These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Utility of late summer transient snowline migration rate on Taku Glacier, Alaska  

NASA Astrophysics Data System (ADS)

On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE) from snowpits and probing in the vicinity of the transient snowline (TSL) are used to quantify the mass balance gradient. The balance gradient derived from the TSL and SWE measured in snowpits at 1000 m from 1998-2010 ranges from 2.6-3.8 mm m-1. Probing transects from 950 m-1100 m directly measure SWE and yield a slightly higher balance gradient of 3.3-3.8 mm m-1. The TSL on Taku Glacier is identified in MODIS and Landsat 4 and 7 Thematic Mapper images for 31 dates during the 2004-2010 period to assess the consistency of its rate of rise and reliability in assessing ablation for mass balance assessment. For example, in 2010, the TSL was 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and 975 m on 20 September. The mean observed probing balance gradient was 3.3 mm m-1, combined with the TSL rise of 3.7 m day-1 yields an ablation rate of 12.2 mm day-1 from mid-July to mid-Sept, 2010. The TSL rise in the region from 750-1100 m on Taku Glacier during eleven periods each covering more than 14 days during the ablation season indicates a mean TSL rise of 3.7 m day-1, the rate of rise is relatively consistent ranging from 3.1 to 4.4 m day-1. This rate is useful for ascertaining the final ELA if images or observations are not available near the end of the ablation season. The mean ablation from 750-1100 m during the July-September period determined from the TSL rise and the observed balance gradient is 11-13 mm day-1 on Taku Glacier during the 2004-2010 period. The potential for providing an estimate of bn from TSL observations late in the melt season from satellite images combined with the frequent availability of such images provides a means for efficient mass balance assessment in many years and on many glaciers.

Pelto, M.

2011-12-01

2

Mendenhall Glacier Juneau, Alaska  

E-print Network

· · · · · · #12;V1 Mendenhall Glacier Juneau, Alaska 404 Alaskan Frontiers & Glaciers V1 PRSRTSTD U, rugged remote towns, amazing wildlife--this is Alaska, America's last frontier. Revel in its wild the Inside Passage along Canada's scenic western coast to Alaska and the small wilderness outpost

Raina, Ramesh

3

Alaska Glaciers and Rivers  

NASA Technical Reports Server (NTRS)

The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

2007-01-01

4

Glacier Velocities and Elevation Change of the Juneau Icefield, Alaska  

NASA Astrophysics Data System (ADS)

Mass-loss from small icefields is the greatest contributor from the cryosphere to sea level rise at present. The Juneau Icefield is a small low-latitude glacier system in southeast Alaska. Remote-sensing data from SAR and optical instruments is examined for inter-annual and seasonal changes in glacier elevation and velocity. We use subpixel offset tracking of satellite SAR and optical images to construct a time-series of average horizontal velocities for the outlet glaciers of the icefield. Optical imagery is available from the ASTER instrument between 2000 and 2009. Eighty ASTER scene-pairs are used to generate pixel-offsets for the region. SAR imagery is available for pixel tracking between 1992-2000, although rapid decorrelation means that only repeat track images separated by 1-2 months are useful. The combined radar and optically derived time-series are compared with sparse GPS measurements made by the Juneau Icefield Research Program (JIRP). JIRP measurements and ASTER-derived velocities at the same points show a velocity of up to 1.1 m/day with differences between the two ranging from 0 to 20 cm/day over coherent areas of the ASTER pixel-offsets. Initial findings over Taku Glacier (the largest outlet glacier in the icefield) indicate that velocities from several ERS tandem-pairs, with short duration repeat passes, taken during the mid-1990s reveal velocities in the middle of Taku glacier of 1 m/day to 1.5 m/day over the faster-moving sections of the glacier. These results are within +/- 25 cm/day of velocities derived from the more recent ASTER scenes, which show a maximum average velocity of around 1.25 m/day. However, Taku Glacier is the only glacier in the icefield still advancing and is therefore not representative of the entire icefield. Data covering other outlet glaciers will be processed to determine overall trends in velocity. Several components of the ASTER processing-chain are tested. Output from two independent pixel-tracking software packages that use different algorithms is compared for consistency. Initial results indicate Ampcor, an open source package that forms part of the ROI-PAC software suite, generates similar results to CosiCorr, an open source module for the ENVI image processing software suite. Each package produces an average velocity of up to 1.25 m/day in the middle of Taku Glacier, with differences of up to +/- 10 cm/day over coherent areas. Relative DEMs from cloud-free ASTER pairs are used to determine average rates of surface elevation change over the outlet glaciers of the icefield. An automated DEM differencing tool removes bias in differences between DEMs due to satellite position and filters out clouds and outliers. Changing surface elevation change may be linked to changes in ice dynamics and mass. Deriving glacier velocities and elevation changes from remote-sensing data will provide a comprehensive overview of the "health" of the Juneau Icefield. Understanding the causes of variability in the observations will provide better constraints on how the icefield will react to future climate change.

Melkonian, A. K.; Willis, M. J.; Pritchard, M. E.; Bernstein, S.

2009-12-01

5

Surface Velocity Changes on the Taku Glacier System 1993 to 2007 Compiled By  

E-print Network

­ theodolites and electronic distance measuring devices. With the development of the Global Positioning System Muehlegger, Petra Haefele Abstract Surface velocities on the Juneau Icefield, Alaska have been measured every program operating on the Juneau Icefield in southeast Alaska. Founded in 1946, JIRP, through the support

6

Recent wastage of Bering Glacier, Alaska  

NASA Astrophysics Data System (ADS)

The glaciers on the south coast of Alaska are melting rapidly with local, regional and global impacts. A five year record of the annual wastage of Bering Glacier, from 2004 to 2008, shows that as much as 30 km3 of glacial melt water flows into the Gulf of Alaska. These estimates were obtained by combining in situ melt measurements carried out from near sea level to 1400 m, glacier coverage derived from Landsat-7 and ASTER observations, and a digital elevation model derived from ASTER stereo observations. The total freshwater flux from the Bering Glacier System into the Gulf of Alaska is as much as 5% of the total estimated annual flux from the coastal region of Alaska. For this period, Bering glacier has retreated at an average rate of 0.5 km per year, as the ice in the terminus region thins and calving and disarticulation increases. However, terminus retreat only accounts for 5 to 10% of the total wastage. The wastage of Bering glacier showed a strong correlation with the cumulative positive degree days measured both on the glacier and at the Yakutat Airport 220 km to the east. This correlation allows these results to be used to simulate anticipated impacts of climate warming on the glaciers of this region. For example, the summer of 2004 was one of the warmest on record, equivalent to a 2 C temperature increase in the daily average temperature at Yakutat.

Josberger, E. G.; Shuchman, R. A.

2009-12-01

7

ICESat Observations of Southern Alaska Glaciers  

NASA Technical Reports Server (NTRS)

In late February and March, 2003, the Ice, Cloud, and land Elevation Satellite (ICESat) measured ice and land elevations along profiles across southern Alaska. During this initial data acquisition stage ICESat observations were made on 8-day repeat tracks to enable calibration and validation of the ICESat data products. Each profile consists of a series of single point values derived from centroid elevations of an $\\approx$70 m diameter laser footprint. The points are s4pakated by $\\approx$172 m along track. Data siets of 8-day observations (an ascending and descending ground track) crossed the Bering and Malaspina Glacier. Following its 1993--1995 surge; the Bering Glacier has undergone major terminus retreat as well as ike thinning in the abtation zone. During the later part of the 20th century, parts of the Malaspina thinned by about 1 m/yr. The multiple observation profiles across the Bering and Malaspina piedmont lobes obtained in February/March are being geolocated on Landsat images and the elevation profiles will be used for a number o scientific objectives. Based on our simulations of ICESat performance over the varied ice surface of the Jakobshavn Glacier of GReenland, 2003, we expect to measure annual, and possibly seasonal, ice elevation changes on the large Alaskan glaciers. Using elevation data obtained from a second laser, we plan to estimate ice elevation changes on the Bering Glacier between March and October 2003.

Sauber, Jeanne; Molnia, Bruce F.; Mitchell, Darius

2003-01-01

8

Alaska PaleoGlacier Atlas: A Geospatial Compilation of Pleistocene Glacier Extents  

NSDL National Science Digital Library

The Alaska PaleoGlacier (APG) Atlas is a recently released, web-based summary of Pleistocene glaciation across Alaska. Students can access a gallery of maps depicting the extent of glaciers during the late Wisconsin glaciation in Alaska as well as the maximum extent reached during the last 3 million years by valley glaciers, ice caps, and the northwestern Cordilleran Ice Sheet. a set of links is also provided to sites on galcial geology and glacial geospatial data.

Manley, William

9

Malaspina Glacier, Alaska, Perspective with Landsat Overlay  

NASA Technical Reports Server (NTRS)

Malaspina Glacier in southeastern Alaska is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

This perspective view was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Landsat views both visible and infrared light, which have been combined here into a color composite that generally shows glacial ice in light blue, snow in white, vegetation in green, bare rock in grays and tans, and the ocean (foreground) in dark blue. The back (northern) edge of the data set forms a false horizon that meets a false sky.

Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

Glaciers are sensitive indicators of climatic change. They can grow and thicken with increasing snowfall and/or decreased melting. Conversely, they can retreat and thin if snowfall decreases and/or atmospheric temperatures rise and cause increased melting. Landsat imaging has been an excellent tool for mapping the changing geographic extent of glaciers since 1972. The elevation measurements taken by SRTM in February 2000 now provide a near-global baseline against which future non-polar region glacial thinning or thickening can be assessed.

Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 55 kilometers wide x 55 kilometers distance (34 x 34 miles) Location: 60 deg N latitude, 140 deg W longitude Orientation: View North, 2X vertical exaggeration Image Data: Landsat Thematic Mapper false-color image Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Landsat 30 meters (98 feet) Date Acquired: February 2000 (SRTM), 31 August 2000 (Landsat)

2003-01-01

10

Widespread Alaska glacier retreat likely not due to climate change  

NASA Astrophysics Data System (ADS)

Alaska's Columbia Glacier, which has shed half its mass since 1957, is a dramatic example of how quickly glaciers can shrink. Yet while Columbia has shown a huge decline, a new analysis by McNabb and Hock has found that other glaciers in the region have retreated far less, or even advanced, over the past 6 decades.

Schultz, Colin

2014-06-01

11

Glacier Bay, Alaska, from the Ground, Air and Space  

NSDL National Science Digital Library

This video contains a mix of live action video, stills, and computer animations of the Glacier Bay National Park in Glacier Bay, Alaska. Satellite mapping and imagery are used to show changes in the Glacier Bay area over a period of several years. Specific image processing techniques are discussed in relation to determining the evolution of glacier terminus points and in obtaining elevation data and how it is used to create fly-by visualizations of the area.

Starr, Cindy; Strong, Jim; Oneil, Pamela; Acuna, Andy; Hall, Dorothy; Benson, Carl

1996-02-23

12

Columbia Glacier, Alaska: changes in velocity 1977-1986  

USGS Publications Warehouse

The Columbia Glacier, a grounded, iceberg-calving tidewater glacier near Valdez, Alaska, began to retreat about 1977. Drastic retreat occurred in 1984, and by early 1986, retreat amounted to 2km. The glacier has thinned more than 100m since 1974 at a point 4km behind the 1974 terminus position. Between 1977 and 1985 the lower glacier ice velocity increased from 3-8m/d to 10-15m/d. -from Authors

Krimmel, R. M.; Vaughn, B. H.

1987-01-01

13

Remote Sensing Applications for the Bering Glacier, Alaska  

NASA Astrophysics Data System (ADS)

Satellite remote sensing is an invaluable tool to monitor and characterize the Bering Glacier System. The Bering Glacier is located in coastal, south-central Alaska and is the largest and longest glacier in continental North America, with an area of approximately 5,175 km2, and a length of 190 km. It is also the largest surging glacier in America, having surged at least five times during the twentieth century. The last great surge occurred in 1993- 1995. Bering Glacier alone covers more than 6 percent of the glacier covered area of Alaska and may contain 15- 20 percent of Alaska's total glacier ice. Applications of glacier remote sensing include but are not limited to: mapping extent and features, ice velocities through sequential observations, glacier terminus locations, snow line location, glacier albedo, changes in glacier volume, iceberg surveys and calving rates, hydrographic and water quality parameters in ice marginal lakes, and land cover classification maps. Historical remote sensing images provide a much needed geospatial time record of the dynamic changes Bering Glacier has undergone, including changes due to its surge behavior and response to climate change. Remote sensing images dating back to the early 1990s have been used to map the glacier terminus retreat of approximately five to seven kilometers which has resulted in Vitus Lake increasing in volume approximately 260 percent since 1995 to the current (2006) volume of 9.4 km3 of water. Using elevation data obtained from remote sensing and GPS surface points, we have determined that the glacier elevation has decreased approximately 150 m in elevation at the terminus and 30 m at a position 300 m below the present (2006) equilibrium line (~1,300 m) since 1972. Satellite observations have recorded the upward migration in altitude of the equilibrium line to its present position (slightly > 1,200 m). The decrease in glacier volume, obtained using remote sensing derived elevation data, from 1957 to 2004 is estimated at approximately 104 km3. Remote sensing data has also mapped the sediment rich (rock flower) water flowing into Vitus Lake providing insight into the hydrologic circulation of the Bering Glacier system, showing major glacier discharge from the Abandoned River, Arrowhead Point, and Lamire Bay in the area of Vitus Lake west of Taggland.

Liversedge, L.; Shuchman, R.; Josberger, E.; Payne, J.; Hatt, C.; Spaete, L.

2007-12-01

14

BASINWIDE SEDIMENTATION PROCESSES AT GLACIER-DAMMED ICEBERG LAKE, SOUTHCENTRAL ALASKA  

E-print Network

BASINWIDE SEDIMENTATION PROCESSES AT GLACIER-DAMMED ICEBERG LAKE, SOUTHCENTRAL 2012 BASINWIDE SEDIMENTATION PROCESSES AT GLACIER-DAMMED ICEBERG LAKE, SOUTHCENTRAL ALASKA by Katie E examining sedimentation rates and varve thickness at Iceberg Lake, a glacier-dammed proglacial lake

Loso, Michael G.

15

Alaska tidewater glacier velocities and frontal ablation, 1985-2012  

NASA Astrophysics Data System (ADS)

Despite their potential importance to sea level rise, little is known about the proportion of mass loss due to frontal ablation (the sum of ice loss through calving and submarine melt) from tidewater glaciers outside of the Greenland and Antarctic ice sheets. Frontal ablation contributes about half of the mass loss from the ice sheets, and lack of both understanding of and data on these important processes has been cited as a major hindrance to accurate predictions of global sea level rise. First, we present a 64 year record of length change for 50 Alaska tidewater glaciers, derived from manually digitizing aerial mapping photographs and Landsat scenery. Then, we present a 27 year record of surface velocity and frontal ablation for 20 Alaska tidewater glaciers (representing 80% of the total tidewater glacier area in the region), derived using a feature tracking algorithm, all available cloud-free Landsat 5 and 7 scenes, and estimates of glacier ice thickness derived from an inversion of surface topography. In general, the 50 glaciers studied retreated over the period 1948-2012, though these changes are not constant - several glaciers both retreated and advanced over the time period. We find the total mean rate of frontal ablation for these 20 glaciers over the period 1985-2012 is 16.26.5$ Gt a-1; scaling this result by area to the remaining 30 tidewater glaciers in Alaska, we estimate a mean rate of frontal ablation of 18.37.3 Gt a-1 over the period 1985-2012. Two glaciers in particular, Hubbard and Columbia, account for over 50% of the frontal ablation signal of the set of 20 glaciers. Seasonal changes in surface velocity match well with seasonal changes in length, indicating that rates of frontal ablation do not remain constant throughout the year. Despite coming from 15% of the glacierized area in the region, frontal ablation is a significant contributor to the regional mass budget. We estimate a specific mass loss through frontal ablation for all Alaska glaciers of 0.21 m w.e. a-1, equivalent to estimates from Svalbard, and over three times the rate for Greenland.

McNabb, R. W.; Hock, R.

2013-12-01

16

Characteristics of the bed of the lower Columbia Glacier, Alaska  

Microsoft Academic Search

Results are presented on borehole measurements of the strength of deforming subglacial till under the central region of the Columbia Glacier in southeastern Alaska. Data on the basal samples, coring, and down-hole water samples show that the fiord-filling lower reach of the glacier is underlain by a thin (about 7-cm) veneer of rock debris. Samples from a higher site showed

Neil Humphrey; Barclay Kamb; Mark Fahnestock; Hermann Engelhardt

1993-01-01

17

Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska  

Microsoft Academic Search

Glaciers along the Gulf of Alaska are thinning and retreating rapidly. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study,

M. Heavner; M. Habermann; E. W. Hood; D. R. Fatland

2009-01-01

18

Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume  

NASA Astrophysics Data System (ADS)

Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat footprint returns to estimate glacier ice elevations and surface characteristics. To obtain the optimal ICESat results, we are reprocessing the ICESat data from Alaska to provide a well-calibrated regional ICESat solution. We anticipate that our ICESat results combined with earlier data will provide new constraints on the temporal and spatial variations in ice volume of individual Alaskan mountain ranges. These results allow us to address how recent melting of the southern Alaska glaciers contribute to short-term sea-level rise. Our results will also enable us to quantify crustal stress changes due to ice mass fluctuations and to assess the influence of ice mass changes on the seismically active southern Alaskan plate boundary zone.

Sauber, J.; Molnia, B. F.; Luthcke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spada, G.

2004-12-01

19

Glacier-specific elevation changes in western Alaska  

NASA Astrophysics Data System (ADS)

Deriving glacier-specific elevation changes from DEM differencing and digital glacier outlines is rather straight-forward if the required datasets are available. Calculating such changes over large regions and including glaciers selected for mass balance measurements in the field, provides a possibility to determine the representativeness of the changes observed at these glaciers for the entire region. The related comparison of DEM-derived values for these glaciers with the overall mean avoids the rather error-prone conversion of volume to mass changes (e.g. due to unknown densities) and gives unit-less correction factors for upscaling the field measurements to a larger region. However, several issues have to be carefully considered, such as proper co-registration of the two DEMs, date and accuracy of the datasets compared, as well as source data used for DEM creation and potential artefacts (e.g. voids). In this contribution we present an assessment of the representativeness of the two mass balance glaciers Gulkana and Wolverine for the overall changes of nearly 3200 glaciers in western Alaska over a ca. 50-year time period. We use an elevation change dataset from a study by Berthier et al. (2010) that was derived from the USGS DEM of the 1960s (NED) and a more recent DEM derived from SPOT5 data for the SPIRIT project. Additionally, the ASTER GDEM was used as a more recent DEM. Historic glacier outlines were taken from the USGS digital line graph (DLG) dataset, corrected with the digital raster graph (DRG) maps from USGS. Mean glacier specific elevation changes were derived based on drainage divides from a recently created inventory. Land-terminating, lake-calving and tidewater glaciers were marked in the attribute table to determine their changes separately. We also investigated the impact of handling potential DEM artifacts in three different ways and compared elevation changes with altitude. The mean elevation changes of Gulkana and Wolverine glaciers (about -0.65 m / year) are very similar to the mean of the lake-calving and tidewater glaciers (about -0.6 m / year), but much more negative than for the land-terminating glaciers (about -0.24 m / year). The two mass balance glaciers are thus well representative for the entire region, but not for their own class. The different ways of considering positive elevation changes (e.g. setting them to zero or no data) influence the total values, but has otherwise little impact on the results (e.g. the correction factors are similar). The massive elevation loss of Columbia Glacier (-2.8 m / year) is exceptional and strongly influences the statistics when area-weighting is used to determine the regional mean. For the entire region this method yields more negative values for land-terminating and tidewater glaciers than the arithmetically averaged values, but for the lake-calving glaciers both are about the same.

Paul, Frank; Le Bris, Raymond

2013-04-01

20

Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska  

Microsoft Academic Search

Glaciers along the Gulf of Alaska are thinning and retreating rapidly and over the last century this loss of ice has contributed measurably to global sea level rise. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research

M. Habermann; E. Hood; M. Heavner; R. Motyka

2008-01-01

21

Expanding Peatlands in Alaska Caused by Accelerated Glacier Melting Under a Warming Climate  

Microsoft Academic Search

Most mountain glaciers worldwide have been retreating over the last century due to global warming. This is particularly true around the Gulf of Alaska, where glacier recession has further accelerated since 1988. It is well known that glacier meltwater plays a critical role in the global sea level rise, but its effects on structure and functioning of peatland ecosystems remain

J. Loisel; Z. Yu; M. C. Jones

2009-01-01

22

Exploring tidewater glacier retreat using past and current observations at Columbia Glacier, Alaska. (Invited)  

NASA Astrophysics Data System (ADS)

Since fulfilling Austin Posts prediction of impending retreat in the late 1970s, Columbia Glacier has repeatedly surprised both casual and careful observers with its ability for rapid change. Over the last three decades, Columbia Glacier has lost approximately 18 km of its original 66 km length, while thinning by approximately 50% at the present terminus. The total ice volume lost to the Gulf of Alaska Estimates upwards of 120 km3 constrain the total ice volume lost to the Gulf of Alaska. Recently, the terminus supported a ~1.5 km long floating tongue for over than a year, contradicting the common assumption that the mechanical properties of temperate ice prohibit flotation over sustained time intervals. The rich history of study offers an opportunity to better understand tidewater glacier retreat, and a valuable analog to the dynamic instability underway at several ice sheet outlet glaciers. Current research aims to improve processing resolution of existing aerial photographic data, while complimenting the 30-year photogrammetric record with a suite of field observations. Recent instrumentation includes: oblique time lapse and still imagery, semi-permanent GPS, airborne radar, mass balance, passive seismology and LiDAR. This presentation will focus on innovative methods developed in recent field seasons, sharing insight each has provided into the retreat process . 1The Columbia Glacier Consortium consists of: Fabian Walter (SIO), Kenichi Matsuoka (NPI), Ben Smith (UW), Ethan Welty (CU-Boulder), Chris Larsen (UAF), Dave Finnegan (CRREL), Dan McNamara (USGS), Yushin Ahn (OSU), Julie Markus (OSU), Adam LeWinter (EIS).

O'Neel, S.; Pfeffer, W. T.; Howat, I. M.; Conway, H.; Columbia Glacier Consortium

2010-12-01

23

High porosity of basal till at Burroughs glacier, southeastern Alaska  

SciTech Connect

Debris-rich basal ice at Burroughs glacier, southeastern Alaska, has 60 vol% to 70 vol% debris. Recently deposited basal till exceeds 60 vol% sediment with 30% to almost 40% porosity. Where basal ice is very rich in debris, basal till is deposited through melt out with only slight compaction of the debris. Porosity this high in till is commonly associated with subglacially deforming and dilated sediment. However, the recently deposited basal melt-out till at Burroughs glacier has not been deformed after deposition, but has porosity values similar to tills elsewhere interpreted to be subglacially deforming and dilated in an unfrozen state. High porosity can occur in basal melt-out till deposited directly by basal melt out.

Ronnert, L.; Mickelson, D.M. (Univ. of Wisconsin, Madison (United States))

1992-09-01

24

Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska  

NASA Astrophysics Data System (ADS)

Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

2013-12-01

25

Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA  

USGS Publications Warehouse

Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

2009-01-01

26

Patterns of Alaska glacier mass balance over 20-years from UAF/Operation Ice Bridge altimetry  

NASA Astrophysics Data System (ADS)

Glaciers along the Gulf Alaska represent the largest single contribution to sea level rise outside of the ice sheets (Gardner et al., 2013). Since 1993, the University of Alaska (UAF) has performed aircraft laser altimetry surveys throughout the Gulf of Alaska to monitor patterns of mass loss (Arendt et al., 2002; Johnson et al., 2013; Echelmeyer et al., 1996). Efforts have increased in recent years as Operation IceBridge has enabled more extensive surveys then ever achieved previously. Here we present the first comprehensive overview of this unprecedented dataset and examine regional patterns of geodetic glacier mass balance on 200+ mountain glaciers over 20 years. The data reveal coherent patterns in glacier mass balance related to geometry, glacier size and climate but also contain a remarkable amount of spatial and temporal variability. Regional surface mass balance modeling and velocity mapping help to reveal the mechanisms responsible for observed patterns.

Burgess, E. W.; Larsen, C. F.; Arendt, A. A.; Murphy, N.; Johnson, A.; Oneel, S.; Zirnheld, S. L.; Rich, J.; Claus, P.

2013-12-01

27

Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska  

NASA Astrophysics Data System (ADS)

Glaciers along the Gulf of Alaska are thinning and retreating rapidly and over the last century this loss of ice has contributed measurably to global sea level rise. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined how water inputs from large rainfall events as well as a glacier lake outburst flood affected the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice- marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice- marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, two Trimble NetRS dual frequency, differential GPS units were deployed on the glacier at approximately 1/3 and 2/3 down the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and captured the outburst flood associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us to test the hypothesis that water inputs which overwhelm subglacial drainage networks result in increased rates of basal motion.

Habermann, M.; Hood, E.; Heavner, M.; Motyka, R.

2008-12-01

28

Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska  

NASA Astrophysics Data System (ADS)

Glaciers along the Gulf of Alaska are thinning and retreating rapidly. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined two seasons of the effect of hydrologic controls (from large rainfall events as well as a glacier lake outburst floods) on the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice-marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice-marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, multiple Trimble NetRS dual frequency, differential GPS units were deployed on the glacier along the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and May-September 2009 and captured threee outburst floods associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us to test the hypothesis that water inputs which overwhelm subglacial drainage networks result in increased rates of basal motion. 2008 was an extremely rainy summer, and the (single) lake drainage occurred during the largest precipitation even of the summer. 2009 on the other hand, was comparatively dry and sunny for the majority of the summer--the first lake drainage occurred during a several day stretch of sunny weather. The lake refilled during an extreme rainfall (20 cm of rain was recorded in a 24 hour period at a met station 16 km away and about 500 m lower in elevation) and then subsequently drained during a rainy period. We focus on the comparison of the data from two years, including the glacial response to the lake drainage with and without accompanying precipitation inputs.

Heavner, M.; Habermann, M.; Hood, E. W.; Fatland, D. R.

2009-12-01

29

Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska Author(s): Barclay Kamb, C. F. Raymond, W. D. Harrison, Hermann Engelhardt, K. A.  

E-print Network

Glacier, Alaska Barclay Kamb, C. F. Raymond, W. D. Harrison Hermann Engelhardt, K. A. Echelmeyer, NGlacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska Author(s): Barclay Kamb, C. F. Raymond, W. D. Harrison, Hermann Engelhardt, K. A. Echelmeyer, N. Humphrey, M. M. Brugman, T

Rempel, Alan W.

30

Quiescent-phase evolution of a surge-type glacier: Black Rapids Glacier, Alaska, U.S.A.  

USGS Publications Warehouse

Black Rapids Glacier, a surge-type glacier in the Alaska Range, most recently surged in 1936-37 and is currently in its quiescent phase. Mass balance, ice velocity and thickness change have been measured at three to ten sites from 1972 to 1994. The annual speed has undergone cyclical fluctuations of as much as 45% about the mean speed. Ice thickness and surface slope did not change enough to cause the speed fluctuations through changes in ice deformation, which indicates that they are being driven by changes in basal motion. The behavior of Black Rapids Glacier during this quiescent phase is significantly different from that of Variegated Glacier, another well-studied surge-type glacier in Alaska. The present medial-moraine configuration of Black Rapids Glacier indicates that a surge could occur at any time. However, ice velocity data indicate that the next surge may not be imminent. We believe that there is little chance that the next surge will cross and dam the Delta River.

Heinrichs, T. A.; Mayo, L. R.; Echelmeyer, K. A.; Harrison, W. D.

1996-01-01

31

Probing the till beneath Black Rapids Glacier, Alaska  

NASA Astrophysics Data System (ADS)

Black Rapids is a surge-type glacier in the Alaska Range which last surged in 1936. Seismic studies and wire-line drilling have shown that its central, most active part, is underlain by several meters of till, processes in which account for more than half of the present surface motion. We recently developed a 400 kg down-hole hammer system to place instrumented probes as deeply as possible into the till. The hammer is operated from the surface with a cathead and a composition rope. In 2002 we penetrated about 2.5 m into the till under 500 m of ice. To circumvent problems with probe placement and survival of communication with the surface, the probes are wireless and broadcast pressure and two axes of tilt data to a down-hole receiver placed slightly above the ice-till interface. Results from two probes in separate holes 4.1 m apart showed almost identical, complex patterns of tilt rate, relativey quiescent periods punctuated by rapid tilt events. One tilt event was accompanied by an almost 90 degree change in the direction of tilt. The tilt events show some correlation with motion events measured at the surface.

Harrison, W.; Trufffer, M.

2003-04-01

32

Holocene climate and glacier variability at Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska  

Microsoft Academic Search

Evidence from lake sediments and glacier forefields from two hydrologically isolated lake basins is used to reconstruct Holocene\\u000a glacier and climate history at Hallet and Greyling Lakes in the central Chugach Mountains of south-central Alaska. Glacial\\u000a landform mapping, lichenometry, and equilibrium-line altitude reconstructions, along with changes in sedimentary biogenic-silica\\u000a content, bulk density, and grain-size distribution indicate a dynamic history of

Nicholas P. McKay; Darrell S. Kaufman

2009-01-01

33

Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska  

Microsoft Academic Search

The hundredfold speedup in glacier motion in a surge of the kind that took place in Variegated Glacier in 1982-1983 is caused by the buildup of high water pressure in the basal passageway system, which is made possible by a fundamental and pervasive change in the geometry and water-transport characteristics of this system. The behavior of the glacier in surge

Barclay Kamb; C. F. Raymond; W. D. Harrison; Hermann Engelhardt; K. A. Echelmeyer; N. Humphrey; M. M. Brugman; T. Pfeffer

1985-01-01

34

Columbia Glacier, Alaska, photogrammetry data set, 1981-82 and 1984-85  

USGS Publications Warehouse

Photogrammetric processing of 12 sets of vertical aerial photography of the Columbia Glacier, Alaska, has measured the altitude and velocity fields of the lowest 14,000 m of the glacier during the periods of September 1981 to October 1982 and October 1984 to September 1985. The data set consists of the location of 3,604 points on the glacier, 1,161 points along the glacier terminus, and 1,116 points along the top of the terminus ice cliff. During the 1981 to 1985 period the terminus of the glacier receded 1,350 m, the ice near the terminus thinned at a rate of 18 m/year, and ice velocity near the terminus tripled, reaching as much as 6,000 m/year. (Author 's abstract)

Krimmel, R.M.

1987-01-01

35

Assessing the Response of Alaska's Glaciers to Post-Little Ice Age Climate Change  

NASA Astrophysics Data System (ADS)

A comprehensive survey of the eleven mountain ranges and three island areas in Alaska that presently support glaciers was conducted to determine how glaciers in each area have responded to post-Little Ice Age (LIA) climate change. Today, glaciers cover 5 percent of Alaska, about 75,000 sq. km., range in elevation from 6,000 m to below sea level, and span latitudes from south of 55 degrees N to north of 69 degrees N. During the LIA, Alaskan glaciers expanded significantly, covering 10 percent more area than today. Many different types of data were used to construct baselines and determine glacier change. These include: published descriptions of glaciers (1794 - 2000), historic and modern maps (1794 - 2000), aerial photography (1926 - 2001), ground photography (1884 - 2001), airborne radar (1981 - 1991), satellite radar (1978 - 1998), space photography (1984 - 1994), multi-spectral satellite imagery (1972 - 2001), aerial reconnaissance and field observations by the author (1968 - 2001), and various types of proxy data. Data available varied for each region and glacier. Every mountain range and island group investigated is characterized by significant glacier retreat, thinning, and/or stagnation, especially at lower elevations. At some locations, glaciers have completely disappeared during the twentieth century. In other areas, retreat that started as early as the early eighteenth century, has continued into the twenty-first century. Ironically, in several areas, retreat is resulting in the number of glaciers is actually increasing, but the volume and area of ice is decreasing. The key survey findings are: ALEXANDER ARCHIPELAGO, KODIAK ISLAND, ALEUTIAN ISLANDS: every glacier examined showed evidence of thinning and retreat. Some have disappeared since last being mapped in the mid-twentieth century; COAST MOUNTAINS, ST. ELIAS MOUNTAINS, CHUGACH MOUNTAINS, KENAI MOUNTAINS, WRANGELL MOUNTAINS, ALASKA RANGE, AND THE ALEUTIAN RANGE: more than 95 percent of glaciers ending below an elevation of 1,500 m are retreating, thinning, and/or stagnating. Some advancing glaciers have tidewater termini. The two largest glaciers, Bering and Malaspina Glaciers, are thinning and retreating, losing several cubic kilometers of ice each year to melting and calving; TALKEETNA MOUNTAINS, AHKLUN-WOOD RIVER MOUNTAINS, KIGLUAIK MOUNTAINS, AND THE BROOKS RANGE: every glacier examined is retreating. Some disappeared during the twentieth century. Glaciers at higher elevations show little or no change. Perhaps, at these locations, regional climate change has not resulted in temperatures being elevated to a level where they impact existing glacier ice. Increases in precipitation may also be compensating for increases in melting. Throughout Alaska, in response to post-Little Ice Age climate change, all but a few glaciers that descent below an elevation of 1,500 m have thinned, stagnated, and/or retreated. Of the nearly 700 named Alaskan glaciers, less than a dozen are currently advancing.

Molnia, B. F.

2001-12-01

36

A Century of Retreat at Portage Glacier, South-Central Alaska  

USGS Publications Warehouse

Introduction: The Portage Glacier, in south-central Alaska, is viewed by thousands of visitors annually who come to the U.S. Forest Service Begich, Boggs Visitor Center located on the road system between Anchorage and Whittier, Alaska. During the past century, the terminus of the glacier has retreated nearly 5 kilometers to its present location (fig. 1). Like other glaciers that terminate in water, such as Columbia Glacier near Valdez or Mendenhall Glacier near Juneau, Portage Glacier has experienced accelerated retreats in recent decades that likely were initially triggered by climate change begun at the end of the Little Ice Age in the mid-1800s and subsequently controlled in recent history primarily by calving of the glacier terminus. Photographic records of the terminus covering 1914 until present day track the patterns of retreat. These data, coupled with USGS climate information collected from the southern end of the ice field, provide insight to the patterns of retreat that might be observed in the future.

Kennedy, Ben W.; Trabant, Dennis C.; Mayo, Lawrence R.

2006-01-01

37

Monitoring Tidewater Glacier Processes Using A Long-Range Terrestrial LiDAR Scanner; Comparative Results From Helheim Glacier Southeast Greenland and Hubbard Glacier Southeast Alaska  

NASA Astrophysics Data System (ADS)

Tidewater glaciers exhibit dynamic behaviors across a range of spatial and temporal scales, posing a challenge to both in situ and remote sensing observations. In situ measurements capture variability over very short time intervals, but with limited spatial coverage and significant cost and risk to employ. Conversely, airborne and satellite remote sensing is capable of measuring changes over large spatial extents but at limited temporal sampling. Terrestrial LiDAR Scanning (TLS) combines rapid acquisition capabilities of in situ measurements with the broad spatial coverage of traditional remote sensing. This paper describes efforts to develop and field a new long-range (6-10 km) terrestrial full-waveform LiDAR scanner that is optimized for glaciated environments. Our work seeks to gain insights into the processes of glacier flow and terminus dynamics on two of the world's most active tidewater glaciers. Helheim Glacier, a large East Greenland outlet glacier is known to move at speeds >25 m/d near its terminus; rapid readjustments in speed are also know to occur following terminus retreat. Hubbard Glacier, located in southeast Alaska an outlet glacier flowing 90Km out of the St Elias mountains is ~13km across at its terminus, exhibits flow rates up to 5m/d and is advancing and thickening. These two glacial systems have similar characteristics yet represent inverse phases of tidewater glacier activity. Our understanding of these processes is limited by incomplete observational datasets. Most TLS instruments operate in the near-infrared spectrum (1550 nm), which greatly limits range (<150 m) and its application as a tool for long-range standoff glaciology. High spatial and temporal resolution surveys were conducted at Helheim Glacier during the summer of 2012 and 2013 and surveys were conducted at Hubbard Glacier in the spring of 2013. Both were conducted over multi-day periods ranging from 3-7 days. Preliminary results from these surveys have allowed us to quantify short-term horizontal displacement rates and terminus activities at temporal and spatial resolutions previously not possible. Furthermore, these results allow for a comparative analysis of two similar yet different tidewater glacier systems representing altering phases of dynamic activity. Identifying the operational limitations of these sensors in our work is a key guide to the optimal design characteristics for new, improved LiDAR instruments for campaign deployments in glacierized environments.

Finnegan, D. C.; Hamilton, G. S.; Stearns, L. A.; LeWinter, A.; Fowler, A.

2013-12-01

38

AK-03 ALASKA: AK-03 Columbia Glacier "Cliff" (Narrated)  

NSDL National Science Digital Library

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

Balog, James; Pfeffer, Tad; Survey, Extreme I.

