to those reinforced with flat platelets. This interlocking mechanism can potentially lead to a significant reduction in the weight of mechanical components while retaining the structural performance required in the application field.

  3. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    PubMed

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  4. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  5. Feasibility of tailoring of press formed thermoplastic composite parts

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2018-05-01

    The Tailor Made Blank concept is widely accepted in the production of sheet metal parts. By joining, adding and subtracting materials, and sometimes even applying different alloys, parts can be produced more efficiently by cost and/or weight, and new design options have been discovered. This paper is about the manufacture of press formed parts of Fibre Reinforced Thermoplastics and the evaluation whether the Tailoring concept, though adapted to the material behavior of FRTP, can be applied to these composites as well. From research, the first results and ideas are presented. One of the ideas is the multistep forming process, creating parts with thickness variations and combinations of fibre orientations that are usually not feasible using common press forming strategies. Another idea is the blending of different prepreg materials in one component. This might be useful in case of specific details, like for areas of mechanical fastening or to avoid carbon/metal contact, otherwise resulting in severe corrosion. In a brief overview, future perspectives of the potential of the Tailoring concept are presented.

  6. Using In situ Dynamic Cultures to Rapidly Biofabricate Fabric-Reinforced Composites of Chitosan/Bacterial Nanocellulose for Antibacterial Wound Dressings

    PubMed Central

    Zhang, Peng; Chen, Lin; Zhang, Qingsong; Hong, Feng F.

    2016-01-01

    Bacterial nano-cellulose (BNC) is considered to possess incredible potential in biomedical applications due to its innate unrivaled nano-fibrillar structure and versatile properties. However, its use is largely restricted by inefficient production and by insufficient strength when it is in a highly swollen state. In this study, a fabric skeleton reinforced chitosan (CS)/BNC hydrogel with high mechanical reliability and antibacterial activity was fabricated by using an efficient dynamic culture that could reserve the nano-fibrillar structure. By adding CS in culture media to 0.25–0.75% (w/v) during bacterial cultivation, the CS/BNC composite hydrogel was biosynthesized in situ on a rotating drum composed of fabrics. With the proposed method, BNC biosynthesis became less sensitive to the adverse antibacterial effects of CS and the production time of the composite hydrogel with desirable thickness could be halved from 10 to 5 days as compared to the conventional static cultures. Although, its concentration was low in the medium, CS accounted for more than 38% of the CS/BNC dry weight. FE-SEM observation confirmed conservation of the nano-fibrillar networks and covering of CS on BNC. ATR-FTIR showed a decrease in the degree of intra-molecular hydrogen bonding and water absorption capacity was improved after compositing with CS. The fabric-reinforced CS/BNC composite exhibited bacteriostatic properties against Escherichia coli and Staphylococcus aureus and significantly improved mechanical properties as compared to the BNC sheets from static culture. In summary, the fabric-reinforced CS/BNC composite constitutes a desired candidate for advanced wound dressings. From another perspective, coating of BNC or CS/BNC could upgrade the conventional wound dressings made of cotton gauze to reduce pain during wound healing, especially for burn patients. PMID:26973634

  7. Development of ductile hybrid fiber reinforced polymer (D-H-FRP) reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Somboonsong, Win

    The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration in transportation structures and port facilities. Currently, the Federal Highway Administration (FHWA) spends annually $31 billion for maintaining and repairing highways and highway bridges. The study reported herein represents the work done in developing a new type of reinforcement called Ductile Hybrid Fiber Reinforced Polymer or D-H-FRP using non-corrosive fiber materials. Unlike the previous FRP reinforcements that fail in a brittle manner, the D-H-FRP bars exhibit the stress-strain curves that are suitable for concrete reinforcement. The D-H-FRP stress-strain curves are linearly elastic with a definite yield point followed by plastic deformation and strain hardening resembling that of mild steel. In addition, the D-H-FRP reinforcement has integrated ribs required for concrete bond. The desirable mechanical properties of D-H-FRP reinforcement are obtained from the integrated design based on the material hybrid and geometric hybrid concepts. Using these concepts, the properties can be tailored to meet the specific design requirements. An analytical model was developed to predict the D-H-FRP stress-strain curves with different combination of fiber materials and geometric configuration. This model was used to optimize the design of D-H-FRP bars. An in-line braiding-pultrusion manufacturing process was developed at Drexel University to produce high quality D-H-FRP reinforcement in diameters that can be used in concrete structures. A series of experiments were carried out to test D-H-FRP reinforcement as well as their individual components in monotonic and cyclic tensile tests. Using the results from the tensile tests and fracture analysis, the stress-strain behavior of the D-H-FRP reinforcement was fully characterized and explained. Two series of concrete beams reinforced with D-H-FRP bars were studied. The D-H-FRP beam test results were then compared with companion

  8. Effect of Nano-Y2O3 on Microstructure and Crack Formation in Laser Direct-Deposited In Situ Particle-Reinforced Fe-Based Coatings

    NASA Astrophysics Data System (ADS)

    Yin, Guili; Chen, Suiyuan; Liu, Yuanyuan; Liang, Jing; Liu, Changsheng; Kuang, Zheng

    2018-03-01

    In situ hard-particle-reinforced Fe-based composite coatings were prepared on Q235 steel substrates by direct laser deposition using Fe-based alloy powders containing 2 wt.% B, 3 wt.% Si and 1-3 wt.% nano-Y2O3. The microstructures, phase compositions, hardnesses and wear resistances of the deposited coatings with different nano-Y2O3 contents were studied using metallographic microscopy, scanning electron microscopy, x-ray diffraction, transmission electron microscopy, microhardness tests and pin-on-disk abrasion tests (MMW-1A), respectively. The results showed that the appropriate addition of Y2O3 played a role in grain refinement and in decreasing the number of brittle phases and impurity elements in the grain boundaries. Consequently, the number of cracks in the laser-deposited coating also decreased. The Fe-based composite coatings were mainly composed of α-Fe, γ-Fe and in situ-produced reinforced particle phases, such as Cr23C6, Cr7C3, (Cr, Fe)7C3, Fe2B, and CrFeB. When the content of nano-Y2O3 was 2 wt.%, a Fe-based composite coating with a thickness of 4 mm that was free of cracks was obtained, and its surface hardness reached 650HV. Moreover, the wear resistance of the coating with 2 wt.% nano-Y2O3 was the best among the samples studied. The presence of nano-Y2O3 increased the solubility of Cr and Si in the solid solution, which eliminated the residual austenite region, and as a result, the phase transformation from γ-Fe to α-Fe was restrained and the transformation stress was also limited, thereby decreasing the probability of cracks in the coatings.

  9. Automated Finite Element Analysis of Elastically-Tailored Plates

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C. (Technical Monitor); Tatting, Brian F.; Guerdal, Zafer

    2003-01-01

    A procedure for analyzing and designing elastically tailored composite laminates using the STAGS finite element solver has been presented. The methodology used to produce the elastic tailoring, namely computer-controlled steering of unidirectionally reinforced composite material tows, has been reduced to a handful of design parameters along with a selection of construction methods. The generality of the tow-steered ply definition provides the user a wide variety of options for laminate design, which can be automatically incorporated with any finite element model that is composed of STAGS shell elements. Furthermore, the variable stiffness parameterization is formulated so that manufacturability can be assessed during the design process, plus new ideas using tow steering concepts can be easily integrated within the general framework of the elastic tailoring definitions. Details for the necessary implementation of the tow-steering definitions within the STAGS hierarchy is provided, and the format of the ply definitions is discussed in detail to provide easy access to the elastic tailoring choices. Integration of the automated STAGS solver with laminate design software has been demonstrated, so that the large design space generated by the tow-steering options can be traversed effectively. Several design problems are presented which confirm the usefulness of the design tool as well as further establish the potential of tow-steered plies for laminate design.

  10. Application of in situ polymerization for design and development of oral drug delivery systems.

    PubMed

    Ngwuluka, Ndidi

    2010-12-01

    Although preformed polymers are commercially available for use in the design and development of drug delivery systems, in situ polymerization has also been employed. In situ polymerization affords the platform to tailor and optimize the drug delivery properties of polymers. This review brings to light the benefits of in situ polymerization for oral drug delivery and the possibilities it provides to overcome the challenges of oral route of administration.

  11. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  12. Digestive efficiencies of ex situ and in situ West Indian manatees (Trichechus manatus latirostris).

    PubMed

    Worthy, Graham A J; Worthy, Tamara A M

    2014-01-01

    Digestive efficiencies (Dm) of ex situ and in situ manatees (Trichechus manatus latirostris) were, for the first time, assessed using manganese (Mn(2+)) as a naturally occurring marker. The Dm of ex situ manatees determined using [Mn(2+)] did not differ significantly from the Dm assessed using lignin, supporting the efficacy of the manganese approach. Gastrointestinal tract samples, obtained from recently dead animals, showed [Mn(2+)] concentrations were lowest in the stomach and remained low in the duodenum and small intestine but increased in the cecum, colon, and rectum, consistent with colonic digestion and absorption. In situ manatees consuming marine vegetation had significantly lower Dm (mean ± SE, 46.9% ± 1.8%; n=8) than did in situ manatees consuming freshwater vegetation (77.8% ± 2.6%; n=7), which in turn had significantly lower values than did ex situ manatees consuming lettuce (84.0% ± 0.7%; n=37). In situ manatees eating seagrasses had significantly higher Dm than did long-term ex situ animals consuming seagrass for short periods of time (46.9% ± 1.8% vs. 36.2% ± 1.2%, respectively), suggesting potential modification of gut flora over time. One significant ramification of our results is that manatees consuming seagrasses would require a greater standing biomass to support their needs than would be required if they were eating freshwater vegetation. This reinforces the critical need to implement habitat conservation and protection before considering downlisting or delisting manatees as an endangered species.

  13. Breeding of in-situ Petroleum Degrading Bacteria in Hangzhou Bay and evaluating for the In-situ repair effect

    NASA Astrophysics Data System (ADS)

    Lan, Ru; Lin, Hai; Qiao, Bing; Dong, Yingbo; Zhang, Wei; Chang, Wen

    2018-02-01

    In this paper, the restoration behaviour of the in-situ microorganisms in seawater and sediments to the marine accident oil spill was researched. The experimental study on the breeding of in-situ petroleum-degrading bacteria in the seawater and sediments of Hangzhou Bay and the restoration of oil spill were carried out. Making use of the reinforced microbial flora, combined with physical and chemical methods in field environment, petroleum degrading and restoration experiment were performed, the effect of the breeding of in-situ degrading bacteria was evaluated, and the standard process of in-situ bacteria sampling, laboratory screening, domestication and degradation efficiency testing were formed. This study laid a foundation for further evaluation of the advantages and disadvantages for the petroleum-degrading bacteria of Hangzhou Bay during the process of in-situ restoration. The results showed that in-situ microbes of Hangzhou Bay could reach the growth peak in 5 days with the suitable environmental factors and sufficient nutrient elements, and the degradation efficiency could reach 65.2% (or 74.8% after acclimation). And also the microbes could adapt to the local sea water and environmental conditions, with a certain degree of degradation. The research results could provide parameter support for causal judgment and quantitative assessment of oil spill damage.

  14. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    NASA Astrophysics Data System (ADS)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-04-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  15. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    NASA Astrophysics Data System (ADS)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-06-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  16. Microstructure and tribological properties of in situ synthesized TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite coatings on pure Ti by laser cladding

    NASA Astrophysics Data System (ADS)

    Pu, Yuping; Guo, Baogang; Zhou, Jiansong; Zhang, Shitang; Zhou, Huidi; Chen, Jianmin

    2008-12-01

    TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite (IMC) coatings were in situ synthesized on a pure Ti substrate by laser cladding. It was found that the surface hardness and the wear resistance of the Ti 3Al coating were improved by the formation of these Ti 3Al IMC coatings. The surface hardness and the wear resistance of the TiC/Ti 3Al IMC coatings increased with the increasing volume fraction of TiC powder. Under the same dry sliding test conditions, the wear resistance of TiC, TiN, and SiC reinforced Ti 3Al IMC coatings with 40 vol.% reinforced powder was in the following order: TiN/Ti 3Al IMC coating > TiC/Ti 3Al IMC coating > SiC/Ti 3Al IMC coating. It should be noted that both the TiC/Ti 3Al IMC coating with 40 vol.% TiC powder and the TiN/Ti 3Al coating with 40 vol.% TiN powder showed excellent wear resistance under 5 N normal load.

  17. Characterization of Multifunctional Carbon Nanotube Yarns: In-situ Strain Sensing and Composite Reinforcement

    NASA Astrophysics Data System (ADS)

    Page, Christian David

    together during twisting. For CNT yarns, this level is referred to as packs since the title "bundle" has already been widely used as the grouping of individual CNTs. The utilization of conventional textile mechanics is supported by the congruent stress strain curves of cotton/wool yarns and CNT yarns. With this new perspective, sources of strength losses can be identified and, in most cases, quantified. Deterministic and statistical textile models are used to enumerate three top-level parameters which affect the yarn's strength. This approach offers guidance for future work to be done in the field of CNT yarns, including the growth of raw CNT forests, the spinning procedures involved, and any post-processing steps that may arise that can mitigate these losses that are extremely degrading to the CNT yarn mechanical strength. The strength of the yarn is a direct reflection of the quality of the yarn's structure. These morphological properties across the nano, meso, and macro scales have an effect on other physical properties such as electromechanical sensitivity. Improving the strength will also improve the yarn's ability to serve as a strain gage. Coupled with its appealing size, these yarns will be an effective in-situ embedded strain sensor. In conclusion, high quality CNT yarns with minimized strength losses show promise for structural health monitoring of advanced materials and structures since they can be both strongly reinforcing and electromechanically sensitive.

  18. In situ polymerization of monomers for polyphenylquinoxaline-graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1974-01-01

    In situ polymerization of monomers was used to prepare graphite-fiber-reinforced polyphenylquinoxaline composites. Six different monomer combinations were investigated. Composite mechanical property retention characteristics were determined at 316 C (600 F) over an extended time period.

  19. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com; Bandyopadhyay, Kaushik; Saha, Partha

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities.more » The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.« less

  20. Study on Preparing Al2O3 Particles Reinforced ZL109 Composite by in Situ Reaction of Fe2O3/Al System

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yu, Huashun; Zhao, Qi; Wang, Haitao; Min, Guanghui

    Al2O3 particles reinforced ZL109 composite was prepared by in situ reaction between Fe2O3 and Al. The phases were identified by XRD and the microstructures were observed by SEM and TEM. The Al2O3 particles in sub-micron size distribute uniformly in the matrix and Fe displaced from the in situ reaction forms net-like alloy phases with Cu, Ni, Al, Mn ect. The hardness and the tensile strength at room temperature of the composites have a small increase compared with the matrix. However, the tensile strength at 350°C can reach 92.18 MPa, which is 18.87 MPa higher than that of the matrix. The mechanism of the reaction in the Fe2O3/Al system was studied by DSC. The reaction between Fe2O3 and Al involves two steps. The first step in which Fe2O3 reacts with Al to form FeO and Al2O3 takes place at the matrix alloy melting temperature. The second step in which FeO reacts with Al to form Fe and Al2O3 takes place at a higher temperature.

  1. Micromechanics and Structural Response of Functionally Graded, Particulate-Matrix, Fiber-Reinforced Composites

    PubMed Central

    Genin, Guy M.; Birman, Victor

    2009-01-01

    Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the potential for simple, economical functional grading, enhanced response to mechanical loads, and improved functioning at high temperatures. Here, we consider laminated plates made of such a material, with spherical reinforcement tailored by layer. The moduli for this material lie within relatively narrow bounds. Two separate moduli estimates are considered: a “two-step” approach in which fibers are embedded in a homogenized particulate matrix, and the Kanaun-Jeulin (2001) approach, which we re-derive in a simple way using the Benveniste (1988) method. Optimal tailoring of a plate is explored, and functional grading is shown to improve the performance of the structures considered. In the example of a square, simply supported, cross-ply laminated panel subjected to uniform transverse pressure, a modest functional grading offers significant improvement in performance. A second example suggests superior blast resistance of the panel achieved at the expense of only a small increase in weight. PMID:23874001

  2. The microstructural characterization of an in situ grown Si{sub 3}N{sub 4} whisker-reinforced BAS glass-ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Feng; Ortiz-Longo, C.R.; White, K.W.

    The microstructure of barium aluminum silicate (BAS)/silicon nitride in situ whisker reinforced ceramic matrix composite was examined by X-ray diffraction, transmission electron microscopy, electron diffraction and energy-dispersive X-ray microanalysis. Although the authors can not conclusively exclude the presence of orthorhombic BAS, hexagonal BAS and both {alpha}-Si{sub 3}N{sub 4} and {beta}-Si{sub 3}N{sub 4} were identified in this material. The {beta}-Si{sub 3}N{sub 4} whiskers nucleate and grow in random directions in the nearly continuous matrix of metastable hexacelsian. The crystallization process of the glass phase can be taken almost to completion but a small proportion of residual glass phase is present atmore » the interface and grains-junction. Both whisker-like and equiaxed {beta}-Si{sub 3}N{sub 4} exist in this material.« less

  3. Thermo-mechanical improvement of Inconel 718 using ex situ boron nitride-reinforced composites processed by laser powder bed fusion.

    PubMed

    Kim, Sang Hoon; Shin, Gi-Hun; Kim, Byoung-Kee; Kim, Kyung Tae; Yang, Dong-Yeol; Aranas, Clodualdo; Choi, Joon-Phil; Yu, Ji-Hun

    2017-10-30

    Hexagonal boron nitride-reinforced Inconel 718 (h-BN/IN718) composites were fabricated using a laser powder bed fusion (LPBF) technique to treat a nanosheet-micropowder precursor mixture prepared in a mechanical blending process. Tailoring the BN in IN718 enhanced the thermal resistance of the composites, thereby dampening the sharpness of the melting temperature peak at 1364 °C. This is because the presence of the BN reinforcement, which has a low coefficient of thermal expansion (CTE), resulted in a heat-blocking effect within the matrix. Following this lead, we found that the BN (2.29 g/cm 3 ) was uniformly distributed and strongly embedded in the IN718 (8.12 g/cm 3 ), with the lowest alloy density value (7.03 g/cm 3 ) being obtained after the addition of 12 vol% BN. Consequently, its specific hardness and compressive strength rose to 41.7 Hv 0.5 ·cm 3 /g and 92.4 MPa·cm 3 /g, respectively, compared to the unreinforced IN718 alloy with 38.7 Hv 0.5 ·cm 3 /g and 89.4 MPa·cm 3 /g, respectively. Most importantly, we discovered that the wear resistance of the composite improved compared to the unreinforced IN718, indicated by a decrease in the coefficient of friction (COF) from 0.43 to 0.31 at 2400 s. This is because the BN has an exfoliated surface and intrinsically high sliding and lubricating characteristics.

  4. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries.

    PubMed

    Ashraf Gandomi, Yasser; Aaron, Doug S; Mench, Matthew M

    2017-06-06

    One of the major sources of lost capacity in all-vanadium redox flow batteries (VRFBs) is the undesired transport (usually called crossover) of water and vanadium ions through the ion-exchange membrane. In this work, an experimental assessment of the impact of ion-exchange membrane properties on vanadium ion crossover and capacity decay of VRFBs has been performed. Two types of cationic membranes (non-reinforced and reinforced) with three equivalent weights of 800, 950 and 1100 g·mol -1 were investigated via a series of in situ performance and capacity decay tests along with ex situ vanadium crossover measurement and membrane characterization. For non-reinforced membranes, increasing the equivalent weight (EW) from 950 to 1100 g·mol -1 decreases the V(IV) permeability by ~30%, but increases the area-specific resistance (ASR) by ~16%. This increase in ASR and decrease in V(IV) permeability was accompanied by increased through-plane membrane swelling. Comparing the non-reinforced with reinforced membranes, membrane reinforcement increases ASR, but V(IV) permeability decreases. It was also shown that there exists a monotonic correlation between the discharge capacity decay over long-term cycling and V(IV) permeability values. Thus, V(IV) permeability is considered a representative diagnostic for assessing the overall performance of a particular ion-exchange membrane with respect to capacity fade in a VRFB.

  5. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries

    PubMed Central

    Ashraf Gandomi, Yasser; Aaron, Doug S.; Mench, Matthew M.

    2017-01-01

    One of the major sources of lost capacity in all-vanadium redox flow batteries (VRFBs) is the undesired transport (usually called crossover) of water and vanadium ions through the ion-exchange membrane. In this work, an experimental assessment of the impact of ion-exchange membrane properties on vanadium ion crossover and capacity decay of VRFBs has been performed. Two types of cationic membranes (non-reinforced and reinforced) with three equivalent weights of 800, 950 and 1100 g·mol−1 were investigated via a series of in situ performance and capacity decay tests along with ex situ vanadium crossover measurement and membrane characterization. For non-reinforced membranes, increasing the equivalent weight (EW) from 950 to 1100 g·mol−1 decreases the V(IV) permeability by ~30%, but increases the area-specific resistance (ASR) by ~16%. This increase in ASR and decrease in V(IV) permeability was accompanied by increased through-plane membrane swelling. Comparing the non-reinforced with reinforced membranes, membrane reinforcement increases ASR, but V(IV) permeability decreases. It was also shown that there exists a monotonic correlation between the discharge capacity decay over long-term cycling and V(IV) permeability values. Thus, V(IV) permeability is considered a representative diagnostic for assessing the overall performance of a particular ion-exchange membrane with respect to capacity fade in a VRFB. PMID:28587268

  6. Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, S. M., E-mail: weng-sm@ile.osaka-u.ac.jp; Murakami, M.; Azechi, H.

    It is proposed that laser hole-boring at a steady speed in inhomogeneous overdense plasma can be realized by the use of temporally tailored intense laser pulses, producing high-fluence quasi-monoenergetic ion beams. A general temporal profile of such laser pulses is formulated for arbitrary plasma density distribution. As an example, for a precompressed deuterium-tritium fusion target with an exponentially increasing density profile, its matched laser profile for steady hole-boring is given theoretically and verified numerically by particle-in-cell simulations. Furthermore, we propose to achieve fast ignition by the in-situ hole-boring accelerated ions using a tailored laser pulse. Simulations show that the effectivemore » energy fluence, conversion efficiency, energy spread, and collimation of the resulting ion beam can be significantly improved as compared to those found with un-tailored laser profiles. For the fusion fuel with an areal density of 1.5 g cm{sup –2}, simulation indicates that it is promising to realize fast ion ignition by using a tailored driver pulse with energy about 65 kJ.« less

  7. Experimental Investigation of Fibre Reinforced Composite Materials Under Impact Load

    NASA Astrophysics Data System (ADS)

    Koppula, Sravani; Kaviti, Ajay kumar; Namala, Kiran kumar

    2018-03-01

    Composite materials are extensively used in various engineering applications. They have very high flexibility design which allows prescribe tailoring of material properties by lamination of composite fibres with reinforcement of resin to it. Complex failure condition prevail in the composite materials under the action of impact loads, major modes of failure in composite may include matrix cracking, fibre matrix, fibre breakage, de-bonding or de- lamination between composite plies. This paper describes the mechanical properties of glass fibre reinforced composite material under impact loading conditions through experimental setup. Experimental tests are performed according to ASTM standards using impact testing machines like Charpy test, computerized universal testing machine.

  8. In Situ TiC-Reinforced Ni-Based Composite Coating Prepared by Flame Spraying Using Sucrose as the Source of Carbon

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhang, Shouquan; Zhu, Jinglei; Huang, Jihua; Liu, Huiyuan; Zhang, Hua

    2009-03-01

    A Ni-Ti-C composite powder for Reactive Thermal Spraying is made by heating a mixture of titanium, nickel, and sucrose to carbonize the sucrose, which is used as the source of carbon. The carbon obtained by pyrolysis of sucrose is a reactive constituent as well as the binder in the composite powder. The titanium and nickel particles are bound by the carbon to form granules of the composite powder. This powder feedstock was used to prepare in situ TiC-reinforced Ni-based composite coating by oxyacetylene flame spraying. The TiC-Ni composite coating is made of TiC, Ni, and some Ni3Ti. In the coating, a mass of fine TiC particles is uniformly distributed within the metallic matrix. The microhardness and surface hardness of the coating are, respectively, 1433 HV0.2kg and 62 ± 6 (HR30N). The wear resistance is much better for the TiC-Ni composite coating than for the substrate and Ni60 coating.

  9. Fiber reinforced glasses and glass-ceramics for high performance applications

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Brennan, J. J.; Layden, G. K.

    1986-01-01

    The development of fiber reinforced glass and glass-ceramic matrix composites is described. The general concepts involved in composite fabrication and resultant composite properties are given for a broad range of fiber and matrix combinations. It is shown that composite materials can be tailored to achieve high levels of toughness, strength, and elastic stiffness, as well as wear resistance and dimensional stability.

  10. In situ polymerization of monomers for polyphenylquinoxaline/graphite

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1973-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  11. High-reliability emergency response teams in the hospital: improving quality and safety using in situ simulation training.

    PubMed

    Wheeler, Derek S; Geis, Gary; Mack, Elizabeth H; LeMaster, Tom; Patterson, Mary D

    2013-06-01

    In situ simulation training is a team-based training technique conducted on actual patient care units using equipment and resources from that unit, and involving actual members of the healthcare team. We describe our experience with in situ simulation training in a major children's medical centre. In situ simulations were conducted using standardised scenarios approximately twice per month on inpatient hospital units on a rotating basis. Simulations were scheduled so that each unit participated in at least two in situ simulations per year. Simulations were conducted on a revolving schedule alternating on the day and night shifts and were unannounced. Scenarios were preselected to maximise the educational experience, and frequently involved clinical deterioration to cardiopulmonary arrest. We performed 64 of the scheduled 112 (57%) in situ simulations on all shifts and all units over 21 months. We identified 134 latent safety threats and knowledge gaps during these in situ simulations, which we categorised as medication, equipment, and/or resource/system threats. Identification of these errors resulted in modification of systems to reduce the risk of error. In situ simulations also provided a method to reinforce teamwork behaviours, such as the use of assertive statements, role clarity, performance of frequent updating, development of a shared mental model, performance of independent double checks of high-risk medicines, and overcoming authority gradients between team members. Participants stated that the training programme was effective and did not disrupt patient care. In situ simulations can identify latent safety threats, identify knowledge gaps, and reinforce teamwork behaviours when used as part of an organisation-wide safety programme.

  12. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Sarnes, James H., Jr.

    2004-01-01

    Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The results indicate that a local buckling response occurs in the shell near the cutout when subjected to load and is caused by a nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell is shown to retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.

  13. Tailoring a family-based alcohol intervention for Aboriginal Australians, and the experiences and perceptions of health care providers trained in its delivery

    PubMed Central

    2014-01-01

    Background Aboriginal Australians experience a disproportionately high burden of alcohol-related harm compared to the general Australian population. Alcohol treatment approaches that simultaneously target individuals and families offer considerable potential to reduce these harms if they can be successfully tailored for routine delivery to Aboriginal Australians. The Community Reinforcement Approach (CRA) and Community Reinforcement and Family Training (CRAFT) are two related interventions that are consistent with Aboriginal Australians’ notions of health and wellbeing. This paper aims to describe the process of tailoring CRA and CRAFT for delivery to Aboriginal Australians, explore the perceptions of health care providers participating in the tailoring process, and their experiences of participating in CRA and CRAFT counsellor certification. Methods Data sources included notes recorded from eight working group meetings with 22 health care providers of a drug and alcohol treatment agency and Aboriginal Community Controlled Health Service (November 2009-February 2013), and transcripts of semi-structured interviews with seven health care providers participating in CRA and CRAFT counsellor certification (May 2012). Qualitative content analysis was used to categorise working group meeting notes and interview transcripts were into key themes. Results Modifying technical language, reducing the number of treatment sessions, and including an option for treatment of clients in groups, were key recommendations by health care providers for improving the feasibility and applicability of delivering CRA and CRAFT to Aboriginal Australians. Health care providers perceived counsellor certification to be beneficial for developing their skills and confidence in delivering CRA and CRAFT, but identified time constraints and competing tasks as key challenges. Conclusions The tailoring process resulted in Aboriginal Australian-specific CRA and CRAFT resources. The process also

  14. Tailoring a family-based alcohol intervention for Aboriginal Australians, and the experiences and perceptions of health care providers trained in its delivery.

    PubMed

    Calabria, Bianca; Clifford, Anton; Rose, Miranda; Shakeshaft, Anthony P

    2014-04-07

    Aboriginal Australians experience a disproportionately high burden of alcohol-related harm compared to the general Australian population. Alcohol treatment approaches that simultaneously target individuals and families offer considerable potential to reduce these harms if they can be successfully tailored for routine delivery to Aboriginal Australians. The Community Reinforcement Approach (CRA) and Community Reinforcement and Family Training (CRAFT) are two related interventions that are consistent with Aboriginal Australians' notions of health and wellbeing. This paper aims to describe the process of tailoring CRA and CRAFT for delivery to Aboriginal Australians, explore the perceptions of health care providers participating in the tailoring process, and their experiences of participating in CRA and CRAFT counsellor certification. Data sources included notes recorded from eight working group meetings with 22 health care providers of a drug and alcohol treatment agency and Aboriginal Community Controlled Health Service (November 2009-February 2013), and transcripts of semi-structured interviews with seven health care providers participating in CRA and CRAFT counsellor certification (May 2012). Qualitative content analysis was used to categorise working group meeting notes and interview transcripts were into key themes. Modifying technical language, reducing the number of treatment sessions, and including an option for treatment of clients in groups, were key recommendations by health care providers for improving the feasibility and applicability of delivering CRA and CRAFT to Aboriginal Australians. Health care providers perceived counsellor certification to be beneficial for developing their skills and confidence in delivering CRA and CRAFT, but identified time constraints and competing tasks as key challenges. The tailoring process resulted in Aboriginal Australian-specific CRA and CRAFT resources. The process also resulted in the training and certification of

  15. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites

    PubMed Central

    Ahmad, Iftikhar; Yazdani, Bahareh; Zhu, Yanqiu

    2015-01-01

    Ceramics suffer the curse of extreme brittleness and demand new design philosophies and novel concepts of manufacturing to overcome such intrinsic drawbacks, in order to take advantage of most of their excellent properties. This has been one of the foremost challenges for ceramic material experts. Tailoring the ceramics structures at nanometre level has been a leading research frontier; whilst upgrading via reinforcing ceramic matrices with nanomaterials including the latest carbon nanotubes (CNTs) and graphene has now become an eminent practice for advanced applications. Most recently, several new strategies have indeed improved the properties of the ceramics/CNT nanocomposites, such as by tuning with dopants, new dispersions routes and modified sintering methods. The utilisation of graphene in ceramic nanocomposites, either as a solo reinforcement or as a hybrid with CNTs, is the newest development. This article will summarise the recent advances, key difficulties and potential applications of the ceramics nanocomposites reinforced with CNTs and graphene. PMID:28347001

  16. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  17. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.

  18. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong

    2017-12-01

    A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

  19. Self-Healing Natural Rubber with Tailorable Mechanical Properties Based on Ionic Supramolecular Hybrid Network.

    PubMed

    Xu, Chuanhui; Cao, Liming; Huang, Xunhui; Chen, Yukun; Lin, Baofeng; Fu, Lihua

    2017-08-30

    In most cases, the strength of self-healing supramolecular rubber based on noncovalent bonds is in the order of KPa, which is a challenge for their further applications. Incorporation of conventional fillers can effectively enhance the strength of rubbers, but usually accompanied by a sacrifice of self-healing capability due to that the filler system is independent of the reversible supramolecular network. In the present work, in situ reaction of methacrylic acid (MAA) and excess zinc oxide (ZnO) was realized in natural rubber (NR). Ionic cross-links in NR matrix were obtained by limiting the covalent cross-linking of NR molecules and allowing the in situ polymerization of MAA/ZnO. Because of the natural affinity between Zn 2+ ion-rich domains and ZnO, the residual nano ZnO participated in formation of a reversible ionic supramolecular hybrid network, thus having little obstructions on the reconstruction of ionic cross-links. Meanwhile, the well dispersed residual ZnO could tailor the mechanical properties of NR by changing the MAA/ZnO molar ratios. The present study thus provides a simple method to fabricate a new self-healing NR with tailorable mechanical properties that may have more potential applications.

  20. Wave propagation modeling in composites reinforced by randomly oriented fibers

    NASA Astrophysics Data System (ADS)

    Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw

    2018-02-01

    A new method for prediction of elastic constants in randomly oriented fiber composites is proposed. It is based on mechanics of composites, the rule of mixtures and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Selected elastic properties predicted by the proposed method are compared with values obtained by another theoretical method. The proposed method is applied for simulation of Lamb waves in glass-epoxy composite plate reinforced by randomly oriented fibers. Full wavefield measurements conducted by the scanning laser Doppler vibrometer are in good agreement with simulations performed by using the time domain spectral element method.

  1. Method of producing particulate-reinforced composites and composites produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2013-12-24

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  2. Method of producing particulate-reinforced composites and composites produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2015-12-29

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  3. Method of producing particulate-reinforced composites and composties produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2013-12-24

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.

  4. Tailor-made finance versus tailor-made care. Can the state strengthen consumer choice in healthcare by reforming the financial structure of long-term care?

    PubMed

    Grit, K; de Bont, A

    2010-02-01

    Policy instruments based on the working of markets have been introduced to empower consumers of healthcare. However, it is still not easy to become a critical consumer of healthcare. The aim of this study is to analyse the possibilities of the state to strengthen the position of patients with the aid of a new financial regime, such as personal health budgets. Data were collected through in-depth interviews with executives, managers, professionals and client representatives of six long-term care institutions. With the introduction of individual budgets the responsibility for budgetary control has shifted from the organisational level to the individual level in the caregiver-client relationship. Having more luxurious care on offer necessitates a stronger demarcation of regular care because organisations cannot simultaneously offer extra care as part of the standard care package. New financial instruments have an impact on the culture of receiving and giving care. Distributive justice takes on new meaning with the introduction of financial market mechanisms in healthcare; the distributing principle of 'need' is transformed into the principle of 'economic demand'. Financial instruments not only act as a countervailing power against providers insufficiently client-oriented, but are also used by providers to reinforce their own positions vis-à-vis demanding clients. Tailor-made finance is not the same as tailor-made care.

  5. In situ SEM thermal fatigue of Al/graphite metal matrix composites

    NASA Technical Reports Server (NTRS)

    Zong, G. S.; Rabenberg, L.; Marcus, H. L.

    1990-01-01

    Several thermal fatigue-induced failure mechanisms are deduced for unidirectional graphite-reinforced 6061 Al-alloy MMCs subjected to in situ thermal cycling. These thermal cycling conditions are representative of MMC service cycles in aerospace environments, where thermal fatigue is primarily associated with changes in the stress states near the interfaces due to coefficient of thermal expansion mismatch between fiber and matrix. This in situ SEM thermal-cycling study clarified such factors affecting MMCs' thermal fatigue as local fiber content and distribution, void volume, fiber stiffness, thermal excursion magnitude, and number of thermal cycles. MMC microfailure modes in thermal fatigue have been deduced.

  6. In-Situ Cure Monitoring of the Immidization Reaction of PMR-15

    NASA Technical Reports Server (NTRS)

    Cossins, Sheryl; Kellar, Jon J.; Winter, Robb M.

    1997-01-01

    Glass fiber reinforced polymer composites are becoming widely used in industry. With this increase in production, an in-situ method of quality control for the curing of the polymer is desirable. This would allow for the production of high-quality parts having more uniform properties.' Recently, in-situ fiber optic monitoring of polymer curing has primarily focused on epoxy resins and has been performed by Raman or fluorescence methods. In addition, some infrared (IR) investigations have been performed using transmission or ATR cells. An alternate IR approach involves using optical fibers as a sensor by utilizing evanescent wave spectroscopy.

  7. In situ polymerization of monomers for polyphenylquinoxaline/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1974-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  8. Cost effectiveness of computer tailored and non-tailored smoking cessation letters in general practice: randomised controlled trial

    PubMed Central

    Lennox, A Scott; Osman, Liesl M; Reiter, Ehud; Robertson, Roma; Friend, James; McCann, Ian; Skatun, Diane; Donnan, Peter T

    2001-01-01

    Objectives To develop and evaluate, in a primary care setting, a computerised system for generating tailored letters about smoking cessation. Design Randomised controlled trial. Setting Six general practices in Aberdeen, Scotland. Participants 2553 smokers aged 17 to 65. Interventions All participants received a questionnaire asking about their smoking. Participants subsequently received either a computer tailored or a non-tailored, standard letter on smoking cessation, or no letter. Main outcome measures Prevalence of validated abstinence at six months; change in intention to stop smoking in the next six months. Results The validated cessation rate at six months was 3.5% (30/857) (95% confidence interval 2.3% to 4.7%) for the tailored letter group, 4.4% (37/846) (3.0% to 5.8%) for the non-tailored letter group, and 2.6% (22/850) (1.5% to 3.7%) for the control (no letter) group. After adjustment for significant covariates, the cessation rate was 66% greater (−4% to 186%; P=0.07) in the non-tailored letter group than that in the no letter group. Among participants who smoked <20 cigarettes per day, the cessation rate in the non-tailored letter group was 87% greater (0% to 246%; P=0.05) than that in the no letter group. Among heavy smokers who did not quit, a 76% higher rate of positive shift in “stage of change” (intention to quit within a particular period of time) was seen compared with those who received no letter (11% to 180%; P=0.02). The increase in cost for each additional quitter in the non-tailored letter group compared with the no letter group was £89. Conclusions In a large general practice, a brief non-tailored letter effectively increased cessation rates among smokers. A tailored letter was not effective in increasing cessation rates but promoted shift in movement towards cessation (“stage of change”) in heavy smokers. As a pragmatic tool to encourage cessation of smoking, a mass mailing of non-tailored letters from general practices is more

  9. The use of mHealth to deliver tailored messages reduces reported energy and fat intake

    PubMed Central

    Ambeba, Erica J.; Ye, Lei; Sereika, Susan M.; Styn, Mindi A.; Acharya, Sushama D.; Sevick, Mary Ann; Ewing, Linda J.; Conroy, Molly B.; Glanz, Karen; Zheng, Yaguang; Goode, Rachel W.; Mattos, Meghan; Burke, Lora E.

    2016-01-01

    Background Evidence supports the role of feedback in reinforcing motivation for behavior change. Feedback that provides reinforcement has the potential to increase dietary self-monitoring and enhance attainment of recommended dietary intake. Objective To examine the impact of daily feedback (DFB) messages, delivered remotely, on changes in dietary intake. Methods A secondary analysis of the SMART trial, a single-center, 24-month randomized clinical trial of behavioral treatment for weight loss. Participants included 210 obese adults (mean body mass index=34.0 kg/m2) who were randomized to either a paper diary (PD), personal digital assistant (PDA), or PDA plus daily, tailored feedback messages (PDA+FB). To determine the role of daily tailored feedback in dietary intake, we compared the self-monitoring with daily feedback group (DFB, n=70) to the self-monitoring without daily feedback group (No-DFB, n=140). All participants received a standard behavioral intervention for weight loss. Self-reported changes in dietary intake were compared between the DFB and No-DFB groups and were measured at baseline, 6, 12, 18, and 24 months. Linear mixed modeling was used to examine percent changes in dietary intake from baseline. Results Compared to the No-DFB group, the DFB group achieved a larger reduction in energy (−22.8% vs. −14.0%, p=0.02) and saturated fat (−11.3% vs. −0.5%, p=0.03) intake, and a trend toward a greater decrease in total fat intake (−10.4% vs. −4.7%, p=0.09). There were significant improvements over time in carbohydrate intake and total fat intake for both groups (p’s<0.05). Conclusion Daily, tailored feedback messages, designed to target energy and fat intake and delivered remotely in real-time using mobile devices, may play an important role in the reduction of energy and fat intake. PMID:24434827

  10. Nonstructural damages of reinforced concrete buildings due to 2015 Ranau earthquake

    NASA Astrophysics Data System (ADS)

    Adiyanto, Mohd Irwan; Majid, Taksiah A.; Nazri, Fadzli Mohamed

    2017-07-01

    On 15th June 2016 a moderate earthquake with magnitude Mw5.9 was occurred in Sabah, Malaysia. Specifically, the epicentre was located at 16 km northwest of Ranau. Less than two days after the first event, a reconnaissance mission took action to investigate the damages on buildings. Since the reinforced concrete buildings in Ranau were designed based on gravity and wind load only, a lot of minor to severe damages was occurred. This paper presents the damages on the nonstructural elements of reinforced concrete buildings due to Ranau earthquake. The assessment was conducted via in-situ field investigation covering the visual observation, taking photo, and interview with local resident. Based on in-situ field investigation, there was a lot of damages occurred on the nonstructural elements like the brick walls. Such damages cannot be neglected since it can cause injury and fatality to the victims. Therefore, it can be concluded that the installation of nonstructural elements should be reviewed for the sake of safety.

  11. Repair of impact damaged utility poles with fiber reinforced polymers (FRP), phase II.

    DOT National Transportation Integrated Search

    2015-06-01

    Vehicle collisions with steel or aluminum utility poles are common occurrences that yield substantial but often repairable : damage. This project investigates the use of a fiber-reinforced polymer (FRP) composite system for in situ repair that : mini...

  12. Significantly enhanced creep resistance of low volume fraction in-situ TiBw/Ti6Al4V composites by architectured network reinforcements

    PubMed Central

    Wang, S.; Huang, L. J.; Geng, L.; Scarpa, F.; Jiao, Y.; Peng, H. X.

    2017-01-01

    We present a new class of TiBw/Ti6Al4V composites with a network reinforcement architecture that exhibits a significant creep resistance compared to monolithic Ti6Al4V alloys. Creep tests performed at temperatures between 773 K and 923 K and stress range of 100 MPa-300 MPa indicate both a significant improvement of the composites creep resistance due to the network architecture made by the TiB whiskers (TiBw), and a decrease of the steady-state creep rates by augmenting the local volume fractions of TiBw in the network region. The deformation behavior is driven by a diffusion-controlled dislocation climb process. Moreover, the activation energies of these composites are significantly higher than that of Ti6Al4V alloys, indicating a higher creep resistance. The increase of the activation energy can be attributed to the TiBw architecture that severely impedes the movements of dislocation and grain boundary sliding and provides a tailoring of the stress transfer. These micromechanical mechanisms lead to a remarkable improvement of the creep resistance of these networked TiBw/Ti6Al4V composites featuring the special networked architecture. PMID:28094350

  13. Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large-Sized and Ductile Metallic Glass Composites.

    PubMed

    Song, Wenli; Wu, Yuan; Wang, Hui; Liu, Xiongjun; Chen, Houwen; Guo, Zhenxi; Lu, Zhaoping

    2016-10-01

    A novel strategy to control the precipitation behavior of the austenitic phase, and to obtain large-sized, transformation-induced, plasticity-reinforced bulk metallic glass matrix composites, with good tensile properties, is proposed. By inducing heterogeneous nucleation of the transformable reinforcement via potent nucleants formed in situ, the characteristics of the austenitic phase are well manipulated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In-situ measurement system

    DOEpatents

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  15. Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    PubMed

    Guner, Selen N Gurbuz; Dericioglu, Arcan F

    2016-12-05

    Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferentially oriented two-dimensional inorganic reinforcement-polymer matrix bulk lamellar composites with a micro-scale structure resembling the brick-and-mortar architecture of nacre. By applying the micro-scale design guideline found in nacre and optimizing the relative volume fractions of the reinforcement and the matrix as well as by anchoring the brick-and-mortar architecture, and tailoring the interface between reinforcements and the matrix via silane coupling agents, strong, stiff and tough bio-inspired nacre-mimetic bulk composites were fabricated. As a result of high shear stress transfer lengths and effective stress transfer at the interface achieved through surface functionalization of the reinforcements, fabricated bulk composites exhibited enhanced mechanical performance as compared to neat epoxy. Furthermore, governed flake pull-out mode along with a highly torturous crack path, which resulted from extensive deflection and meandering of the advancing crack around well-aligned high aspect ratio C-glass flakes, have led to high work-of-fracture values similar to nacre.

  16. In-Situ Synthetic TiB2 Particulate Reinforced Metal Matrix Composite Coating on AA2024 Aluminum Alloy by Laser Cladding Technology

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Kan, Yide; Liu, Wenjin

    In order to improve the wear resistance of aluminum alloy, in-situ synthesized TiB2 and Ti3B4 peritectic composite particulate reinforced metal matrix composite, formed on a 2024 aluminum alloy by laser cladding with a powder mixture of Fe-coated Boron, Ti and Al, was successfully achieved using 3-KW CW CO2 laser. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM, AFM and XRD. The typical microstructure of the composite coating is composed of TiB2, Ti3B4, Al3Ti, Al3Fe and α-Al. The surface hardness of cladding coating increases with the amount of added Fe-coated B and Ti powder which determines the amount of TiB2 and Ti3B4 peritectic composite particulate. The nanohardness and the elastic modulus at the interface of the TiB2 and Ti3B4 peritectic composite particulate/matrix were investigated using the nanoindentation technique. The results showed that the nanohardness and the reduced elastic modulus from the peritectic composite particulate to the matrix is a gradient distribution.

  17. Computer-generated tailored feedback letters for smoking cessation: theoretical and empirical variability of tailoring.

    PubMed

    Schumann, Anja; John, Ulrich; Ulbricht, Sabina; Rüge, Jeannette; Bischof, Gallus; Meyer, Christian

    2008-11-01

    This study examines tailored feedback letters of a smoking cessation intervention that is conceptually based on the transtheoretical model, from a content-based perspective. Data of 2 population-based intervention studies, both randomized controlled trials, with total N=1044 were used. The procedure of the intervention, the tailoring principle for the feedback letters, and the content of the intervention materials are described in detail. Theoretical and empirical frequencies of unique feedback letters are presented. The intervention system was able to generate a total of 1040 unique letters with normative feedback only, and almost half a million unique letters with normative and ipsative feedback. Almost every single smoker in contemplation, preparation, action, and maintenance had an empirically unique combination of tailoring variables and received a unique letter. In contrast, many smokers in precontemplation shared a combination of tailoring variables and received identical letters. The transtheoretical model provides an enormous theoretical and empirical variability of tailoring. However, tailoring for a major subgroup of smokers, i.e. those who do not intend to quit, needs improvement. Conceptual ideas for additional tailoring variables are discussed.

  18. Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester.

    PubMed

    Jang, Ji-Un; Park, Hyeong Cheol; Lee, Hun Su; Khil, Myung-Seob; Kim, Seong Yun

    2018-05-16

    There is growing interest in carbon fibre fabric reinforced polymer (CFRP) composites based on a thermoplastic matrix, which is easy to rapidly produce, repair or recycle. To expand the applications of thermoplastic CFRP composites, we propose a process for fabricating conductive CFRP composites with improved electrical and thermal conductivities using an in-situ polymerizable and thermoplastic cyclic butylene terephthalate oligomer matrix, which can induce good impregnation of carbon fibres and a high dispersion of nanocarbon fillers. Under optimal processing conditions, the surface resistivity below the order of 10 +10 Ω/sq, which can enable electrostatic powder painting application for automotive outer panels, can be induced with a low nanofiller content of 1 wt%. Furthermore, CFRP composites containing 20 wt% graphene nanoplatelets (GNPs) were found to exhibit an excellent thermal conductivity of 13.7 W/m·K. Incorporating multi-walled carbon nanotubes into CFRP composites is more advantageous for improving electrical conductivity, whereas incorporating GNPs is more beneficial for enhancing thermal conductivity. It is possible to fabricate the developed thermoplastic CFRP composites within 2 min. The proposed composites have sufficient potential for use in automotive outer panels, engine blocks and other mechanical components that require conductive characteristics.

  19. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  20. Reinforcement in plants.

    PubMed

    Hopkins, Robin

    2013-03-01

    A major goal of evolutionary biology is to understand how diverging populations become species. The evolution of reproductive isolation (RI) halts the genomic homogenization caused by gene flow and recombination, and enables differentiation and local adaptations to become fixed between newly forming species. Selection can favor the strengthening of RI through a process termed reinforcement. Reinforcement occurs when selection favors traits that decrease mating between two incipient species in response to costly mating or the production of maladapted hybrids. Although this process has been investigated more frequently in animals, there is also evidence of reinforcement in plants. There are three strategies for the investigation of the process of reinforcement: case studies of species or diverging taxa; experimental evolution studies; and comparative studies. Here, I discuss how all three strategies find evidence consistent with reinforcement occurring in plants. I focus largely on case studies, and use research on Phlox drummondii to illustrate the importance of testing alternative hypotheses. Although the existing evidence suggests that reinforcement can occur, further investigations, particularly using large-scale comparative studies, are needed to determine the importance of reinforcement in plant speciation.