39

Analysis of meteorological data and the surface energy balance of McCall Glacier, Alaska, USA  

Microsoft Academic Search

We report on analysis of meteorological data for the period 27 May-20 August 2004, from two automatic weather stations on McCall Glacier, Alaska, USA, aimed at studying the relationship between climate and ablation. One station is located on a mountain ridge and the other in the ablation area where we also analyzed the energy balance. The weather station on the

E. J. Klok; M. Nolan; M. R. van den Broeke

2005-01-01

40

Response of glacier mass balance and discharge to future climate change, upper Susitna basin, Alaska  

NASA Astrophysics Data System (ADS)

As glaciers retreat, they highly alter the characteristics of the overall water budget of the larger drainage basin. Understanding and quantifying glacier melt is key to effectively project future changes in watershed-scale stream flow from glacierized landscapes. In glacierized Southcentral Alaska, the State of Alaska is reviving analyses of the Susitna River's hydroelectric potential and impact by supporting a multitude of field and modeling studies. Here, we focus on the response of discharge to projected climate change through the end-of-the century. The analyzed sub-catchment is largely untouched by humans, and covers an area of 2,230 km2 (740 - 4000 m a.s.l.) of which 25% is glacierized. We use a distributed temperature index model (DETIM), which uses daily air temperature and precipitation to compute runoff, ice and snow melt/accumulation. Model calibration included daily discharge and annual mass balance point measurements between 1955 and 2012. Output from the CCSM global climate model forced by three emission scenarios (A1B, A2 and B1) was downscaled to project future runoff and glacier mass balance until 2100. Depending on the climate scenario, runoff is projected to increase by 22 to 39% (yrs 2005-2100) due to increased mean annual air temperature ranging from 3.0 to 4.9C and precipitation increase between 23 and 34%. During the same period, the glaciers are projected to lose between 11 to 14% of their area. The future projections show no trend in winter glacier mass balance, but suggest an increasingly negative specific summer mass balance. The DETIM model, despite its hydrologic simplicity and focus on snow and ice melt and accumulation, is able to reproduce well the observations in basin discharge and glacier mass balance.

Aubry-Wake, C.; Hock, R.; Braun, J. L.; Zhang, J.; Wolken, G. J.; Liljedahl, A.

2013-12-01

41

Glacier Change and Biologic Succession: a new Alaska Summer Research Academy (ASRA) Science Camp Module for Grades 8-12 in Glacier Bay National Park, Alaska  

NASA Astrophysics Data System (ADS)

During the summer of 2008, university faculty and instructors from southeast Alaska joined the University Alaska Fairbanks(UAF)Alaska Summer Research Academy(ASRA)to initiate a 12-day module on glacier change and biologic succession in Glacier Bay National Park. Nine students from Alaska, Colorado, Massachusetts, and Texas, made field observations and collected data while learning about tidewater glacier dynamics, plant succession, post-glacial uplift, and habitat use of terrestrial and marine vertebrates and invertebrates in this dynamic landscape that was covered by 6,000 km2 of ice just 250 years ago. ASRA students located their study sites using GPS and created maps in GIS and GOOGLE Earth. They deployed salinometers and temperature sensors to collect vertical profiles of seawater characteristics up-bay near active tidewater glacier termini and down-bay in completely deglaciated coves. ASRA student data was then compared with data collected during the same time period by Juneau undergraduates working on the SEAMONSTER project in Mendenhall Lake. ASRA students traversed actively forming, up-bay recessional moraines devoid of vegetation, and the fully reforested Little Ice Age terminal moraine near Park Headquarters in the lower bay region. Students surveyed marine organisms living between supratidal and subtidal zones near glaciers and far from glaciers, and compared up-bay and down-bay communities. Students made observations and logged sightings of bird populations and terrestrial mammals in a linear traverse from the bay's northwestern most fjord near Mt. Fairweather for 120 km to the bay's entrance, south of Park Headquarters at Bartlett Cove. One student constructed an ROV and was able to deploy a video camera and capture changing silt concentrations in the water column as well as marine life on the fjord bottom. Students also observed exhumed Neoglacial spruce forests and visited outcrops of Silurian reef faunas, now fossilized in Alexander terrane limestones in the lower bay. Park Service naturalists joined the expedition and provided important resource information to the students. ASRA students and faculty returned to the Fairbanks campus at the end of the second week where students presented their work to 114 of their peers, distributed across 15 different science modules. Camp faculty, dorm resident assistants, camp staff, an enthusiastic crowd of Fairbanks community members, and one Nobel Laureate in Chemistry rounded out the audience. This was the 8th summer of the UAF-ASRA Camp.

Connor, C. L.; Drake, J.; Good, C.; Fatland, R.; Hakala, M.; Woodford, R.; Donohoe, R.; Brenner, R.; Moriarty, T.

2008-12-01

42

An update on surge-type glaciers and spatial constraint of surge behavior in the Alaska Range  

NASA Astrophysics Data System (ADS)

The Alaska Range is host to many surge-type glaciers as originally identified by Post in the 1960s. A reanalysis of Post's Alaska Range surge-type glacier inventory and updates by Wilbur and Clarke has been compiled from the literature, USGS maps, nadir and oblique aerial photographs and satellite imagery with a combined time span of 1949 to 2011. Glaciers in the Alaska Range show a spectrum of surge behavior, from episodic "pulsing" (or acceleration) of a tributary glacier into a major glacier trunk, to full glacier participation resulting in kilometers of displacement. To address this spectrum a classification scheme was developed and applied to show both magnitude of surge behavior and provide a confidence index of surge-type glacier identification. Of the 356 glaciers in the Alaska Range with a surface area greater than 1 km2, 28 glaciers comprising 38% of the total glacier surface area show some degree of surge behavior. 19 major surge events have been observed or temporally constrained with imagery. To better spatially constrain surge behavior, tributary branches of surge-type glaciers were assessed individually for surge participation. The extent of displacement from the most recent surge was identified from surface expressions where possible. Pre- and post-surge moraine structures for glaciers known to have major surges since the 1990s were mapped, illustrating ice displacement and the evolution of glacier geometry during the quiescent phase. Moraine geometries of Black Rapids and Susitna glaciers were also mapped. Both are well studied glaciers whose predicted surges have not occurred. Elevation data collected along a centerline of Yanert Glacier before and after a surge in 2000-01 show a mass transfer of (6.2 0.3) x 10^8 m3. These data also show the location of the hinge line or boundary between reservoir and receiving areas. Using these data as well as additional direct hinge line measurements made in the Alaska Range and elsewhere in Alaska, a 70/30 surface area ratio between the reservoir and receiving areas was derived. This ratio was applied to surge-type glaciers in the Alaska Range lacking direct hinge line measurements. We propose that knowing the location of the hinge line can aid surge forecasting.

Herreid, S. J.; Truffer, M.; Harrison, W. D.; Hock, R. M.

2011-12-01

43

Evaluating glacier movement fluctuations using remote sensing: A case study of the Baird, Patterson, LeConte, and Shakes glaciers in central Southeastern Alaska  

NASA Astrophysics Data System (ADS)

Global Land Survey (GLS) data encompassing Landsat Multispectral Scanner (MSS), Landsat 5's Thematic Mapper (TM), and Landsat 7's Enhanced Thematic Mapper Plus (ETM+) were used to determine the terminus locations of Baird, Patterson, LeConte, and Shakes Glaciers in Alaska in the time period 1975-2010. The sequences of the terminuses locations were investigated to determine the movement rates of these glaciers with respect to specific physical and environmental conditions. GLS data from 1975, 1990, 2000, 2005, and 2010 in false-color composite images enhancing ice-snow differentiation and Iterative Self-Organizing (ISO) Data Cluster Unsupervised Classifications were used to 1) quantify the movement rates of Baird, Patterson, LeConte, and Shakes Glaciers; 2) analyze the movement rates for glaciers with similar terminal terrain conditions and; 3) analyze the movement rates for glaciers with dissimilar terminal terrain conditions. From the established sequence of terminus locations, movement distances were quantified between the glacier locations. Movement distances were then compared to see if any correlation existed between glaciers with similar or dissimilar terminal terrain conditions. The Global Land Ice Measurement from Space (GLIMS) data was used as a starting point from which glacier movement was measured for Baird, Patterson, and LeConte Glaciers only as the Shakes Glacier is currently not included in the GLIMS database. The National Oceanographic and Atmospheric Administration (NOAA) temperature data collected at the Petersburg, Alaska, meteorological station (from January 1, 1973 to December 31, 2009) were used to help in the understanding of the climatic condition in this area and potential impact on glaciers terminus. Results show that glaciers with similar terminal terrain conditions (Patterson and Shakes Glaciers) and glaciers with dissimilar terminal terrain conditions (Baird, Patterson, and LeConte Glaciers) did not exhibit similar movement rates. Glacier movement rates were greatest for glaciers whose terminuses were in fresh water (Patterson and Shakes Glaciers), less for those with terminuses in salt water (LeConte Glacier), and least for glaciers with terminuses on dry land (Baird Glacier).Based upon these findings, the presence of water, especially fresh water, at the terminal end of the Patterson and Shakes Glaciers had a greater effect on glacier movement than slope. Possible explanations for this effect might include a heat sink effect or tidal motions that hasten glacier disintegration in the ablation zone. In a heat sink scenario, the water bodies in which the Patterson and Shakes Glaciers terminus are located could act as a thermal energy transfer medium that increases glacier melting and subsequent retreat. On the other hand, tidal motions could act as horizontal and vertical push/pull forces, which increase the fracturing rate, calving, and subsequent retreat of glaciers terminus that are is salt water like the LeConte Glacier. Over the length of the study period, 1975 through 2010, there has been a 0.85C increase in annual air temperatures that, although may seem low, may prove important when determining glacial mass balance rates. Further studies are necessary to test these hypotheses to determine if a heat sink effect and tidal motions significantly affected the movement rates for the glaciers in this study area. An additional significant result of this study was the creation of shapefiles delineating the positions of the Shakes Glaciers that are being submitted to the Global Land Ice Measurements from Space (GLIMS) program for inclusion in their master worldwide glacier database.

Davidson, Robert Howard

44

Factors Associated With Recent Ice-Marginal Glacier Dammed Lake Loss, Persistence, and Emergence Across Alaska  

NASA Astrophysics Data System (ADS)

Ice-marginal glacier-dammed lakes (GDLs), prone to repeated catastrophic sudden drainages, and amenable to remote monitoring, pose unique hazards to human habitation downstream. Both GDLs and flood potential can be evaluated with satellite imagery and GIS tools. Using a baseline map and ASTER imagery, I determined impoundment longevity (absent, persisting, new) of nearly 700 Alaska/adjacent Canada GDL basins. I present here characterizations of these groups of basins and their 214 damming glaciers. Over 50% of historic GDLs, mapped by USGS in 1971, persisted. Of particular importance to proposed/existing infrastructure downstream, 34% of GDLs showing on recent satellite imagery were new since 1971; 44% of the glaciers damming these new GDLs did not previously dam GDLs. For absent GDLs, 70% of ice dam loss was related to glacier thinning; 27% was related to terminus retreat. Numbers of lakes and form of dam loss differed by damming glacier complexity and terminus type. Persisting lakes differed significantly (p=.005) from absent lakes in their: distance up the damming glacier in percent of its total length and in horizontal distance from terminus; and vertical distance below the mean glacier altitude. The predominant aspect of now-absent historic ice dams appeared to have strong oro-topographic origins. Emerging lake ice dam aspects, and the persistence of ice dams, by contrast, appear driven more by climate in that they predominantly face aspects of minimal solar input. Newly forming GDLs were significantly higher and 20% further up the length of damming glaciers than the now-absent historic lakes were, and 95% of all GDLs had glacier surface gradients of 6 or less below the GDL. This is of interest as GDL releases can flush waters stored within the glacier system, creating a larger than expected flood peak and/or duration, and gradients of 6 or less have been found to promote water storage within a glacier system. This work corroborates findings of dramatic Alaska glacier thinning, and findings of higher GDL emergence elsewhere. It highlights the dynamic hazards posed by these lakes and their recurring floods.

Wolfe, D. F.

2008-12-01

45

Observations of the surge-type Black Rapids Glacier, Alaska, during a quiescent period, 1970-92  

USGS Publications Warehouse

This report presents 23 years (1970 to 1992) of observations of Black Rapids Glacier, Alaska. Black Rapids Glacier is a surge-type glacier which most recently surged in 1936-37, and is currently in its quiescent phase. This glacier is of special interest because it is a potential hazard to the trans-Alaska oil pipeline. Ten sites on the glacier were monitored from 1972 to 1987, and three sites were monitored from 1988 to 1992. The measurement program presented here includes observations of surface mass balance, ice velocity, and surface altitude made twice each year. Additional one-time data include observations of ice thickness, previously unreported observations of the 1936-37 surge, establishment of the geodetic control monuments, and a new map of Black Rapids Glacier.

Heinrichs, Thomas A.; Mayo, L. R.; Trabant, D. C.; March, R. S.

1995-01-01

46

Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska  

USGS Publications Warehouse

Watersheds along the Gulf of Alaska (GOA) are undergoing climate warming, glacier volume loss, and shifts in the timing and volume of freshwater delivered to the eastern North Pacific Ocean. We estimate recent mean annual freshwater discharge to the GOA at 870 km3 yr-1. Small distributed coastal drainages contribute 78% of the freshwater discharge with the remainder delivered by larger rivers penetrating coastal ranges. Discharge from glaciers and icefields accounts for 47% of total freshwater discharge, with 10% coming from glacier volume loss associated with rapid thinning and retreat of glaciers along the GOA. Our results indicate the region of the GOA from Prince William Sound to the east, where glacier runoff contributes 371 km3 yr -1, is vulnerable to future changes in freshwater discharge as a result of glacier thinning and recession. Changes in timing and magnitude of freshwater delivery to the GOA could impact coastal circulation as well as biogeochemical fluxes to near-shore marine ecosystems and the eastern North Pacific Ocean. Copyright ?? 2010 by the American Geophysical Union.

Neal, E. G.; Hood, E.; Smikrud, K.

2010-01-01

47

Neoglacial fluctuations of terrestrial, tidewater, and calving lacustrine glaciers, Blackstone-Spencer Ice Complex, Kenai Mountains, Alaska  

NASA Astrophysics Data System (ADS)

The glaciers surrounding the Blackstone-Spencer Ice Complex display a variety of termini types: Tebenkov, Spencer, Bartlett, Skookum, Trail, Burns, Shakespeare, Marquette, Lawrence, and Ripon glaciers end in terrestrial margins; Blackstone and Beloit glaciers have tidewater termini; and Portage Glacier has a calving lacustrine margin. In addition, steep temperature and precipitation gradients exist across the ice complex from the maritime environment of Prince William Sound to the colder, drier interior. The Neoglacial history of Tebenkov Glacier, as based on overrun trees near the terminus, shows advances ca. 250- 430 AD (calibrated date), ca. 1215-1275 AD (calibrated date), and ca. 1320-1430 AD (tree ring evidence), all intervals of glacier advance around the Gulf of Alaska. However, two tidewater glaciers in Blackstone Bay retreated from their outermost moraines by 1350 AD, apparently asynchronously with respect to the regional climate signal. The most extensive Kenai Mountain glacier expansions during Neoglaciation occurred in the late Little Ice Age. The outermost moraines are adjacent to mature forest stands and bog peats that yield dates as old as 5,600 BP. Prince William Sound glaciers advanced during two Little Ice Age cold periods, 1380-1680 and 1830-1900 AD. The terrestrial glaciers around the Blackstone-Spencer Ice Complex all built moraines during the 19th century and began retreating between 1875 and 1900 AD. Portage and Burns glaciers began retreating between 1790 and 1810 AD, but their margins remained close to the outermost moraines during the 19th century. Regional glacier fluctuations are broadly synchronous in the Gulf of Alaska region. With the exception of the two tidewater glaciers in Blackstone Bay, all glaciers in the Kenai Mountains, no matter their sizes, altitudes, orientations, or types of margins, retreated at the end of the Little Ice Age. The climate signal, especially temperature, appears to be the strongest control on glacier behavior during the last millennium.

Crossen, Kristine June

1997-12-01

48

Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska  

NASA Technical Reports Server (NTRS)

Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

SauberRosenberg, Jeanne M.; Molnia, Bruce F.

2003-01-01

49

Effect of glacier ablation on the Snettisham Hydroelectric Project, Long Lake and Crater Lake Basins, Alaska  

USGS Publications Warehouse

Long Lake Basin in the Snettisham Project Area southeast of Juneau, Alaska, yields water used for the production of hydroelectric power. Development of adjacent Crater Lake is planned to increase the Project 's generating capacity. Estimates of the hydroelectric potential of the lakes are based on streamflow records which are influenced by glaciers that cover 25% of the combined basins. Analysis of streamflow records shows that the quality and extent of records in the area are sufficient to predict flow from the Crater Creek basin with a fairly high degree of confidence. Comparison of aerial photographs indicates that glacier ablation and recession have been continuous since at least 1929. Estimates of ice-volume change from photogrammetric measurements indicate that less than 2.5% of the average runoff from the basins of Long and Crater Lakes has been from reduction in glacier-ice storage. (Author 's abstract)

Sloan, C. E.; Emery, P. A.; Fair, Diana

1986-01-01

50

Glacier ice-volume modeling and glacier volumes on Redoubt Volcano, Alaska  

USGS Publications Warehouse

Assessment of ice volumes and hydrologic hazards on Redoubt Volcano began four months before the 1989-90 eruptions removed 0.29 cubic kilometer of perennial snow and ice from Drift glacier. A volume model was developed for evaluating glacier volumes on Redoubt Volcano. The volume model is based on third-order polynomial simulations of valley cross sections. The third-order polynomial is an interpolation from the valley walls exposed above glacier surfaces and takes advantage of ice-thickness measurements. The fortuitous 1989-90 eruptions removed the ice from a 4.5-kilometer length of Drift glacier, providing a unique opportunity for verification of the volume model. A 2.5-kilometer length was chosen in the denuded glacier valley and the ice volume was measured by digitally comparing two new maps: one derived from the most recent pre-eruption 1979 aerial photographs and the other from post-eruption 1990 aerial photographs. The measured volume in the reference reach was 99 x 106 cubic meters, about 1 percent less than was estimated by the volume model. The volume estimate produced by this volume model was much closer to the measured volume than was the volume estimated by other techniques. The verified volume model was used to evaluate the total volume of perennial snow and glacier ice on Redoubt Volcano, which was estimated to be 4.1?0.8 cubic kilometers. Substantial snow and ice covers on volcanoes exacerbate the hydrologic hazards associated with eruptions. The volume on Redoubt Volcano is about 23 times the volume that was present on Mount St. Helens before its 1980 eruption, which generated lahars and floods.

Trabant, Dennis C.; Hawkins, Daniel B.

1997-01-01

51

Turbidity-current channels in Queen Inlet, Glacier Bay, Alaska  

USGS Publications Warehouse

Queen Inlet is unique among Glacier Bay fjords because it alone has a branching channel system incised in the Holocene sediment fill of the fjord floor. Queen Inlet and other known channel-containing fjords are marine-outwash fjords; the tidewater glacial fjords do not have steep delta fronts on which slides are generated and may not have a sufficient reservoir of potentially unstable coarse sediment to generate channel-cutting turbidity currents. Presence or absence of channels, as revealed in the ancient rock record, may be one criterion for interpreting types of fjords. -Authors

Carlson, P.R.; Powell, R.D.; Rearic, D.M.

1989-01-01

52

Expanding Peatlands in Alaska Caused by Accelerated Glacier Melting Under a Warming Climate  

NASA Astrophysics Data System (ADS)

Most mountain glaciers worldwide have been retreating over the last century due to global warming. This is particularly true around the Gulf of Alaska, where glacier recession has further accelerated since 1988. It is well known that glacier meltwater plays a critical role in the global sea level rise, but its effects on structure and functioning of peatland ecosystems remain poorly understood. We have observed in the field that many peatlands in the Susitna Basin, south-central Alaska, are expanding. As high moisture conditions are needed to promote peatland development and expansion, a regional change toward wetter conditions is likely responsible for the ongoing paludification of these peatlands. However, instrumental climatic data from this region show no increase in precipitation but an increase in temperature (and presumably evaporation) over the last decades. We hypothesize that climatically-induced glacier melting is modifying the local/regional climate, especially air humidity during the growing season, promoting the expansion of peatlands. To document recent peatland vertical growth and lateral expansion, we collected two long peat cores and twelve 30-cm-long monoliths in 2008 along a 110-m transect from an expanding peatland margin toward the peatland center. Ecohydrologic changes were reconstructed from testate amoebae and plant macrofossils assemblages. Preliminary results from both long cores revealed a change in the vegetation assemblages from a mesotrophic fen dominated by sedges and brown mosses to a Sphagnum-dominated peat bog at 11 cm, suggesting a very recent modification of the local hydrologic regime. A simultaneous increase in moisture was reconstructed from testate amoebae records. These unusual shifts in peatland development and hydrology (e.g., wet conditions triggering the fen-bog transition) imply a recent increase of atmospheric water to these peatlands. Our ongoing lead-210 dating and additional proxy analysis will help us resolve the timing and nature of recent peatland changes. These data, together with glacier history and climate records, will allow us to further test our hypothesis that the increase in glacier meltwater is causing peatland expansion By acting as water sinks, peatlands located in glacierized watersheds may mediate the contribution of meltwater to present and future sea-level rise. Increases in peat accumulation rates due to favorable hydroclimatic conditions are also expected to promote carbon sequestration by these ecosystems. In contrast to the expected desiccation of peatlands under a warmer climate, enhanced growth due to glaciers-climate feedbacks in high-latitude regions may thus promote peatland expansion, even just temporally.

Loisel, J.; Yu, Z.; Jones, M. C.

2009-05-01

53

Methane seeps along boundaries of receding glaciers in Alaska and Greenland  

NASA Astrophysics Data System (ADS)

Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca. 1650-1850 C.E.). Across Alaska, we found a relationship between methane stable isotopes, radiocarbon age, and distance to faults. Faults appear to allow the escape of deeper, more 14C-depleted methane to the atmosphere, whereas seeps away from faults entrained 14C-enriched methane formed in shallower sediments from microbial decomposition of younger organic matter. Additionally, we observed younger subcap methane seeps in lakes of Greenland's Sondrestrom Fjord that were associated with ice-sheet retreat since the LIA. These correlations suggest that in a warming climate, continued disintegration of glaciers, permafrost, and parts of the polar ice sheets will weaken subsurface seals and further open conduits, allowing a transient expulsion of methane currently trapped by the cryosphere cap.

Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.

2012-12-01

54

Masked Correlation for Improvement of 2D Glacier Motion Estimation Based on Terrasar-x Imagery  

NASA Astrophysics Data System (ADS)

In this paper, the impacts of the non-glacier information in the template window used in cross-correlation calculation for 2D motion estimation of glaciers are discussed and illustrated by the example of the Taku glacier, which is the biggest glacier in the Juneau Icefield, Alaska. For this, the glacier motion maps are extracted by the traditional normalized cross-correlation technique and the masked cross-correlation method, which uses a manually generated binary mask to threshold the non-glacier pixels, based on geocoded high resolution TerraSAR-X images. Based on the comparison of the different results, it was found that without the disturbing information (e.g., mountain, water) the accuracy of the cross-correlation of sequential patches in masked cross-correlation method is improved and the estimation results are much more reasonable, which respect the law that glacier flows like a river with higher velocity in the middle and than that in the sides.

Fang, L.; Stilla, U.

2014-09-01

55

Future glacier and runoff changes in the Upper Susitna basin, Alaska  

NASA Astrophysics Data System (ADS)

Traditionally, construction of hydropower dams have been guided by statistical flow analyses of historical discharge datasets. This assumes that the future hydrologic conditions (70+ years) will remain similar to what has been observed in the past. In glaciated Southcentral Alaska, the State is reviving studies of the Susitna River's hydroelectric potential. We combine field measurements and computational modeling to improve estimates of runoff into the proposed 81 km2 and 63 km long reservoir of the Susitna-Watana Hydroelectric Project. Approximately 4% the watershed area (14,774 km2) is glacierized. Changes in glacier extent in response to climate warming and/or altered precipitation regimes have the potential to substantially alter the magnitude and timing of runoff. Therefore, we apply the physically-based, fully distributed hydrologic model "Water Balance Simulation Model" (WaSiM). WaSiM is a well established tool for simulating the spatial and temporal variability of hydrologic processes in complex basins. The glacier module, which includes the shrinkage and expansion of glaciers, allows us to specifically evaluate the role of glacier melt on river runoff during the lifespan of the proposed dam. Here, the model is calibrated against multiple discharge and glacier mass balance measurements and is forced by daily temperature and precipitation grids. Downscaled climate projections serve to inform the hydrologic model in order to produce refined estimates of future seasonality and magnitude of flow. An application of a physically-based hydrologic model, which is first validated in order to quantify its uncertainty, has the potential to extend statistical analyses into the future and ultimately inform management decisions.

Braun, J. L.; Liljedahl, A. K.; Hock, R. M.; Wolken, G. J.

2012-12-01

56

Diurnal Fluctuations in Borehole Water Levels: Configuration of the Drainage System Beneath Bench Glacier, Alaska  

NASA Astrophysics Data System (ADS)

Water levels were measured in boreholes spaced along the entire length of Bench Glacier, Alaska for a period in excess of two years. Instrumented boreholes were arranged as 9 pairs along the centerline of the glacier and an orthogonal grid of 16 boreholes at the center of the ablation area. Diurnal fluctuations of the water levels were found to be unique to the melt season. Pairs of boreholes along the length of the ablation area regularly had similar water levels and fluctuations. In the grid of boreholes, three independent types of diurnal fluctuations in water were observed - the magnitudes and base levels of the fluctuations were distinct with each type. Therefore, water was not flowing between boreholes of separate sets and a single tunnel connecting the boreholes could not explain the observed diurnal water level fluctuations. A drainage configuration whereby boreholes are connected to a low-pressure tunnel by drainage pipes of differing lengths was shown with a numerical test to be a plausible alternative. The cross glacier width of influence of a borehole was determined to be no greater than 70 meters in a cross glacier direction. The grid water level records also showed that no uniform basal pressure exists during summer over even a small area of the bed.

Humphrey, N. F.; Harper, J. T.; Pfeffer, W. T.

2006-12-01

57

Glaciers  

NSDL National Science Digital Library

This interactive Flash exercise and animation explores glaciers, including their formation, growth, and retreat. This resource provides animations, diagrams, models in which students can see the influence of temperature and precipitation on glacier growth, and supplementary information that may serve as an overview or review of glaciers for introductory level physical geology or Earth science students at the high school or undergraduate level.

Smoothstone; Mifflin, Houghton

58

Effects of the March 1964 Alaska earthquake on glaciers: Chapter D in The Alaska earthquake, March 27, 1964: effects on hydrologic regimen  

USGS Publications Warehouse

The 1964 Alaska earthquake occurred in a region where there are many hundreds of glaciers, large and small. Aerial photographic investigations indicate that no snow and ice avalanches of large size occurred on glaciers despite the violent shaking. Rockslide avalanches extended onto the glaciers in many localities, seven very large ones occurring in the Copper River region 160 kilometers east of the epicenter. Some of these avalanches traveled several kilometers at low gradients; compressed air may have provided a lubricating layer. If long-term changes in glaciers due to tectonic changes in altitude and slope occur, they will probably be very small. No evidence of large-scale dynamic response of any glacier to earthquake shaking or avalanche loading was found in either the Chugach or Kenai Mountains 16 months after the 1964 earthquake, nor was there any evidence of surges (rapid advances) as postulated by the Earthquake-Advance Theory of Tarr and Martin.

Post, Austin

1967-01-01

59

Combined Ice and Water Balances of Gulkana and Wolverine Glaciers, Alaska, and South Cascade Glacier, Washington, 1965 and 1966 Hydrologic Years  

USGS Publications Warehouse

Glaciers occur in northwestern North America between lat 37 deg and 69 deg N. in two major mountain systems. The Pacific Mountain System, near the west coast, receives large amounts of precipitation, has very mild temperatures, and contains perhaps 90 percent of the glacier ice. The Rocky Mountain or Eastern System, on the other hand, receives nearly an order of magnitude less precipitation, has temperatures that range from subpolar to subtropic, and contains glaciers that are much smaller in both size and total area. As a contribution to the International Hydrological Decade program on combined balances at selected glaciers, the U.S. Geological Survey is conducting studies of ice and water balance on four glaciers in the Pacific Mountain System: Wolverine and Gulkana Glaciers in Alaska, South Cascade Glacier in Washington, and Maclure Glacier in California. Similar data are being collected by other organizations at five glaciers in western Canada, including two in the Rocky Mountain System, and at one glacier in the Rocky Mountain System in northern Alaska. Gulkana, Wolverine, South Cascade, and Maclure Glaciers have dissimilar mass balances, and each is fairly representative of the glaciers for its particular region. Gulkana Glacier (lat 63 deg 15' N., Alaska Range, Alaska) normally has an equilibrium line at an altitude of 1,800 m (meters), an activity index of about 6 mm/m (millimeters per meter), a winter balance of about 1.0 m, and an annual exchange of about 2.2 m. (Balance values are given in terms of water-equivalent measure; the winter balance of 1 m, for example, indicates a volume of ice equal in mass to a volume of water 1 m in depth covering the area of the glacier.) The normal approximate parameters for the other glaciers studied are as follows: Wolverine Glacier (lat 60 deg 24' N., Kenai Mountains, Alaska) - equilibrium-line altitude 1,200 m, activity index 9 mm/m, winter balance 2.5 m, and annual exchange 5.5 m; South Cascade Glacier (lat 48 deg 22' N., North Cascades, Wash.) - equilibrium-line altitude 1,900 m, activity index 17 mm/m, winter balance 3.1 m, and annual exchange 6.6 m; and Maclure Glacier (lat 37 deg 45' N., Sierra Nevada, Calif.) - equilibrium-line altitude 3,600 m, activity index 23 mm/m, winter balance 2.3 m, and annual exchange 4.6 m. Mass balances of these four glaciers and their drainage basins are measured annually by standard glaciological techniques. In addition, the hydrologic balance is calculated using streamflow and precipitation measurements. Combining these independent measurements results in fairly well defined values of water and ice balance for the glaciers and drainage basins. A revision of the standard International Hydrological Decade mass-balance system permits combination of annual and stratigraphic terms. The annual balance of South Cascade Glacier at the end of the 1965 hydrologic year was slightly positive (+0.07 m averaged over the glacier), but continued ablation and deficient accumulation in October 1965 resulted in slightly negative net balances for both the glacier and the drainage basin. Factors tending to produce this near-zero balance were the above-average late-winter balance (3.48 m) and the numerous summer snowfalls. Ice ablation averaged about 39 mm of water per day during the main melt season. Runoff during the summer ablation season was lower than the 1958-64 average. The South Cascade Glacier annual balance in 1966 (-0.94 m) was considerably more negative mainly owing to the deficient winter snowpack (the late-winter balance was only 2.52 m) and the warm dry summer. Ice ablation averaged about 44 mm of water per day during the melt season. The loss in storage of this and other glaciers in the North Cascades increased the runoff of many valley streams by approximately 50 percent during August and September. The 1966 Gulkana Glacier annual balance was slightly positive (+0.06 m); on the basis of past observations and the rapid terminus ret

Meier, Mark Frederick; Tangborn, Wendell V.; Mayo, Lawrence R.; Post, Austin

1971-01-01

60

Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska  

USGS Publications Warehouse

The terminus of Columbia Glacier, Alaska, unexpectedly became ungrounded in 2007 during its prolonged retreat. Visual observations showed that calving changed from a steady release of low-volume bergs, to episodic flow-perpendicular rifting, propagation, and release of very large icebergs - a style reminiscent of calving from ice shelves. Here, we compare passive seismic and photographic observations through this transition to examine changes in calving. Mechanical changes accompany the visible changes in calving style post flotation: generation of seismic energy during calving is substantially reduced. We propose this is partly due to changes in source processes.

Walter, Fabian; O'Neel, Shad; McNamara, Daniel; Pfeffer, W.T.; Bassis, Jeremy N.; Fricker, Helen Amanda

2010-01-01

61

Modern pollen rain and vegetational history of the Malaspina Glacier district, Alaska  

NASA Astrophysics Data System (ADS)

Seventy surface pollen samples from coastal forest, coastal meadow, muskeg, tree line, and alpine tundra communities form a basis for interpreting fossil pollen assemblages in the Malaspina Glacier district, Alaska. Poflen and macrofossil analyses of three radiocarbon-dated fossil sections from Icy Cape indicate that vegetational changes resulting from plant succession can be distinguished from those of migrational and climatic origin. Vegetation of the early Holocene xerothermic interval (10,000-7600 yr B.P.) was dominated by Alnus communities. Wetter conditions ensued, enabling generative muskeg surfaces to develop and first Picea sitchensis, then Tsuga heterophylla to expand from areas southeastward. Climatic cooling in more recent millennia (3500 yr B.P. to the present) is indicated by the appearance and persistent growth of Tsuga mertensiana and Selaginella selaginoides along this portion of the Gulf of Alaska coastline.

Peteet, Dorothy M.

1986-01-01

62

Alaska Park Science, Volume 12, Issue 2 Status and Trends of Alaska National Park Glaciers  

E-print Network

are actually advancing. Given this complexity, and the importance of glacier changes for issues ranging from trends over time or the relationship of these trends to climatic changes. Modern tools like satellite imagery, laser altimetry, and high-accuracy differential GPS have enabled some academic and NPS

Loso, Michael G.

63

Twenty-first century changes in the hydrology, glaciers, and permafrost of the Susitna Basin, Alaska  

NASA Astrophysics Data System (ADS)

In South-Central Alaska, the Susitna River is the site of a proposed hydroelectric dam. The catchment of the reservoir in the upper Susitna watershed (13,289 km^2, 450-4000 m a.s.l.) is 4% glacierized and is characterized by sparse vegetation, discontinuous permafrost, and little human development. Glaciers, permafrost, and the water cycle are expected to change in response to anticipated future atmospheric warming by the end of this century, thus impacting water yields to the hydroelectric reservoir. We aim to quantify future changes in glacier wastage, surface- and groundwater, permafrost, and evapotranspiration. We apply the physically-based hydrological model WaSiM using daily air temperature and precipitation data from station observations and gridded climate products. The model is calibrated with runoff and glacier mass balance measurements from the 1980s and validated with measurements from ongoing field campaigns which started in spring 2012. With the past and present data, the model is able to match both the magnitude and timing of observed river discharge. However, the scarcity of meteorological observations from the upper Susitna basin presents a major challenge to simulating the catchment hydrology. We present methods for extrapolation of the spatially-sparse long-term data across the catchment, with particular emphasis on high-elevation precipitation. To project future changes in river runoff, we run WaSiM with air temperature and precipitation downscaled from global climate models and compare results from several emission scenarios (selected from CMIP5). We discuss the anticipated changes in basin hydrology as the climate warms, permafrost thaws, and glaciers shrink.

Bliss, A. K.; Braun, J. L.; Daanen, R. P.; Hock, R.; Liljedahl, A.; Wolken, G. J.; Zhang, J.

2013-12-01

64

Diurnal fluctuations in borehole water levels: configuration of the drainage system beneath Bench Glacier, Alaska, USA  

NASA Astrophysics Data System (ADS)

Water levels were measured in boreholes spaced along the entire length of Bench Glacier, Alaska, USA, for a period in excess of 2 years. Instrumented boreholes were arranged as nine pairs along the center line of the glacier and an orthogonal grid of 16 boreholes in a 3600 m2 region at the center of the ablation area. Diurnal fluctuations of the water levels were found to be restricted to the late melt season. Pairs of boreholes spaced along the length of the ablation area often exhibited similar fluctuations and diurnal changes in water levels. Three distinct and independent types of diurnal fluctuations in water level were observed in clusters of boreholes within the grid of boreholes. Head gradients suggest water did not flow between clusters, and a single tunnel connecting the boreholes could not explain the observed pattern of diurnal water-level fluctuations. Inter-borehole and borehole-cluster connectivity suggests the cross-glacier width of influence of a segment of the drainage system connected to a borehole was limited to tens of meters. A drainage configuration whereby boreholes are connected to a somewhat distant tunnel by drainage pipes of differing lengths, often hundreds of meters, is shown with a numerical test to be a plausible explanation for the observed borehole behavior.

Fudge, T. J.; Humphrey, Neil F.; Harper, Joel T.; Pfeffer, W. Tad

65

Modeling energy balance and melt layer formation on the Kahiltna Glacier, Alaska  

NASA Astrophysics Data System (ADS)

Understanding melt on alpine glaciers is required both for accurate mass balance modeling and ice core paleoclimate reconstruction. In alpine regions with complex meteorology and topography, modeling melt through the quantification and balance of all identifiable energy fluxes is the most complete way of describing how local meteorology influences melt layer formation and snowpack evolution. To meet this goal at our field site on the Kahiltna glacier, located in the Central Alaska Range, Denali National Park, we have developed an energy balance model from two years of meteorological data from Kahiltna Base Camp (2100 m elevation, 63.25 degrees N, 151 degrees W). Current model results show the dominance of turbulent heat transfer at the study site and the importance of surface roughness and albedo in controlling melt. Preliminary data show a 30 percent overestimation of melt flux from the surface into the snowpack although an albedo submodel is being developed which may address this. Sampling of the snowpack across the glacier for analysis of stratigraphic and chemical evolution shows an isothermal near surface snowpack (to at least 1m) at 2100 meters in elevation in the early melt season with increasing density and melt layer abundance as the summer progresses. This suggests that a large amount of the meltwater remains in the snowpack after surface melting. We will discuss further the models accuracy in relation to ablation stake measurements as well as the major environmental controls on physical and chemical snowpack evolution into the melt season as additional results are processed.

Winski, D. A.; Kreutz, K. J.; Osterberg, E. C.; Campbell, S. W.; Denali Ice Core Team

2010-12-01

66

Developing an Ice Volume Estimate of Jarvis Glacier, Alaska, using Ground-Penetrating Radar and High Resolution Satellite Imagery  

NASA Astrophysics Data System (ADS)

Jarvis Glacier is an important water source for Fort Greely and Delta Junction, Alaska. Yet with warming summer temperatures caused by climate change, the glacier is melting rapidly. Growing concern of a dwindling water supply has caused significant research efforts towards determining future water resources from spring melt and glacier runoff which feeds the community on a yearly basis. The main objective of this project was to determine the total volume of the Jarvis Glacier. In April 2012, a centerline profile of the Jarvis Glacier and 15 km of 100 MHz ground-penetrating radar (GPR) profiles were collected in cross sections to provide ice depth measurements. These depth measurements were combined with an interpreted glacier boundary (depth = 0 m) from recently collected high resolution WorldView satellite imagery to estimate total ice volume. Ice volume was calculated at 0.62 km3 over a surface area of 8.82 km2. However, it is likely that more glacier-ice exists within Jarvis Glacier watershed considering the value calculated with GPR profiles accounts for only the glacier ice within the valley and not for the valley side wall ice. The GLIMS glacier area database suggests that the valley accounts for approximately 50% of the total ice covered watershed. Hence, we are currently working to improve total ice volume estimates which incorporate the surrounding valley walls. Results from this project will be used in conjunction with climate change estimates and hydrological properties downstream of the glacier to estimate future water resources available to Fort Greely and Delta Junction.

Wu, N. L.; Campbell, S. W.; Douglas, T. A.; Osterberg, E. C.

2013-12-01

67

Glacier fluctuations in the Kenai Fjords, Alaska, U.S.A.: An evaluation of controls on Iceberg-calving glaciers  

SciTech Connect

The histories of four iceberg-calving outlet-glacier systems in the Kenai Fjords National Park underscore the importance of fiord depth, sediment supply, and fiord geometry on glacier stability. These parameters, in turn, limit the reliability of calving glacier chronologies as records of climatic change. Tree-ring analysis together with radiocarbon dating show that the Northwestern and McCarty glaciers, with large drainage basins, were advancing in concert with nearby land-terminating glaciers about A.D. 600. After an interval of retreat and possible nonclimatically induced extension during the Medieval Warm Period, these ice margins advanced again through the Little Ice Age and then retreated synchronously with the surrounding land-terminating glaciers about A.D. 1900. In contrast, Holgate and Aialik glaciers, with deeper fiords and smaller basins, retreated about 300 yr earlier. Reconstructions of Little Ice Age glaciers suggest that equilibrium-line altitudes of Northwestern and McCarty glaciers were, respectively, 270 and 500 m lower than now. Furthermore, the reconstructions show that these two glaciers were climatically sensitive when at their terminal moranies. However, with ice margins at their present recessional positions and accumulation area ratios between 0.8 and 0.9, only McCarty Glacier shows evidence of advance. Aialik and Holgate glaciers were climatically insensitive during the Little Ice Age maxima and remain insensitive to climate. 40 refs., 7 figs., 2 tabs.

Wiles, G.C. [Columbia Univ., Palisades, NY (United States); Calkin, P.E. [Univ. of New York, Buffalo, NY (United States); Post, A. [Geological Survey, Vashon, WA (United States)

1995-08-01

68

Rapid Submarine Melting Driven by Subglacial Discharge, LeConte Glacier, Alaska  

NASA Astrophysics Data System (ADS)

Submarine melting impacts the stability of tidewater glaciers worldwide, but the connections between the ocean, a warming climate, and retreat of outlet glaciers are poorly known. Clearly warm seawater plays an important role, but the tremendous heat potential resident in oceans and fjords must first be brought into contact with outlet glacier termini in order to affect them. We show here that for many glaciers, the principal process driving high rates of submarine melting is subglacial discharge of freshwater. This buoyant discharge draws in warm seawater, entraining it in a turbulent upwelling convective flow along the submarine face that melts glacier ice. To capture the effect of changing subglacial discharge on submarine melting, we conducted four days of hydrographic transects during late summer 2012 at LeConte Glacier, Alaska. A major rainstorm allowed us to directly measure the influence of large changes in subglacial discharge. We found strong submarine melt rates that increased from 9.01.0 to 16.81.3 m/d (ice face equivalent frontal ablation) as subglacial discharge increased from 130 to 440 m^3/s over a four day period. This subglacial discharge drove influx of warm seawater (thermal forcing ~ 8 C) to the terminus with fluxes increasing from 1800 to 4000 m3/s. Our ice equivalent frontal ablation rates due to submarine melting are two to three times values found for Greenland glaciers, where thermal forcing is substantially lower (~ 1 - 4 C) and termini are wider. Together, these studies confirm the importance of submarine melting at grounded glaciers. At LeConte, the total frontal ablation rate (calving flux plus submarine melting) is ~ 3.0 x10^6 m^3/d w.e., which far surpasses surface ablation. One-half to two-thirds of the frontal ablation during September 2012 can be attributed to submarine melting. A two-layer model driven by a buoyant plume of subglacial discharge has been previously invoked to describe the proglacial fjord circulation pattern. Although this circulation pattern is generally supported by our results, we also see evidence of eddying both at the terminus and down fjord, which adds complexity to the simple two layer model. Our results demonstrate that turbulent subglacial discharge is a key driver of ice-proximal fjord circulation that entrains warm seawater and melts submarine glacial ice. With projected continued global warming and increased glacial runoff, our results highlight the direct impact that increases in subglacial discharge will have on the stability of polar and subpolar tidewater outlet systems. These effects and feedbacks must be considered when modeling glacier response to future warming and increased runoff. Our results have direct implications for predicting future behavior at the ice sheet ocean interface, which constitutes the major uncertainty for future predictions of ice loss and sea-level rise.

Motyka, R. J.; Dryer, W. P.; Amundson, J. M.; Truffer, M.; Fahnestock, M. A.

2013-12-01

69

Spatial variation of glacial erosion rates in the St. Elias range, Alaska, inferred from a realistic model of glacier dynamics  

NASA Astrophysics Data System (ADS)

Glaciers have been principal erosional agents in many tectonically active orogens throughout much of the recent geological past. The St. Elias Mountains in southeastern Alaska are a surface expression of a highly convergent, complex orogen that was likely glaciated for much of its history. We examine the Seward-Malaspina Glacier system, part of one of the largest temperate glacier systems in the world, and focus on the Seward Throat, which is a narrow passage of the glacier through the St. Elias Mountains. It is within this region that we examine the pattern of erosion where ice velocities are exceptionally high. The glacier surface velocities and elevations, which are known, provide constraints for a numerical, full-stress flowband model that enables us to infer the glacier thickness, which is not easily measured on temperate glaciers, and the corresponding sliding velocity and other basal properties. This in turn allows us to produce one of the first studies of the current spatial distribution of erosion under an active glacier; erosion rates are inferred using the flow model guided by glaciological observations and several commonly invoked erosion laws that depend upon the sliding velocity and basal shear stress. The spatial variation of current erosion rates is strongly controlled by the geometry of the glacier and less influenced by other factors, such as the equilibrium line altitude or the choice of erosion law. Inferred erosion rates are highest within the narrow, central portion of the Seward Throat, consistent with both local and regional geological observations. The numerical model used in conjunction with surface glaciological measurements is a powerful tool for investigating ice thickness, basal properties, and the spatial variation of glacial erosion rates for many temperate glaciers, where little is known aside from surface properties. The glaciological data and model results have potential use for inferring local regions of active uplift in the vicinity of the Seward Throat and for investigating the role of glacial erosion within the broader tectonic setting of the St. Elias Mountains.

Headley, R. M.; Hallet, B.; Roe, G.; Waddington, E. D.

2011-12-01

70

Hydrography and circulation of ice-marginal lakes at Bering Glacier, Alaska, U.S.A.  

USGS Publications Warehouse

An extensive suite of physical oceanographic, remotely sensed, and water quality measurements, collected from 2001 through 2004 in two ice-marginal lakes at Bering Glacier, Alaska-Berg Lake and Vitus Lake-show that each has a unique circulation controlled by their specific physical forcing within the glacial system. Conductivity profiles from Berg Lake, perched 135 m a.s.l., show no salt in the lake, but the temperature profiles indicate an apparently unstable situation, the 4??C density maximum is located at 10 m depth, not at the bottom of the lake (90 m depth). Subglacial discharge from the Steller Glacier into the bottom of the lake must inject a suspended sediment load sufficient to marginally stabilize the water column throughout the lake. In Vitus Lake, terminus positions derived from satellite imagery show that the glacier terminus rapidly retreated from 1995 to the present resulting in a substantial expansion of the volume of Vitus Lake. Conductivity and temperature profiles from the tidally influenced Vitus Lake show a complex four-layer system with diluted (???50%) seawater in the bottom of the lake. This lake has a complex vertical structure that is the result of convection generated by ice melting in salt water, stratification within the lake, and freshwater entering the lake from beneath the glacier and surface runoff. Four consecutive years, from 2001 to 2004, of these observations in Vitus Lake show little change in the deep temperature and salinity conditions, indicating limited deep water renewal. The combination of the lake level measurements with discharge measurements, through a tidal cycle, by an acoustic Doppler Current Profiler (ADCP) deployed in the Seal River, which drains the entire Bering system, showed a strong tidal influence but no seawater entry into Vitus Lake. The ADCP measurements combined with lake level measurements established a relationship between lake level and discharge, which when integrated over a tidal cycle, gives a tidally averaged discharge ranging from 1310 to 1510 m3 s-1. ?? 2006 Regents of the University of Colorado.

Josberger, E. G.; Shuchman, R. A.; Meadows, G. A.; Savage, S.; Payne, J.

2006-01-01

71

Discovery of 100-160-year-old iceberg gouges and their relation to halibut habitat in Glacier Bay, Alaska  

USGS Publications Warehouse

Side-scan sonar and multibeam imagery of Glacier Bay, Alaska, revealed complex iceberg gouge patterns at water depths to 135 m on the floor of Whidbey Passage and south to the bay entrance. These previously undiscovered gouges likely formed more than 100 years ago as the glacier retreated rapidly up Glacier Bay. Gouged areas free of fine sediment supported greater biodiversity of Pacific halibut Hippoglossus stenolepsis than nearby sediment-filled gouges, probably due to increased habitat complexity. Small Pacific halibut were forund more frequently in sediment-free gouged areas, presumably due to higher prey abundance. In contrast, large Pacific halibut were found more frequently on soft substrates such as sediment-filled gouges, where they could bury themselves and ambush prey.

Carlson, P. R.; Hooge, P. N.; Cochrane, G. R.

2005-01-01

72

Role of lake regulation on glacier-fed rivers in enhancing salmon productivity: the Cook Inlet watershed, south-central Alaska, USA  

Microsoft Academic Search

Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial

Joseph M. Dorava; Alexander M. Milner

2000-01-01

73

Ice surface morphology and flow on Malaspina Glacier, Alaska: Implications for regional tectonics in the Saint Elias orogen  

NASA Astrophysics Data System (ADS)

Saint Elias Mountains in southern Alaska are located at a structural syntaxis where the coastal thrust and fold belt of the Fairweather plate boundary intersects thrust faults and folds generated by collision of the Yakutat Terrane. The axial trace of this syntaxis extends southeastward out of the Saint Elias Mountains and beneath Malaspina Glacier where it is hidden from view and cannot be mapped using conventional methods. Here we examine the surface morphology and flow patterns of Malaspina Glacier to infer characteristics of the bedrock topography and organization of the syntaxis. Faults and folds beneath the eastern part of the glacier trend northwest and reflect dextral transpression near the terminus of the Fairweather fault system. Those beneath the western part of the glacier trend northeast and accommodate folding and thrust faulting during collision and accretion of the Yakutat Terrane. Mapping the location and geometry of the structural syntaxis provides important constraints on spatial variations in seismicity, fault kinematics, and crustal shortening beneath Malaspina Glacier, as well as the position of the collisional deformation front within the Yakutat Terrane. We also speculate that the geometrical complexity of intersecting faults within the syntaxis formed a barrier to rupture propagation during two regional Mw 8.1 earthquakes in September 1899.

Cotton, Michelle M.; Bruhn, Ronald L.; Sauber, Jeanne; Burgess, Evan; Forster, Richard R.

2014-04-01

74

Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA  

USGS Publications Warehouse

Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.

Hupp, C. R.

2000-01-01

75

Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [Cascade Range, Washington and Tweedsmuir Glacier, Alaska  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The area of snowcover on 10 individual drainage basins in the North Cascades, Washington, has been determined by use of a semi-automatic radiance threshold technique. The result is a unique record of the changing water storage as snow in these important hydrologic units, the runoff of which is utilized for hydroelectric power, dilution of wastes and heat, support of salmon migration, and irrigation. These data allow a new type of hydrologic modelling to proceed which should permit more accurate forecasts of streamflow. A new technique has been developed for measuring snow-covered area or snowline altitude semi-automatically. This variable contour overlay method permits the snowcover to be matched efficiently to the best fit contour of altitude. The motion of the Yentna Glacier during the concluding phase of its surge was successfully measured by a flicker technique using images of two dates. It appears that displacements as small as 100 to 200 m can be measured. Motion of the Tweedsmuir Glacier in Alaska was measured using ERTS-1 images enlarged to 1:50,000. Changes detected included a shock wave moving down the glacier, the margin expanding, the moraine pattern deforming, and the marginal valley deepening.

Meier, M. F. (principal investigator)

1974-01-01

76

Flow Dynamics from Elevation Changes on the Malaspina-Seward Glacier System, Alaska-Yukon, using High Resolution Airborne and SRTM InSAR-Derived DEMs  

NASA Astrophysics Data System (ADS)

The Malaspina piedmont glacier, with an area of 2400 km2 (Post and LaChapelle, 2000), includes the Agassiz and Marvine Glaciers to the west and east, respectively, of the central Seward Lobe. Upper Seward Glacier, mostly in Yukon, Canada, is a broad icefield that forms the main accumulation area of Malaspina Glacier. Mt. Irving nunatak divides Upper Seward into western and eastern halves. Lower Seward Glacier, mostly in Alaska, connects Upper Seward to Malaspina Glacier. The combined Malaspina-Seward glacier system, including all tributaries, has a total area of about 5,000 km2 (Molnia, 2001). The glaciers of the Malaspina system are characterized by complex flow dynamics, including quasi-periodic surging and pulsating flow. High-resolution DEMs produced from airborne and spaceborne single-pass X-Band InSAR by Intermap Technologies, Inc. (August 2002) and the German Aerospace Center (from the NASA Shuttle Radar Topography Mission, February 2000), respectively, are used to derive short-term surface elevation changes. An adjustment for systematic error in the SRTM DEM is applied. Snow depth vs. altitude is estimated using the mass balance model of Tangborn (1999) on these glaciers from Sept. 1999 to Feb. 2000, and is used to adjust the SRTM DEM to a late summer 1999 level. During the 3-year 1999 to 2002 time period, the Seward Lobe of Malaspina thinned over its eastern half, while the western half thickened by about 10 +/- 1 m on average. This suggests that the main flow direction has changed from southeast, the direction of a major surge in 1987-88 (A. Post, pers. comm.), to southwest. Surges in alternate directions have been hypothesized by A. Post (pers. comm.) as the cause of the intricately folded moraines on Malaspina Glacier. Marvine Glacier, which surged in 2000 (K. Echelmeyer, pers. comm.), shows thickening in its ablation area of up to 60 +/- 1 m and thinning in its accumulation area of up to 60 +/- 1 m. The 3-year mean surface lowering on Agassiz, Malaspina (Seward Lobe), Lower Seward, Marvine and Hayden Glaciers, including a -3.2 m adjustment of the SRTM heights for systematic error, was about 2.7 +/- 1 m, or 0.9 +/- 0.4 m yr-1. References Molnia, B., Glaciers of Alaska, Alaska Geographic, 28 (2), 2001. Post, A., and E. LaChapelle, Glacier Ice, University of Washington Press, Seattle, 2000. Tangborn, W.V., A mass-balance model that uses low-altitude meterological observations and the altitude area of a glacier, Geograf. Ann., 81(A), 753-765, 1999.

Muskett, R. R.; Lingle, C. S.; Rabus, B. T.; Tangborn, W. V.

2003-12-01

77

Mass balances and dynamic changes of the Bering, Malaspina, and Icy Bay glacier systems of Alaska, United States, and Yukon, Canada  

NASA Astrophysics Data System (ADS)

The Bering and the Malaspina Glacier systems of south-central Alaska, U.S.A., and southwest Yukon Territory, Canada, in the Saint Elias Mountains constitute the two largest temperate surge-type piedmont glaciers on Earth. This is largest region of glaciers and icefields in continental North America. Determining and understanding the causes of wastage of these two glaciers is important to understanding the linkages of glacier mass balance to climate change, glacier dynamics, and the contributions of the glaciers of northwestern North America to rising sea level. Presented are the first detailed estimate of the net mass balances of the Bering and Malaspina Glacier systems, the effects of glacier dynamics on their accumulation areas, and the wastage of the tidewater glaciers of Icy Bay. The combined wastage of the Bering and Malaspina Glacier systems from 1972 to 2003, 254 +/- 16 km 3 water equivalent over a glacier area of 7734 km2, is equivalent to an area-average mass balance of -1.06 +/- 0.07 m/y over that time period. This represents a contribution to global sea-level rise of 0.70 +/- 0.05 mm, 0.023 +/- 0.002 mm/yr from 1972 to 2003. This is roughly 0.8% of the modern sea-level rise as estimated from tide-gauges and satellites, and roughly 9% of the contribution from non-polar glaciers and ice caps. Glacier wastage has been caused by climate warming (negative mass balance) superimposed on the effects of glacier dynamics. Near-concurrent surge of the three largest glaciers of the Malaspina Glacier piedmont were observed during 1999 to 2002. In addition, the tidewater Tyndall Glacier, whose retreat since 1910 was interrupted in 1964 by a major surge, also surged during 1999 to 2002. These four surges have occurred roughly 23 years after the 1976/77 shift of the Pacific Decadal Oscillation to its current warm-wet phase. Despite the increase of high-elevation snow accumulation observed on Mt. Logan, the accumulation areas of the Bering and Malaspina Glacier systems are being drawn down by the effects of glacier dynamics. Wastage has accelerated since 2000.

Muskett, Reginald R.

78

Iceberg calving as a primary source of regional?scale glacier?generated seismicity in the St. Elias Mountains, Alaska  

USGS Publications Warehouse

Since the installation of the Alaska Regional Seismic Network in the 1970s, data analysts have noted nontectonic seismic events thought to be related to glacier dynamics. While loose associations with the glaciers of the St. Elias Mountains have been made, no detailed study of the source locations has been undertaken. We performed a two-step investigation surrounding these events, beginning with manual locations that guided an automated detection and event sifting routine. Results from the manual investigation highlight characteristics of the seismic waveforms including single-peaked (narrowband) spectra, emergent onsets, lack of distinct phase arrivals, and a predominant cluster of locations near the calving termini of several neighboring tidewater glaciers. Through these locations, comparison with previous work, analyses of waveform characteristics, frequency-magnitude statistics and temporal patterns in seismicity, we suggest calving as a source for the seismicity. Statistical properties and time series analysis of the event catalog suggest a scale-invariant process that has no single or simple forcing. These results support the idea that calving is often a response to short-lived or localized stress perturbations. Our results demonstrate the utility of passive seismic instrumentation to monitor relative changes in the rate and magnitude of iceberg calving at tidewater glaciers that may be volatile or susceptible to ensuing rapid retreat, especially when existing seismic infrastructure can be used.

O'Neel, Shad R.; Larsen, Christopher F.; Rupert, Natalia; Hansen, Roger

2010-01-01

79

A continental shelf sedimentary record of Little Ice Age to modern glacial dynamics: Bering Glacier, Alaska  

NASA Astrophysics Data System (ADS)

The Bering Glacier System is the world's largest surging temperate glacier with seven events occurring over the past century under a range of north Pacific climatic conditions. Onshore records reveal changes in glacial termini positions and evidence of late Holocene glacial advances, but the Little Ice Age (LIA) record of potential glacial surging and associated flooding has not been examined. A 13.6 m-long jumbo core collected on the adjacent continental shelf reveals a 600-yr-long record of sedimentation associated with changing glacifluvial discharge. The chronology is based on 210Pb geochronology and five radiocarbon dates, and the core can be separated into three distinct lithologic units based on the examination of X-radiographs and physical properties: (1) an uppermost unit dating from ?125 cal yr BP to the present characterized by bioturbated mud interbedded with laminated, thick (5-20 cm) low-bulk density clay-rich beds; (2) a middle unit dating from ?120-400 cal yr BP that includes numerous interlaminated-to-interbedded low- and high-bulk density beds with infrequent evidence of bioturbation; thick laminated clay-rich beds are rare; (3) a lowermost unit that predates ?400 cal yr BP and is composed of rare laminated beds grading down into mottled to massive mud. In each of these units, the laminated lithofacies from this mid-shelf location indicates both flood deposition and likely sediment transport in the wave-current bottom-boundary layer. The thick low-density, clay-rich beds in the uppermost unit correlate with historic outburst floods associated with known surge events. Based on previous terrestrial studies, the terminus was at its Holocene Neoglacial maximum extent close to the modern coastline at some point in the middle to late stages of the LIA in southern Alaska (100-350 cal yr BP). During the LIA, preservation of bioturbated intervals is rare while laminated intervals are common. This style of interbedding indicates frequent (<10 yr recurrence interval) event-scale mud deposition, suggesting that frequent summer flooding and redistribution by winter storms were more prevalent during the LIA rather than the outburst flooding typical of the past century. Rare event-scale bedding indicative of outburst flooding and possible surge events is found within the middle unit, and may correspond to periods with similar climatic trends as in the 20th century. The infrequent deposition of event layers in the lowermost unit could be attributed to the less frequent flooding and/or enhanced diversion of glacial drainage to the eastern terminus instead of present day Seal River. The thickness and depositional frequency of event-scale bedding can be related to Gulf of Alaska tree-ring proxy temperature reconstructions, where more numerous event bed formation occurs when there are more frequent, higher-amplitude temperature excursions. These frequent fluctuations may have prevented the decadal-long periods of positive mass balance required to enable numerous surge events during this period.

Jaeger, John M.; Kramer, Branden

2014-09-01

80

Columbia Glacier Terminus  

USGS Multimedia Gallery

View of Columbia Glacier's terminus as it enters the waters of Prince William Sound. Columbia Glacier is one of Alaska's many tidewater glaciers, and it has been the focus of numerous studies due to its unusually high rate of retreat. The glacier has retreated nearly 20 km (12.43 mi) since 1980. In ...

2010-07-14

81

Mendenhall Glacier (Juneau, Alaska) icequake seismicity and its relationship to the 2012 outburst flood and other environmental forcing  

NASA Astrophysics Data System (ADS)

Glacial outburst floods occur when ice-dammed lakes or other reservoirs on the glacier release large volumes of water usually due to the failure of an ice dam. In 2011 and 2012 these types of floods have occurred at Mendenhall Glacier in Southeast Alaska, 15 km northwest of Juneau. The floods emanated from a lake within a remnant branch of Mendenhall Glacier, called Suicide Basin, and rapidly changed the levels of Mendenhall Lake. Homes on the shore of Mendenhall Lake were threatened by rapidly rising lake levels during such floods. We analyze data from a set of 4 short and broadband period seismometers placed in ice-boreholes in an array on Mendenhall Glacier for a period of 4 months in 2012. We also examine the outburst flood that occurred between July 4th and 8th 2012. We first manually pick icequakes as high-frequency bursts recorded by at least two stations. Next, we use a matched-filter technique to help complete the icequake record by detecting missed events with similar waveforms to those hand-picked events. While high-frequency noise was present during the flooding, the impulsive icequake activity did not appear to be modulated significantly during periods of flooding, suggesting that the flooding does not significantly deform the overlying ice. Impulsive icequake activity appears to show strongly diurnal periodicity, indicating that the icequakes were mainly caused by expansion/contraction of ice during daytime. We also analyze the activity in concert with GPS velocity and meteorological data from the area. By analyzing the temporal and spatial patterns of the events we hope to reveal more about the fundamental processes occurring beneath Mendenhall Glacier.

Morgan, P. M.; Walter, J. I.; Peng, Z.; Amundson, J. M.; Meng, X.

2013-12-01

82

Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [Washington, Alaska, British Columbia, and U.S.S.R.  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The standard error of measurement of snow covered areas in major drainage basins in the Cascade Range, Washington, using single measurements of ERTS-1 images, was found to range from 11% to 7% during a typical melt season, but was as high as 32% in midwinter. Many dangerous glacier situations in Alaska, Yukon, and British Columbia were observed on ERTS-1 imagery. Glacier dammed lakes in Alaska are being monitored by ERTS-1. Embayments in tidal glaciers show changes detectable by ERTS-1. Surges of Russell and Tweedsmuir Glaciers, now in progress, are clearly visible. The Tweedsmuir surge is likely to dam the large Alsek River by mid-November, producing major floods down-river next summer. An ERTS-1 image of the Pamir Mountains, Tadjik S.S.R., shows the surging Medvezhii (Bear) Glacier just after its surge of early summer which dammed the Abdukagor Valley creating a huge lake and later a flood in the populous Vanch River Valley. A map was compiled from an ERTS-1 image of the Lowell Glacier after its recent surge, compared with an earlier map compiled from pain-stakingly compiled from a mosaic of many aerial photographs, in a total elapsed time of 1.5 hours. This demonstrates the value of ERTS-1 for rapid mapping of large features.

Meier, M. F. (principal investigator)

1973-01-01

83

ASTER and Ground Observations of Vegetation Primary Succession and Habitat Development near Retreating Glaciers in Alaska and Nepal  

NASA Astrophysics Data System (ADS)

Like active volcanoes, glaciers are among the most dynamic components of the Earth's solid surface. All of the main surface processes active in these areas have an ability to suddenly remake or "resurface" the landscape, effectively wiping the land clean of vegetation and habitats, and creating new land surface and aqueous niches for life to colonize and develop anew. This biological and geomorphological resurfacing may remove the soil or replace it with inorganic debris layers. The topographical, hydrological, and particle size-frequency characteristics of resurfaced deglaciated landscapes typically create a high density of distinctive, juxtaposed niches where differing plant communities may become established over time. The result is commonly a high floral and faunal diversity and fecundity of life habitats. The new diverse landscape continues to evolve rapidly as ice-cored moraines thaw, lakes drain or fill in with sediment, as fluvial dissection erodes moraine ridges, as deltaic sedimentation shifts, and other processes (coupled with primary succession) take place in rapid sequence. In addition, climate dynamics which may have caused the glaciers to retreat may continue. We will briefly explore two distinctive glacial environments-(1) the maritime Copper River corridor through the Chugach Mountains (Alaska), Allen Glacier, and the river's delta; and (2) Nepal's alpine Khumbu valley and Imja Glacier. We will provide an example showing how ASTER multispectral and stereo-derived elevation data, with some basic field-based constraints and observations, can be used to make automatic maps of certain habitats, including that of the Tibetan snowcock. We will examine geomorphic and climatic domains where plant communities are becoming established in the decades after glacier retreat and how these link to the snowcock habitat and range. Snowcock species have previously been considered to have evolved in close association with glacial and tectonic history of South and Central Asia (B. An et al., 2009, Molecular Phylogenetics and Evolution 50: 526-533; R. Luzhang et al., 2010, Animal Biology 60: 449-465). The new maps and some observations of the snowcock's habits, ecological relationships to other species and landscapes, and physiological limitations support that basic model. Our new data and mapping carries some profound implications for past, present, and future coevolution of these birds and glaciers. Using insights derived from ASTER remote sensing based habitat mapping, we will explore some specific processes that may drive snowcock habitat, population, and genetic dynamics. Although the ecological fabric differs from one region to another, some basic insights from the Himalayan Khumbu valley may be applied to the Chugach Range.

Kargel, J. S.; Leonard, G. J.; Furfaro, R.

2011-12-01

84

Preliminary hydrodynamic analysis of landslide-generated waves in Tidal Inlet, Glacier Bay National Park, Alaska  

USGS Publications Warehouse

A landslide block perched on the northern wall of Tidal Inlet, Glacier Bay National Park (Figure 1), has the potential to generate large waves in Tidal Inlet and the western arm of Glacier Bay if it were to fail catastrophically. Landslide-generated waves are a particular concern for cruise ships transiting through Glacier Bay on a daily basis during the summer months. The objective of this study is to estimate the range of wave amplitudes and periods in the western arm of Glacier Bay from a catastrophic landslide in Tidal Inlet. This study draws upon preliminary findings of a field survey by Wieczorek et al. (2003), and evaluates the effects of variations in landslide source parameters on the wave characteristics.

Geist, Eric L.; Jakob, Matthias; Wieczoreck, Gerald F.; Dartnell, Peter

2003-01-01

85

Velocity and surface altitude of the lower part of Hubbard Glacier, Alaska, August 1978  

USGS Publications Warehouse

The terminus position and locations of numerous points on the lower part of Hubbard Glacier were determined from 1:58,000 scale vertical aerial photographs taken July 30, 1978 and August 23, 1978. The same surface features were located on each set of photography, allowing displacement during the time interval to be measured. Velocity of the lower glacier for the 24-day interval was about 7 m/day. The terminus receded 45 m between the two dates. (Author 's abstract)

Krimmel, R. M.; Sikonia, W. G.

1986-01-01

86

Hubbard Glacier, Alaska: growing and advancing in spite of global climate change and the 1986 and 2002 Russell Lake outburst floods  

USGS Publications Warehouse

Hubbard Glacier, the largest calving glacier on the North American Continent (25 percent larger than Rhode Island), advanced across the entrance to 35-mile-long Russell Fiord during June 2002, temporarily turning it into a lake. Hubbard Glacier has been advancing for more than 100 years and has twice closed the entrance to Russell Fiord during the last 16 years by squeezing and pushing submarine glacial sediments across the mouth of the fiord. Water flowing into the cutoff fiord from mountain streams and glacier melt causes the level of Russell Lake to rise. However, both the 1986 and 2002 dams failed before the lake altitude rose enough for water to spill over a low pass at the far end of the fiord and enter the Situk River drainage, a world-class sport and commercial fishery near Yakutat, Alaska.

Trabant, Dennis C.; March, Rod S.; Thomas, Donald S.

2003-01-01

87

Southern Alaska as an Example of the Long-Term Consequences of Mountain Building Under the Influence of Glaciers  

NASA Technical Reports Server (NTRS)

Southern Alaska is a continent-scale region of ongoing crustal deformation within the Pacific-North American plate boundary zone. Glaciers and glacial erosion have dictated patterns of denudation in the orogen over the last approx. 5 My. The orogen comprises three discrete topographic domains from south to north, respectively: (1) the Chugach/St. Elias Range; (2) the Wrangell Mountains; and (3) the eastern Alaska Range. Although present deformation is distributed across the orogen, much of the shortening and uplift are concentrated in the Chugach/St. Elias Range. A systematic increase in topographic wavelength of the range from east to west reflects east-to-west increases in the width of a shallowly-dipping segment of the plate interface, separation of major upper plate structures, and a decrease in the obliquity of plate motion relative to the plate boundary. Mean elevation decays exponentially from approx. 2500 m to approx. 1100 m from east to west, respectively. Topographic control on the present and past distribution of glaciers is indicated by close correspondence along the range between mean elevation and the modern equilibrium line altitude of glaciers (ELA) and differences in the modern ELA, mean annual precipitation and temperature across the range between the windward, southern and leeward, northern flanks. Net, range- scale erosion is the sum of: (1) primary bedrock erosion by glaciers and (2) erosion in areas of the landscape that are ice-marginal and are deglaciated at glacial minima. Oscillations between glacial and interglacial climates controls ice height and distribution, which, in turn, modulates the locus and mode of erosion in the landscape. Mean topography and the mean position of the ELA are coupled because of the competition between rock uplift, which tends to raise the ELA, and enhanced orographic precipitation accompanying mountain building, which tends to lower the ELA. Mean topography is controlled both by the 60 deg latitude and maritime setting of active deformation and by the feedback between shortening and uplift, glacial erosion, and orographic effects on climate accompanying mountain building.

Meigs, Andrew; Sauber, Jeanne

2000-01-01

88

Automated Lagrangian Water-Quality Assessment System (ALWAS) Measurements of North Slope Lakes and the Bering Glacier, Alaska  

NASA Astrophysics Data System (ADS)

ALWAS is an inexpensive, free-floating, sail-powered or jet-driven water quality measuring and watershed evaluation buoy. It is capable of measuring data points with multiple parameters (depth, temperature, conductivity, salinity, total dissolved solids, dissolved oxygen, pH, oxidation reduction potential, turbidity, chlorophyll-a, blue-green algae, nitrate, ammonium, chloride, latitude/longitude, date, time, speed, and barometric pressure) as rapidly as every 40 seconds. Data is transmitted for real-time viewing and is stored for future retrieval and analysis. The collected data are easily downloaded into geographic databases (ESRI shapefile) and spreadsheet formats. ALWAS uses state-of-the-art sensors to measure water quality parameters and GPS data. Field demonstrations of the ALWAS technology from the Bering Glacier and the North Slope of Alaska will be presented. The ALWAS buoy will also be described as well as ALWAS data sharing, web-based mapping, and decision support tools.

Shuchman, R.; Meadows, G.; Liversedge, L.; Hatt, C.; Vansumeren, H.; Payne, J.

2007-12-01

89

Streamflow changes in Alaska between the cool phase (1947-1976) and the warm phase (1977-2006) of the Pacific Decadal Oscillation: The influence of glaciers  

USGS Publications Warehouse

Streamflow data from 35 stations in and near Alaska were analyzed for changes between the cool phase (1947-1976) and the warm phase (1977-2006) of the Pacific Decadal Oscillation. Winter, spring, and summer flow changes and maximum annual flow changes were different for glaciated basins (more than 10% glacier-covered area) than for nonglaciated basins, showing the influence of glaciers on historical streamflowchanges. Mean February flows, for example, increased for the median of available stations by 45% for glaciated basins and by 17% for nonglaciated ones.

Hodgkins, Glenn A.

2009-01-01

90

Geochemical evidence for late Paleozoic and mid Mesozoic arc volcanism, Gravina Belt and Taku Terrane, Coast Ranges, SE AK  

SciTech Connect

Metavolcanic rocks along the western flank of the Coast Plutonic Complex (CPC), northern SE Alaska comprise three sequences based on age and the nature of interlayered metasedimentary rocks (from W--E): subgreenschist to greenschist facies rocks of the Jurassic-Cretaceous Gravina (Gr) belt, greenschist facies rocks of the Permian-Triassic western Taku (Tk) terrane, and dominantly amphibolite facies rocks of the eastern Taku/Yukon (T/Y) terrane. Metasedimentary strata are distinctive; however, all suggest a marine origin: immature marine sandstones, siltstones, mudstones, and conglomerates (Gr); siltstones, fossiliferous carbonates, conglomerates, and shales (western Tk); laminated slates and schists with ripple marks, and micaceous quartzites (eastern Tk). Concentrations of high field strength elements, rare earth elements (REE), and some transition elements from highly-strained and less-strained specimens are indistinguishable, suggesting immobility of these elements. Variable concentrations of alkali elements, and other transition elements suggest mobility during sea-floor alteration and/or metamorphism. Discrimination diagrams, and chondrite-normalized REE and MORB-normalized Spider diagrams suggest that all three groups of metavolcanic rocks are of island arc basalt or arc-rift basalt affinity. Gr and western Tk metabasalts are inferred to have a non oceanic rift-related origin, likely, within a magmatic arc; however, Gr rocks are distinct in age and in chemistry. Eastern Tk metabasalts are interpreted as island arc tholeiites. Tk arc volcanic rocks suggest a late Paleozoic arc developed on rocks of probable North American affinity. Gr arc volcanic rocks represent initial development of a magmatic arc developed on the eastern boundary of the Alexander terrane and western edge of the T/Y terranes during the Mid-Mesozoic. This arc may signify the onset of E-dipping subduction beneath N America which culminated in development of the CPC during the early Tertiary.