  1. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs

    NASA Astrophysics Data System (ADS)

    Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana

    2013-07-01

    The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive

  2. Martensitic transformation in a B2-containing CuZr-based BMG composite revealed by in situ neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Lee, Chanho; Hong, Sung Hwan

    Here, CuZr-based bulk-metallic-glass (BMG) composites reinforced by a B2-type CuZr crystalline-phase (CP) have been widely studied, and exhibit that the plastic deformation of the CP induces martensitic transformation from the B2 to B19', which plays a dominant role in the deformation behavior and mechanical properties. In the present study, 2.0% Co containing CuZr-based BMG composites were investigated using in-situ neutron-diffraction technique. The in-situ neutron-diffraction results reveal the continuous load transfer from the glass matrix to B2 CP and martensitic transformation from the B2 CP to B19' during the deformation of the composite. Moreover, it was found that the martensitic transformationmore » is initiated at the applied stress higher than 1500 MPa, and is significantly suppressed during the deformation, as compared to other 0.5% Co-containing CuZr-based BMG composites. Based on these in-situ neutron-diffraction results, the martensitic transformation is strongly affected by the amount of the addition of Co, which determines the mechanical properties of CP-reinforced BMG composites, such as ductility and hardening capability.« less

  3. Martensitic transformation in a B2-containing CuZr-based BMG composite revealed by in situ neutron diffraction

    DOE PAGES

    Song, Gian; Lee, Chanho; Hong, Sung Hwan; ...

    2017-06-27

    Here, CuZr-based bulk-metallic-glass (BMG) composites reinforced by a B2-type CuZr crystalline-phase (CP) have been widely studied, and exhibit that the plastic deformation of the CP induces martensitic transformation from the B2 to B19', which plays a dominant role in the deformation behavior and mechanical properties. In the present study, 2.0% Co containing CuZr-based BMG composites were investigated using in-situ neutron-diffraction technique. The in-situ neutron-diffraction results reveal the continuous load transfer from the glass matrix to B2 CP and martensitic transformation from the B2 CP to B19' during the deformation of the composite. Moreover, it was found that the martensitic transformationmore » is initiated at the applied stress higher than 1500 MPa, and is significantly suppressed during the deformation, as compared to other 0.5% Co-containing CuZr-based BMG composites. Based on these in-situ neutron-diffraction results, the martensitic transformation is strongly affected by the amount of the addition of Co, which determines the mechanical properties of CP-reinforced BMG composites, such as ductility and hardening capability.« less

  4. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2002-01-01

    Results from a numerical study of the response of thin-wall compression-loaded quasi-isotropic laminated composite cylindrical shells with reinforced and unreinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A high-fidelity nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate how a compression-loaded shell with an unreinforced cutout can exhibit a complex nonlinear response. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, the addition of reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell, as expected. However, results are presented that show how certain reinforcement configurations can actually cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved response characteristics.

  5. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  6. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  7. Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites.

    PubMed

    Geng, Shiyu; Wei, Jiayuan; Aitomäki, Yvonne; Noël, Maxime; Oksman, Kristiina

    2018-04-20

    In nanocomposites, dispersing hydrophilic nanomaterials in a hydrophobic matrix using simple and environmentally friendly methods remains challenging. Herein, we report a method based on in situ polymerization to synthesize nanocomposites of well-dispersed cellulose nanocrystals (CNCs) and poly(vinyl acetate) (PVAc). We have also shown that by blending this PVAc/CNC nanocomposite with poly(lactic acid) (PLA), a good dispersion of the CNCs can be reached in PLA. The outstanding dispersion of CNCs in both PVAc and PLA/PVAc matrices was shown by different microscopy techniques and was further supported by the mechanical and rheological properties of the composites. The in situ PVAc/CNC nanocomposites exhibit enhanced mechanical properties compared to the materials produced by mechanical mixing, and a theoretical model based on the interphase effect and dispersion that reflects this behavior was developed. Comparison of the rheological and thermal behaviors of the mixed and in situ PVAc/CNC also confirmed the great improvement in the dispersion of nanocellulose in the latter. Furthermore, a synergistic effect was observed with only 0.1 wt% CNCs when the in situ PVAc/CNC was blended with PLA, as demonstrated by significant increases in elastic modulus, yield strength, elongation to break and glass transition temperature compared to the PLA/PVAc only material.

  8. Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs

    NASA Astrophysics Data System (ADS)

    Silber, Martin; Wenzelburger, Martin; Gadow, Rainer

    2007-04-01

    Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.

  9. Toughening Fe-based Amorphous Coatings by Reinforcement of Amorphous Carbon.

    PubMed

    Wang, Wei; Zhang, Cheng; Zhang, Zhi-Wei; Li, Yi-Cheng; Yasir, Muhammad; Wang, Hai-Tao; Liu, Lin

    2017-06-22

    Toughening of Fe-based amorphous coatings meanwhile maintaining a good corrosion resistance remains challenging. This work reports a novel approach to improve the toughness of a FeCrMoCBY amorphous coating through in-situ formation of amorphous carbon reinforcement without reducing the corrosion resistance. The Fe-based composite coating was prepared by high velocity oxy-fuel (HVOF) thermal spraying using a pre-mixed Fe-based amorphous/nylon-11 polymer feedstock powders. The nylon-11 powders were in-situ carbonized to amorphous carbon phase during thermal spraying process, which homogeneously distributed in the amorphous matrix leading to significant enhancement of toughness of the coating. The mechanical properties, including hardness, impact resistance, bending and fatigue strength, were extensively studied by using a series of mechanical testing techniques. The results revealed that the composite coating reinforced by amorphous carbon phase exhibited enhanced impact resistance and nearly twice-higher fatigue strength than that of the monolithic amorphous coating. The enhancement of impact toughness and fatigue properties is owed to the dumping effect of the soft amorphous carbon phase, which alleviated stress concentration and decreased crack propagation driving force.

  10. Effect of platy and tubular nanoclays on behaviour of biodegradable PCL/PLA blend and related microfibrillar composites

    NASA Astrophysics Data System (ADS)

    Kelnar, Ivan; Kratochvíl, Jaroslav

    2016-05-01

    Blending of ductile poly(ɛ-caprolactone) (PCL) and rigid polylactic acid (PLA) is a promising way to tailor biodegradable materials with broad range of properties. But the mutual incompatibility of both polyesters leads to compromised behaviour only. Alternative to PCL/PLA blends is application of PLA in the form of short fibres, however, difficult dispergation of flexible fibres including their poor adhesion and limited processing is a significant restriction. More effective is in situ formation of polymeric fibre-reinforced materials using microfibrillar composites (MFC) concept based on melt- or cold-drawing of a polymer blend. Important advantage of MFC is efficient dispersion and bonding of in-situ formed reinforcing fibres This work deals with combination of structure-directing and reinforcing effects of montmorillonite (oMMT) and halloysite nanotubes (HNT) in the PCL/PLA 80/20 blend with in-situ formation of PLA fibrils in the PCL matrix. In the resulting microfibrillar composite, reinforcement by rigid PLA fibrils is combined with strengthening of both components by the nanofiller (NF). Moreover, PLA fibrils formation via melt-drawing is only possible after nanofiller addition due to favourable affecting of rheological parameters of the polymer components. The structure-properties relationship and complex effect of NF on microfibrillar composite performance, causing e.g., quite comparable parameters of both microfibrillar composites in spite of lower reinforcing effect of halloysite nanotubes on components, are discussed.

  11. Preparation and Reinforcement of Dual‐Porous Biocompatible Cellulose Scaffolds for Tissue Engineering

    PubMed Central

    Pircher, Nicole; Fischhuber, David; Carbajal, Leticia; Strauß, Christine; Nedelec, Jean‐Marie; Kasper, Cornelia; Rosenau, Thomas

    2015-01-01

    1 Biocompatible cellulose‐based aerogels composed of nanoporous struts, which embed interconnected voids of controlled micron‐size, have been prepared employing temporary templates of fused porogens, reinforcement by interpenetrating PMMA networks and supercritical carbon dioxide drying. Different combinations of cellulose solvent (Ca(SCN)2/H2O/LiCl or [EMIm][OAc]/DMSO) and anti‐solvent (EtOH), porogen type (paraffin wax or PMMA spheres) and porogen size (various fractions in the range of 100–500 μm) as well as intensity of PMMA reinforcement have been investigated to tailor the materials for cell scaffolding applications. All aerogels exhibited an open and dual porosity (micronporosity >100 μm and nanoporosity extending to the low micrometer range). Mechanical properties of the dual‐porous aerogels under compressive stress were considerably improved by introduction of interpenetrating PMMA networks. The effect of the reinforcing polymer on attachment, spreading, and proliferation of NIH 3T3 fibroblast cells, cultivated on selected dual‐porous aerogels to pre‐evaluate their biocompatibility was similarly positive. PMID:26941565

  12. Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering.

    PubMed

    Pircher, Nicole; Fischhuber, David; Carbajal, Leticia; Strauß, Christine; Nedelec, Jean-Marie; Kasper, Cornelia; Rosenau, Thomas; Liebner, Falk

    2015-09-01

    1Biocompatible cellulose-based aerogels composed of nanoporous struts, which embed interconnected voids of controlled micron-size, have been prepared employing temporary templates of fused porogens, reinforcement by interpenetrating PMMA networks and supercritical carbon dioxide drying. Different combinations of cellulose solvent (Ca(SCN) 2 /H 2 O/LiCl or [EMIm][OAc]/DMSO) and anti-solvent (EtOH), porogen type (paraffin wax or PMMA spheres) and porogen size (various fractions in the range of 100-500 μm) as well as intensity of PMMA reinforcement have been investigated to tailor the materials for cell scaffolding applications. All aerogels exhibited an open and dual porosity (micronporosity >100 μm and nanoporosity extending to the low micrometer range). Mechanical properties of the dual-porous aerogels under compressive stress were considerably improved by introduction of interpenetrating PMMA networks. The effect of the reinforcing polymer on attachment, spreading, and proliferation of NIH 3T3 fibroblast cells, cultivated on selected dual-porous aerogels to pre-evaluate their biocompatibility was similarly positive.

  13. Tailor-welded blanks and their production

    NASA Astrophysics Data System (ADS)

    Yan, Qi

    2005-01-01

    Tailor welded blanks had been widely used in the automobile industry. A tailor welded blank consists of several flat sheets that were laser welded together before stamping. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. As for the material for automobile industry, this technology was one of the development trend for automobile industry because of its weight reduction, safety improvement and economical use of materials. In this paper, the characters and production of tailor welded blanks in the market were discussed in detail. There had two major methods to produce tailor welded blanks. Laser welding would replace mesh seam welding for the production of tailor welded blanks in the future. The requirements on the edge preparation of unwelded blanks for tailor welded blanks were higher than the other steel processing technology. In order to produce the laser welded blank, there had the other process before the laser welding in the factory. In the world, there had three kinds of patterns for the large volume production of tailor welded blanks. In China, steel factory played the important role in the promotion of the application of tailor welded blanks. The competition for the supply of tailor welded blanks to the automobile industry would become fierce in the near future. As a result, the demand for the quality control on the production of tailor welded blanks would be the first priority concern for the factory.

  14. Secondary reinforcement and number of primary reinforcements1

    PubMed Central

    Fantino, Edmund; Herrnstein, R. J.

    1968-01-01

    Pigeons' pecks on either of two concurrently available response keys produced secondary reinforcers according to independent one-minute variable-interval schedules. Different secondary reinforcers, in the presence of which the rates of primary reinforcement were equal, were associated with each key. The rate of pecking maintained by each secondary reinforcer varied directly, but nonproportionally, with the number of primary reinforcements given in the presence of the secondary reinforcer. PMID:5636860

  15. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions

    NASA Astrophysics Data System (ADS)

    Hudson, Zachary M.; Boott, Charlotte E.; Robinson, Matthew E.; Rupar, Paul A.; Winnik, Mitchell A.; Manners, Ian

    2014-10-01

    Recent advances in the self-assembly of block copolymers have enabled the precise fabrication of hierarchical nanostructures using low-cost solution-phase protocols. However, the preparation of well-defined and complex planar nanostructures in which the size is controlled in two dimensions (2D) has remained a challenge. Using a series of platelet-forming block copolymers, we have demonstrated through quantitative experiments that the living crystallization-driven self-assembly (CDSA) approach can be extended to growth in 2D. We used 2D CDSA to prepare uniform lenticular platelet micelles of controlled size and to construct precisely concentric lenticular micelles composed of spatially distinct functional regions, as well as complex structures analogous to nanoscale single- and double-headed arrows and spears. These methods represent a route to hierarchical nanostructures that can be tailored in 2D, with potential applications as diverse as liquid crystals, diagnostic technology and composite reinforcement.

  16. Understanding tailoring in communicating about health

    PubMed Central

    Hawkins, Robert P.; Kreuter, Matthew; Resnicow, Kenneth; Fishbein, Martin; Dijkstra, Arie

    2011-01-01

    ‘Tailoring’ refers to any of a number of methods for creating communications individualized for their receivers, with the expectation that this individualization will lead to larger intended effects of these communications. Results so far have been generally positive but not consistently so, and this paper seeks to explicate tailoring to help focus future research. Tailoring involves either or both of two classes of goals (enhancing cognitive preconditions for message processing and enhancing message impact through modifying behavioral determinants of goal outcomes) and employs strategies of personalization, feedback and content matching. These goals and strategies intersect in a 2 × 3 matrix in which some strategies and their component tactics match better to some goals than to others. The paper illustrates how this framework can be systematically applied in generating research questions and identifying appropriate study designs for tailoring research. PMID:18349033

  17. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.

    PubMed

    Jiang, Pei; Ran, Jiabing; Yan, Pan; Zheng, Lingyue; Shen, Xinyu; Tong, Hua

    2018-02-01

    Bacterial cellulose/hydroxyapatite (BC/HAp) composite had favourable bioaffinity but its poor mechanical strength limited its widespread applications in bone tissue engineering (BTE). Silk fibroin, which possesses special crystalline structure, has been widely used as organic reinforcing material, and different SFs have different amino acid sequences, which exhibit different bioaffinity and mechanical properties. In this regard, bacterial cellulose-Antheraea yamamai silk fibroin/hydroxyapatite (BC-AYSF/HAp), bacterial cellulose-Bombyx mori silk fibroin/hydroxyapatite (BC-BMSF/HAp), and BC/HAp nano-composites were synthesized via a novel in situ hybridization method. Compared with BC/HAp and BC-BMSF/HAp, the BC-AYSF/HAp exhibited better interpenetration, which may benefit for the transportation of nutrients and wastes, the adhesion of cells as well. Additionally, the BC-AYSF/HAp also presented superior thermal stability than the other two composites revealed by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). Compression testing indicated that the mechanical strength of BC-BMSF/HAp was greatly reinforced compared with BC/HAp and was even a little higher than that of BC-AYSF/HAp. Tensile testing showed that BC-AYSF/HAp possesses extraordinary mechanical properties with a higher elastic modulus at low strain and higher fracture strength simultaneously than the other two composites. In vitro cell culture exhibited that MC3T3-E1 cells on the BC-AYSF/HAp membrane took on higher proliferative potential than those on the BC-BMSF/HAp membrane. These results suggested that compared with BC-BMSF/HAp, the BC-AYSF/HAp composite was more appropriate as an ideal bone scaffold platform or biomedical membrane to be used in BTE.

  18. Studying impact damage on carbon-fiber reinforced aircraft composite panels with sonicir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Xiaoyan; Zhang Ding; He Qi

    2011-06-23

    Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these compositesmore » are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.« less

  19. Tailored Testing Theory and Practice: A Basic Model, Normal Ogive Submodels, and Tailored Testing Algorithms

    DTIC Science & Technology

    1983-08-01

    ACCESSION NO «• TITLE (and Sublltle) TAILORED TESTING THEORY AND PRACTICE: A BASIC MODEL , NORMAL OGIVE SUBMODELS, AND TAILORED TESTING ALGORITHMS 7...single common-factor model , the author derives the two- and three-parametir normal ogfve il’^irTr^ functions as submodels. For both of these...PAOEfWiwi Dmia Bnfnd) NPRDC TR 83-32 AUGUST 1983 TAILORED TESTING THEORY AND PRACTICE: A BASIC MODEL , NORMAL OGIVE SUBMODELS, AND TAILORED TESTING

  20. Investigation of production of continuous off axis fibre reinforced thermoplastic material

    NASA Astrophysics Data System (ADS)

    McDonald, Philip C.

    Fibre reinforced composites have been used in the engineering industry for many years since the discovery of glass fibre in 1930 and its first use to reinforce phenolic resin to form Bakelite. Since then thermoplastic and thermosetting composites have spread into almost every industry from marine to aerospace, automotive to motorsport, luggage to the hobby industry and even fashion. This vast range of applications for composite materials is due to their high strength to weight ratio, excellent impact absorption properties, lack of corrosion, and reformability. In recent years a government directive has forced automotive manufacturers to look at lighter and more efficient vehicles to reduce carbon emissions. This can be achieved by using fibre reinforced thermoplastics to replace steel panels throughout the vehicle.Steel panels from a Nissan Qashqai were tested to determine the failure loads of each panel which the replacement thermoplastic material had to match or better. After extensive testing in a laboratory a tailored laminate lay-up with 5 laminate layers has been developed to replace structural steel components in vehicles. This tailored laminate stack up has a higher failure load than the steel components tested from the Nissan Qashqai while reducing the mass by at least 50%. The key drivers within the automotive industry are fuel savings and reduced vehicle mass, the use of this material and the potential it has in the mass production automotive industry can have a high impact on the overall mass of the vehicle which would invariably have a positive effect to the fuel consumption, thereby improving fuel economy in petrol and diesel vehicles, and increasing the range of electric vehicles.Throughout this project a prototype machine was developed and built to achieve mass production of this 5 ply laminate at a rate of more than 345,000 laminates per year with a processing cost of 3 1p making it available to the mass production market. The estimated production

  1. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  2. A model of tailoring effects: A randomized controlled trial examining the mechanisms of tailoring in a web-based STD screening intervention.

    PubMed

    Lustria, Mia Liza A; Cortese, Juliann; Gerend, Mary A; Schmitt, Karla; Kung, Ying Mai; McLaughlin, Casey

    2016-11-01

    This study explores the mechanisms of tailoring within the context of RU@Risk a brief Web-based intervention designed to promote sexually transmitted disease (STD) testing among young adults. This is one of a few studies to empirically examine theorized message processing mechanisms of tailoring and persuasion outcomes in a single model. Sexually active college students (N = 1065) completed a pretest, were randomly assigned to explore a tailored or nontailored website, completed a posttest, and were offered the opportunity to order a free at-home STD test kit. As intervention effects were hypothesized to work via increases in perceived risk, change in perceived risk from pretest to posttest by condition was examined. Hypothesized mechanisms of tailoring (perceived personal relevance, attention, and elaboration) were examined using structural equation modeling (SEM). All analyses controlled for demographic variables and sexual history. As predicted, perceived risk of STDs increased from pretest to posttest, but only in the tailored condition. Results revealed that exposure to the tailored (vs. nontailored) website increased perceived personal relevance, attention to, and elaboration of the message. These effects in turn were associated with greater perceived risk of STDs and intentions to get tested. Additionally, participants in the tailored condition were more likely to order a test kit. Findings provide insight into the mechanisms of tailoring with important implications for optimizing message design. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites.

    PubMed

    Upadhyay, Rahul; Naskar, Sharmistha; Bhaskar, Nitu; Bose, Suryasarathi; Basu, Bikramjit

    2016-05-18

    The uniform dispersion of nanoparticles in a polymer matrix, together with an enhancement of interfacial adhesion is indispensable toward achieving better mechanical properties in the nanocomposites. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. To address these issues, we prepared high-density polyethylene (HDPE) based composites reinforced with graphene oxide (GO) by melt mixing followed by compression molding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, we immobilized polyethylene (PE) onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic modulus (ca. 600 MPa), and an outstanding elongation at failure (ca. 70%) were recorded with 3 wt % polyethylene grafted graphene oxide (PE-g-GO) reinforced HDPE composites. Considering the relevance of protein adsorption as a biophysical precursor to cell adhesion, the protein adsorption isotherms of bovine serum albumin (BSA) were determined to realize three times higher equilibrium constant (Keq) for PE-g-GO-reinforced HDPE composites as compared to GO-reinforced composites. To assess the cytocompatibility, we grew osteoblast cell line (MC3T3) and human mesenchymal stem cells (hMSCs) on HDPE/GO and HDPE/PE-g-GO composites, in vitro. The statistically significant increase in metabolically active cell over different time periods in culture for up to 6 days in MC3T3 and 7 days for hMSCs was observed, irrespective of the substrate composition. Such observation indicated that HDPE with GO or PE-g-GO addition (up to 3 wt %) can be used as cell growth substrate. The extensive proliferation of cells with oriented growth pattern also supported the fact that tailored GO addition can support cellular functionality in vitro. Taken together, the experimental results suggest that the PE-g-GO in HDPE can effectively be utilized to enhance both mechanical and

  4. An Innovative Approach to Control Steel Reinforcement Corrosion by Self-Healing.

    PubMed

    Koleva, Dessi A

    2018-02-20

    The corrosion of reinforced steel, and subsequent reinforced concrete degradation, is a major concern for infrastructure durability. New materials with specific, tailor-made properties or the establishment of optimum construction regimes are among the many approaches to improving civil structure performance. Ideally, novel materials would carry self-repairing or self-healing capacities, triggered in the event of detrimental influence and/or damage. Controlling or altering a material's behavior at the nano-level would result in traditional materials with radically enhanced properties. Nevertheless, nanotechnology applications are still rare in construction, and would break new ground in engineering practice. An approach to controlling the corrosion-related degradation of reinforced concrete was designed as a synergetic action of electrochemistry, cement chemistry and nanotechnology. This contribution presents the concept of the approach, namely to simultaneously achieve steel corrosion resistance and improved bulk matrix properties. The technical background and challenges for the application of polymeric nanomaterials in the field are briefly outlined in view of this concept, which has the added value of self-healing. The credibility of the approach is discussed with reference to previously reported outcomes, and is illustrated via the results of the steel electrochemical responses and microscopic evaluations of the discussed materials.

  5. An Innovative Approach to Control Steel Reinforcement Corrosion by Self-Healing

    PubMed Central

    2018-01-01

    The corrosion of reinforced steel, and subsequent reinforced concrete degradation, is a major concern for infrastructure durability. New materials with specific, tailor-made properties or the establishment of optimum construction regimes are among the many approaches to improving civil structure performance. Ideally, novel materials would carry self-repairing or self-healing capacities, triggered in the event of detrimental influence and/or damage. Controlling or altering a material’s behavior at the nano-level would result in traditional materials with radically enhanced properties. Nevertheless, nanotechnology applications are still rare in construction, and would break new ground in engineering practice. An approach to controlling the corrosion-related degradation of reinforced concrete was designed as a synergetic action of electrochemistry, cement chemistry and nanotechnology. This contribution presents the concept of the approach, namely to simultaneously achieve steel corrosion resistance and improved bulk matrix properties. The technical background and challenges for the application of polymeric nanomaterials in the field are briefly outlined in view of this concept, which has the added value of self-healing. The credibility of the approach is discussed with reference to previously reported outcomes, and is illustrated via the results of the steel electrochemical responses and microscopic evaluations of the discussed materials. PMID:29461495

  6. Lightweight Mg-based composites with thermodynamically stable interfaces by in-situ combustion synthesis

    NASA Astrophysics Data System (ADS)

    Jo, Ilguk

    Lightweight Mg-based composites have been produced by in-situ combustion synthesis of the Al-Ti-C reaction system. The characteristics of the in-situ composites were investigated in terms of phase evolution and interfacial stability using various analysis techniques. The structural analysis results showed that full conversion of the Al-Ti-C reactants into spherical TiC reinforcements with sizes around 1mum was achieved by the combustion reaction. In-situ formed TiC had less oxygen and higher Al contents at the interface than ex-situ formed TiC; these clean interfaces with an Al layer on the reinforcements were shown to yield interfacial stability. For these reasons, the in-situ composites exhibited higher theoretical densities and also good mechanical properties compared with ex-situ produced composites. The interfacial characteristics of molten Mg with the Al-Ti-C reactants and the commercial TiC+Al substrates were evaluated using an infiltration technique under an argon atmosphere. Infiltration length increased with time at temperature, yielding activation energies (Ea) for each system. The value of Ea for the Al-Ti-C system (307.31kJ/mol) is lower than that for the other system (350.84kJ/mol); the high Ea value indicates that the infiltration is not a simple viscosity-controlled phenomenon but involves a chemical reaction. Formation of the Al3Ti phase was observed from the crystal structural analysis of the infiltrated area; thus, existence of reaction promoting the wetting of Mg. The phase evolution, reaction mechanism and kinetics of the Al-Ti-C reaction were studied using DSC and HT-XRD. It was confirmed that, along with the melting of Al, there was formation of Al3Ti by reaction between Al and Ti. A detailed structural analysis indicates that, the reaction mechanism involves melting of Al followed by formation and growth of Al 3Ti, which then contacts the graphite powder and initiates the combustion reaction. The effect of important process parameters, such

  7. Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications.

    PubMed

    Gloria, Antonio; Ronca, Dante; Russo, Teresa; D'Amora, Ugo; Chierchia, Marianna; De Santis, Roberto; Nicolais, Luigi; Ambrosio, Luigi

    2011-01-01

    Polymer-based composite materials are ideal for applications where high stiffness-to-weight and strength-to-weight ratios are required. From aerospace and aeronautical field to biomedical applications, fiber-reinforced polymers have replaced metals, thus emerging as an interesting alternative. As widely reported, the mechanical behavior of the composite materials involves investigation on micro- and macro-scale, taking into consideration micromechanics, macromechanics and lamination theory. Clinical situations often require repairing connective tissues and the use of composite materials may be suitable for these applications because of the possibility to design tissue substitutes or implants with the required mechanical properties. Accordingly, this review aims at stressing the importance of fiber-reinforced composite materials to make advanced and biomimetic prostheses with tailored mechanical properties, starting from the basic principle design, technologies, and a brief overview of composites applications in several fields. Fiber-reinforced composite materials for artificial tendons, ligaments, and intervertebral discs, as well as for hip stems and mandible models will be reviewed, highlighting the possibility to mimic the mechanical properties of the soft and hard tissues that they replace.

  8. Thermoplastic Composites Reinforced with Textile Grids: Development of a Manufacturing Chain and Experimental Characterisation

    NASA Astrophysics Data System (ADS)

    Böhm, R.; Hufnagl, E.; Kupfer, R.; Engler, T.; Hausding, J.; Cherif, C.; Hufenbach, W.

    2013-12-01

    A significant improvement in the properties of plastic components can be achieved by introducing flexible multiaxial textile grids as reinforcement. This reinforcing concept is based on the layerwise bonding of biaxially or multiaxially oriented, completely stretched filaments of high-performance fibers, e.g. glass or carbon, and thermoplastic components, using modified warp knitting techniques. Such pre-consolidated grid-like textiles are particularly suitable for use in injection moulding, since the grid geometry is very robust with respect to flow pressure and temperature on the one hand and possesses an adjustable spacing to enable a complete filling of the mould cavity on the other hand. The development of pre-consolidated textile grids and their further processing into composites form the basis for providing tailored parts with a large number of additional integrated functions like fibrous sensors or electroconductive fibres. Composites reinforced in that way allow new product groups for promising lightweight structures to be opened up in future. The article describes the manufacturing process of this new composite class and their variability regarding reinforcement and function integration. An experimentally based study of the mechanical properties is performed. For this purpose, quasi-static and highly dynamic tensile tests have been carried out as well as impact penetration experiments. The reinforcing potential of the multiaxial grids is demonstrated by means of evaluating drop tower experiments on automotive components. It has been shown that the load-adapted reinforcement enables a significant local or global improvement of the properties of plastic components depending on industrial requirements.

  9. Braided reinforced composite rods for the internal reinforcement of concrete

    NASA Astrophysics Data System (ADS)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  10. Employee Perceptions of Workplace Health Promotion Programs: Comparison of a Tailored, Semi-Tailored, and Standardized Approach.

    PubMed

    Street, Tamara D; Lacey, Sarah J

    2018-04-28

    In the design of workplace health promotion programs (WHPPs), employee perceptions represent an integral variable which is predicted to translate into rate of user engagement (i.e., participation) and program loyalty. This study evaluated employee perceptions of three workplace health programs promoting nutritional consumption and physical activity. Programs included: (1) an individually tailored consultation with an exercise physiologist and dietitian; (2) a semi-tailored 12-week SMS health message program; and (3) a standardized group workshop delivered by an expert. Participating employees from a transport company completed program evaluation surveys rating the overall program, affect, and utility of: consultations ( n = 19); SMS program ( n = 234); and workshops ( n = 86). Overall, participants’ affect and utility evaluations were positive for all programs, with the greatest satisfaction being reported in the tailored individual consultation and standardized group workshop conditions. Furthermore, mode of delivery and the physical presence of an expert health practitioner was more influential than the degree to which the information was tailored to the individual. Thus, the synergy in ratings between individually tailored consultations and standardized group workshops indicates that low-cost delivery health programs may be as appealing to employees as tailored, and comparatively high-cost, program options.

  11. Self-Sensing Composites: In-Situ Detection of Fibre Fracture

    PubMed Central

    Malik, Shoaib A.; Wang, Liwei; Curtis, Paul T.; Fernando, Gerard F.

    2016-01-01

    The primary load-bearing component in a composite material is the reinforcing fibres. This paper reports on a technique to study the fracture of individual reinforcing fibres or filaments in real-time. Custom-made small-diameter optical fibres with a diameter of 12 (±2) micrometres were used to detect the fracture of individual filaments during tensile loading of unreinforced bundles and composites. The unimpregnated bundles were end-tabbed and tensile tested to failure. A simple technique based on resin-infusion was developed to manufacture composites with a negligible void content. In both cases, optical fibre connectors were attached to the ends of the small-diameter optical fibre bundles to enable light to be coupled into the bundle via one end whilst the opposite end was photographed using a high-speed camera. The feasibility of detecting the fracture of each of the filaments in the bundle and composite was demonstrated. The in-situ damage detection technique was also applied to E-glass bundles and composites; this will be reported in a subsequent publication. PMID:27136555

  12. Reinforcement magnitude: an evaluation of preference and reinforcer efficacy.

    PubMed

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimentation in this area. Three children who engaged in problem behavior that was maintained by social positive reinforcement (attention, access to tangible items) participated. Results indicated that preference for different magnitudes of social reinforcement may predict reinforcer efficacy and that magnitude effects may be mediated by the schedule requirement.

  13. Hiatal hernia repair with gore bio-a tissue reinforcement: our experience.

    PubMed

    Antonino, Agrusa; Giorgio, Romano; Giuseppe, Frazzetta; Giovanni, De Vita; Silvia, Di Giovanni; Daniela, Chianetta; Giuseppe, Di Buono; Vincenzo, Sorce; Gaspare, Gulotta

    2014-01-01

    Type I hiatal hernia is associated with gastroesophageal reflux disease (GERD) in 50-90% of cases. Several trials strongly support surgery as an effective alternative to medical therapy. Today, laparoscopic fundoplication is considered as the procedure of choice. However, primary laparoscopic hiatal hernia repair is associated with upto 42% recurrence rate. Mesh reinforcement of the crural closure decreases the recurrence but can lead to complications, above all nonabsorbable ones. We experiment a new totally absorbable mesh by Gore. Case. We present a case of a 65-year-old female patient with a 6-year classic history of GERD. Endoscopy revealed a large hiatal hernia and esophagitis. pH study was positive for acid reflux; esophageal manometry revealed LES intrathoracic dislocation. With laparoscopic approach, the hiatal hernia defect was identified and primarily repaired, by crural closure. Gore Bio-A Tissue Reinforcement was trimmed to fit the defect accommodating the esophagus. Nissen fundoplication was performed. Result. Bio-A mesh was easily placed laparoscopically. It has good handling and could be cut and tailored intraoperatively for optimal adaptation. There were no short-term complications. Conclusion. Crural closure reinforcement can be done readily with this new totally absorbable mesh replaced by soft tissue over six months. However, further data and studies are needed to evaluate long-term outcomes.

  14. Tailored program evaluation: Past, present, future.

    PubMed

    Suggs, L Suzanne; Cowdery, Joan E; Carroll, Jennifer B

    2006-11-01

    This paper discusses measurement issues related to the evaluation of computer-tailored health behavior change programs. As the first generation of commercially available tailored products is utilized in health promotion programming, programmers and researchers are becoming aware of the unique challenges that the evaluation of these programs presents. A project is presented that used an online tailored health behavior assessment (HBA) in a worksite setting. Process and outcome evaluation methods are described and include the challenges faced, and strategies proposed and implemented, for meeting them. Implications for future research in tailored program development, implementation, and evaluation are also discussed.

  15. Full reinforcement operators in aggregation techniques.

    PubMed

    Yager, R R; Rybalov, A

    1998-01-01

    We introduce the concept of upward reinforcement in aggregation as one in which a collection of high scores can reinforce or corroborate each other to give an even higher score than any of the individual arguments. The concept of downward reinforcement is also introduced as one in which low scores reinforce each other. Our concern is with full reinforcement aggregation operators, those exhibiting both upward and downward reinforcement. It is shown that the t-norm and t-conorm operators are not full reinforcement operators. A class of operators called fixed identity MICA operators are shown to exhibit the property of full reinforcement. We present some families of these operators. We use the fuzzy system modeling technique to provide further examples of these operators.

  16. The study of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites

    NASA Astrophysics Data System (ADS)

    Yu, Peng

    Aluminum-based metal matrix composites (MMCs) have been widely used as structural materials in the automobile and aerospace industry due to their specific properties. In this thesis, we report the fabrication of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites by the displacement reactions between Al and selected metal oxides (NiO, CuO and ZnO). These MMCs were produced when the Al-20wt% NiO, Al-20wt% CuO and Al-10wt% ZnO green compacts were reaction sintered in the tube furnaces. In this work, differential thermal analysis (DTA) was performed on the green samples. The green samples were then sintered separately in different tube furnaces for 30 minutes. In order to study the reaction mechanisms, the x-ray diffractometry (XRD) was used to obtain diffraction patterns of these sintered samples, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to study the microstructures of these samples. The elemental quantitative compositions of samples were determined by the energy dispersive x-ray spectrometry (EDX). In order to study the effect of cooling rate on the samples, the green samples were further sintered to 1000°C and cooled down to room temperature in different conditions: by furnace-cooling, air-quenching, oil-quenching or NaCl-solution-quenching. The SEM, TEM and atomic force microscopy (AFM) were conducted to investigate their microstructures. A microhardness tester was used to measure the hardness values of these samples. It was found that during sintering of the Al-20wt% NiO green sample, displacement reaction between Al and NiO initially occurred in solid-solid form and was soon halted by its products that separated the NiO particles from the Al matrix. The reaction then resumed in solid-liquid form as the temperature increased to the eutectic temperature of Al3Ni-Al when liquid (Al, Ni) phase appeared in the sample. After cooling, Al2O 3 particles, Al3Ni proeutectic

  17. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    PubMed Central

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimentation in this area. Three children who engaged in problem behavior that was maintained by social positive reinforcement (attention, access to tangible items) participated. Results indicated that preference for different magnitudes of social reinforcement may predict reinforcer efficacy and that magnitude effects may be mediated by the schedule requirement. PMID:18595284

  18. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    PubMed Central

    Etcheverry, Mariana; Barbosa, Silvia E.

    2012-01-01

    Glass fibers (GF) are the reinforcement agent most used in polypropylene (PP) based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers. PMID:28817025

  19. Spectral tailoring device

    DOEpatents

    Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

    1987-08-05

    A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

  20. Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.

    PubMed

    Cui, Peng; Wang, Xinnan; Tangpong, X W

    2012-11-01

    In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.

  1. Dispersion of Single Wall Carbon Nanotubes by in situ Polymerization Under Sonication

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Ounaies, Zoubeida; Watson, Kent A.; Crooks, Roy E.; Smith, Joseph, Jr.; Lowther, Sharon E.; Connell, John W.; Siochi, Emilie J.; Harrison, Joycelyn S.; St.Clair, Terry L.

    2002-01-01

    Single wall nanotube reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of sonication. This process enabled uniform dispersion of single wall carbon nanotube (SWNT) bundles in the polymer matrix. The resultant SWNT-polyimide nanocomposite films were electrically conductive (antistatic) and optically transparent with significant conductivity enhancement (10 orders of magnitude) at a very low loading (0.1 vol%). Mechanical properties as well as thermal stability were also improved with the incorporation of the SWNT.

  2. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  3. Employee Perceptions of Workplace Health Promotion Programs: Comparison of a Tailored, Semi-Tailored, and Standardized Approach

    PubMed Central

    Street, Tamara D.; Lacey, Sarah J.

    2018-01-01

    In the design of workplace health promotion programs (WHPPs), employee perceptions represent an integral variable which is predicted to translate into rate of user engagement (i.e., participation) and program loyalty. This study evaluated employee perceptions of three workplace health programs promoting nutritional consumption and physical activity. Programs included: (1) an individually tailored consultation with an exercise physiologist and dietitian; (2) a semi-tailored 12-week SMS health message program; and (3) a standardized group workshop delivered by an expert. Participating employees from a transport company completed program evaluation surveys rating the overall program, affect, and utility of: consultations (n = 19); SMS program (n = 234); and workshops (n = 86). Overall, participants’ affect and utility evaluations were positive for all programs, with the greatest satisfaction being reported in the tailored individual consultation and standardized group workshop conditions. Furthermore, mode of delivery and the physical presence of an expert health practitioner was more influential than the degree to which the information was tailored to the individual. Thus, the synergy in ratings between individually tailored consultations and standardized group workshops indicates that low-cost delivery health programs may be as appealing to employees as tailored, and comparatively high-cost, program options. PMID:29710785

  4. Development and characterization of (Ti, Mo)C carbides reinforced Fe-based surface composite coating produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Wang, Xinhong; Zhang, Min; Qu, Shiyao

    2010-09-01

    In this study, in situ multiple carbides reinforced Fe-based surface composite coatings were fabricated successfully by laser cladding a precursor mixture of graphite, ferrotitanium (Fe-Ti) and ferromolybdenum (Fe-Mo) powders. The results showed that (Ti, Mo)C particles with flower-like and cuboidal shapes were in situ formed during the solidification and most shapes of (Ti, Mo)C particles were diversiform according to different contents of Fe-Mo powder in the Fe-Ti-Mo-C system. The growth morphology of the reinforcing (Ti, Mo)C carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid solidification conditions. Increasing the amount of Fe-Mo in the reactants led to a decrease of carbide size and an increase of volume fraction of carbides. The coatings had good cracking resistance when the amounts of Fe-Mo were controlled within a range of 15 wt%.

  5. In situ high temperature microwave microscope for nondestructive detection of surface and sub-surface defects.

    PubMed

    Wang, Peiyu; Li, Zhencheng; Pei, Yongmao

    2018-04-16

    An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.

  6. In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramkrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  7. In-situ x-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramakrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  8. Experimental investigation on bond of reinforcement in steel fibre-reinforced lightweight concrete

    NASA Astrophysics Data System (ADS)

    Holschemacher, K.; Ali, A.

    2017-10-01

    Bond behaviour of reinforcement is crucial parameter for load bearing reinforced concrete members. Many parameters like anchorage of reinforcement, lap splices, deflection or tension stiffening are influenced by the bond properties. It is well known that the ductility of bond can be improved by steel fibres. In this context almost innumerable experiments were performed for investigation of bond in normal weight concrete. However, the bond behaviour of reinforcement in steel fibre-reinforced lightweight concrete (SFRLWC) has received much less attention. For this reason, an experimental program dealing with bond in SFRLWC has been started at HTWK Leipzig/Germany. Main parts of the investigation were pull-out tests with various bar sizes and application of different steel fibre-reinforced lightweight and normal weight concretes. The paper reports the details of experimental investigations and evaluates the test results. As one of the most important outcomes that can be noted is that there is pronounced effect of bar size and steel fibre amount on bond properties in general. But those effects are more pronounced for SFRLWC in comparison to normal weight concrete with and without steel fibres.

  9. In situ investigation of deformation mechanisms in magnesium-based metal matrix composites

    NASA Astrophysics Data System (ADS)

    Farkas, Gergely; Choe, Heeman; Máthis, Kristián; Száraz, Zoltán; Noh, Yoonsook; Trojanová, Zuzanka; Minárik, Peter

    2015-07-01

    We studied the effect of short fibers on the mechanical properties of a magnesium alloy. In particular, deformation mechanisms in a Mg-Al-Sr alloy reinforced with short alumina fibers were studied in situ using neutron diffraction and acoustic emission methods. The fibers' plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. Furthermore, the twinning activity was much more significant in samples with parallel fiber plane orientation, which was confirmed by both acoustic emission and electron backscattering diffraction results. Neutron diffraction was also used to assist in analyzing the acoustic emission and electron backscattering diffraction results. The simultaneous application of the two in situ methods, neutron diffraction and acoustic emission, was found to be beneficial for obtaining complementary datasets about the twinning and dislocation slip in the magnesium alloys and composites used in this study.

  10. Tailoring (bio)chemical activity of semiconducting nanoparticles: critical role of deposition and aggregation.

    PubMed

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2011-06-22

    The impact of deposition and aggregation on (bio)chemical properties of semiconducting nanoparticles (NPs) is perhaps among the least studied aspects of aquatic chemistry of solids. Employing a combination of in situ FTIR and ex situ X-ray photoelectron spectroscopy (XPS) and using the Mn(II) oxygenation on hematite (α-Fe(2)O(3)) and anatase (TiO(2)) NPs as a model catalytic reaction, we discovered that the catalytic and sorption performance of the semiconducting NPs in the dark can be manipulated by depositing them on different supports or mixing them with other NPs. We introduce the electrochemical concept of the catalytic redox activity to explain the findings and to predict the effects of (co)aggregation and deposition on the catalytic and corrosion properties of ferric (hydr)oxides. These results offer new possibilities for rationally tailoring the technological performance of semiconducting metal oxide NPs, provide a new framework for modeling their fate and transport in the environment and living organisms, and can be helpful in discriminating between weakly and strongly adsorbed species in spectra.

  11. Effects of partial reinforcement and time between reinforced trials on terminal response rate in pigeon autoshaping.

    PubMed

    Gottlieb, Daniel A

    2006-03-01

    Partial reinforcement often leads to asymptotically higher rates of responding and number of trials with a response than does continuous reinforcement in pigeon autoshaping. However, comparisons typically involve a partial reinforcement schedule that differs from the continuous reinforcement schedule in both time between reinforced trials and probability of reinforcement. Two experiments examined the relative contributions of these two manipulations to asymptotic response rate. Results suggest that the greater responding previously seen with partial reinforcement is primarily due to differential probability of reinforcement and not differential time between reinforced trials. Further, once established, differences in responding are resistant to a change in stimulus and contingency. Secondary response theories of autoshaped responding (theories that posit additional response-augmenting or response-attenuating mechanisms specific to partial or continuous reinforcement) cannot fully accommodate the current body of data. It is suggested that researchers who study pigeon autoshaping train animals on a common task prior to training them under different conditions.

  12. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  13. A preliminary study of laser tissue soldering as arterial wall reinforcement in an acute experimental aneurysm model.

    PubMed

    Oskoui, Philip; Stadler, Istvan; Lanzafame, Raymond J

    2003-01-01

    Aneurysm formation results from destruction of structural arterial wall connective tissue, leading to wall weakening and rupture. The purpose of this study was to demonstrate that reinforcement of the arterial wall using laser tissue soldering contributes to arterial wall stabilization and rupture prevention in an acute experimental model. Elastase (10 U/mg protein, Sigma-Aldrich Co., St. Louis, MO) was applied with a fine paint brush on femoral artery segments to cause fusiform aneurysm formation. After aneurysms formed (approximately 45 minutes after treatment), elastase was rinsed out and indocyanine green (ICG) and albumin soldering mixture (2.5 mg/ml ICG in 50% albumin) was delivered to the arterial segment, followed by laser irradiation at 830 nm, (15mW output for 20 minutes). In situ pressure burst measurements were then performed. In situ burst pressures were > 503 mmHg for normal arteries and 181 +/- 26.0 mmHg, for Elastase treated segments. (P < 0.0001) Treatment of experimental aneurysms laser tissue soldering returned burst strengths to > 503 mmHg. These results indicate laser tissue soldering reinforcement of weak arterial walls, is possible and may reduce the likelihood of acute rupture. Further development of this technique for aneurysm management is warranted. Copyright 2003 Wiley-Liss, Inc.

  14. Neural correlates of message tailoring and self-relatedness in smoking cessation programming.

    PubMed

    Chua, Hannah Faye; Liberzon, Israel; Welsh, Robert C; Strecher, Victor J

    2009-01-15

    Smoking leads to illnesses including addiction, cancer, and cardiovascular and respiratory diseases. Different intervention programs have become available. In the past decade, providing tailored smoking cessation messages has been shown to be more effective in inducing smoking cessation than one-size-fits-all interventions. However, little is known about the brain responses of smokers when they receive tailored smoking cessation messages. A neuroimaging study using blocked and event-related designs examined neural activity in 24 smokers exposed to high-tailored and low-tailored smoking cessation messages. In both blocked and event-related conditions, rostral medial prefrontal cortex and precuneus/posterior cingulate were engaged more during the processing of high-tailored smoking cessation messages than low-tailored smoking cessation messages. The activation patterns of smokers to tailored cessation messages show involvement of brain areas commonly implicated in self-related processing. Results seem to add support to the suggested role of self-relevance in tailored cessation programs, where previous studies have shown a potential mediating role of self-relevance on smoking abstinence. The findings are relevant to understanding the cognitive mechanisms underlying tailored message processing and might point to new directions for testing response to health communications programming.

  15. Acoustic emission of fire damaged fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Mpalaskas, A. C.; Matikas, T. E.; Aggelis, D. G.

    2016-04-01

    The mechanical behavior of a fiber-reinforced concrete after extensive thermal damage is studied in this paper. Undulated steel fibers have been used for reinforcement. After being exposed to direct fire action at the temperature of 850°C, specimens were subjected to bending and compression in order to determine the loss of strength and stiffness in comparison to intact specimens and between the two types. The fire damage was assessed using nondestructive evaluation techniques, specifically ultrasonic pulse velocity (UPV) and acoustic emission (AE). Apart from the strong, well known, correlation of UPV to strength (both bending and compressive), AE parameters based mainly on the frequency and duration of the emitted signals after cracking events showed a similar or, in certain cases, better correlation with the mechanical parameters and temperature. This demonstrates the sensitivity of AE to the fracture incidents which eventually lead to failure of the material and it is encouraging for potential in-situ use of the technique, where it could provide indices with additional characterization capability concerning the mechanical performance of concrete after it subjected to fire.

  16. Ultimate Load Behaviour of Reinforced Concrete Beam with Corroded Reinforcement

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramajaneyulu, K.; Sundarkumar, S.; Ramesh, G.; Bharat Kumar, B. H.; Krishna Moorthy, T. S.

    2017-12-01

    Corrosion of reinforcement reduces the load carrying capacity, energy dissipation and ductility of Reinforced Concrete (RC) members. In the present study, reinforcements of RC beam are subjected to 10, 25, and 30% corrosion and the respective RC beams are tested to evaluate their ultimate load behaviour. A huge drop in energy dissipation capacity of the RC beam is observed beyond the corrosion level of 10%. Further, nonlinear finite element analysis is employed to assess the load-displacement behaviour and ultimate load of RC beam. The corrosion induced damage to the reinforcement is represented in the finite element model by modifying its mechanical properties based on the results reported in the literature. The resultant load versus displacement curves of reinforced concrete beams are obtained. Good correlation is observed between the finite element analysis results and that obtained from experimental investigation on the control beam. The experimental results are also compared with the finite element analysis results for RC beams with corroded reinforcement. In order to understand the effect of corrosion on the mechanical properties of reinforcement, the corroded reinforcements are modelled in nonlinear finite element analysis by (i) reducing the area of reinforcement alone (ii) by reducing both area and mechanical properties and (iii) reducing the mechanical properties without reducing the area of steel as reported in literature. The results obtained for the beam with corroded reinforcement confirms reduction in yield stress and ultimate stress of the reinforcement steel.