Stowell, H.H.; Green, N.L. (Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geology)

1993-03-01

91

Accumulation Rate Variability and Winter Mass Balance Estimates using High Frequency Ground-Penetrating Radar and Snow Pit Stratigraphy on the Juneau Icefield, Alaska  

NASA Astrophysics Data System (ADS)

In July 2012, 200 km of 400 MHz ground-penetrating radar (GPR) profiles were collected across the Juneau Icefield, Alaska. The goal was to determine if spatial accumulation rate variability and winter mass balance estimates could be improved by linking stratigraphic features between yearly-excavated snow pits through GPR. Profiles were collected along the centerline and cross sections of the main branch, northwest, and Southwest branch of the Taku Glacier as well as the Mathes, Llewellyn, and Demorest Glaciers. Over 650 km^2 of area and 1000 m of elevation range were covered during this pilot project linking sixteen snow pits with GPR data across the icefield. The field work was conducted as part of the Juneau Icefield Research Program (JIRP) with hopes of continuing this method in future years if first year results show promise. As an annually operated field research and education program, JIRP creates a unique opportunity to provide significant future contributions to Alaska mass balance records if the program is continued. Signal penetration reached ? 25 m with maximum depths reached at higher elevations of the icefield. Conversely, minimal penetration occurred in wetter regions at lower elevations, likely caused by volume scattering from free water within the firn and ice. Ice lenses and the annual layer located in mass balance snow pits correlated well with continuous stratigraphy imaged in GPR profiles suggesting that the lenses are relatively uninterrupted across the icefield and that GPR may be an appropriate tool for extrapolating point mass balance pit depths in this part of Alaska. The Northwest and Southwest Branches of the Taku Glacier show a strong stratigraphic thinning gradient, west to east; the main trunk of the Taku Glacier which originates from the Mathes-Llewellyn ice divide showed a similar thinning from the divide to the ELA. The thinning displayed by all three glacier systems matches a typical gradient from accumulation zone to ELA. However, it is also likely that a local influx of accumulation at the higher elevations of the Southwest and Northwest Branches result from their close proximity of the ocean. Beyond mass balance estimates, radar profiles also revealed ablation horizons underlying the annual layer near the ELA. Monitoring the location of this ablation horizon relative to the annual balance reflector may be helpful in quantifying changes in the ELA at the end of each previous melt season. Perched water tables were also imaged in several locations which may be suitable for future hydrological studies focused on delineation of sub-glacial drainage systems and their impact on local glacier dynamics. This is a particularly interesting finding considering the unprecedented recent jokulhlaup of the Mendenhall Glacier and re-routing of the primary water drainage at the Llewellyn Glacier terminus in 2011.

Braddock, S. S.; Boucher, A. L.; Sandler, H. C.; McNeil, C.; Campbell, S. W.; Kreutz, K. J.

2012-12-01

92

Use of the Coastal and Marine Ecological Classification Standard (CMECS) for Geological Studies in Glacier Bay, Alaska  

NASA Astrophysics Data System (ADS)

The U S Geological Survey (USGS) is one of four primary organizations (along with the National Oceanographic and Atmospheric Administration, the Evironmental Protection Agency, and NatureServe) responsible for the development of the Coastal and Marine Ecological Classification Standard (CMECS) over the past decade. In June 2012 the Federal Geographic Data Committee approved CMECS as the first-ever comprehensive federal standard for classifying and describing coastal and marine ecosystems. The USGS has pioneered the application of CMECS in Glacier Bay, Alaska as part of its Seafloor Mapping and Benthic Habitat Studies Project. This presentation briefly describes the standard and its application as part of geological survey studies in the Western Arm of Glacier Bay. CMECS offers a simple, standard framework and common terminology for describing natural and human influenced ecosystems from the upper tidal reaches of estuaries to the deepest portions of the ocean. The framework is organized into two settings, biogeographic and aquatic, and four components, water column, geoform, substrate, and biotic. Each describes a separate aspect of the environment and biota. Settings and components can be used in combination or independently to describe ecosystem features. The hierarchical arrangement of units of the settings and components allows users to apply CMECS to the scale and specificity that best suits their needs. Modifiers allow users to customize the classification to meet specific needs. Biotopes can be described when there is a need for more detailed information on the biota and their environment. USGS efforts focused primarily on the substrate and geoform components. Previous research has demonstrated three classes of bottom type that can be derived from multibeam data that in part determine the distribution of benthic organisms: soft, flat bottom, mixed bottom including coarse sediment and low-relief rock with low to moderate rugosity, and rugose, hard bottom. The West Arm of Glacier Bay has all of these habitats, with the greatest abundance being soft, flat bottom. In Glacier Bay, species associated with soft, flat bottom habitats include gastropods, algae, flatfish, Tanner crabs, shrimp, sea pen, and other crustaceans; soft corals and sponge dominate areas of boulder and rock substrate. Video observations in the West Arm suggest that geological-biological associations found in central Glacier Bay to be at least partially analogous to associations in the West Arm. Given that soft, mud substrate is the most prevalent habitat in the West Arm, it is expected that the species associated with a soft bottom in the bay proper are the most abundant types of species within the West Arm. While mud is the dominant substrate throughout the fjord, the upper and lower West Arm are potentially very different environments due to the spatially and temporally heterogeneous influence of glaciation and associated effects on fjord hydrologic and oceanographic conditions. Therefore, we expect variations in the distribution of species and the development of biotopes for Glacier Bay will require data applicable to the full spectrum of CMECS components.

Cochrane, G. R.; Hodson, T. O.; Allee, R.; Cicchetti, G.; Finkbeiner, M.; Goodin, K.; Handley, L.; Madden, C.; Mayer, G.; Shumchenia, E.

2012-12-01

93

Application of photogrammetry to the study of volcano-glacier interactions on Mount Wrangell, Alaska  

NASA Technical Reports Server (NTRS)

Most Alaskan volcanoes are glacier covered and provide excellent opportunities to study interactions between glaciers and volcanoes. The present paper is concerned with such a study, taking into account the Mt. Wrangell (4317 m) which is the northernmost active volcano (solfatara activity) on the Pacific Rim (62 deg N; 144 deg W). While the first photographs on the summit of Mt. Wrangell were published more than 75 years ago, research there began in 1953 and 1954. Satellite images reveal activity at the summit of Mt. Wrangell. However, the resolution is not sufficient for conducting important measurements regarding ice volume losses. For this reason, vertical aerial photographs of the summit were obtained, and a field trip to the summit was conducted. Aspects of photogrammetry are discussed, taking into account questions of ground control, aerial photography, topographic mapping, digital cross sections, and orthophotos.

Benson, C. S.; Follett, A. B.

1986-01-01

94

Online Glacier Photograph Database  

NSDL National Science Digital Library

NSIDC houses over 15,000 photographic prints of glaciers, taken both from the air and from the ground. These photographs constitute an important historical record, as well as a data collection of interest to those studying the response of glaciers to climate change. More than 3,000 glacier photos are online, and most of these glaciers are in the Rocky Mountains, the Pacific Northwest, and Alaska. In March 2006, a special collection, Long-Term Change Photograph Pairs, was added.

2006-01-01

95

Glacier Hazards From Space  

NSDL National Science Digital Library

This interactive slide show presents aerial photographs of seven glaciers worldwide. All of the glaciers present some form of hazard due to the rapid melting of mountain glaciers and a detailed explanation is given for each. Two of the photos contain superimposed before and after photographs and a sliding line which allows the viewer to alternate the two views. Locations of the glaciers include Bhutan and Nepal, Russia and Italy, as well as Alaska in the United States.

96

Application of Ground Penetrating Radar and Geodetics to the Selection of an Ice Core Drill Site on the Kahiltna Glacier of Mount McKinley, Alaska  

NASA Astrophysics Data System (ADS)

Interest in global climate change continues to fuel the search for more sources of quality paleo-climate information in hopes of accurately reconstructing and predicting past and future climates respectively. Ice core records from the Arctic and Antarctic have provided some of the most reliable data for paleo-climate modeling however, the validity of these data and models rely heavily on a number of assumptions regarding ice stratigraphy and glacier structure. Unfortunately, many Arctic valley glaciers are unsuitable for ice core drilling because they exhibit significant melt, ice flow, deformation, and dipping stratigraphy due to their thermal regime and confined flow boundary conditions. Other valley glaciers do exhibit stable accumulation basins with conditions suitable for ice core drilling, however these sites need to be validated through a variety of geophysical and glacio-chemical techniques. A thorough assessment of local meteorological data, snow chemistry, ice flow dynamics, glacier structure, and stratigraphy prior to ice core drilling in a valley glacier is important to determine if the site meets the proper criteria. A glacio-chemical and geophysical reconnaissance of the Kahiltna Glacier on Mount McKinley, Alaska, was performed in 2008 and 2009 to search for an appropriate deep ice core drill location in Central Alaska. Surface velocity measurements from a rapid static GPS survey were coupled with approximately 10 km of 100 MHz GPR profiles to determine surface and subsurface glacier structure and dynamics at a promising drill site near Kahiltna Pass (3078 masl). The GPR profiles reveal a pocket of ice east of Kahiltna Pass with horizontal stratigraphy and 300 meters of ice; based on local accumulation rates and ice flow modeling, this depth of ice likely represents 500 +/- years of climate record. Preliminary geodetic data suggest low velocities (less the 0.1 m/day) at the potential drill site and velocities up to 0.45 m/day 7 km down slope of the drill site. These velocities are comparable to previous velocity measurements recorded on the Kahiltna Glacier. Stratigtraphic complexities do exist in the upper Kahiltna Glacier region; interpretation of these features and their relevance to local ice flow and drill site selection will be discussed.

Campbell, S. W.; Kreutz, K. J.; Wake, C. P.; Osterberg, E. C.; Arcone, S. A.; Volkening, K.; Lurie, M.

2009-12-01

97

20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.  

USGS Publications Warehouse

Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations exceeds 10 m year-1.

Molnia, B. F.; Post, A.; Carlson, P. R.

1996-01-01

98

Surface depressions (Lacunas) on Bering Glacier, Alaska: a product of downwasting through differential ablation  

NASA Astrophysics Data System (ADS)

Bering Glacier lacunas are steep-sided, flat-floored hollows ranging in size from 40 to 60 m wide, 80 to 120 m long, and 35 to 50 m in deep. They are confined within a band of clean ice (1.5 km wide, 5 km long) paralleling the eastern margin of the Bering piedmont lobe. The 1993-1995 surge displaced the lacuna band several kilometers onto the foreland. Specifically significant is the formation of a new band of lacunas 5-6 years later in the same location occupied by the displaced band prior to the surge. Conditions essential to lacuna formation were initiated during the surge as overriding ice was thrust into position across the trend of a subglacial trough, leading to stagnation of ice within the trough. Stagnation combined with saturation at depth altered ice texture and density. Exposure of this ice through normal ablation led to areas of differential ablation and the formation of lacunas.

Fleisher, P. J.

2014-05-01

99

Ice-proximal sediment dynamics and their effect on the stability of Muir Glacier, Alaska: A case study of non-climatic glacier response  

SciTech Connect

Recent studies have shown that water depth at tidewater termini affect calving rates and, therefore, glacier mass balance and terminus stability. Grounding-line water depths are themselves governed by glacial and marine processes that interact during the formation of morainal bank depocenters. These morainal banks can fluctuate 10s of meters in height within an interval of a few weeks. Recent investigations in Glacier Bay have focused on quantitatively assessing sediment budgets in the ice-proximal environment. The monitoring of morainal banks in upper Muir Inlet has included repeated bathymetric mapping, sediment trap studies, bottom grab sampling, glacier and iceberg sampling, and submersible ROV investigations within 1 km of the terminus. Such relationships are important in interpreting recent changes in the dynamics of Muir Glacier where a century of retreat has been succeeded by quasi stability. The new glacier regime has accompanied basin infilling from approximately 100 m depth to a maximum of 52 m at the grounding line. Two large grounding-line fans have aggraded to deltas and reduced the length of the calving margin from 900 m to 290 m wide. These effects have reduced the ice flow velocities by 45%. Annual morainal bank growth ranged from 10[sup 6] to 10[sup 7] m[sup 3] and is the result of glacifluvial dumping, suspension settling from turbid overflow plumes, debris dumping from ice-cliff and iceberg melting, glacier squeezing and pushing of morainal bank sediment, and sediment gravity flow processes. Each of these processes are an integral facet of the morainal bank dynamics and glacier response. These studies of Muir Glacier indicate that glacier response to sediment dynamics need to be addresses before climatic implications are made.

Hunter, L.E.; Powell, R.D. (Northern Illinois Univ., Dekalb, IL (United States). Dept. of Geology)

1992-01-01

100

CO2 leakage through existing wells: current technology and regulations S. Taku Ide1  

E-print Network

CO2 leakage through existing wells: current technology and regulations S. Taku Ide1 , S. Julio the crust, and as such present zones of elevated risk to CO2 storage projects. Although current well closure and abandonment technology appears sufficient to contain CO2 at most sites, individual wells may suffer from

101

The Border Ranges shear zone, Glacier Bay National Park, Alaska: An example of an ancient brittle-ductile transition zone  

SciTech Connect

The Border Ranges fault system in southern Alaska forms the tectonic boundary between the Peninsular-Alexander-Wrangellia (PAW) composite terrane and the Chugach terrane. In Glacier Bay National Park, the Border Ranges fault system is a north-northwest trending, 10 kilometer wide zone of ductile shear zones and brittle faults hereafter referred to as the Border Ranges shear zone. Three-dimensional strain analyses of plagioclase lathes in the foliated calc-alkaline plutons reveals a strong flattening fabric with the plane of maximum flattening (XY-plane) oriented northwest-southeast and dipping steeply to the southwest. The distribution and shapes of sub-elliptical mafic enclaves in the calc-alkaline plutons show a similarly oriented flattening fabric. Coeval brittle and ductile deformational processes are indicated by: (1) ductile shear zones narrowing to brittle faults at the outcrop scale; and (2) undulose quartz with subgrain development, kinked biotite, twinned and undulose feldspar, and fractured and twinned hornblende often within a single thin-section. Amphibole geobarometry indicates that two of the calc-alkaline plutons deformed by the shear zone crystallized at pressures of approximately 3 kilobars equivalent to 10 to 12 kilometers depth. Metamorphic mineral assemblages within the mylonites indicate deformation under lower greenschist facies conditions (300--400 C). The shear zone may represent a snapshot of the brittle-ductile transition of an ancient convergent-transform plate boundary. As such, this unique exposure may be an ancient analogue for the brittle-ductile transition of the present day San Andreas fault system.

Smart, K.J. (Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences)

1992-01-01

102

Alaska Volcanoes Guidebook for Teachers.  

National Technical Information Service (NTIS)

Alaska's volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 1...

J. N. Adleman

2010-01-01

103

Columbia Glacier Calving  

USGS Multimedia Gallery

A dramatic iceberg calving from Columbia Glacier in Prince William Sound, Alaska. The iceberg has just broken free from under the water and shot to the surface, spinning towards the ice face. The ice cliff here is about 70 m (229.7 ft) tall. Icebergs are calved as stress fractures in the glacier mer...

2010-07-14

104

Photographer Overlooking Columbia Glacier  

USGS Multimedia Gallery

Photographer Tad Pfeffer capturing images of Columbia Glacier in Prince William Sound, Alaska. He is looking down-glacier towards the ice front, which faces open water in the fjord. This open water is extremely rare, and has not happened again since 2005. The fjord is typically covered with iceberg ...

2010-07-14

105

Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year  

USGS Publications Warehouse

The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

March, Rod S.

2003-01-01

106

Alaska  

article title: Western Alaska View Larger Image These views of western Alaska were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on ... available at JPL June 25, 2000 - Western Alaska with the Yukon River and forest fire smoke plume. project: ...

2014-05-15

107

Distribution of Ground-Nesting Marine Birds Along Shorelines in Glacier Bay, Southeastern Alaska: An Assessment Related to Potential Disturbance by Back-Country Users  

USGS Publications Warehouse

With the exception of a few large colonies, the distribution of ground-nesting marine birds in Glacier Bay National Park in southeastern Alaska is largely unknown. As visitor use increases in back-country areas of the park, there is growing concern over the potential impact of human activities on breeding birds. During the 2003i??05 breeding seasons, the shoreline of Glacier Bay was surveyed to locate ground-nesting marine birds and their nesting areas, including wildlife closures and historical sites for egg collection by Alaska Native peoples. The nesting distribution of four common ground-nesting marine bird species was determined: Arctic Tern (Sterna paradisaea), Black Oystercatcher (Haematopus bachmani), Mew Gull (Larus canus), and Glaucous-winged Gull (Larus glaucescens). Observations of less abundant species also were recorded, including Herring Gull (Larus argentatus), Red-throated Loon (Gavia stellata), Canada Goose (Branta canadensis), Willow Ptarmigan (Lagopus lagopus), Semipalmated Plover (Charadrius semipalmatus), Spotted Sandpiper (Actitis macularia), Least Sandpiper (Calidris minutilla), Parasitic Jaeger (Stercorarius parasiticus), and Aleutian Tern (Sterna aleutica). Nesting distribution for Arctic Terns was largely restricted to the upper arms of the bay and a few treeless islets in the lower bay, whereas Black Oystercatchers were more widely distributed along shorelines in the park. Mew Gulls nested throughout the upper bay in Geikie Inlet and in Fingers and Berg Bays, and most Glaucous-winged Gull nests were found at wildlife closures in the central and lower bays. Several areas were identified where human disturbance could affect breeding birds. This study comprises the first bay-wide survey for the breeding distribution of ground-nesting marine birds in Glacier Bay National Park, providing a minimum estimate of their numbers and distribution within the park. This information can be used to assess future human disturbance and track natural changes in nesting bird distribution over time.

Arimitsu, M.L.; Piatt, J.F.; Romano, M.D.

2007-01-01

108

Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [North Cascades, Washington and Tweedsmuir Glacier, Alaska  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Snowlines on a small (6 sq km) drainage basin were accurately measured without use of digital processing, and snow patches as small as 150 m (maximum dimension) were correctly identified, proving that the resolution of ERTS is ample for snow mapping needs. The area of snow cover on 10 individual drainage basins in the North Cascades, Washington, has been determined at 12 different times; these data can be used for more accurate forecasts of streamflow. Progress has been made in distinguishing snow in trees using multispectral analysis. Motion of the surging Tweedsmuir Glacier was measured. Velocities ranged from 2 to 88 m per day; a zone of intense crevassing also appeared to spread up and down the glacier (at about 200 m per day upglacier). This tentative result may be of great importance to an understanding of surging glacier dynamics. ERTS images also show that the most recent debris flow (20-21 August 1973) from Mount Baker can be clearly discerned and mapped, in order to monitor this potential hazard.

Meier, M. F. (principal investigator)

1974-01-01

109

Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [Alaska and Washington  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. A new procedure to determine snowcovered areas has been devised. Aside from problems in heavily forested areas this method shows promise in predicting snowmelt runoff from mountain areas and will also assist in energy balance modeling of large snowfields. Snowcover results compare favorably with measurements made by high altitude aircraft photography. Changes in snowcover in areas as small as 3 x 5 km can be determined from ERTS-1 images by both optical and electronic methods. Snowcover changes determined by these two methods in the experimental South Cascade Glacier Basin were verified by field mapping. Image enahancement techniques on ERTS-1 images of large Alaskan glaciers (the Hubbard, Yentna, and Kahiltna) have given new insights into the large-scale structures and flow dynamics of these potentially hazardous glaciers. The Hubbard Glacier, in particular, is one which poses a threat to man and should be monitored for future changes.

Meier, M. F. (principal investigator)

1973-01-01

110

Late Holocene glacial history of the Copper River Delta, coastal south-central Alaska, and controls on valley glacier fluctuations  

E-print Network

on valley glacier fluctuations David J. Barclay a,*, Elowyn M. Yager b , Jason Graves a , Michael Kloczko to be reconstructed with very high spatial and temporal detail (e.g. Luckman, 1995; Holzhauser et al., 2005; Barclay

Barclay, David J.

111

In Brief: Melting glaciers  

NASA Astrophysics Data System (ADS)

Glaciers in Patagonia and Alaska have been losing their mass, and for longer than glaciers elsewhere in the world, according to a 7 December report compiled by the United Nations Environment Programme (UNEP). Climate change is causing significant mass loss of glaciers in high mountains worldwide, notes the report, which calls for accelerated research, monitoring, and modeling of glaciers and snow and their role in water supplies. The report also highlights the vulnerability and exposure of people dependent upon [glacier-fed] rivers to floods, droughts and eventually shortages as a result of changes in the melting and freezing cycles linked with climate change and other pollution impacts, according to UNEP executive director Achim Steiner. For more information, visit http://www.grida.no/publications/highmountain-glaciers/.

Showstack, Randy; Tretkoff, Ernie

2010-12-01

112

Mass balance, meteorological, ice motion, surface altitude, runoff, and ice thickness data at Gulkana Glacier, Alaska, 1995 balance year  

USGS Publications Warehouse

The 1995 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 0.94 meter on April 19, 1995, 0.6 standard deviation below the long-term average; the maximum winter snow balance, 0.94 meter, was reached on April 25, 1995; the net balance (from September 18, 1994 to August 29, 1995) was -0.70 meter, 0.76 standard deviation below the long-term average. The annual balance (October 1, 1994, to September 30, 1995) was -0.86 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 2.05 meters averaged over the basin, approximately equal to the long-term average. The 1976 ice-thickness data are reported from a single site near the highest measurement site (180 meters thick) and from two glacier cross profiles near the mid-glacier (270 meters thick on centerline) and low glacier (150 meters thick on centerline) measurement sites. A new area-altitude distribution determined from 1993 photogrammetry is reported. Area-averaged balances are reported from both the 1967 and 1993 area-altitude distribution so the reader may directly see the effect of the update. Briefly, loss of ablation area between 1967 and 1993 results in a larger weighting being applied to data from the upper glacier site and hence, increases calculated area-averaged balances. The balance increase is of the order of 15 percent for net balance.

March, Rod S.

2000-01-01

113

Dramatic increase in the relative abundance of large male dungeness crabs Cancer magister following closure of commercial fishing in Glacier Bay, Alaska  

USGS Publications Warehouse

The size structure of the population of the Dungeness crab Cancer magister was studied at six sites in or near Glacier Bay, Alaska, before and after the closure of commercial fishing. Seven years of preclosure and 4 years of postclosure data are presented. After the closure of Glacier Bay to commercial fishing, the number and size of legal-sized male Dungeness crabs increased dramatically at the experimental sites. Female and sublegal-sized male crabs, the portions of the population not directly targeted by commercial fishing, did not increase in size or abundance following the closure. There was not a large shift in the size-abundance distribution of male crabs at the control site that is still open to commercial fishing. Marine protected areas are being widely promoted as effective tools for managing fisheries while simultaneously meeting marine conservation goals and maintaining marine biodiversity. Our data demonstrate that the size of male Dungeness crabs can markedly increase in a marine reserve, which supports the concept that marine reserves could help maintain genetic diversity in Dungeness crabs and other crab species subjected to size-limit fisheries and possibly increase the fertility of females. ?? 2004 by the American Fisheries Society.

Taggart, S. J.; Shirley, T. C.; O'Clair, C. E.; Mondragon, J.

2004-01-01

114

Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1994 balance year  

USGS Publications Warehouse

The 1994 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 1.34 meters on April 29, 1994, 0.9 standard deviation above the long-term average; the maximum winter snow balance, 1.43 meters, was reached on April 18, 1994; the net balance (from September 8, 1993 to September 17, 1994) was -0.72 meter, 0.7 standard deviation below the long-term average. The annual balance (October 1, 1992, to September 30, 1993) was -0.88 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 1.93 meters averaged over the basin, approximately equal to the long-term average.

March, Rod S.

1998-01-01

115

Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1992 balance year  

USGS Publications Warehouse

The 1992 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data measured in the basin and are reported herein. Averaged over the glacier, the measured winter snow balance was 0.97 meters on March 26, 1992; the maximum winter snow balance was 1.05 meters on May 19, 1992; the net balance (from September 8, 1991 to August 17, 1992) was -0.29 meters; and the annual balance (October 1, 1991 to September 30, 1992) was -0.38 meters. Ice surface, motion, and altitude changes measured at three index sites document seasonal changes in ice speed and glacier thickness. Annual stream runoff was 1.24 meters averaged over the basin.

March, R. S.; Trabant, D. C.

1996-01-01

116

Imaging Evidence for Hubbard Glacier Advances and Retreats since the Last Glacial Maximum in Disenchantment and Yakutat Bays, Alaska  

NASA Astrophysics Data System (ADS)

As glaciers advance and retreat, they leave erosional surfaces, retreat sequences, morainal banks, and terminal moraines. These features can be imaged and interpreted in seismic reflection data to gain insight into ice routing, ice-sediment processes, and preserved glacial history. High-resolution 2-D multichannel seismic data gathered on the August 2012 UTIG-USGS National Earthquake Hazards Reduction Program survey of Disenchantment and Yakutat Bays have provided understanding of the advance pathways of the Hubbard Glacier and the glacial history of the bays. These data show evidence of three unconformities appearing in the form of channels and interpreted to be glacial advance and retreat paths. The youngest observable channel in Disenchantment Bay is ~2 km wide, forming morainal banks along the edges of the bay. The depth below modern sea level in two-way travel time (twtt) shallows from 510 ms in the middle of the bay to 400 ms ~4 km north of the entrance to Yakutat Bay. The sediment contained within the youngest channel measured from the seafloor thins southward from a twtt thickness of 260 ms to 115 ms. Beneath the youngest channel lies an older, 2.2 km-wide channel which is observed at ~580 ms below sea level, and is filled with sediments ranging in thickness from 480 ms to 180 ms at the terminus. This older channel extends from Disenchantment Bay into Yakutat Bay, staying to the northeast of Yakutat Bay, then turns southward at Knight Island and shallows to 450 ms twtt before forming a terminal moraine ~10 km north of the mouth of Yakutat Bay. Evidence for the third and oldest unconformity can only be seen within a very small number of short seismic lines in Disenchantment Bay. It is the largest of the channels, at ~3 km wide and 720 ms below modern sea level. The evidence of three nested unconformities suggests that the Hubbard Glacier has had at least three major advances in recent history. Radiocarbon dating of wooden branches in moraine deposits confirms at least two of these advances to be during the Holocene while the oldest may represent the Last Glacial Maximum. The most recent advance likely reached its terminal position at the mouth of Disenchantment Bay, never entering Yakutat Bay. Our interpretation suggests that the Hubbard Glacier has repeatedly advanced around the east side of Yakutat Bay in Knight Island Channel, possibly due to the presence of Malaspina Glacier cutting off access to the central Yakutat Bay during a time of mutual advance. Within the range of the seismic data available for the area, it seems unlikely that the Hubbard Glacier fills all of Yakutat Bay when it advances.

Zurbuchen, J.; Gulick, S. P.; Levoir, M. A.; Goff, J. A.; Haeussler, P. J.

2013-12-01

117

Muir Glacier and Muir Inlet 1980  

USGS Multimedia Gallery

This ship-deck-based August 1980 photograph of Muir Glacier and Muir Inlet, Glacier Bay National Park and Preserve, St. Elias Mountains, Alaska, shows the nearly 200-ft-high retreating tidewater end of Muir Glacier with part of its face capped by a few angular pinnacles of ice, called sracs....

118

Flow velocities of Alaskan glaciers.  

PubMed

Our poor understanding of tidewater glacier dynamics remains the primary source of uncertainty in sea level rise projections. On the ice sheets, mass lost from tidewater calving exceeds the amount lost from surface melting. In Alaska, the magnitude of calving mass loss remains unconstrained, yet immense calving losses have been observed. With 20% of the global new-water sea level rise coming from Alaska, partitioning of mass loss sources in Alaska is needed to improve sea level rise projections. Here we present the first regionally comprehensive map of glacier flow velocities in Central Alaska. These data reveal that the majority of the regional downstream flux is constrained to only a few coastal glaciers. We find regional calving losses are 17.1?Gt?a(-1), which is equivalent to 36% of the total annual mass change throughout Central Alaska. PMID:23857302

Burgess, Evan W; Forster, Richard R; Larsen, Christopher F

2013-01-01

119

Alaska  

SciTech Connect

Twenty-five exploratory wells were drilled in Alaska in 1980. Five oil or gas discovery wells were drilled on the North Slope. One hundred and seventeen development and service wells were drilled and completed, primarily in the Prudhoe Bay and Kuparuk River fields on the North Slope. Geologic-geophysical field activity consisted of 115.74 crew months, an increase of almost 50% compared to 1979. These increases affected most of the major basins of the state as industry stepped up preparations for future lease sales. Federal acreage under lease increased slightly, while state lease acreage showed a slight decline. The year's oil production showed a increase of 16%, while gas production was down slightly. The federal land freeze in Alaska showed signs of thawing, as the US Department of Interior asked industry to identify areas of interest onshore for possible future leasing. National Petroleum Reserve in Alaska was opened to private exploration, and petroleum potential of the Arctic Wildlife Refuge will be studied. One outer continental shelf lease sale was held in the eastern Gulf of Alaska, and a series of state and federal lease sales were announced for the next 5 years. 5 figures, 5 tables.

Jones, B.C.; Sears, D.W.

1981-10-01

120

Delineation of landform and lithologic units for Ecological Landtype-Association analysis in Glacier Bay National Park, Southeast Alaska  

USGS Publications Warehouse

In this study, landforms were classified-by using topographic maps and personal experience-into eight categories similar to those used by the U.S. Forest Service. The 90 bedrock-lithologic units on the current Glacier Bay geologic map were classified into 13 generalized lithologic units corresponding exactly to those used by the U.S. Forest Service. Incomplete storm-track, storm-intensity, and limited climatic information have also been compiled.

Brew, David A.

2008-01-01

121

Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1993 balance year  

USGS Publications Warehouse

The 1993 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data measured in the basin and are reported herein. Averaged over the glacier, the measured winter snow balance was 0.81 meter on March 31, 1993, 1.2 standard deviations below the long-term average; the maximum winter snow balance, 0.84 meter, was reached on May 10, 1993 and remained until May 11, 1993; the net balance (from August 18, 1992 to September 8, 1993) was 1.80 meters, the most negative balance year on record at 2.8 standard deviations below the long-term average. The annual balance (October 1, 1992 to September 30, 1993) was 1.64 meters. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier thickness changes. Annual stream runoff was 1.996 meters averaged over the basin, 0.2 standard deviations above the long-term average.

March, Rod; Trabant, Dennis

1997-01-01

122

Killer Whale Feeding Ecology and Non-Predatory Interactions with other Marine Mammals in the Glacier Bay Region of Alaska  

E-print Network

Killer Whale Feeding Ecology and Non-Predatory Interactions with other Marine Mammals. Populations of killer whales in southeastern Alaska overlap with populations inhabiting Prince William Sound of killer whales were compared to those documented in similar studies in adjacent areas. One hundred twenty

123

Apogean-perigean signals encoded in tidal flats at the fluvio-estuarine transition of Glacier Creek, Turnagain Arm, Alaska; implications for ancient tidal rhythmites  

USGS Publications Warehouse

Turnagain Arm is a macrotidal fjord-style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio-estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap-spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well-preserved apogean-perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well-developed neap-spring cyclicity is possible because of the near-complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick-thin spring cycles encoding the apogean and perigean tidal cycle. The apogean-perigean signal was not observed in subsequent years. ?? 2011 The Authors.

Greb, S.F.; Archer, A.W.; Deboer, D.G.

2011-01-01

124

The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska  

PubMed Central

In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID:24023925

Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.

2013-01-01

125

The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.  

PubMed

In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID:24023925

Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

2013-01-01

126

Alaska  

Microsoft Academic Search

Twenty-five exploratory wells were drilled in Alaska in 1980. Five oil or gas discovery wells were drilled on the North Slope. One hundred and seventeen development and service wells were drilled and completed, primarily in the Prudhoe Bay and Kuparuk River fields on the North Slope. Geologic-geophysical field activity consisted of 115.74 crew months, an increase of almost 50% compared

B. C. Jones; D. W. Sears

1981-01-01

127

Geochronology of plutonic rocks and their tectonic terranes in Glacier Bay National Park and Preserve, southeast Alaska: Chapter E in Studies by the U.S. Geological Survey in Alaska, 2008-2009  

USGS Publications Warehouse

We have identified six major belts and two nonbelt occurrences of plutonic rocks in Glacier Bay National Park and Preserve and characterized them on the basis of geologic mapping, igneous petrology, geochemistry, and isotopic dating. The six plutonic belts and two other occurrences are, from oldest to youngest: (1) Jurassic (201.6145.5 Ma) diorite and gabbro of the Lituya belt; (2) Late Jurassic (161.0145.5 Ma) leucotonalite in Johns Hopkins Inlet; (3) Early Cretaceous (145.599.6 Ma) granodiorite and tonalite of the Muir-Chichagof belt; (4) Paleocene tonalite in Johns Hopkins Inlet (65.555.8 Ma); (5) Eocene granodiorite of the Sanak-Baranof belt; (6) Eocene and Oligocene (55.823.0 Ma) granodiorite, quartz diorite, and granite of the Muir-Fairweather felsic-intermediate belt; (7) Eocene and Oligocene (55.823.0 Ma) layered gabbros of the Crillon-La Perouse mafic belt; and (8) Oligocene (33.923.0 Ma) quartz monzonite and quartz syenite of the Tkope belt. The rocks are further classified into 17 different combination age-compositional units; some younger belts are superimposed on older ones. Almost all these plutonic rocks are related to Cretaceous and Tertiary subduction events. The six major plutonic belts intrude the three southeast Alaska geographic subregions in Glacier Bay National Park and Preserve, from west to east: (1) the Coastal Islands, (2) the Tarr Inlet Suture Zone (which contains the Border Ranges Fault Zone), and (3) the Central Alexander Archipelago. Each subregion includes rocks assigned to one or more tectonic terranes. The various plutonic belts intrude different terranes in different subregions. In general, the Early Cretaceous plutons intrude rocks of the Alexander and Wrangellia terranes in the Central Alexander Archipelago subregion, and the Paleogene plutons intrude rocks of the Chugach, Alexander, and Wrangellia terranes in the Coastal Islands, Tarr Inlet Suture Zone, and Central Alexander Archipelago subregions.

Brew, David A.; Tellier, Kathleen E.; Lanphere, Marvin A.; Nielsen, Diane C.; Smith, James G.; Sonnevil, Ronald A.

2014-01-01

128

Benchmark Glaciers  

NSDL National Science Digital Library

The United States Geological Survey (USGS) operates a long-term "benchmark" glacier program to intensively monitor climate, glacier motion, glacier mass balance, glacier geometry, and stream runoff at a few select sites. The data collected are used to understand glacier-related hydrologic processes and improve the quantitative prediction of water resources, glacier-related hazards, and the consequences of climate change. This page presents some of the balance, runoff, and temperature data for three glaciers: Gulkana, South Cascade and Wolverine. Reports for each of these glaciers uses the collected data to draw many conclusions. There is also a section with common questions and myths about glaciers.

129

Alaska  

USGS Publications Warehouse

Alaska is the United States' only Arctic region. Its marine, tundra, boreal (northern) forest, and rainforest ecosystems differ from most of those in other states and are relatively intact. Alaska is home to millions of migratory birds, hundred of thousands of caribou, some of the nation's largest salmon runs, a significant proportion of he nation's marine mammals, and half of the nation's fish catch. Energy production is the main driver of the state's economy, providing more than 80% of state government revenue and thousands of jobs. Continuing pressure for oil, gas, and mineral development on land and offshore in ice-covered waters increases the demand for infrastructure, placing additional stresses on ecosystems. Land-based energy exploration will be affected by a shorter season when ice roads are viable, yet reduced sea ice extent may create more opportunity for offshore development. Climate also affects hydropower generation. Mining and fishing are the second and third largest industries in the state, with tourism rapidly increasing the 1990s. Fisheries are vulnerable to changes in fish abundance and distribution that result from both climate change and fishing pressure. Tourism might respond positively to warmer springs and autumns but negatively to less favorable conditions for winter activities and increased summer smoke from wildfire. Alaska is home to 40% (229 of 566) of the federally recognized tribes in the United States. The small number of jobs, high cost of living, and rapid social change make rural, predominantly Native, communities highly vulnerable to climate change through impacts on tradition hunting and fishing and cultural connection to the land and sad. Because most of these communities re not connected to the state's road system or electrical grid, the cost of living is high, and it is challenging to supply good, fuel, materials, health care, and other services. Climate impacts on these communities are magnified by additional social and economic stresses. However, Alaskan Native communities have for centuries dealt with scarcity and high environmental variability and thus have deep cultural reservoirs of flexibility and adaptability.