  17. Origins of food reinforcement in infants.

    PubMed

    Kong, Kai Ling; Feda, Denise M; Eiden, Rina D; Epstein, Leonard H

    2015-03-01

    Rapid weight gain in infancy is associated with a higher risk of obesity in children and adults. A high relative reinforcing value of food is cross-sectionally related to obesity; lean children find nonfood alternatives more reinforcing than do overweight/obese children. However, to our knowledge, there is no research on how and when food reinforcement develops. This study was designed to assess whether the reinforcing value of food and nonfood alternatives could be tested in 9- to 18-mo-old infants and whether the reinforcing value of food and nonfood alternatives is differentially related to infant weight status. Reinforcing values were assessed by using absolute progressive ratio schedules of reinforcement, with presentation of food and nonfood alternatives counterbalanced in 2 separate studies. Two nonfood reinforcers [Baby Einstein-Baby MacDonald shows (study 1, n = 27) or bubbles (study 2, n = 30)] were tested against the baby's favorite food. Food reinforcing ratio (FRR) was quantified by measuring the reinforcing value of food (Food Pmax) in proportion to the total reinforcing value of food and a nonfood alternative (DVD Pmax or BUB Pmax). Greater weight-for-length z score was associated with a greater FRR of a favorite food in study 1 (FRR-DVD) (r = 0.60, P < 0.001) and FRR of a favorite food in study 2 (FRR-BUB) (r = 0.49, P = 0.006), primarily because of the strong association between greater weight-for-length z score and lower DVD Pmax (r = -0.71, P < 0.0001) and BUB Pmax (r = -0.53, P = 0.003). Infant monthly weight gain was positively associated with FRR-DVD (r = 0.57, P = 0.009) and FRR-BUB (r = 0.37, P = 0.047). Our newly developed paradigm, which tested 2 different nonfood alternatives, demonstrated that lean infants find nonfood alternatives more reinforcing than do overweight/obese infants. This observation suggests that strengthening the alternative reinforcers may have a protective effect against childhood obesity. © 2015 American Society for

  18. Evaluating the influence of postsession reinforcement on choice of reinforcers.

    PubMed

    Kodak, Tiffany; Lerman, Dorothea C; Call, Nathan

    2007-01-01

    Factors that influence reinforcer choice have been examined in a number of applied studies (e.g., Neef, Mace, Shea, & Shade, 1992; Shore, Iwata, DeLeon, Kahng, & Smith, 1997; Tustin, 1994). However, no applied studies have evaluated the effects of postsession reinforcement on choice between concurrently available reinforcers, even though basic findings indicate that this is an important factor to consider (Hursh, 1978; Zeiler, 1999). In this bridge investigation, we evaluated the influence of postsession reinforcement on choice of two food items when task responding was reinforced on progressive-ratio schedules. Participants were 3 children who had been diagnosed with developmental disabilities. Results indicated that response allocation shifted from one food item to the other food item under thinner schedules of reinforcement when no postsession reinforcement was provided. These findings suggest that the efficacy of instructional programs or treatments for problem behavior may be improved by restricting reinforcers outside treatment sessions.

  19. Aeroelastic Tailoring via Tow Steered Composites

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.

  20. Note: Setup for chemical atmospheric control during in situ grazing incidence X-ray scattering of printed thin films

    DOE PAGES

    Pröller, Stephan; Moseguí González, Daniel; Zhu, Chenhuii; ...

    2017-06-01

    In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. Lastly, this work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using inmore » situ grazing incidence X-ray scattering and spectroscopy.« less

  1. Neonates need tailored drug formulations.

    PubMed

    Allegaert, Karel

    2013-02-08

    Drugs are very strong tools used to improve outcome in neonates. Despite this fact and in contrast to tailored perfusion equipment, incubators or ventilators for neonates, we still commonly use drug formulations initially developed for adults. We would like to make the point that drug formulations given to neonates need to be tailored for this age group. Besides the obvious need to search for active compounds that take the pathophysiology of the newborn into account, this includes the dosage and formulation. The dosage or concentration should facilitate the administration of low amounts and be flexible since clearance is lower in neonates with additional extensive between-individual variability. Formulations need to be tailored for dosage variability in the low ranges and also to the clinical characteristics of neonates. A specific focus of interest during neonatal drug development therefore is a need to quantify and limit excipient exposure based on the available knowledge of their safety or toxicity. Until such tailored vials and formulations become available, compounding practices for drug formulations in neonates should be evaluated to guarantee the correct dosing, product stability and safety.

  2. Neural correlates of message tailoring and self-relatedness in smoking cessation programming

    PubMed Central

    Chua, Hannah Faye; Liberzon, Israel; Welsh, Robert C.; Strecher, Victor J.

    2011-01-01

    BACKGROUND Smoking leads to illnesses including addiction, cancer, and cardiovascular and respiratory diseases. Different intervention programs have become available. In the past decade, providing tailored smoking cessation messages has been shown to be more effective in inducing smoking cessation than one-size-fits-all interventions. However, little is known about the brain responses of smokers when they receive tailored smoking cessation messages. METHODS A neuroimaging study using blocked and event-related designs examined neural activity in 24 smokers exposed to high-tailored and low-tailored smoking cessation messages. RESULTS: In both blocked and event-related conditions, rostral medial prefrontal cortex and precuneus/posterior cingulate were engaged more during the processing of high-tailored smoking cessation messages than low-tailored smoking cessation messages. CONCLUSION The activation patterns of smokers to tailored cessation messages show involvement of brain areas commonly implicated in self-related processing. Results seem to add support to the suggested role of self-relevance in tailored cessation programs, where previous studies have shown a potential mediating role of self-relevance on smoking abstinence. The findings are relevant to understanding the cognitive mechanisms underlying tailored message processing and may point to new directions for testing response to health communications programming. PMID:18926523

  3. Hiatal Hernia Repair with Gore Bio-A Tissue Reinforcement: Our Experience

    PubMed Central

    Antonino, Agrusa; Giorgio, Romano; Giuseppe, Frazzetta; Giovanni, De Vita; Silvia, Di Giovanni; Daniela, Chianetta; Giuseppe, Di Buono; Vincenzo, Sorce; Gaspare, Gulotta

    2014-01-01

    Type I hiatal hernia is associated with gastroesophageal reflux disease (GERD) in 50–90% of cases. Several trials strongly support surgery as an effective alternative to medical therapy. Today, laparoscopic fundoplication is considered as the procedure of choice. However, primary laparoscopic hiatal hernia repair is associated with upto 42% recurrence rate. Mesh reinforcement of the crural closure decreases the recurrence but can lead to complications, above all nonabsorbable ones. We experiment a new totally absorbable mesh by Gore. Case. We present a case of a 65-year-old female patient with a 6-year classic history of GERD. Endoscopy revealed a large hiatal hernia and esophagitis. pH study was positive for acid reflux; esophageal manometry revealed LES intrathoracic dislocation. With laparoscopic approach, the hiatal hernia defect was identified and primarily repaired, by crural closure. Gore Bio-A Tissue Reinforcement was trimmed to fit the defect accommodating the esophagus. Nissen fundoplication was performed. Result. Bio-A mesh was easily placed laparoscopically. It has good handling and could be cut and tailored intraoperatively for optimal adaptation. There were no short-term complications. Conclusion. Crural closure reinforcement can be done readily with this new totally absorbable mesh replaced by soft tissue over six months. However, further data and studies are needed to evaluate long-term outcomes. PMID:24864221

  4. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2001-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  5. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4 whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2002-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  6. Evaluating The Influence of Postsession Reinforcement on Choice of Reinforcers

    PubMed Central

    Kodak, Tiffany; Lerman, Dorothea C; Call, Nathan

    2007-01-01

    Factors that influence reinforcer choice have been examined in a number of applied studies (e.g., Neef, Mace, Shea, & Shade, 1992; Shore, Iwata, DeLeon, Kahng, & Smith, 1997; Tustin, 1994). However, no applied studies have evaluated the effects of postsession reinforcement on choice between concurrently available reinforcers, even though basic findings indicate that this is an important factor to consider (Hursh, 1978; Zeiler, 1999). In this bridge investigation, we evaluated the influence of postsession reinforcement on choice of two food items when task responding was reinforced on progressive-ratio schedules. Participants were 3 children who had been diagnosed with developmental disabilities. Results indicated that response allocation shifted from one food item to the other food item under thinner schedules of reinforcement when no postsession reinforcement was provided. These findings suggest that the efficacy of instructional programs or treatments for problem behavior may be improved by restricting reinforcers outside treatment sessions. PMID:17970264

  7. Mechanical, tribological and biological properties of novel 45S5 Bioglass® composites reinforced with in situ reduced graphene oxide.

    PubMed

    Li, Zhong; Khun, Nay Win; Tang, Xiu-Zhi; Liu, Erjia; Khor, Khiam Aik

    2017-01-01

    45S5 Bioglass ® (45S5) is one of the most widely used biomaterials in ceramic-based bone graft substitutes by virtue of its excellent biocompatibility and bioactivity. However, the fracture toughness and wear resistance of 45S5 have to be improved to extend its applications in load bearing orthopedic implants. The current study reports the first use of graphene nanoplatelet (GNP) to enhance the fracture toughness and wear resistance of 45S5. Composite powders with four different loadings of graphene oxide (GO), i.e. 0, 0.1, 0.5 and 1wt%, were sintered by spark plasma sintering (SPS) at a relatively low temperature of 550°C, during which in situ thermal reduction of GO took place. It was found that by adding 0.5wt% GO to the 45S5 powder, the fracture toughness of the sintered pellets was increased by 130.2% while friction coefficient and specific wear rate were decreased by 21.3% and 62.0%, respectively. Furthermore, the viability of MG63 cells grown on the GNP-incorporated pellets was comparably high to that of the cells grown on the pure 45S5 pellets. As compared with the pure 45S5 leachates, the media conditioned by the GNP/45S5 pellets fabricated from the composite powder with 1wt% GO could enhance both the proliferation and viability of MG63 cells. It is thus envisioned that the GNP-reinforced 45S5 is a highly promising material for fabricating mechanically strong and biocompatible load-bearing bone implants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mechanical properties enhancement and microstructure study of Al-Si-TiB2 in situ composites

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Majhi, J.; Pattnaik, A. B.; Sahoo, J. K.; Das, Swagat

    2018-03-01

    Al–Si alloy-based composite is one of the most promising MMC materials owing to its outstanding mechanical properties, wear and corrosion resistance, low cost and ability to be synthesized via conventional casting routes. Challenges in achieving clean interface between reinforced particles and matrix alloy have been overcome by means of in-situ techniques of fabrication. Present investigation is concerned with synthesizing Al-Si-TiB2 in-situ composites through stir casting route using K2TiF6 and KBF4 halide salts for exothermic salt metal reaction. X-Ray diffraction analysis revealed the existence of TiB2 in the prepared samples. Effect of TiB2in-situ particles in the Al-Si base alloy has been investigated from the results obtained from optical microscopy as well as SEM study and wear analysis with a pin on disc wear testing apparatus. Improved hardness and wear properties were observed with addition of TiB2.

  9. A transportable magnetic resonance imaging system for in situ measurements of living trees: the Tree Hugger.

    PubMed

    Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J

    2012-05-01

    This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Developing Community Reinforcement and Family Training (CRAFT) for Parents of Treatment-Resistant Adolescents.

    PubMed

    Kirby, Kimberly C; Versek, Brian; Kerwin, MaryLouise E; Meyers, Kathleen; Benishek, Lois A; Bresani, Elena; Washio, Yukiko; Arria, Amelia; Meyers, Robert J

    2015-05-04

    We describe a project focused on training parents to facilitate their treatment-resistant adolescent's treatment entry and to manage their child after entry into community-based treatment. Controlled studies show that Community Reinforcement and Family Training (CRAFT) is a unilateral treatment that fosters treatment entry of adults; however, there are no controlled trials for parents with a substance-abusing child. We examined the behavioral parent training literature to guide us in tailoring CRAFT for parents of adolescents. We discuss adaptations to CRAFT, outcomes and experiences gained from a brief pilot of the revised CRAFT program, and the future directions of this work.

  11. Reinforcement of SBR/waste rubber powder vulcanizate with in situ generated zinc dimethacrylate

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Cheng, B. K.; Zhang, X.; Jia, D. M.

    2016-07-01

    Methyl acrylic acid/zinc oxide (MAA/ZnO) was introduced to modify styrene- butadiene rubber/waste rubber powder (SBR/WRP) composites by blending. The enhanced mechanical properties and processing ability were presumably originated from improved compatibility and interfacial interaction between WRP and the SBR matrix by the in situ polymerization of zinc dimethacrylate (ZDMA). A refined interface of the modified SBR/WRP composite was observed by scanning electron microscopy. The formation of ZDMA significantly increased the ionic bond content in the vulcanizate, resulting in exceptional mechanical performance. The comprehensive mechanical properties including tensile strength, tear strength and dynamic heat-building performance reached optimum values with 16 phr MAA.

  12. Tailored magnetic nanoparticles for in vitro, in vivo and in situ magnetorelaxometry

    NASA Astrophysics Data System (ADS)

    Pisanic, Thomas R., II

    assay for the quantification of toxin binding in the gut of live Caenorhibditis elegans nematodes. Lastly, the concentration dependent effects of MNPs upon PC12 cells are evaluated; followed by the development of an antibody based in situ assay for the detection of tubulin using the TAT peptide for entry into live cells. The results of these assays underscore the utility of magnetorelaxometry for applications in biomedicine.

  13. MODELING THE EFFECTS OF SENSORY REINFORCERS ON BEHAVIORAL PERSISTENCE WITH ALTERNATIVE REINFORCEMENT

    PubMed Central

    Sweeney, Mary M.; Moore, Keira; Shahan, Timothy A.; Ahearn, William H.; Dube, William V.; Nevin, John A.

    2014-01-01

    Problem behavior often has sensory consequences that cannot be separated from the target response, even if external, social reinforcers are removed during treatment. Because sensory reinforcers that accompany socially mediated problem behavior may contribute to persistence and relapse, research must develop analog sensory reinforcers that can be experimentally manipulated. In this research, we devised analogs to sensory reinforcers in order to control for their presence and determine how sensory reinforcers may impact treatment efficacy. Experiments 1 and 2 compared the efficacy of differential reinforcement of alternative behavior (DRA) versus noncontingent reinforcement (NCR) with and without analog sensory reinforcers in a multiple schedule. Experiment 1 measured the persistence of key pecking in pigeons, whereas Experiment 2 measured the persistence of touchscreen responses in children with intellectual and developmental disabilities. Across both experiments, the presence of analog sensory reinforcers increased the levels, persistence, and variability of responding relative to when analog sensory reinforcers were absent. Also in both experiments, target responding was less persistent under conditions of DRA compared to NCR regardless of the presence or absence of analog sensory reinforcers. PMID:25130416

  14. Protein adsorption on tailored substrates: long-range forces and conformational changes

    NASA Astrophysics Data System (ADS)

    Bellion, M.; Santen, L.; Mantz, H.; Hähl, H.; Quinn, A.; Nagel, A.; Gilow, C.; Weitenberg, C.; Schmitt, Y.; Jacobs, K.

    2008-10-01

    Adsorption of proteins onto solid surfaces is an everyday phenomenon that is not yet fully understood. To further the current understanding, we have performed in situ ellipsometry studies to reveal the adsorption kinetics of three different proteins, lysozyme, α-amylase and bovine serum albumin. As substrates we offer Si wafers with a controlled Si oxide layer thickness and a hydrophilic or hydrophobic surface functionalization, allowing the tailoring of the influence of short- and long-range interactions. Our studies show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate. We compare the experimental findings to results of a colloidal Monte Carlo approach that includes conformational changes of the adsorbed proteins induced by density fluctuations.

  15. Metal flow of a tailor-welded blank in deep drawing process

    NASA Astrophysics Data System (ADS)

    Yan, Qi; Guo, Ruiquan

    2005-01-01

    Tailor welded blanks were used in the automotive industry to consolidate parts, reduce weight, and increase safety. In recent years, this technology was developing rapidly in China. In Chinese car models, tailor welded blanks had been applied in a lot of automobile parts such as rail, door inner, bumper, floor panel, etc. Concerns on the properties of tailor welded blanks had become more and more important for automobile industry. A lot of research had shown that the strength of the welded seam was higher than that of the base metal, such that the weld failure in the aspect of strength was not a critical issue. However, formability of tailor welded blanks in the stamping process was complex. Among them, the metal flow of tailor welded blanks in the stamping process must be investigated thoroughly in order to reduce the scrap rate during the stamping process in automobile factories. In this paper, the behavior of metal flow for tailor welded blanks made by the laser welding process with two types of different thickness combinations were studied in the deep drawing process. Simulations and experiment verification of the movement of weld line for tailor welded blanks were discussed in detail. Results showed that the control on the movement of welded seam during stamping process by taking some measures in the aspect of blank holder was effective.

  16. Tailored tools to improve pharmacotherapy in infants.

    PubMed

    Allegaert, Karel

    2014-08-01

    Extensive within-population variability is the essence of neonatal pharmacology. Despite this, infants remain one of the last therapeutic orphans. Together with additional legal initiatives, tailoring of already available tools (modeling, covariates, pharmacovigilance) may significantly improve pharmacotherapy in infants. Modeling approaches that hold the promise to improve pharmacotherapy in infants are between-compound extrapolation for compounds that undergo the same route of elimination and integration of time-varying physiology to adapt for the fast maturational changes. Besides these maturational covariates (size, age), newly emerging covariates relate to novel treatment modalities (extracorporeal circulation, hypothermia), environmental issues (microbiome, critical illness) or pharmacogenetics. All these covariates interact with the maturational variation. Finally, pharmacovigilance also needs to be tailored to the characteristics of this population. This relates to preventive strategies, signal detection and assessment of causality. Knowledge on pharmacotherapy in infants is lagging. Tailoring available tools to the specific characteristics (maturation) and clinical needs (newly emerging covariates) of infants is feasible but needs creativity and a multidisciplinary collaboration between modelers, academia, clinical researchers and, obviously, the public, including parents.

  17. The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-01-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  18. Context, confidentiality, and consent in tailored health communications: a cautionary note.

    PubMed

    Orleans, C T

    1999-01-01

    This article highlights key contextual factors that emerge when the evolution of tailored health communications is viewed against the backdrop of dynamic changes in the nation's health care system--including the shift from fee-for-service medicine to managed care and the proliferation of direct-to-consumer and tailored marketing strategies in the pharmaceutical industry. It focuses on contextual variables with potential to significantly mediate the impact of personally tailored health advice--including those related to confidentiality, privacy, and informed consent and to the perceived aims, intents, and sources of tailored health messages. To protect the future of tailored health messages, more research attention must be given to defining these contextual factors and understanding the roles that they play and the ways in which they can be controlled to assure the best outcomes. Such research could point the way towards a set of empirical and ethical "best practices" based on a scientific understanding of how to maximize the benefits, and minimize the potential harms, of the widescale use of tailored health communications.

  19. In-situ scanning electron microscope studies of crack growth in an aluminum metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1990-01-01

    Edge-notched specimens of a cast and extruded Al alloy-based, alumina particulate-reinforced composite in the annealed condition were tested in situ in a SEM apparatus equipped with a deformation stage permitting the direct observation of crack growth phenomena. Fracture in this composite is seen to proceed by initiation of microcracks ahead of the macrocrack; as deformation proceeds, the microcracks lengthen, and crack propagation occurs when the region of intense plastic straining becomes comparable to the macrocrack-microcrack distance. The sequence is then repeated.

  20. Signal functions in delayed reinforcement

    PubMed Central

    Lattal, Kennon A.

    1984-01-01

    Three experiments were conducted with pigeons to examine the role of the signal in delay-of-reinforcement procedures. In the first, a blackout accompanying a period of nonreinforcement increased key-peck response rates maintained by immediate reinforcement. The effects of dissociating the blackout from the delay interval were examined in the second experiment. In three conditions, blackouts and unsignaled delays were negatively correlated or occurred randomly with respect to one another. A signaled delay and an unsignaled delay that omitted the blackouts were studied in two other conditions. All delay-of-reinforcement conditions generally produced response rates lower than those produced by immediate reinforcement. Signaled delays maintained higher response rates than did any of the various unsignaled-delay conditions, with or without dissociated blackouts. The effects of these latter conditions did not differ systematically from one another. The final experiment showed that response rates varied as a function of the frequency with which a blackout accompanied delay intervals. By eliminating a number of methodological difficulties present in previous delay-of-reinforcement experiments, these results suggest the importance of the signal in maintaining responding during delay-of-reinforcement procedures and, conversely, the importance of the delay interval in decreasing responding. PMID:16812387

  1. Thermal Treatment, Sliding Wear and Saline Corrosion of Al In Situ Reinforced with Mg2Si and Ex Situ Reinforced with TiC Particles

    NASA Astrophysics Data System (ADS)

    Lekatou, A. G.; Poulia, A.; Mavros, H.; Karantzalis, A. E.

    2018-02-01

    The main objective of this work is to produce a composite consisting of (a) a cast heat-treatable Al-Mg-Si alloy with high contents of Mg for corrosion resistance and Si to offset the Mg-due poor castability (in situ hypoeutectic Mg2Si/Al composite) and (b) TiC particles at high enough volume fractions (≤ 15%), in order to achieve a satisfactory combination of wear and corrosion performance. TiCp/Al-7Mg-5Si (wt.%) composites were produced by flux-assisted casting followed by solution and aging heat treatment. Solution treatment led to a relatively uniform dispersion and shape rounding of Mg2Si precipitates and Si particles. TiC particle addition resulted in refinement of primary Al, modification of the Mg2Si Chinese script morphology and refinement/spheroidization of primary Mg2Si. Heat treatment combined with TiC addition notably improved the sliding wear resistance of Al-7Mg-5Si. A wear mechanism has been proposed. The TiC/Al interfaces remained intact of corrosion during potentiodynamic polarization of the heat-treated materials in 3.5 wt.% NaCl. Different main forms of localized corrosion in 3.5 wt.% NaCl were identified for each TiC content (0, 5, 15 vol.%), depending on specific degradation favoring microstructural features (topology/size/interface wetting) at each composition.

  2. Automatically producing tailored web materials for public administration

    NASA Astrophysics Data System (ADS)

    Colineau, Nathalie; Paris, Cécile; Vander Linden, Keith

    2013-06-01

    Public administration organizations commonly produce citizen-focused, informational materials describing public programs and the conditions under which citizens or citizen groups are eligible for these programs. The organizations write these materials for generic audiences because of the excessive human resource costs that would be required to produce personalized materials for everyone. Unfortunately, generic materials tend to be longer and harder to understand than materials tailored for particular citizens. Our work explores the feasibility and effectiveness of automatically producing tailored materials. We have developed an adaptive hypermedia application system that automatically produces tailored informational materials and have evaluated it in a series of studies. The studies demonstrate that: (1) subjects prefer tailored materials over generic materials, even if the tailoring requires answering a set of demographic questions first; (2) tailored materials are more effective at supporting subjects in their task of learning about public programs; and (3) the time required to specify the demographic information on which the tailoring is based does not significantly slow down the subjects in their information seeking task.

  3. Aggression as Positive Reinforcement in Mice under Various Ratio- and Time-Based Reinforcement Schedules

    ERIC Educational Resources Information Center

    May, Michael E.; Kennedy, Craig H.

    2009-01-01

    There is evidence suggesting aggression may be a positive reinforcer in many species. However, only a few studies have examined the characteristics of aggression as a positive reinforcer in mice. Four types of reinforcement schedules were examined in the current experiment using male Swiss CFW albino mice in a resident-intruder model of aggression…

  4. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network.

    PubMed

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; He, Fang; Ma, Liying; Li, Qunying; Li, Jiajun; Bacsa, Wolfgang; Zhao, Naiqin; He, Chunnian

    2017-08-24

    Graphene or graphene-like nanosheets have been emerging as an attractive reinforcement for composites due to their unique mechanical and electrical properties as well as their fascinating two-dimensional structure. It is a great challenge to efficiently and homogeneously disperse them within a metal matrix for achieving metal matrix composites with excellent mechanical and physical performance. In this work, we have developed an innovative in situ processing strategy for the fabrication of metal matrix composites reinforced with a discontinuous 3D graphene-like network (3D GN). The processing route involves the in situ synthesis of the encapsulation structure of 3D GN powders tightly anchored with Cu nanoparticles (NPs) (3D GN@Cu) to ensure mixing at the molecular level between graphene-like nanosheets and metal, coating of Cu on the 3D GN@Cu (3D GN@Cu@Cu), and consolidation of the 3D GN@Cu@Cu powders. This process can produce GN/Cu composites on a large scale, in which the in situ synthesized 3D GN not only maintains the perfect 3D network structure within the composites, but also has robust interfacial bonding with the metal matrix. As a consequence, the as-obtained 3D GN/Cu composites exhibit exceptionally high strength and superior ductility (the uniform and total elongation to failure of the composite are even much higher than the unreinforced Cu matrix). To the best of our knowledge, this work is the first report validating that a discontinuous 3D graphene-like network can simultaneously remarkably enhance the strength and ductility of the metal matrix.

  5. Failure Resistance of Fiber-Reinforced Ultra-High Performance Concrete (FRUHPC) Subjected to Blast Loading

    NASA Astrophysics Data System (ADS)

    Ellis, Brett; Zhou, Min; McDowell, David

    2011-06-01

    As part of a hierarchy-based computational materials design program, a fully dynamic 3D mesoscale model is developed to quantify the effects of energy storage and dissipation mechanisms in Fiber-Reinforced Ultra-High Performance Concretes (FRUHPCs) subjected to blast loading. This model accounts for three constituent components: reinforcement fibers, cementitious matrix, and fiber-matrix interfaces. Microstructure instantiations encompass a range of fiber volume fraction (0-2%), fiber length (10-15 mm), and interfacial bonding strength (1-100 MPa). Blast loading with scaled distances between 5 and 10 m/kg1/3 are considered. Calculations have allowed the delineation and characterization of the evolutions of kinetic energy, strain energy, work expended on interfacial damage and failure, frictional dissipation along interfaces, and bulk dissipation through granular flow as functions of microstructure, loading and constituent attributes. The relations obtained point out avenues for designing FRUHPCs with properties tailored for specific load environments and reveal trade-offs between various design scenarios.

  6. In-situ Planetary Subsurface Imaging System

    NASA Astrophysics Data System (ADS)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  7. Noncontingent reinforcement, alternative reinforcement, and the matching law: a laboratory demonstration.

    PubMed Central

    Ecott, Cheryl L; Critchfield, Thomas S

    2004-01-01

    Basic researchers, but not most applied researchers, have assumed that the behavior-decelerating effects of noncontingent reinforcement result at least partly from adventitious reinforcement of competing behaviors. The literature contains only sketchy evidence of these effects because few noncontingent reinforcement studies measure alternative behaviors. A laboratory model is presented in which concurrent schedules of contingent reinforcement were used to establish a "target" and an "alternative" behavior. Imposing noncontingent reinforcement decreased target behavior rates and increased alternative behavior rates, outcomes that were well described by the standard quantitative account of alternative reinforcement, the generalized matching law. These results suggest that adventitious reinforcement of alternative behaviors can occur during noncontingent reinforcement interventions, although the range of conditions under which this occurs remains to be determined in future studies. As an adjunct to applied studies, laboratory models permit easy measurement of alternative behaviors and parametric manipulations needed to answer many research questions. PMID:15529885

  8. Aerolastic tailoring and integrated wing design

    NASA Technical Reports Server (NTRS)

    Love, Mike H.; Bohlmann, Jon

    1989-01-01

    Much has been learned from the TSO optimization code over the years in determining aeroelastic tailoring's place in the integrated design process. Indeed, it has become apparent that aeroelastic tailoring is and should be deeply embedded in design. Aeroelastic tailoring can have tremendous effects on the design loads, and design loads affect every aspect of the design process. While optimization enables the evaluation of design sensitivities, valid computational simulations are required to make these sensitivities valid. Aircraft maneuvers simulated must adequately cover the plane's intended flight envelope, realistic design criteria must be included, and models among the various disciplines must be calibrated among themselves and with any hard-core (e.g., wind tunnel) data available. The information gained and benefits derived from aeroelastic tailoring provide a focal point for the various disciplines to become involved and communicate with one another to reach the best design possible.

  9. Quasi-reinforcement: control of responding by a percentage-reinforcement schedule1

    PubMed Central

    Neuringer, Allen J.; Chung, Shin-Ho

    1967-01-01

    When a variable-interval schedule of reinforcement was segmented into small fixed-interval components, with reinforcements following some components and brief blackouts following the others, rate of responding doubled and a positively accelerated pattern within each component was obtained. Presented according to this percentage reinforcement paradigm, the blackouts approximated the functions of a food reinforcer. These effects occurred only when the behavior sequence required to produce reinforcement was identical to that required to produce blackout. The quasi-reinforcing effects of these blackout stimuli suggest that a neutral stimulus need not occasion or accompany a primary reinforcer to acquire reinforcing properties. PMID:16811304

  10. Dynamic properties of hydrogels and fiber-reinforced hydrogels.

    PubMed

    Martin, Nicholas; Youssef, George

    2018-06-07

    Hydrophilic polymers, or hydrogels, are used for a wide variety of biomedical applications, due to their inherent ability to withhold a high-water content. In recent years, a large effort has been focused on tailoring the mechanical properties of these hydrogels to become more appropriate materials for use as anatomical and physiological structural supports. A few of these such methods include using diverse types of polymers, both natural and synthetic, varying the type of molecular cross-linking, as well as combining these efforts to form interpenetrating polymer network hydrogels. While multiple research groups have characterized these various hydrogels under quasi-static conditions, their dynamic properties, representative of native physiological loading scenarios, have been scarcely reported. In this study, an E-glass fiber reinforced family of alginate/PAAm hydrogels cross-linked by both divalent and trivalent cations are fabricated and investigated. The effect of the reinforcement phase on the dynamic and hydration behaviors is then explicated. Additionally, a micromechanics framework for short cylindrical chopped fibers is utilized to discern the contribution of the matrix and fiber constituents on the hydrogel composite. The addition of E-glass fibers resulted in the storage modulus exhibiting a ~50%, 5%, and ~120%, increase with a mere addition of 2 wt% of the reinforcing fibers to Na-, Sr-, and Al-alginate/PAAm, respectively. In studying the cross-linking effect of various divalent (Ba, Ca, Sr) and trivalent (Al, Fe) cations, it was noteworthy that the hydrogels were found to be effective in dissipating energy while resisting mechanical deformation when they are cross-linked with higher molecular weight elements, regardless of valency. This report on the dynamic properties of these hydrogels will help to improve their optimization for future use in biomedical load-bearing applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    ERIC Educational Resources Information Center

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  12. Deprivation, reinforcement and peer support as work motivators: A paradigm for habilitation of older retardates.

    PubMed

    Cleland, C C; Swartz, J D

    1968-04-01

    A chronically institutionalized, high-grade retardate group traditionally characterized as possessing poor habilitation prognosis was re-appraised and good prognostic indices were isolated and described, from this appraisal the principles of deprivation, reinforcement and peer support were invoked to develop an habilitation paradigm for this selected high-risk group. Although specifically tailored to retardates, the model may have generalization potential for other handicapped groups. Through this research and placement approach, it appears possible to more validly assess the circumstances that enhance or undermine retardates' motivation to work.

  13. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    additional weight savings. More robust structures capable of withstanding micrometeoroid and space debris impacts will be possible with the enhanced mechanical properties imparted by the aligned CNTs incorporated into the fiber composite structure, as well as the potential for improved electrical and thermal properties. The materials fabrication approach developed in the present effort is a platform for customer applications where additional reinforcement is required or would be beneficial, especially in FRC structures and component parts. Depending upon the specific customer application, the NRM could be tailored to the specific matrix resin and desired property enhancement.

  14. Model-Based Reinforcement Learning under Concurrent Schedules of Reinforcement in Rodents

    ERIC Educational Resources Information Center

    Huh, Namjung; Jo, Suhyun; Kim, Hoseok; Sul, Jung Hoon; Jung, Min Whan

    2009-01-01

    Reinforcement learning theories postulate that actions are chosen to maximize a long-term sum of positive outcomes based on value functions, which are subjective estimates of future rewards. In simple reinforcement learning algorithms, value functions are updated only by trial-and-error, whereas they are updated according to the decision-maker's…

  15. Comparing homeless persons' care experiences in tailored versus nontailored primary care programs.

    PubMed

    Kertesz, Stefan G; Holt, Cheryl L; Steward, Jocelyn L; Jones, Richard N; Roth, David L; Stringfellow, Erin; Gordon, Adam J; Kim, Theresa W; Austin, Erika L; Henry, Stephen Randal; Kay Johnson, N; Shanette Granstaff, U; O'Connell, James J; Golden, Joya F; Young, Alexander S; Davis, Lori L; Pollio, David E

    2013-12-01

    We compared homeless patients' experiences of care in health care organizations that differed in their degree of primary care design service tailoring. We surveyed homeless-experienced patients (either recently or currently homeless) at 3 Veterans Affairs (VA) mainstream primary care settings in Pennsylvania and Alabama, a homeless-tailored VA clinic in California, and a highly tailored non-VA Health Care for the Homeless Program in Massachusetts (January 2011-March 2012). We developed a survey, the "Primary Care Quality-Homeless Survey," to reflect the concerns and aspirations of homeless patients. Mean scores at the tailored non-VA site were superior to those from the 3 mainstream VA sites (P < .001). Adjusting for patient characteristics, these differences remained significant for subscales assessing the patient-clinician relationship (P < .001) and perceptions of cooperation among providers (P = .004). There were 1.5- to 3-fold increased odds of an unfavorable experience in the domains of the patient-clinician relationship, cooperation, and access or coordination for the mainstream VA sites compared with the tailored non-VA site; the tailored VA site attained intermediate results. Tailored primary care service design was associated with a superior service experience for patients who experienced homelessness.

  16. Climbing therapy under PK-tailored prophylaxis.

    PubMed

    Stemberger, M; Schmit, E; Czepa, D; Kurnik, K; Spannagl, M

    2014-01-01

    Climbing has a low risk of injury and strengthens the entire musculature. Due to its benefits in physical and mental health as well as its high fun factor climbing is an established way of therapy. So far, the usefulness of climbing therapy has not been shown for people with haemophilia (PWH). A crucial requirement for physical activity in PWH is regular prophylaxis. As the patient's individual pharmacokinetic (PK) response varies significantly, PK-tailored prophylaxis may decrease bleeding frequency. We describe a man (age 25 years) with severe haemophilia A who took part in an 8.5-month weekly climbing program under PK-tailored prophylaxis. Bleeding frequency, factor consumption, joint health (Haemophilia Joint Health Score, HJHS), quality of life (Haemo-QoL-A) and climbing performance (UIAA scale) were assessed before and after the training. Prior to the study, the patient was on demand treatment. The patient was started on standard prophylaxis for a 2 months period and then observed for 6.5 months under PK-tailored prophylaxis. PK-tailored prophylaxis was targeted to a trough level of 1-3%. For high-impact activities a factor activity >15%, for low-impact activities a factor activity >5% was suggested. Climbing therapy was safe. The bleeding rate decreased from 14 (2012) to 1 (during the study period of 8.5 months). The one bleeding event was due to a missed infusion and was not triggered by physical activity. The elimination half-life using Bayesian statistics was determined to be 16h. Using this half-life for PK-tailored prophylaxis reduced the factor VIII consumption in comparison to standard prophylaxis. Joint health was particularly improved in the categories range of motion and swelling. Quality of life scores stayed at a high level. Climbing performance improved by 1 grade. The combination of PK-tailored prophylaxis with therapeutic climbing improved clinical outcome in this young adult with severe haemophilia. The tailored concept for high- and low

  17. Study of the internal confinement of concrete reinforced (in civil engineering) with woven reinforcement

    NASA Astrophysics Data System (ADS)

    Dalal, M.; Goumairi, O.; El Malik, A.

    2017-10-01

    Concrete is generally the most used material in the field of construction. Despite its extensive use in structures, it represents some drawbacks related to its properties including its low tensile strength and low ductility. To solve this problem, the use of steel reinforcement in concrete structures is possible. Another possibility is the introduction of different types of continuous fibre / staple in the concrete, such as steel fibres or synthetic fibres, to obtain ″Concretes bundles″. Many types of fibre concrete, which have been developed and for many of them, the gain provided by the fibre was rather low and no significant improvement in tensile strength was really reaching. By cons, the ductility was higher than that of ordinary concrete. The objective of this study is to examine concrete reinforcement by inserting reinforcements woven polyester. These are either woven bidirectional (2D) or three-dimensional woven (3D). So we will report the properties of each type of reinforcement and the influence of the method of weaving on the strength reinforcements and on the strength of concrete in which they are incorporated. Such influence should contribute to improving the sustainability and enhancement of reinforcement

  18. Advances in in situ inspection of automated fiber placement systems

    NASA Astrophysics Data System (ADS)

    Juarez, Peter D.; Cramer, K. Elliott; Seebo, Jeffrey P.

    2016-05-01

    Automated Fiber Placement (AFP) systems have been developed to help take advantage of the tailorability of composite structures in aerospace applications. AFP systems allow the repeatable placement of uncured, spool fed, preimpregnated carbon fiber tape (tows) onto substrates in desired thicknesses and orientations. This automated process can incur defects, such as overlapping tow lines, which can severely undermine the structural integrity of the part. Current defect detection and abatement methods are very labor intensive, and still mostly rely on human manual inspection. Proposed is a thermographic in situ inspection technique which monitors tow placement with an on board thermal camera using the preheated substrate as a through transmission heat source. An investigation of the concept is conducted, and preliminary laboratory results are presented. Also included will be a brief overview of other emerging technologies that tackle the same issue.

  19. Quantifying root-reinforcement of river bank soils by four Australian tree species

    NASA Astrophysics Data System (ADS)

    Docker, B. B.; Hubble, T. C. T.

    2008-08-01

    The increased shear resistance of soil due to root-reinforcement by four common Australian riparian trees, Casuarina glauca, Eucalyptus amplifolia, Eucalyptus elata and Acacia floribunda, was determined in-situ with a field shear-box. Root pull-out strengths and root tensile-strengths were also measured and used to evaluate the utility of the root-reinforcement estimation models that assume simultaneous failure of all roots at the shear plane. Field shear-box results indicate that tree roots fail progressively rather than simultaneously. Shear-strengths calculated for root-reinforced soil assuming simultaneous root failure, yielded values between 50% and 215% higher than directly measured shear-strengths. The magnitude of the overestimate varies among species and probably results from differences in both the geometry of the root-system and tensile strengths of the root material. Soil blocks under A. floribunda which presents many, well-spread, highly-branched fine roots with relatively higher tensile strength, conformed most closely with root model estimates; whereas E. amplifolia, which presents a few, large, unbranched vertical roots, concentrated directly beneath the tree stem and of relatively low tensile strength, deviated furthest from model-estimated shear-strengths. These results suggest that considerable caution be exercised when applying estimates of increased shear-strength due to root-reinforcement in riverbank stability modelling. Nevertheless, increased soil shear strength provided by tree roots can be calculated by knowledge of the Root Area Ratio ( RAR) at the shear plane. At equivalent RAR values, A. floribunda demonstrated the greatest earth reinforcement potential of the four species studied.

  20. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    NASA Astrophysics Data System (ADS)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  1. Influence of BN fiber coatings on the interfacial structure of sapphire fiber reinforced NiAl composites

    NASA Astrophysics Data System (ADS)

    Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.

    2001-07-01

    A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.

  2. Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge Beams

    DOT National Transportation Integrated Search

    2018-01-01

    Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural ...

  3. Origins of food reinforcement in infants12345

    PubMed Central

    Kong, Kai Ling; Feda, Denise M; Eiden, Rina D; Epstein, Leonard H

    2015-01-01

    Background: Rapid weight gain in infancy is associated with a higher risk of obesity in children and adults. A high relative reinforcing value of food is cross-sectionally related to obesity; lean children find nonfood alternatives more reinforcing than do overweight/obese children. However, to our knowledge, there is no research on how and when food reinforcement develops. Objective: This study was designed to assess whether the reinforcing value of food and nonfood alternatives could be tested in 9- to 18-mo-old infants and whether the reinforcing value of food and nonfood alternatives is differentially related to infant weight status. Design: Reinforcing values were assessed by using absolute progressive ratio schedules of reinforcement, with presentation of food and nonfood alternatives counterbalanced in 2 separate studies. Two nonfood reinforcers [Baby Einstein–Baby MacDonald shows (study 1, n = 27) or bubbles (study 2, n = 30)] were tested against the baby’s favorite food. Food reinforcing ratio (FRR) was quantified by measuring the reinforcing value of food (Food Pmax) in proportion to the total reinforcing value of food and a nonfood alternative (DVD Pmax or BUB Pmax). Results: Greater weight-for-length z score was associated with a greater FRR of a favorite food in study 1 (FRR-DVD) (r = 0.60, P < 0.001) and FRR of a favorite food in study 2 (FRR-BUB) (r = 0.49, P = 0.006), primarily because of the strong association between greater weight-for-length z score and lower DVD Pmax (r = −0.71, P < 0.0001) and BUB Pmax (r = −0.53, P = 0.003). Infant monthly weight gain was positively associated with FRR-DVD (r = 0.57, P = 0.009) and FRR-BUB (r = 0.37, P = 0.047). Conclusions: Our newly developed paradigm, which tested 2 different nonfood alternatives, demonstrated that lean infants find nonfood alternatives more reinforcing than do overweight/obese infants. This observation suggests that strengthening the alternative reinforcers may have a protective

  4. Effect of Reinforcement Architecture on Fracture of Selectively Reinforced Metallic Compact Tension Specimens

    NASA Technical Reports Server (NTRS)

    Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.

    2006-01-01

    A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the non-reinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.

  5. Uplift of symmetrical anchor plates by using grid-fixed reinforced reinforcement in cohesionless soil

    NASA Astrophysics Data System (ADS)

    Niroumand, Hamed; Kassim, Khairul Anuar

    2014-03-01

    Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were used to reinforce the sandy soil over symmetrical anchor plates. In the current research, different factors such as relative density of sand, embedment ratios, and various GFR parameters including size, number of layers, and the proximity of the layer to the symmetrical anchor plate were investigated in a scale model. The failure mechanism and the associated rupture surface were observed and evaluated. GFR, a tied up system made of fiber reinforcement polymer (FRP) strips and end balls, was connected to the geosynthetic material and anchored into the soil. Test results showed that using GFR reinforcement significantly improved the uplift capacity of anchor plates. It was found that the inclusion of one layer of GFR, which rested directly on the top of the anchor plate, was more effective in enhancing the anchor capacity itself than other methods. It was found that by including GFR the uplift response was improved by 29%. Multi layers of GFR proved more effective in enhancing the uplift capacity than a single GFR reinforcement. This is due to the additional anchorage provided by the GFR at each level of reinforcement. In general, the results show that the uplift capacity of symmetrical anchor plates in loose and dense sand can be significantly increased by the inclusion of GFR. It was also observed that the inclusion of GFR reduced the requirement for a large L/D ratio to achieve the required uplift capacity. The laboratory and numerical analysis results are found to be in agreement in terms of breakout factor and failure mechanism pattern.

  6. Polyimide resin composites via in situ polymerization of monomeric reactants

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Thermo-oxidatively stable polyimide/graphite-fiber composites were prepared using a unique in situ polymerization of monomeric reactants directly on reinforcing fibers. This was accomplished by using an aromatic diamine and two ester-acids in a methyl alcohol solvent, rather than a previously synthesized prepolymer varnish, as with other A-type polyimides. A die molding procedure was developed and a composite property characterization conducted with high modulus graphite fiber tow. Flexure, tensile, compressive, and shear tests were conducted at temperatures from 72 to 650 F on laminates before and after exposures at the given temperatures in an air environment for times up to 1000 hours. The composite material was determined to be oxidatively, thermally, and hydrolytically stable.

  7. Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades

    NASA Astrophysics Data System (ADS)

    Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri

    2016-10-01

    Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.

  8. Comparing Homeless Persons’ Care Experiences in Tailored Versus Nontailored Primary Care Programs

    PubMed Central

    Holt, Cheryl L.; Steward, Jocelyn L.; Jones, Richard N.; Roth, David L.; Stringfellow, Erin; Gordon, Adam J.; Kim, Theresa W.; Austin, Erika L.; Henry, Stephen Randal; Kay Johnson, N.; Shanette Granstaff, U.; O’Connell, James J.; Golden, Joya F.; Young, Alexander S.; Davis, Lori L.; Pollio, David E.

    2013-01-01

    Objectives. We compared homeless patients’ experiences of care in health care organizations that differed in their degree of primary care design service tailoring. Methods. We surveyed homeless-experienced patients (either recently or currently homeless) at 3 Veterans Affairs (VA) mainstream primary care settings in Pennsylvania and Alabama, a homeless-tailored VA clinic in California, and a highly tailored non-VA Health Care for the Homeless Program in Massachusetts (January 2011-March 2012). We developed a survey, the “Primary Care Quality-Homeless Survey," to reflect the concerns and aspirations of homeless patients. Results. Mean scores at the tailored non-VA site were superior to those from the 3 mainstream VA sites (P < .001). Adjusting for patient characteristics, these differences remained significant for subscales assessing the patient–clinician relationship (P < .001) and perceptions of cooperation among providers (P = .004). There were 1.5- to 3-fold increased odds of an unfavorable experience in the domains of the patient–clinician relationship, cooperation, and access or coordination for the mainstream VA sites compared with the tailored non-VA site; the tailored VA site attained intermediate results. Conclusions. Tailored primary care service design was associated with a superior service experience for patients who experienced homelessness. PMID:24148052

  9. Knee degeneration in concrete reinforcement workers.

    PubMed Central

    Wickström, G; Hänninen, K; Mattsson, T; Niskanen, T; Riihimäki, H; Waris, P; Zitting, A

    1983-01-01

    The loads on the knees in concrete reinforcement work and maintenance painting were analysed on eight construction work sites. A total of 352 reinforcement workers and 231 painters. Finnish men aged 20-64, were clinically and radiologically examined to determine the condition of the knee joints in active workers. The loads on the knees and the occurrence of minor injuries and accidents were higher in reinforcement work than in painting, but the occurrence of symptoms, clinical signs, and radiological findings was equally common in both groups. Reinforcement work seemed to provoke more symptoms from degenerated knees than painting. PMID:6830721

  10. Adhesion and Interphase Properties of Reinforced Polymeric Composites

    NASA Astrophysics Data System (ADS)

    Caldwell, Kyle Bernd

    improved adhesion. In recent years, the use of so called "migrating agents" have been used to self-assemble nanoparticle reinforced fiber-matrix interphases in thermosetting resin systems. The inclusion of a modest amount of thermoplastic migrating agent can lead to the formation of a self-assembled interphase, without causing aggregation of nanoparticles in the bulk phase. Formulations containing excess migrating agent, however, can induce aggregation in the bulk of increasing severity with increasing migrating agent concentration. Several techniques were used to study the mechanism by which the migrating agents operate including, scanning electron microscopy, and in situ fluorescence microscopy. The self-assembly mechanism by which migrating agents operate is described well by depletion forces, which are depend on the geometry of the approaching objects, as well as the migrating agent molecular weight and concentration.

  11. Unveiling the Semicoherent Interface with Definite Orientation Relationships between Reinforcements and Matrix in Novel Al3BC/Al Composites.

    PubMed

    Zhao, Yongfeng; Qian, Zhao; Ma, Xia; Chen, Houwen; Gao, Tong; Wu, Yuying; Liu, Xiangfa

    2016-10-05

    High-strength lightweight Al-based composites are promising materials for a wide range of applications. To provide high performance, a strong bonding interface for effective load transfer from the matrix to the reinforcement is essential. In this work, the novel Al 3 BC reinforced Al composites have been in situ fabricated through a liquid-solid reaction method and the bonding interface between Al 3 BC and Al matrix has been unveiled. The HRTEM characterizations on the Al 3 BC/Al interface verify it to be a semicoherent bonding structure with definite orientation relationships: (0001) Al 3 BC //(11̅1) Al ;[112̅0] Al 3 BC //[011] Al . Periodic arrays of geometrical misfit dislocations are also observed along the interface at each (0001) Al 3 BC plane or every five (11̅1) Al planes. This kind of interface between the reinforcement and the matrix is strong enough for effective load transfer, which would lead to the evidently improved strength and stiffness of the introduced new Al 3 BC/Al composites.