Chapin, F. Stuart, III; Trainor, Sarah F.; Cochran, Patricia; Huntington, Henry; Markon, Carl; McCammon, Molly; McGuire, A. David; Serreze, Mark

2014-01-01

130

Seasonal variabilty of surface velocities and ice discharge of Columbia Glacier, Alaska using high-resolution TanDEM-X satellite time series and NASA IceBridge data  

NASA Astrophysics Data System (ADS)

Columbia Glacier is a grounded tidewater glacier located on the south coast of Alaska. It has lost half of its volume during 1957-2007, more rapidly after 1980. It is now split into two branches, known as Main/East and West branch due to the dramatic retreat of ~ 23 km and calving of iceberg from its terminus in past few decades. In Alaska, a majority of the mass loss from glaciers is due to rapid ice flow and calving icebergs into tidewater and lacustrine environments. In addition, submarine melting and change in the frontal position can accelerate the ice flow and calving rate. We use time series of high-resolution TanDEM-X stripmap satellite imagery during 2011-2013. The active image of the bistatic TanDEM-X acquisitions, acquired over 11 or 22 day repeat intervals, are utilized to derive surface velocity fields using SAR intensity offset tracking. Due to the short temporal baselines, the precise orbit control and the high-resolution of the data, the accuracies of the velocity products are high. We observe a pronounce seasonal signal in flow velocities close to the glacier front of East/Main branch of Columbia Glacier. Maximum values at the glacier front reach up to 14 m/day were recorded in May 2012 and 12 m/day in June 2013. Minimum velocities at the glacier front are generally observed in September and October with lowest values below 2 m/day in October 2012. Months in between those dates show corresponding increase or deceleration resulting a kind of sinusoidal annual course of the surface velocity at the glacier front. The seasonal signal is consistently decreasing with the distance from the glacier front. At a distance of 17.5 km from the ice front, velocities are reduced to 2 m/day and almost no seasonal variability can be observed. We attribute these temporal and spatial variability to changes in the basal hydrology and lubrification of the glacier bed. Closure of the basal drainage system in early winter leads to maximum speeds while during a fully developed basal drainage system speeds are at their minimum. We also analyze the variation in conjunction with the prevailing meteorological conditions as well as changes in calving front position in order to exclude other potential influencing factors. In a second step, we also exploit TanDEM-X data to generate various digital elevation models (DEMs) at different time steps. The multi-temporal DEMs are used to estimate the difference in surface elevation and respective ice thickness changes. All TanDEM-X DEMs are well tied with a SPOT reference DEM. Errors are estimated over ice free moraines and rocky areas. The quality of the TanDEM-X DEMs on snow and ice covered areas are further assessed by a comparison to laser scanning data from NASA Icebridge campaigns. The time wise closest TanDEM-X DEMs were compared to the Icebridge tracks from winter and summer surveys in order to judge errors resulting from the radar penetration of the x/band radar signal into snow, ice and firn. The average differences between laser scanning and TanDEM-X in August, 2011 and March, 2012 are observed to be 8.48 m and 14.35 m respectively. Retreat rates of the glacier front are derived manually by digitizing the terminus position. By combining the data sets of ice velocity, ice thickness and the retreat rates at different time steps, we estimate the seasonal variability of the ice discharge of Columbia Glacier.

Vijay, Saurabh; Braun, Matthias

2014-05-01

131

A conceptual model of cyclical glacier flow in overdeepenings  

NASA Astrophysics Data System (ADS)

A nearly four-decade, satellite-based velocity survey of the largest glaciers in the Alaska Range, Chugach Mountains, and the Wrangell Mountains of southern Alaska, spanning the early- to mid-1970s through the 2000s, reveals nine pulsing glaciers: Capps, Copper, Eldridge, Kahiltna, Matanuska, Nabesna, Nizina, Ruth, and Sanford glaciers. The pulses increase velocity by up to 2449% (Capps Glacier) or as little as 77% (Nabesna Glacier), with velocity increases for the other glaciers in the range of 100-250%. The pulses may last from between six years (Copper Glacier) to 12 years (Nizina Glacier) and consist of a multi-year acceleration phase followed by a multi-year deceleration phase during which significant portions of each glacier move en masse. The segments of each glacier affected by the pulses may be anywhere from 14 km (Sanford Glacier) to 36 km (Nabesna Glacier) in length and occur where the glaciers are either laterally constricted or joined by a major tributary, and the surface slopes at these locations are very shallow, 1-2, suggesting the pulses occur where the glaciers are overdeepened. A conceptual model to explain the cyclical behavior of these pulsing glaciers is presented that incorporates the effects of glaciohydraulic supercooling, glacier dynamics, surface ablation, and subglacial sediment erosion, deposition, and deformation in overdeepenings.

Turrin, J. B.; Forster, R. R.

2014-08-01

132

Glacier Webquest  

NSDL National Science Digital Library

A project to learn about ice cores and Antarctica. Use handout lab (Webquest: Glaciers) and follow instructions given for each procedure. Go to Ice Core Changes Go to Glacial Loss Go to Glacial Cover Animation Go to Snow Cover Go to Gulkana Glacier Home Page Go to Glacial Topography Go to Glacial Picture Archive Go to Additional Glacier Pictures ...

Kio, Mr.

2008-11-06

133

The length of the world's glaciers - a new approach for the global calculation of center lines  

NASA Astrophysics Data System (ADS)

Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all ~ 200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km, with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on the output of our algorithm we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models.

Machguth, H.; Huss, M.

2014-09-01

134

Alexander Archipelago, Southeastern Alaska  

NASA Technical Reports Server (NTRS)

West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

2002-01-01

135

Intrusive rocks and plutonic belts of southeastern Alaska, U.S.A.  

USGS Publications Warehouse

About 30 percent of the 175,000-km2 area of southeastern Alaska is underlain by intrusive igneous rocks. Compilation of available information on the distribution, composition, and ages of these rocks indicates the presence of six major and six minor plutonic belts. From west to east, the major belts are: the Fairweather-Baranof belt of early to mid-Tertiary granodiorite; the Muir-Chichagof belt of mid-Cretaceous tonalite and granodiorite; the Admiralty-Revillagigedo belt of porphyritic granodiorite, quartz diorite, and diorite of probable Cretaceous age; the Klukwan-Duke belt of concentrically zoned or Alaskan-type ultramafic-mafic plutons of mid-Cretaceous age within the Admiralty-Revillagigedo belt; the Coast Plutonic Complex sill belt of tonalite of unknown, but perhaps mid-Cretaceous, age; and the Coast Plutonic Complex belt I of early to mid-Tertiary granodiorite and quartz monzonite. The minor belts are distributed as follows: the Glacier Bay belt of Cretaceous and(or) Tertiary granodiorite, tonalite, and quartz diorite lies within the Fair-weather-Baranof belt; layered gabbro complexes of inferred mid-Tertiary age lie within and are probably related to the Fairweather-Baranof belt; the Chilkat-Chichagof belt of Jurassic granodiorite and tonalite lies within the Muir-Chichagof belt; the Sitkoh Bay alkaline, the Kendrick Bay pyroxenite to quartz monzonite, and the Annette and Cape Fox trondhjemite plutons, all interpreted to be of Ordovician(?) age, together form the crude southern southeastern Alaska belt within the Muir-Chichagof belt; the Kuiu-Etolin mid-Tertiary belt of volcanic and plutonic rocks extends from the Muir-Chichagof belt eastward into the Admiralty-Revillagigedo belt; and the Behm Canal belt of mid- to late Tertiary granite lies within and next to Coast Plutonic Complex belt II. In addition, scattered mafic-ultramafic bodies occur within the Fairweather-Baranof, Muir-Chichagof, and Coast Plutonic Complex belts I and II. Palinspastic reconstruction of 200 km of right-lateral movement on the Chatham Strait fault does not significantly change the pattern of the major belts but does bring parts of the minor mid-Tertiary and Ordovician(?) belts closer together. The major belts are related to the stratigraphic-tectonic terranes of Berg, Jones, and Coney (1978) as follows: the Fairweather-Baranof belt is largely in the Chugach, Wrangell (Wrangellia), and Alexander terranes; the Muir-Chichagof belt is in the Alexander and Wrangell terranes; the Admiralty-Revillagigedo belt is in the Gravina and Taku terranes; the Klukwan-Duke belt is in the Gravina, Taku, and Alexander terranes; the Coast Plutonic Complex sill belt is probably between the Taku and Tracy Arm terranes; and the Coast Plutonic Complex belts I and II are in the Tracy Arm and Stikine terranes. Significant metallic-mineral deposits are spatially related to certain of these belts, and some deposits may be genetically related. Gold, copper, and molybdenum occurrences may be related to granodiorites of the Fairweather-Baranof belt. Magmatic copper-nickel deposits occur in the layered gabbro within that belt. The Juneau gold belt, which contains gold, silver, copper, lead, and zinc occurrences, parallels and lies close to the Coast Plutonic Complex sill belt; iron deposits occur in the Klukwan-Duke belt; and porphyry molybdenum deposits occur in the Behm Canal belt. The Muir-Chichagof belt of mid-Cretaceous age and the Admiralty-Revillagigedo belt of probable Cretaceous age are currently interpreted as possible magmatic arcs associated with subduction events. In general, the other belts of intrusive rocks are spatially related to structural discontinuities, but genetic relations, if any, are not yet known. The Coast Plutonic Complex sill belt is probably related to a post-Triassic, pre-early Tertiary suture zone that nearly corresponds to the boundary between the Tracy Arm and Taku terranes. The boundary between the Admiralty-Revillagigedo and Muir-Chichagof belts coincides nearly with the Seymour Canal-Clarence Strait lineament and also is probably a

Brew, David A.; Morrell, Robert P.

1983-01-01

136

An 850 year record of climate and fluctuations of the iceberg-calving NellieJuan Glacier, south central Alaska, U.S.A.  

E-print Network

An 850 year record of climate and fluctuations of the iceberg- calving NellieJuan Glacier, south that subse- quent slow retreat changed to rapid iceberg-calving retreat after 1935, and that the tide- water temperature and radiation. However, rapid iceberg-calving retreat did not begin until 40years of slow retreat

Barclay, David J.

137

Alaska: A frontier divided  

SciTech Connect

The superlatives surrounding Alaska are legion. Within the borders of the 49th US state are some of the world's greatest concentrations of waterfowl, bald eagles, fur seals, walrus, sea lions, otters, and the famous Kodiak brown bear. Alaska features the highest peak of North America, the 20,320-foot Mount McKinley, and the longest archipelago of small islands, the Aleutians. The state holds the greatest percentage of protected wilderness per capita in the world. The expanse of some Alaskan glaciers dwarfs entire countries. Like the periodic advance and retreat of its glaciers, Alaska appears with some regularity on the national US agenda. It last achieved prominence when President Jimmy Carter signed the Alaska National Interest Lands Conservation Act in 1980. Since then the conflict between environmental protection and economic development has been played out throughout the state, and Congress is expected to turn to Alaskan issues again in its next sessions.

O'Dell, R. (Conservation Foundation Latter, Washington, DC (USA))

1986-09-01

138

Water Resources of Alaska  

NSDL National Science Digital Library

The Water Resources of Alaska homepage is provided by the US Geological Survey. The goal of this project is to study and understand Alaska's hydrology (surface water, ground water, and water quality) for use and management of the nation's water resources. The site features a list of published reports and information about current projects as well as a vast amount of hydrologic data such as surface water, ground water, water quality, glaciers, water use, and hydrologic data reports.

Geological Survey (U.S.). Water Resources Division. Alaska District.

1999-01-01

139

Columbia Glacier in 1984: disintegration underway  

SciTech Connect

Columbia Glacier is a large, iceberg-calving glacier near Valdez, Alaska. The terminus of this glacier was relatively stable from the time of the first scientific studies in 1899 until 1978. During this period the glacier terminated partly on Heather Island and partly on a submerged moraine shoal. In December, 1978, the glacier terminus retreated from Heather Island, and retreat has accelerated each year since then, except during a period of anomalously low calving in 1980. Although the glacier has not terminated on Heather Island since 1978, a portion of the terminus remained on the crest of the moraine shoal until the fall of 1983. By December 8, 1983, that feature had receded more than 300 m from the crest of the shoal, and by December 14, 1984, had disappeared completely, leaving most of the terminus more than 2000 meters behind the crest of the shoal. Recession of the glacier from the shoal has placed the terminus in deeper water, although the glacier does not float. The active calving face of the glacier now terminates in seawater that is about 300 meters deep at the glacier centerline. Rapid calving appears to be associated with buoyancy effects due to deep water at the terminus and subglacial runoff. 12 refs., 10 figs.

Meier, M.F.; Rasmussen, L.A.; Miller, D.S.

1985-01-01

140

Fastest Glacier  

NSDL National Science Digital Library

This video from a 2005 NOVA program features scientists who study how the Jakobshavn Isbrae glacier in western Greenland is shrinking and moving faster due to increased melting over the past ten years. The video includes footage of scientists in the field explaining methods and animation of ice sheet dynamics leading to faster glacier movement.

Sciencenow, Nova

141

Tropical Glaciers  

NASA Astrophysics Data System (ADS)

The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulationusually winter snowexceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

Fountain, Andrew

142

International Symposium on Fast Glacier Flow  

NASA Technical Reports Server (NTRS)

Cryospheric Sciences Program "International Symposium on Fast Glacier Flow" (PI, C. Lingle) provided partial support for publication of Annals of Glaciology 36 by the International Glaciological Society. Annals of Glaciology is a peer-reviewed journal. Annals 36, which was published in 2003, contains 39 peer-reviewed and edited papers from the International Symposium on Fast Glacier Flow, which was held in Yakutat, Alaska, 10-14 June 2002.

Lingle, Craig S.

1990-01-01

143

Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 1: Observations  

Microsoft Academic Search

Measurements of glacier flow velocity and basal water pressure at two sites on Columbia Glacier, Alaska, are combined with meteorological and hydrologic data to provide an observational basis for assessing the role of water storage and basal water pressure in the rapid movement of this large glacier. During the period from July 5 to August 31, 1987, coordinated observations were

Mark Meier; Scott Lundstrom; Dan Stone; Barclay Kamb; Hermann Engelhardt; Neil Humphrey; William W. Dunlap; Mark Fahnestock; Robert M. Krimmel; Roy Walters

1994-01-01

144

Geophysical imaging of a temperate glacier's hydrologic system in 1, 2, and 3 dimensions  

Microsoft Academic Search

Between 1999 and 2007, we conducted a series of geophysical experiments on Bench Glacier in the Chugach Range of southeast Alaska. Objectives of the experiments include measuring 1) the distribution of water in the snow pack, 2) water storage and routing within the glacier, and 3) the geometry of flow paths at the bed of the glacier. To accomplish these

J. H. Bradford; W. Clement; J. Nichols; J. Brown; D. Mikesell; J. Harper; N. Humphrey; T. Tschetter

2007-01-01

145

Title: Climate-glacier Relationship of Retreating Alaskan Glaciers Author: Elliott Mazur and Umesh K. Haritashya  

NASA Astrophysics Data System (ADS)

Portage, Whittier, Eklutna, as well as many other well-known "tourism glaciers" in the vicinity of Anchorage, Alaska are known to have retreated in the past 20 years. This begs the question, "what of the other lesser-known glaciers? Do they follow the same patterns and minimal glacier models?" Glaciers such as Byron, Leonard, Matanuska, Raven and Spencer may fit a minimal model. Information on Byron and Leonard is sparse, as both have become hanging glaciers. Other glaciers, such as Raven, are small enough to be deemed insignificant, yet may have information to give. Consequently our objective is to study five Alaskan glaciers and determine wide-ranging variability to changing regional climate. To do this we obtained field geo-location data and characterized glaciers based on the satellite imagery and climate reevaluation. Our result shows that glaciers are retreating and thinning irrespective of their aspects, location and altitudinal variability. Moreover, our presentation establishes the strong climate-glacier relationship and defines retreating snowline patterns over the last few decades.

Mazur, E. M.

2012-12-01

146

Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources  

NASA Astrophysics Data System (ADS)

Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in ? 14C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, ? 13C-DOC, ? 14C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the ? 14C-DOC of stream samples at the outflow (-181.7 to -355.3) was comparable to the ? 14C-DOC for snow samples from the accumulation zone (-207.2 to -390.9), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century.

Spencer, Robert G. M.; Vermilyea, Andrew; Fellman, Jason; Raymond, Peter; Stubbins, Aron; Scott, Durelle; Hood, Eran

2014-05-01

147

The History of the Glacier Facies Concept  

NASA Astrophysics Data System (ADS)

The concept of glacier facies developed as a result of physical measurements made in Greenland on repeated traverses that went inland from the west coast at two latitudes (77 N and 70 N) and north to south along the crest of the ice sheet. Snow pits and shallow cores showed discontinuities in physical characteristics that defined the facies boundaries. Some refinement have resulted from research in Antarctica and on Alaskan mountain glaciers. Thirty years after the facies were defined, based on field measurements, it was found that radar data (SAR) from satellites show the boundary between the percolation and dry snow facies in Greenland. They also show the percolation facies of the Greenland ice sheet to be the brightest radar reflector on earth. The dry snow facies is rare except on the major ice sheets (Greenland and Antarctica), but it is present on mountains that exceed 4000 m in Alaska and the Yukon. In particular, Mt. Wrangell, Alaska was selected for continued study of glacier facies because it has a large and accessible area above 4000 m. Mt. Wrangell has proven to have the full spectrum of glacier facies, and these can be seen on the SAR map of Alaska. Refinements in the definition of the lower end of the wet snow facies, to deal with a slush zone and a superimposed ice zone, resulted from Fritz Mueller's research on Axel Heiberg Island and from studies on the McCall Glacier of Alaska. Minor refinements in defining the dry snow facies resulted from comparing Antarctica and Greenland in places where mean annual temperature and accumulation rates were essentially equal. The glacier facies concept also provides a way of comparing the two polar regions and of speculating on the glacier facies that existed on the Pleistocene continental ice sheets.

Benson, C. S.

2001-12-01

148

Melting Glaciers  

NSDL National Science Digital Library

Due to the potential disastrous consequences to the environment and to numerous societies, scientists, governments, and civilians are concerned with the growing trend of glacial melt. This topic-in-depth explores various geographic regions where this phenomenon has recently been observed. Providing background into the study of glaciology, this report begins with a Web site (1) discussing the unique features of glaciers. The US Army Corps of Engineers offers visitors an insight to glacial properties including their locations, movements, and influences; along with a series educational images. The second site (2) explains the exceptionality of the two hundred sixty six glaciers at Glacier National Park. Through a collection of images, animations, and pictures provided by the National Park Service, users can learn about ice dams, climatic impacts, and the erosive powers of ice and water. The rest of the topic-in-depth discusses findings of glacial melting from around the world. NASA (3) addresses the Artic warming's affects on glacier formations. This Web site provides a few animations displaying ice sheet extent and the cracking of icebergs. On a positive note, visitors can learn how the decrease in glaciers has opened up new habitat for some Artic species. The next Web site (4), also by NASA, discusses the findings of a twenty-five year study of Patagonia's glaciers. Educators and students can discover how NASA utilized the Space Shuttle Endeavor to study the entire 17,200 square kilometer region. The site also discusses potential causes of the melting in this region, which has contributed to almost ten percent of the global sea-level change from mountain glaciers. As reported by the BBC (5), Dr. Harrison at the University of Oxford has determined that the glaciers in parts of Kazakhstan have been decreasing annually by almost two cubic kilometers between 1955 and 2000. Visitors can learn how the melting of these four hundred sixteen glaciers will adversely affect the region's rivers and its water supply. The Taipei Times (6) reports that the Swiss Alpine glacial melting has probably intensified due to this summer's record-breaking heat wave. This Web site provides short, intriguing descriptions of consequences of the "rush of melt water streaming from the ice wall." Users can learn about predictions in the 1990s that the glaciers would shrink to ten percent of their 1850 size by the end of the twenty first century. In the next Web site (7), the BBC provides a captivating illustration of the effects the Peruvian glacial melts may have on tourism, the country's water supply, and more. Students and educators can learn about NASA studies showing cracks in the ice, which could lead to the flooding of large cities. Visitors can also find out how the recent glacier recessions have affected some ancient spiritual traditions. The last site, by the USGS, (8) features excerpts from Myrna Hall and Daniel Fagre's 2003 research paper in BioScience. Visitors can discover the melt rate and spatial distributions of glaciers for two possible future climate situations. Providing an amazing animation, users will be amazed by the changes predicted by the model.

Enright, Rachel

149

Inventory of Glaciers in the North Cascades, Washington  

USGS Publications Warehouse

Perennial bodies of ice in the North Cascades having areas of at least 0.1 km2 (square kilometer) are tabulated and classified. The inventory, a contribution to the International Hydrological Decade, includes 756 glaciers, covering 267 km2, about half of the glacier area in the United States south of Alaska. Listings include each glacier's location, drainage basin, area, length, orientation, altitude, and classification as to form, source, surface, nature of terminus, and activity. These glaciers contribute annually about 800 million cubic meters of water to streamflow in the State of Washington.

Post, Austin; Richardson, Don; Tangborn, Wendell V.; Rosselot, F. L.

1971-01-01

150

Tropical Glaciers  

Microsoft Academic Search

The term ``tropical glacier'' calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how

Andrew Fountain

2002-01-01

151

Late Pleistocene Glaciation of the Southwestern Ahklun Mountains, Alaska  

E-print Network

Late Pleistocene Glaciation of the Southwestern Ahklun Mountains, Alaska Jason P. Briner1 deposits in the southwestern Ahklun Mountains, south- western Alaska, record two major glacier advances to advances elsewhere in western Alaska, but in contrast to the isotopic signal in the deep-sea record

Briner, Jason P.

152

Alaska Science Center: Biological Science Office  

NSDL National Science Digital Library

This United States Geological Survey (USGS) site provides summaries of biology projects in Alaska. Topics include ecosystems and habitats (Valdez oil spill, Glacier Bay National Park, coastal habitats, terrestrial habitats), birds, mammals (brown bears, caribou, polar bears, sea otters, wolves, and walrus), fisheries, as well as current and emerging issues in Alaska. This branch of the USGS is responsible for research of trust lands and waters in Alaska, and providing scientific information essential for resource management decisions.

153

Is Glacier wastage continuing to accelerate in NW North America?  

NASA Astrophysics Data System (ADS)

Laser altimetry elevation profiles of glaciers have been collected in Alaska, Yukon, and NW British Columbia (herein NW North America) by the University of Alaska Geophysical Institute beginning in 1993. Since that time, over 27,000 km of glacier profiles have been acquired. Nearly 200 glaciers throughout NW North America have been measured, many of them multiple times. All of the largest glaciers in NW North America have been profiled, including at least some representative glaciers from every major icefield in NW North America. This dataset includes a broad range of glacier sizes distributed across the region. Several glacier and icefield regions within Alaska and adjoining Canada have been profiled multiple times at this stage, and data from these regions are being analyzed for changes in the rates of thinning. Specific regions include Harding Icefield, the central Alaska Range, Yakutat Icefield, Glacier Bay, and Juneau Icefield. Hypsometry appears to be a significant factor, with those areas that have relatively low elevation accumulation areas showing signs of accelerated thinning, particularly the Harding and Yakutat Icefields. Other areas that have relatively high elevation accumulation areas appear to have steady rates of thinning, such as within the St. Elias Mountains. The profile ground tracks have all been converted into files that can be displayed in Google Earth, and are available for easy download from our webpage (http://fairweather.gps.alaska.edu/chris). In order to allow for open distribution to the community, all of the profile elevation data are being reprocessed into a common reference frame (ITRF), which not only allows for accurate inter-comparison of repeated laser altimetry data but also will allow for comparison with other elevation datasets, such as digital elevation models derived from satellite remote sensing.

Larsen, C. F.; Echelmeyer, K. A.; Harrison, W. D.; Arendt, A. A.; Lingle, C. S.

2008-12-01

154

Northeast Glaciers  

NSDL National Science Digital Library

This reference guide provides a brief review of glaciers in the Northeastern U.S. It then focuses on the glacial affects in four areas, an inland basin near the Finger Lakes area of New York, the Appalachian/Piedmont through New York and Pennsylvania, the coastal plain and the exotic terrane of New England. Topics covered include glacial scouring, glacial deposits and periglacial features.

2003-01-01

155

Glacier Photograph Collection  

NSDL National Science Digital Library

These repeat photographs (also known as glacier pairs) are of special interest to scientists studying glaciers and climate. Glacier photographs taken from the same vantage point, but years apart in time, can reveal dramatic changes in the glacier terminus position, as a glacier either advances or retreats. Most glaciers around the world have retreated at unprecedented rates over the last century. These pairs of photographs can provide striking visual evidence of climate change.

Center, National S.

156

Comparative Analysis of Glaciers in the Chugach-St.-Elias Mountains  

NASA Astrophysics Data System (ADS)

The phenomenon of glacier surges has to date been studied for only relatively few examples. 136 of the 204 surge-type glaciers in North America listed by Post (1969) are located in the St. Elias Mountains. In August 2003 we increased our data inventory of observations on surge glaciers by collecting material for 19 glaciers in the Glacier Bay area and neighboring regions in the eastern St. Elias Mountains, including 6 surge-type glaciers (Carroll, Rendu, Ferris, Grand Pacific, Margerie, and Johns Hopkins Glaciers). Analyses utilize digital video and photographic data, satellite data and GPS data. Geostatistical classification parameters and algebraic parameters characteristic of surge motions are derived for selected glaciers. During the 1993-1995 surge of Bering Glacier the entire surface of Alaska's longest glacier was crevassed and could be segmented into several dynamic provinces, where patterns changed as the surge progressed and the affected areas expanded downglacier and upglacier, finally affecting the Bagley Ice Field. The middle moraine of Grand Pacific and Ferris Glaciers is pushed over to the Grand Pacific side, caused by a recent surge of the heavily crevassed Ferris Glacier. The front of Johns Hopkins Glacier advances, as its lower reaches are affected by a surge. The surge history of Bering Glacier goes back to the Holocene, whereas Carroll and Rendu Glaciers have surged only 3-4 times. These observations pose questions on the possible relationship between surge dynamics and climatic changes.

Herzfeld, U. C.; Mayer, H.

2003-12-01

157

Protolith relations of the Gravina belt and Yukon-Tanana terrane in central southeastern Alaska  

SciTech Connect

Metamorphic rocks west of the Coast Mountains batholith in central southeastern Alaska are divided into the Gravina belt, Taku terrane, and newly defined Ruth assemblage. The Ruth assemblage comprises metapelite, quartzose metaclastic strata, quartzite, marble, felsic metatuff, mafic metavolcanic rocks, and orthogneiss. Depositional and emplacement ages of 367 {plus minus} 10 Ma and 345 {plus minus} 13 Ma inferred from discordant U/Pb zircon analyses on felsic metatuff and granodioritic orthogneiss, respectively, require that at least portions of the Ruth assemblage be Late Devonian and early Mississippian in age. The assemblage is similar in age and protolith to, and thus correlated with, the Yukon-Tanana terrane. The Gravina belt is characterized by upper Jurassic and lower Cretaceous mafic volcanic rocks and tuffaceous turbiditic clastic strata that unconformably overlie the Alexander terrane. Metamorphic rocks that structurally underlie the Taku terrane and Rugh assemblage are included in this assemblage. Trace element geochemistry and the abundance of pyroclastic flows associated with tuffaceous turbidites suggest that the Gravina belt evolved in an intra-arc basinal setting. In central southeastern Alaska, the mid-Cretaceous structure that currently separates the Ruth assemblage (Yukon-Tanana correlative) from the Gravina belt marks the fundamental boundary between the Alexander-Wrangellia terrane and inboard Yukon-Tanana and Stikine terranes.

McClelland, W.C. (Univ. of California, Santa Barbara (United States)); Gehrels, G.E.; Patchett, P.J. (Univ. of Arizona, Tucson (United States)); Samson, S.D. (Syracuse Univ., NY (United States))

1992-01-01

158

Southeastern Alaska tectonostratigraphic terranes revisited  

SciTech Connect

The presence of only three major tectonostratigraphic terranes (TSTs) in southeastern Alaska and northwestern British Columbia (Chugach, Wrangell, and Alexander) is indicated by critical analysis of available age, stratigraphic, and structural data. A possible fourth TST (Stikine) is probably an equivalent of part or all of the Alexander. The Yakutat block belongs to the Chugach TST, and both are closely linked to the Wrangell and Alexander(-Stikine) TSTs; the Gravina TST is an overlap assemblage. THe Alexander(-Stikine) TSTs is subdivided on the basis of age and facies. The subterranes within it share common substrates and represent large-scale facies changes in a long-lived island-arc environment. The Taku TSTs is the metamorphic equivalent of the upper part (Permian and Upper Triassic) of the Alexander(-Stikine) TSTs with some fossil evidence preserved that indicates the age of protoliths. Similarly, the Tracy Arm TST is the metamorphic equivalent of (1) the lower (Ordovician to Carboniferous) Alexander TST without any such fossil evidence and (2) the upper (Permian to Triassic) Alexander(-Stikine) with some newly discovered fossil evidence. Evidence for the ages of juxtaposition of the TSTs is limited. The Chugach TST deformed against the Wrangell and Alexander TSTs in late Cretaceous. Gravina rocks were deformed at the time and also earlier. The Wrangell TST was stitched to the Alexander(-Stikine) by middle Cretaceous plutons but may have arrived before its Late Jurassic plutons were emplaced. The Alexander(-Stikine) and Cache Creek TSTs were juxtaposed before Late Triassic.

Brew, D.A.; Ford, A.B.

1985-04-01

159

Assessing streamflow sensitivity to variations in glacier mass balance  

NASA Astrophysics Data System (ADS)

We examine long-term streamflow and mass balance data from two Alaskan glaciers located in climatically distinct basins: Gulkana Glacier, a continental glacier located in the Alaska Range, and Wolverine Glacier, a maritime glacier located in the Kenai Mountains. Both glaciers lost mass, primarily as a result of summer warming, and both basins exhibit increasing streamflow over the 1966-2011 study interval. We estimated total glacier runoff via summer mass balance, and separated the fraction related to annual mass imbalances. In both climates, the fraction of streamflow related to annual mass balance averages less than 20%, substantially smaller than the fraction related to total summer mass loss (>50%), which occurs even in years of glacier growth. The streamflow fraction related to changes in annual mass balance has increased only in the continental environment. In the maritime climate, where deep winter snowpacks and frequent rain events drive consistently high runoff, the magnitude of this streamflow fraction is small and highly variable, precluding detection of any existing trend. Changes in streamflow related to annual balance are often masked by interannual variability of maritime glacier mass balance, such that predicted scenarios of continued glacier recession are more likely to impact the quality and timing of runoff than the total basin water yield.

Oneel, S.; Hood, E. W.; Arendt, A. A.; Sass, L. C.; March, R. S.

2013-12-01

160

ISEA (International geodetic project in SouthEastern Alaska) for Rapid Uplifting Caused by Glacial Retreat: (2) Establishment of Continuous GPS Sites (CGPS)  

Microsoft Academic Search

Rapid disintegration and thinning of Glacier Bay's tidewater glaciers and ice fields followed the end of the Little Ice Age. Geodetic studies by Larsen et al. have quantified average rates of post-glacial isostatic rebound (PGR) in the vicinity of Glacier Bay in Southeast Alaska. PGR continues today with maximum uplift rates of 30 mm\\/yr in Glacier Bay's upper West Arm

A. M. Kaufman; J. T. Freymueller; S. Miura; R. S. Cross; T. Sato; W. Sun; H. Fujimoto

2006-01-01

161

Online Glacier Photograph Database  

NSDL National Science Digital Library

This image collection from the National Snow and Ice Data Center features 14 pairs of Alaskan glacier photographs. Each photographic pair consists of a late-19th or early-20th century photograph and a 21st century photograph taken from the same location. The comparative photographs clearly show substantial changes in glacier position and size and document significant landscape evolution and vegetative succession. The site also provides links to pairs of photographs of glaciers in Switzerland, a repeat photography project at Glacier National Park by the USGS, a glacier database which features satellite images and maps, and further information on glaciers.

The National Snow and Ice Data Center (NSIDC)

162

Response of glaciers in northwestern North America to future climate change: an atmosphere/glacier hierarchical modeling approach  

NASA Astrophysics Data System (ADS)

The response of glaciers to changing climate is explored with an atmosphere/glacier hierarchical modeling approach, in which global simulations are downscaled with an Arctic MM5 regional model which provides temperature and precipitation inputs to a glacier mass-balance model. The mass balances of Hubbard and Bering Glaciers, south-central Alaska, USA, are simulated for October 1994-September 2004. The comparisons of the mass-balance simulations using dynamically-downscaled vs observed temperature and precipitation data are in reasonably good agreement, when calibration is used to minimize systematic biases in the MM5 downscalings. The responses of the Hubbard (a large tidewater glacier) and Bering (a large surge-type glacier) mass balances to the future climate scenario CCSM3 A1B, a 'middle-of-the-road' future climate in which fossil and non-fossil fuels are assumed to be used in balance, are also investigated for the period October 2010-September 2018. Hubbard and Bering Glaciers are projected to have increased accumulation, particularly on the upper glaciers, and greater ablation, particularly on the lower glaciers. The annual net balance for the entire Bering Glacier is projected to be significantly more negative, on average (-2.0 m a-1 w.e., compared to -1.3 m a-1 w.e. during the hindcast), and for the entire Hubbard Glacier somewhat less positive (0.3 m a-1 w.e. compared to 0.4 m a-1 w.e. during the hindcast). The Hubbard Glacier mass balances include an estimated iceberg calving flux of 6.5 km3 a-1, which is assumed to remain constant.

Zhang, Jing; Bhatt, Uma S.; Tangborn, Wendell V.; Lingle, Craig S.

2007-10-01

163

Glaciers: A water resource  

USGS Publications Warehouse

Most Americans have never seen a glacier, and most would say that glaciers are rare features found only in inaccessible, isolated wilderness mountains. Are they really so rare? Or are they really potentially important sources of water supply?

Meier, Mark; Post, Austin

1995-01-01

164

Worldwide widespread decadal-scale decrease of glacier speed revealed using repeat optical satellite images  

NASA Astrophysics Data System (ADS)

Matching of repeat optical satellite images to derive glacier velocities is an approach that is much used within glaciology. Lately, focus has been put into developing, improving, automating and comparing different image matching methods. This makes it now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have decreased their speeds over the last decades, Pamir by 43 % in average per decade, Caucasus by 8 % in average per decade, Penny Ice Cap by 25 % in average per decade, Alaska Range by 11 % in average per decade and Patagonia by 20 % in average per decade. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area.

Heid, T.; Kb, A.

2011-10-01

165

Widespread decadal-scale decrease of glacier speed revealed using repeat optical satellite images  

NASA Astrophysics Data System (ADS)

Matching of repeat optical satellite images to derive glacier velocities is an approach that is much used within glaciology. Lately, focus has been put into developing, improving, automating and comparing different image matching methods. This makes it now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have decreased their speeds over the last decades, Pamir by 43 % in average per decade, Caucasus by 8 % in average per decade, Penny Ice Cap by 25 % in average per decade, Alaska Range by 11 % in average per decade and Patagonia by 20 % in average per decade. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area.

Heid, T.; Kb, A.

2012-04-01

166

A REVIEW OF LICHENOMETRIC DATING OF GLACIAL MORAINES IN ALASKA The authors 2010  

E-print Network

OF GLACIAL MORAINES IN ALASKA BY GREGORY C. WILES1, DAVID J. BARCLAY2 AND NICOLÁS E.YOUNG3 1Department.C., Barclay, D.J. and Young, N.E., 2010: A review of li- chenometric dating of glacial moraines in Alaska 2000 years (Barclay et al. 2009). However, many other glacier forefields in Alaska are beyond

Barclay, David J.

167

GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology  

NASA Astrophysics Data System (ADS)

Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native and minority students into the geosciences. View them as they explore the permafrost tunnel in Fairbanks, sand dunes in Anchorage, Portage Glacier, Matanuska-Susitna Glacier, and the Trans-Alaska pipeline damage from the earthquake of 2002.

Wartes, D.

2012-12-01

168

World Glacier Inventory  

NSDL National Science Digital Library

The National Snow and Ice Data Center (NSIDC) provides the World Glacier Inventory data, which was collected by the World Glacier Monitoring Service. This inventory contains geographic location, area, length, orientation, elevation, and classification of morphological type and moraines of more than 67,000 glaciers throughout the world. The data may be downloaded via FTP or through form-based queries.

169

Climatic Controls on the Distribution of Surging Glaciers  

NASA Astrophysics Data System (ADS)

Surge-type glaciers are scattered in a non-random fashion, gathered in clusters in some glaciated regions. One group of clusters forms an Arctic and Sub-Arctic 'crescent', spanning from Alaska-Yukon, through Arctic Canada, West and East Greenland, Iceland, Svalbard and Novaya Zemlya. Another cluster occurs in western High Asia, including the Karakoram Mountains. Although several studies have assessed the influence of environmental controls on surging, so far none has provided a satisfactory explanation for the geographical location of these clusters. The distribution of such glaciers undoubtedly holds the keys of a better understanding on the controls on surging behaviour. For this study, two glacier populations are considered. First, a global inventory of glacier surges has been compiled, based on published observations, field reports and remote sensing studies. This digital database is structured in three tables, respectively providing information on the location and geometry of each surge-type glacier, surge dates and magnitude, and methodology employed at the time of observation. This global dataset is compared to the population of "non-surge-type glaciers" based on the Randolph Glacier Inventory version 2.0 excluding the inventoried surging glaciers. In both populations, glaciers are classified depending on their geometry and thermal regime. Downscaled climatic datasets are used to identify climatic envelopes associated with clusters of surging glaciers. We identified which environments are most prone to be associated to glacier surging, and examined the influence of these parameters on the surge cycle duration and character. These results emphasize the importance of external controls on surging (as against individual surges), and promote the need to study this behaviour in the frame of an energy-balance budget.

Sevestre, H.; Benn, D.

2012-12-01

170

Worthington Glacier Project  

NSDL National Science Digital Library

Funded by the National Science Foundation (NSF), the Worthington Glacier Project is a collaboration between researchers at the University of Wyoming and the University of Colorado. The objective of this project is to understand glacier flow dynamics "by comparing detailed measurements of glacier motion with numerical models for glacier flow." Summaries and diagrams are provided of the discussed topics: Borehole Video Observations, Radio-Echo Sounding, Crevassing, Surface Flow Field, Englacial Flow Field, 3-D Flow Field, and In-Situ Stress. Images of the Worthington Glacier fieldwork, future research, and publications are also available at the site.

171

Observations and analysis of self-similar branching topology in glacier networks  

USGS Publications Warehouse

Glaciers, like rivers, have a branching structure which can be characterized by topological trees or networks. Probability distributions of various topological quantities in the networks are shown to satisfy the criterion for self-similarity, a symmetry structure which might be used to simplify future models of glacier dynamics. Two analytical methods of describing river networks, Shreve's random topology model and deterministic self-similar trees, are applied to the six glaciers of south central Alaska studied in this analysis. Self-similar trees capture the topological behavior observed for all of the glaciers, and most of the networks are also reasonably approximated by Shreve's theory. Copyright 1996 by the American Geophysical Union.

Bahr, D. B.; Peckham, S. D.

1996-01-01

172

Exploring similarities between tidewater and ice sheet outlet glaciers  

NASA Astrophysics Data System (ADS)

Tidewater and outlet glaciers pose a serious challenge to glaciologists because of their complicated behavior. Yet, they exhibit some of the largest changes observed in glacial systems, often defying regional trends of nearby land-terminating ice masses. For example the Chugach Range of Alaska, while generally losing ice mass, contains one growing tidewater glacier. Also, about 50% of the current mass loss there is due to the rapidly retreating Columbia Glacier. In Glacier Bay, several tidewater glaciers are advancing while land terminating and lake calving glaciers are rapidly wasting away. We will explore some of the common features found between temperate tidewater glaciers and the cold or polythermal outlet glaciers of the big ice sheets. These commonalities include patterns of ice draw-down, particularly far upstream, and acceleration of ice flow during the retreat phase that propagates much farther upstream than suggested by effects of longitudinal coupling. Rapid retreats are initiated at the glacier terminus and we suggest that they are linked to warming ocean temperatures and glacial freshwater runoff. We will also outline the modeling challenges for the upstream propagation of a drawdown event. These require a full treatment of the three dimensional Stokes equations. However, it is not clear how to treat the basal boundary condition and the possibility of temporal changes at the ice base. A particular challenge for outlet glacier systems is posed by free surfaces, such as the grounding line or the cold-temperate-surface (CTS). One striking feature of tidewater glaciers is their evolution through a tidewater glacier cycle of rapid retreat and slow advance as proposed by Austin Post. This cycle is well documented for Alaska's tidewater systems, and we suggest that the possibility of such a cycle should be explored for ice sheet outlet glaciers. The often asynchronous behavior of these systems poses a challenge for the assessment of regional or global ice volume changes. Similarly, ice sheet mass balance can be dominated by a few rapidly changing outlet systems. Such systems must be carefully examined for their disproportionate effects on volume change and sea level studies.

Truffer, M.; Motyka, R.; Echelmeyer, K.

2005-12-01

173

Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds  

NASA Astrophysics Data System (ADS)

By matching of repeat optical satellite images it is now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have over the last decades decreased their velocity at an average rate per decade of: 43 % in the Pamir, 8 % in the Caucasus, 25 % on Penny Ice Cap, 11 % in the Alaska Range and 20 % in Patagonia. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area. Therefore the calculated average speed change is not representative for this area.

Heid, T.; Kb, A.

2012-04-01

174

Tracing glacier wastage in the Northern Tien Shan (Kyrgyzstan/Central Asia) over the last 40 years  

E-print Network

Tracing glacier wastage in the Northern Tien Shan (Kyrgyzstan/Central Asia) over the last 40 years in semiarid parts of Central Asia, since river flow is characterized by major runoff in spring and summer: Alaska ­ including the Coast Range ­ and Central Asia (Arendt et al. 2002). While the glaciers

Richner, Heinz

175

Meltwater Induced Glacier Landslides - Waxell Ridge, AK  

NASA Astrophysics Data System (ADS)

Within the past year, two large landslides have originated from south-facing peaks on Waxell Ridge, the bedrock massif that separates the Bagley Icefield from Bering Glacier, Alaska. Each involves a near-summit hanging glacier. In each instance, the presence of meltwater appears to be a triggering factor. The largest of the two, which occurred on September 14, 2005, originated from just below the summit of 3,236-m-high Mt Steller and landed on the surface of Bering Glacier, nearly 2,500 m below. The Alaska Volcano Observatory estimated the volume of this landslide, which consisted of rock, glacier ice, and snow, to be approximately 50 million cubic meters. Unlike most large Alaskan glacier-related landslides, this one was not triggered by an earthquake. However, the energy that the slide released was intense enough to generate a seismic signal that was recorded around the world with magnitudes of 3.8 to greater than 5. The slide extended ~10 km down the Bering Glacier from the point of impact. Much of the surface on which the slide occurred had a slope >50 degrees. The second landslide, located ~6 km to the west of Mt Steller, originated from a secondary summit of a 2,500- m-high unnamed peak. The date of its occurrence is unknown, but its toe sits on winter 2005-2006 snow. Both slides have been examined from helicopter and fixed-wing overflights, and with a variety of vertical and oblique aerial photographs. Oblique aerial photographs obtained of the Mt Steller slide on September 15, 2005 depict a 10-15-m-diameter moulin or englacial stream channel in the truncated 30-m-thick glacier ice that comprises the east wall of the landslide scarp. The presence of this unusual glacial-hydrologic feature at an elevation above 3,000 m, suggests that a large volume of water had recently been flowing on Mt Steller's east ridge and that the water might have had a role in triggering the landslide. Similarly, there is evidence of an englacial channel on the west flank of the summit scarp of the second slide. The presence of large volumes of meltwater close to the crest of Waxell Ridge raises questions about regional climate change and its role in the future generation of landslides at higher elevations. This presentation summarizes the findings produced from the analysis of aerial photography and field observations made between September 2005 and September 2006.

Molnia, B. F.; Angeli, K. M.; Bratton, D. A.; Keeler, R. H.; Noyles, C.

2006-12-01

176

Geology Fieldnotes: Kenai Fjords National Park, Alaska  

NSDL National Science Digital Library

This National Park Service (NPS) website examines the geology of Kenai Fjords National Park in Alaska. It highlights the glacier-carved valleys, 1964 Alaskan earthquake, nunataks (peaks), and wildlife of the park. There are links to visitor information, maps, and additional resources.

177

Afghanistan Glacier Diminution  

NASA Astrophysics Data System (ADS)

Glaciers in Afghanistan represent a late summer - early fall source of melt water for late season crop irrigation in a chronically drought-torn region. Precise river discharge figures associated with glacierized drainage basins are generally unavailable because of the destruction of hydrological gauging stations built in pre-war times although historic discharge data and prior (1960s) mapped glacier regions offer some analytical possibilities. The best satellite data sets for glacier-change detection are declassified Cornona and Keyhole satellite data sets, standard Landsat sources, and new ASTER images assessed in our GLIMS (Global Land Ice Measurements from Space) Regional Center for Southwest Asia (Afghanistan and Pakistan). The new hyperspectral remote sensing survey of Afghanistan completed by the US Geological Survey and the Afghanistan Ministry of Mines offers potential for future detailed assessments. Long-term climate change in southwest Asia has decreased precipitation for millennia so that glaciers, rivers and lakes have all declined from prehistoric and historic highs. As many glaciers declined in ice volume, they increased in debris cover until they were entirely debris-covered or became rock glaciers, and the ice was protected thereby from direct solar radiation, to presumably reduce ablation rates. We have made a preliminary assessment of glacier location and extent for the country, with selected, more-detailed, higher-resolution studies underway. In the Great Pamir of the Wakhan Corridor where the largest glaciers occur, we assessed fluctuations of a randomly selected 30 glaciers from 1976 to 2003. Results indicate that 28 glacier-terminus positions have retreated, and the largest average retreat rate was 36 m/yr. High albedo, non-vegetated glacier forefields formed prior to 1976, and geomorphological evidence shows apparent glacier-surface downwasting after 1976. Climatic conditions and glacier retreat have resulted in disconnection of tributary glaciers to their main trunk, the formation of high-altitude lakes, and an increased frequency and size of proglacial lakes that are, however, genrally unavailable for irrigation sources. Similar conditions of glacier diminution have occurred in almost all other high altitude parts of the country. Generally decreased precipitation in all seasons, coupled with decreased glacier storage of potential melt-water, augers continued severe problems for beleaguered Afghanistan agriculture, along with concomitant social problems as a result.

Shroder, J. F.; Bishop, M.; Haritashya, U.; Olsenholler, J.

2008-12-01

178

All about glaciers  

NSDL National Science Digital Library

The National Snow and Ice Data Center created this website to educate everyone, from grade school students to glaciologists, about glaciers. At the Data and Science link, researchers can learn about glaciological organizations, publications, and research projects as well as how to obtain glacial data. Students and educators can find a glaciology glossary, answers to many of their questions, and amazing images of glaciers at the General Information link. The website also provides a detailed portrayal of the life of glaciers.

179

Glaciers: Teacher's Guide  

NSDL National Science Digital Library

The Glaciers Teacher's Guide Web site was created by Arizona educator Patti Greenleaf. The site provides everything needed to complete the online activity, which is geared to students in grades 4 to 5. Objectives of the lesson include having students define what a glacier is, correctly use some terminology related to glaciers, describe how they form and move, and finally be able to tell where glaciers are located today. These objectives are accomplished by having the students read the provided text as well as looking at various photographs and movies. The structure and material of the site are its highlight, both of which are simple but effective.

Nichols, Marilyn.

1969-12-31

180

Glaciers and Icebergs  

NSDL National Science Digital Library

This lesson plan provides instruction to teachers for creating a glacier in the classroom to demonstrate how glaciation affects landforms. Learning objectives include student understanding that as glaciers move, they create a variety of patterns on landforms by a process called glacial scraping, that the scraping patterns left by a glacier depend on how the glacier moved over the landform, and that the evidence of glaciation left by glacial scraping provides clues to the climate in a particular place over a long period of time. The site also includes relevant vocabulary words with sound recordings for pronunciation. There are ideas presented for more advanced activities, discussion questions, and additional sources to consult.

Weisel, Frank

181

Dynamic behavior of the Bering Glacier-Bagley icefield system during a surge, and other measurements of Alaskan glaciers with ERS SAR imagery  

NASA Technical Reports Server (NTRS)

ERS-1 synthetic aperture radar (SAR) imagery was employed for the measurement of the dynamics of the Bagley icefield during a major surge in 1993-1994, the measurement of ice velocities on the Malaspina piedmont glacier during a quiescent phase between surges, and for mapping the snow lines and the position of the terminus of Nabesna glacier on Mount Wrangell (a 4317 m andesitic shield volcano) in the heavily glacierized Saint Elias and Wrangell Mountains of Alaska. An overview and summary of results is given. The methods used include interferometry, cross-correlation of sequential images, and digitization of boundaries using terrain-corrected SAR imagery.

Lingle, Craig S.; Fatland, Dennis R.; Voronina, Vera A.; Ahlnaes, Kristina; Troshina, Elena N.

1997-01-01

182

Glaciers and Rocks  

NSDL National Science Digital Library

This formative assessment item uncovers students' ideas about glacial erosion and how glaciers transport rocks and other sediment. The assessment is aligned with the National Science Education Standards. It contains instructional suggestions as well as links to other helpful resources dealing with glaciers and glacial movement.

Fries-Gaither, Jessica

183

Regional projections of glacier volume and runoff in response to twenty-first century climate scenarios (Invited)  

NASA Astrophysics Data System (ADS)

Changes in mass contained by mountain glaciers and ice caps can modify the Earth's hydrological cycle on multiple scales. On a global scale, the mass loss from glaciers contributes to sea level rise. On regional and local scales, glacier melt-water is an important contributor to and modulator of river flow. In this study we use an elevation-dependent glacier mass balance model to project annual volume changes and monthly runoff from all mountain glaciers and ice caps in the world (excluding those in the Antarctic periphery) for the 21st century forced by temperature and precipitation scenarios from 14 global climate models. The largest contributors to projected total volume loss are the glaciers in the Canadian and Russian Arctic, Alaska and glaciers peripheral to Greenland ice sheet. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 75% of their volume by 2100. The magnitude and sign of trends in annual runoff totals differ considerably among regions depending on the balance between enhanced melt and the reduction of the glacier reservoir by glacier retreat and shrinkage. Most regions show strong declines in glacier runoff indicating that the effect of glacier shrinkage is more dominant than increased melting rates. Some high-latitude regions (Arctic Canada North, Russian Arctic and Greenland) exhibit increases in runoff totals. Iceland and Svalbard show an increase in runoff followed by a multi-decadal decrease in annual runoff.

Radic, V.; Bliss, A. K.; Hock, R.

2013-12-01

184

Glacier Peak, Washington  

NSDL National Science Digital Library

This site features links to all aspects of Glacier Peak, a volcano in the Cascade Range, including its geographic setting, and geologic and eruptive history. Glacier Peak is not prominently visible from any major metropolitan centers, and thus its attractions, as well as its hazards, tend to be overlooked. Yet, Glacier Peak has produced larger and more explosive eruptions than any other Washington volcano except Mount St. Helens. Glacier Peak was not known by settlers to be a volcano until the 1850s, when Native Americans mentioned it to naturalist George Gibbs. Not until 1898 did Glacier Peak appear on a published map under its current name. Links labeled 'Special Items of Interest' include information about volcanic highlights and features, and points of interest. Other links lead to maps, graphics, images, publications, reports, and other items of interest involving this volcano and others.

185

Dendrochronology to the Beat of a Different Drummer: Lakes Dammed by a Tidewater Glacier Out of Phase with Climate  

NASA Astrophysics Data System (ADS)

Glacier-dammed lakes typically form during glacier advance or retreat that is in phase with climate change. Most glacier-dammed lakes that have formed in the past century are located in closed basins created by glacier retreat and downwasting. However, tidewater glaciers can be relatively insensitive to climate and can advance when adjacent land-based glaciers are in retreat. The regimen of tidewater glaciers is strongly controlled by the nature of the terminus. When a morainal shoal or fjord constriction limits mass loss due to calving, the glacier may remain stable or advance even in a warming climate. However, a small perturbation in climate can cause the terminus to retreat off a shoal or beyond a constriction into deeper, open water. Once this happens, more mass is lost through calving than is replenished and the glacier may catastrophically retreat. Because many tidewater glaciers are large, this cycle can be several hundred years in length, thereby lagging climatic perturbations that affect other glaciers. Many tidewater glaciers have dammed lakes as they advanced over the past century. Brady Glacier, at the head of Taylor Bay in southeast Alaska, advanced through most of the 20th century. When George Vancouver's party mapped Taylor Bay in 1794, the glacier terminus was a steep calving front. In 1880 John Muir visited the glacier and commented that it was advancing onto an outwash plain that it had built. It continued to advance until the 1960s and has remained at almost the same position since then, despite thinning many tens of meters. As Brady Glacier advanced, it buried trees along the walls of the fjord and impounded large lakes in tributary valleys. At least two of these lakes formed on opposite sides of the glacier in areas occupied by mature forest. We collected incremental cores and discs of trees killed by overriding ice and rising lake waters in order to establish a dendrochronological history of the last glacier advance and the filling of the lakes. The samples are from rooted subfossil trees located at different elevations within the lake basins and below the previous limit of the glacier. The elevation and location of each tree base were determined with a differential GPS. The results show that the Brady was advancing through the area in the early 1800s and that it killed trees along the valley margins at progressively higher levels through time. The oldest and lowest trees that were sampled in the Spur Lake basin on the east side of the glacier were killed in the early 1800s. The lake rose tens of meters over a few decades. The oldest and lowest trees sampled in the North Trick Lake basin on the west side of the glacier were killed in the early 1830s. Like Spur Lake, North Trick Lake increased in depth over a few decades. Many of these trees in both Spur and North Trick lakes were over 300 years old, which indicates that the glacier had been less extensive than today for at least that long. Just to the east, the tidewater glacier in Glacier Bay had advanced about a century earlier than Brady Glacier, underscoring non-climatic controls on glacier activity in the area. As Glacier Bay ice retreated and presumably ice-dammed lakes drained in Glacier Bay, Brady Glacier advanced, damming lakes at its margins. The lakes impounded by Brady Glacier and frequent jkulhlaups derived from them affect glacier motion, mass balance, and glacier stability. The lakes extend beneath portions of the glacier, and significant ice mass is lost to the lakes by calving. Jkulhlaups carve channels into the base of Brady Glacier and could erode the outwash plain at the glacier terminus. Both processes could initiate catastrophic retreat of the glacier.

Capps, D.; Wiles, G.; Clague, J.

2009-04-01

186

Alaska Diabetes Alaska Diabetes  

E-print Network

The plan was based on the recommendations of Alaskans from village clinics, universities, community health centers, non-profit organizations, elementary, middle, and high schools, state and municipal agencies, faithbased institutions, public health agencies, hospitals, health professional organizations, public and private health insurance agencies, peer review organizations, and Alaskans with diabetes. The Alaska Diabetes Strategic Plan establishes a unified course of action to reduce the burden (i.e., premature mortality, morbidity, and economic costs) of this disease among the 18,700 adult Alaskans already diagnosed with diabetes. The plan also addresses the prevention of diabetes in the general population through education, policy and lifestyle modifications. The rapidly increasing prevalence of this disease in Alaska calls for creative and cost-effective strategies. Implementing these strategies calls for action and cooperation by multiple partners statewide. Putting this plan into action presents a challenging opportunity to influence the health of current and future Alaskans. It is

Barbara Stillwater Rn

2005-01-01

187

Alaska volcanoes guidebook for teachers  

USGS Publications Warehouse

Alaskas volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaskas volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 612. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at the beginning of each activity. A complete explanation, including the format of the Alaska State Science Standards and Grade Level Expectations, is available at the beginning of each grade link at http://www.eed.state.ak.us/tls/assessment/GLEHome.html.

Adleman, Jennifer N.

2011-01-01

188

On the accuracy of glacier outlines derived from satellite data  

NASA Astrophysics Data System (ADS)

The determination of the accuracy of glacier outlines as mapped from satellite data is a mandatory task, in particular when change assessment is performed. However, this is often not correctly done as a direct comparison with a reference data set can give misleading results. Though it is widely accepted that glacier outlines as derived from a higher-resolution data set (e.g. aerial photography) can be used to determine the accuracy of outlines derived from a lower resolution data set (e.g. Landsat TM), this is not generally true and several details have to be considered. At first, changing glacier extents require to compare images acquired in the same year and rapidly changing snow conditions require to use images from the same week or at least with identical snow conditions (i.e. no snow outside of glaciers). Secondly, differences in interpretation result from the higher-spatial resolution itself and the missing shortwave infrared band in high-resolution data. In particular, the determination of the glacier boundary on panchromatic imagery can locally be impossible (when the ice and the surrounding rock have the same reflectance). Thirdly, for natural objects like glaciers the change of the resolution alone results in a change of the area covered by the respective outline. Finally, the required manual correction of debris-covered glacier parts is done differently by different analysts and also by the same analyst when digitized several times. To overcome these challenges and provide an accuracy assessment for a larger data set, we will perform a combined round robin and validation experiment in the framework of the ESA project Glaciers_cci. This will include the manual and automated digitization of glacier outlines on high and low resolution satellite data (e.g. Quickbird / Ikonos vs. Landsat TM / ETM+) in different parts of the world (Alaska, Alps, Himalaya), as well as multiple digitizations of the same set of glaciers (with and without debris cover) by different and the same analysts. First results indicate that the accuracy of the glacier outlines (clean ice) as derived from automated techniques (TM3/TM5 band ratio) is similar to the standard deviation resulting from multiple digitizing experiments. Regions with low contrast in high-resolution imagery show a large variability in interpretation by different analysts. For an internal accuracy assessment it is recommended to digitize a couple of debris-covered glaciers several times and provide the mean of the standard deviations as the accuracy. An overlay of the digitized outlines is most helpful to identify the problematic regions.

Paul, F.

2012-04-01

189

Effect of melting glaciers on the earth's rotation and gravitational field - 1965-1984  

NASA Astrophysics Data System (ADS)

It is shown that, by averaging global mass balance data for small glaciers, the similarities and differences in mass balance between the regional records suggest meteorological connections between disparate systems. Recent data indicate that the pace of melting has slowed from that in the early part of the 20th century, especially for glaciers on the west coast of North America. The greatest contribution to the secular trend in melt-water production of the glaciers examined is from Syalbard, and the greatest year-to-year variability is from the coast ranges of Alaska and British Columbia.

Trupin, Andrew S.; Meier, Mark F.; Wahr, John M.

1992-01-01

190

Mapping the Glaciers  

NSDL National Science Digital Library

This earth systems field lab begins with an in-class guided inquiry experience which uses Minnesota Geological Survey 3-D maps of the upper Midwest to determine where they believe glaciers may have had an influence. They will determine this by looking at landscapes and compiling their own evidence from the maps. They will also offer evidence for a hypothesis they generate which involves the direction that the glacier was traveling. The two-day lesson ends (after student presentations on their findings about glaciers) with a field investigation of one of our parking lot snow banks. Students will compare and contrast what they know about glaciers, with one of our parking lot snow banks, determining any similarities with how the landscape may have appeared during the Pleistocene.

191

Glossary of Glacier Terminology  

NSDL National Science Digital Library

This glossary provides definitions of terms necessary to understand the modern glacier environment. Terms are listed in alphabetical order and are accompanied by photographs. A separate section provides definitions of each type, accompanied by a photograph of an example.

192

The seismic signature of glacier outburst floods (Invited)  

NASA Astrophysics Data System (ADS)

Glacier outburst floods discharge large volumes of water from ice-dammed lakes, moraine-dammed lakes, subglacial cavities, or other reservoirs of liquid water. Breaching of moraine- or ice-dammed lakes represent significant hazards for communities adjacent to mountainous regions and a better understanding of the phenomena is warranted. Identifying a unique seismic signature may aid in development of an early warning system and provide the ability to 'remotely' detect when areas are undergoing flooding. We focus efforts on examining seismic data from two distinct regions in Alaska. First, we recorded an outburst flood from a glacier-dammed lake adjacent to Mendenhall Glacier near Juneau, using an array of short- and broadband-period seismometers installed in ice boreholes. We manually pick icequakes and then use the template waveforms in a waveform matching technique that allows us to identify missed events during very active or otherwise noisy time periods. Second, we observe glacier-related seismicity at the Alaska Volcano Observatory network installed on the flanks of Mt Spurr, a relatively active Aleutian arc volcano 130 km west of Anchorage. The activity is plausibly a repeat of a glacier outburst flood that occurred during 1992. During the 1992 flood, an outburst flood exited from beneath a glacier that flows down the southern slope of Mt. Spurr. In both cases, the observed seismicity indicates long, emergent periods (hours to days) of continuous high frequency energy (>10 Hz) at stations closest to the outlet, during vigorous flooding. Secondly, after flooding peaks, distinct short-duration (seconds) icequake events are observed, likely due to collapse of subglacial drainages. No distinct precursors appear in the seismic record, though this may be due to aseismic small-scale failures or ice floatation that lead to the breach.

Walter, J. I.; Amundson, J. M.; Peng, Z.; Prejean, S. G.; Morgan, P.

2013-12-01

193

Geological Field Trips: Glaciers  

NSDL National Science Digital Library

Students will utilize the Internet to take a virtual field trip to visit a glacier and discover what physical effects glaciers have on the land. They will also have the opportunity to virtually visit Vermont and trace the pictorial history of how a whale's fossils were found there. The site also contains a student worksheet for their visual field trip. The site also provides an explanation of the formation of fossils.

Zvanut, Patti

2000-03-23

194

Bruggen Glacier, Chile  

NASA Technical Reports Server (NTRS)

The Expedition 3 crew of the International Space Station caught a rare glimpse of the massive ice fields and glaciers of Patagonia early in the afternoon on September 25, 2001. This part of the South American coast sees frequent storms and is often obscured from view by cloud cover. Bruggen Glacier in southern Chile is the largest western outflow from the Southern Patagonian Ice Field and, unlike most glaciers worldwide, advanced significantly since 1945. From 1945 to 1976, Bruggen surged 5 km across the Eyre Fjord, reaching the western shore by 1962 and cutting off Lake Greve from the sea. The glacier continued advancing both northward and southward in the fjord to near its present position before stabilizing. The growth covers a distance of more than 10 km north to south, adding nearly 60 square km of ice. Additional information on this and other Patagonian glaciers may be found at the following link: USGS - Historic Fluctuations of Outlet Glaciers from the Patagonian Ice Fields. Image ISS003-E-6061 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

2002-01-01

195

Characteristics of sediment discharge in the subarctic Yukon River, Alaska  

Microsoft Academic Search

The characteristics of sediment discharge in the Yukon River, Alaska were investigated by monitoring water discharge, water turbidity and water temperature. The river-transported sediment, 90 wt.% or more, consists of silt and clay (grain size?62.5 ?m), which probably originated in the glacier-covered mountains mostly in the Alaska Range. For early June to late August 1999, we continuously measured water turbidity

Kazuhisa A. Chikita; Richard Kemnitz; Ryuji Kumai

2002-01-01

196

Late Pleistocene mountain glaciation in Alaska: key chronologies  

Microsoft Academic Search

ABSTRACT: Moraine,sequences,of mountain,glaciers can be used,to infer spatial and,temporal patterns of climate change,across the globe. Alaska is an accessible high-latitude location in the Northern Hemisphere and contains a rich record of alpine glaciation. Here, we highlight the key chronologies,from three mountain,ranges in Alaska that reveal the timing and spatial extent of Late Pleistocene glaciation, and pay particular attention to age

Jason P. Briner; Darrell S. Kaufman

2008-01-01

197

Quantifying Spatially-Variable Ablation of Bering Glacier Lobes Using Low-Cost Automated Samplers and Remote Sensing Imagery  

NASA Astrophysics Data System (ADS)

The Bering Glacier is the largest and longest glacier in continental North America, with an area of approximately 5,175 km2 and a length of 190 km. It is also the largest surging glacier in America, having surged at least five times during the twentieth century. Bering Glacier alone covers more than 6% of the glacier covered area of Alaska and may contain 15-20% of Alaska's total glacier ice. The entire glacier lies within 100 km of the Gulf of Alaska. The last great surge of the Bering Glacier occurred in 1993-95. An interdisciplinary research team has been actively monitoring the Bering Glacier since 2000, in order to understand the post-surge dynamics in respect to its effect on the Bering Glacier system hydrology. A comprehensive sampling of the lakes, rivers, runoff, and glacier volumetric change is being conducted to understand how changes in the glacier affect the hydrological environment which in turn determines the individual habitat of the flora and fauna that defines the ecology of the region. The monitoring program consists of a combination of highly-detailed local measurements with coarser resolution measurements over large spatial extents. Detailed measurements were collected using an inexpensive, field-deployable data measurement and logging system was designed and fabricated in 2004. The Glacier Ablation Sensor System (GASS) collects environmental information on glacier melting (temperature, barometric pressure, light level, wind speed) and movement (GPS coordinates, depth to glacier surface). The system uses solar cells with a battery to provide the required power, and is capable of storing an entire summer season's worth of hourly data. A set of GASS units (5-8) were deployed during the summers of 2004, 2005, and 2006 on the Bering and Stellar lobes of the Bering Glacier. To complement the local measurements, optical remote sensing imagery has been collected to monitor changes in the glacial terminus and to quantify the spatial variability of albedo. Spatially-variable estimates of ablation were made using an empirical model for the extent of the glacial lobes. The empirical model terms are based on a full energy balance model, and include sensible, latent, and radiative heat fluxes. Point measurements of environmental parameters were spatially distributed based on empirical relationships between parameters and elevation. Temporally- and spatially-variable albedo was estimated based on optical remote sensing data. Discharge to the terminal lakes was estimated based on the modeled ablation, and compared to limited discharge measurements.

Shuchman, R.; Josberger, E.; Erickson, T. A.; Hatt, C.; Liversedge, L.; Roussi, C.; Payne, J. F.

2006-12-01

198

The GLIMS Glacier Database  

NASA Astrophysics Data System (ADS)

The Global Land Ice Measurements from Space (GLIMS) project has built a geospatial and temporal database of glacier data, composed of glacier outlines and various scalar attributes. These data are being derived primarily from satellite imagery, such as from ASTER and Landsat. Each "snapshot" of a glacier is from a specific time, and the database is designed to store multiple snapshots representative of different times. We have implemented two web-based interfaces to the database; one enables exploration of the data via interactive maps (web map server), while the other allows searches based on text-field constraints. The web map server is an Open Geospatial Consortium (OGC) compliant Web Map Server (WMS) and Web Feature Server (WFS). This means that other web sites can display glacier layers from our site over the Internet, or retrieve glacier features in vector format. All components of the system are implemented using Open Source software: Linux, PostgreSQL, PostGIS (geospatial extensions to the database), MapServer (WMS and WFS), and several supporting components such as Proj.4 (a geographic projection library) and PHP. These tools are robust and provide a flexible and powerful framework for web mapping applications. As a service to the GLIMS community, the database contains metadata on all ASTER imagery acquired over glacierized terrain. Reduced-resolution of the images (browse imagery) can be viewed either as a layer in the MapServer application, or overlaid on the virtual globe within Google Earth. The interactive map application allows the user to constrain by time what data appear on the map. For example, ASTER or glacier outlines from 2002 only, or from Autumn in any year, can be displayed. The system allows users to download their selected glacier data in a choice of formats. The results of a query based on spatial selection (using a mouse) or text-field constraints can be downloaded in any of these formats: ESRI shapefiles, KML (Google Earth), MapInfo, GML (Geography Markup Language) and GMT (Generic Mapping Tools). This "clip-and-ship" function allows users to download only the data they are interested in. Our flexible web interfaces to the database, which includes various support layers (e.g. a layer to help collaborators identify satellite imagery over their region of expertise) will facilitate enhanced analysis to be undertaken on glacier systems, their distribution, and their impacts on other Earth systems.

Raup, B. H.; Khalsa, S. S.; Armstrong, R.

2007-12-01

199

Mapping the World's glaciers from space: Results from the ESA project GlobGlacier  

NASA Astrophysics Data System (ADS)

The ESA project GlobGlacier aims at making a substantial contribution to current efforts of mapping the World's glaciers from satellite data using (semi-)automated techniques. For this purpose a number of key regions have been identified in close cooperation with the user group of the project and based on a set of criteria (e.g. filling the gaps in current inventories, or their potential contribution to sea-level rise). Apart from glacier outlines and terminus positions, a couple of further data products are created by the project: late summer snowlines (LSSL), topographic information, elevation changes and velocity fields. While most of the products are created from optical sensors like Landsat TM/ETM+ as available from the glovis.usgs.gov website, some of them will also utilize radar sensors and LIDAR data. The inventory data are mainly created for the year 2000 (+/- a few years) to have a good temporal match with the SRTM DEM. In selected regions, multi-temporal data sets will be used for change assessment. The new data sets will be integrated in the existing databases of GLIMS and WGMS. With this contribution we provide an overview of the current status of the project as well as its major achievements. Outlines for several thousand glaciers have already been created in many of the key regions. This includes parts of Alaska (Chigmit Mts., Kenai Peninsula, Chugach Mts.), Arctic Canada (Devon, Bylot, Baffin Island), West Greenland (Disko Island, Nuussuaq, Svartenhuk), Norway (Svartisen, Jostedalsbreen), India (Kashmir) and the European Alps. The products LSSL, topography and elevation changes were also produced for several hundred glaciers and surface velocity fields have been derived for more than 50 glaciers from radar and optical sensors. Topographic information for each glacier is obtained from freely available DEMs (e.g. SRTM, ASTER GDEM) and elevation changes are derived from DEM differencing as well as repeat track altimetry using the GLAS and RA-2 instruments. Some of the key regions act as integration sites where more than one product is created.

Paul, Frank

2010-05-01

200

Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 1: Observations  

NASA Technical Reports Server (NTRS)

Measurements of glacier flow velocity and basal water pressure at two sites on Columbia Glacier, Alaska, are combined with meteorological and hydrologic data to provide an observational basis for assessing the role of water storage and basal water pressure in the rapid movement of this large glacier. During the period from July 5 to August 31, 1987, coordinated observations were made of glacier surface motion and of water level in five boreholes drilled to (or in one case near to) the glacier bed at two sites, 5 and 12 km from the terminus. Glacier velocities increased downglacier in this reach from about 4 m/d to about 7 m/d. Three types of time variation in velocity and other variables were revealed: (1) Diurnal fluctuation in water input/output, borehole water level, and ice velocity (fluctuation amplitude 5 to 8%); (2) Speed-up events in glacier motion (15-30% speed-up), lasting about three days, and ocurring at times of enhanced input of water, in some cases from rain and in others from ice ablation enhanced by strong, warm winds; (3) 'Extra-slowdown' events, in which, after a speed-up event, the ice velocity decreased in about 3 days to a level consistently lower than that prior to the speed-up event. All of the time variations were due, directly or indirectly, to variations in water input to the glacier.

Meier, Mark; Lundstrom, Scott; Stone, Dan; Kamb, Barclay; Engelhardt, Hermann; Humphrey, Neil; Dunlap, William W.; Fahnestock, Mark; Krimmel, Robert M.; Walters, Roy

1994-01-01

201

Population Trends, Diet, Genetics, and Observations of Steller Sea Lions in Glacier Bay National Park  

E-print Network

Population Trends, Diet, Genetics, and Observations of Steller Sea Lions in Glacier Bay National'Corry-Crowe3 Abstract. We are using demographics, scat analysis, and genetic measurements of Steller sea lions (SSLs)to understand the factors affecting population status throughout Alaska. Steller sea lions

202

Glacier surge mechanism based on linked cavity configuration of the basal water conduit system  

Microsoft Academic Search

Based on observations of the 1982-1983 surge of Variegated Glacier, Alaska, a model of the surge mechanism is developed in terms of a transition from the normal tunnel configuration of the basal water conduit system to a linked cavity configuration that tends to restrict the flow of water, resulting in increased basal water pressures that cause rapid basal sliding. The

Barclay Kamb

1987-01-01

203

Greenland Glacier Albedo Variability  

NASA Technical Reports Server (NTRS)

The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

2004-01-01

204

Summer 2006, volume 3:2 Alaska Satellite Facility  

E-print Network

Summer 2006, volume 3:2 Alaska Satellite Facility In the past decade, synthetic aperture radar associated with volcanoes, earthquakes, glaciers, and other geological processes. Though InSAR can only imageSAR is extremely useful for mapping deformation in poorly accessible or unmonitored parts of the world. One

205

Svalbard surging glacier landsystems  

NASA Astrophysics Data System (ADS)

The percentage of Svalbard glaciers thought to be of surge-type is somewhere between 13-90% according to different sources variously based on statistical analysis and observations of diagnostic glaciological and geomorphological features, e.g. looped moraines. Developing a better understanding of which of these figures, if either, is most realistic is important in the context of glacier dynamics and related contributions of small glaciers and ice caps to sea level change in the immediate future. We present detailed geomorphological assessments of the margins of several known surge-type glaciers in Svalbard in order to update and improve the existing framework by which they are identified, and to provide a foundation for future reassessments of the surge-type glacier population based on distinct landform-sediment assemblages. Three landsystems are proposed: (1) Surges of small valley glaciers produce a prominent ice-cored latero-frontal moraine at their surge maximum and are characterised by an inner zone of ice stagnation terrain (hummocky topography, kettle lakes, debris flows) with no or only very few poorly-defined bedforms (crevasse squeeze ridges, eskers and flutes) and no recessional moraines. Many of these glaciers may have surged in the past but show no signs that they have the capability to do so again in the future. (2) Larger land-terminating glaciers, often with several tributaries, typically produce a push moraine complex which contains evidence for multiple advances, as identified from ridge-meltwater channel relationships. The inner zone often contains a large lagoon, partly dammed by the push moraine complex, and widespread ice stagnation terrain. Crevasse squeeze ridges, eskers and flutes are well-defined but small and limited in number and distribution. (3) Surges of large tidewater glaciers produce distinctive, often multi-generational, landform assemblages both in submarine and lateral terrestrial positions. The well-preserved submarine record is characterised by large cross-fjord push moraines of fjord floor sediments with lobe-shaped debris flows on their distal slope, glacial lineations, dense rhombohedral networks of crevasse squeeze ridges, and eskers. Annual push moraines associated with the quiescent phase are also observed and are unique to the submarine record. The terrestrial record consists of large lateral moraine systems alongside the fjord which contain outer push ridges composed of shallow marine sediments and an inner zone of ice stagnation terrain. Eskers, flutes and large, sharp-crested crevasse fill ridges in dense networks are superimposed on this inner zone; the latter are similar in character to their submarine counterparts but typically higher. We suggest that these three landsystems broadly characterise the geomorphology of the vast majority of known Svalbard surge-type glaciers and may allow previously unknown surge-type glaciers to be identified, both in the field and from aerial photographs and sea floor imagery.