  12. New Insights in the Long-Term Atmospheric Corrosion Mechanisms of Low Alloy Steel Reinforcements of Cultural Heritage Buildings

    PubMed Central

    Bouchar, Marie; Dillmann, Philippe; Neff, Delphine

    2017-01-01

    Reinforcing clamps made of low alloy steel from the Metz cathedral and corroded outdoors during 500 years were studied by OM, FESEM/EDS, and micro-Raman spectroscopy. The corrosion product layer is constituted of a dual structure. The outer layer is mainly constituted of goethite and lepidocrocite embedding exogenous elements such as Ca and P. The inner layer is mainly constituted of ferrihydrite. The behaviour of the inner layer under conditions simulating the wetting stage of the RH wet/dry atmospheric corrosion cycle was observed by in situ micro-Raman spectroscopy. The disappearance of ferrihydrite near the metal/oxide interface strongly suggests a mechanism of reductive dissolution caused by the oxidation of the metallic substrate and was observed for the first time in situ on an archaeological system. PMID:28773030

  13. Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: Underlying role of reinforcement weight fraction

    NASA Astrophysics Data System (ADS)

    Gu, Dongdong; Yuan, Pengpeng

    2015-12-01

    In this study, a three-dimensional transient computational fluid dynamics model was established to investigate the influence of reinforcement weight fraction on thermal evolution behavior and fluid dynamics during selective laser melting (SLM) additive manufacturing of TiC/AlSi10Mg nanocomposites. The powder-to-solid transition and nonlinear variation of thermal physical properties of as-used materials were considered in the numerical model, using the Gaussian distributed volumetric heat source. The simulation results showed that the increase of operating temperature and the resultant formation of larger melt pool were caused by the increase of weight fraction of reinforcement. The Marangoni convection was intensified using a larger reinforcement content, accelerating the coupled motion of fluid and solid particles. The circular flows appeared when the TiC content reached 5.0 wt. % and the larger-sized circular flows were present as the reinforcement content increased to 7.5 wt. %. The experimental study on surface morphologies and microstructures on the polished sections of SLM-processed TiC/AlSi10Mg nanocomposite parts was performed. A considerably dense and smooth surface free of any balling effect and pore formation was obtained when the reinforcement content was optimized at 5.0 wt. %, due to the sufficient liquid formation and moderate Marangoni flow. Novel ring-structured reinforcing particulates were tailored because of the combined action of the attractive effect of centripetal force and repulsive force, which was consistent with the simulation results.

  14. Multidisciplinary tailoring of hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Chamis, Christos C.

    1993-01-01

    A computational simulation procedure is described for multidisciplinary analysis and tailoring of layered multi-material hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loads. The effect of aggressive environments is also simulated. The simulation is based on a three-dimensional finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermo-mechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loads lead to different tailored designs, even those competing with each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.

  15. Evaluating Psychosocial and Behavioral Mechanisms of Change in a Tailored Communication Intervention

    ERIC Educational Resources Information Center

    Elder, John P.; Ayala, Guadalupe X.; Slymen, Donald J.; Arredondo, Elva M.; Campbell, Nadia R.

    2009-01-01

    This study examined the impact of a tailored nutrition intervention at 3 and 6 months postintervention. In all, 357 Latinas were randomly assigned to one of three conditions: (1) a control condition comprised of previously developed Spanish language targeted materials, (2) tailored print materials, or (3) tailored print materials accompanied by…

  16. Versatile in situ gas analysis apparatus for nanomaterials reactors.

    PubMed

    Meysami, Seyyed Shayan; Snoek, Lavina C; Grobert, Nicole

    2014-09-02

    We report a newly developed technique for the in situ real-time gas analysis of reactors commonly used for the production of nanomaterials, by showing case-study results obtained using a dedicated apparatus for measuring the gas composition in reactors operating at high temperature (<1000 °C). The in situ gas-cooled sampling probe mapped the chemistry inside the high-temperature reactor, while suppressing the thermal decomposition of the analytes. It thus allows a more accurate study of the mechanism of progressive thermocatalytic cracking of precursors compared to previously reported conventional residual gas analyses of the reactor exhaust gas and hence paves the way for the controlled production of novel nanomaterials with tailored properties. Our studies demonstrate that the composition of the precursors dynamically changes as they travel inside of the reactor, causing a nonuniform growth of nanomaterials. Moreover, mapping of the nanomaterials reactor using quantitative gas analysis revealed the actual contribution of thermocatalytic cracking and a quantification of individual precursor fragments. This information is particularly important for quality control of the produced nanomaterials and for the recycling of exhaust residues, ultimately leading toward a more cost-effective continuous production of nanomaterials in large quantities. Our case study of multiwall carbon nanotube synthesis was conducted using the probe in conjunction with chemical vapor deposition (CVD) techniques. Given the similarities of this particular CVD setup to other CVD reactors and high-temperature setups generally used for nanomaterials synthesis, the concept and methodology of in situ gas analysis presented here does also apply to other systems, making it a versatile and widely applicable method across a wide range of materials/manufacturing methods, catalysis, as well as reactor design and engineering.

  17. Food reinforcement during infancy

    PubMed Central

    Kong, Kai Ling

    2017-01-01

    The motivation to eat, as operationalized by measuring how hard someone will work for food, is cross-sectionally and prospectively related to obesity. Persons high in food reinforcement consume more calories, and energy intake mediates the relationship between food reinforcement and obesity. Research has shown avid sucking for milk in early infancy predicts later adiposity, and the relationship between food reinforcement and excess body weight has been observed in infants as young as 9 months of age. New methodological developments in studying food reinforcement in infants and young children provide the first opportunity to study the origin of food reinforcement. This review seeks to provide background on the measurement of food reinforcement, and to present, for the first time, prenatal and postnatal predictors of infant food reinforcement. Lastly, potential mechanisms for an increasing trajectory of food reinforcement throughout development are proposed. PMID:27373207

  18. Adapting without reinforcement.

    PubMed

    Kheifets, Aaron; Gallistel, C Randy

    2012-11-01

    Our data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What's more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer. Naturally, differential reinforcement cannot be said to drive a process that shifts to accommodate to new conditions so adeptly that it doesn't miss a single reinforcer: it would have no input on which to base this shift.

  19. Taste and food reinforcement in non-overweight youth

    PubMed Central

    Epstein, Leonard H.; Carr, Katelyn A.; Scheid, Jennifer L.; Gebre, Eden; O’Brien, Alexis; Paluch, Rocco A.; Temple, Jennifer L.

    2015-01-01

    Food reinforcement is related to increased energy intake, cross-sectionally related to obesity and prospectively related to weight gain in children, adolescents and adults. There is very limited research on how different characteristics of food are related to food reinforcement, and none on how foods from different taste categories (sweet, savory, salty) are related to food reinforcement. We tested differences in food reinforcement for favorite foods in these categories and used a reinforcing value questionnaire to assess how food reinforcement was related to energy intake in 198 non-overweight 8–12 year-old children. Results showed stronger food reinforcement for sweet foods in comparison to savory or salty foods. In multiple regression models, controlling for child sex, minority status and age, average reinforcing value was related to total energy and fat intake, and reinforcing value of savory foods was related to total energy and fat intake. Factor analysis showed one factor, the motivation to eat, rather than separate factors based on different taste categories. Liking ratings were unrelated to total energy intake. These results suggest that while there are differences in the reinforcing value of food by taste groups, there are not strong differences in the relationship between reinforcing value of food by taste groups and energy or macronutrient intake. PMID:25891040

  20. Investigations of timing during the schedule and reinforcement intervals with wheel-running reinforcement.

    PubMed

    Belke, Terry W; Christie-Fougere, Melissa M

    2006-11-01

    Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.

  1. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com; Simchi, A.; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran

    A fine-grained Al–Mg/Al{sub 3}Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 µm), un-reacted titanium particles (<40 µm) and reinforcement particles of Al{sub 3}Ti (<100 nm) and Mg{sub 2}Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum matrix and micro-sized titanium particles to form Al{sub 3}Ti intermetallic phase.more » The hard inclusions were then fractured and re-distributed in the metal matrix by the severe thermo-mechanical conditions imposed by FSP. Evaluation of mechanical properties by hardness measurement and uniaxial tensile test determined significant enhancement in the mechanical strength (by 2.5 order of magnetite) with a high ductility (~22%). Based on a dislocation-based model analysis, it was suggested that the strength enhancement was governed by grain refinement and the presence of hard inclusions (4 vol%) in the metal matrix. Fractographic studies also showed a ductile-brittle fracture mode for the nanocomposite compared with fully ductile rupture of the annealed alloy as well as the FSPed specimen without pre-placing titanium particles. - Highlights: • FSP was employed to fabricate in situ nanocomposite. • The AA5052 Al alloy with pre-placed micro-sized Ti particles were utilized. • The structural analysis was revealed that the in situ formation of Al{sub 3}Ti nanophase. • The SZ grain structure was refined by PSN and ZHP mechanisms during DRX. • Hardness and tensile strength were improved up to ~2.5 times with a good ductility.« less

  2. Evaluating the Influence of Postsession Reinforcement on Choice of Reinforcers

    ERIC Educational Resources Information Center

    Kodak, Tiffany; Lerman, Dorothea C.; Call, Nathan

    2007-01-01

    Factors that influence reinforcer choice have been examined in a number of applied studies (e.g., Neef, Mace, Shea, & Shade, 1992; Shore, Iwata, DeLeon, Kahng, & Smith, 1997; Tustin, 1994). However, no applied studies have evaluated the effects of postsession reinforcement on choice between concurrently available reinforcers, even though basic…

  3. Computer-Supported Feedback Message Tailoring for Healthcare Providers in Malawi: Proof-of-Concept.

    PubMed

    Landis-Lewis, Zach; Douglas, Gerald P; Hochheiser, Harry; Kam, Matthew; Gadabu, Oliver; Bwanali, Mwatha; Jacobson, Rebecca S

    2015-01-01

    Although performance feedback has the potential to help clinicians improve the quality and safety of care, healthcare organizations generally lack knowledge about how this guidance is best provided. In low-resource settings, tools for theory-informed feedback tailoring may enhance limited clinical supervision resources. Our objectives were to establish proof-of-concept for computer-supported feedback message tailoring in Malawi, Africa. We conducted this research in five stages: clinical performance measurement, modeling the influence of feedback on antiretroviral therapy (ART) performance, creating a rule-based message tailoring process, generating tailored messages for recipients, and finally analysis of performance and message tailoring data. We retrospectively generated tailored messages for 7,448 monthly performance reports from 11 ART clinics. We found that tailored feedback could be routinely generated for four guideline-based performance indicators, with 35% of reports having messages prioritized to optimize the effect of feedback. This research establishes proof-of-concept for a novel approach to improving the use of clinical performance feedback in low-resource settings and suggests possible directions for prospective evaluations comparing alternative designs of feedback messages.

  4. Food reinforcement during infancy.

    PubMed

    Kong, Kai Ling; Epstein, Leonard H

    2016-11-01

    The motivation to eat, as operationalized by measuring how hard someone will work for food, is cross-sectionally and prospectively related to obesity. Persons high in food reinforcement consume more calories, and energy intake mediates the relationship between food reinforcement and obesity. Research has shown avid sucking for milk in early infancy predicts later adiposity, and the relationship between food reinforcement and excess body weight has been observed in infants as young as 9months of age. New methodological developments in studying food reinforcement in infants and young children provide the first opportunity to study the origin of food reinforcement. This review seeks to provide background on the measurement of food reinforcement, and to present, for the first time, prenatal and postnatal predictors of infant food reinforcement. Lastly, potential mechanisms for an increasing trajectory of food reinforcement throughout development are proposed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. An examination of effect estimation in factorial and standardly-tailored designs

    PubMed Central

    Allore, Heather G; Murphy, Terrence E

    2012-01-01

    Background Many clinical trials are designed to test an intervention arm against a control arm wherein all subjects are equally eligible for all interventional components. Factorial designs have extended this to test multiple intervention components and their interactions. A newer design referred to as a ‘standardly-tailored’ design, is a multicomponent interventional trial that applies individual interventional components to modify risk factors identified a priori and tests whether health outcomes differ between treatment arms. Standardly-tailored designs do not require that all subjects be eligible for every interventional component. Although standardly-tailored designs yield an estimate for the net effect of the multicomponent intervention, it has not yet been shown if they permit separate, unbiased estimation of individual component effects. The ability to estimate the most potent interventional components has direct bearing on conducting second stage translational research. Purpose We present statistical issues related to the estimation of individual component effects in trials of geriatric conditions using factorial and standardly-tailored designs. The medical community is interested in second stage translational research involving the transfer of results from a randomized clinical trial to a community setting. Before such research is undertaken, main effects and synergistic and or antagonistic interactions between them should be identified. Knowledge of the relative strength and direction of the effects of the individual components and their interactions facilitates the successful transfer of clinically significant findings and may potentially reduce the number of interventional components needed. Therefore the current inability of the standardly-tailored design to provide unbiased estimates of individual interventional components is a serious limitation in their applicability to second stage translational research. Methods We discuss estimation of

  6. Impact of telephone reinforcement and negotiated contracts on behavioral predictors of exercise maintenance in older adults with osteoarthritis.

    PubMed

    Desai, Pakaja M; Hughes, Susan L; Peters, Karen E; Mermelstein, Robin J

    2014-05-01

    To examine the impact of telephone reinforcement (TR) on predictors of physical activity (PA) maintenance in older adults with osteoarthritis. Mixed effects modeling was conducted of data from a randomized PA trial that used negotiated maintenance contracts, supplemented by TR, to test impact of TR on barriers, decisional balance, and stage of change at multiple points in time. Participants who were referred to a PA program and received TR improved the most in barriers and decisional balance. Participants who negotiated a tailored maintenance contract but did not receive TR improved the most in stage. TR appears to positively affect perceptions around engagement, whereas negotiation positively impacts PA behavior. Further research should examine the effectiveness of specific PA maintenance strategies.

  7. Habituation of reinforcer effectiveness

    PubMed Central

    Lloyd, David R.; Medina, Douglas J.; Hawk, Larry W.; Fosco, Whitney D.; Richards, Jerry B.

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect “accelerated-HRE.” Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior. PMID:24409128

  8. Habituation of reinforcer effectiveness.

    PubMed

    Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B

    2014-01-09

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  9. Autoshaping Chicks with Heat Reinforcement: The Role of Stimulus-Reinforcer and Response-Reinforcer Relations

    ERIC Educational Resources Information Center

    Wasserman, Edward A.; And Others

    1975-01-01

    The present series of experiments attempted to analyze more fully the contributions of stimulus-reinforcer and response-reinforcer relations to autoshaping within a single conditioning situation. (Author)

  10. Adapting without reinforcement

    PubMed Central

    Kheifets, Aaron; Gallistel, C. Randy

    2012-01-01

    Our data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What’s more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer. Naturally, differential reinforcement cannot be said to drive a process that shifts to accommodate to new conditions so adeptly that it doesn’t miss a single reinforcer: it would have no input on which to base this shift. PMID:23336018

  11. Resurgence and alternative-reinforcer magnitude.

    PubMed

    Craig, Andrew R; Browning, Kaitlyn O; Nall, Rusty W; Marshall, Ciara M; Shahan, Timothy A

    2017-03-01

    Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source. © 2017 Society for the Experimental Analysis of Behavior.

  12. Resurgence and Alternative-Reinforcer Magnitude

    PubMed Central

    Craig, Andrew R.; Browning, Kaitlyn O.; Nall, Rusty W.; Marshall, Ciara M.; Shahan, Timothy A.

    2017-01-01

    Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source. PMID:28194793

  13. Taste and food reinforcement in non-overweight youth.

    PubMed

    Epstein, Leonard H; Carr, Katelyn A; Scheid, Jennifer L; Gebre, Eden; O'Brien, Alexis; Paluch, Rocco A; Temple, Jennifer L

    2015-08-01

    Food reinforcement is related to increased energy intake, cross-sectionally related to obesity and prospectively related to weight gain in children, adolescents and adults. There is very limited research on how different characteristics of food are related to food reinforcement, and none on how foods from different taste categories (sweet, savory, salty) are related to food reinforcement. We tested differences in food reinforcement for favorite foods in these categories and used a reinforcing value questionnaire to assess how food reinforcement was related to energy intake in 198 non-overweight 8- to 12-year-old children. Results showed stronger food reinforcement for sweet foods in comparison to savory or salty foods. In multiple regression models, controlling for child sex, minority status and age, average reinforcing value was related to total energy and fat intake, and reinforcing value of savory foods was related to total energy and fat intake. Factor analysis showed one factor, the motivation to eat, rather than separate factors based on different taste categories. Liking ratings were unrelated to total energy intake. These results suggest that while there are differences in the reinforcing value of food by taste groups, there are no strong differences in the relationship between reinforcing value of food by taste groups and energy or macronutrient intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Advanced in In Situ Inspection of Automated Fiber Placement Systems

    NASA Technical Reports Server (NTRS)

    Juarez, Peter D.; Cramer, K. Elliott; Seebo, Jeffrey P.

    2016-01-01

    Automated Fiber Placement (AFP) systems have been developed to help take advantage of the tailorability of composite structures in aerospace applications. AFP systems allow the repeatable placement of uncured, spool fed, preimpregnated carbon fiber tape (tows) onto substrates in desired thicknesses and orientations. This automated process can incur defects, such as overlapping tow lines, which can severely undermine the structural integrity of the part. Current defect detection and abatement methods are very labor intensive, and still mostly rely on human manual inspection. Proposed is a thermographic in situ inspection technique which monitors tow placement with an on board thermal camera using the preheated substrate as a through transmission heat source. An investigation of the concept is conducted, and preliminary laboratory results are presented. Also included will be a brief overview of other emerging technologies that tackle the same issue. Keywords: Automated Fiber Placement, Manufacturing defects, Thermography

  15. A model for discriminating reinforcers in time and space.

    PubMed

    Cowie, Sarah; Davison, Michael; Elliffe, Douglas

    2016-06-01

    Both the response-reinforcer and stimulus-reinforcer relation are important in discrimination learning; differential responding requires a minimum of two discriminably-different stimuli and two discriminably-different associated contingencies of reinforcement. When elapsed time is a discriminative stimulus for the likely availability of a reinforcer, choice over time may be modeled by an extension of the Davison and Nevin (1999) model that assumes that local choice strictly matches the effective local reinforcer ratio. The effective local reinforcer ratio may differ from the obtained local reinforcer ratio for two reasons: Because the animal inaccurately estimates times associated with obtained reinforcers, and thus incorrectly discriminates the stimulus-reinforcer relation across time; and because of error in discriminating the response-reinforcer relation. In choice-based timing tasks, the two responses are usually highly discriminable, and so the larger contributor to differences between the effective and obtained reinforcer ratio is error in discriminating the stimulus-reinforcer relation. Such error may be modeled either by redistributing the numbers of reinforcers obtained at each time across surrounding times, or by redistributing the ratio of reinforcers obtained at each time in the same way. We assessed the extent to which these two approaches to modeling discrimination of the stimulus-reinforcer relation could account for choice in a range of temporal-discrimination procedures. The version of the model that redistributed numbers of reinforcers accounted for more variance in the data. Further, this version provides an explanation for shifts in the point of subjective equality that occur as a result of changes in the local reinforcer rate. The inclusion of a parameter reflecting error in discriminating the response-reinforcer relation enhanced the ability of each version of the model to describe data. The ability of this class of model to account for a

  16. Disruption of Responding Maintained by Conditioned Reinforcement: Alterations in Response-Conditioned-Reinforcer Relations

    ERIC Educational Resources Information Center

    Lieving, Gregory A.; Reilly, Mark P.; Lattal, Kennon A.

    2006-01-01

    An observing procedure was used to investigate the effects of alterations in response-conditioned-reinforcer relations on observing. Pigeons responded to produce schedule-correlated stimuli paired with the availability of food or extinction. The contingency between observing responses and conditioned reinforcement was altered in three experiments.…

  17. Generation and Evaluation of User Tailored Responses in Multimodal Dialogue

    ERIC Educational Resources Information Center

    Walker, M. A.; Whittaker, S. J.; Stent, A.; Maloor, P.; Moore, J.; Johnston, M.; Vasireddy, G.

    2004-01-01

    When people engage in conversation, they tailor their utterances to their conversational partners, whether these partners are other humans or computational systems. This tailoring, or adaptation to the partner takes place in all facets of human language use, and is based on a "mental model" or a "user model" of the conversational partner. Such…

  18. Reinforcement Sensitivity Underlying Treatment-Seeking Smokers’ Affect, Smoking Reinforcement Motives, and Affective Responses

    PubMed Central

    Cui, Yong; Robinson, Jason D.; Engelmann, Jeffrey M.; Lam, Cho Y.; Minnix, Jennifer A.; Karam-Hage, Maher; Wetter, David W.; Dani, John A.; Kosten, Thomas R.; Cinciripini, Paul M.

    2014-01-01

    Nicotine dependence has been suggested to be related to reinforcement sensitivity, which encompasses behavioral predispositions either to avoid aversive (behavioral inhibition) or to approach appetitive (behavioral activation) stimuli. Reinforcement sensitivity may shape motives for nicotine use and offer potential targets for personalized smoking cessation therapy. However, little is known regarding how reinforcement sensitivity is related to motivational processes implicated in the maintenance of smoking. Additionally, women and men differ in reinforcement sensitivity, and such difference may cause distinct relationships between reinforcement sensitivity and motivational processes for female and male smokers. In this study, we characterized reinforcement sensitivity in relation to affect, smoking-related reinforcement motives, and affective responses, using self-report and psychophysiological measures, in over 200 smokers before treating them. The Behavioral Inhibition/Activation Scales (BIS/BAS; Carver & White, 1994) was used to measure reinforcement sensitivity. In female and male smokers, BIS was similarly associated with negative affect and negative reinforcement of smoking. But positive affect was positively associated with BAS Drive scores in male smokers, and this association was reversed in female smokers. BIS was positively associated with corrugator electromyographic reactivity towards negative stimuli and left frontal electroencephalogram alpha asymmetry. Female and male smokers showed similar relationships for these physiological measures. These findings suggest that reinforcement sensitivity underpins important motivational processes (e.g., affect), and gender is a moderating factor for these relationships. Future personalized smoking intervention, particularly among more dependent treatment-seeking smokers, may experiment to target individual differences in reinforcement sensitivity. PMID:25621416

  19. Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application.

    PubMed

    Meng, Mei; He, Huawei; Xiao, Jing; Zhao, Ping; Xie, Jiale; Lu, Zhisong

    2016-01-01

    Layer-by-layer (LbL) assembly is a versatile technique for the preparation of multilayered polymeric films. However, fabrication of LbL polymetic film on silk for the in situ growth of high-density silver nanoparticles (AgNPs) has not been realized. Herein poly(acrylic acid) (PAA)/poly(dimethyldiallylammonium chloride) (PDDA) multilayers are constructed on silk via the LbL approach, subsequently serving as a 3-dimensional matrix for in situ synthesis of AgNPs. After 8 rounds of LbL assembly, the silk is fully covered with a layer of polymeric film. AgNPs with good crystalline structures could be in-situ generated in the silk-coated multilayers and their amount could be tailored by adjusting the bilayer numbers. The as-prepared silk could effectively kill the existing bacteria and inhibit the bacterial growth, demonstrating the antimicrobial activity. Moreover, the release of Ag(+) from the modified silk can last for 120 h, rendering the modified silk sustainable antimicrobial activity. This work may provide a novel method to prepare AgNPs-functionalized antimicrobial silk for potential applications in textile industry. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Social reinforcement as alternative to sucrose reinforcement is increased by nicotine and methylphenidate in male Fischer-344 rats.

    PubMed

    Martin, Connor D; Bool, Heather M; George, Anthony M; Carr, Katelyn A; Epstein, Leonard H; Hawk, Larry W; Richards, Jerry B

    2018-04-24

    Stimulant drugs such as nicotine (NIC) and methylphenidate (MPH) are hypothesized to increase the reinforcing value of sensory stimuli, thus increasing the effectiveness of such reinforcers as alternatives to sucrose reinforcers. Inbred Fischer-344 rats (n = 30) were assigned to three groups: saline (SAL; n = 10), nicotine (NIC; n = 10), or methylphenidate (MPH; n = 10). Testing was done in three phases: sucrose only, (SUC), sucrose and drug (SUC/DRUG), and sucrose, drug, and social reinforcement (SUC/DRUG/SOC). During the SUC phase, rats were trained on a progressive ratio 5 (PR5) reinforcement schedule for sucrose (20% solution). In the SUC/DRUG phase, animals were treated with SAL, NIC (0.4 mg/kg, n = 10 SC), or MPH (2.0 mg/kg, n = 10 IP) 30 min prior to testing. In the SUC/DRUG/SOC phase, animals continued receiving drug treatment, and social reinforcement was introduced concurrently with the sucrose reinforcer. The progressive ratio for each reinforcer ran independently of the others. Reinforcing value was measured as break point (BP), the highest number of responses resulting in a reinforcer. SAL-treated animals showed no significant change in sucrose BP. MPH-treated animals showed decreased sucrose BP in the SUC/DRUG phase, with a further reduction in the SUC/DRUG/SOC phase. NIC-treated animals decreased sucrose BP only when a social alternative was offered. Both NIC and MPH reduce the sucrose BP in the presence of a social alternative. The decrease in sucrose responding, coupled with increased social responding, suggests that the social alternative acted as an effective alternative reinforcer to sucrose. From a translational perspective, these results suggest that stimulant drugs such as NIC and MPH may increase the effectiveness of treatments that use alternative social reinforcers to decrease eating.

  1. Reinforced Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.; Akutagawa, Wesley; Wang, Taylor G.; Barber, Dan

    1989-01-01

    New honeycomb panel structure has increased strength and stiffness with little increase in weight. Some or all of walls of honeycomb cells reinforced with honeycomb panels having smaller cells, lightweight foam, or other reinforcing material. Strong, lightweight reinforced panels used in aircraft, car and truck bodies, cabinets for equipment and appliances, and buildings.

  2. Tailored Codes for Small Quantum Memories

    NASA Astrophysics Data System (ADS)

    Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.

    2017-12-01

    We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.

  3. The stress-strain relationships in wood and fiber-reinforced plastic laminae of reinforced glued-laminated wood beams

    NASA Astrophysics Data System (ADS)

    Tingley, Daniel Arthur

    The reinforcement of wood and wood composite structural products to improve their mechanical properties has been in practice for many years. Recently, the use of high-strength fiber-reinforced plastic (FRP) as a reinforcement in such applications has been commercialized. The reinforcement is manufactured using a standard pultrusion process or alternatively a sheet-forming process commonly referred to as "pulforming". The high-modulus fibers are predominately unidirectional, although off-axis fibers are often used to enhance off-axis properties. The fibers used are either of a single type or multiple types, which are called "hybrids". Unidirectional, single, and hybrid fiber FRP physical properties and characteristics were compared to wood. Full-scale reinforced glulams were tested. Aramid-reinforced plastics (ARP) used as tensile reinforcements were found to be superior in strength applications to other types of FRP made with fiber, such as carbon and fiberglass. Carbon/aramid-reinforced plastic (CARP) was shown to be superior in both modulus and strength design situations. Fiberglass was shown to be suitable only in hybrid situations with another fiber such as aramid or carbon and only in limited use situations where modulus was a design criteria. The testing and analysis showed that the global response of reinforced glulam beams is controlled by localized strength variations in the wood such as slope of grain, knots, finger joints, etc. in the tensile zone. The elemental tensile strains in the extreme wood tensile laminae, due to global applied loads, were found to be well below the strain at failure in clear wood samples recovered from the failure area. Two areas affecting the relationship between the wood and the FRP were investigated: compatibility of the wood and FRP materials and interface characteristics between the wood and FRP. The optimum strain value at yield point for an FRP was assessed to be slightly higher than the clear wood value in tension for a

  4. Tailored Training in Army Courses

    DTIC Science & Technology

    2011-10-01

    evidence. Psychological Sciences in the Public Interest, 9 (3), 105-119. Putnam, R . T . (1987). Structuring and adjusting content for students: A study of...tailoring. 41 References Bickley, W. R ., Pleban, R . J., Diedrich, F., Sidman, J., Semmens, R ., & Geyer, A. (2010). Army Institutional Training...Research, 64, 1-35. Corno, L. (2008). On teaching adaptively. Educational Psychologist, 43, 161-173. Corno, L, & Snow, R . E (1986), Adapting

  5. Reinforcement sensitivity underlying treatment-seeking smokers' affect, smoking reinforcement motives, and affective responses.

    PubMed

    Cui, Yong; Robinson, Jason D; Engelmann, Jeffrey M; Lam, Cho Y; Minnix, Jennifer A; Karam-Hage, Maher; Wetter, David W; Dani, John A; Kosten, Thomas R; Cinciripini, Paul M

    2015-06-01

    Nicotine dependence has been suggested to be related to reinforcement sensitivity, which encompasses behavioral predispositions either to avoid aversive (behavioral inhibition) or to approach appetitive (behavioral activation) stimuli. Reinforcement sensitivity may shape motives for nicotine use and offer potential targets for personalized smoking cessation therapy. However, little is known regarding how reinforcement sensitivity is related to motivational processes implicated in the maintenance of smoking. Additionally, women and men differ in reinforcement sensitivity, and such difference may cause distinct relationships between reinforcement sensitivity and motivational processes for female and male smokers. In this study, the authors characterized reinforcement sensitivity in relation to affect, smoking-related reinforcement motives, and affective responses, using self-report and psychophysiological measures, in over 200 smokers before treating them. The Behavioral Inhibition/Activation Scales (BIS/BAS; Carver & White, 1994) was used to measure reinforcement sensitivity. In female and male smokers, BIS was similarly associated with negative affect and negative reinforcement of smoking. However, positive affect was positively associated with BAS Drive scores in male smokers, and this association was reversed in female smokers. BIS was positively associated with corrugator electromyographic reactivity toward negative stimuli and left frontal electroencephalogram alpha asymmetry. Female and male smokers showed similar relationships for these physiological measures. These findings suggest that reinforcement sensitivity underpins important motivational processes (e.g., affect), and gender is a moderating factor for these relationships. Future personalized smoking intervention, particularly among more dependent treatment-seeking smokers, may experiment to target individual differences in reinforcement sensitivity. (PsycINFO Database Record (c) 2015 APA, all rights

  6. Reinforcement learning in scheduling

    NASA Technical Reports Server (NTRS)

    Dietterich, Tom G.; Ok, Dokyeong; Zhang, Wei; Tadepalli, Prasad

    1994-01-01

    The goal of this research is to apply reinforcement learning methods to real-world problems like scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully studied in the reinforcement learning framework. We discuss some of the special challenges posed by the scheduling domain to these methods and propose some possible solutions we plan to implement.

  7. Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure.

    PubMed

    Wang, Baochun; Walther, Andreas

    2015-11-24

    Natural high-performance materials inspire the pursuit of ordered hard/soft nanocomposite structures at high fractions of reinforcements and with balanced molecular interactions. Herein, we develop a facile, waterborne self-assembly pathway to mimic the multiscale cuticle structure of the crustacean armor by combining hard reinforcing cellulose nanocrystals (CNCs) with soft poly(vinyl alcohol) (PVA). We show iridescent CNC nanocomposites with cholesteric liquid-crystal structure, in which different helical pitches and photonic band gaps can be realized by varying the CNC/PVA ratio. We further show that multilayered crustacean-mimetic materials with tailored periodicity and layered cuticular structure can be obtained by sequential preparation pathways. The transition from a cholesteric to a disordered structure occurs for a critical polymer concentration. Correspondingly, we find a transition from stiff and strong mechanical behavior to materials with increasing ductility. Crack propagation studies using scanning electron microscopy visualize the different crack growth and toughening mechanisms inside cholesteric nanocomposites as a function of the interstitial polymer content for the first time. Different extents of crack deflection, layered delamination, ligament bridging, and constrained microcracking can be observed. Drawing of highly plasticized films sheds light on the mechanistic details of the transition from a cholesteric/chiral nematic to a nematic structure. The study demonstrates how self-assembly of biobased CNCs in combination with suitable polymers can be used to replicate a hierarchical biological structure and how future design of these ordered multifunctional nanocomposites can be optimized by understanding mechanistic details of deformation and fracture.

  8. Effects of In Situ Intermetallics on the Microstructural Array and Saline Corrosion Performance of Cast Al/WCp Composites

    NASA Astrophysics Data System (ADS)

    Lekatou, A. G.; Gkikas, N.; Gousia, V.; Lentzaris, K.; Karantzalis, A. E.

    2018-06-01

    Al-matrix composites, ex situ reinforced with WC nanoparticles and in situ reinforced with Al3(Ti,W), Al12W, Al5W and Al4W, have been fabricated by casting assisted by K2TiF6 wetting agent addition and mechanical stirring. A satisfactory particle incorporation and distribution accompanied by a high reactivity have been attained. The presence, topography, chemical composition of all included phases and their occurrence as clusters or single particles are clarified and justified. Al12W is the predominant aluminide phase at WC ≤ 1.5 vol.%. Al4W (primarily) and Al5W (secondarily) are the predominant aluminide phases at WC ≥ 2.0 vol.%. WC nanoparticles have acted as heterogeneous nucleation sites to Al3Ti particles. Reverse polarization tests in 3.5 wt.% NaCl show that the governing form of corrosion is intergranular corrosion of Al around Al3FeSi2 eutectic, fine plates. The corrosion steps/mechanisms are identified. Clusters of aluminides and carbide nanoparticles, as well as intergranular WC nano-dispersoids and their Al-matrix have remained corrosion-free. The role of the aluminides combined with WC remaining nano-cores as inhibitors of the eutectic Al3FeSi2 cathodic activity is highlighted.

  9. Delay discounting of qualitatively different reinforcers in rats.

    PubMed

    Calvert, Amanda L; Green, Leonard; Myerson, Joel

    2010-03-01

    Humans discount larger delayed rewards less steeply than smaller rewards, whereas no such magnitude effect has been observed in rats (and pigeons). It remains possible that rats' discounting is sensitive to differences in the quality of the delayed reinforcer even though it is not sensitive to amount. To evaluate this possibility, Experiment 1 examined discounting of qualitatively different food reinforcers: highly preferred versus nonpreferred food pellets. Similarly, Experiment 2 examined discounting of highly preferred versus nonpreferred liquid reinforcers. In both experiments, an adjusting-amount procedure was used to determine the amount of immediate reinforcer that was judged to be of equal subjective value to the delayed reinforcer. The amount and quality of the delayed reinforcer were varied across conditions. Discounting was well described by a hyperbolic function, but no systematic effects of the quantity or the quality of the delayed reinforcer were observed.

  10. Negative reinforcement learning is affected in substance dependence.

    PubMed

    Thompson, Laetitia L; Claus, Eric D; Mikulich-Gilbertson, Susan K; Banich, Marie T; Crowley, Thomas; Krmpotich, Theodore; Miller, David; Tanabe, Jody

    2012-06-01

    Negative reinforcement results in behavior to escape or avoid an aversive outcome. Withdrawal symptoms are purported to be negative reinforcers in perpetuating substance dependence, but little is known about negative reinforcement learning in this population. The purpose of this study was to examine reinforcement learning in substance dependent individuals (SDI), with an emphasis on assessing negative reinforcement learning. We modified the Iowa Gambling Task to separately assess positive and negative reinforcement. We hypothesized that SDI would show differences in negative reinforcement learning compared to controls and we investigated whether learning differed as a function of the relative magnitude or frequency of the reinforcer. Thirty subjects dependent on psychostimulants were compared with 28 community controls on a decision making task that manipulated outcome frequencies and magnitudes and required an action to avoid a negative outcome. SDI did not learn to avoid negative outcomes to the same degree as controls. This difference was driven by the magnitude, not the frequency, of negative feedback. In contrast, approach behaviors in response to positive reinforcement were similar in both groups. Our findings are consistent with a specific deficit in negative reinforcement learning in SDI. SDI were relatively insensitive to the magnitude, not frequency, of loss. If this generalizes to drug-related stimuli, it suggests that repeated episodes of withdrawal may drive relapse more than the severity of a single episode. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Development and Characterization of UHMWPE Fiber-Reinforced Hydrogels For Meniscal Replacement

    NASA Astrophysics Data System (ADS)

    Holloway, Julianne Leigh

    Meniscal tears are the most common orthopedic injuries to the human body. The current treatment of choice, however, is a partial meniscectomy that leads to osteoarthritis proportional to the amount of tissue removed. As a result, there is a significant clinical need to develop materials capable of restoring the biomechanical contact stress distribution to the knee after meniscectomy and preventing the onset of osteoarthritis. In this work, a fiber-reinforced hydrogel-based synthetic meniscus was developed that allows for tailoring of the mechanical properties and molding of the implant to match the size, shape, and property distribution of the native tissue. Physically cross-linked poly(vinyl alcohol) (PVA) hydrogels were reinforced with ultrahigh molecular weight polyethylene (UHMWPE) fibers and characterized in compression (0.1-0.8 MPa) and tension (0.1-250 MPa) showing fine control over mechanical properties within the range of the human meniscus. Morphology and crystallinity analysis of PVA hydrogels showed increases in crystallinity and PVA densification, or phase separation, with freeze-thaw cycles. A comparison of freeze-thawed and aged, physically cross-linked hydrogels provided insight on both crystallinity and phase separation as mechanisms for PVA gelation. Results indicated both mechanisms independently contributed to hydrogel modulus for freeze-thawed hydrogels. In vitro swelling studies were performed using osmotic solutions to replicate the swelling pressure present in the knee. Minimal swelling was observed for hydrogels with a PVA concentration of 30-35 wt%, independently of hydrogel freeze-thaw cycles. This allows for independent tailoring of hydrogel modulus and pore structure using freeze-thaw cycles and swelling behavior using polymer concentration to match a wide range of properties needed for various soft tissue applications. The UHMWPE-PVA interface was identified as a significant weakness. To improve interfacial adhesion, a novel

  12. Characterization and in-situ formation mechanism of tungsten carbide reinforced Fe-based alloy coating by plasma cladding

    NASA Astrophysics Data System (ADS)

    Wang, Mi-qi; Zhou, Ze-hua; Wu, Lin-tao; Ding, Ying; Wang, Ze-hua

    2018-04-01

    The precursor carbonization method was first applied to prepare W-C compound powder to perform the in-situ synthesis of the WC phase in a Fe-based alloy coating. The in-situ formation mechanism during the cladding process is discussed in detail. The results reveal that fine and obtuse WC particles were successfully generated and distributed in Fe-based alloy coating via Fe/W-C compound powders. The WC particles were either surrounded by or were semi-enclosed in blocky M7C3 carbides. Moreover, net-like structures were confirmed as mixtures of M23C6 and α-Fe; these structures were transformed from M7C3. The coarse herringbone M6C carbides did not only derive from the decomposition of M7C3 but also partly originated from the chemical reaction at the α-Fe/M23C6 interface. During the cladding process, the phase evolution of the precipitated carbides was WC → M7C3 → M23C6 + M6C.

  13. Can tailored interventions increase mammography use among HMO women?

    PubMed

    Lipkus, I M; Rimer, B K; Halabi, S; Strigo, T S

    2000-01-01

    Telephone counseling and tailored print communications have emerged as promising methods for promoting mammography screening. However, there has been little research testing, within the same randomized field trial, of the efficacy of these two methods compared to a high-quality usual care system for enhancing screening. This study addressed the question: Compared to usual care, is tailored telephone counseling more effective than tailored print materials for promoting mammography screening? Three-year randomized field trial. One thousand ninety-nine women aged 50 and older recruited from a health maintenance organization in North Carolina. Women were randomized to 1 of 3 groups: (1) usual care, (2) tailored print communications, and (3) tailored telephone counseling. Adherence to mammography screening based on self-reports obtained during 1995, 1996, and 1997. Compared to usual care alone, telephone counseling promoted a significantly higher proportion of women having mammograms on schedule (71% vs 61%) than did tailored print (67% vs 61%) but only after the first year of intervention (during 1996). Furthermore, compared to usual care, telephone counseling was more effective than tailored print materials at promoting being on schedule with screening during 1996 and 1997 among women who were off-schedule during the previous year. The effects of the intervention were most pronounced after the first intervention. Compared to usual care, telephone counseling seemed particularly effective at promoting change among nonadherent women, the group for whom the intervention was developed. These results suggest that telephone counseling, rather than tailored print, might be the preferred first-line intervention for getting nonadherent women on schedule for mammography screening. Many questions would have to be answered about why the tailored print intervention was not more powerful. Nevertheless, it is clear that additional interventions will be needed to maintain women

  14. Modification of glass fibers to improve reinforcement: a plasma polymerization technique.

    PubMed

    Cökeliler, Dilek; Erkut, Selim; Zemek, Josef; Biederman, Hynek; Mutlu, Mehmet

    2007-03-01

    This study evaluates the effect of plasma treated E-glass fiber to improve the mechanical properties of acrylic resin denture base material, polymethylmethacrlyate (PMMA). Plasma surface treatment of fibers is used as reinforcement in composite materials to modify the chemical and physical properties of their surfaces with tailored fiber-matrix bonding strength. Three different types of monomer 2-hydroxyethyl methacrylate (HEMA), triethyleneglycoldimethylether (TEGDME) and ethylenediamine (EDA) were used in the plasma polymerization modification of glass fibers. A radiofrequency generator was used to sustain plasma in a glass vacuum chamber. Glass fibers were modified at the same glow-discharge power of 25 W and exposure time of 30 min for each monomer. Fibers were incorporated into the acrylic with 1% (w/w) loading except control group. Specimens were prepared using a standard mold of 3 cmx0.5 cmx0.8 cm in dimension with eight specimens in each group. Samples were subjected to a flexural strength test set up at a crosshead speed of 5mm/min. Scanning electron microscopy (SEM) was used to examine the microstructure and X-ray photoelectron spectroscopy (XPS) was used for chemical analysis of the surface. Data were analyzed by means of ANOVA and Duncan's tests. Test results revealed that fiber reinforcement had a significant effect on the flexural strength of the specimens (p<0.05). Among the fiber reinforced groups, plasma treatment with EDA monomer resulted in the most significant increase in flexural strength values (p<0.05). XPS results have shown an increasing number of nitrogenous compounds in EDA treated fibers. The chemical structure of the surface, especially with the increase in nitrogenous compounds could give an idea for the amine film deposition and SEM figures showed an increase in surface roughness. The results showed that plasma treatment with EDA monomer was an effective alternative method of increasing the flexural strength of PMMA based denture base

  15. Micromechanical Fatigue Visco-Damage Model for Short Glass Fiber Reinforced Polyamide-66

    NASA Astrophysics Data System (ADS)

    Despringre, N.; Chemisky, Y.; Robert, G.; Meraghni, F.

    This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended Mori-Tanaka method which includes coated inclusions, matrix viscoelasticity and the evolution of micro-scale damage. The developed model accounts for the nonlinear matrix viscoelasticity and the reinforcement orientation. The description of the damage processes is based on the experimental investigation of damage mechanisms previously performed through in-situ SEM tests and X-ray micro-computed tomography observations. Damage chronologies have been proposed involving three different processes: interface debonding/coating, matrix micro-cracking and fiber breakages. Their occurrence strongly depends on the microstructure and the relative humidity. Each damage mechanism is introduced through an evolution law coupled to local stress fields. The developed model is implemented using a UMAT subroutine. Its experimental validation is achieved under stress or strain controlled fatigue tests.

  16. Are we there yet? An examination of online tailored health communication.

    PubMed

    Suggs, L Suzanne; McIntyre, Chris

    2009-04-01

    Increasingly, the Internet is playing an important role in consumer health and patient-provider communication. Seventy-three percent of American adults are now online, and 79% have searched for health information on the Internet. This study provides a baseline understanding of the extent to which health consumers are able to find tailored communication online. It describes the current behavioral focus, the channels being used to deliver the tailored content, and the level of tailoring in online-tailored communication. A content analysis of 497 health Web sites found few examples of personalized, targeted, or tailored health sites freely available online. Tailored content was provided in 13 Web sites, although 15 collected individual data. More health risk assessment (HRA) sites included tailored feedback than other topics. The patterns that emerged from the analysis demonstrate that online health users can access a number of Web sites with communication tailored to their needs.

  17. Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers.

    PubMed

    Trovatti, Eliane; Carvalho, Antonio J F; Ribeiro, Sidney J L; Gandini, Alessandro

    2013-08-12

    Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings.

  18. Effect of In-Situ Titanium Boride Particle Addition and Friction Stir Processing on Wear Behavior of Aluminum Alloy 2219

    NASA Astrophysics Data System (ADS)

    Sampath, V.; Rajasekaran, N. R.

    There is paucity of data on the effect of in-situ TiB2 particles on the different behavior of 2219 Al alloy. In the present work, therefore, composites with 2219 Al alloy matrix reinforced with in-situ TiB2 particles were produced by flux-assisted synthesis. Different amounts (5 and 10 wt.%) of TiB2 were incorporated. The base alloy and the composites were subjected to friction stir processing to reduce particle clustering. The wear behavior of the materials was studied. The base alloy showed considerable improvement in the wear behavior due to the in-situ particle addition which is attributed to the presence of finer particles with good interfacial bonding and high hardness. Uniform distribution of TiB2 particles and good interface between the matrix and the particles led to reduction in the wear of friction stir processed composites by 30%. The results are analyzed and discussed in detail in the paper.

  19. In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding

    NASA Astrophysics Data System (ADS)

    Savalani, M. M.; Ng, C. C.; Li, Q. H.; Man, H. C.

    2012-01-01

    Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.

  20. FAST TRACK COMMUNICATION: Nanocrystalline silicon film growth morphology control through RF waveform tailoring

    NASA Astrophysics Data System (ADS)

    Johnson, Erik V.; Verbeke, Thomas; Vanel, Jean-Charles; Booth, Jean-Paul

    2010-10-01

    We demonstrate the application of RF waveform tailoring to generate an electrical asymmetry in a capacitively coupled plasma-enhanced chemical vapour deposition system, and its use to control the growth mode of hydrogenated amorphous and nanocrystalline silicon thin films deposited at low temperature (150 °C). A dramatic shift in the dc bias potential at the powered electrode is observed when simply inverting the voltage waveform from 'peaks' to 'troughs', indicating an asymmetric distribution of the sheath voltage. By enhancing or suppressing the ion bombardment energy at the substrate (situated on the grounded electrode), the growth of thin silicon films can be switched between amorphous and nanocrystalline modes, as observed using in situ spectroscopic ellipsometry. The effect is observed at pressures sufficiently low that the collisional reduction in average ion bombardment energy is not sufficient to allow nanocrystalline growth (<100 mTorr).

  1. Staple line reinforcement during sleeve gastrectomy with a new type of reinforced stapler.

    PubMed

    El Moussaoui, Imad; Limbga, Augustin; Mehdi, Abdelilah

    2018-04-01

    Bleeding and staple-line leak, are the most common complications of laparoscopic sleeve gastrectomy. To decrease the incidence of this complications, a variety of intraoperative reinforcement of staple line is used. Reinforced GIA™ is a new automatic suture device with pre-attached synthetic tissue reinforcement, but no study has evaluated its use in sleeve gastrectomy. The objective of this study is to evaluate the efficacy and safety of this new staple line reinforcement technique in laparoscopic sleeve gastrectomy. We conducted a retrospective review of 290 patients who underwent laparoscopic sleeve gastrectomy between January 2013 and January 2016 in which reinforced GIA™ or standard GIA™ was used. Patients preoperative characteristics, Operative time, staple line leaks, staple line bleeds, stenosis, and complications requiring reoperation were collected. A total of 187 laparoscopic sleeve gastrectomy were performed with standard GIA and 103 with reinforced GIA™. Patient characteristics were not significantly different between the groups. The average operating time in the standard GIA group is 57.41±16.44 min against 50.9±14.12 min in the reinforced GIA group (P=0.006). Two staple line leaks developed in the standard GIA group and reoperated against no patients in the reinforced GIA group, without significant difference between the both groups (P=0.66). Staple line bleeds are less in the reinforced GIA group, only 23 (22.3%) against 78 (41.7%) cases in the standard GIA group (P=0.001). No patients of both groups developed gastric sleeve stenosis. During laparoscopic sleeve gastrectomy, the use of a reinforced stapler significantly reduces the operative time and staple line bleeding. No significant difference is evidenced in terms of reduction of staple line leaks with this reinforced stapler.

  2. Reinforcement of timber beams with carbon fibers reinforced plastics

    NASA Astrophysics Data System (ADS)

    Gugutsidze, G.; Draškovič, F.

    2010-06-01

    Wood is a polymeric material with many valuable features and which also lacks some negative features. In order to keep up with high construction rates and the minimization of negative effects, wood has become one of the most valuable materials in modern engineering. But the use of timber material economically is also an actual problem in order to protect the environment and improve natural surroundings. A panel of scientists is interested in solving these problems and in creating rational structures, where timber can be used efficiently. These constructions are as follows: glue-laminated (gluelam), composed and reinforced wooden constructions. Composed and reinforced wooden constructions are examined less, but according to researches already carried out, it is clear that significant work can be accomplished in creating rational, highly effective and economic timber constructions. The paper deals with research on the formation of composed fiber-reinforced beams (CFRP) made of timber and provide evidence of their effectiveness. The aim of the paper is to investigate cross-bending of CFRP-reinforced gluelaminated timber beams. According to the results we were able to determine the additional effectiveness of reinforcement with CFRP (which depends on the CFRP material's quality, quantity and module of elasticity) on the mechanical features of timber and a whole beam.

  3. In-situ thermal cycling in SEM of a graphite-aluminum composite

    NASA Technical Reports Server (NTRS)

    Cheong, Y. M.; Marcus, H. L.