Lovell, Harold; Benn, Douglas; Lukas, Sven; Flink, Anne

2014-05-01

206

Melting Glaciers Threaten Peru  

NSDL National Science Digital Library

Thousands of people in the Andes mountains of Peru are having their lives affected in both a practical and cultural way by climate change, which is causing the region's glaciers to melt. This document explores the causes of the glacial melt and its impacts on the local cultures.

2003-10-09

207

Gifts of the Glaciers  

NSDL National Science Digital Library

This website highlights the glacial formation of the Great Lakes: - Lake Superior, Lake Huron, Lake Michigan, Lake Erie and Lake Ontario. This site provides photos and descriptions of the lakes and how they formed by the glaciers thousands of years ago.

Wittman, Stephen

1998-04-01

208

Glaciers and Glaciation  

NSDL National Science Digital Library

This site contains lecture notes to accompany one chapter/lecture of a physical geology course using the text, The Dynamic Earth: An Introduction to Physical Geology, 4th Edition, by Brian J. Skinner and Stephen C. Porter. Subtopics include glaciers, glacial deposits, glacial features, glaciation, and glacial ages.

Nelson, Stephen

209

Taking a Glacier's Pulse  

NSDL National Science Digital Library

This article profiles Dr. Leigh Stearns, a research scientist with the National Science Foundation's Science and Technology Center for Remote Sensing of Ice Sheets (CReSIS) and Assistant Professor in Geology at the University of Kansas who studies glaciers in Greenland.

Landis, Carol

210

Glacier Surge-like signals detected by SAR-based technique in West Kunlun Shan, NW Tibet  

NASA Astrophysics Data System (ADS)

High mountains at Tibetan plateau and Himalaya are the most glaciated area on the earth except for polar region. Mountain glaciers in High Asia are not only significant contributor to the global sea level rise, but also play an important role as water resource around the nearby densely populated regions. Severe nature and remote place, however, prevent us from operationally monitoring those mountain glaciers. Although a number of glacier have recently been studied using remote sensing techniques in these area, the surface velocity fields of the glaciers in High Asia still remains uncertain. Surge-type glaciers have been identified in certain regions, such as Alaska, Canada, Iceland, Pamirs and Karakoram. But there is no report in West Kunlun Shan (WKS), to our knowledge. We detected surface velocity fields and surge-like signal of mountain glaciers in WKS located in the north-west of Tibetan plateau, using offset tracking method based on Envisat/ASAR and ALOS/PALSAR data; average altitude of the WKS is greater than 4000m, and the highest peak (Liushi Shan) reaches 7167m. The temporal coverage of ASAR was from 2003 to 2007 and PALSAR was from 2007 to Feb. 2011, respectively. We converted the range and azimuth offset data to the surface velocity field, assuming that glaciers flow parallel to surface topography; the surface topography data were based on SRTM4 Digital Elevation Model. We detected a couple of anomalously fast flowing glaciers, comparing with the nearby valley glaciers. The most conspicuously moving glacier was the Unnamed Glacier located the northwest of WKS. While the other valley glaciers with similar elevation and scale flow at a rate of ~20 m/year, the Unnamed Glacier was 40 m/year from Sept. 2004 to Oct. 2004, and reached ~250 m/year from Dec. 2008 to Feb. 2009 at maximum. The SAR intensity image revealed an advance of the terminus by ~900m from Feb. 2009 to Feb. 2011.

Yasuda, T.; Furuya, M.

2011-12-01

211

Winter speed-up of quiescent surge-type glaciers in Yukon, Canada  

NASA Astrophysics Data System (ADS)

Glacier surge is known to often initiate in winter, but the mechanisms remain unclear in light of the summer speed-up at normal glaciers. We examined spatial-temporal changes in the ice velocity of surge-type glaciers near the border of Alaska and Yukon, and found significant upstream accelerations from fall to winter, regardless of surging episodes. Moreover, whereas the summer speed-up was observed downstream, the winter speed-up propagated from upstream to downglacier. Given the absence of upstream surface meltwater input in winter, we speculate the presence of water storages near the base that do not directly connect to the surface but can promote basal sliding through increased water pressure as winter approaches. Our findings have implications for modeling of glacial hydrology in winter time, and its link to glacier dynamics and subglacial erosion.

Abe, T.; Furuya, M.

2014-05-01

212

Glacier Recession Prepared by Joni L. Kincaid  

E-print Network

North America Australia South America Africa #12;Some Existing Glacier Records Although researchers have and Social Science Program (AGSSS) Department of Geography, Texas A&M University Contact info: Joni Kincaid://glaciers.pdx.edu/GlacierTimeline/GlacierTimeline.html, 2006 #12;South Cascade Glacier North Cascades Range, Washington �Western aspect (faces west) �Median

213

A World of Changing Glaciers: Hazards, Opportunities, and Measures of Global Climate Change  

NASA Astrophysics Data System (ADS)

Glaciers around the world are, with rare exceptions, stagnating or in hasty retreat. Whether growing or shrinking, significant changes in the extent of glaciers have major impacts on nature and humanity in their immediate vicinity, because land uses are utterly different depending on whether the land is covered by ice. Upon glacier retreat, new land uses may become possible: (1) Transportation corridors may become feasible where previously there were barriers. (2) Exposure of the lithosphere may yield mineral riches that previously were inaccessible. (3) New wildlife habitat and migration routes may develop, thus promoting genetic diffusion/interbreeding of previously isolated populations. Glacier impacts go well beyond the locality where they occur. Many glaciers regulate water flow, and contribute to annual water availability and hydropower production. In some regions, such in the Hindu Kush-Himlaya (HKH), especially the western provinces of China, the carrying capacity of the land and further economic development and well-being of the populace is partly dependent on melting glaciers. In India, \\8 billion worth of hydroelectric power (at U.S. electric rates) is generated each year; 50% of that is attributable to runoff from Himalayan glaciers and high-altitude snow fields. Nearly \\1 billion worth of hydroelectric power is due to the current negative mass balance of glaciers. In Nepal, glaciogenic hydropower is even more crucial. Although it may be many decades in coming, the ongoing sharp reduction in glacier area in the HKH will eventually be reflected in heightened water shortages in a region where water already is in short supply. Other glaciers store large amounts of meltwater and release it suddenly, causing havoc and taking lives downstream. This is a major problem in the HKH region and is significant locally in other heavily glaciated regions, such as Alaska. Sea level is a global issue impacted significantly by melting glaciers wherever they occur. Receding and wasting glaciers is a chief telltale sign that global climate change is real and accelerating. Although details of glacier responses to climate change are very complex and not always according to inuition, the basic idea that glaciers tend to melt when the climate warms is understood by the public. Thus, public knowledge of glacier change may help prompt millions of individuals to modify their climate-altering behaviors. The net loss or benefit of receding glaciers has not been calculated, but the effect is apt to be sharply negative. Long-term, negative economic impacts related to water resources and sea level are likely to be the largest concerns. However, an objective accounting must consider positives as well. In Alaska alone, an estimated 20,000 square km of "new land" will emerge from beneath ice over the next century. At present rates of generation of goods and services averaged over Alaska's whole area, this land will be worth at least \\$360M per year, plus other noneconomic benefits. For a variety of reasons, its actual value will likely be far greater, thus partly offsetting the considerable disruptive effects of glacier recession.

Kargel, J. S.; Wessels, R.; Kieffer, H. H.

2002-05-01

214

Mt. Kilimanjaro's Receding Glaciers  

NASA Technical Reports Server (NTRS)

Mt. Kilimanjaro (Tanzania), the highest point in all Africa, was photographed by the crew of Space Shuttle mission STS-97 on December 2, 2000 (STS097-701-17). Kilimanjaro (Kilima Njaro or 'shining mountain' in Swahili) is capped by glaciers on its southern and southwestern flanks. The glaciers and snow cap covered a far greater area ten years prior to the view above. Compare the photograph above with a photograph of Kilimanjaro taken in November 1990 by the Space Shuttle mission STS-38 crew. Shuttle photograph provided by the Earth Sciences and Image Analysis Laboratory, Johnson Space Center. Additional photographs taken by astronauts and cosmonauts can be viewed via the NASA - JSC Gateway to Astronaut Photography of Earth.

2002-01-01

215

Life Cycle of a Glacier  

NSDL National Science Digital Library

This slide show follows a snowflake through its life in a glacier. The path of the ice crystal is traced from its incorporation in the zone of accumulation, through the zone of ablation to its final departure, whether being calved as an iceberg or melting or sublimated. There is also information on the speed of the glacier and the difference between a cold and a warm glacier.

216

Glacier National Park  

NSDL National Science Digital Library

This is the homepage of Glacier National Park. Users can access materials on the park's ecology and environment (plants and animals, biodiversity and air quality, geology, and fires), the culture and history of the park, park activities, and publications on naturalist activities. There are also video clips of park wildlife and scenery, a photo gallery, and live webcams. Links are provided to additional information, such as research activities on bear DNA and global climate change.

217

Ongoing calving-frontal dynamics of glaciers in the Northern Patagonia Icefield, Chile  

NASA Astrophysics Data System (ADS)

Patagonian glaciers are increasingly contributing to the global-sea level rise due to negative mass balances in recent decades, in spite of moderated temperature and precipitation changes taking place in the region. The Austral Chilean glaciers retreat and thinning are strongly influenced by local topography and frontal characteristics, both playing a key role in disrupting glacier responses. One of the main ice bodies in this region is the Northern Patagonian Icefield ( NPI, 46S/73W, 3953 km2), a plateau from where tens of outlet glaciers have been inventoried. Many of these glaciers are ending at sea or freshwater lakes where they are calving. This calving feature is typically associated to non-climatic fluctuations characterized by abnormally-high and sudden retreat and other exacerbated behaviors such as ice flow acceleration and dynamical thinning. The main aim of this work is the study of recent calving dynamics of three glaciers of the NPI, in order to analyze similarities versus differences associated to their location, topographical constraints and bathymetry, among other features. With this aim, airborne LIDAR and radar surveys, as well as field trips were conducted to the area in year 2012 where several instruments and sensors were installed. The selected study sites were the NPI eastern side freshwater calving glaciers Colonia (47.19S/73.29W) and Nef (47.03S/73.27W), and the NPI western margin tidewater calving San Rafael glacier (46.70S/73.76W). With all the collected data, calving fluxes of 0.03 km3 a-1 and 0.08 km3 a-1 were detected at Glaciares Colonia and Nef respectively. At San Rafael, the calving flux was much higher (0.94 km3 a-1) mainly due to a deeper bathymetry near the glacier front, and very high velocities (10m d-1) compared to the eastern side glaciers. At Glaciar San Rafael the calving flux is very likely modulated by tidal components and local buoyancy conditions, while at the eastern glaciers, calving is a near marginal feature compared with ongoing thinning rates due to higher ablation. In the long term perspective, San Rafael is a good example of the tidewater calving cycle described for several glaciers in Alaska and Patagonia. At the eastern side glaciers, frontal retreats have been bigger than at San Rafael in recent years, but in the long term (since the Little Ice Age), San Rafael experienced a much stronger frontal recession (more than 12 km). This contrasting calving behavior between eastern and western margin glaciers, is only enhancing ice losses differences, but not changing ongoing receding trends.;

Bown, F.; Rivera, A.; Burger, F.; Carrin, D.; Cisternas, S.; Gacita, G.; Pena, M.; Oberreuter, J.; Silva, R.; Uribe, J. A.; Wendt, A.; Zamora, R.

2013-05-01

218

UNIVERSITY of ALASKA ANCHORAGE ALASKA JUSTICE FORUM  

E-print Network

UNIVERSITY of ALASKA ANCHORAGE ALASKA JUSTICE FORUM A PUBLICATION OF THE JUSTICE CENTER, statewide African-Americans and Alaska Natives could expect to spend 7 days longer in predisposition might have explained some of the disparate outcomes. Preclearance under the Voting Rights Act Alaska

Pantaleone, Jim

219

ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE  

E-print Network

ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Winter 2008 paired state judicial systems with Russian courts. The Alaska Justice Forum asked Judge David Mannheimer of the Alaska Court of Appeals and Marla Greenstein, Executive Director of the Commission on Judicial Conduct

Pantaleone, Jim

220

ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE  

E-print Network

ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Winter 2007 of the first general study on offender recidivism in Alaska (page 5). � A look at incarceration rates in the U.S. as a whole and in Alaska, with a comparison of U.S. rates with rates of other nations (page 7). Total justice

Pantaleone, Jim

221

ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE  

E-print Network

ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Fall 2007 of a Criminal Conviction: A Brief Overview of Collateral Consequences in Alaska Deborah Periman "It is not concerns. The recent case of a former University ofAlaskaAnchorage student de- nied admission to the School

Pantaleone, Jim

222

Muir Glacier in Glacier Bay National Monument 1950  

USGS Multimedia Gallery

This August 1950 photo documents the significant changes that occurred during the 9 years between photographs A and B. Muir Glacier has retreated more than 2 miles, exposing Muir Inlet, and thinned 340 feet or more. However, it still is connected with tributary Riggs Glacier....

223

Determining basin geometry, stability, and flow dynamics of valley glaciers with ground-penetrating radar  

NASA Astrophysics Data System (ADS)

Mountain glaciers and ice caps (GICs) currently contribute ~0% to annual sea level rise. Most are temperate, therefore having the potential for rapid retreat from rising atmospheric temperatures. This climate sensitivity makes GIC stability and their impact on sea level rise a scientific problem with societal implications. To accurately predict impacts from GIC changes, knowledge of glacier components (e.g., basin geometry, mass balance, and dynamics) is needed. The goal of my dissertation research is to determine information about glacier geometry, snow-fire, and englacial stratigraphy using ground-penetrating radar (GPR) to enhance our understanding of valley glacier mass balance, dynamics, and stability. I first examine glacier basin geometry and ice volume of two temperate glaciers (Jarvis Glacier, Alaska and Nisqually Glacier, Washington) and demonstrate that significant errors (?30-50%) can arise when using empirically-based volume estimates without geophysical constraints. I next determine spatial variability of accumulation across the temperate Juneau Icefield in Alaska usina GPR to interpolate between snowpits. To accomplish this, the dependence of radar velocity on snow density (~.3-0.7 g cm -3) and water content (0-9% by volume) needs to be addressed. Results show that on average, 2.1+/-0.5 m (water equivalent) of winter snow accumulates across the icefield with accumulation patterns depending on elevation, aspect, and proximity to moisture source. The third component of my dissertation combines locally measured accumulation rates, ice flow velocities, and englacial structures imaged with GPR to calculate that a negative mass balance (-0.25 cm a -1) has existed in valley glaciers of the Pensacola Mountains, West Antarctica over the past 1200 years. Finally, 1 use a 3-dimensional finite element non-Newtonian model to characterize the stress fields and current dynamics of a small ice divide. GPR-derived basin geometry is used for model boundary conditions and field-measured velocities, derived strain rates, and GPR-imaged englacial features are used to validate the model. Combined results show that GPR is a powerful tool for developing knowledge of glacier geometry, snow-fire structure, and englacial stratigraphy to enhance our understanding of valley glacier history, dynamics, and stability. Ultimately, this enhanced understanding is useful for refining estimates of future G1C sea level rise contributions.

Campbell, Seth William

224

Glaciers and the Changing Earth  

NSDL National Science Digital Library

In this lesson, students will investigate how glaciers affect the landscape in the context of wondering how the rocks used in the stone walls first got into the ground. Following a directed reading and discussion, they will perform an activity in which they use ice cubes and a bucket of sand to simulate the effects of a glacier.

225

Identification, definition and mapping of terrestrial ecosystems in interior Alaska. [vegetation, land use, glaciology  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The vegetation map in preparation at the time of the last report was refined and labeled. This map is presented as an indication of the spatial and classificatory detail possible from interpretations of enlarged ERTS-1 color photographs. Using this map, areas covered by the several vegetation types characterized by white spruce were determined by planimetry. A 1:63,360 scale land use map of the Juneau area was drawn. This map incorporates the land use classification system now under development by the U.S. Geological Survey. The ERTS-1 images used in making the Juneau map were used to determine changes in surface area of the terminal zones of advancing and receding glaciers, the Taku, Norris, and Mendenhall. A new 1:63,360 scale land use map of the Bonanza Creek Experimental Forest and vicinity was drawn. Several excellent new sciences of test areas were received from NASA in color-infrared transparency format. These are being used for making photographic prints for analysis and mapping according to procedures outlined in this report.

Anderson, J. H. (principal investigator)

1973-01-01

226

Patagonia Glacier, Chile  

NASA Technical Reports Server (NTRS)

This ASTER images was acquired on May 2, 2000 over the North Patagonia Ice Sheet, Chile near latitude 47 degrees south, longitude 73 degrees west. The image covers 36 x 30 km. The false color composite displays vegetation in red. The image dramatically shows a single large glacier, covered with crevasses. A semi-circular terminal moraine indicates that the glacier was once more extensive than at present. ASTER data are being acquired over hundreds of glaciers worldwide to measure their changes over time. Since glaciers are sensitive indicators of warming or cooling, this program can provide global data set critical to understand climate change.

This image is located at 46.5 degrees south latitude and 73.9 degrees west longitude.

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.

2000-01-01

227

Glacier monitoring at Popocatpetl volcano, Mexico: glacier shrinkage and possible causes  

Microsoft Academic Search

Glacier monitoring at Popocatpetl volcano, Mexico: glacier shrinkage and possible causes Glaciers in combination with volcanoes may represent an important hazard for human settlements. As Popocatpetl volcano is located in the vicinity of highly populated areas monitoring its glaciers is a vital part of the surveillance system of the volcano. Popocatpetl hosts two small glaciers that are monitored mainly by

Christian Huggel; Hugo Delgado

228

University of Alaska Graduate Survey  

E-print Network

University of Alaska Graduate Survey 2012 Prepared for: University of Alaska March 2013 #12;University of Alaska Graduate Survey 2012 Prepared for: University of Alaska Prepared by: Juneau · Anchorage.............................................................................................. 7 Satisfaction with University of Alaska

Ickert-Bond, Steffi

229

Recent behaviour of Slovenian glaciers  

NASA Astrophysics Data System (ADS)

Just two glaciers, below the peaks of Triglav (2864 m) and Skuta (2532 m), are persisting in Slovenian Alps, both on a relatively very low elevation. Their present surfaces do not exceed one hectare, thus we can speak only about two glacierets or very small glaciers. The Anton Melik Geographical Institute of the Scientific Research Centre at the Slovenian Academy of Sciences and Arts has regularly performed measurements since 1946. The size of the Triglav glacier, measured in 1946, was 14.4 hectares, and by the year 2012 the glacier had shrunk to a half of a hectare. The direct vicinity of the meteorological station on Mt. Kredarica makes possible an analysis of the dependency of the glacier's fluctuation on weather changes. Several methods of measuring have been applied. Since 1999 we have regularly performed photogrammetric measurements of the glacier, which render possible exact calculations of changes in the glacier's area and volume by individual years. In addition, we also performed georadar measurements in 2000 and 2013. Besides regular annual measurements performed at the end of melting seasons, the Triglav glacier has also been photographed monthly since 1976, from two fixed positions on Mt. Kredarica. In 2012, we performed aerial laser scanning (LIDAR) of the Triglav glacier. While for the last decade of the 20th century we reported that the Triglav glacier has not only retreated but literally disintegrated, in the first decade of the 21st century we can observe its stagnation. Due to the present concave form of the glacier's surface, snow remains on it late into summer, and since the year 2007, the ice of the lower part of the glacier has not been revealed even at the end of the melting season but has remained covered with the firn and snow of previous winters. Should such weather conditions continue and the amount of winter precipitation further increase, the remainder of the Triglav glacier will, though very small in size, continue to exist for next ten years or even more.

Gabrovec, Matej; Ferk, Mateja; Ortar, Jaka

2014-05-01

230

Effects of Climate Change- Permafrost and Glaciers - Google Earth Virtual Field Trip Activity  

NSDL National Science Digital Library

In this two-part virtual field trip, students will explore permafrost, the effects that climate change has on current infrastructures built on it and other environmental impacts. The 2008 ATEEC Fellows Institute brought 18 environmental science community college and high school instructors to Alaska. They created virtual field trips using Google Earth. Part two of this activity will take your class to various glaciers in Alaska and around the world. Students will learn about the effects climate change has on these receding glaciers and discover what it means on a broader level. Materials include an excellent teacher's guide to help instructors implement this lesson in their classroom. This resource is free to download. Users must first create a login with ATEEC's website to access the file.

2013-06-12

231

Satellite image atlas of glaciers of the world  

USGS Publications Warehouse

U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, contains 11 chapters designated by the letters A through K. Chapter A provides a comprehensive, yet concise, review of the "State of the Earth's Cryosphere at the Beginning of the 21st Century: Glaciers, Global Snow Cover, Floating Ice, and Permafrost and Periglacial Environments," and a "Map/Poster of the Earth's Dynamic Cryosphere," and a set of eight "Supplemental Cryosphere Notes" about the Earth's Dynamic Cryosphere and the Earth System. The next 10 chapters, B through K, are arranged geographically and present glaciological information from Landsat and other sources of historic and modern data on each of the geographic areas. Chapter B covers Antarctica; Chapter C, Greenland; Chapter D, Iceland; Chapter E, Continental Europe (except for the European part of the former Soviet Union), including the Alps, the Pyrenees, Norway, Sweden, Svalbard (Norway), and Jan Mayen (Norway); Chapter F, Asia, including the European part of the former Soviet Union, China, Afghanistan, Pakistan, India, Nepal, and Bhutan; Chapter G, Turkey, Iran, and Africa; Chapter H, Irian Jaya (Indonesia) and New Zealand; Chapter I, South America; Chapter J, North America (excluding Alaska); and Chapter K, Alaska. Chapters AD each include map plates.

Edited by Williams, Richard S., Jr.; Ferrigno, Jane G.

1988-01-01

232

East Greenland Glacier Dynamics: An Interdisciplinary Study of Helheim Glacier  

Microsoft Academic Search

Our study of Helheim glacier was initiated in 2006 primarily to investigate the source of glacial earthquakes. Glacial earthquakes appear to be sensitive to climate parameters and could potentially serve as an \\

T. B. Larsen; M. Nettles; P. Elosegui; M. L. Andersen; A. P. Ahlstrm; J. L. Davis; J. D. Juan; G. Ekstrm; R. Forsberg; G. S. Hamilton; S. A. Khan; L. A. Stearns; L. Stenseng

2008-01-01

233

Evaluation of Existing Image Matching Methods for Deriving Glacier Surface Displacements Globally from Optical Satellite Imagery  

NASA Astrophysics Data System (ADS)

Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier velocities. If combining CCF-O with locally adaptive template sizes and by filtering the matching results automatically by comparing the displacement matrix to its low pass filtered version, the matching process can be automated to a large degree. This allows the derivation of glacier velocities with minimal (but not without!) user interaction and hence also opens up the possibility of global-scale mapping and monitoring of glacier flow.

Heid, T.; Kb, A.

2011-12-01

234

Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon.  

PubMed

Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg. PMID:24035911

Nagorski, Sonia A; Engstrom, Daniel R; Hudson, John P; Krabbenhoft, David P; Hood, Eran; DeWild, John F; Aiken, George R

2014-01-01

235

Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 2: Interpretation  

Microsoft Academic Search

The data presented in part 1 of this paper (Meier et al., 1994) are here used to assess the role of water input\\/output, water storage, and basal water pressure in the rapid movement of Columbia Glacier, Alaska. Consistently high basal water pressures, mostly in the range from 300#kPa below to 100#kPa above the ice overburden pressure, are responsible in an

Barclay Kamb; Hermann Engelhardt; Mark A. Fahnestock; Neil Humphrey; Mark Meier; Dan Stone

1994-01-01

236

Pine Island Glacier, Antarctica  

NASA Technical Reports Server (NTRS)

This ASTER image was acquired on December 12, 2000, and covers an area of 38 x 48 km. Pine Island Glacier has undergone a steady loss of elevation with retreat of the grounding line in recent decades. Now, space imagery has revealed a wide new crack that some scientists think will soon result in a calving event. Glaciologist Robert Bindschadler of NASA's Goddard Space Flight Center predicts this crack will result in the calving of a major iceberg, probably in less than 18 months. Discovery of the crack was possible due to multi-year image archives and high resolution imagery. This image is located at 74.1 degrees south latitude and 105.1 degrees west longitude.

The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

2001-01-01

237

foreland strata, Bering Glacier, Alaska. Geomorphology 75, 12, 201211.  

E-print Network

and absent rings in mature black spruce and balsam fir, Quebec, Canada. Dendrochronologia 16/17, 21­35. La., and Johnson, E. A. (2002). Accurately ageing trees and examining their height growth rates: Implications 31(2), 243­248. Luckman, B. H. (2000). The Little Ice Age in the Canadian Rockies. Geomorphology 32

Smith, Dan

238

GLACIER DAMMED ICE MARGINAL LAKES OF ALASKA: CHANGES SINCE 1971  

E-print Network

Administrator 575.3499 O&M 617 mark@ocean.tamu.edu Mouchyn, Chris Microcomputer Specialist 979.862.4555 O&M 1210.845.6272 O&M 1210J neils@tamu.edu Stine, Paul Systems Analyst I 979.574.9325 O&M 618A p-stine@tamu.edu Tran, Steve Senior IT Manager 845.4842 Halbouty 367F tran@geo.tamu.edu Young, Ryan Microcomputer Specialist

Loso, Michael G.

239

Middle Sister and Hayden Glacier  

USGS Multimedia Gallery

The North face of Middle Sister and Hayden Glacier, in Three Sisters Wilderness, Deschutes National Forest, Oregon. This Picture was taken while climbing Middle Sister. Middle Sister is also known as "Hope" and is an extinct stratovolcano....

2009-12-08

240

Climate variations and changes in mass of three glaciers in western North America  

USGS Publications Warehouse

Time series of net and seasonal mass balances for three glaciers in western North America, one in the Pacific Northwest and two in Alaska, show various relationships to Pacific hemisphere climate indexes. During the winter season the two coastal, maritime-regime glaciers, over 2000 km apart, are affected almost identically, albeit inversely, by atmospheric and oceanic conditions in both the tropical and North Pacific. The two Alaska glaciers, only 350 km apart, have almost no coherence. Lag correlations show that in winter the maritime glaciers are influenced by concurrent conditions in the North Pacific, but by conditions in the tropical Pacific in August-September of the prior northern summer. The winter balance variations contain interannual El Nino-Southern Oscillation variability superimposed on North Pacific interdecadal variability; the interdecadal 1976-77 climate regime shift is clearly evident. The summer balances and the continental-regime glacier have a general lack of correlations, with no clear, strong, consistent patterns, probably a result of being influenced more by local processes or by circulation patterns outside the Pacific Ocean basin. The results show the Pacific Northwest is strongly influenced by conditions in the tropical Pacific, but that this teleconnection has broken down in recent years, starting in 1989. During the seven years since then (1989-95), all three glaciers have shown, for the first time, coherent signals, which were net mass loss at the highest rate in the entire record. The authors' results agree with those of other recent studies that suggest these recent years are unusual and may be a signature of climate warming.

Hodge, S. M.; Trabant, D. C.; Krimmel, R. M.; Heinrichs, T. A.; March, R. S.; Josberger, E. G.

1998-01-01

241

Life Cycle of a Glacier  

NSDL National Science Digital Library

The information on this site indicates that the life cycle of a glacier is more eventful than it appears. The site allows students to follow the journey of a single snowflake as it takes a ride through a glacier, a process that can take as much as 30,000 years to complete. It can be viewed as an interactive slide show or a single page of text and illustrations.

242

Ocean Observing System Demonstrated in Alaska  

NASA Astrophysics Data System (ADS)

To demonstrate the utility of an ocean observing and forecasting system with diverse practical applicationssuch as search and rescue, oil spill response (perhaps relevent to the current Gulf of Mexico oil spill), fisheries, and risk managementa unique field experiment was conducted in Prince William Sound, Alaska, in July and August 2009. The objective was to quantitatively evaluate the performance of numerical models developed for the sound with an array of fixed and mobile observation platforms (Figure 1). Prince William Sound was chosen for the demonstration because of historical efforts to monitor ocean circulation following the 1989 oil spill from the Exxon Valdez tanker. The sound, a highly crenulated embayment of about 10,000 square kilometers at approximately 60N latitude along the northern coast of the Gulf of Alaska, includes about 6900 kilometers of shoreline, numerous islands and fjords, and an extensive system of tidewater glaciers descending from the highest coastal mountain range in North America. Hinchinbrook Entrance and Montague Strait are the two main deep water connections with the Gulf of Alaska. The economic base of communities in the region is almost entirely resource-dependent. For example, Cordova's economy is based on commercial fishing and Valdez's economy is supported primarily by the trans-Alaska oil pipeline terminal.

Schoch, G. Carl; Chao, Yi

2010-05-01

243

The North Slope of Alaska and Tourism: Potential Impacts on the Arctic National Wildlife Refuge (ANWR)  

Microsoft Academic Search

The hydrocarbon industry of Alaska is currently the leading producer of revenue for the Alaskan state economy. Second only to hydrocarbons is the tourism industry. Tourism has been a viable industry since the 1890's when cruises touted the beauty of glaciers and icebergs along the Alaskan coastline. This industry has seen a steady growth for the past few decades throughout

L. R. Everett

2004-01-01

244

Derivation of deformation characteristics in fast-moving glaciers  

NASA Astrophysics Data System (ADS)

Crevasse patterns are the writings in a glacier's history bookthe movement, strain and deformation frozen in ice. Therefore by analysis of crevasse patterns we can learn about the ice-dynamic processes which the glacier has experienced. Direct measurement of ice movement and deformation is time-consuming and costly, in particular for large glaciers; typically, observations are lacking when sudden changes occur. Analysis of crevasse patterns provides a means to reconstruct past and ongoing deformation processes mathematically. This is especially important for fast-moving ice. Ice movement and deformation are commonly described and analyzed using continuum mechanics and measurements of ice velocities or strain rates. Here, we present a different approach to the study of ice deformation based on principles of structural geology. Fast ice movement manifests itself in the occurrence of crevasses. Because crevasses remain after the deformation event and may be transported, overprinted or closed, their analysis based on aerial videography and photography or satellite data gives information on past deformation events and resulting strain states. In our treatment, we distinguish (A) continuously fast-moving glaciers and ice streams, and (B) surge-type glaciers, based on observations of two prototypes, Jakobshavns Isbr, Greenland, for (A), and Bering Glacier, Alaska, during the 1993-1995 surge, for (B). Classes of ice-deformation types are derived from aerial images of ice surfaces using structural geology, i.e. structural glaciology. For each type, the deformation gradient matrix is formed. Relationships between invariants used in structural geology and continuum mechanics and the singular value decomposition are established and applied to ice-surface classification. Deformation during a surge is mostly one of the extensional deformation types. Continuously, or infinitesimally repeated, deformation acting in continuously fast-moving ice causes different typical crevasse patterns. The structural-geology approach also includes a way to treat the problem of shear, as observed in the margins of fast-moving ice streams within slow-moving surrounding ice. In this paper we provide the first link between a physical analysis of ice-surface deformation and a connectionist-geostatistical analysis of the same problem.

Herzfeld, Ute C.; Clarke, Garry K. C.; Mayer, Helmut; Greve, Ralf

2004-04-01

245

Northern Alaska  

NASA Technical Reports Server (NTRS)

Seasonal ice in the Beaufort Sea off Alaska's North Slope has begun its spring retreat. This true color MODIS image from March 18, 2002, shows the pack ice in the Chuckchi Sea (left) and Beaufort Sea (top) backing away from its winter position snug up against Alaska's coasts, beginning its retreat into the Arctic Ocean. While not as pronounced in the Beaufort and Chukchi Seas as other part of the Arctic, scientists studying Arctic sea ice over the course of the century have documented dramatic changes in the extent of Arctic sea ice. It retreats farther in the summer and does not advance as far in the winter than it did a half-century ago. Both global warming and natural variation in regional weather systems have been proposed as causes. Along the coastal plain of the North Slope, gray-brown tracks (see high-resolution image) hint at melting rivers. South of the North Slope, the rugged mountains of the Brooks Range make a coast-to-coast arc across the state. Coming in at the lower right of the image, the Yukon River traces a frozen white path westward across half the image before veering south and out of view. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

2002-01-01

246

Modelling Greenland Outlet Glaciers  

NASA Technical Reports Server (NTRS)

The objective of this project was to develop simple yet realistic models of Greenland outlet glaciers to better understand ongoing changes and to identify possible causes for these changes. Several approaches can be taken to evaluate the interaction between climate forcing and ice dynamics, and the consequent ice-sheet response, which may involve changes in flow style. To evaluate the icesheet response to mass-balance forcing, Van der Veen (Journal of Geophysical Research, in press) makes the assumption that this response can be considered a perturbation on the reference state and may be evaluated separately from how this reference state evolves over time. Mass-balance forcing has an immediate effect on the ice sheet. Initially, the rate of thickness change as compared to the reference state equals the perturbation in snowfall or ablation. If the forcing persists, the ice sheet responds dynamically, adjusting the rate at which ice is evacuated from the interior to the margins, to achieve a new equilibrium. For large ice sheets, this dynamic adjustment may last for thousands of years, with the magnitude of change decreasing steadily over time as a new equilibrium is approached. This response can be described using kinematic wave theory. This theory, modified to pertain to Greenland drainage basins, was used to evaluate possible ice-sheet responses to perturbations in surface mass balance. The reference state is defined based on measurements along the central flowline of Petermann Glacier in north-west Greenland, and perturbations on this state considered. The advantage of this approach is that the particulars of the dynamical flow regime need not be explicitly known but are incorporated through the parameterization of the reference ice flux or longitudinal velocity profile. The results of the kinematic wave model indicate that significant rates of thickness change can occur immediately after the prescribed change in surface mass balance but adjustments in flow rapidly diminish these rates to a few cm/yr at most. The time scale for adjustment is of the order of a thousand years or so.

vanderVeen, Cornelis; Abdalati, Waleed (Technical Monitor)

2001-01-01

247

Glacier Shrinkage and Effects on Alpine Hydrology  

NASA Astrophysics Data System (ADS)

Alpine glaciers cover an area of about 553 km2 in seven western states of the American West. With few exceptions, all glaciers have been shrinking over the past century and the rate of shrinkage has accelerated over the past few decades. Overall, smaller glaciers exhibit greatest shrinkage, relative to their size, compared to larger glaciers. Preliminary results from studies of glacier change in several national parks reveal the spatial pattern of glacier change. Glacier shrinkage, while contributing to global sea level change, has two important local effects. First, the net release of water from its storage in the frozen state enhances overall stream discharge. Second, the shrinking area of glaciers reduces their moderating effect on stream flow, particularly during late-summer and drought periods, and shifts peak runoff towards early summer. Consequently these alpine basins become more susceptible to future drought. In addition to these "clean" glaciers, debris-covered glaciers are probably important as well. Debris-covered glaciers melt at much slower rates than adjacent "clean" glaciers, with reduced daily variations in melt because of the insulation provided by the surface debris layer. The number and extent of debris-covered glaciers in the American west is not well known therefore their hydrological contribution is uncertain. However, if the number of debris-covered glaciers can be scaled from an inventory of those in the Rocky Mountain National Park (Achuff, 2003), the volume of debris-covered ice may be considerable. From an ecological perspective, the greatest effects are in the high alpine regions where glacier recession opens new areas for biological expansion, and where the hydrological dependence on glaciers is greatest. Lesser effects, related to suspended sediment loads, are felt well downstream (10's km) from glaciers.

Basagic, H.; Fountain, A. G.; Clark, D. H.

2004-12-01

248

Co-occurrence of Pacific sleeper sharks Somniosus pacificus and harbor seals Phoca vitulina in Glacier Bay  

USGS Publications Warehouse

We present evidence that Pacific sleeper sharks Somniosus pacificus co-occur with harbor seals Phoca vitulina in Glacier Bay, Alaska, and that these sharks scavenge or prey on marine mammals. In 2002, 415 stations were fished throughout Glacier Bay on a systematic sampling grid. Pacific sleeper sharks were caught at 3 of the 415 stations, and at one station a Pacific halibut Hippoglossus stenolepis was caught with a fresh bite, identified as the bite of a sleeper shark. All 3 sharks and the shark-bitten halibut were caught at stations near the mouth of Johns Hopkins Inlet, a glacial fjord with the highest concentration of seals in Glacier Bay. Using a bootstrap technique, we estimated the probability of sampling the sharks (and the shark-bitten halibut) in the vicinity of Johns Hopkins Inlet. If sharks were randomly distributed in Glacier Bay, the probability of sampling all 4 pots at the mouth of Johns Hopkins Inlet was very low (P = 0.00002). The highly non-random distribution of the sleeper sharks located near the largest harbor seal pupping and breeding colony in Glacier Bay suggests that these 2 species co-occur and may interact ecologically in or near Johns Hopkins Inlet. Copyright ?? 2005 by the Alaska Department of Fish and Game.

Taggart, S.J.; Andrews, A.G.; Mondragon, J.; Mathews, E.A.