    1987-01-01

    In situ SEM observations of a graphite-aluminum composite (unidirectional P100 graphite-fiber-reinforced 6061 aluminum MMC plates) were used to measure displacements within the graphite fiber relative to the interface between the graphite fiber and the aluminum matrix during thermal cycling. Specimens were thermally cycled from room temperature to 300 C or 500 C in a SEM chamber and then cooled to room temperature. The obtained shear strains within the fiber were then related to anomalous values of measured residual stresses and to the impact on the composite coefficient of expansion and potential damage under thermal fatigue loading. The shear mechanism was proposed as a source of temperature limits on the low coefficient of expansion of these composites, as well as a potential source of thermal fatigue degradation.

  4. Advancements in tailored hot stamping simulations: Cooling channel and distortion analyses

    NASA Astrophysics Data System (ADS)

    Billur, Eren; Wang, Chao; Bloor, Colin; Holecek, Martin; Porzner, Harald; Altan, Taylan

    2013-12-01

    Hot stamped components have been widely used in the automotive industry in the last decade where ultra high strength is required. These parts, however, may not provide sufficient toughness to absorb crash energy. Therefore, these components are "tailored" by controlling the microstructure at various locations. Simulation of tailored hot stamped components requires more detailed analysis of microstructural changes. Furthermore, since the part is not uniformly quenched, severe distortion can be observed. CPF, together with ESI have developed a number of techniques to predict the final properties of a tailored part. This paper discusses the recent improvements in modeling distortion and die design with cooling channels.

  5. In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires: thermally deactivating growth kinetics.

    PubMed

    In, Jung Bin; Kwon, Hyuk-Jun; Lee, Daeho; Ko, Seung Hwan; Grigoropoulos, Costas P

    2014-02-26

    The laser-assisted hydrothermal growth kinetics of a cluster of ZnO nanowires are studied based on optical in situ growth monitoring. The growth yields are orders of magnitude higher than those of conventional hydrothermal methods that use bulk heating. This remarkable improvement is attributed to suppression of precursor depletion occurring by homogeneous growth reactions, as well as to enhanced mass transport. The obtained in situ data show gradually decaying growth kinetics even with negligible precursor consumption. It is revealed that the growth deceleration is caused by thermal deactivation resulting from heat dissipation through the growing nanowires. Finally, it is demonstrated that the tailored temporal modulation of the input power enables sustained growth to extended dimensions. These results provide a key to highly efficient use of growth precursors that has been pursued for industrial use of this functional metal oxide semiconductor. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tailored telephone counseling increases colorectal cancer screening.

    PubMed

    Rawl, Susan M; Christy, Shannon M; Monahan, Patrick O; Ding, Yan; Krier, Connie; Champion, Victoria L; Rex, Douglas

    2015-08-01

    To compare the efficacy of two interventions to promote colorectal cancer screening participation and forward stage movement of colorectal cancer screening adoption among first-degree relatives of individuals diagnosed with adenomatous polyps. One hundred fifty-eight first-degree relatives of individuals diagnosed with adenomatous polyps were randomly assigned to receive one of two interventions to promote colorectal cancer screening. Participants received either a tailored telephone counseling plus brochures intervention or a non-tailored print brochures intervention. Data were collected at baseline and 3 months post-baseline. Group differences and the effect of the interventions on adherence and stage movement for colorectal cancer screening were examined using t-tests, chi-square tests, and logistic regression. Individuals in the tailored telephone counseling plus brochures group were significantly more likely to complete colorectal cancer screening and to move forward on stage of change for fecal occult blood test, any colorectal cancer test stage and stage of the risk-appropriate test compared with individuals in the non-tailored brochure group at 3 months post-baseline. A tailored telephone counseling plus brochures intervention successfully promoted forward stage movement and colorectal cancer screening adherence among first-degree relatives of individuals diagnosed with adenomatous polyps. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Modelling root reinforcement in shallow forest soils

    USGS Publications Warehouse

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  8. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  9. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  10. Effect of location of glass fiber-reinforced composite reinforcement on the flexural properties of a maxillary complete denture in vitro.

    PubMed

    Takahashi, Yutaka; Yoshida, Kaneyoshi; Shimizu, Hiroshi

    2011-07-01

    Objective. To evaluate the effect of the location of glass fiber-reinforced composite (FRC) reinforcement on the flexural load at the proportional limit (FL-PL) and the flexural deflection of a maxillary acrylic resin complete denture. Material and methods. Maxillary acrylic resin complete dentures strengthened with and without FRC reinforcement were tested. The polymerized FRC was embedded in the denture base resin in the doughy state and placed (1) under the ridge lap region, (2) in the anterior region, (3) in the middle region or (4) in the anterior and posterior regions. The FL-PL and flexural deflection value at the 100-N loading point of the reinforced maxillary denture specimens were tested. Results. All of the reinforced dentures had a higher FL-PL than the denture without reinforcement but the FL-PL values of all the dentures were not significantly different from each other. The efficiency of the FRC reinforcement compared to the unreinforced denture was 1.54-1.75 times greater. All of the reinforced dentures showed significantly lower deflection compared to the unreinforced denture, but the flexural deflections of all the dentures were not significantly different from each other. Conclusions. The location of the FRC reinforcement did not affect the fracture resistance of the maxillary acrylic resin complete denture. All of the reinforced dentures had higher FL-PL and lower flexural deflection than the denture without reinforcement.

  11. Effect of kenaf fiber in reinforced concrete slab

    NASA Astrophysics Data System (ADS)

    Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.

    2018-04-01

    The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.

  12. A multiscale model for reinforced concrete with macroscopic variation of reinforcement slip

    NASA Astrophysics Data System (ADS)

    Sciegaj, Adam; Larsson, Fredrik; Lundgren, Karin; Nilenius, Filip; Runesson, Kenneth

    2018-06-01

    A single-scale model for reinforced concrete, comprising the plain concrete continuum, reinforcement bars and the bond between them, is used as a basis for deriving a two-scale model. The large-scale problem, representing the "effective" reinforced concrete solid, is enriched by an effective reinforcement slip variable. The subscale problem on a Representative Volume Element (RVE) is defined by Dirichlet boundary conditions. The response of the RVEs of different sizes was investigated by means of pull-out tests. The resulting two-scale formulation was used in an FE^2 analysis of a deep beam. Load-deflection relations, crack widths, and strain fields were compared to those obtained from a single-scale analysis. Incorporating the independent macroscopic reinforcement slip variable resulted in a more pronounced localisation of the effective strain field. This produced a more accurate estimation of the crack widths than the two-scale formulation neglecting the effective reinforcement slip variable.

  13. Tailored nutrition education: is it really effective?

    PubMed

    Eyles, Helen; Ni Mhurchu, Cliona

    2012-03-01

    There has been a growing interest in tailored nutrition education over the previous decade, with a number of literature reviews suggesting this intervention strategy holds considerable potential. Nevertheless, the majority of intervention trials undertaken to date have employed subjective self-report outcome measures (such as dietary recalls). The aim of the present review is to further consider the likely true effect of tailored nutrition education by assessing the findings of tailored nutrition education intervention trials where objective outcome measures (such as sales data) have been employed. Four trials of tailored nutrition education employing objective outcome measures were identified: one was undertaken in eight low-cost supermarkets in New Zealand (2010; n 1104); one was an online intervention trial in Australia (2006; n 497); and two were undertaken in US supermarkets (1997 and 2001; n 105 and 296, respectively). Findings from the high-quality New Zealand trial were negative. Findings from the US trials were also generally negative, although reporting was poor making it difficult to assess quality. Findings from the high-quality online trial were positive, although have limited generalisability for public health. Trials employing objective outcome measures strongly suggest tailored nutrition education is not effective as a stand-alone strategy. However, further large, high-quality trials employing objective outcome measures are needed to determine the true effectiveness of this popular nutrition intervention strategy. Regardless, education plays an important role in generating social understanding and acceptance of broader interventions to improve nutrition.

  14. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-06-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  15. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-03-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  16. Strain rate effects on reinforcing steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Forni, Daniele

    2015-09-01

    It is unquestionable the fact that a structural system should be able to fulfil the function for which it was created, without being damaged to an extent disproportionate to the cause of damage. In addition, it is an undeniable fact that in reinforced concrete structures under severe dynamic loadings, both concrete and reinforcing bars are subjected to high strain-rates. Although the behavior of the reinforcing steel under high strain rates is of capital importance in the structural assessment under the abovementioned conditions, only the behaviour of concrete has been widely studied. Due to this lack of data on the reinforcing steel under high strain rates, an experimental program on rebar reinforcing steels under high strain rates in tension is running at the DynaMat Laboratory. In this paper a comparison of the behaviour in a wide range of strain-rates of several types of reinforcing steel in tension is presented. Three reinforcing steels, commonly proposed by the European Standards, are compared: B500A, B500B and B500C. Lastly, an evaluation of the most common constitutive laws is performed.

  17. Cuspal reinforcement in endodontically treated molars.

    PubMed

    Uyehara, M Y; Davis, R D; Overton, J D

    1999-01-01

    This in vitro study compared the ability of horizontal pins and a dental adhesive to reinforce the facial cusps of endodontically treated mandibular molars. Seventy-two mandibular molars were divided into six groups and mounted in acrylic blocks (n = 12). In Groups 1-5 standardized endodontic access and instrumentation in the coronal one-third of each root canal were completed. In Groups 1-4 the lingual cusps were reduced, leaving the buccal cusps intact. The facial cusps of the teeth in each group received one of the following modes of reinforcement: Group 1--no reinforcement; Group 2--dentin adhesive (Amalgambond Plus); Group 3--two horizontal TMS Minim pins; Group 4--two horizontal TMS Minim pins and Amalgambond Plus. Teeth in Group 5 were prepared for and restored with a complete cuspal coverage amalgam restoration using four vertical TMS Minim pins. Group 6 consisted of intact natural teeth. Using an Instron Universal Testing Machine, the lingual slope of the facial cusp of each specimen was loaded to failure using a compressive force applied at an angle 60 degrees to the long axis of the tooth. The mean fracture strengths for all groups were analyzed using a one-way ANOVA and Student-Newman-Keuls multiple range test (alpha = 0.05). Fracture patterns and modes of failure were also evaluated. The intact teeth (Group 6) were significantly more fracture resistant than all other groups, with the exception of Group 4 (combination of pins and adhesive). Group 1 (non-reinforced teeth) was significantly weaker than all other groups. Groups 2-4 (specimens with reinforced cusps) were not significantly different from each other. The use of horizontal pins or a combination of horizontal pins plus dentin adhesive for cuspal reinforcement resulted in significantly more teeth demonstrating favorable fracture patterns than did the use of adhesives alone. The buccal cusps of endodontically treated mandibular molars reinforced with a combination of horizontal pins and dentin

  18. Seismic performance of circular reinforced concrete bridge columns constructed with grade 80 reinforcement.

    DOT National Transportation Integrated Search

    2014-08-01

    This project assessed the use of ASTM A706 Grade 80 reinforcing bars in reinforced concrete columns. : Grade 80 is not currently allowed in reinforced concrete columns due to lack of information on the : material characteristics and column performanc...

  19. Promoting a Culture of Tailoring for Systems Engineering Policy Expectations

    NASA Technical Reports Server (NTRS)

    Blankenship, Van A.

    2016-01-01

    NASA's Marshall Space Flight Center (MSFC) has developed an integrated systems engineering approach to promote a culture of tailoring for program and project policy requirements. MSFC's culture encourages and supports tailoring, with an emphasis on risk-based decision making, for enhanced affordability and efficiency. MSFC's policy structure integrates the various Agency requirements into a single, streamlined implementation approach which serves as a "one-stop-shop" for our programs and projects to follow. The engineers gain an enhanced understanding of policy and technical expectations, as well as lesson's learned from MSFC's history of spaceflight and science missions, to enable them to make appropriate, risk-based tailoring recommendations. The tailoring approach utilizes a standard methodology to classify projects into predefined levels using selected mission and programmatic scaling factors related to risk tolerance. Policy requirements are then selectively applied and tailored, with appropriate rationale, and approved by the governing authorities, to support risk-informed decisions to achieve the desired cost and schedule efficiencies. The policy is further augmented by implementation tools and lifecycle planning aids which help promote and support the cultural shift toward more tailoring. The MSFC Customization Tool is an integrated spreadsheet that ties together everything that projects need to understand, navigate, and tailor the policy. It helps them classify their project, understand the intent of the requirements, determine their tailoring approach, and document the necessary governance approvals. It also helps them plan for and conduct technical reviews throughout the lifecycle. Policy tailoring is thus established as a normal part of project execution, with the tools provided to facilitate and enable the tailoring process. MSFC's approach to changing the culture emphasizes risk-based tailoring of policy to achieve increased flexibility, efficiency

  20. Ballistic impact velocity response of carbon fibre reinforced aluminium alloy laminates for aero-engine

    NASA Astrophysics Data System (ADS)

    Mohammed, I.; Abu Talib, A. R.; Sultan, M. T. H.; Saadon, S.

    2017-12-01

    Aerospace and other industries use fibre metal laminate composites extensively due to their high specific strength, stiffness and fire resistance, in addition to their capability to be tailored into different forms for specific purposes. The behaviours of such composites under impact loading is another factor to be considered due to the impacts that occur in take-off, landing, during maintenance and operations. The aim of the study is to determine the specific perforation energy and impact strength of the fibre metal laminates of different layering pattern of carbon fibre reinforced aluminium alloy and hybrid laminate composites of carbon fibre and natural fibres (kenaf and flax). The composites are fabricated using the hand lay-up method in a mould with high bonding polymer matrix and compressed by a compression machine, cured at room temperature for one day and post cure in an oven for three hours. The impact tests are conducted using a gun tunnel system with a flat cylindrical bullet fired using a helium gas at a distance of 14 inches to the target. Impact and residual velocity of the projectile are recorded by high speed video camera. Specific perforation energy of carbon fibre reinforced aluminium alloy (CF+AA) for both before and after fire test are higher than the specific perforation energy of the other composites considered before and after fire test respectively. CF +AA before fire test is 55.18% greater than after. The same thing applies to impact strength of the composites where CF +AA before the fire test has the highest percentage of 11.7%, 50.0% and 32.98% as respectively compared to carbon fibre reinforced aluminium alloy (CARALL), carbon fibre reinforced flax aluminium alloy (CAFRALL) and carbon fibre reinforced kenaf aluminium alloy (CAKRALL), and likewise for the composites after fire test. The considered composites in this test can be used in the designated fire zone of an aircraft engine to protect external debris from penetrating the engine

  1. Pulsed supercritical synthesis of anatase TiO₂ nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction.

    PubMed

    Rostgaard Eltzholtz, Jakob; Tyrsted, Christoffer; Ørnsbjerg Jensen, Kirsten Marie; Bremholm, Martin; Christensen, Mogens; Becker-Christensen, Jacob; Brummerstedt Iversen, Bo

    2013-03-21

    A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania nanoparticles were synthesized in a 50/50 mixture of water and isopropanol near and above the critical point of water (P = 250 bar, T = 300, 350, 400, 450, 500 and 550 °C). The evolution of the reaction product was followed by sequentially recording PXRD patterns with a time resolution of less than two seconds. The crystallite size of titania is found to depend on both temperature and residence time, and increasing either parameter leads to larger crystallites. A simple adjustment of either temperature or residence time provides a direct method for gram scale production of anatase nanoparticles of average crystallite sizes between 7 and 35 nm, thus giving the option of synthesizing tailor-made nanoparticles. Modeling of the in situ growth curves using an Avrami growth model gave an activation energy of 66(19) kJ mol(-1) for the initial crystallization. The in situ PXRD data also provide direct information about the size dependent macrostrain in the nanoparticles and with decreasing crystallite size the unit cell contracts, especially along the c-direction. This agrees well with previous ex situ results obtained for hydrothermal synthesis of titania nanoparticles.

  2. Acquisition with partial and continuous reinforcement in pigeon autoshaping.

    PubMed

    Gottlieb, Daniel A

    2004-08-01

    Contemporary time accumulation models make the unique prediction that acquisition of a conditioned response will be equally rapid with partial and continuous reinforcement, if the time between conditioned stimuli is held constant. To investigate this, acquisition of conditioned responding was examined in pigeon autoshaping under conditions of 100% and 25% reinforcement, holding intertrial interval constant. Contrary to what was predicted, evidence for slowed acquisition in partially reinforced animals was observed with several response measures. However, asymptotic performance was superior with 25% reinforcement. A switching of reinforcement contingencies after initial acquisition did not immediately affect responding. After further sessions, partial reinforcement augmented responding, whereas continuous reinforcement did not, irrespective of an animal's reinforcement history. Subsequent training with a novel stimulus maintained the response patterns. These acquisition results generally support associative, rather than time accumulation, accounts of conditioning.

  3. Incorporating tailored interactive patient solutions using interactive voice response technology to improve statin adherence: results of a randomized clinical trial in a managed care setting.

    PubMed

    Stacy, Jane N; Schwartz, Steven M; Ershoff, Daniel; Shreve, Marilyn Standifer

    2009-10-01

    The current study presents the impact of a behavior change program to increase statin adherence using interactive voice response (IVR) technology. Subjects were affiliated with a large health benefit company, were prescribed a statin (index) and had no lipid-lowering pharmacy claims in the previous 6 months, and were continuously enrolled in the plan for 12 months prior and 6 months post index statin. Potential subjects (1219) were contacted by the IVR system; 497 gave informed consent. Subjects were asked to respond to 15 questions from the IVR that were guided by several behavior change theories. At the conclusion of the questions, subjects were randomly assigned to either a control group (n = 244), who received generic feedback at the conclusion of the call and were then mailed a generic cholesterol guide, or an experimental group (n = 253), who received tailored feedback based on their cholesterol-related knowledge, attitudes, beliefs, and perceived barriers to medication adherence, and were mailed a tailored guide that reinforced similar themes. Subjects in the experimental group had the opportunity to participate in 2 additional tailored IVR support calls. The primary dependent variable was 6-month point prevalence, defined as claims evidence of a statin on days 121-180 post index statin. Subjects in the experimental group had a significantly higher 6-month point prevalence than the controls (70.4% vs. 60.7%, P < 0.05). Results of this study suggest that a behavioral support program using IVR technology can be a cost-effective modality to address the important public health problem of patient nonadherence with statin medication.

  4. In situ fenestrations for the aortic arch and visceral segment: advances and challenges.

    PubMed

    Riga, Celia V; McWilliams, Richard G; Cheshire, Nicholas J W

    2011-09-01

    The management of complex aortic pathologies remains a major challenge particularly in the emergency setting. Bespoke fenestrated and branch stent graft technology has shown encouraging short- and mid-term results in selected patients. Despite tremendous technological advances in this field however, factors such as the inherent delay in device manufacturing, anatomical and technical challenges, high degree of planning, and cost hinder the wider applications of minimally invasive endovascular therapy. In situ fenestration of aortic stent grafts is an attractive alternative that eliminates the need for preoperative custom tailoring with the potential to widen the therapeutic options available and to offer a bailout option after inadvertent side branch occlusion. This article summarizes the principles of this technique and discusses its current applications.

  5. ZERODUR TAILORED for cryogenic application

    NASA Astrophysics Data System (ADS)

    Jedamzik, R.; Westerhoff, T.

    2014-07-01

    ZERODUR® glass ceramic from SCHOTT is known for its very low thermal expansion coefficient (CTE) at room temperature and its excellent CTE homogeneity. It is widely used for ground-based astronomical mirrors but also for satellite applications. Many reference application demonstrate the excellent and long lasting performance of ZERODUR® components in orbit. For space application a low CTE of the mirror material is required at cryogenic temperatures together with a good match of the thermal expansion to the supporting structure material. It is possible to optimize the coefficient of thermal expansion of ZERODUR® for cryogenic applications. This paper reports on measurements of thermal expansion of ZERODUR® down to cryogenic temperatures of 10 K performed by the PTB (Physikalisch Technische Bundesanstallt, Braunschweig, Germany, the national metrology laboratory). The ZERODUR® TAILORED CRYO presented in this paper has a very low coefficient of thermal expansion down to 70 K. The maximum absolute integrated thermal expansion down to 10 K is only about 20 ppm. Mirror blanks made from ZERODUR® TAILORED CRYO can be light weighted to almost 90% with our modern processing technologies. With ZERODUR® TAILORED CRYO, SCHOTT offers the mirror blank material for the next generation of space telescope applications.

  6. Technical knowledge and skills development in the informal sector in Kenya: The case of custom tailors

    NASA Astrophysics Data System (ADS)

    Apunda, Edwinah Amondi; de Klerk, Helena M.; Ogina, Teresa

    2017-06-01

    Custom tailors working in the informal sector in Nairobi, Kenya, mainly acquire technical skills through undertaking traditional apprenticeships (TAs). However, most of these tailors are semi-skilled, produce low-quality products and are often poorer than their formally trained counterparts. This qualitative case study explores the aspects of technical skills and knowledge which tailoring apprentices develop, and the factors which influence these outcomes. The findings show that apprentices do acquire basic technical skills for immediate application to ongoing tailoring activities (such as how to take body measurements, draft patterns, and cut, sew and finish constructed garments). However, apprentices do not acquire the technical knowledge that underpins the trade. Most master tailors who have completed TAs lack technical knowledge and have no access to technical skills upgrading. This perpetuates the cycle of basic and limited technical skills transfer to apprentices, poor performance and poverty among tailors. Both apprentices and master tailors expressed concern over knowledge limitations in TAs and a need to access further training to improve skills and acquire knowledge of the trade. The authors of this article argue that, technically and pedagogically, skilled master tailors are critical to improving training quality. Complementary training in theoretical knowledge is also important in improving apprentices' technical skills and understanding of the trade. Inclusion of TAs in government policy may help ensure sustainable improvement of skills.

  7. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period. © 2014 Wiley Periodicals, Inc.

  8. In Situ Raman Detection of Gas Hydrates Exposed on the Seafloor of the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Du, Zengfeng; Luan, Zhendong; Wang, Xiujuan; Xi, Shichuan; Wang, Bing; Li, Lianfu; Lian, Chao; Yan, Jun

    2017-10-01

    Gas hydrates are usually buried in sediments. Here we report the first discovery of gas hydrates exposed on the seafloor of the South China Sea. The in situ chemical compositions and cage structures of these hydrates were measured at the depth of 1,130 m below sea level using a Raman insertion probe (RiP-Gh) that was carried and controlled by a remotely operated vehicle (ROV) Faxian. This in situ analytical technique can avoid the physical and chemical changes associated with the transport of samples from the deep sea to the surface. Natural gas hydrate samples were analyzed at two sites. The in situ spectra suggest that the newly formed hydrate was Structure I but contains a small amount of C3H8 and H2S. Pure gas spectra of CH4, C3H8, and H2S were also observed at the SCS-SGH02 site. These data represent the first in situ proof that free gas can be trapped within the hydrate fabric during rapid hydrate formation. We provide the first in situ confirmation of the hydrate growth model for the early stages of formation of crystalline hydrates in a methane-rich seafloor environment. Our work demonstrates that natural hydrate deposits, particularly those in the early stages of formation, are not monolithic single structures but instead exhibit significant small-scale heterogeneities due to inclusions of free gas and the surrounding seawater, there inclusions also serve as indicators of the likely hydrate formation mechanism. These data also reinforce the importance of correlating visual and in situ measurements when characterizing a sampling site.

  9. Lay Health Influencers: How They Tailor Brief Tobacco Cessation Interventions

    ERIC Educational Resources Information Center

    Yuan, Nicole P.; Castaneda, Heide; Nichter, Mark; Nichter, Mimi; Wind, Steven; Carruth, Lauren; Muramoto, Myra

    2012-01-01

    Interventions tailored to individual smoker characteristics have increasingly received attention in the tobacco control literature. The majority of tailored interventions are generated by computers and administered with printed materials or web-based programs. The purpose of this study was to examine the tailoring activities of community lay…

  10. Reinforcement learning in supply chains.

    PubMed

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  11. Effects of tailoring health messages on physical activity.

    PubMed

    Smeets, Tamara; Brug, J; de Vries, H

    2008-06-01

    Computer-tailored printed education can be a promising way of promoting physical activity. The present study tested whether computer-tailored feedback on physical activity is effective and whether there are differences between respondents with low and high motivation to change. Respondents (n = 487) were randomly assigned to a tailored intervention group or a no information control group. Physical activity and determinants were measured at baseline and after 3 months. At post-test, the motivated respondents in the control group were more likely not to meet the recommendation for physical activity than to meet it, and motivated respondents in the experimental group were more likely to engage in transport-related activities and showed more improvement over time for the total activity score than respondents in the control group (beta = 0.24, P = 0.02). Both groups improved their behaviour over time. No group differences in physical activity were found for the unmotivated respondents. The results showed that the effects of the tailored feedback were restricted to respondents who had a positive motivation to change at baseline. Possible explanations could be that unmotivated respondents were unwilling to read and process the information because they felt 'no need to change'. Alternatively, one tailored feedback letter may not have been sufficient for this unmotivated group.

  12. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    NASA Astrophysics Data System (ADS)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  13. A conditioned reinforcer did not help to maintain an operant conditioning in the absence of a primary reinforcer in horses.

    PubMed

    Lansade, Léa; Calandreau, Ludovic

    2018-01-01

    The use of conditioned reinforcers is increasingly promoted in animal training. Surprisingly, the efficiency of their use remains to be demonstrated in horses. This study aimed to determine whether an auditory signal which had previously been associated with a food reward 288 times could be used as a conditioned reinforcer to replace the primary reinforcer in an unrelated operant conditioning procedure. Fourteen horses were divided into two groups of 7: No Reinforcement (NR) and Conditioned Reinforcement (CR). All horses underwent nine sessions of Pavlovian conditioning during which the word "good" was associated with food (32 associations/session). The horses then followed five sessions of operant conditioning (30 trials/session) during which they had to touch a cone signaled by an experimenter to receive a food reward. The last day, horses underwent one test session of the operant response: no reward was given, but the word "good" was said each time a CR horse touched the cone. Nothing was said in the NR group. CR horses did not achieve more correct trials than NR horses during the test. These findings again show that the conditioned reinforcement was ineffective when used instead of the primary reinforcement to maintain conditioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Information Tailoring Enhancements for Large-Scale Social Data

    DTIC Science & Technology

    2016-06-15

    Intelligent Automation Incorporated Information Tailoring Enhancements for Large-Scale... Automation Incorporated Progress Report No. 3 Information Tailoring Enhancements for Large-Scale Social Data Submitted in accordance with...1 Work Performed within This Reporting Period .................................................... 2 1.1 Enhanced Named Entity Recognition (NER

  15. Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires

    PubMed Central

    Piccione, Brian; Aspetti, Carlos O.; Cho, Chang-Hee; Agarwal, Ritesh

    2014-01-01

    Understanding interactions between light and matter is central to many fields, providing invaluable insights into the nature of matter. In its own right, a greater understanding of light-matter coupling has allowed for the creation of tailored applications, resulting in a variety of devices such as lasers, switches, sensors, modulators, and detectors. Reduction of optical mode volume is crucial to enhancing light-matter coupling strength, and among solid-state systems, self-assembled semiconductor and hybrid-plasmonic nanowires are amenable to creation of highly-confined optical modes. Following development of unique spectroscopic techniques designed for the nanowire morphology, carefully engineered semiconductor nanowire cavities have recently been tailored to enhance light-matter coupling strength in a manner previously seen in optical microcavities. Much smaller mode volumes in tailored hybrid-plasmonic nanowires have recently allowed for similar breakthroughs, resulting in sub-picosecond excited-state lifetimes and exceptionally high radiative rate enhancement. Here, we review literature on light-matter interactions in semiconductor and hybrid-plasmonic monolithic nanowire optical cavities to highlight recent progress made in tailoring light-matter coupling strengths. Beginning with a discussion of relevant concepts from optical physics, we will discuss how our knowledge of light-matter coupling has evolved with our ability to produce ever-shrinking optical mode volumes, shifting focus from bulk materials to optical microcavities, before moving on to recent results obtained from semiconducting nanowires. PMID:25093385

  16. Conditioned Reinforcement and Response Strength

    PubMed Central

    Shahan, Timothy A

    2010-01-01

    Stimuli associated with primary reinforcers appear themselves to acquire the capacity to strengthen behavior. This paper reviews research on the strengthening effects of conditioned reinforcers within the context of contemporary quantitative choice theories and behavioral momentum theory. Based partially on the finding that variations in parameters of conditioned reinforcement appear not to affect response strength as measured by resistance to change, long-standing assertions that conditioned reinforcers do not strengthen behavior in a reinforcement-like fashion are considered. A signposts or means-to-an-end account is explored and appears to provide a plausible alternative interpretation of the effects of stimuli associated with primary reinforcers. Related suggestions that primary reinforcers also might not have their effects via a strengthening process are explored and found to be worthy of serious consideration. PMID:20885815

  17. Evaluating psychosocial and behavioral mechanisms of change in a tailored communication intervention.

    PubMed

    Elder, John P; Ayala, Guadalupe X; Slymen, Donald J; Arredondo, Elva M; Campbell, Nadia R

    2009-04-01

    This study examined the impact of a tailored nutrition intervention at 3 and 6 months postintervention. In all, 357 Latinas were randomly assigned to one of three conditions: (1) a control condition comprised of previously developed Spanish language targeted materials, (2) tailored print materials, or (3) tailored print materials accompanied by personalized dietary counseling via lay heath advisors (promotoras). At 6 months postintervention, significant group by time interactions were observed on the dietary behavioral strategies scales. The promotora condition resulted in significant behavior change initially; however, receipt of tailored and control materials was instrumental in continued behavior change after intervention activities had ceased. Group main effects suggested that the promotora condition was superior at reducing barriers and improving family interactions supporting healthy behaviors. The promotora model is an effective method for changing important dietary behaviors and psychosocial determinants, but longer term behavior change is achievable with less expensive intervention methods.

  18. BEHAVIORAL MECHANISMS UNDERLYING NICOTINE REINFORCEMENT

    PubMed Central

    Rupprecht, Laura E.; Smith, Tracy T.; Schassburger, Rachel L.; Buffalari, Deanne M.; Sved, Alan F.; Donny, Eric C.

    2015-01-01

    Cigarette smoking is the leading cause of preventable deaths worldwide and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus, predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a conditioned stimulus, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness. PMID:25638333

  19. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.

    PubMed

    Teufel, Robin

    2017-10-15

    Natural products are distinct and often highly complex organic molecules that constitute not only an important drug source, but have also pushed the field of organic chemistry by providing intricate targets for total synthesis. How the astonishing structural diversity of natural products is enzymatically generated in biosynthetic pathways remains a challenging research area, which requires detailed and sophisticated approaches to elucidate the underlying catalytic mechanisms. Commonly, the diversification of precursor molecules into distinct natural products relies on the action of pathway-specific tailoring enzymes that catalyze, e.g., acylations, glycosylations, or redox reactions. This review highlights a selection of tailoring enzymes that employ riboflavin (vitamin B2)-derived cofactors (FAD and FMN) to facilitate unusual redox catalysis and steer the formation of complex natural product pharmacophores. Remarkably, several such recently reported flavin-dependent tailoring enzymes expand the classical paradigms of flavin biochemistry leading, e.g., to the discovery of the flavin-N5-oxide - a novel flavin redox state and oxygenating species. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Tailoring of EIA-649-1: Definition of Major (Class I) Engineering Change Proposal

    DTIC Science & Technology

    2015-05-15

    MISSILE SYSTEMS CENTER TAILORING TAILORING OF EIA -649-1: DEFINITION OF MAJOR (CLASS I) ENGINEERING CHANGE PROPOSAL APPROVED FOR...PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 1 Tailoring of EIA -649-1: Definition of Major (Class I) ECP. 1. Intent of this Tailoring Document...This tailoring document remedies a requirements gap in the industry consensus standard, EIA -649-1: 2015. Specifically, this tailoring provides a

  1. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.

    PubMed

    Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto

    2012-11-21

    This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.

  2. Fiber reinforced engineering plastics

    Treesearch

    Daniel F. Caulfield; Rodney E. Jacobson; Karl D. Sears; John H. Underwood

    2001-01-01

    Although natural fiber reinforced commodity thermoplastics have a wide range of nonstructural applications in the automotive and decking industries, there have been few reports of cellulosic fiber-reinforced engineering thermoplastics. The commonly held belief has been that the only thermoplastics amenable to natural-fibre reinforcement are limited to low-melting (...

  3. Effects Of Reinforcement History On Response Rate And Response Pattern In Periodic Reinforcement

    PubMed Central

    López, Florente; Menez, Marina

    2005-01-01

    Several researchers have suggested that conditioning history may have long-term effects on fixed-interval performances of rats. To test this idea and to identify possible factors involved in temporal control development, groups of rats initially were exposed to different reinforcement schedules: continuous, fixed-time, and random-interval. Afterwards, half of the rats in each group were studied on a fixed-interval 30-s schedule of reinforcement and the other half on a fixed-interval 90-s schedule of reinforcement. No evidence of long-term effects attributable to conditioning history on either response output or response patterning was found; history effects were transitory. Different tendencies in trajectory across sessions were observed for measures of early and late responding within the interreinforcer interval, suggesting that temporal control is the result of two separate processes: one involved in response output and the other in time allocation of responding and not responding. PMID:16047607

  4. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    PubMed

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  5. Fabrication of nanofibers reinforced polymer microstructures using femtosecond laser material processing

    NASA Astrophysics Data System (ADS)

    Alubaidy, Mohammed-Amin

    A new method has been introduced for the formation of microfeatures made of nanofibers reinforced polymer, using femtosecond laser material processing. The Femtosecond laser is used for the generation of three-dimensional interweaved nanofibers and the construction of microfeatures, like microchannels and voxels, through multi photon polymerization of nanofiber dispersed polymer resin. A new phenomenon of multiphoton polymerization induced by dual wavelength irradiation was reported for the first time. A significant improvement in the spatial resolution, compared to the two photon absorption (2PA) and the three photon absorption (3PA) processes has been achieved. Conductive polymer microstructures and magnetic polymer microstructures have been fabricated through this method. The mechanical properties of nanofiber reinforced polymer microstructures has been investigated by means of nanoindentation and the volume fraction of the generated nanofibers in the nanocomposite was calculated by using nanoindentation analysis. The results showed significant improvement in strength of the material. The electrical conductivity of the two photon polymerization (TPP) generated microfeatures was measured by a two-probe system at room temperature and the conductivity-temperature relationship was measured at a certain temperature range. The results suggest that the conductive polymer microstructure is reproducible and has a consistent conductivity-temperature relation. The magnetic strength has been characterized using Guassmeter. To demonstrate the potential application of the new fabrication method, a novel class of DNA-functionalized three-dimensional (3D), stand-free, and nanostructured electrodes were fabricated. The developed nanofibrous DNA biosensor has been characterized by cyclic voltammetry with the use of ferrocyanide as an electrochemical redox indicator. Results showed that the probe--target recognition has been improved. This research demonstrated that femtosecond

  6. Choice and conditioned reinforcement.

    PubMed Central

    Fantino, E; Freed, D; Preston, R A; Williams, W A

    1991-01-01

    A potential weakness of one formulation of delay-reduction theory is its failure to include a term for rate of conditioned reinforcement, that is, the rate at which the terminal-link stimuli occur in concurrent-chains schedules. The present studies assessed whether or not rate of conditioned reinforcement has an independent effect upon choice. Pigeons responded on either modified concurrent-chains schedules or on comparable concurrent-tandem schedules. The initial link was shortened on only one of two concurrent-chains schedules and on only one of two corresponding concurrent-tandem schedules. This manipulation increased rate of conditioned reinforcement sharply in the chain but not in the tandem schedule. According to a formulation of delay-reduction theory, when the outcomes chosen (the terminal links) are equal, as in Experiment 1, choice should depend only on rate of primary reinforcement; thus, choice should be equivalent for the tandem and chain schedules despite a large difference in rate of conditioned reinforcement. When the outcomes chosen are unequal, however, as in Experiment 2, choice should depend upon both rate of primary reinforcement and relative signaled delay reduction; thus, larger preferences should occur in the chain than in the tandem schedules. These predictions were confirmed, suggesting that increasing the rate of conditioned reinforcement on concurrent-chains schedules may have no independent effect on choice. PMID:2037826

  7. Generalized Negatively Reinforced Manding in Children with Autism

    PubMed Central

    Yi, Janet I; Christian, LeeAnn; Vittimberga, Glenda; Lowenkron, Barry

    2006-01-01

    Individuals with developmental disabilities are often unable to influence their social environment in traditional ways (i.e., vocal language) and frequently exhibit challenging behaviors (e.g., aggression and self-injury) because such behaviors were previously reinforced under similar conditions. While the area of positive reinforcement manding has been well-documented and empirically validated, there is less research in the area of negatively reinforced manding—particularly in the area of negatively reinforced manding of nonpreferred items. Using a multiple baseline design across participants, this study sought to teach three children with autism to replace their challenging behaviors with more socially appropriate ways to request the removal of nonpreferred items. Results showed that all participants were able to learn the negatively reinforced mand response and these mand responses were generalized to other untrained items. In addition to extending the research in the area, the study empirically defined a procedure for teaching negatively reinforced manding of nonpreferred items. Moreover, teaching the mand response resulted in quality of life improvements for all participants and their families. PMID:22477341

  8. Metal Matrix Laminate Tailoring (MMLT) code: User's manual

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Morel, M. R.; Saravanos, D. A.

    1993-01-01

    The User's Manual for the Metal Matrix Laminate Tailoring (MMLT) program is presented. The code is capable of tailoring the fabrication process, constituent characteristics, and laminate parameters (individually or concurrently) for a wide variety of metal matrix composite (MMC) materials, to improve the performance and identify trends or behavior of MMC's under different thermo-mechanical loading conditions. This document is meant to serve as a guide in the use of the MMLT code. Detailed explanations of the composite mechanics and tailoring analysis are beyond the scope of this document, and may be found in the references. MMLT was developed by the Structural Mechanics Branch at NASA Lewis Research Center (LeRC).

  9. Analysis of knitted fabric reinforced flexible composites and applications in thermoforming

    NASA Astrophysics Data System (ADS)

    Bekisli, Burak

    energy dissipation is found to be superior in the latter case, since yarns are not restricted by the elastomer. In addition, yarns used in this type of composite move to effectively align along the load direction, yielding a better utilization of the fibers' high axial stiffness. Fabrication methods, including novel techniques involving twin-sheet thermoforming, for both types of composites are discussed. Tensile test results for glassfiber reinforced, TPE/polyurea based specimens are also presented. Innovative concepts related to the thermoforming process are also investigated using the developed numerical model. It is shown that some of the most critical problems in this forming process, such as non-uniform thickness distribution in the final part and the sensitivity of part quality to minor thermal variations, can be beneficially addressed using carefully "tailored" knit fabrics. Common thermoformed part geometries, such as a 3D box corner and a long U-shaped channel, are studied in numerical simulations to illustrate the effects of knitted fabric reinforcements on the stabilization of the forming process.

  10. Reactivity of sulfide-containing silane toward boehmite and in situ modified rubber/boehmite composites by the silane

    NASA Astrophysics Data System (ADS)

    Lin, Tengfei; Zhu, Lixin; Chen, Weiwei; Wu, Siwu; Guo, Baochun; Jia, Demin

    2013-09-01

    The silanization reaction between boehmite (BM) nanoplatelets and bis-[3-(triethoxysilyl)-propyl]-tetrasulfide (TESPT) was characterized in detail. Via such modification process, the grafted sulfide moieties on the BM endow reactivity toward rubber and substantially improved hydrophobicity for BM. Accordingly, TESPT was employed as in situ modifier for the nitrile rubber (NBR)/BM compounds to improve the mechanical properties of the reinforced vulcanizates. The effects of BM content and in situ modification on the mechanical properties, curing characteristics and morphology were investigated. BM was found to be effective in improving the mechanical performance of NBR vulcanizates. The NBR/BM composites could be further strengthened by the incorporation of TESPT. The interfacial adhesion of NBR/BM composites was obviously improved by the addition of TESPT. The substantially improved mechanical performance was correlated to the interfacial reaction and the improved dispersion of BM in rubber matrix.

  11. Methods for producing reinforced carbon nanotubes

    DOEpatents

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  12. Tailored to Fit

    ERIC Educational Resources Information Center

    Milbradt, Allan; Klock, Ed

    2006-01-01

    Building a new school can be exciting and creative. The process enables parents, students, educators and the community to explore their dreams and priorities, and create a facility tailored to their unique needs. Unfortunately, the process also can leave education institutions and communities feeling like they've bought an "off-the-rack" facility…

  13. SiO{sub 2} nanospheres with tailorable interiors by directly controlling Zn{sup 2+} and NH{sub 3}.H{sub 2}O species in an emulsion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Yuchao; Graduate University of Chinese Academy of Sciences, Beijing 100049; Wu Xiaofeng

    2011-07-15

    SiO{sub 2} nanospheres with tailorable interiors were synthesized by a facile one-spot microemulsion process using TEOS as silica source, wherein cyclohexane including triton X-100 and n-octanol as oil phase and Zn{sup 2+} or NH{sub 3}.H{sub 2}O aqueous solution as dispersive phase, respectively. The products were characterized by Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray Powder Diffraction. It was suggested that the as-synthesized silica nanospheres possessed grape-stone-like porous or single hollow interior, and also found that the ammonia dosage and aging time played key roles in controlling the size and structure of silica nanospheres. Furthermore, the comparative results confirmed thatmore » in-situ zinc species [ZnO/Zn(OH){sub 2}] acted as the temporary templates to construct grape-stone-like interior, and a simultaneously competing etching process occurred owing to the soluble Zn(NH{sub 3}){sub 4}{sup 2+} complex formation while the additional excessive ammonia was introduced. With the aging time being extended, the in-situ nanocrystals tended to grow into bigger ones by Ostwald Ripening, producing single hollow interior. - Graphical Abstract: Formation process of SiO{sub 2} nanospheres with porous and single hollow interior. Highlights: > ZnO/Zn(OH){sub 2} nanocrystals as the temporary templates shape the interior structures of SiO{sub 2} nanospheres. > Fabrication of porous and single hollow interiors needs no additional processes such as roasting or dissolving. > Tailorable interiors can be easily obtained through adjusting the aging time of temporary templates.« less

  14. Web-based tailored nutrition education: results of a randomized controlled trial.

    PubMed

    Oenema, A; Brug, J; Lechner, L

    2001-12-01

    There is ample evidence that printed, computer-tailored nutrition education is a more effective tool for motivating people to change to healthier diets than general nutrition education. New technology is now providing more advanced ways of delivering tailored messages, e.g. via the World Wide Web (WWW). Before disseminating a tailored intervention via the web, it is important to investigate the potential of web-based tailored nutrition education. The present study investigated the immediate impact of web-based computer-tailored nutrition education on personal awareness and intentions related to intake of fat, fruit and vegetables. A randomized controlled trial, with a pre-test-post-test control group design was conducted. Significant differences in awareness and intention to change were found between the intervention and control group at post-test. The tailored intervention was appreciated better, was rated as more personally relevant, and had more subjective impact on opinion and intentions to change than the general nutrition information. Computer literacy had no effect on these ratings. The results indicate that interactive, web-based computer-tailored nutrition education can lead to changes in determinants of behavior. Future research should be aimed at longer-term (behavioral) effects and the practicability of distributing tailored interventions via the WWW.

  15. Fiber reinforced cementitious matrix (FRCM) composites for reinforced concrete strengthening.

    DOT National Transportation Integrated Search

    2013-07-01

    Fiber-reinforced composite systems are widely used for strengthening, repairing, and rehabilitation of reinforced concrete structural : members. A promising newly-developed type of composite, comprised of fibers and an inorganic cement-based matrix, ...

  16. The substitutability of reinforcers.

    PubMed

    Green, Leonard; Freed, Debra E

    1993-07-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included.

  17. The substitutability of reinforcers

    PubMed Central

    Green, Leonard; Freed, Debra E.

    1993-01-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  18. Multi-sensor system for in situ shape monitoring and damage identification of high-speed composite rotors

    NASA Astrophysics Data System (ADS)

    Philipp, K.; Filippatos, A.; Kuschmierz, R.; Langkamp, A.; Gude, M.; Fischer, A.; Czarske, J.

    2016-08-01

    Glass fibre-reinforced polymer (GFRP) composites offer a higher stiffness-to-weight ratio than conventional rotor materials used in turbomachinery. However, the material behaviour of GFRP high-speed rotors is difficult to predict due to the complexity of the composite material and the dynamic loading conditions. Consequently dynamic expansion measurements of GRFP rotors are required in situ and with micron precision. However, the whirling motion amplitude is about two orders of magnitude higher than the desired precision. To overcome this problem, a multi-sensor system capable of separating rotor expansion and whirling motion is proposed. High measurement rates well above the rotational frequency and micron uncertainty are achieved at whirling amplitudes up to 120μm and surface velocities up to 300 m/s. The dynamic elliptical expansion of a GFRP rotor is investigated in a rotor loading test rig under vacuum conditions. In situ measurements identified not only the introduced damage but also damage initiation and propagation.

  19. Strong and Tough Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Strong, tough and almost fully dense Hi-Nicalon/BN/SiC fiber reinforced celsian matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having approx. 42 volume percent of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was 165 +/- 5 GPa.

  20. Moment redistribution in continuous reinforced concrete beams strengthened with carbon-fiber-reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Aiello, M. A.; Valente, L.; Rizzo, A.

    2007-09-01

    The results of tests on continuous steel-fiber-reinforced concrete (RC) beams, with and without an external strengthening, are presented. The internal flexural steel reinforcement was designed so that to allow steel yielding before the collapse of the beams. To prevent the shear failure, steel stirrups were used. The tests also included two nonstrengthened control beams; the other specimens were strengthened with different configurations of externally bonded carbon-fiber-reinforced polymer (CFRP) laminates. In order to prevent the premature failure from delamination of the CFRP strengthening, a wrapping was also applied. The experimental results obtained show that it is possible to achieve a sufficient degree of moment redistribution if the strengthening configuration is chosen properly, confirming the results provided by two simple numerical models.

  1. Unannounced in situ simulations: integrating training and clinical practice.

    PubMed

    Walker, Susanna T; Sevdalis, Nick; McKay, Anthony; Lambden, Simon; Gautama, Sanjay; Aggarwal, Rajesh; Vincent, Charles

    2013-06-01

    Simulation-based training for healthcare providers is well established as a viable, efficacious training tool, particularly for the training of non-technical team-working skills. These skills are known to be critical to effective teamwork, and important in the prevention of error and adverse events in hospitals. However, simulation suites are costly to develop and releasing staff to attend training is often difficult. These factors may restrict access to simulation training. We discuss our experiences of 'in situ' simulation for unannounced cardiac arrest training when the training is taken to the clinical environment. This has the benefit of decreasing required resources, increasing realism and affordability, and widening multidisciplinary team participation, thus enabling assessment and training of non-technical team-working skills in real clinical teams. While there are practical considerations of delivering training in the clinical environment, we feel there are many potential benefits compared with other forms of simulation training. We are able to tailor the training to the needs of the location, enabling staff to see a scenario that is relevant to their practice. This is particularly useful for staff who have less exposure to cardiac arrest events, such as radiology staff. We also describe the important benefit of risk assessment for a clinical environment. During our simulations we have identified a number of issues that, had they occurred during a real resuscitation attempt, may have led to patient harm or patient death. For these reasons we feel in situ simulation should be considered by every hospital as part of a patient safety initiative.

  2. A Taguchi study of the aeroelastic tailoring design process

    NASA Technical Reports Server (NTRS)

    Bohlmann, Jonathan D.; Scott, Robert C.

    1991-01-01

    A Taguchi study was performed to determine the important players in the aeroelastic tailoring design process and to find the best composition of the optimization's objective function. The Wing Aeroelastic Synthesis Procedure (TSO) was used to ascertain the effects that factors such as composite laminate constraints, roll effectiveness constraints, and built-in wing twist and camber have on the optimum, aeroelastically tailored wing skin design. The results show the Taguchi method to be a viable engineering tool for computational inquiries, and provide some valuable lessons about the practice of aeroelastic tailoring.

  3. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels.

    PubMed

    Smirnova, Irina; Gurikov, Pavel

    2017-06-07

    The present review deals with recent advances in the rapidly growing field of aerogel research and technology. The major focus of the review lies in approaches that allow tailoring of aerogel properties to meet application-driven requirements. The decisive properties of aerogels are discussed with regard to existing and potential application areas. Various tailoring strategies, such as modulation of the pore structure, coating, surface modification, and post-treatment, are illustrated by results of the last decade. In view of commercialization of aerogel-based products, a panorama of current industrial aerogel suppliers is given, along with a discussion of possible alternative sources for raw materials and precursors. Finally, growing points and perspectives of the aerogel field are summarized.

  4. From heroin to methadone--social role changes and reinforcement differentials in relation to outcome on methadone. Part I. The study of reinforcement differentials.

    PubMed

    Cheek, F E; Holstein, C N; Fullam, F A; Arana, G; Tomarchio, T P; Mandell, S

    1976-01-01

    This study examines the relevance of reinforcements available to the addict in five critical stages of his career to his success on methadone maintenance. In-depth focused interviews were held with 30 addicts who had completed a program of methadone induction and who were characterized by social worker's evaluations as Successful, Marginally Adjusted, or Failures. The Successful group showed a higher initial negative reinforcement followed by higher positive reinforcement on methadone. The Moderately Successful group showed more negative reinforcement before treatment but continued to show negative reinforcements afterwards. The Failures were low on negative reinforcements earlier but negative reinforcements were high after treatment.

  5. Examining the Discriminative and Strengthening Effects of Reinforcers in Concurrent Schedules

    PubMed Central

    Boutros, Nathalie; Elliffe, Douglas; Davison, Michael

    2011-01-01

    Reinforcers may increase operant responding via a response-strengthening mechanism whereby the probability of the preceding response increases, or via some discriminative process whereby the response more likely to provide subsequent reinforcement becomes, itself, more likely. We tested these two accounts. Six pigeons responded for food reinforcers in a two-alternative switching-key concurrent schedule. Within a session, equal numbers of reinforcers were arranged for responses to each alternative. Those reinforcers strictly alternated between the two alternatives in half the conditions, and were randomly allocated to the alternatives in half the conditions. We also varied, across conditions, the alternative that became available immediately after a reinforcer. Preference after a single reinforcer always favored the immediately available alternative, regardless of the local probability of a reinforcer on that alternative (0 or 1 in the strictly alternating conditions, .5 in the random conditions). Choice then reflected the local reinforcer probabilities, suggesting some discriminative properties of reinforcement. At a more extended level, successive same-alternative reinforcers from an alternative systematically shifted preference towards that alternative, regardless of which alternative was available immediately after a reinforcer. There was no similar shift when successive reinforcers came from alternating sources. These more temporally extended results may suggest a strengthening function of reinforcement, or an enhanced ability to respond appropriately to “win–stay” contingencies over “win–shift” contingencies. PMID:21909166

  6. Inspection and evaluation of a bridge deck reinforced with carbon fiber reinforced polymer (CFRP) bars.

    DOT National Transportation Integrated Search

    2006-03-01

    Cracking in reinforced concrete decks is inevitable. It leads to the corrosion and eventual deterioration of the deck system. The use of non-corrosive reinforcement is one alternative to steel in reinforced concrete construction. : This report deals ...

  7. Structural tailoring of engine blades (STAEBL)

    NASA Technical Reports Server (NTRS)

    Platt, C. E.; Pratt, T. K.; Brown, K. W.

    1982-01-01

    A mathematical optimization procedure was developed for the structural tailoring of engine blades and was used to structurally tailor two engine fan blades constructed of composite materials without midspan shrouds. The first was a solid blade made from superhybrid composites, and the second was a hollow blade with metal matrix composite inlays. Three major computerized functions were needed to complete the procedure: approximate analysis with the established input variables, optimization of an objective function, and refined analysis for design verification.

  8. Corrosion control for reinforced concrete

    NASA Astrophysics Data System (ADS)

    Torigoe, R. M.

    The National Bureau of Standards has recorded that in 1975 the national cost of corrosion was estimated at $70 billion. Approximately 40% of that total was attributed to the corrosion of steel reinforcements in concrete. Though concrete is generally perceived as a permanent construction material, cracking and spalling can occur when corrosion of steel reinforcements progresses to an advanced stage. This problem frequently occurs in reinforced concrete highway bridge decks, wharves, piers, and other structures in marine and snowbelt environments. Since concrete has a very low tensile strength, steel reinforcements are added to carry the tensile load of the composite member. Corrosion reduces the effective diameter of the reinforcements and, therefore, decreases the load carrying capability of the member. Though the corrosion process may occur in various forms and may be caused by different sources, the ultimate result is still the failure of the reinforced concrete.

  9. Magnesia tuned multi-walled carbon nanotubes–reinforced alumina nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Iftikhar, E-mail: ifahmad@ksu.edu.sa; Islam, Mohammad; Dar, Mushtaq Ahmad

    2015-01-15

    Magnesia tuned alumina ceramic nanocomposites, reinforced with multi-walled carbon nanotubes, were condensed using pressureless and hot-press sintering processes. Densification, microstructure and mechanical properties of the produced nanocomposites were meticulously investigated. Electron microscopy studies revealed the homogenous carbon nanotube dispersion within the alumina matrix and confirmed the retention of carbon nanotubes' distinctive tubular morphology and nanoscale features during the extreme mixing/sintering processes. Pressureless sintered nanocomposites showed meagre mechanical responses due to the poorly-integrated microstructures with a slight improvement upon magnesia addition. Conversely, both the magnesia addition and application of hot-press sintering technique resulted in the nanocomposite formation with near-theoretical densities (~more » 99%), well-integrated microstructures and superior mechanical properties. Hot-press sintered nanocomposites incorporating 300 and 600 ppm magnesia exhibited an increase in hardness (10 and 11%), flexural strength (5 and 10%) and fracture toughness (15 and 20%) with respect to similar magnesia-free samples. Compared to monolithic alumina, a decent rise in fracture toughness (37%), flexural strength (22%) and hardness (20%) was observed in the hot-press sintered nanocomposites tuned with merely 600 ppm magnesia. Mechanically superior hot-press sintered magnesia tailored nanocomposites are attractive for several load-bearing structural applications. - Highlights: • MgO tailored Al{sub 2}O{sub 3}–2 wt.% CNT nanocomposites are presented. • The role of MgO and sintering on nanocomposite structures and properties was studied. • Well-dispersed CNTs maintained their morphology/structure after harsh sintering. • Hot-pressing and MgO led nanocomposites to higher properties/unified structures. • MgO tuned composites showed higher toughness (37%) and strength (22%) than Al{sub 2}O{sub 3}.« less

  10. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    PubMed

    Doughty, Adam H; Richards, Jerry B

    2002-07-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process.

  11. Strain on the back in concrete reinforcement work.

    PubMed Central

    Wickström, G; Niskanen, T; Riihimäki, H

    1985-01-01

    To investigate the long term effect of heavy construction work on the back the occurrence of postures, lifting, carrying, and accidents in concrete reinforcement work and in maintenance house painting were measured. The 32 620 observations covering 272 work hours showed that reinforcement work necessitated stooped postures and heavy lifting more often than did painting. Reported minor back accidents were more than ten times as common in reinforcement work than in painting (1.3 compared with 0.11 accidents per man-year, p less than 0.001). Accidents of the musculoskeletal system, registered by the insurance companies, were also several times more common in reinforcement work (81 compared with 25 per 1000 man-years, p less than 0.001). The premature development of lumbar degeneration detected in the clinical study of the reinforcement workers was evidently due to the occupational strain on the back. The different types of hazardous back loads probably potentiate the effects of each other. PMID:3978042

  12. Headed reinforcement in concrete structure: State of the art

    NASA Astrophysics Data System (ADS)

    Alrasyid, Harun; Yoganata, Yehezkiel Septian; Suluch, Munarus; Iranata, Data

    2017-11-01

    At the reinforced concrete structure, the utilization of the headed bar has provided simpler installation, less congestion of reinforcement and more effective anchorage compared to conventional reinforcing bars anchorage by hooks and bends. A literature review related to the use of headed reinforcement are exhibited. The paper discusses the behavior anchorage of headed reinforcement, and the application of at beam column joint and as shear reinforcement. The review of headed bar includes historical background, the available commercial product and the summary of the experimental results that uses this application. Based on current study the suggestion for further research are provided.

  13. Caregiver preference for reinforcement-based interventions for problem behavior maintained by positive reinforcement.

    PubMed

    Gabor, Anne M; Fritz, Jennifer N; Roath, Christopher T; Rothe, Brittany R; Gourley, Denise A

    2016-06-01

    Social validity of behavioral interventions typically is assessed with indirect methods or by determining preferences of the individuals who receive treatment, and direct observation of caregiver preference rarely is described. In this study, preferences of 5 caregivers were determined via a concurrent-chains procedure. Caregivers were neurotypical, and children had been diagnosed with developmental disabilities and engaged in problem behavior maintained by positive reinforcement. Caregivers were taught to implement noncontingent reinforcement (NCR), differential reinforcement of alternative behavior (DRA), and differential reinforcement of other behavior (DRO), and the caregivers selected interventions to implement during sessions with the child after they had demonstrated proficiency in implementing the interventions. Three caregivers preferred DRA, 1 caregiver preferred differential reinforcement procedures, and 1 caregiver did not exhibit a preference. Direct observation of implementation in concurrent-chains procedures may allow the identification of interventions that are implemented with sufficient integrity and preferred by caregivers. © 2016 Society for the Experimental Analysis of Behavior.

  14. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  15. Evolution with Reinforcement Learning in Negotiation

    PubMed Central

    Zou, Yi; Zhan, Wenjie; Shao, Yuan

    2014-01-01

    Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm. PMID:25048108

  16. Evolution with reinforcement learning in negotiation.

    PubMed

    Zou, Yi; Zhan, Wenjie; Shao, Yuan

    2014-01-01

    Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm.

  17. Reinforcement learning in computer vision

    NASA Astrophysics Data System (ADS)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  18. In situ reactive compatibilization of polypropylene/ethylene-propylene-diene monomer thermoplastic vulcanizate by zinc dimethacrylate via peroxide-induced dynamic vulcanization.

    PubMed

    Chen, Yukun; Xu, Chuanhui; Liang, Xingquan; Cao, Liming

    2013-09-12

    This work demonstrates an approach of in situ reactive compatibilization between polypropylene (PP) and ethylene-propylene-diene monomer (EPDM) by using zinc dimethacrylate (ZDMA) as a compatibilizer and, simultaneously, as a very strong reinforcing agent. With the incorporation of 7phr ZDMA in the PP/EPDM (30/70, w/w) thermoplastic vulcanizate (TPV), the tensile strength, tear strength, elongation at break, and hardness of PP/EPDM/ZDMA TPV were increased from 5.3 MPa, 31.3 kN/m, 222%, and 78 up to 11.2 MPa, 64.2 kN/m, 396%, and 83, respectively. This tremendous reinforcing as well as the compatibilization effect of the ZDMA was understood by polymerization of ZDMA and ZDMA reacted with EPDM and PP during peroxide-induced dynamic vulcanization. A peculiar phase structure that rubber particles were surrounded and "bonded" by a thick transition zone that contained numerous of nanoparticles with dimensions of about 20-30 nm was observed from transmission electron microscopy. Scanning electron microscopy results confirmed that incorporation of ZDMA reduced the size of the cross-linked EPDM particles. Moreover, we found that the compatibilized TPV showed a higher tan δ peak temperature for EPDM phase and a lower tan δ peak temperature for PP phase. The suggested method for in situ reactive compatibilization of PP and EPDM offers routes to the design of new TPV-based technical products for diversified applications.

  19. Effect of tailoring in an internet-based intervention for smoking cessation: randomized controlled trial.

    PubMed

    Wangberg, Silje C; Nilsen, Olav; Antypas, Konstantinos; Gram, Inger Torhild

    2011-12-15

    Studies suggest that tailored materials are superior to nontailored materials in supporting health behavioral change. Several trials on tailored Internet-based interventions for smoking cessation have shown good effects. There have, however, been few attempts to isolate the effect of the tailoring component of an Internet-based intervention for smoking cessation and to compare it with the effectiveness of the other components. The study aim was to isolate the effect of tailored emails in an Internet-based intervention for smoking cessation by comparing two versions of the intervention, with and without tailored content. We conducted a two-arm, randomized controlled trial of the open and free Norwegian 12-month follow-up, fully automated Internet-based intervention for smoking cessation, slutta.no. We collected information online on demographics, smoking, self-efficacy, use of the website, and participant evaluation at enrollment and subsequently at 1, 3, and 12 months. Altogether, 2298 self-selected participants aged 16 years or older registered at the website between August 15, 2006 and December 7, 2007 and were randomly assigned to either a multicomponent, nontailored Internet-based intervention for smoking cessation (control) or a version of the same Internet-based intervention with tailored content delivered on the website and via email. Of the randomly assigned participants, 116 (of 419, response rate = 27.7%) in the intervention group and 128 (of 428, response rate = 29.9%) in the control group had participated over the 12 months and responded at the end of follow-up. The 7-day intention-to-treat abstinence rate at 1 month was 15.2% (149/982) among those receiving the tailored intervention, compared with 9.4% (94/999) among those who received the nontailored intervention (P < .001). The corresponding figures at 3 months were 13.5% (122/902) and 9.4% (84/896, P =.006) and at 12 months were 11.2% (47/419) and 11.7% (50/428, P = .91). Likewise, the intervention

  20. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    NASA Astrophysics Data System (ADS)

    Li, Qingtang; Lei, Yongping; Fu, Hanguang

    2014-10-01

    Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously.

  1. The impact of tailored interventions on a community health center population.

    PubMed

    Rimer, B K; Conaway, M; Lyna, P; Glassman, B; Yarnall, K S; Lipkus, I; Barber, L T

    1999-06-01

    We conducted a 4-year randomized study in a community health center that serves primarily low income Blacks in Durham, North Carolina. Patients (1318 at baseline) were assigned randomly to one of three study groups: provider prompting intervention alone, provider prompting and tailored print materials or the previous group and tailored telephone counseling. The purpose of the study was to determine whether increasingly intensive, tailored print and telephone interventions also were increasingly effective in promoting adherence to mammograms, Pap tests and overall cancer screening compliance. Thus, the combination of tailored print interventions (print and telephone) should have been more effective than the provider prompting intervention alone, or the print intervention and prompting combination. This is one of the few studies to examine a measure of overall cancer screening compliance and to assess the benefit of combinations of tailored interventions in promoting adherence to cancer screening. Patients gave extremely high ratings to the interventions. At the bivariate level, we found a significant effect of the most intensive group (provider prompting intervention, tailored print communications and tailored telephone counseling) on Pap test compliance (P = 0.05) and borderline significance at the multivariate level (P = 0.06) as well on overall screening compliance (P = 0.06). There was not a significant effect on mammography, probably because a majority of the patients were receiving regular mammograms. We also found some important subgroup differences. For example, a larger proportion of women reported Pap tests in the tailored print and counseling group when they believed the materials were 'meant for me.' These results show that a combination of tailored interventions may have potential for reaching the women who have too often been labeled the 'hard to reach.'

  2. The nature of sexual reinforcement.

    PubMed Central

    Crawford, L L; Holloway, K S; Domjan, M

    1993-01-01

    Sexual reinforcers are not part of a regulatory system involved in the maintenance of critical metabolic processes, they differ for males and females, they differ as a function of species and mating system, and they show ontogenetic and seasonal changes related to endocrine conditions. Exposure to a member of the opposite sex without copulation can be sufficient for sexual reinforcement. However, copulatory access is a stronger reinforcer, and copulatory opportunity can serve to enhance the reinforcing efficacy of stimulus features of a sexual partner. Conversely, under certain conditions, noncopulatory exposure serves to decrease reinforcer efficacy. Many common learning phenomena such as acquisition, extinction, discrimination learning, second-order conditioning, and latent inhibition have been demonstrated in sexual conditioning. These observations extend the generality of findings obtained with more conventional reinforcers, but the mechanisms of these effects and their gender and species specificity remain to be explored. PMID:8354970

  3. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    PubMed Central

    Doughty, Adam H; Richards, Jerry B

    2002-01-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process. PMID:12144310

  4. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data

    PubMed Central

    2012-01-01

    Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000

  5. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  6. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  7. Investigation of rectangular concrete columns reinforced or prestressed with fiber reinforced polymer (FRP) bars or tendons

    NASA Astrophysics Data System (ADS)

    Choo, Ching Chiaw

    Fiber reinforced polymer (FRP) composites have been increasingly used in concrete construction. This research focused on the behavior of concrete columns reinforced with FRP bars, or prestressed with FRP tendons. The methodology was based the ultimate strength approach where stress and strain compatibility conditions and material constitutive laws were applied. Axial strength-moment (P-M) interaction relations of reinforced or prestressed concrete columns with FRP, a linearly-elastic material, were examined. The analytical results identified the possibility of premature compression and/or brittle-tension failure occurring in FRP reinforced and prestressed concrete columns where sudden and explosive type failures were expected. These failures were related to the rupture of FRP rebars or tendons in compression and/or in tension prior to concrete reaching its ultimate strain and strength. The study also concluded that brittle-tension failure was more likely to occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel. In addition, the failures were more prevalent when long term effects such as creep and shrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure, concrete columns reinforced with FRP, in some instances, gained significant moment resistance. As expected the strength interaction of slender steel or FRP reinforced concrete columns were dependent more on column length rather than material differences between steel and FRP. Current ACI minimum reinforcement ratio for steel (rhomin) reinforced concrete columns may not be adequate for use in FRP reinforced concrete columns. Design aids were developed in this study to determine the minimum reinforcement ratio (rhof,min) required for rectangular reinforced concrete columns by averting brittle-tension failure to a failure controlled by concrete crushing which in nature was a less catastrophic and more gradual type failure. The proposed method using rhof

  8. Matching and Conditioned Reinforcement Rate

    ERIC Educational Resources Information Center

    Shahan, Timothy A.; Podlesnik, Christopher A.; Jimenez-Gomez, Corina

    2006-01-01

    Attempts to examine the effects of variations in relative conditioned reinforcement rate on choice have been confounded by changes in rates of primary reinforcement or changes in the value of the conditioned reinforcer. To avoid these problems, this experiment used concurrent observing responses to examine sensitivity of choice to relative…

  9. Pavlovian conditioning and cumulative reinforcement rate.

    PubMed

    Harris, Justin A; Patterson, Angela E; Gharaei, Saba

    2015-04-01

    In 5 experiments using delay conditioning of magazine approach with rats, reinforcement rate was varied either by manipulating the mean interval between onset of the conditioned stimulus (CS) and unconditioned stimulus (US) or by manipulating the proportion of CS presentations that ended with the US (trial-based reinforcement rate). Both manipulations influenced the acquisition of responding. In each experiment, a specific comparison was made between 2 CSs that differed in their mean CS-US interval and in their trial-based reinforcement rate, such that the cumulative reinforcement rate-the cumulative duration of the CS between reinforcements-was the same for the 2 CSs. For example, a CS reinforced on 100% of trials with a mean CS-US interval of 60 s was compared with a CS reinforced on 33% of trials and a mean duration of 20 s. Across the 5 experiments, conditioning was virtually identical for the 2 CSs with matched cumulative reinforcement rate. This was true as long as the timing of the US was unpredictable and, thus, response rates were uniform across the length of the CS. We conclude that the effects of CS-US interval and of trial-based reinforcement rate are reducible entirely to their common effect on cumulative reinforcement rate. We discuss the implications of this for rate-based, trial-based, and real-time associative models of conditioning. (c) 2015 APA, all rights reserved).

  10. Self-Reinforcement Compared to Teacher-Delivered Reinforcement during Activity Schedules on the iPod Touch

    ERIC Educational Resources Information Center

    Beaver, Brittany N.; Reeve, Sharon A.; Reeve, Kenneth F.; DeBar, Ruth M.

    2017-01-01

    The current study assessed whether four 15- to 17-year-old individuals diagnosed with autism would remain on-task for more intervals and complete tasks independently as a function of using self-reinforcement or teacher-delivered reinforcement. An adapted alternating-treatments design with teacher-delivered reinforcement, self-reinforcement, and a…

  11. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  12. Partial reinforcement, extinction, and placebo analgesia

    PubMed Central

    Yeung, Siu Tsin Au; Colagiuri, Ben; Lovibond, Peter F.; Colloca, Luana

    2014-01-01

    Numerous studies indicate that placebo analgesia can be established via conditioning procedures. However, these studies have exclusively involved conditioning under continuous reinforcement. Thus, it is currently unknown whether placebo analgesia can be established under partial reinforcement and how durable any such effect would be. We tested this possibility using electro-cutaneous pain in healthy volunteers. Sixty undergraduates received placebo treatment (activation of a sham electrode) under the guise of an analgesic trial. The participants were randomly allocated to different conditioning schedules, namely continuous reinforcement (CRF), partial reinforcement (PRF), or control (no conditioning). Conditioning was achieved by surreptitiously reducing pain intensity during training when the placebo was activated compared with when it was inactive. For the CRF group, the placebo was always followed by a surreptitious reduction in pain during training. For the PRF group, the placebo was followed by a reduction in pain stimulation on 62.5% of trials only. In the test phase, pain stimulation was equivalent across placebo and no placebo trials. Both continuous and partial reinforcement produced placebo analgesia, with the magnitude of initial analgesia being larger following continuous reinforcement. However, while the placebo analgesia established under continuous reinforcement extinguished during test phase, the placebo analgesia established under partial reinforcement did not. These findings indicate that partial reinforcement can induce placebo analgesia and that these effects are more resistant to extinction than those established via continuous reinforcement. Partial reinforcement may, therefore, reflect a novel way of enhancing clinical outcomes via the placebo effect. PMID:24602997

  13. The Role of Automatic Negative Reinforcement in Clinical Problems

    ERIC Educational Resources Information Center

    Miltenberger, Raymond G.

    2005-01-01

    This paper discusses the role of automatic negative reinforcement in the maintenance of clinical problems. Following a brief introduction to the functional conceptualization of clinical problems and discussion of four classes of reinforcement maintaining clinical problems, the paper suggests that automatic negative reinforcement is an understudied…

  14. Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement.

    PubMed

    Fernández, Thalía; Bosch-Bayard, Jorge; Harmony, Thalía; Caballero, María I; Díaz-Comas, Lourdes; Galán, Lídice; Ricardo-Garcell, Josefina; Aubert, Eduardo; Otero-Ojeda, Gloria

    2016-03-01

    Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.

  15. Working Memory and Reinforcement Schedule Jointly Determine Reinforcement Learning in Children: Potential Implications for Behavioral Parent Training

    PubMed Central

    Segers, Elien; Beckers, Tom; Geurts, Hilde; Claes, Laurence; Danckaerts, Marina; van der Oord, Saskia

    2018-01-01

    Introduction: Behavioral Parent Training (BPT) is often provided for childhood psychiatric disorders. These disorders have been shown to be associated with working memory impairments. BPT is based on operant learning principles, yet how operant principles shape behavior (through the partial reinforcement (PRF) extinction effect, i.e., greater resistance to extinction that is created when behavior is reinforced partially rather than continuously) and the potential role of working memory therein is scarcely studied in children. This study explored the PRF extinction effect and the role of working memory therein using experimental tasks in typically developing children. Methods: Ninety-seven children (age 6–10) completed a working memory task and an operant learning task, in which children acquired a response-sequence rule under either continuous or PRF (120 trials), followed by an extinction phase (80 trials). Data of 88 children were used for analysis. Results: The PRF extinction effect was confirmed: We observed slower acquisition and extinction in the PRF condition as compared to the continuous reinforcement (CRF) condition. Working memory was negatively related to acquisition but not extinction performance. Conclusion: Both reinforcement contingencies and working memory relate to acquisition performance. Potential implications for BPT are that decreasing working memory load may enhance the chance of optimally learning through reinforcement. PMID:29643822

  16. Retrofit of existing reinforced concrete bridges with fiber reinforced polymer composites

    DOT National Transportation Integrated Search

    2001-12-01

    A two-part research was focused on examining various issues related to the use of fiber reinforced polymer (FRP) composites for strengthening of existing reinforced concrete bridges. A summary of each phase is presented separately.

  17. Alternative Reinforcer Response Cost Impacts Methamphetamine Choice in Humans

    PubMed Central

    Bennett, J. Adam; Stoops, William W.; Rush, Craig R.

    2012-01-01

    Methamphetamine use disorders are a persistent public health concern. Behavioral treatments have demonstrated that providing access to non-drug alternative reinforcers reduces methamphetamine use. The purpose of this human laboratory experiment was to determine how changes in response cost for non-drug alternative reinforcers influenced methamphetamine choice. Seven subjects with past year histories of recreational stimulant use completed a placebo-controlled, crossover, double-blind protocol in which they first sampled doses of oral methamphetamine (0, 8 or 16 mg) and completed a battery of subject-rated and physiological measures. During subsequent sessions, subjects then made eight discrete choices between 1/8th of the sampled dose and an alternative reinforcer ($0.25). The response cost to earn a methamphetamine dose was always 500 responses (FR500). The response cost for the alternative reinforcer varied across sessions (FR500, FR1000, FR2000, FR3000). Methamphetamine functioned as a positive reinforcer and produced prototypical stimulant-like effects (e.g., elevated blood pressure, increased ratings of “Stimulated”). Choice for doses over money was sensitive to changes in response cost for alternative reinforcers in that more doses were taken at higher FR values than at lower FR values. Placebo choices changed as a function of alternative reinforcer response cost to a greater degree than active methamphetamine choices. These findings suggest that manipulating the effort necessary to earn alternative reinforcers could impact methamphetamine use. PMID:23046851

  18. Walking Works Wonders: a tailored workplace intervention evaluated over 24 months.

    PubMed

    Haslam, Cheryl; Kazi, Aadil; Duncan, Myanna; Clemes, Stacy; Twumasi, Ricardo

    2018-06-22

    This article presents longitudinal data from 1120 participants across 10 worksites enrolled in Walking Works Wonders, a tailored intervention designed to increase physical activity and reduce sedentary behaviour. The intervention was evaluated over 2 years, using a quasi-experimental design comprising 3 conditions: tailored information; standard information and control. This study explored the impact of the intervention on objective measures (BMI, %Fat, waist circumference, blood pressure and heart rate) and self-reported measures of physical activity, sedentary behaviour, physical and psychological health. Interventions tailored to employees' stage of change significantly reduced BMI and waist circumference compared to standard and control conditions. Employees who received either a standard or tailored intervention demonstrated significantly higher work ability, organizational commitment, job motivation, job satisfaction, and a reduction in intention to quit the organization. The results suggest that adopting a tailored approach to interventions.

  19. Wrinkles in reinforced membranes

    NASA Astrophysics Data System (ADS)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  20. The distribution of ductal carcinoma in situ (DCIS) grade in 4232 women and its impact on overdiagnosis in breast cancer screening.

    PubMed

    van Luijt, P A; Heijnsdijk, E A M; Fracheboud, J; Overbeek, L I H; Broeders, M J M; Wesseling, J; den Heeten, G J; de Koning, H J

    2016-05-10

    The incidence of ductal carcinoma in situ (DCIS) has rapidly increased over time. The malignant potential of DCIS is dependent on its differentiation grade. Our aim is to determine the distribution of different grades of DCIS among women screened in the mass screening programme, and women not screened in the mass screening programme, and to estimate the amount of overdiagnosis by grade of DCIS. We retrospectively included a population-based sample of 4232 women with a diagnosis of DCIS in the years 2007-2009 from the Nationwide network and registry of histopathology and cytopathology in the Netherlands. Excluded were women with concurrent invasive breast cancer, lobular carcinoma in situ and no DCIS, women recently treated for invasive breast cancer, no grade mentioned in the record, inconclusive record on invasion, and prevalent DCIS. The screening status was obtained via the screening organisations. The distribution of grades was incorporated in the well-established and validated microsimulation model MISCAN. Overall, 17.7 % of DCIS were low grade, 31.4 % intermediate grade, and 50.9 % high grade. This distribution did not differ by screening status, but did vary by age. Older women were more likely to have low-grade DCIS than younger women. Overdiagnosis as a proportion of all cancers in women of the screening age was 61 % for low-grade, 57 % for intermediate-grade, 45 % for high-grade DCIS. For women age 50-60 years with a high-grade DCIS this overdiagnosis rate was 21-29 %, compared to 50-66 % in women age 60-75 years with high-grade DCIS. Amongst the rapidly increasing numbers of DCIS diagnosed each year is a significant number of overdiagnosed cases. Tailoring treatment to the probability of progression is the next step to preventing overtreatment. The basis of this tailoring could be DCIS grade and age.

  1. In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.

    PubMed

    Huang, Ying; Fang, Chun; Zeng, Rui; Liu, Yaojun; Zhang, Wang; Wang, Yanjie; Liu, Qingju; Huang, Yunhui

    2017-12-08

    Metal-organic compounds are a family of electrode materials with structural diversity and excellent thermal stability for rechargeable batteries. Here, we fabricated a hierarchical nanocomposite with metal-organic cuprous tetracyanoquinodimethane (CuTCNQ) in a 3 D conductive carbon nanofibers (CNFs) network by in situ growth, and evaluated it as flexible cathode for sodium-ion batteries (SIBs). CuTCNQ in such flexible composite electrode is able to exhibit a high capacity of 252 mAh g -1 at 0.1 C and highly reversible stability for 1200 cycles within the voltage range of 2.5-4.1 V (vs. Na + /Na). A high specific energy of 762 Wh kg -1 was obtained with high average potential of 3.2 V (vs. Na + /Na). The in situ-formed electroactive metal-organic composites with tailored nanoarchitecture provide a promising alternative choice for high-performance cathode materials in SIBs with high energy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Reinforcing Event (RE) Menu

    ERIC Educational Resources Information Center

    Addison, Roger M.; Homme, Lloyd E.

    1973-01-01

    A motivational system, the Contingency Management System, uses contracts in which some amount of defined task behavior is demanded for some interval of reinforcing event. The Reinforcing Event Menu, a list of high probability reinforcing behaviors, is used in the system as a prompting device for the learner and as an aid for the administrator in…

  3. Microstructural evolution and wear behaviors of laser cladding Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC

    NASA Astrophysics Data System (ADS)

    Song, R.; Li, J.; Shao, J. Z.; Bai, L. L.; Chen, J. L.; Qu, C. C.

    2015-11-01

    The Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements' microstructure, namely TiCp+(TiB+TiC)e, (TiB+TiC)e and TiBp+(TiB+TiC)e (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.

  4. Effect of in-situ formed Al3Ti particles on the microstructure and mechanical properties of 6061 Al alloy

    NASA Astrophysics Data System (ADS)

    Gupta, Rahul; Chaudhari, G. P.; Daniel, B. S. S.

    2018-03-01

    In this study, in situ Titanium-tri-aluminide (Al3Ti) particles reinforced Al 6061 alloy matrix composites were fabricated by the reaction of potassium hexafluorotitanate (K2TiF6) inorganic salt with molten Al 6061 alloy via liquid metallurgy route. The development of in-situ Al3Ti particles and their effects on the mechanical properties such as yield strength (YS), ductility, ultimate tensile strength (UTS) and hardness, and microstructure of Al 6061 alloy were studied. It was observed from the results that in-situ formed Al3Ti particles were blocky in morphology whose average size was around 2.6 ± 1.1 μm. Microstructure studies showed that grain size of Al matrix was reduced due to the nucleating effect of Al3Ti particles. It was observed from the mechanical properties analysis that when the volume fraction of Al3Ti particles was increased, the hardness, UTS and YS of the composites were also increased as compared to that of Al 6061 alloy. An improvement in ductility was observed with the dispersion of Al3Ti particles in base alloy which is contrary to many other composites.

  5. The Effects of Tailoring Knowledge Acquisition on Colorectal Cancer Screening Self-Efficacy

    PubMed Central

    Jerant, Anthony; To, Patricia; Franks, Peter

    2015-01-01

    Interventions tailored to psychological factors such as personal and vicarious behavioral experiences can enhance behavioral self-efficacy, but are complex to develop and implement. Information seeking theory suggests tailoring acquisition of health knowledge (without concurrent psychological factor tailoring) could enhance self-efficacy, simplifying the design of tailored behavior change interventions. To begin to examine this issue, the authors conducted exploratory analyses of data from a randomized controlled trial, comparing the effects of an experimental colorectal cancer (CRC) screening intervention tailoring knowledge acquisition with the effects of a non-tailored control on CRC screening knowledge and self-efficacy in 1159 patients comprising three ethnicity/language strata (Hispanic/Spanish 23.4%, Hispanic/English 27.2%, non-Hispanic/English 49.3%) and five recruitment center strata. Adjusted for study strata, the mean post-intervention knowledge score was significantly higher in the experimental group versus control. Adjusted experimental intervention exposure (B = 0.22, 95% CI [0.14, 0.30]), pre-intervention knowledge (B = 0.11, 95% CI [0.05, 0.16]), and post-intervention knowledge (B = 0.03, 95% CI [0.01, 0.05]) were independently associated with subsequent CRC screening self-efficacy (p < .001 all associations). These exploratory findings suggest tailoring knowledge acquisition may enhance self-efficacy, with potential implications for tailored intervention design, but require confirmation in studies specifically designed to examine this issue. PMID:25928315

  6. eHealth and the use of individually tailored information: A systematic review.

    PubMed

    Conway, Nicholas; Webster, Clare; Smith, Blair; Wake, Deborah

    2017-09-01

    Tailored messages are those that specifically target individuals following an assessment of their unique characteristics. This systematic review assesses the evidence regarding the effectiveness of tailoring within eHealth interventions aimed at chronic disease management. OVID Medline/Embase databases were searched for randomised control trials, controlled clinical, trials, before -after studies, and time series analyses from inception - May 2014. Objectively measured clinical processes/outcomes were considered. Twenty-two papers were eligible for inclusion: 6/22 used fully tailored messaging and 16/22 used partially tailored messages. Two studies isolated tailoring as the active component. The remainder compared intervention with standard care. In all, 12/16 studies measuring clinical processes and 2/6 studies reporting clinical outcomes showed improvements, regardless of target group. Study quality was low and design did not allow for identification of interventions' active component. Heterogeneity precluded meta-analysis. This review has demonstrated that there is a lack of evidence to suggest that tailoring within an eHealth context confers benefit over non-tailored eHealth interventions.

  7. Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhou, Ru; Niu, Haihong; Ji, Fengwei; Wan, Lei; Mao, Xiaoli; Guo, Huier; Xu, Jinzhang; Cao, Guozhong

    2016-11-01

    PbS is a promising light harvester for near-infrared (NIR) responsive quantum dot (QD) photovoltaics due to its narrow bulk band gap (0.41 eV) and large exciton Bohr radius (18 nm). However, the relatively low conduction band (CB) and high-density surface defects of PbS as two major drawbacks for its use in solar cells severely hamper the photovoltaic performance enhancement. In this work, a modified solution-based successive ionic layer adsorption and reaction (SILAR) utilizing mixed cationic precursors of Pb2+ and Cd2+ is explored, and such a scheme offers two benefits, band-structure tailoring and surface passivation. In-situ deposited CdS suppresses the excessive growth of PbS in the mesopores, thereby facilitating the favorable electron injection from PbS to TiO2 in view of the up-shifted CB level of QDs; the intimate interpenetration of two sulfides with each other leads to superior passivation of trap state defects on PbS, which suppresses the interfacial charge recombination. With the construction of photovoltaics based on such a hybrid (Pb,Cd)S/CdS configuration, impressive power conversion efficiency up to 4.08% has been reached, outperforming that of the conventional PbS/CdS pattern (2.95%). This work highlights the great importance of band-structure tailoring and surface passivation for constructing highly efficient PbS QD photovoltaics.

  8. Factors affecting the microstructure and mechanical properties of Ti-Al3Ti core-shell-structured particle-reinforced Al matrix composites

    NASA Astrophysics Data System (ADS)

    Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min

    2016-04-01

    This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.

  9. In-process deformation measurements of translucent high speed fibre-reinforced disc rotors

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Filippatos, Angelos; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Langkamp, Albert; Fischer, Andreas; Czarske, Jürgen

    2015-07-01

    The high stiffness to weight ratio of glass fibre-reinforced polymers (GFRP) makes them an attractive material for rotors e.g. in the aerospace industry. We report on recent developments towards non-contact, in-situ deformation measurements with temporal resolution up to 200 µs and micron measurement uncertainty. We determine the starting point of damage evolution inside the rotor material through radial expansion measurements. This leads to a better understanding of dynamic material behaviour regarding damage evolution and the prediction of damage initiation and propagation. The measurements are conducted using a novel multi-sensor system consisting of four laser Doppler distance (LDD) sensors. The LDD sensor, a two-wavelength Mach-Zehnder interferometer was already successfully applied for dynamic deformation measurements at metallic rotors. While translucency of the GFRP rotor material limits the applicability of most optical measurement techniques due to speckles from both surface and volume of the rotor, the LDD profits from speckles and is not disturbed by backscattered laser light from the rotor volume. The LDD sensor evaluates only signals from the rotor surface. The anisotropic glass fibre-reinforcement results in a rotationally asymmetric dynamic deformation. A novel signal processing algorithm is applied for the combination of the single sensor signals to obtain the shape of the investigated rotors. In conclusion, the applied multi-sensor system allows high temporal resolution dynamic deformation measurements. First investigations regarding damage evolution inside GFRP are presented as an important step towards a fundamental understanding of the material behaviour and the prediction of damage initiation and propagation.

  10. Behavioral sensitivity to changing reinforcement contingencies in attention-deficit hyperactivity disorder.

    PubMed

    Alsop, Brent; Furukawa, Emi; Sowerby, Paula; Jensen, Stephanie; Moffat, Cara; Tripp, Gail

    2016-08-01

    Altered sensitivity to positive reinforcement has been hypothesized to contribute to the symptoms of attention-deficit hyperactivity disorder (ADHD). In this study, we evaluated the ability of children with and without ADHD to adapt their behavior to changing reinforcer availability. Of one hundred sixty-seven children, 97 diagnosed with ADHD completed a signal-detection task in which correct discriminations between two stimuli were associated with different frequencies of reinforcement. The response alternative associated with the higher rate of reinforcement switched twice during the task without warning. For a subset of participants, this was followed by trials for which no reinforcement was delivered, irrespective of performance. Children in both groups developed an initial bias toward the more frequently reinforced response alternative. When the response alternative associated with the higher rate of reinforcement switched, the children's response allocation (bias) followed suit, but this effect was significantly smaller for children with ADHD. When reinforcement was discontinued, only children in the control group modified their response pattern. Children with ADHD adjust their behavioral responses to changing reinforcer availability less than typically developing children, when reinforcement is intermittent and the association between an action and its consequences is uncertain. This may explain the difficulty children with ADHD have adapting their behavior to new situations, with different reinforcement contingencies, in daily life. © 2016 Association for Child and Adolescent Mental Health.

  11. Tailoring the Crystal Structure Toward Optimal Super Conductors

    DTIC Science & Technology

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0210 TAILORING THE CRYSTAL STRUCTURE TOWARD OPTIMAL SUPERCONDUCTORS Emilia Morosan WILLIAM MARSH RICE UNIV HOUSTON TX Final...TAILORING THE CRYSTAL STRUCTURE TOWARD OPTIMAL SUPERCONDUCTORS 5a. CONTRACT NUMBER FA9550-11-1-0023 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...studied the properties of layered transition metal compounds in search of unconventional superconductors . The aim is to identify ground states competing

  12. Leaf spring made of fiber-reinforced resin

    NASA Technical Reports Server (NTRS)

    Hori, J.

    1986-01-01

    A leaf spring made of a matrix reinforced by at least two types of reinforcing fibers with different Young's modulus is described in this Japanese patent. At least two layers of reinforcing fibers are formed by partially arranging the reinforcing fibers toward the direction of the thickness of the leaf spring. A mixture of different types of reinforced fibers is used at the area of boundary between the two layers of reinforced fibers. The ratio of blending of each type of reinforced fiber is frequently changed to eliminate the parts where discontinuous stress may be applied to the leaf spring. The objective of this invention is to prevent the rapid change in Young's modulus at the boundary area between each layer of reinforced fibers in the leaf spring.

  13. Cost-effectiveness of targeted and tailored interventions on colorectal cancer screening use.

    PubMed

    Lairson, David R; DiCarlo, Melissa; Myers, Ronald E; Wolf, Thomas; Cocroft, James; Sifri, Randa; Rosenthal, Michael; Vernon, Sally W; Wender, Richard

    2008-02-15

    Colorectal cancer (CRC) screening is cost-effective but underused. The objective of this study was to determine the cost-effectiveness of targeted and tailored behavioral interventions to increase CRC screening use by conducting an economic analysis associated with a randomized trial among patients in a large, racially and ethnically diverse, urban family practice in Philadelphia. The incremental costs per unit increase were measured in individuals who were screened during the 24 months after intervention. Percent increase in screening was adjusted for baseline differences in the study groups. Each intervention arm received a targeted screening invitation letter, stool blood test (SBT) cards, informational booklet, and reminder letter. Tailored interventions incrementally added tailored messages and reminder telephone calls. Program costs of the targeted intervention were 42 dollars per participant. Additional costs of adding tailored print materials and of delivering a reminder telephone call were 150 dollars and 200 dollars per participant, respectively. The cost per additional individual screened was 319 dollars when comparing the no intervention group with the targeted intervention group. The targeted intervention was more effective and less costly than the tailored intervention. Although tailoring plus reminder telephone call was the most effective strategy, it was very costly per additional individual screened. Mailed SBT cards significantly boosted CRC screening use. However, going beyond the targeted intervention to include tailoring or tailoring plus reminder calls in the manner used in this study did not appear to be an economically attractive strategy. Cancer 2008. (c) 2007 American Cancer Society.

  14. Tailored prolapse surgery for the treatment of haemorrhoids and obstructed defecation syndrome with a new dedicated device: TST STARR Plus.

    PubMed

    Naldini, Gabriele; Martellucci, Jacopo; Rea, Roberto; Lucchini, Stefano; Schiano di Visconte, Michele; Caviglia, Angelo; Menconi, Claudia; Ren, Donglin; He, Ping; Mascagni, Domenico

    2014-05-01

    The aim of the study was to assess the safety, efficacy and feasibility of stapled transanal procedures performed by a new dedicated device, TST STARR Plus, for tailored transanal stapled surgery. All the consecutive patients admitted to eight referral centres affected by prolapses with III-IV degrees haemorrhoids or obstructed defecation syndrome (ODS) with rectocele and/or rectal intussusception that underwent stapled transanal resection with TST STARR plus were included in the present study. Haemostatic stitches for bleeding of the suture line, specimen volume, operative time, hospital stay and perioperative complications were recorded. From 1 November 2012 to 31 March 2013, 160 consecutive patients (96 females) were enrolled in the study. In 94 patients, the prolapse was over the half of the circular anal dilator (CAD). The mean duration of the procedure was 25 min. The mean resected volume of the specimen was 13.3 cm(3), the mean hospital stay was 2.2 days. In 88 patients (55%), additional stitches on the suture line were needed (mean 2.1). Suture line dehiscence was reported in four cases, with intraoperative reinforcement. Bleeding was reported in seven patients (5%). Urgency after 30 days was reported in one patient. No major complication occurred. The new device seems to be safe and effective for a tailored approach to anorectal prolapse due to haemorrhoids or obstructed defecation.

  15. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    NASA Astrophysics Data System (ADS)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  16. Reinforcement alternatives for concrete bridge decks.

    DOT National Transportation Integrated Search

    2003-07-01

    The report investigates the application of various reinforcement types in concrete bridge decks as potential replacements or supplements to conventional steel reinforcement. Traditional epoxy coated reinforcement (ECS), stainless steel cald (SSC) rei...

  17. LPWA using supersonic gas jet with tailored density profile

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  18. Investigation of Selectively-Reinforced Metallic Lugs

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Abada, Christopher H.

    2007-01-01

    An investigation of the effects of material and geometric variables on the response of U-shaped band-reinforced metallic lugs was performed. Variables studied were reinforcement, adhesive and metallic lug mechanical properties, hole diameter, reinforcement and adhesive thickness, and the distance from the hole s center to the end of the lug. Generally, U-shaped band reinforced lugs exhibited superior performance than non-reinforced lugs, that is higher load at the conventional lug design criteria of four percent hole elongation. Depending upon the reinforcement configuration the increase in load may be negligible to 15 or 20 percent. U-shaped band reinforcement increases lug load carrying capability primarily through two mechanisms; increasing the slope of the response curve after the initial knee and restraining overall deformation of the metallic portion of the lug facilitating increased yielding of metallic material between the hole and the edge of the metallic portion of the lug.

  19. Tailoring mechanical properties of aerogels for aerospace applications.

    PubMed

    Randall, Jason P; Meador, Mary Ann B; Jana, Sadhan C

    2011-03-01

    Silica aerogels are highly porous solid materials consisting of three-dimensional networks of silica particles and are typically obtained by removing the liquid in silica gels under supercritical conditions. Several unique attributes such as extremely low thermal conductivity and low density make silica aerogels excellent candidates in the quest for thermal insulation materials used in space missions. However, native silica aerogels are fragile at relatively low stresses. More durable aerogels with higher strength and stiffness are obtained by proper selection of silane precursors and by reinforcement with polymers. This paper first presents a brief review of the literature on methods of silica aerogel reinforcement and then discusses our recent activities in improving not only the strength but also the elastic response of polymer-reinforced silica aerogels. Several alkyl-linked bis-silanes were used in promoting flexibility of the silica networks in conjunction with polymer reinforcement by epoxy.

  20. Lobular Carcinoma In Situ (LCIS)

    MedlinePlus

    Lobular carcinoma in situ (LCIS) Overview Lobular carcinoma in situ (LCIS) is an uncommon condition in which abnormal cells form in the ... of developing invasive breast cancer. Symptoms Lobular carcinoma in situ (LCIS) doesn't cause signs or symptoms. Rather, ...

  1. Application of Eddy Current Techniques for Orbiter Reinforced Carbon-Carbon Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John

    2005-01-01

    The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, eddy current techniques have been developed for application to RCC components. Eddy current technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate eddy current systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight.

  2. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  3. Punishment Insensitivity and Impaired Reinforcement Learning in Preschoolers

    ERIC Educational Resources Information Center

    Briggs-Gowan, Margaret J.; Nichols, Sara R.; Voss, Joel; Zobel, Elvira; Carter, Alice S.; McCarthy, Kimberly J.; Pine, Daniel S.; Blair, James; Wakschlag, Lauren S.

    2014-01-01

    Background: Youth and adults with psychopathic traits display disrupted reinforcement learning. Advances in measurement now enable examination of this association in preschoolers. The current study examines relations between reinforcement learning in preschoolers and parent ratings of reduced responsiveness to socialization, conceptualized as a…

  4. Prespeech motor learning in a neural network using reinforcement.

    PubMed

    Warlaumont, Anne S; Westermann, Gert; Buder, Eugene H; Oller, D Kimbrough

    2013-02-01

    Vocal motor development in infancy provides a crucial foundation for language development. Some significant early accomplishments include learning to control the process of phonation (the production of sound at the larynx) and learning to produce the sounds of one's language. Previous work has shown that social reinforcement shapes the kinds of vocalizations infants produce. We present a neural network model that provides an account of how vocal learning may be guided by reinforcement. The model consists of a self-organizing map that outputs to muscles of a realistic vocalization synthesizer. Vocalizations are spontaneously produced by the network. If a vocalization meets certain acoustic criteria, it is reinforced, and the weights are updated to make similar muscle activations increasingly likely to recur. We ran simulations of the model under various reinforcement criteria and tested the types of vocalizations it produced after learning in the different conditions. When reinforcement was contingent on the production of phonated (i.e. voiced) sounds, the network's post-learning productions were almost always phonated, whereas when reinforcement was not contingent on phonation, the network's post-learning productions were almost always not phonated. When reinforcement was contingent on both phonation and proximity to English vowels as opposed to Korean vowels, the model's post-learning productions were more likely to resemble the English vowels and vice versa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    DOT National Transportation Integrated Search

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  6. REINFORCING EFFECTS OF NICOTINE AND NON-NICOTINE COMPONENTS OF CIGARETTE SMOKE

    PubMed Central

    Rose, Jed E.; Salley, Al; Behm, Frederique M.; Bates, James E.; Westman, Eric C.

    2014-01-01

    We assessed the reinforcing effects of nicotine and non-nicotine components of cigarette smoke, by presenting a concurrent choice paradigm in which participants had access to intravenous (IV) nicotine infusions vs. saline (placebo) infusions and puffs from denicotinized (“denic”) cigarettes vs. air (sham puffs). We also measured the effects on self-administration of prior satiation with each component. Sixteen smokers participated in 7 sessions, consisting of: 1) a baseline smoking assessment, which was used to tailor the nicotine dose per infusion to that of puffs from subjects’ preferred brands of cigarettes; 2) two sessions in which participants were trained to discriminate IV nicotine vs. saline infusions and denic smoke vs. sham (air) puffs; and 3) four sessions assessing choice behavior after different satiation conditions. Results showed that subjects self-administered more puffs of denic smoke than any other alternative, including IV nicotine. IV nicotine, however, was preferred over IV saline and sham puffs. Preference for denic smoke vs. IV nicotine was highly correlated with subjective ratings of “comfort” associated with the two alternatives. Satiation with smoke diminished the number of denic puffs taken during choice periods, while prior administration of nicotine did not affect the number of puffs taken. Smoking withdrawal symptoms were alleviated both by nicotine administration and by denic smoke. These results show that in established smokers, non-nicotine aspects of cigarette smoking have potent reinforcing effects. While current smoking cessation pharmacotherapies primarily address the nicotine component of cigarette addiction, future cessation strategies should also be designed to target non-nicotine factors. PMID:20358364

  7. Addressing medication nonadherence by mobile phone: development and delivery of tailored messages.

    PubMed

    Gatwood, Justin; Balkrishnan, Rajesh; Erickson, Steven R; An, Lawrence C; Piette, John D; Farris, Karen B

    2014-01-01

    Medication nonadherence remains a significant public health problem, and efforts to improve adherence have shown only limited impact. The tailoring of messages has become a popular method of developing communication to influence specific health-related behaviors but the development and impact of tailored text messages on medication use is poorly understood. The aim of this paper is to describe an approach to developing theory-based tailored messages for delivery via mobile phone to improve medication adherence among patients with diabetes. Kreuter's five-step tailoring process was followed to create tailored messages for mobile phone delivery. Two focus group sessions, using input from 11 people, and expert review of message content were used to adapt the survey instrument on which the messages were tailored and edit the developed messages for the target population. Following established tailoring methods a library of 168 theory-driven and 128 medication-specific tailored messages were developed and formatted for automated delivery to mobile phones. Concepts from the Health Belief Model and Self-Determination Theory were used to craft the messages and an algorithm was applied to determine the order and timing of messages with the aim of progressively influencing disease and treatment-related beliefs driving adherence to diabetes medication. The process described may be applied to future investigations aiming to improve medication adherence in patients with diabetes and the effectiveness of the current messages will be tested in a planned analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. PARAMETRIC ANALYSIS OF DELAYED PRIMARY AND CONDITIONED REINFORCERS

    PubMed Central

    Leon, Yanerys; Borrero, John C.; DeLeon, Iser G.

    2016-01-01

    We examined the effects of delayed reinforcement on the responding of individuals with intellectual disabilities. Three conditions were evaluated: (a) food reinforcement, (b) token reinforcement with a postsession exchange opportunity, and (c) token reinforcement with a posttrial exchange opportunity. Within each condition, we assessed responding given (a) a no-reinforcement baseline, (b) immediate reinforcement, and (c) delayed reinforcement, in which responses produced a reinforcer after 1 of 6 delays. Results suggest that delayed food produced greater response persistence than did delayed tokens. PMID:27174440

  9. The Promise of Tailoring Incentives for Healthy Behaviors.

    PubMed

    Kullgren, Jeffrey T; Williams, Geoffrey C; Resnicow, Kenneth; An, Lawrence C; Rothberg, Amy; Volpp, Kevin G; Heisler, Michele

    2016-01-01

    To describe how tailoring financial incentives for healthy behaviors to employees' goals, values, and aspirations might improve the efficacy of incentives. We integrate insights from self-determination theory (SDT) with principles from behavioral economics in the design of financial incentives by linking how incentives could help meet an employee's life goals, values, or aspirations. Tailored financial incentives could be more effective than standard incentives in promoting autonomous motivation necessary to initiate healthy behaviors and sustain them after incentives are removed. Previous efforts to improve the design of financial incentives have tested different incentive designs that vary the size, schedule, timing, and target of incentives. Our strategy for tailoring incentives builds on strong evidence that difficult behavior changes are more successful when integrated with important life goals and values. We outline necessary research to examine the effectiveness of this approach among at-risk employees. Instead of offering simple financial rewards for engaging in healthy behaviors, existing programs could leverage incentives to promote employees' autonomous motivation for sustained health improvements. Effective application of these concepts could lead to programs more effective at improving health, potentially at lower cost. Our approach for the first time integrates key insights from SDT, behavioral economics, and tailoring to turn an extrinsic reward for behavior change into an internalized, self-sustaining motivator for long-term engagement in risk-reducing behaviors.

  10. Tailored metal matrix composites for high-temperature performance

    NASA Technical Reports Server (NTRS)

    Morel, M. R.; Saravanos, D. A.; Chamis, C. C.

    1992-01-01

    A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate.

  11. Partial reinforcement of avoidance and resistance to extinction in humans.

    PubMed

    Xia, Weike; Dymond, Simon; Lloyd, Keith; Vervliet, Bram

    2017-09-01

    In anxiety, maladaptive avoidance behavior provides for near-perfect controllability of potential threat. There has been little laboratory-based treatment research conducted on controllability as a contributing factor in the transition from adaptive to maladaptive avoidance. Here, we investigated for the first time whether partial reinforcement rate, or the reliability of avoidance at controlling or preventing contact with an aversive event, influences subsequent extinction of avoidance in humans. Five groups of participants were exposed to different partial reinforcement rates where avoidance cancelled upcoming shock on 100%, 75%, 50%, 25% or 0% of trials. During extinction, all shocks were withheld. Avoidance behavior, online shock expectancy ratings and skin conductance responses (SCRs) were measured throughout. We found that avoidance was a function of relative controllability: higher reinforcement rate groups engaged in significantly more extinction-resistant avoidance than lower reinforcement groups, and shock expectancy was inversely related with reinforcement rate during avoidance acquisition. Partial reinforcement effects were not evident in SCRs. Overall, the current study highlights the clinical relevance of laboratory-based treatment research on partial reinforcement or controllability effects on extinction of avoidance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Teaching self-control with qualitatively different reinforcers.

    PubMed

    Passage, Michael; Tincani, Matt; Hantula, Donald A

    2012-01-01

    This study examined the effectiveness of using qualitatively different reinforcers to teach self-control to an adolescent boy who had been diagnosed with an intellectual disability. First, he was instructed to engage in an activity without programmed reinforcement. Next, he was instructed to engage in the activity under a two-choice fixed-duration schedule of reinforcement. Finally, he was exposed to self-control training, during which the delay to a more preferred reinforcer was initially short and then increased incrementally relative to the delay to a less preferred reinforcer. Self-control training effectively increased time on task to earn the delayed reinforcer.

  13. A randomized study of reinforcing ambulatory exercise in older adults

    PubMed Central

    Petry, Nancy M.; Andrade, Leonardo F.; Barry, Danielle; Byrne, Shannon

    2014-01-01

    Many older adults do not meet physical activity recommendations and suffer from health-related complications. Reinforcement interventions can have pronounced effects on promoting behavior change; this study evaluated the efficacy of a reinforcement intervention to enhance walking in older adults. Forty-five sedentary adults with mild to moderate hypertension were randomized to 12-week interventions consisting of pedometers and guidelines to walk 10,000 steps/day or that same intervention with chances to win $1-$100 prizes for meeting recommendations. Patients walked an average of about 4,000 steps/day at baseline. Throughout the intervention, participants in the reinforcement intervention met walking goals on 82.5% ± 25.8% of days versus 55.3% ± 37.1% of days in the control condition, p < .01. Even though steps walked increased significantly in both groups relative to baseline, participants in the reinforcement condition walked an average of about 2,000 more steps/day than participants in the control condition, p < .02. Beneficial effects of the reinforcement condition relative to the control condition persisted at a 24-week follow-up evaluation, p < .02, although steps/day were lower than during the intervention period in both groups. Participants in the reinforcement intervention also evidenced greater reductions in blood pressure and weight over time and improvements in fitness indices, ps < .05. This reinforcement-based intervention substantially increased walking and improved clinical parameters, suggesting that larger-scale evaluations of reinforcement-based interventions for enhancing active lifestyles in older adults are warranted. Ultimately, economic analyses may reveal reinforcement interventions to be cost-effective, especially in high-risk populations of older adults. PMID:24128075

  14. In Situ Resource-Based Lunar and Martian Habitat Structures Development at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Bodiford, Melanie P.; Fiske, Michael R.; McGregory, Walter; Pope, Regina D.

    2005-01-01

    As the nation prepares to return to the Moon and subsequently to Mars, it is apparent that the viability of long duration visits with appropriate radiation shielding/crew protection, hinges on the development of habitat structures, preferably in advance of a manned landing, and preferably utilizing in-situ resources. A relatively large number of habitat structure configurations can be developed from a relatively small set of in-situ resource-based construction products, including, blocks, raw regolith, reinforced concrete, and glass products. A much larger group of habitat designs can be developed when "imported" material are brought from Earth, including thin films and liners, and foldable, or expandable metal structures. These, and other technologies have been identified, and subjected to a rigorous trade study evaluation with respect to exploration and other performance criteria. In this paper, results of this trade study will be presented, as well as various habitat structure design concepts and concepts for construction automation. Results of initial tests aimed at concrete, block and glass production using Lunar regolith simulants will also be presented. Key issues and concerns will be discussed, as well as design concepts for a Lunar environment testbed to be developed at MSFC's Microgravity Development Laboratory. (MDL).

  15. In-situ Resource-based Lunar and Martian Habitat Structures Development at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Bodiford, Melanie P.; Burks, Kevin H.; Fiske, Michael R.; Strong, Janet D.; McGregor, Walter

    2005-01-01

    As the nation prepares to return to the Moon and subsequently to Mars, it is apparent that the viability of long duration visits with appropriate radiation shielding/crew protection, hinges on the development of habitat structures, preferably in advance of a manned landing, and preferably utilizing in-situ resources. A relatively large number of habitat structure configurations can be developed from a relatively small set of in-situ resource-based construction products, including, blocks, raw regolith, reinforced concrete, and glass products. A much larger group of habitat designs can be developed when "imported" material are brought from Earth, including thin films and liners, and foldable, or expandable metal structures. These, and other technologies have been identified, and subjected to a rigorous trade study evaluation with respect to exploration and other performance criteria. In this paper, results of this trade study will be presented, as well as various habitat structure design concepts and concepts for construction automation. Results of initial tests aimed at concrete, block and glass production using Lunar regolith simulants will also be presented. Key issues and concerns will be discussed, as well as design concepts for a Lunar environment testbed to be developed at MSFC's Microgravity Development Laboratory (MDL).

  16. Effects of reinforcement value on instruction following under schedules of negative reinforcement.

    PubMed

    Alessandri, Jérôme; Cançado, Carlos R X; Abreu-Rodrigues, Josele

    2017-12-01

    The effects of reinforcement value and social control on instruction following under a negative-reinforcement (escape) schedule were studied. Initially, responding produced timeouts from pressing a force cell under a low and a high force requirement on a fixed-ratio 1 schedule of reinforcement. Next, participants were reexposed to the low and high force requirements, but were instructed that the experimenter expected them to decrease the number of timeouts relative to the previous exposures to the procedure. Even though following the instruction led to a decrease in number of timeouts and to an increase in effort (i.e., was non-efficient), instruction following occurred consistently for each participant and was modulated by reinforcement value. That is, the decrease in the number of timeouts (i.e., instruction following) was lower under the high force requirement than under the low force requirement. These results replicate and extend previous findings that instructions interact with social and nonsocial contingencies in controlling human behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films.

    PubMed

    Ge, Chen; Jin, Kui-Juan; Zhang, Qing-Hua; Du, Jian-Yu; Gu, Lin; Guo, Hai-Zhong; Yang, Jing-Ting; Gu, Jun-Xing; He, Meng; Xing, Jie; Wang, Can; Lu, Hui-Bin; Yang, Guo-Zhen

    2016-12-21

    The defect chemistry of perovskite oxides involves the cause to most of their abundant functional properties, including interface magnetism, charge transport, ionic exchange, and catalytic activity. The possibility to achieve dynamic control over oxygen anion vacancies offers a unique opportunity for the development of appealing switchable devices, which at present are commonly based on ferroelectric materials. Herein, we report the discovery of a switchable photovoltaic effect, that the sign of the open voltage and the short circuit current can be reversed by inverting the polarity of the applied field, upon electrically tailoring the distribution of oxygen vacancies in perovskite oxide films. This phenomenon is demonstrated in lateral photovoltaic devices based on both ferroelectric BiFeO 3 and paraelectric SrTiO 3 films, under a reversed applied field whose magnitude is much smaller than the coercivity value of BiFeO 3 . The migration of oxygen vacancies was directly observed by employing an advanced annular bright-field scanning transmission electron microscopy technique with in situ biasing equipment. We conclude that the band bending induced by the motion of oxygen vacancies is the driving force for the reversible switching between two photovoltaic states. The present work can provide an active path for the design of novel switchable photovoltaic devices with a wide range of transition metal oxides in terms of the ionic degrees of freedom.

  18. In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5′-azotetrazolate Cr(III) salts

    PubMed Central

    Miao, Yu; Qiu, Yanxuan; Cai, Jiawei; Wang, Zizhou; Yu, Xinwei; Dong, Wen

    2016-01-01

    The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5′-azotetrazolate(AZT2−) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials. PMID:27869221

  19. Asymmetry of Reinforcement and Punishment in Human Choice

    PubMed Central

    Rasmussen, Erin B; Newland, M Christopher

    2008-01-01

    The hypothesis that a penny lost is valued more highly than a penny earned was tested in human choice. Five participants clicked a computer mouse under concurrent variable-interval schedules of monetary reinforcement. In the no-punishment condition, the schedules arranged monetary gain. In the punishment conditions, a schedule of monetary loss was superimposed on one response alternative. Deviations from generalized matching using the free parameters c (sensitivity to reinforcement) and log k (bias) were compared in the no-punishment and punishment conditions. The no-punishment conditions yielded values of log k that approximated zero for all participants, indicating no bias. In the punishment condition, values of log k deviated substantially from zero, revealing a 3-fold bias toward the unpunished alternative. Moreover, the c parameters were substantially smaller in punished conditions. The values for bias and sensitivity under punishment did not change significantly when the measure of net reinforcers (gains minus losses) was applied to the analysis. These results mean that punishment reduced the sensitivity of behavior to reinforcement and biased performance toward the unpunished alternative. We concluded that a single punisher subtracted more value than a single reinforcer added, indicating an asymmetry in the law of effect. PMID:18422016

  20. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  1. The role of GABAB receptors in human reinforcement learning.

    PubMed

    Ort, Andres; Kometer, Michael; Rohde, Judith; Seifritz, Erich; Vollenweider, Franz X

    2014-10-01

    Behavioral evidence from human studies suggests that the γ-aminobutyric acid type B receptor (GABAB receptor) agonist baclofen modulates reinforcement learning and reduces craving in patients with addiction spectrum disorders. However, in contrast to the well established role of dopamine in reinforcement learning, the mechanisms by which the GABAB receptor influences reinforcement learning in humans remain completely unknown. To further elucidate this issue, a cross-over, double-blind, placebo-controlled study was performed in healthy human subjects (N=15) to test the effects of baclofen (20 and 50mg p.o.) on probabilistic reinforcement learning. Outcomes were the feedback-induced P2 component of the event-related potential, the feedback-related negativity, and the P300 component of the event-related potential. Baclofen produced a reduction of P2 amplitude over the course of the experiment, but did not modulate the feedback-related negativity. Furthermore, there was a trend towards increased learning after baclofen administration relative to placebo over the course of the experiment. The present results extend previous theories of reinforcement learning, which focus on the importance of mesolimbic dopamine signaling, and indicate that stimulation of cortical GABAB receptors in a fronto-parietal network leads to better attentional allocation in reinforcement learning. This observation is a first step in our understanding of how baclofen may improve reinforcement learning in healthy subjects. Further studies with bigger sample sizes are needed to corroborate this conclusion and furthermore, test this effect in patients with addiction spectrum disorder. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  2. Glass fiber reinforced polymer bars as top mat reinforcement for bridge decks.

    DOT National Transportation Integrated Search

    2002-01-01

    The objectives of this research were to characterize the material and bond properties of three commercially available GFRP (glass fiber reinforced polymer) reinforcing bars, and evaluate the effects of the material properties and the current ACI desi...

  3. Estimation of corrosion damage in steel reinforced mortar using waveguides

    NASA Astrophysics Data System (ADS)

    Reis, Henrique; Ervin, Benjamin L.; Kuchma, Daniel A.; Bernhard, Jennifer

    2005-05-01

    Corrosion of reinforced concrete is a chronic infrastructure problem, particularly in areas with deicing salt and marine exposure. To maintain structural integrity, a testing method is needed to identify areas of corroding reinforcement. For purposes of rehabilitation, the method must also be able to evaluate the degree, rate and location of damage. Towards the development of a wireless embedded sensor system to monitor and assess corrosion damage in reinforced concrete, reinforced mortar specimens were manufactured with seeded defects to simulate corrosion damage. Taking advantage of waveguide effects of the reinforcing bars, these specimens were then tested using an ultrasonic approach. Using the same ultrasonic approach, specimens without seeded defects were also monitored during accelerated corrosion tests. Both the ultrasonic sending and the receiving transducers were mounted on the steel rebar. Advantage was taken of the lower frequency (<250 kHz) fundamental flexural propagation mode because of its relatively large displacements at the interface between the reinforcing steel and the surrounding concrete. Waveform energy (indicative of attenuation) is presented and discussed in terms of corrosion damage. Current results indicate that the loss of bond strength between the reinforcing steel and the surrounding concrete can be detected and evaluated.

  4. A cost-effectiveness comparison of three tailored interventions to increase mammography screening.

    PubMed

    Saywell, Robert M; Champion, Victoria L; Skinner, Celette Sugg; Menon, Usha; Daggy, Joanne

    2004-10-01

    Mammography is the primary method used for breast cancer screening. However, adherence to recommended screening practices is still below acceptable levels. This study examined the cost-effectiveness of three combinations of tailored telephone and mailed intervention strategies for increasing adherence to mammography. There were 1044 participants who were randomly assigned to one of four groups. A logistic regression model with adherence as the dependent variable and group as the independent variable was used to test for significant differences, and a ratio of cost/improvement in mammogram adherence evaluated the cost-effectiveness. All three of the interventions (tailored telephone, tailored mail, and tailored telephone and mail) had significantly better adherence rates compared with the control group (usual care). However, when also considering costs, one emerged as the superior strategy. The cost-effectiveness ratios for the three interventions show that the tailored mail (letter) was the most cost-effective strategy, achieving 43.3% mammography adherence at a marginal cost of dollar 0.39 per 1% increase in women screened. The tailored mail plus telephone achieved greater adherence (49.4%), but at a higher cost (dollar 0.56 per 1% increase in women screened). A tailored mail reminder is an effective and economical intervention to increase mammography adherence. Future research should confirm this finding and address its applicability to practice in other settings.

  5. Integrity assessment of grouted posttensioning cables and reinforced concrete of a nuclear containment building

    NASA Astrophysics Data System (ADS)

    Philipose, K.; Shenton, B.

    2011-04-01

    The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA). To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1), Quebec, Canada (250 MWe) was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE) methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.

  6. Contemporary management of ductal carcinoma in situ and lobular carcinoma in situ.

    PubMed

    Obeng-Gyasi, Samilia; Ong, Cecilia; Hwang, E Shelley

    2016-06-01

    The management of in situ lesions ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) continues to evolve. These diagnoses now comprise a large burden of mammographically diagnosed cancers, and with a global trend towards more population-based screening, the incidence of these lesions will continue to rise. Because outcomes following treatment for DCIS and LCIS are excellent, there is emerging controversy about what extent of treatment is optimal for both diseases. Here we review the current approaches to the diagnosis and treatment of both DCIS and LCIS. In addition, we will consider potential directions for future management of these lesions.

  7. Implementation and evaluation of a simulation curriculum for paediatric residency programs including just-in-time in situ mock codes.

    PubMed

    Sam, Jonathan; Pierse, Michael; Al-Qahtani, Abdullah; Cheng, Adam

    2012-02-01

    To develop, implement and evaluate a simulation-based acute care curriculum in a paediatric residency program using an integrated and longitudinal approach. Curriculum framework consisting of three modular, year-specific courses and longitudinal just-in-time, in situ mock codes. Paediatric residency program at BC Children's Hospital, Vancouver, British Columbia. The three year-specific courses focused on the critical first 5 min, complex medical management and crisis resource management, respectively. The just-in-time in situ mock codes simulated the acute deterioration of an existing ward patient, prepared the actual multidisciplinary code team, and primed the surrounding crisis support systems. Each curriculum component was evaluated with surveys using a five-point Likert scale. A total of 40 resident surveys were completed after each of the modular courses, and an additional 28 surveys were completed for the overall simulation curriculum. The highest Likert scores were for hands-on skill stations, immersive simulation environment and crisis resource management teaching. Survey results also suggested that just-in-time mock codes were realistic, reinforced learning, and prepared ward teams for patient deterioration. A simulation-based acute care curriculum was successfully integrated into a paediatric residency program. It provides a model for integrating simulation-based learning into other training programs, as well as a model for any hospital that wishes to improve paediatric resuscitation outcomes using just-in-time in situ mock codes.

  8. Tailoring periodical collections to meet institutional needs.

    PubMed Central

    Delman, B S

    1984-01-01

    A system for tailoring journal collections to meet institutional needs is described. The approach is based on the view that reference work and collection development are variant and complementary forms of the same library function; both tasks have as their objective a literature response to information problems. Utilizing the tools and procedures of the reference search in response to a specific collection development problem topic, the author created a model ranked list of relevant journals. Finally, by linking the model to certain operational and environmental factors in three different health care organizations, he tailored the collection to meet the institutions' respective information needs. PMID:6375775

  9. Reinforcer Accumulation in a Token-Reinforcement Context with Pigeons

    ERIC Educational Resources Information Center

    Yankelevitz, Rachelle L.; Bullock, Christopher E.; Hackenberg, Timothy D.

    2008-01-01

    Four pigeons were exposed to a token-reinforcement procedure with stimulus lights serving as tokens. Responses on one key (the token-production key) produced tokens that could be exchanged for food during an exchange period. Exchange periods could be produced by satisfying a ratio requirement on a second key (the exchange-production key). The…

  10. Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose.

    PubMed

    Rico, M; Rodríguez-Llamazares, S; Barral, L; Bouza, R; Montero, B

    2016-09-20

    Biocomposites suitable for short-life applications such as food packaging were prepared by melt processing and investigated. Biocomposites studied are wheat starch plasticized with two different molecular weight polyols (glycerol and sorbitol) and reinforced with various amounts of microcrystalline cellulose. The effect of the plasticizer type and the filler amount on the processing properties, the crystallization behavior and morphology developed for the materials, and the influence on thermal stability, dynamic mechanical properties and water absorption behavior were investigated. Addition of microcrystalline cellulose led to composites with good filler-matrix adhesion where the stiffness and resistance to humidity absorption were improved. The use of sorbitol as a plasticizer of starch also improved the stiffness and water uptake behavior of the material as well as its thermal stability. Biodegradable starch-based materials with a wide variety of properties can be tailored by varying the polyol plasticizer type and/or by adding microcrystalline cellulose filler. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  12. Food reinforcement and delay discounting in zBMI-discordant siblings.

    PubMed

    Feda, Denise M; Roemmich, James N; Roberts, April; Epstein, Leonard H

    2015-02-01

    The interaction of food reinforcement and the inability to delay gratification are related to adult energy intake and obesity. This study was designed to test the association of sibling pair differences in relative reinforcing efficacy of food and delay discounting on sibling pair differences in zBMI scores of same-gender zBMI-discordant siblings. We tested main and interactive relationships between delay discounting and relative reinforcing efficacy of food on zBMI discordance in 14 zBMI-discordant biological sibling pairs (6 female pairs) using a discordant sibling study design. Sibling pair differences in relative reinforcing efficacy of food were associated with sibling pair differences in zBMI (p= 0.046); this effect was moderated by delay discounting (p <0.002). Sibling pairs with greater differences in relative reinforcing efficacy and delay discounting had greater differences in zBMI. The combination of greater sibling pair differences in delay discounting and relative reinforcing efficacy is associated with greater discordance in zBMI in adolescent sibling pairs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Developing Strategies for Waste Reduction by Means of Tailored Interventions in Santiago De Cuba

    ERIC Educational Resources Information Center

    Tobias, Robert; Brugger, Adrian; Mosler, Hans-Joachim

    2009-01-01

    This article introduces an approach to tailoring behavior-change campaigns to target populations using the example of solid waste reduction in Santiago de Cuba. Tailoring is performed in the following steps: (1) Psychological constructs are selected to detect problems in performing the target behavior, and data are gathered on these constructs.…

  14. Active Sensing System with In Situ Adjustable Sensor Morphology

    PubMed Central

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  15. A variation of noncontingent reinforcement in the treatment of aberrant behavior.

    PubMed

    Britton, L N; Carr, J E; Kellum, K K; Dozier, C L; Weil, T M

    2000-01-01

    We examined the effectiveness of a variation of noncontingent reinforcement (NCR) that incorporated a stimulus-delay procedure in the reduction of aberrant behavior maintained by positive reinforcement. Functional analyses for three individuals diagnosed with developmental disabilities indicated that their behaviors were maintained by positive reinforcement: one in the form of access to a tangible item, another by attention, and the third by physical contact. We implemented NCR with the delay procedure with two participants using reversal designs to evaluate effects. We also compared this NCR variation and DRO with the third participant to evaluate reinforcer-delivery rates. The variation of NCR was successful in reducing all aberrant behavior to near-zero levels. A comparison of reinforcer delivery between NCR with the stimulus-delay procedure and DRO demonstrated that the participant accessed more reinforcement with NCR. Results are discussed in the context of enhancing decelerative interventions with emphases on minimizing response effort for caregivers and maximizing access to reinforcement for the individuals.

  16. EXAMINING THE GENERALITY OF CHILDREN'S PREFERENCE FOR CONTINGENT REINFORCEMENT VIA EXTENSION TO DIFFERENT RESPONSES, REINFORCERS, AND SCHEDULES

    PubMed Central

    Luczynski, Kevin C; Hanley, Gregory P

    2010-01-01

    Studies that have assessed whether children prefer contingent reinforcement (CR) or noncontingent reinforcement (NCR) have shown that they prefer CR. Preference for CR has, however, been evaluated only under continuous reinforcement (CRF) schedules. The prevalence of intermittent reinforcement (INT) warrants an evaluation of whether preference for CR persists as the schedule of reinforcement is thinned. In the current study, we evaluated 2 children's preference for contingent versus noncontingent delivery of highly preferred edible items for academic task completion under CRF and INT schedules. Children (a) preferred CR to NCR under the CRF schedule, (b) continued to prefer CR as the schedule of reinforcement became intermittent, and (c) exhibited a shift in preference from CR to NCR as the schedule became increasingly thin. These findings extend the generality of and provide one set of limits to the preference for CR. Applied implications, variables controlling preferences, and future research are discussed. PMID:21358901

  17. A Comparison of Differential Reinforcement and Noncontingent Reinforcement to Treat Food Selectivity in a Child with Autism

    ERIC Educational Resources Information Center

    Allison, Janelle; Wilder, David A.; Chong, Ivy; Lugo, Ashley; Pike, Jessica; Rudy, Nikki

    2012-01-01

    We compared differential reinforcement plus escape extinction to noncontingent reinforcement plus escape extinction to treat food selectivity exhibited by a young child with autism. The interventions were equally effective for increasing bite acceptance and decreasing problem behaviors. However, a social validity measure suggested that…

  18. Applied Implications of Reinforcement History Effects

    ERIC Educational Resources Information Center

    Pipkin, Claire St. Peter; Vollmer, Timothy R.

    2009-01-01

    Although the influence of reinforcement history is a theoretical focus of behavior analysis, the specific behavioral effects of reinforcement history have received relatively little attention in applied research and practice. We examined the potential effects of reinforcement history by reviewing nonhuman, human operant, and applied research and…

  19. Noise canceling in-situ detection

    DOEpatents

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  20. Double-tailored nonimaging reflector optics for maximum-performance solar concentration.

    PubMed

    Goldstein, Alex; Gordon, Jeffrey M

    2010-09-01

    A nonimaging strategy that tailors two mirror contours for concentration near the étendue limit is explored, prompted by solar applications where a sizable gap between the optic and absorber is required. Subtle limitations of this simultaneous multiple surface method approach are derived, rooted in the manner in which phase space boundaries can be tailored according to the edge-ray principle. The fundamental categories of double-tailored reflective optics are identified, only a minority of which can pragmatically offer maximum concentration at high collection efficiency. Illustrative examples confirm that acceptance half-angles as large as 30 mrad can be realized at a flux concentration of approximately 1000.

  1. The tailored activity program (TAP) to address behavioral disturbances in frontotemporal dementia: a feasibility and pilot study.

    PubMed

    O'Connor, Claire M; Clemson, Lindy; Brodaty, Henry; Low, Lee-Fay; Jeon, Yun-Hee; Gitlin, Laura N; Piguet, Olivier; Mioshi, Eneida

    2017-10-15

    To explore the feasibility of implementing the Tailored Activity Program with a cohort of people with frontotemporal dementia and their carers (dyads). The Tailored Activity Program is an occupational therapy based intervention that involves working collaboratively with family carers and prescribes personalized activities for behavioral management in people with dementia. Twenty dyads randomized into the study (Tailored Activity Program: n = 9; Control: n = 11) were assessed at baseline and 4-months. Qualitative analyzes evaluated feasibility and acceptability of the program for the frontotemporal dementia cohort, and quantitative analyzes (linear mixed model analyzes, Spearman's rho correlations) measured the impact of the program on the dyads. The Tailored Activity Program was an acceptable intervention for the frontotemporal dementia dyads. Qualitative analyses identified five themes: "carer perceived benefits", "carer readiness to change", "strategies used by carer to engage person with dementia", "barriers to the Tailored Activity Program uptake/implementation", and "person with dementia engagement". Quantitative outcomes showed an overall reduction of behavioral symptoms (F 18.34  = 8.073, p = 0.011) and maintenance of functional performance in the person with dementia (F 18.03  = 0.375, p = 0.548). This study demonstrates the potential for using an activity-based intervention such as the Tailored Activity Program in frontotemporal dementia. Service providers should recognize that while people with frontotemporal dementia present with challenging issues, tailored therapies may support their function and reduce their behavioral symptoms. Implications for rehabilitation The Tailored Activity Program is an occupational therapy based intervention that involves prescribing personalized activities for behavioral management in dementia. The Tailored Activity Program is an acceptable and feasible intervention approach to address some of the

  2. Fracture Mechanics Modelling of an In Situ Concrete Spalling Experiment

    NASA Astrophysics Data System (ADS)

    Siren, Topias; Uotinen, Lauri; Rinne, Mikael; Shen, Baotang

    2015-07-01

    During the operation of nuclear waste disposal facilities, some sprayed concrete reinforced underground spaces will be in use for approximately 100 years. During this time of use, the local stress regime will be altered by the radioactive decay heat. The change in the stress state will impose high demands on sprayed concrete, as it may suffer stress damage or lose its adhesion to the rock surface. It is also unclear what kind of support pressure the sprayed concrete layer will apply to the rock. To investigate this, an in situ experiment is planned in the ONKALO underground rock characterization facility at Olkiluoto, Finland. A vertical experimental hole will be concreted, and the surrounding rock mass will be instrumented with heat sources, in order to simulate an increase in the surrounding stress field. The experiment is instrumented with an acoustic emission system for the observation of rock failure and temperature, as well as strain gauges to observe the thermo-mechanical interactive behaviour of the concrete and rock at several levels, in both rock and concrete. A thermo-mechanical fracture mechanics study is necessary for the prediction of the damage before the experiment, in order to plan the experiment and instrumentation, and for generating a proper prediction/outcome study due to the special nature of the in situ experiment. The prediction of acoustic emission patterns is made by Fracod 2D and the model later compared to the actual observed acoustic emissions. The fracture mechanics model will be compared to a COMSOL Multiphysics 3D model to study the geometrical effects along the hole axis.

  3. DISCRIMINATION ACQUISITION IN CHILDREN WITH DEVELOPMENTAL DISABILITIES UNDER IMMEDIATE AND DELAYED REINFORCEMENT

    PubMed Central

    Sy, Jolene R.; Vollmer, Timothy R.

    2012-01-01

    We evaluated the discrimination acquisition of individuals with developmental disabilities under immediate and delayed reinforcement. In Experiment 1, discrimination between two alternatives was examined when reinforcement was immediate or delayed by 20 s, 30 s, or 40 s. In Experiment 2, discrimination between 2 alternatives was compared across an immediate reinforcement condition and a delayed reinforcement condition in which subjects could respond during the delay. In Experiment 3, discrimination among 4 alternatives was compared across immediate and delayed reinforcement. In Experiment 4, discrimination between 2 alternatives was examined when reinforcement was immediate and 0-s or 30-s intertrial intervals (ITI) were programmed. For most subjects, discrimination acquisition occurred under immediate reinforcement. However, for some subjects, introducing delays slowed or prevented discrimination acquisition under some conditions. Results from Experiment 4 suggest that longer ITIs cannot account for the lack of discrimination under delayed reinforcement. PMID:23322925

  4. Technical Knowledge and Skills Development in the Informal Sector in Kenya: The Case of Custom Tailors

    ERIC Educational Resources Information Center

    Apunda, Edwinah Amondi; de Klerk, Helena M.; Ogina, Teresa

    2017-01-01

    Custom tailors working in the informal sector in Nairobi, Kenya, mainly acquire technical skills through undertaking traditional apprenticeships (TAs). However, most of these tailors are semi-skilled, produce low-quality products and are often poorer than their formally trained counterparts. This qualitative case study explores the aspects of…

  5. BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines ofmore » sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.« less

  6. Evaluation of post-fire strength of concrete flexural members reinforced with glass fiber reinforced polymer (GFRP) bars

    NASA Astrophysics Data System (ADS)

    Ellis, Devon S.

    Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when

  7. Behavior systems and reinforcement: an integrative approach.

    PubMed Central

    Timberlake, W

    1993-01-01

    Most traditional conceptions of reinforcement are based on a simple causal model in which responding is strengthened by the presentation of a reinforcer. I argue that reinforcement is better viewed as the outcome of constraint of a functioning causal system comprised of multiple interrelated causal sequences, complex linkages between causes and effects, and a set of initial conditions. Using a simplified system conception of the reinforcement situation, I review the similarities and drawbacks of traditional reinforcement models and analyze the recent contributions of cognitive, regulatory, and ecological approaches. Finally, I show how the concept of behavior systems can begin to incorporate both traditional and recent conceptions of reinforcement in an integrative approach. PMID:8354963

  8. The Promise of Tailoring Incentives for Healthy Behaviors

    PubMed Central

    Kullgren, Jeffrey T.; Williams, Geoffrey C.; Resnicow, Kenneth; An, Lawrence C.; Rothberg, Amy; Volpp, Kevin G.; Heisler, Michele

    2017-01-01

    Purpose To describe how tailoring financial incentives for healthy behaviors to employees’ goals, values, and aspirations might improve the efficacy of incentives. Design/methodology/approach We integrate insights from self-determination theory (SDT) with principles from behavioral economics in the design of financial incentives by linking how incentives could help meet an employee’s life goals, values, or aspirations. Findings Tailored financial incentives could be more effective than standard incentives in promoting autonomous motivation necessary to initiate healthy behaviors and sustain them after incentives are removed. Research implications Previous efforts to improve the design of financial incentives have tested different incentive designs that vary the size, schedule, timing, and target of incentives. Our strategy for tailoring incentives builds on strong evidence that difficult behavior changes are more successful when integrated with important life goals and values. We outline necessary research to examine the effectiveness of this approach among at-risk employees. Practical implications Instead of offering simple financial rewards for engaging in healthy behaviors, existing programs could leverage incentives to promote employees’ autonomous motivation for sustained health improvements. Social implications Effective application of these concepts could lead to programs more effective at improving health, potentially at lower cost. Originality/value Our approach for the first time integrates key insights from SDT, behavioral economics, and tailoring to turn an extrinsic reward for behavior change into an internalized, self-sustaining motivator for long-term engagement in risk-reducing behaviors. PMID:29242715

  9. Novel reinforcement learning paradigm based on response patterning under interval schedules of reinforcement.

    PubMed

    Schifani, Christin; Sukhanov, Ilya; Dorofeikova, Mariia; Bespalov, Anton

    2017-07-28

    There is a need to develop cognitive tasks that address valid neuropsychological constructs implicated in disease mechanisms and can be used in animals and humans to guide novel drug discovery. Present experiments aimed to characterize a novel reinforcement learning task based on a classical operant behavioral phenomenon observed in multiple species - differences in response patterning under variable (VI) vs fixed interval (FI) schedules of reinforcement. Wistar rats were trained to press a lever for food under VI30s and later weekly test sessions were introduced with reinforcement schedule switched to FI30s. During the FI30s test session, post-reinforcement pauses (PRPs) gradually grew towards the end of the session reaching 22-43% of the initial values. Animals could be retrained under VI30s conditions, and FI30s test sessions were repeated over a period of several months without appreciable signs of a practice effect. Administration of the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 ((5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) prior to FI30s sessions prevented adjustment of PRPs associated with the change from VI to FI schedule. This effect was most pronounced at the highest tested dose of MK-801 and appeared to be independent of the effects of this dose on response rates. These results provide initial evidence for the possibility to use different response patterning under VI and FI schedules with equivalent reinforcement density for studying effects of drug treatment on reinforcement learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fabrication of selectively functionalized-graphene reinforced copper phthalocyanine nanocomposites with low dielectric loss and high dielectric constant

    NASA Astrophysics Data System (ADS)

    Wang, Zicheng; Wei, Renbo; Liu, Xiaobo

    2017-01-01

    A novel kind of selectively functionalized-graphene reinforced copper phthalocyanine (RGO-O-CuPc) nanocomposites was successfully fabricated through a facile and effective three-step method, involving preferential surficial modification and reduction of graphene oxide (GO) sheets, and followed by incorporating with CuPc via in situ polymerization. The results of SEM, AFM, XPS, FTIR, XRD and UV-vis confirmed that GO was effectively surficial functionalized by a ring-open covalent reaction between amino in 3-aminophenoxyphthalonitrile (3-APN) and epoxy groups on the GO sheets, and partly reduced back to graphene under solvothermal conditions. And the RGO-O-CuPc was successfully fabricated by self-assembling of CuPc molecule on graphene sheets via in situ polymerization. As a consequence, the selective surface functionalization and solvothermal reduction of GO facilitated the improvement in the dielectric constant and AC conductivity, and the decrease in the dielectric loss of the graphene/CuPc nanocomposites.

  11. General theory of skin reinforcement.

    PubMed

    Kruglikov, Ilja L; Scherer, Philipp E

    2017-01-01

    Macroscopic mechanical properties of human skin in vivo cannot be considered independent of adjacent subcutaneous white adipose tissue (sWAT). The layered system skin/sWAT appears as the hierarchical structural composite in which single layers behave as fiber-reinforced structures. Effective macroscopic mechanical properties of such composites are mainly determined either by the properties of the skin or by those of the sWAT, dependent on the conditions of mechanical loading. Mechanical interactions between the skin and the adjacent sWAT associated with a mismatch in the mechanical moduli of these two layers can lead to production of the skin wrinkles. Reinforcement of the composite skin/sWAT can take place in different ways. It can be provided through reorientation of collagen fibers under applied loading, through production of new bonds between existing collagen fibers and through induction of additional collagen structures. Effectiveness of this type of reinforcement is strongly dependent on the type of mechanical loading. Different physical interventions induce the reinforcement of at least one of these two layers, thus increasing the effective macroscopic stiffness of the total composite. At the same time, the standalone reinforcement of the skin appears to be less effective to achieve a delay or a reduction of the apparent signs of skin aging relative to the reinforcement of the sWAT.

  12. Recent progress in NASA Langley textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced

  13. An ecological momentary intervention for smoking cessation: The associations of just-in-time, tailored messages with lapse risk factors.

    PubMed

    Hébert, Emily T; Stevens, Elise M; Frank, Summer G; Kendzor, Darla E; Wetter, David W; Zvolensky, Michael J; Buckner, Julia D; Businelle, Michael S

    2018-03-01

    Smartphone apps can provide real-time, tailored interventions for smoking cessation. The current study examines the effectiveness of a smartphone-based smoking cessation application that assessed risk for imminent smoking lapse multiple times per day and provided messages tailored to current smoking lapse risk and specific lapse triggers. Participants (N=59) recruited from a safety-net hospital smoking cessation clinic completed phone-based ecological momentary assessments (EMAs) 5 times/day for 3 consecutive weeks (1week pre-quit, 2weeks post-quit). Risk for smoking lapse was estimated in real-time using a novel weighted lapse risk estimator. With each EMA, participants received messages tailored to current level of risk for imminent smoking lapse and self-reported presence of smoking urge, stress, cigarette availability, and motivation to quit. Generalized linear mixed model analyses determined whether messages tailored to specific lapse risk factors were associated with greater reductions in these triggers than messages not tailored to specific triggers. Overall, messages tailored to smoking urge, cigarette availability, or stress corresponded with greater reductions in those triggers than messages that were not tailored to specific triggers (p's=0.02 to <0.001). Although messages tailored to stress were associated with greater reductions in stress than messages not tailored to stress, the association was non-significant (p=0.892) when only moments of high stress were included in the analysis. Mobile technology can be used to conduct real-time smoking lapse risk assessment and provide tailored treatment content. Findings provide initial evidence that tailored content may impact users' urge to smoke, stress, and cigarette availability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Basolateral amygdala lesions and sensitivity to reinforcer magnitude in concurrent chains schedules.

    PubMed

    Helms, Christa M; Mitchell, Suzanne H

    2008-08-22

    Previous studies show that the basolateral amygdala (BLA) is required for behavior to adjust when the value of a reinforcer decreases after satiation or pairing with gastric distress. This study evaluated the effect of pre- or post-training excitotoxic lesions of the BLA on changes in preference with another type of contingency change, reinforcer magnitude reversal. Rats were trained to press left and right levers during a variable-interval choice phase for 50 microl or 150 microl sucrose delivered to consistent locations after a 16-s delay. Tones were presented during the first and last 2s of the delay to reinforcement. The tone frequency predicted the magnitude of sucrose reinforcement in baseline conditions. All groups acquired stable preference for the lever on the large (150 microl) reinforcer side. However, nose poking during the delay to large reinforcement was highly accurate (i.e., to the reinforced side) for all groups except the rats with BLA lesions induced before training, suggesting impaired control of behavior by the tone. After the acquisition of stable preference, the locations of the reinforcer magnitudes were unpredictably reversed for a single session. Pre-training lesions blunted changes in preference when the reinforcer magnitudes were reversed. Lesions induced after stable preference was acquired, but prior to reversal, did not disrupt changes in preference. The data suggest that the BLA contributes to the adaptation of choice behavior following changes in reinforcer magnitude. Impaired learning about the tone-reinforcer magnitude relationships may have disrupted discrimination of the reinforcer magnitude reversal.

  15. BASOLATERAL AMYGDALA LESIONS AND SENSITIVITY TO REINFORCER MAGNITUDE IN CONCURRENT CHAINS SCHEDULES

    PubMed Central

    Helms, Christa M.; Mitchell, Suzanne H.

    2008-01-01

    Previous studies show that the basolateral amygdala (BLA) is required for behavior to adjust when the value of a reinforcer decreases after satiation or pairing with gastric distress. This study evaluated the effect of pre- or post-training excitotoxic lesions of the BLA on changes in preference with another type of contingency change, reinforcer magnitude reversal. Rats were trained to press left and right levers during a variable-interval choice phase for 50 µl or 150 µl sucrose delivered to consistent locations after a 16-s delay. Tones were presented during the first and last 2 s of the delay to reinforcement. The tone frequency predicted the magnitude of sucrose reinforcement in baseline conditions. All groups acquired stable preference for the lever on the large (150-µl) reinforcer side. However, nose poking during the delay to large reinforcement was highly accurate (i.e., to the reinforced side) for all groups except the rats with BLA lesions induced before training, suggesting impaired control of behavior by the tone. After the acquisition of stable preference, the locations of the reinforcer magnitudes were unpredictably reversed for a single session. Pre-training lesions blunted changes in preference when the reinforcer magnitudes were reversed. Lesions induced after stable preference was acquired, but prior to reversal, did not disrupt changes in preference. The data suggest that the BLA contributes to the adaptation of choice behavior following changes in reinforcer magnitude. Impaired learning about the tone-reinforcer magnitude relationships may have disrupted discrimination of the reinforcer magnitude reversal. PMID:18455812

  16. Biological and nano-indentation properties of polybenzoxazine-based composites reinforced with zirconia particles as a novel biomaterial.

    PubMed

    Lotfi, L; Javadpour, J; Naimi-Jamal, M R

    2018-01-01

    The biological and mechanical properties of substances are relevant to their application as biomaterials and there are many efforts to enhance biocompatibility and mechanical properties of bio-medical materials. In this study, to achieve a low rate of shrinkage during polymerization, good mechanical properties, and excellent biocompatibility, benzoxazine based composites were synthesized. Benzoxazine monomer was synthesized using a solventless method. FTIR and DSC analysis were carried out to determine the appropriate polymerization temperature. The low viscosity of the benzoxazine monomer at 70°C attract us to use in situ polymerization after high speed ball milling of the benzoxazine and it mixture with different weight fractions of zirconia particles. Dispersion and adhesion between the ceramic and polymer components were evaluate by SEM. To evaluate the biological properties and toxicity of the polybenzoxazine-based composite samples reinforced with zirconia particles, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay was conducted. The micromechanical properties of each composite were evaluated by more than 20 nanoindentation tests and 3 nanoscratching tests. Surface topography of scratched regions was investigated using Atomic Force Microscopy. Shrinkage was simulated by Materials Studio software. SEM images showed good dispersion and adhesion between the ceramic and polymer components. Biocompatibility assay showed excellent in vitro biocompatibility. Nano-indentation force-displacement curves showed matrix, reinforcement and interphase regions in specimens and excellent homogeneity in mechanical properties. The nanoindentation results showed that the addition of zirconia particles to the polybenzoxazine matrix increased the modulus and hardness of the neat polybenzoxazine; however, by adding more than an optimum level of reinforcement particles, the mechanical properties decreased due to the agglomeration of reinforcement particles and

  17. Thermal Characterization of Carbon Fiber-Reinforced Carbon Composites

    NASA Astrophysics Data System (ADS)

    Macias, J. D.; Bante-Guerra, J.; Cervantes-Alvarez, F.; Rodrìguez-Gattorno, G.; Arés-Muzio, O.; Romero-Paredes, H.; Arancibia-Bulnes, C. A.; Ramos-Sánchez, V.; Villafán-Vidales, H. I.; Ordonez-Miranda, J.; Li Voti, R.; Alvarado-Gil, J. J.

    2018-04-01

    Carbon fiber-reinforced carbon (C/C) composites consist in a carbon matrix holding carbon or graphite fibers together, whose physical properties are determined not only by those of their individual components, but also by the layer buildup and the material preparation and processing. The complex structure of C/C composites along with the fiber orientation provide an effective means for tailoring their mechanical, electrical, and thermal properties. In this work, we use the Laser Flash Technique to measure the thermal diffusivity and thermal conductivity of C/C composites made up of laminates of weaved bundles of carbon fibers, forming a regular and repeated orthogonal pattern, embedded in a graphite matrix. Our experimental data show that: i) the cross-plane thermal conductivity remains practically constant around (5.3 ± 0.4) W·m-1 K-1, within the temperature range from 370 K to 1700 K. ii) The thermal diffusivity and thermal conductivity along the cross-plane direction to the fibers axis is about five times smaller than the corresponding ones in the laminates plane. iii) The measured cross-plane thermal conductivity is well described by a theoretical model that considers both the conductive and radiative thermal contributions of the effective thermal conductivity.

  18. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Hartle, M. S.; Mcknight, R. L.; Huang, H.; Holt, R.

    1992-01-01

    Described here are the accomplishments of a 5-year program to develop a methodology for coupled structural, thermal, electromagnetic analysis tailoring of graded component structures. The capabilities developed over the course of the program are the analyzer module and the tailoring module for the modeling of graded materials. Highlighted accomplishments for the past year include the addition of a buckling analysis capability, the addition of mode shape slope calculation for flutter analysis, verification of the analysis modules using simulated components, and verification of the tailoring module.

  19. Reinforcement learning in complementarity game and population dynamics

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Li, Wei

    2014-02-01

    We systematically test and compare different reinforcement learning schemes in a complementarity game [J. Jost and W. Li, Physica A 345, 245 (2005), 10.1016/j.physa.2004.07.005] played between members of two populations. More precisely, we study the Roth-Erev, Bush-Mosteller, and SoftMax reinforcement learning schemes. A modified version of Roth-Erev with a power exponent of 1.5, as opposed to 1 in the standard version, performs best. We also compare these reinforcement learning strategies with evolutionary schemes. This gives insight into aspects like the issue of quick adaptation as opposed to systematic exploration or the role of learning rates.

  20. Differences in use and impact of computer-tailored dietary fat-feedback according to stage of change and education.

    PubMed

    Brug, J; van Assema, P

    2000-06-01

    Computer-tailored written nutrition education has been found to be more effective in motivating people to reduce their consumption of fat than traditional written information. The present study aimed to test whether this innovative nutrition education intervention is also suitable for people with low motivation to change and low education among a self-selected sample of 699 adults. Computer-tailored feedback proved to be more effective in motivating precontemplators to proceed towards fat reduction than general information. Higher appreciation and use of the computer-tailored fat-feedback was found among respondents in contemplation than in other stages. No difference in impact of computer-tailored fat-feedback on fat intake was found between educational groups. Respondents with low education were more positive about how interesting and how personally relevant the tailored letters were. It was concluded that printed computer-tailored fat-feedback can be applied successfully to motivate precontemplators and people with low education to (consider to) reduce their fat intake.

  1. Evaluation of stainless steel reinforcement construction project

    DOT National Transportation Integrated Search

    2003-02-01

    Stainless steel reinforcement has greater corrosion resistance than that of the conventional reinforcement. In this project, bridge A6059, the first in Missouri utilizing stainless steel reinforcement in the deck, was constructed, along with bridge A...

  2. Computer-tailored dietary behaviour change interventions: a systematic review

    PubMed Central

    Neville, Leonie M.; O'Hara, Blythe; Milat, Andrew J.

    2009-01-01

    Improving dietary behaviours such as increasing fruit and vegetable consumption and reducing saturated fat intake are important in the promotion of better health. Computer tailoring has shown promise as a strategy to promote such behaviours. A narrative systematic review was conducted to describe the available evidence on ‘second’-generation computer-tailored primary prevention interventions for dietary behaviour change and to determine their effectiveness and key characteristics of success. Systematic literature searches were conducted through five databases: Medline, Embase, PsycINFO, CINAHL and All EBM Reviews and by examining the reference lists of relevant articles to identify studies published in English from January 1996 to 2008. Randomized controlled trials or quasi-experimental designs with pre-test and post-test behavioural outcome data were included. A total of 13 articles were reviewed, describing the evaluation of 12 interventions, seven of which found significant positive effects of the computer-tailored interventions for dietary behaviour outcomes, one also for weight reduction outcomes. Although the evidence of short-term efficacy for computer-tailored dietary behaviour change interventions is fairly strong, the uncertainty lies in whether the reported effects are generalizable and sustained long term. Further research is required to address these limitations of the evidence. PMID:19286893

  3. Validation of Design and Analysis Techniques of Tailored Composite Structures

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C. (Technical Monitor); Wijayratne, Dulnath D.

    2004-01-01

    Aeroelasticity is the relationship between the elasticity of an aircraft structure and its aerodynamics. This relationship can cause instabilities such as flutter in a wing. Engineers have long studied aeroelasticity to ensure such instabilities do not become a problem within normal operating conditions. In recent decades structural tailoring has been used to take advantage of aeroelasticity. It is possible to tailor an aircraft structure to respond favorably to multiple different flight regimes such as takeoff, landing, cruise, 2-g pull up, etc. Structures can be designed so that these responses provide an aerodynamic advantage. This research investigates the ability to design and analyze tailored structures made from filamentary composites. Specifically the accuracy of tailored composite analysis must be verified if this design technique is to become feasible. To pursue this idea, a validation experiment has been performed on a small-scale filamentary composite wing box. The box is tailored such that its cover panels induce a global bend-twist coupling under an applied load. Two types of analysis were chosen for the experiment. The first is a closed form analysis based on a theoretical model of a single cell tailored box beam and the second is a finite element analysis. The predicted results are compared with the measured data to validate the analyses. The comparison of results show that the finite element analysis is capable of predicting displacements and strains to within 10% on the small-scale structure. The closed form code is consistently able to predict the wing box bending to 25% of the measured value. This error is expected due to simplifying assumptions in the closed form analysis. Differences between the closed form code representation and the wing box specimen caused large errors in the twist prediction. The closed form analysis prediction of twist has not been validated from this test.

  4. A Comparison of a Bayesian and a Maximum Likelihood Tailored Testing Procedure.

    ERIC Educational Resources Information Center

    McKinley, Robert L.; Reckase, Mark D.

    A study was conducted to compare tailored testing procedures based on a Bayesian ability estimation technique and on a maximum likelihood ability estimation technique. The Bayesian tailored testing procedure selected items so as to minimize the posterior variance of the ability estimate distribution, while the maximum likelihood tailored testing…

  5. Models to Tailor Brain Stimulation Therapies in Stroke

    PubMed Central

    Plow, E. B.; Sankarasubramanian, V.; Cunningham, D. A.; Potter-Baker, K.; Varnerin, N.; Cohen, L. G.; Sterr, A.; Conforto, A. B.; Machado, A. G.

    2016-01-01

    A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke. PMID:27006833

  6. Hybrid RTM process: Monitoring and processing of composites based on reactive thermoplastic systems

    NASA Astrophysics Data System (ADS)

    Dkier, Mohamed; Lamnawar, Khalid; Maazouz, Abderrahim

    2017-10-01

    In this work, hybrid process coupling "Reactive Extrusion" and "Resin Transfer Molding" machine (T-ERTM) equipped with an instrumented mold was designed and developed. Polyamides model matrix according to two kinds of polymerizations were studied as well anionic and chain extension reactions. For the former, different ratios of catalyst and activator were investigated. For the latter, various formulations of prepolymer with chain extender (CA) were studied at different stoichiometry ratios and temperatures. Since that both reaction kinetics are very fast to be monitored at short times by usual technics, the chemo-rheological evolutions were firstly studied ex-situ by coupling rheology with FTIR and dielectric spectroscopy (DRS). Secondly, the T-ERTM process with an "instrumented mold" was developed with specific dielectric sensors in order to in-situ track viscosity and reaction evolution. The in-situ results corroborate the ex-situ ones aforementioned. Overall, a processing window was obtained for each reactive system to ensure a good preform impregnation for the manufacturing of complex and continuous glass fiber-reinforced parts. Herein, the Time-Temperature-Transformation-equivalent diagrams were established to obtain Thermoplastic composites with tailored mechanical and physical properties.

  7. ADVANTAGES/DISADVANTAGES FOR ISCO METHODS IN-SITU FENTON OXIDATION IN-SITU PERMANGANATE OXIDATION

    EPA Science Inventory

    The advantages and disadvantages of in-situ Fenton oxidation and in-situ permanganate oxidation will be presented. This presentation will provide a brief overview of each technology and a detailed analysis of the advantages and disadvantages of each technology. Included in the ...

  8. Meretrix lusoria--a natural biocomposite material: in situ analysis of hierarchical fabrication and micro-hardness.

    PubMed

    Zhu, Zhihong; Tong, Hua; Ren, Yaoyao; Hu, Jiming

    2006-01-01

    The ultrastructure of clam (Meretrix lusoria) was investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction analyzer (XRD) combining with in situ texture decalcified technique and the micro-hardness of clam was determined, in order to understand the spatial relationship between the mineral phase and organic matrix and further explain the correlation between the property and structure. The results showed that hierarchical fabrication is the major structure character of this mollusc shell. There is specific braided structure forming from domains composed of needle-like structure made up of the single crystal of aragonite. High magnification TEM image of clam indicates the intracrystal region of the aragonite single crystal is made up of subgrain phase and some amorphous substance. There are various crystal grain growth preferential orientations in the different growth direction of the shell. An amount of organic microtubule distribute evenly in the base of calcium carbonate as reinforcement phase. The mechanical property of this natural biological composite is better than other aragonite layer of mollusc shells and pearls according to the data of micro-hardness testing. The braided structure and organic microtubule reinforcement phase are responsible for its high mechanical performance. The stereo hierarchical fabrication of clam was elucidated for the first time.

  9. Generalization of value in reinforcement learning by humans.

    PubMed

    Wimmer, G Elliott; Daw, Nathaniel D; Shohamy, Daphna

    2012-04-01

    Research in decision-making has focused on the role of dopamine and its striatal targets in guiding choices via learned stimulus-reward or stimulus-response associations, behavior that is well described by reinforcement learning theories. However, basic reinforcement learning is relatively limited in scope and does not explain how learning about stimulus regularities or relations may guide decision-making. A candidate mechanism for this type of learning comes from the domain of memory, which has highlighted a role for the hippocampus in learning of stimulus-stimulus relations, typically dissociated from the role of the striatum in stimulus-response learning. Here, we used functional magnetic resonance imaging and computational model-based analyses to examine the joint contributions of these mechanisms to reinforcement learning. Humans performed a reinforcement learning task with added relational structure, modeled after tasks used to isolate hippocampal contributions to memory. On each trial participants chose one of four options, but the reward probabilities for pairs of options were correlated across trials. This (uninstructed) relationship between pairs of options potentially enabled an observer to learn about option values based on experience with the other options and to generalize across them. We observed blood oxygen level-dependent (BOLD) activity related to learning in the striatum and also in the hippocampus. By comparing a basic reinforcement learning model to one augmented to allow feedback to generalize between correlated options, we tested whether choice behavior and BOLD activity were influenced by the opportunity to generalize across correlated options. Although such generalization goes beyond standard computational accounts of reinforcement learning and striatal BOLD, both choices and striatal BOLD activity were better explained by the augmented model. Consistent with the hypothesized role for the hippocampus in this generalization, functional

  10. Three-Dimensional-Moldable Nanofiber-Reinforced Transparent Composites with a Hierarchically Self-Assembled "Reverse" Nacre-like Architecture.

    PubMed

    Biswas, Subir K; Sano, Hironari; Shams, Md Iftekhar; Yano, Hiroyuki

    2017-09-06

    Achieving a structural hierarchy and a uniform nanofiller dispersion simultaneously remains highly challenging for obtaining a robust polymer nanocomposite of immiscible components. In this study, a remarkably facile Pickering emulsification approach is developed to fabricate hierarchical composites of immiscible acrylic polymer and native cellulose nanofibers by taking advantage of the dual role of the nanofibers as both emulsion stabilizer and polymer reinforcement. The composites feature a unique "reverse" nacre-like microstructure reinforced with a well-dispersed two-tier hierarchical nanofiber network, leading to a synergistic high strength, modulus, and toughness (20, 50, and 53 times that of neat polymer, respectively), high optical transparency (89%), high flexibility, and a drastically low thermal expansion (13 ppm K -1 , 1/15th of the neat polymer). The nanocomposites have a three-dimensional-shape moldability, also their surface can be patterned with micro/nanoscale features with high fidelity by in situ compression molding, making them attractive as the substrate for flexible displays, smart contact lens devices, and photovoltaics. The Pickering emulsification approach should be broadly applicable for the fabrication of novel functional materials of various immiscible components.

  11. Facilitating tolerance of delayed reinforcement during functional communication training.

    PubMed

    Fisher, W W; Thompson, R H; Hagopian, L P; Bowman, L G; Krug, A

    2000-01-01

    Few clinical investigations have addressed the problem of delayed reinforcement. In this investigation, three individuals whose destructive behavior was maintained by positive reinforcement were treated using functional communication training (FCT) with extinction (EXT). Next, procedures used in the basic literature on delayed reinforcement and self-control (reinforcer delay fading, punishment of impulsive responding, and provision of an alternative activity during reinforcer delay) were used to teach participants to tolerate delayed reinforcement. With the first case, reinforcer delay fading alone was effective at maintaining low rates of destructive behavior while introducing delayed reinforcement. In the second case, the addition of a punishment component reduced destructive behavior to near-zero levels and facilitated reinforcer delay fading. With the third case, reinforcer delay fading was associated with increases in masturbation and head rolling, but prompting and praising the individual for completing work during the delay interval reduced all problem behaviors and facilitated reinforcer delay fading.

  12. Failure to produce response variability with reinforcement

    PubMed Central

    Schwartz, Barry

    1982-01-01

    Two experiments attempted to train pigeons to produce variable response sequences. In the first, naive pigeons were exposed to a procedure requiring four pecks on each of two keys in any order, with a reinforcer delivered only if a given sequence was different from the preceding one. In the second experiment, the same pigeons were exposed to this procedure after having been trained successfully to alternate between two specific response sequences. In neither case did any pigeon produce more than a few different sequences or obtain more than 50% of the possible reinforcers. Stereotyped sequences developed even though stereotypy was not reinforced. It is suggested that reinforcers have both hedonic and informative properties and that the hedonic properties are responsible for sterotyped repetition of reinforced responses, even when stereotypy is negatively related to reinforcer delivery. PMID:16812263

  13. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene.

    PubMed

    Huang, Yan-Fei; Xu, Jia-Zhuang; Li, Jian-Shu; He, Ben-Xiang; Xu, Ling; Li, Zhong-Ming

    2014-08-01

    The low efficiency of fabrication of ultrahigh molecular weight polyethylene (UHMWPE)-based artificial knee joint implants is a bottleneck problem because of its extremely high melt viscosity. We prepared melt processable UHMWPE (MP-UHMWPE) by addition of 9.8 wt% ultralow molecular weight polyethylene (ULMWPE) as a flow accelerator. More importantly, an intense shear flow was applied during injection molding of MP-UHMWPE, which on one hand, promoted the self-diffusion of UHMWPE chains, thus effectively reducing the structural defects; on the other hand, increased the overall crystallinity and induced the formation of self-reinforcing superstructure, i.e., interlocked shish-kebabs and oriented lamellae. Aside from the good biocompatibility, and the superior fatigue and wear resistance to the compression-molded UHMWPE, the injection-molded MP-UHMWPE exhibits a noteworthy enhancement in tensile properties and impact strength, where the yield strength increases to 46.3 ± 4.4 MPa with an increment of 128.0%, the ultimate tensile strength and Young's modulus rise remarkably up to 65.5 ± 5.0 MPa and 1248.7 ± 45.3 MPa, respectively, and the impact strength reaches 90.6 kJ/m(2). These results suggested such melt processed and self-reinforced UHMWPE parts hold a great application promise for use of knee joint implants, particularly for younger and more active patients. Our work sets up a new method to fabricate high-performance UHMWPE implants by tailoring the superstructure during thermoplastic processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    PubMed

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    DTIC Science & Technology

    2010-02-01

    reinforcement if the enamel is broken  Embedded cement grains hydrate if enamel is cracked to self-heal with the formation of calcium silicate hydrate Goal...Reinforced Concrete Pavement The 600% volume change in the iron to iron oxide formation put the concrete in tension and it cracks an spalls BUILDING...corrodes prematurely and delaminates the pavement  Moisture and chlorides can move through the natural porosity of concrete and the cracks in the

  16. Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer

    PubMed Central

    Hao, Mingyang; Qiu, Feng; Wang, Xiwen

    2018-01-01

    To improve the interfacial bonding of sisal fiber-reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with addition of a commercial grade epoxy-functionalized oligomer Joncryl ADR@-4368 (ADR). The FTIR (Fourier Transform infrared spectroscopy) analysis and SEM (scanning electron microscope) characterization demonstrated that the PLA molecular chain was bonded to the fiber surface and the epoxy-functionalized oligomer played a hinge-like role between the sisal fibers and the PLA matrix, which resulted in improved interfacial adhesion between the fibers and the PLA matrix. The interfacial reaction and microstructures of composites were further investigated by thermal and rheological analyses, which indicated that the mobility of the PLA molecular chain in composites was restricted because of the introduction of the ADR oligomer, which in turn reflected the improved interfacial interaction between SF and the PLA matrix. These results were further justified with the calculation of activation energies of glass transition relaxation (∆Ea) by dynamic mechanical analysis. The mechanical properties of PLA/SF composites were simultaneously reinforced and toughened with the addition of ADR oligomer. The interfacial interaction and structure–properties relationship of the composites are the key points of this study. PMID:29518949

  17. Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer.

    PubMed

    Hao, Mingyang; Wu, Hongwu; Qiu, Feng; Wang, Xiwen

    2018-03-07

    To improve the interfacial bonding of sisal fiber-reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with addition of a commercial grade epoxy-functionalized oligomer Joncryl ADR @ -4368 (ADR). The FTIR (Fourier Transform infrared spectroscopy) analysis and SEM (scanning electron microscope) characterization demonstrated that the PLA molecular chain was bonded to the fiber surface and the epoxy-functionalized oligomer played a hinge-like role between the sisal fibers and the PLA matrix, which resulted in improved interfacial adhesion between the fibers and the PLA matrix. The interfacial reaction and microstructures of composites were further investigated by thermal and rheological analyses, which indicated that the mobility of the PLA molecular chain in composites was restricted because of the introduction of the ADR oligomer, which in turn reflected the improved interfacial interaction between SF and the PLA matrix. These results were further justified with the calculation of activation energies of glass transition relaxation (∆ E a ) by dynamic mechanical analysis. The mechanical properties of PLA/SF composites were simultaneously reinforced and toughened with the addition of ADR oligomer. The interfacial interaction and structure-properties relationship of the composites are the key points of this study.

  18. Testing a Dutch web-based tailored lifestyle programme among adults: a study protocol.

    PubMed

    Schulz, Daniela N; Kremers, Stef Pj; van Osch, Liesbeth Adm; Schneider, Francine; van Adrichem, Mathieu Jg; de Vries, Hein

    2011-02-16

    Smoking, high alcohol consumption, unhealthy eating habits and physical inactivity often lead to (chronic) diseases, such as cardiovascular diseases and cancer. Tailored online interventions have been proven to be effective in changing health behaviours. The aim of this study is to test and compare the effectiveness of two different tailoring strategies for changing lifestyle compared to a control group using a multiple health behaviour web-based approach. In our Internet-based tailored programme, the five lifestyle behaviours of smoking, alcohol intake, fruit consumption, vegetable consumption, and physical activity are addressed. This randomized controlled trial, conducted among Dutch adults, includes two experimental groups (i.e., a sequential behaviour tailoring condition and a simultaneous behaviour tailoring condition) and a control group. People in the sequential behaviour tailoring condition obtain feedback on whether their lifestyle behaviours meet the Dutch recommendations. Using a step-by-step approach, they are stimulated to continue with a computer tailored module to change only one unhealthy behaviour first. In the course of the study, they can proceed to change a second behaviour. People in the simultaneous behaviour tailoring condition receive computer tailored feedback about all their unhealthy behaviours during their first visit as a stimulation to change all unhealthy behaviours. The experimental groups can re-visit the website and can then receive ipsative feedback (i.e., current scores are compared to previous scores in order to give feedback about potential changes). The (difference in) effectiveness of the different versions of the programme will be tested and compared to a control group, in which respondents only receive a short health risk appraisal. Programme evaluations will assess satisfaction with and appreciation and personal relevance of the intervention among the respondents. Finally, potential subgroup differences pertaining to

  19. The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley.

    PubMed

    Jensen, Helen R; Dreiseitl, Antonín; Sadiki, Mohammed; Schoen, Daniel J

    2012-06-01

    Plant geneticists have proposed that the dynamic conservation of crop plants in farm environments (in situ conservation) is complementary to static conservation in seed banks (ex situ conservation) because it may help to ensure adaptation to changing conditions. Here, we test whether collections of a traditional variety of Moroccan barley (Hordeum vulgare ssp. vulgare) conserved ex situ showed differences in qualitative and quantitative resistance to the endemic fungal pathogen, Blumeria graminis f.sp. hordei, compared to collections that were continuously cultivated in situ. In detached-leaf assays for qualitative resistance, there were some significant differences between in situ and ex situ conserved collections from the same localities. Some ex situ conserved collections showed lower resistance levels, while others showed higher resistance levels than their in situ conserved counterparts. In field trials for quantitative resistance, similar results were observed, with the highest resistance observed in situ. Overall, this study identifies some cases where the Red Queen appears to drive the evolution of increased resistance in situ. However, in situ conservation does not always result in improved adaptation to pathogen virulence, suggesting a more complex evolutionary scenario, consistent with several published examples of plant-pathogen co-evolution in wild systems.

  20. Partial reinforcement (acquisition) effects within subjects

    PubMed Central

    Amsel, Abram; MacKinnon, John R.; Rashotte, Michael E.; Surridge, C. Thomas

    1964-01-01

    Acquisition performance of 22 rats in a straight alley runway was examined. The animals were subjected to partial reinforcement when the alley was black (B±) and continuous reinforcement when it was white (W+). The results indicated (a) higher terminal performance, for partial as against continuous reinforcement conditions, for starting-time and running-time measures, and (b) lower terminal performance under partial conditions for a goal-entry-time measure. These results confirm within subjects an effect previously demonstrated, in the runway, only in between-groups tests, where one group is run under partial reinforcement and a separate group is run under continuous reinforcement in the presence of the same external stimuli. Differences between the runway situation, employing a discrete-trial procedure and performance measures at three points in the response chain, and the Skinner box situation, used in its free-operant mode with a single performance measure, are discussed in relation to the present findings. PMID:14130088

  1. PARTIAL REINFORCEMENT (ACQUISITION) EFFECTS WITHIN SUBJECTS.

    PubMed

    AMSEL, A; MACKINNON, J R; RASHOTTE, M E; SURRIDGE, C T

    1964-03-01

    Acquisition performance of 22 rats in a straight alley runway was examined. The animals were subjected to partial reinforcement when the alley was black (B+/-) and continuous reinforcement when it was white (W+). The results indicated (a) higher terminal performance, for partial as against continuous reinforcement conditions, for starting-time and running-time measures, and (b) lower terminal performance under partial conditions for a goal-entry-time measure. These results confirm within subjects an effect previously demonstrated, in the runway, only in between-groups tests, where one group is run under partial reinforcement and a separate group is run under continuous reinforcement in the presence of the same external stimuli. Differences between the runway situation, employing a discrete-trial procedure and performance measures at three points in the response chain, and the Skinner box situation, used in its free-operant mode with a single performance measure, are discussed in relation to the present findings.

  2. Alternative Reinforcer Response Cost Impacts Cocaine Choice in Humans

    PubMed Central

    Stoops, William W.; Lile, Joshua A.; Glaser, Paul E.A.; Hays, Lon R.; Rush, Craig R.

    2011-01-01

    Cocaine use disorders are an unrelenting public health concern. Behavioral treatments reduce cocaine use by providing non-drug alternative reinforcers. The purpose of this human laboratory experiment was to determine how response cost for non-drug alternative reinforcers influenced cocaine choice. Seven cocaine-using, non-treatment-seeking subjects completed a crossover, double-blind protocol in which they first sampled doses of intranasal cocaine (5, 10, 20 or 30 mg) and completed a battery of subject-rated and physiological measures. Subjects then made eight discrete choices between the sampled dose and an alternative reinforce (US$0.25). The response cost to earn a cocaine dose was always a fixed ratio (FR) of 100 responses. The response cost for the alternative reinforcer varied across sessions (FR1, FR10, FR100, FR1000). Dose-related increases were observed for cocaine choice. Subjects made fewer drug choices when the FR requirements for the alternative reinforcers were lower than that for drug relative to when the FR requirements were equal to or higher than that for drug. Intranasal cocaine also produced prototypical stimulant-like subject-rated and physiological effects (e.g., increased ratings of Like Drug; elevated blood pressure). These data demonstrate that making alternative reinforcers easier to earn reduces cocaine self-administration, which has implications for treatment efforts. PMID:22015480

  3. Performance of a bridge deck with glass fiber reinforced polymer bars as the top mat of reinforcement.

    DOT National Transportation Integrated Search

    2005-01-01

    The purpose of this research was to investigate the performance of glass fiber reinforced polymer (GFRP) bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advan...

  4. Racial bias shapes social reinforcement learning.

    PubMed

    Lindström, Björn; Selbing, Ida; Molapour, Tanaz; Olsson, Andreas

    2014-03-01

    Both emotional facial expressions and markers of racial-group belonging are ubiquitous signals in social interaction, but little is known about how these signals together affect future behavior through learning. To address this issue, we investigated how emotional (threatening or friendly) in-group and out-group faces reinforced behavior in a reinforcement-learning task. We asked whether reinforcement learning would be modulated by intergroup attitudes (i.e., racial bias). The results showed that individual differences in racial bias critically modulated reinforcement learning. As predicted, racial bias was associated with more efficiently learned avoidance of threatening out-group individuals. We used computational modeling analysis to quantitatively delimit the underlying processes affected by social reinforcement. These analyses showed that racial bias modulates the rate at which exposure to threatening out-group individuals is transformed into future avoidance behavior. In concert, these results shed new light on the learning processes underlying social interaction with racial-in-group and out-group individuals.

  5. Tailoring Small IT Projects in the Project Planning Phase

    ERIC Educational Resources Information Center

    Mulhearn, Michael F.

    2011-01-01

    Project management (PM) and systems engineering (SE) are essential skills in information technology (IT). There is an abundance of information available detailing the comprehensive bodies of knowledge, standards, and best practices. Despite the volume of information, there is surprisingly little information about how to tailor PM and SE tasks for…

  6. Reinforcement learning and Tourette syndrome.

    PubMed

    Palminteri, Stefano; Pessiglione, Mathias

    2013-01-01

    In this chapter, we report the first experimental explorations of reinforcement learning in Tourette syndrome, realized by our team in the last few years. This report will be preceded by an introduction aimed to provide the reader with the state of the art of the knowledge concerning the neural bases of reinforcement learning at the moment of these studies and the scientific rationale beyond them. In short, reinforcement learning is learning by trial and error to maximize rewards and minimize punishments. This decision-making and learning process implicates the dopaminergic system projecting to the frontal cortex-basal ganglia circuits. A large body of evidence suggests that the dysfunction of the same neural systems is implicated in the pathophysiology of Tourette syndrome. Our results show that Tourette condition, as well as the most common pharmacological treatments (dopamine antagonists), affects reinforcement learning performance in these patients. Specifically, the results suggest a deficit in negative reinforcement learning, possibly underpinned by a functional hyperdopaminergia, which could explain the persistence of tics, despite their evident inadaptive (negative) value. This idea, together with the implications of these results in Tourette therapy and the future perspectives, is discussed in Section 4 of this chapter. © 2013 Elsevier Inc. All rights reserved.

  7. Aggression as Positive Reinforcement in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    May, Michael E.

    2011-01-01

    From an applied behavior-analytic perspective, aggression in people with intellectual disabilities is mostly maintained by social reinforcement consequences. However, nonsocial consequences have also been identified in functional assessments on aggression. Behaviors producing their own reinforcement have been labeled "automatic" or "nonsocial" in…

  8. Responding for sucrose and wheel-running reinforcement: effects of sucrose concentration and wheel-running reinforcer duration.

    PubMed

    Belke, Terry W; Hancock, Stephanie D

    2003-03-01

    Six male albino rats were placed in running wheels and exposed to a fixed-interval 30-s schedule of lever pressing that produced either a drop of sucrose solution or the opportunity to run for a fixed duration as reinforcers. Each reinforcer type was signaled by a different stimulus. In Experiment 1, the duration of running was held constant at 15 s while the concentration of sucrose solution was varied across values of 0, 2.5. 5, 10, and 15%. As concentration decreased, postreinforcement pause duration increased and local rates decreased in the presence of the stimulus signaling sucrose. Consequently, the difference between responding in the presence of stimuli signaling wheel-running and sucrose reinforcers diminished, and at 2.5%, response functions for the two reinforcers were similar. In Experiment 2, the concentration of sucrose solution was held constant at 15% while the duration of the opportunity to run was first varied across values of 15, 45, and 90 s then subsequently across values of 5, 10, and 15 s. As run duration increased, postreinforcement pause duration in the presence of the wheel-running stimulus increased and local rates increased then decreased. In summary, inhibitory aftereffects of previous reinforcers occurred when both sucrose concentration and run duration varied; changes in responding were attributable to changes in the excitatory value of the stimuli signaling the two reinforcers.

  9. Fiber-reinforced scaffolds in soft tissue engineering

    PubMed Central

    Wang, Wei; Fan, Yubo; Wang, Xiumei; Watari, Fumio

    2017-01-01

    Abstract Soft tissue engineering has been developed as a new strategy for repairing damaged or diseased soft tissues and organs to overcome the limitations of current therapies. Since most of soft tissues in the human body are usually supported by collagen fibers to form a three-dimensional microstructure, fiber-reinforced scaffolds have the advantage to mimic the structure, mechanical and biological environment of natural soft tissues, which benefits for their regeneration and remodeling. This article reviews and discusses the latest research advances on design and manufacture of novel fiber-reinforced scaffolds for soft tissue repair and how fiber addition affects their structural characteristics, mechanical strength and biological activities in vitro and in vivo. In general, the concept of fiber-reinforced scaffolds with adjustable microstructures, mechanical properties and degradation rates can provide an effective platform and promising method for developing satisfactory biomechanically functional implantations for soft tissue engineering or regenerative medicine. PMID:28798872

  10. Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.

    PubMed

    Xie, Binghe; Yang, Cheng; Zhang, Zhexu; Zou, Peichao; Lin, Ziyin; Shi, Gaoquan; Yang, Quanhong; Kang, Feiyu; Wong, Ching-Ping

    2015-06-23

    With the bloom of wearable electronics, it is becoming necessary to develop energy storage units, e.g., supercapacitors that can be arbitrarily tailored at the device level. Although gel electrolytes have been applied in supercapacitors for decades, no report has studied the shape-tailorable capability of a supercapacitor, for instance, where the device still works after being cut. Here we report a tailorable gel-based supercapacitor with symmetric electrodes prepared by combining electrochemically reduced graphene oxide deposited on a nickel nanocone array current collector with a unique packaging method. This supercapacitor with good flexibility and consistency showed excellent rate performance, cycling stability, and mechanical properties. As a demonstration, these tailorable supercapacitors connected in series can be used to drive small gadgets, e.g., a light-emitting diode (LED) and a minimotor propeller. As simple as it is (electrochemical deposition, stencil printing, etc.), this technique can be used in wearable electronics and miniaturized device applications that require arbitrarily shaped energy storage units.

  11. Renewal, Resurgence, and Alternative Reinforcement Context

    PubMed Central

    Sweeney, Mary M.; Shahan, Timothy A.

    2015-01-01

    Resurgence, relapse induced by the removal of alternative reinforcement, and renewal, relapse induced by a change in contextual stimuli, are typically studied separately in operant conditioning paradigms. In analogous treatments of operant problem behavior, aspects of both relapse phenomena can operate simultaneously. Therefore, the purpose of this study was to examine a novel method for studying resurgence and renewal in the same experimental preparation. An alternative source of reinforcement was available during extinction for one group of rats (a typical resurgence preparation). Another group experienced an operant renewal preparation in which the extinction context was distinguished via olfactory and visual stimuli. A third group experienced alternative reinforcement delivery in the new context, a novel combination of typical resurgence and renewal preparations. Removal of alternative reinforcement and/or a change in context induced relapse, relative to an extinction-only control group. When alternative reinforcement was delivered in a novel context, the alternative response was less persistent relative to when extinction of the alternative response took place in the context in which it was trained. This methodology might be used to illustrate shared (or distinct) mechanisms of resurgence and renewal, and to determine how delivering alternative reinforcement in another context may affect persistence and relapse. PMID:25936876

  12. Reinforcement and inference in cross-situational word learning.

    PubMed

    Tilles, Paulo F C; Fontanari, José F

    2013-01-01

    Cross-situational word learning is based on the notion that a learner can determine the referent of a word by finding something in common across many observed uses of that word. Here we propose an adaptive learning algorithm that contains a parameter that controls the strength of the reinforcement applied to associations between concurrent words and referents, and a parameter that regulates inference, which includes built-in biases, such as mutual exclusivity, and information of past learning events. By adjusting these parameters so that the model predictions agree with data from representative experiments on cross-situational word learning, we were able to explain the learning strategies adopted by the participants of those experiments in terms of a trade-off between reinforcement and inference. These strategies can vary wildly depending on the conditions of the experiments. For instance, for fast mapping experiments (i.e., the correct referent could, in principle, be inferred in a single observation) inference is prevalent, whereas for segregated contextual diversity experiments (i.e., the referents are separated in groups and are exhibited with members of their groups only) reinforcement is predominant. Other experiments are explained with more balanced doses of reinforcement and inference.

  13. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production.

    PubMed

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan; Jones, Susanne; Brown, Robert; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging technologies for biofuel production: in situ and ex situ catalytic pyrolysis. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $1.11 per liter with a standard deviation of 0.29, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($1.13 per liter and 0.21 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic uncertainty than in situ pyrolysis compensating for a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage.

    PubMed

    Chai, Zhisheng; Zhang, Nannan; Sun, Peng; Huang, Yi; Zhao, Chuanxi; Fan, Hong Jin; Fan, Xing; Mai, Wenjie

    2016-10-05

    The pursuit of harmonic combination of technology and fashion intrinsically points to the development of smart garments. Herein, we present an all-solid tailorable energy textile possessing integrated function of simultaneous solar energy harvesting and storage, and we call it tailorable textile device. Our technique makes it possible to tailor the multifunctional textile into any designed shape without impairing its performance and produce stylish smart energy garments for wearable self-powering system with enhanced user experience and more room for fashion design. The "threads" (fiber electrodes) featuring tailorability and knittability can be large-scale fabricated and then woven into energy textiles. The fiber supercapacitor with merits of tailorability, ultrafast charging capability, and ultrahigh bending-resistance is used as the energy storage module, while an all-solid dye-sensitized solar cell textile is used as the solar energy harvesting module. Our textile sample can be fully charged to 1.2 V in 17 s by self-harvesting solar energy and fully discharged in 78 s at a discharge current density of 0.1 mA.

  15. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Huang, H.; Hartle, M.

    1992-01-01

    Accomplishments are described for the fourth years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded component structures. These accomplishments include: (1) demonstration of coupled solution capability; (2) alternate CSTEM electromagnetic technology; (3) CSTEM acoustic capability; (4) CSTEM tailoring; (5) CSTEM composite micromechanics using ICAN; and (6) multiple layer elements in CSTEM.

  16. Effectiveness of different methods for delivering tailored nutrition education to low income, ethnically diverse adults

    PubMed Central

    Gans, Kim M; Risica, Patricia M; Strolla, Leslie O; Fournier, Leanne; Kirtania, Usree; Upegui, David; Zhao, Julie; George, Tiffiney; Acharyya, Suddhasatta

    2009-01-01

    Background Computer-tailored written nutrition interventions have been shown to be more effective than non-tailored materials in changing diet, but continued research is needed. Your Healthy Life/Su Vida Saludable (YHL-SVS) was an intervention study with low income, ethnically diverse, English and Spanish-speaking participants to determine which methods of delivering tailored written nutrition materials were most effective in lowering fat and increasing fruit and vegetable (F&V) intake. Methods YHL-SVS was a randomized controlled trial with four experimental conditions: 1) Nontailored (NT) comparison group; 2) Single Tailored (ST) packet; 3) Multiple Tailored (MT) packet mailed in four installments; 4) Multiple Re-Tailored (MRT) MT packets re-tailored between mailings via brief phone surveys. A baseline telephone survey collected information for tailoring as well as evaluation. Follow-up evaluation surveys were collected 4- and 7-months later. Primary outcomes included F&V intake and fat related behaviors. Descriptive statistics, paired t-test and ANOVA were used to examine the effectiveness of different methods of delivering tailored nutrition information. Results Both the ST and MT groups reported significantly higher F&V intake at 4-months than the NT and MRT groups. At 7 months, only the MT group still had significantly higher F&V intake compared to the NT group. For changes in fat-related behaviors, both the MT and MRT groups showed more change than NT at 4 months, but at 7 months, while these differences persisted, they were no longer statistically significant. There was a significant interaction of experimental group by education for change in F&V intake (P = .0085) with the lowest educational group demonstrating the most change. Conclusion In this study, tailored interventions were more effective than non-tailored interventions in improving the short-term dietary behaviors of low income, ethnically diverse participants. Delivery of information in multiple

  17. Implementation and evaluation of a simulation curriculum for paediatric residency programs including just-in-time in situ mock codes

    PubMed Central

    Sam, Jonathan; Pierse, Michael; Al-Qahtani, Abdullah; Cheng, Adam

    2012-01-01

    OBJECTIVE: To develop, implement and evaluate a simulation-based acute care curriculum in a paediatric residency program using an integrated and longitudinal approach. DESIGN: Curriculum framework consisting of three modular, year-specific courses and longitudinal just-in-time, in situ mock codes. SETTING: Paediatric residency program at BC Children’s Hospital, Vancouver, British Columbia. INTERVENTIONS: The three year-specific courses focused on the critical first 5 min, complex medical management and crisis resource management, respectively. The just-in-time in situ mock codes simulated the acute deterioration of an existing ward patient, prepared the actual multidisciplinary code team, and primed the surrounding crisis support systems. Each curriculum component was evaluated with surveys using a five-point Likert scale. RESULTS: A total of 40 resident surveys were completed after each of the modular courses, and an additional 28 surveys were completed for the overall simulation curriculum. The highest Likert scores were for hands-on skill stations, immersive simulation environment and crisis resource management teaching. Survey results also suggested that just-in-time mock codes were realistic, reinforced learning, and prepared ward teams for patient deterioration. CONCLUSIONS: A simulation-based acute care curriculum was successfully integrated into a paediatric residency program. It provides a model for integrating simulation-based learning into other training programs, as well as a model for any hospital that wishes to improve paediatric resuscitation outcomes using just-in-time in situ mock codes. PMID:23372405

  18. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  19. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  20. Another View on "Reinforcement in Developmentally Appropriate Early Childhood Classrooms."

    ERIC Educational Resources Information Center

    Wolfgang, Charles H.

    2001-01-01

    Contrasts the use of behavioral and developmental theories to address a child's aggression. Presents concerns about the use of social reinforcers, activity reinforcers, and tangible reinforcers. Asserts that behavioral techniques that shape children's surface behaviors without placing the behaviors within a developmental context may interfere with…

  1. Providing Alternative Reinforcers to Facilitate Tolerance to Delayed Reinforcement Following Functional Communication Training

    ERIC Educational Resources Information Center

    Austin, Jillian E.; Tiger, Jeffrey H.

    2015-01-01

    The earliest stages of functional communication training (FCT) involve providing immediate and continuous reinforcement for a communicative response (FCR) that is functionally equivalent to the targeted problem behavior. However, maintaining immediate reinforcement is not practical, and the introduction of delays is associated with increased…

  2. Triple tailored nonlinear dispersion of dressed four- and six-wave mixing

    NASA Astrophysics Data System (ADS)

    Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng

    2018-06-01

    We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.

  3. Response deprivation, reinforcement, and economics

    PubMed Central

    Allison, James

    1993-01-01

    Reinforcement of an instrumental response results not from a special kind of response consequence known as a reinforcer, but from a special kind of schedule known as a response-deprivation schedule. Under the requirements of a response-deprivation schedule, the baseline rate of the instrumental response permits less than the baseline rate of the contingent response. Because reinforcement occurs only if the schedule deprives the organism of the contingent response, reinforcement cannot result from any intrinsic property of the contingent response or any property relative to the instrumental response. Two typical effects of response-deprivation schedules—facilitation of the instrumental response and suppression of the contingent response—are discussed in terms of economic concepts and models of instrumental performance. It is suggested that response deprivation makes the contingent response function as an economic good, the instrumental response as currency. PMID:16812695

  4. Food reinforcement and delay discounting in zBMI-discordant siblings ☆

    PubMed Central

    Feda, Denise M.; Roemmich, James N.; Roberts, April; Epstein, Leonard H.

    2014-01-01

    Objective The interaction of food reinforcement and the inability to delay gratification are related to adult energy intake and obesity. This study was designed to test the association of sibling pair differences in relative reinforcing efficacy of food and delay discounting on sibling pair differences in zBMI scores of same-gender zBMI-discordant siblings. Design and methods We tested main and interactive relationships between delay discounting and relative reinforcing efficacy of food on zBMI discordance in 14 zBMI-discordant biological sibling pairs (6 female pairs) using a discordant sibling study design. Results Sibling pair differences in relative reinforcing efficacy of food were associated with sibling pair differences in zBMI (p = 0.046); this effect was moderated by delay discounting (p < 0.002). Sibling pairs with greater differences in relative reinforcing efficacy and delay discounting had greater differences in zBMI. Conclusions The combination of greater sibling pair differences in delay discounting and relative reinforcing efficacy is associated with greater discordance in zBMI in adolescent sibling pairs. PMID:25464024

  5. The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley

    PubMed Central

    Jensen, Helen R; Dreiseitl, Antonín; Sadiki, Mohammed; Schoen, Daniel J

    2012-01-01

    Plant geneticists have proposed that the dynamic conservation of crop plants in farm environments (in situ conservation) is complementary to static conservation in seed banks (ex situ conservation) because it may help to ensure adaptation to changing conditions. Here, we test whether collections of a traditional variety of Moroccan barley (Hordeum vulgare ssp. vulgare) conserved ex situ showed differences in qualitative and quantitative resistance to the endemic fungal pathogen, Blumeria graminis f.sp. hordei, compared to collections that were continuously cultivated in situ. In detached-leaf assays for qualitative resistance, there were some significant differences between in situ and ex situ conserved collections from the same localities. Some ex situ conserved collections showed lower resistance levels, while others showed higher resistance levels than their in situ conserved counterparts. In field trials for quantitative resistance, similar results were observed, with the highest resistance observed in situ. Overall, this study identifies some cases where the Red Queen appears to drive the evolution of increased resistance in situ. However, in situ conservation does not always result in improved adaptation to pathogen virulence, suggesting a more complex evolutionary scenario, consistent with several published examples of plant–pathogen co-evolution in wild systems. PMID:25568056

  6. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn

    2014-09-15

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less

  7. Rational and Mechanistic Perspectives on Reinforcement Learning

    ERIC Educational Resources Information Center

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…

  8. Choice, Conditioned Reinforcement, and the Prius Effect

    ERIC Educational Resources Information Center

    Fantino, Edmund

    2008-01-01

    Psychologists have long been intrigued with the rationales that underlie our decisions. Similarly, the concept of conditioned reinforcement has a venerable history, particularly in accounting for behavior not obviously maintained by primary reinforcers. The studies of choice and of conditioned reinforcement have often developed in lockstep. Many…

  9. Conditioned Reinforcement Value and Resistance to Change

    ERIC Educational Resources Information Center

    Shahan, Timothy A.; Podlesnik, Christopher A.

    2008-01-01

    Three experiments examined the effects of conditioned reinforcement value and primary reinforcement rate on resistance to change using a multiple schedule of observing-response procedures with pigeons. In the absence of observing responses in both components, unsignaled periods of variable-interval (VI) schedule food reinforcement alternated with…

  10. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  11. Solvent-assisted in situ synthesis of cysteamine-capped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Oliva, José M.; Ríos de la Rosa, Julio M.; Sayagués, María J.; Sánchez-Alcázar, José A.; Merkling, Patrick J.; Zaderenko, Ana P.

    2018-03-01

    Silver nanoparticles offer a huge potential for biomedical applications owing to their exceptional properties and small size. Specifically, cysteamine-capped silver nanoparticles could form the basis for new anticancer therapies combining the cytotoxic effect of the silver core with the inherent antitumor activity of cysteamine, which inhibit cancer cell proliferation and suppress invasion and metastasis. In addition, the capability of the cysteamine coating monolayer to couple a variety of active principles and targeting (bio)molecules of interest proves key to the tailoring of this platform in order to exploit the pathophysiology of specific tumor types. Nevertheless, the chain length and conformational flexibility of cysteamine, together with its ability to attach to the surface of silver nanoparticles via both the thiol and the amine group, have made the in situ synthesis of these particles an especially challenging task. Herein we report a solvent-assisted in situ synthesis method that solves this problem. The obtained nanoparticles have been fully characterized by UV-visible absorption spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, electron diffraction measurement, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive x-ray spectroscopy nanoanalysis, and dynamic light scattering measurement. Our synthesis method achieves extremely high yield and surface coating ratio, and colloidal stability over a wide range of pH values including physiological pH. Additionally, we have demonstrated that cysteamine-capped nanoparticles obtained by this method can be conjugated to an antibody for active targeting of the epidermal growth factor receptor, which plays an important role in the pathogenesis and progression of a wide variety of tumors, and induce cell death in human squamous carcinoma cells. We believe this method can be readily extended to combinations of noble

  12. Rational and mechanistic perspectives on reinforcement learning.

    PubMed

    Chater, Nick

    2009-12-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: mechanistic and rational. Reinforcement learning is often viewed in mechanistic terms--as describing the operation of aspects of an agent's cognitive and neural machinery. Yet it can also be viewed as a rational level of description, specifically, as describing a class of methods for learning from experience, using minimal background knowledge. This paper considers how rational and mechanistic perspectives differ, and what types of evidence distinguish between them. Reinforcement learning research in the cognitive and brain sciences is often implicitly committed to the mechanistic interpretation. Here the opposite view is put forward: that accounts of reinforcement learning should apply at the rational level, unless there is strong evidence for a mechanistic interpretation. Implications of this viewpoint for reinforcement-based theories in the cognitive and brain sciences are discussed.

  13. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections.

    PubMed

    Stacul, Stefano; Squeglia, Nunziante

    2018-02-15

    A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.

  14. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections

    PubMed Central

    2018-01-01

    A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ. PMID:29462857

  15. Characterization of frictional interference in closely-spaced reinforcements in MSE walls.

    DOT National Transportation Integrated Search

    2014-09-01

    This research addresses one of several knowledge gaps in the understanding of tall MSE wall behavior: prediction of reinforcement loads impacted by frictional interference of closely-spaced reinforcements associated with tall walls.

  16. A porous ceramic membrane tailored high-temperature supercapacitor

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei

    2018-03-01

    The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.

  17. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    NASA Astrophysics Data System (ADS)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  18. The critical dimensions of the response-reinforcer contingency.

    PubMed

    Williams, B A.

    2001-05-03

    Two major dimensions of any contingency of reinforcement are the temporal relation between a response and its reinforcer, and the relative frequency of the reinforcer given the response versus when the response has not occurred. Previous data demonstrate that time, per se, is not sufficient to explain the effects of delay-of-reinforcement procedures; needed in addition is some account of the events occurring in the delay interval. Moreover, the effects of the same absolute time values vary greatly across situations, such that any notion of a standard delay-of-reinforcement gradient is simplistic. The effects of reinforcers occurring in the absence of a response depend critically upon the stimulus conditions paired with those reinforcers, in much the same manner as has been shown with Pavlovian contingency effects. However, it is unclear whether the underlying basis of such effects is response competition or changes in the calculus of causation.

  19. Crack propagation in aluminum sheets reinforced with boron-epoxy

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.

    1979-01-01

    An analysis was developed to predict both the crack growth and debond growth in a reinforced system. The analysis was based on the use of complex variable Green's functions for cracked, isotropic sheets and uncracked, orthotropic sheets to calculate inplane and interlaminar stresses, stress intensities, and strain-energy-release rates. An iterative solution was developed that used the stress intensities and strain-energy-release rates to predict crack and debond growths, respectively, on a cycle-by-cycle basis. A parametric study was made of the effects of boron-epoxy composite reinforcement on crack propagation in aluminum sheets. Results show that the size of the debond area has a significant effect on the crack propagation in the aluminum. For small debond areas, the crack propagation rate is reduced significantly, but these small debonds have a strong tendency to enlarge. Debond growth is most likely to occur in reinforced systems that have a cracked metal sheet reinforced with a relatively thin composite sheet.

  20. Clinical Trial of Tailored Activity and Eating Newsletters with Older Rural Women

    PubMed Central

    Walker, Susan Noble; Pullen, Carol H.; Boeckner, Linda; Hageman, Patricia A.; Hertzog, Melody; Oberdorfer, Maureen K.; Rutledge, Matthew J.

    2009-01-01

    Background Unhealthy diet and lack of physical activity increase rural midlife and older women’s risk for chronic diseases and premature death, and they are behind urban residents in meeting Healthy People 2010 objectives. Objectives To compare a tailored intervention based on the Health Promotion Model (HPM) and a generic intervention to increase physical activity and healthy eating among rural women. Methods In a randomized by site community-based controlled clinical trial, Wellness for Women, 225 women aged 50 to 69 years were recruited in two similar rural areas. Over 12 months, women received by mail either 18 generic newsletters or 18 newsletters computer-tailored on HPM behavior-specific cognitions (benefits, barriers, self-efficacy, and interpersonal support), activity, and eating. Outcomes at 6 and 12 months included behavioral markers and biomarkers of physical activity and eating. Data were analyzed by repeated measures ANOVA and χ2 tests (α < .05). Results Both groups significantly increased stretching and strengthening exercise and fruit and vegetable servings and decreased % calories from fat, while only the tailored group increased ≥ moderate intensity activity and decreased % calories from saturated fat from baseline to 6 months. Both groups increased stretching and strengthening exercise, while only the tailored group increased ≥ moderate activity and fruit and vegetable servings and decreased % calories from fat from baseline to 12 months. Both groups had several changes in biomarkers over the study. A higher proportion of women receiving tailored newsletters met Healthy People 2010 criteria for ≥ moderate activity, fruit and vegetable servings, and % calories from fat at 12 months. Discussion Mailed computer-tailored and generic print newsletters facilitated the adoption of change in both activity and eating over 6 months. Tailored newsletters were more efficacious in facilitating change over 12 months. PMID:19289928