2005-01-01

249

High Altitude Glaciers in the Tropics  

NSDL National Science Digital Library

While it may seem like a contradiction, glaciers do exist in the tropical latitudes. In this video produced by ThinkTV, learn about tropical glaciers and why scientists are studying them to better understand global climate change.

Thinktv

2010-11-30

250

Page 1 Alaska Justice Forum ALASKA JUSTICE FORUM  

E-print Network

Page 1 Alaska Justice Forum ALASKA JUSTICE FORUM Winter 2000 UNIVERSITY OF ALASKA ANCHORAGE Vol. 16, No. 4 A Publication of the Justice Center Alaska Justice Statistical Analysis Unit Please see Alaska Natives, page 4 HIGHLIGHTS INSIDE THIS ISSUE � An examination of victimization of Alaska Natives

Pantaleone, Jim

251

Where Have All the Glaciers Gone?  

NSDL National Science Digital Library

In this activity, students examine images of alpine glaciers to develop an understanding of how glaciers respond to climate change. They record, discuss, and interpret their observations. They consider explanations for changes in the size and position of glaciers from around the world. They develop an understanding that the melting (retreat) of glaciers is occurring simultaneously on different continents around the world, and, thus, they represent evidence of global climate change.

Research, National C.

252

Longitudinal surface structures (flowstripes) on Antarctic glaciers  

NASA Astrophysics Data System (ADS)

Longitudinal surface structures ("flowstripes") are common on many glaciers but their origin and significance are poorly understood. In this paper we present observations of the development of these longitudinal structures from four different Antarctic glacier systems; the Lambert Glacier/Amery Ice Shelf area, the Taylor and Ferrar Glaciers in the Ross Sea sector, Crane and Jorum Glaciers (ice-shelf tributary glaciers) on the Antarctic Peninsula, and the onset zone of a tributary to the Recovery Glacier Ice Stream in the Filchner Ice Shelf area. Mapping from optical satellite images demonstrates that longitudinal surface structures develop in two main situations: (1) as relatively wide flow stripes within glacier flow units and (2) as relatively narrow flow stripes where there is convergent flow around nunataks or at glacier confluence zones. Our observations indicate that the confluence features are narrower, sharper, and more clearly defined features. They are characterised by linear troughs or depressions on the ice surface and are much more common than the former type. Longitudinal surface structures within glacier flow units have previously been explained as the surface expression of localised bed perturbations but a universal explanation for those forming at glacier confluences is lacking. Here we propose that these features are formed at zones of ice acceleration and extensional flow at glacier confluences. We provide a schematic model for the development of longitudinal surface structures based on extensional flow that can explain their ridge and trough morphology as well as their down-ice persistence.

Glasser, N. F.; Gudmundsson, G. H.

2012-03-01

253

Google Earth Tours of Glacier Change  

NSDL National Science Digital Library

A detailed Google Earth tour of glacier change over the last 50 years is given in class as an introduction. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and evident changes in that glacier.

Pelto, Mauri; Collection, Serc -.

254

Primer on glacier flows Christian Heining  

E-print Network

/drop of the seawater level - Glaciers are the biggest reservoir of fresh water on earth (74%) groundwater 20%, lakes (glacier surges) or to use the water of glaciers in power plants or for water supply for agriculture. 2 scales suggest a shallow water (thin film) approximation #12;

Sainudiin, Raazesh

255

Warm Oceans, Fast Glaciers: the connections  

Microsoft Academic Search

Over the last decade many outlet glaciers from the Greenland Ice Sheet have accelerated and thinned, and in a number of cases their termini have retreated. There is much in common from glacier to glacier that emerges as these changes are studied, yet the actual physical mechanisms remain unclear. One can show that the spatial patterns and timing of outlet

M. Truffer; M. A. Fahnestock; J. M. Amundson

2009-01-01

256

Get Close to Glaciers with Satellite Imagery.  

ERIC Educational Resources Information Center

Discusses the use of remote sensing from satellites to monitor glaciers. Discusses efforts to use remote sensing satellites of the Landsat series for examining the global distribution, mass, balance, movements, and dynamics of the world's glaciers. Includes several Landsat images of various glaciers. (TW)

Hall, Dorothy K.

1986-01-01

257

Devonian volcanogenic massive sulfide deposits and occurrences, southern Yukon-Tanana Terrace, eastern Alaska Range, Alaska  

USGS Publications Warehouse

A belt of volcanogenic massive sulfide deposits extends for over 150km along the southern margin of the Yukon-Tanana terrane of the eastern Alaska Range. Located north of the Denali fault, the Yukon-Tanana terrane forms a major basement unit in east-central Alaska. The volcanogenic massive sulfide deposits are primarily in the Jarvis Creek Glacier subterrane, which consists of a volcanogenic massive sulfide-bearing metavolcanic rock member and a metasedimentary rock member. Two periods of regional metamorphism and penetrative deformation are indicated: an older, Early Cretaceous, amphibolite facies event and a younger, mid-Cretaceous lower greenschist facies event. The occurrence, mineralogy and sulphur isotope values are discussed. -from Authors

Lange, I.M.; Nokleberg, W.J.; Newkirk, S.R.; Aleinikoff, J.N.; Church, S.E.; Krouse, H.R.

1993-01-01

258

Earthquakes in Alaska  

USGS Publications Warehouse

Earthquake risk is high in much of the southern half of Alaska, but it is not the same everywhere. This map shows the overall geologic setting in Alaska that produces earthquakes. The Pacific plate (darker blue) is sliding northwestward past southeastern Alaska and then dives beneath the North American plate (light blue, green, and brown) in southern Alaska, the Alaska Peninsula, and the Aleutian Islands. Most earthquakes are produced where these two plates come into contact and slide past each other. Major earthquakes also occur throughout much of interior Alaska as a result of collision of a piece of crust with the southern margin.

Haeussler, Peter J.; Plafker, George

1995-01-01

259

Mountain glaciers caught on camera  

NASA Astrophysics Data System (ADS)

Many glaciers around the world are melting, and new research is showing some of the dramatic details. Ulyana Horodyskyj, a graduate student at the Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, set up cameras to take time-lapse photographs of three lakes on a glacier in Nepal. This allowed her and her colleagues to see the supraglacial lake drain in real time for the first time, making it possible to estimate how much water was involved and how long it took for the lake to drain and refill. Horodyskyj said in a press conference at the AGU Fall Meeting that such observations of supraglacial lakes are valuable because in a warming climate, melting glaciers can lead to formation of supraglacial lakes.

Balcerak, Ernie

2011-12-01

260

Indicators of recent environmental change in Alaska  

SciTech Connect

Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

1997-12-31

261

Glacier recession in Iceland and Austria  

NASA Technical Reports Server (NTRS)

It has been possible to measure glacier recession on the basis of Landsat data, in conjunction with comparisons of the magnitude of recession of a glacier margin with in situ measurements at fixed points along the same margin. Attention is presently given to the cases of Vatnajokull ice cap, in Iceland, and the Pasterze Glacier, in Austria, on the basis of satellite data from 1973-1987 and 1984-1990, respectively. Indications of a trend toward negative mass balance are noted. Nevertheless, while most of the world's small glaciers have been receding, some are advancing either due to local climate or the tidewater glacier cycle.

Hall, Dorothy K.; Williams, Richard S., Jr.; Bayr, Klaus J.

1992-01-01

262

A simple quantitative approach to assess past, present and future dynamic behaviour and stability of tidewater glaciers  

NASA Astrophysics Data System (ADS)

Glaciers and ice sheet outlets that terminate in the ocean are known to respond highly non-linearly to climate change as indicated in recent rapid changes of tidewater glaciers in Alaska and Greenland. This makes interpretation of terminus changes and future predictions difficult and current numerical models are still struggling to reproduce such behaviour. Here we propose a simple approach to quantitatively assess stability (or instability) of tidewater glacier termini and get a first order estimate of potential retreat rates. We use the flux-boundary theory for grounded calving termini of Schoof (2007) and further take into account variations in glacier width. We compare this terminus flux with the balance flux in order to assess stability and further use a simple relation to translate this flux difference into a potential retreat rate. We explore the use of such a simple approach on the examples of two currently retreating tidewater glaciers (Columbia Glacier and Hansbreen) and one palaeo ice stream in the Uummannaq area in Greenland. Although this approach is highly simplified and the absolute retreat rates have a high uncertainty, the relative variations are useful in assisting interpretation and assessment of present and near future behaviour and reconstructions of palaeo records of tidewater retreat. Crucially, this approach relies on only minimal data (bed topography and approximate surface mass balance) and is therefore widely applicable.

Vieli, Andreas; Jamieson, Stewart

2013-04-01

263

Alaska and Yukon Fires  

article title: Smoke Signals from the Alaska and Yukon Fires View ... Image Large lightning-induced fires were active in Alaska and the Yukon Territory from mid-June to mid-July, 2004. Thick smoke ...

2014-05-15

264

A database of worldwide glacier thickness observations  

NASA Astrophysics Data System (ADS)

One of the grand challenges in glacier research is to assess the total ice volume and its global distribution. Over the past few decades the compilation of a world glacier inventory has been well-advanced both in institutional set-up and in spatial coverage. The inventory is restricted to glacier surface observations. However, although thickness has been observed on many glaciers and ice caps around the globe, it has not yet been published in the shape of a readily available database. Here, we present a standardized database of glacier thickness observations compiled by an extensive literature review and from airborne data extracted from NASA's Operation IceBridge. This database contains ice thickness observations from roughly 1100 glaciers and ice caps including 550 glacier-wide estimates and 750,000 point observations. A comparison of these observational ice thicknesses with results from area- and slope-dependent approaches reveals large deviations both from the observations and between different estimation approaches. For glaciers and ice caps all estimation approaches show a tendency to overestimation. For glaciers the median relative absolute deviation lies around 30% when analyzing the different estimation approaches. This initial database of glacier and ice caps thickness will hopefully be further enlarged and intensively used for a better understanding of the global glacier ice volume and its distribution.

Grtner-Roer, I.; Naegeli, K.; Huss, M.; Knecht, T.; Machguth, H.; Zemp, M.

2014-11-01

265

Longitudinal surface structures (flowstripes) on Antarctic glaciers  

NASA Astrophysics Data System (ADS)

Longitudinal surface structures (''flowstripes'') are common on many glaciers but their origin and significance are poorly understood. In this paper we present observations of the development of these longitudinal structures from four different Antarctic glacier systems (the Lambert Glacier/Amery Ice Shelf area, outlet glaciers in the Ross Sea sector, ice-shelf tributary glaciers on the Antarctic Peninsula, and the onset zone of a tributary to the Recovery Glacier Ice Stream in the Filchner Ice Shelf area). Mapping from optical satellite images demonstrates that longitudinal surface structures develop in two main situations: (1) as relatively wide flow stripes within glacier flow units and (2) as relatively narrow flow stripes where there is convergent flow around nunataks or at glacier confluence zones. Our observations indicate that the confluence features are narrower, sharper, and more clearly defined features. They are characterised by linear troughs or depressions on the ice surface and are much more common than the former type. Longitudinal surface structures within glacier flow units have previously been explained as the surface expression of localised bed perturbations but a universal explanation for those forming at glacier confluences is lacking. Here we propose that these features are formed at zones of ice acceleration and extensional flow at glacier confluences. We provide a schematic model for the development of longitudinal surface structures based on extensional flow that can explain their ridge and trough morphology as well as their down-ice persistence.

Glasser, N. F.; Gudmundsson, G. H.

2011-11-01

266

GLIMS Glacier Database: Status and Challenges  

NASA Astrophysics Data System (ADS)

GLIMS (Global Land Ice Measurements from Space) is an international initiative to map the world's glaciers and to build a GIS database that is usable via the World Wide Web. The GLIMS programme includes 70 institutions, and 25 Regional Centers (RCs), who analyze satellite imagery to map glaciers in their regions of expertise. The analysis results are collected at the National Snow and Ice Data Center (NSIDC) and ingested into the GLIMS Glacier Database. The database contains approximately 80 000 glacier outlines, half the estimated total on Earth. In addition, the database contains metadata on approximately 200 000 ASTER images acquired over glacierized terrain. Glacier data and the ASTER metadata can be viewed and searched via interactive maps at http://glims.org/. As glacier mapping with GLIMS has progressed, various hurdles have arisen that have required solutions. For example, the GLIMS community has formulated definitions for how to delineate glaciers with different complicated morphologies and how to deal with debris cover. Experiments have been carried out to assess the consistency of the database, and protocols have been defined for the RCs to follow in their mapping. Hurdles still remain. In June 2008, a workshop was convened in Boulder, Colorado to address issues such as mapping debris-covered glaciers, mapping ice divides, and performing change analysis using two different glacier inventories. This contribution summarizes the status of the GLIMS Glacier Database and steps taken to ensure high data quality.

Raup, B. H.; Racoviteanu, A.; Khalsa, S. S.; Armstrong, R.

2008-12-01

267

Spatially heterogeneous wastage of Himalayan glaciers  

PubMed Central

We describe volumetric changes in three benchmark glaciers in the Nepal Himalayas on which observations have been made since the 1970s. Compared with the global mean of glacier mass balance, the Himalayan glaciers showed rapid wastage in the 1970s1990s, but similar wastage in the last decade. In the last decade, a glacier in an arid climate showed negative but suppressed mass balance compared with the period 1970s1990s, whereas two glaciers in a humid climate showed accelerated wastage. A mass balance model with downscaled gridded datasets depicts the fate of the observed glaciers. We also show a spatially heterogeneous distribution of glacier wastage in the Asian highlands, even under the present-day climate warming. PMID:21808042

Fujita, Koji; Nuimura, Takayuki

2011-01-01

268

Spatially heterogeneous wastage of Himalayan glaciers.  

PubMed

We describe volumetric changes in three benchmark glaciers in the Nepal Himalayas on which observations have been made since the 1970s. Compared with the global mean of glacier mass balance, the Himalayan glaciers showed rapid wastage in the 1970s-1990s, but similar wastage in the last decade. In the last decade, a glacier in an arid climate showed negative but suppressed mass balance compared with the period 1970s-1990s, whereas two glaciers in a humid climate showed accelerated wastage. A mass balance model with downscaled gridded datasets depicts the fate of the observed glaciers. We also show a spatially heterogeneous distribution of glacier wastage in the Asian highlands, even under the present-day climate warming. PMID:21808042

Fujita, Koji; Nuimura, Takayuki

2011-08-23

269

The contribution of glacier melt to streamflow  

SciTech Connect

Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier melt contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.

Schaner, Neil; Voisin, Nathalie; Nijssen, Bart; Lettenmaier, D. P.

2012-09-13

270

A NEW INSAR DERIVED DEM OF BLACK RAPIDS GLACIER  

NASA Astrophysics Data System (ADS)

We have constructed a new digital elevation model representing the 1995 surface of surge-type Black Rapids Glacier and the surrounding central Alaska Range, using ERS-1/2 repeat-pass interferometry. First, we isolated the topographic phase from three interferograms with contrasting perpendicular baselines. Next we attempted to automatically unwrap this topographic phase but encountered numerous errors due to the terrain containing areas of poor coherence from fringe aliasing, radar layover or shadow. We then consistently corrected these persistent phase-unwrapping errors in all three interferograms using an iterative semi-automated approach that capitalizes on the multi-baseline nature of the data set. Over the surface of Black Rapids Glacier, the accuracy of the new DEM is estimated at better than +/- 12 m. Ground-surveyed spot elevations from 1995 corroborate this accuracy estimate. Comparison of the new DEM with a 1951 U.S. Geological Survey topographic map, and with ground survey data from other years, shows the gradual return of Black Rapids Glacier to pre-surge conditions. In the 44-year period between 1951 and 1995 the observed average steepening of the longitudinal profile is ~0.6. The maximum elevation changes in the ablation and accumulation zones are -256 m and +75 m, respectively, suggesting corresponding average rates of elevation change of about -5.8 m/yr and +1.7 m/yr. These rates are 1.5-2 times higher than those indicated by the ground survey spot elevation measurements over the period 1975 to 2005. Considering the significant overlap of the two periods of measurement, the inferred average rates for 1951-1975 would have to be very large (-7.5 m/yr and +2.3 m/yr, respectively) for these two findings to be consistent. A second comparison with the recently released ASTER G-DEM (data from 2001) led to no glaciologically usable results due to major artifacts in the ASTER G-DEM. We therefore conclude that the 1951 U.S. Geological Survey map and the ASTER G-DEM both appear biased over the Black Rapids Glacier surface and caution is advised when using either for quantitative estimates of elevation change over the glacier surface.

Shugar, D. H.; Rabus, B.; Clague, J. J.

2009-12-01

271

Alaska Natives & the Land.  

ERIC Educational Resources Information Center

Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future

Arnold, Robert D.; And Others

272

Alaska Native Hispanic or  

E-print Network

fCOLLEGEo CHARLESTON American Indian or Alaska Native Asian Black or African American Hispanic Indian or Alaska Native Asian Black or African American Hispanic or Latino Native Hawaiian or Other Enrolled American Indian or Alaska Native Asian Black or African American Hispanic or Latino Native

Kunkle, Tom

273

Alaska's Economy: What's Ahead?  

ERIC Educational Resources Information Center

This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's

Alaska Review of Social and Economic Conditions, 1987

1987-01-01

274

UV - GLACIER NATIONAL PARK MT  

EPA Science Inventory

Brewer 134 is located in Glacier NP, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc. of ...

275

MOVEMENT OF WATER IN GLACIERS  

Microsoft Academic Search

A network of passages situated along three-grain intersections enables water to percolate through temperate glacier ice. The deformability of the ice allows the passages to expand and contract in response to changes in pressure, and melting of the passage walls by heat generated by viscous dissipation and carried by above-freezing water causes the larger passages gradually to increase in size

R. L. SHREVE

1972-01-01

276

Slow Surge of Trapridge Glacier  

NASA Astrophysics Data System (ADS)

Trapridge Glacier, Yukon, Canada, is a polythermal, soft-bedded surge-type glacier. As revealed by a 1951 aerial photograph, an important surge occurred in the 1940s, leaving the glacier heavily crevassed and at least 1 km downstream from the 1941 position. It is our conclusion that another surge, albeit far less dramatic, has been taking place over the last three decades and is now terminated. To quantify the changes in ice geometry, ground survey measurements were coupled with aerial photogrammetry to yield digital elevation models of the glacier from 1951 to present. For 1951, 1970, 1972, 1977 and 1981, years for which ground data are scarce or unavailable, DEMs were generated from stereographic analysis of aerial photographs. For the subsequent years, DEMs are obtained from ground survey data using our implementation of a Bayesian Kriging algorithm. For each year, the topography of the previous year is used as a background model and updated by the available survey data. This chain is initiated by the 1981 DEM obtained from aerial photogrammetry. Using exposed sections of the bed from the 1981 DEM and radar data, a map of the bed topography is obtained. Changes in the flow patterns are also investigated using an extended but variable array of flow markers. The results of this work indicate that the period from the previous surge to the present was characterized by two processes: 1) the deglaciation of the 1940s surge `receiving area' and 2) the slow advance of a mass wave from the upper reaches of the glacier. While it was previously believed that this mass reorganization was to precede a fast surge, it is now obvious that such a surge is not to happen. Ice velocity peaked at nearly 40 m/yr in the mid 1980s, fluctuated for the next 15 years and then dropped ca 2000 to reach ~10 m/yr in 2005. The bulge that formed in the 1980s at the transition between warm- and cold-based ice continued to propagate beyond the limits of the 1981 glacier. The glacier snout is currently ~200 m downstream from the 1981 terminus and not advancing. Together the DEMs and bed topography map enable us to characterize changes in the distribution and volume of ice, hydrological potential, and basal stress that accompanied the slow surge.

Frappe-Seneclauze, T.; Clarke, G. K.

2005-12-01

277

Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers  

NASA Astrophysics Data System (ADS)

Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs, such as coal beds and natural gas deposits. In the Arctic, permafrost and glaciers form a `cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. With a carbon store of over 1,200Pg, the Arctic geologic methane reservoir is large when compared with the global atmospheric methane pool of around 5Pg. As such, the Earth's climate is sensitive to the escape of even a small fraction of this methane. Here, we document the release of 14C-depleted methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska and Greenland, using aerial and ground surface survey data and in situ measurements of methane isotopes and flux. We mapped over 150,000 seeps, which we identified as bubble-induced open holes in lake ice. These seeps were characterized by anomalously high methane fluxes, and in Alaska by ancient radiocarbon ages and stable isotope values that matched those of coal bed and thermogenic methane accumulations. Younger seeps in Greenland were associated with zones of ice-sheet retreat since the Little Ice Age. Our findings imply that in a warming climate, disintegration of permafrost, glaciers and parts of the polar ice sheets could facilitate the transient expulsion of 14C-depleted methane trapped by the cryosphere cap.

Walter Anthony, Katey M.; Anthony, Peter; Grosse, Guido; Chanton, Jeffrey

2012-06-01

278

Quantifying Global Warming from the Retreat of Glaciers  

Microsoft Academic Search

Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure: one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last

Johannes Oerlemans

1994-01-01

279

Glaciers in the Rupal Valley (Nanga Parbat)  

NASA Astrophysics Data System (ADS)

The widely discussed controversy about Himalayan glacier changes instigated a current boom in studies on a regional scale. In contrast to often simplified assumptions of general and mostly rapid glacier retreat, recent studies show a more complex pattern with stable, advancing and retreating glaciers. Furthermore, changes of debris covered glaciers are discussed controversial. Due to the great vertical span and steep relief, large ice streams in the Himalaya and Karakoram are often primarily fed by avalanches. Their impact on glacier mass balances is often unconsidered in present studies. However, Hewitt (2014) highlighted the crucial role of snow and ice re-distribution by avalanches for Karakoram glaciers. He used a concept of glacier typology based on different nourishment processes introduced at the beginning of the 20th century. By using this concept, Hewitt classified large glaciers in order to identify the effect of avalanches on the mass balance, because many Karakoram glaciers show low down-wasting or even thickening processes described as the "Karakoram anomaly" (Hewitt 2005). Also in the Nanga Parbat region, the western corner of the High Himalaya, the topography is characterized by steep rock walls with vertical distances up to 4700 m. The debris covered glaciers reach down to 2920 m a.s.l. and are regularly fed by small and large avalanches. Our field based investigations show that the glaciers are characterized by small retreating rates since 1857, when Adolph Schlagintweit has mapped them for the first time; others such as the Raikot Glacier are fluctuating since 1934. Furthermore, the extent of down-wasting varies between different glaciers. By using multi-temporal satellite data, topographical maps, sketches and terrestrial photographs changes of glacier lengths were measured. In order to calculate the down-wasting rates, a digital elevation model (DEM) with a spatial resolution of 30x30 m was derived from the digitized contour lines of the topographic map of 1934 and compared to the SRTM-DEM. Furthermore, based on topographical parameters derived from the SRTM-DEM, the glaciers were classified, using Hewitt's concept. The area of steep rock walls and the ratio between accumulation and ablation zones were calculated for each glacier basin. References: Hewitt, K. 2005: The Karakoram anomaly? Glacier expansion and the 'elevation effect', Karakoram Himalaya. Mountain Research and Development 25 (4), S. 332-340 Hewitt, K. 2014: Glaciers of the Karakoram Himalaya: Glacial Environments, Processes, Hazards and Resources. Springer. Dordrecht.

Schmidt, Susanne; Nsser, Marcus

2014-05-01

280

UNIVERSITY OF ALASKA ANCHORAGE UNIVERSITY OF ALASKA ANCHORAGE  

E-print Network

UNIVERSITY OF ALASKA ANCHORAGE #12;UNIVERSITY OF ALASKA ANCHORAGE Dear Student, Congratulations on taking the first step toward becoming a college student. At the University of Alaska Anchorage, you Director of Admissions University of Alaska Anchorage Welcome to the UNIVERSITY OF ALASKA Anchorage! #12

Duddleston, Khrys

281

Page 1 Alaska Justice Forum ALASKA JUSTICE FORUM  

E-print Network

Page 1 Alaska Justice Forum ALASKA JUSTICE FORUM Fall 1999 UNIVERSITY OF ALASKA ANCHORAGE Vol. 16, No. 3 A Publication of the Justice Center Alaska Justice Statistical Analysis Unit Please see DWI Alaska 338 95.5 % Other (14 states) 16 4.5 Missing data 46 Table 2. Characteristics of DWI Arrestees

Pantaleone, Jim

282

Page 1 Alaska Justice Forum ALASKA JUSTICE FORUM  

E-print Network

Page 1 Alaska Justice Forum ALASKA JUSTICE FORUM Fall 1998 UNIVERSITY OF ALASKA ANCHORAGE Vol. 15, No. 3 A Publication of the Justice Center Alaska Justice Statistical Analysis Unit Please see Inmate in 1997 (page 2). An examination of probation revocation and ethnicity in Alaska (page 3). Current

Pantaleone, Jim

283

Recent acceleration of Thwaites Glacier  

NASA Technical Reports Server (NTRS)

The first velocity measurements for Thwaites Glacier were made by R. J. Allen in 1977. He compared features of Thwaites Glacier and Iceberg Tongue on aerial photography from 1947 and 1967 with 1972 Landsat images, and measured average annual displacements of 3.7 and 2.3 km/a. Using his photogrammetric experience and taking into consideration the lack of definable features and the poor control in the area, he estimated an average velocity of 2.0 to 2.9 km/a to be more accurate. In 1985, Lindstrom and Tyler also made velocity estimates for Thwaites Glacier. Using Landsat imagery from 1972 and 1983, their estimates of the velocities of 33 points ranged from 2.99 to 4.02 km/a, with an average of 3.6 km/a. The accuracy of their estimates is uncertain, however, because in the absence of fixed control points, they assumed that the velocities of icebergs in the fast ice were uniform. Using additional Landsat imagery in 1984 and 1990, accurate coregistration with the 1972 image was achieved based on fixed rock points. For the period 1972 to 1984, 25 points on the glacier surface ranged in average velocity from 2.47 to 2.76 km/a, with an overall average velocity of 2.62 +/- 0.02 km/a. For the period 1984 to 1990, 101 points ranged in velocity from 2.54 to 3.15 km/a, with an overall average of 2.84 km/a. During both time periods, the velocity pattern showed the same spatial relationship for three longitudinal paths. The 8-percent acceleration in a decade is significant. This recent acceleration may be associated with changes observed in this region since 1986. Fast ice melted and several icebergs calved from the base of the Iceberg Tongue and the terminus of Thwaites Glacier. However, as early as 1972, the Iceberg Tongue had very little contact with the glacier.

Ferrigno, J. G.

1993-01-01

284

Recent Observations and Structural Analysis of Surge-Type Glaciers in the Glacier Bay Area  

NASA Astrophysics Data System (ADS)

The Chugach-St.-Elias Mountains in North America hold the largest non-polar connected glaciated area of the world. Most of its larger glaciers are surge-type glaciers. In the summer of 2003, we collected aerial photographic and GPS data over numerous glaciers in the eastern St. Elias Mountains, including the Glacier Bay area. Observed glaciers include Davidson, Casement, McBride, Riggs, Cushing, Carroll, Rendu, Tsirku, Grand Pacific, Melbern, Ferris, Margerie, Johns Hopkins, Lamplugh, Reid, Burroughs, Morse, Muir and Willard Glaciers, of which Carroll, Rendu, Ferris, Grand Pacific, Johns Hopkins and Margerie Glaciers are surge-type glaciers. Our approach utilizes a quantitative analysis of surface patterns, following the principles of structural geology for the analysis of brittle-deformation patterns (manifested in crevasses) and ductile deformation patterns (visible in folded moraines). First results will be presented.

Mayer, H.; Herzfeld, U. C.

2003-12-01

285

Mapping Svalbard Glaciers with the Cryowing Uas  

NASA Astrophysics Data System (ADS)

The remoteness of most Svalbard glaciers makes it difficult to perform regular in situ monitoring, especially in the melting season. Terminus areas (into the sea) and crevassed areas are in practice only accessible from the air. In this paper, first investigations on the feasibility of UAS based 3D measurements of glacier elevation is performed. The results show that UAS can be a valuable tool for glacier measurements in remote areas like Svalbard, where the only real alternative to measure glacier elevation in the ablation zone during the melt season is by manned aircraft. Imagery from repeated observations within a few days can be used to estimate dynamic mass loss rates when coupled to 3D modeling and feature tracking. Retrieval of these data is valuable, especially for glaciers terminating in the sea and surging glaciers.

Solb, S.; Storvold, R.

2013-08-01

286

HIGH ICE, Continuation Some glacier image analysis capabilities  

E-print Network

, 20002000 lake outlines from Benn and others, 2000 #12;ASTER Level 2 relative DEM over western Axel Heiberg Island glaciers ASTER 3NASTER 3N #12;View from top ofView from top of Llewellyn GlacierLlewellyn Glacier

287

Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska  

NASA Astrophysics Data System (ADS)

The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

2009-12-01

288

Modeling of glacier bed topography from glacier outlines, central branch lines, and a DEM  

Microsoft Academic Search

Due to the expected future climate change, glacier ice as a resource will be further diminished and its sea-level rise contribution further increased. A key for a more accurate determination of future glacier evolution is to improve our currently sparse knowledge on glacier bedrock topography. Here, we present a simplified method implemented in a geographic information system to approximate subglacial

Frank Paul; Andreas Linsbauer

2012-01-01

289

Glacier Inventory Update at Popocatpetl volcano, Mexico by Digital Photogrammetry: Documentation of Glacier Extinction  

Microsoft Academic Search

Monitoring of glaciers at volcanoes at inter-tropical latitudes is very important for several reasons. Glacier fluctuations provide insights to the climate change in these latitudes. Also, inventory of glaciers at volcanoes allows evaluation of hazards during eruptive periods. However, glaciological work is a difficult task during eruptions and becomes hazardous to researchers. In this context, a tool such as digital

P. Julio-Miranda; H. Delgado-Granados; S. Ortega-del-Valle; C. Huggel

2001-01-01

290

The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula  

E-print Network

The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic ICESat-1 and NASA aircraft altimeter overflights spanning 2002­ 09 indicate that a region of lower Crane is not seen. Bathymetry in Crane Glacier fjord reveals a series of flat-lying, formerly subglacial deeps

Paris-Sud XI, Université de

291

The GAMDAM Glacier Inventory: a quality controlled inventory of Asian glaciers  

NASA Astrophysics Data System (ADS)

We present a new glacier inventory for the high mountain Asia named "Glacier Area Mapping for Discharge from the Asian Mountains" (GAMDAM). Glacier outlines were delineated manually using more than 226 Landsat ETM+ scenes from the period 1999-2003, in conjunction with a digital elevation model (DEM) and high-resolution Google Earth imagery. Geolocations are consistent between the Landsat imagery and DEM due to systematic radiometric and geometric corrections made by the United States Geological Survey. We performed repeated delineation tests and rigorous peer review of all scenes used in order to maintain the consistency and quality of the inventory. Our GAMDAM Glacier Inventory (GGI) includes 82776 glaciers covering a total area of 87507 13126 km2 in the high mountain Asia. Thus, our inventory represents a greater number (+4%) of glaciers but significantly less surface area (-31%) than a recent global glacier inventory (Randolph Glacier Inventory, RGI). The employed definition of the upper boundaries of glaciers, glacier recession since the 1970s, and misinterpretation of seasonal snow cover are likely causes of discrepancies between the inventories, though it is difficult to evaluate these effects quantitatively. The GGI will help improve the temporal consistency of the RGI, which incorporated glacier outlines from the 1970s for the Tibetan Plateau, and will provide new opportunities to study Asian glaciers.

Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; Tsunematsu, K.; Tshering, P.; Fujita, K.

2014-06-01

292

Antarctica: measuring glacier velocity from satellite images  

SciTech Connect

Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

Lucchitta, B.K.; Ferguson, H.M.

1986-11-28

293

Antarctica: Measuring glacier velocity from satellite images  

USGS Publications Warehouse

Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

Lucchitta, B. K.; Ferguson, H. M.

1986-01-01

294

FIRE_CI1_SRB_ALASKA  

FIRE_CI1_SRB_ALASKA Project Title: FIRE I CIRRUS Discipline: ... Guide Documents: SRB Data Set Guide - Alaska, Canada, So Pole, Switz Readme Files: Readme SRB Alaska Header SRB Alaska Table of Contents SRB Alaska ...

2014-05-06

295

Internationally coordinated glacier monitoring: strategy and datasets  

NASA Astrophysics Data System (ADS)

Internationally coordinated monitoring of long-term glacier changes provide key indicator data about global climate change and began in the year 1894 as an internationally coordinated effort to establish standardized observations. Today, world-wide monitoring of glaciers and ice caps is embedded within the Global Climate Observing System (GCOS) in support of the United Nations Framework Convention on Climate Change (UNFCCC) as an important Essential Climate Variable (ECV). The Global Terrestrial Network for Glaciers (GTN-G) was established in 1999 with the task of coordinating measurements and to ensure the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. The basic monitoring principles must be relevant, feasible, comprehensive and understandable to a wider scientific community as well as to policy makers and the general public. Data access has to be free and unrestricted, the quality of the standardized and calibrated data must be high and a combination of detailed process studies at selected field sites with global coverage by satellite remote sensing is envisaged. Recently a GTN-G Steering Committee was established to guide and advise the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. Several online databases containing a wealth of diverse data types having different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. For world-wide inventories, data are now available through (a) the World Glacier Inventory containing tabular information of about 130,000 glaciers covering an area of around 240,000 km2, (b) the GLIMS-database containing digital outlines of around 118,000 glaciers with different time stamps and (c) the Randolph Glacier Inventory (RGI), a new and globally complete digital dataset of outlines from about 180,000 glaciers with some meta-information, which has been used for many applications relating to the IPCC AR5 report. Concerning glacier changes, a database (Fluctuations of Glaciers) exists containing information about mass balance, front variations including past reconstructed time series, geodetic changes and special events. Annual mass balance reporting contains information for about 125 glaciers with a subset of 37 glaciers with continuous observational series since 1980 or earlier. Front variation observations of around 1800 glaciers are available from most of the mountain ranges world-wide. This database was recently updated with 26 glaciers having an unprecedented dataset of length changes from from reconstructions of well-dated historical evidence going back as far as the 16th century. Geodetic observations of about 430 glaciers are available. The database is completed by a dataset containing information on special events including glacier surges, glacier lake outbursts, ice avalanches, eruptions of ice-clad volcanoes, etc. related to about 200 glaciers. A special database of glacier photographs contains 13,000 pictures from around 500 glaciers, some of them dating back to the 19th century. A key challenge is to combine and extend the traditional observations with fast evolving datasets from new technologies.

Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Grtner-Roer, Isabelle; Haeberli, Wilfried; Kb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael

2014-05-01

296

ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE  

E-print Network

, the loved ones of a murder victim seeking justice, the couple tangled in a divorce, the adult child seeking these decisions have on parents and children. The Alaska Family Law Self-Help Center estimates that 25 per- cent

Pantaleone, Jim

297

Subglacial drainage processes at a High Arctic polythermal valley glacier  

E-print Network

, polythermal valley glacier situated in eastern Ellesmere Island, Nunavut, Canada (Fig. 1). The specific Glacier, Ellesmere Island, Canada, were designed to investigate the character of the subglacial drainage

298

Integration of glacier databases within the Global Terrestrial Network for Glaciers (GTN-G)  

NASA Astrophysics Data System (ADS)

Changes in glaciers and ice caps provide some of the clearest evidence of climate change and have impacts on global sea level fluctuations, regional hydrological cycles and local natural hazard situations. Internationally coordinated collection and distribution of standardized information about glaciers and ice caps was initiated in 1894 and is today coordinated within the Global Terrestrial Network for Glaciers (GTN-G). A recently established GTN-G Steering Committee coordinates, supports and advices the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC) and the Global Land Ice Measurements from Space (GLIMS) initiative. In this presentation, we provide an overview of (i) the integration of the various operational databases, (ii) the development of a one-stop web-interface to these databases, and (iii) the available datasets. By joint efforts consistency and interoperability of the different glacier databases is elaborated. Thereby, the lack of a complete worldwide, detailed glacier inventory as well as different historical developments and methodological contexts of the datasets are major challenges for linking individual glaciers throughout the databases. A map-based web-interface, implemented based on OpenLayer 2.0 and Web Map/Feature Services, is elaborated to spatially link the available data and to provide data users a fast overview of all available data. With this new online service, GTN-G provides fast access to information on glacier inventory data from 100,000 glaciers mainly based on aerial photographs and from 80,000 glaciers mainly based on satellite images, length change series from 1,800 glaciers, mass balance series from 230 glaciers, special events (e.g., hazards, surges, calving instabilities) from 130 glaciers, as well as 10,000 photographs from some 470 glaciers.

Zemp, M.; Raup, B. H.; Armstrong, R.; Ballagh, L.; Grtner-Roer, I.; Haeberli, W.; Hoelzle, M.; Kb, A.; Kargel, J.; Paul, F.

2009-04-01

299

The Alaska Climate Research Center  

NSDL National Science Digital Library

The University of Fairbanks's Alaska Climate Research Center offers a host of materials about its climate research and about Alaska's climate in general. The website supplies abstracts of the Center's research projects such as _The Urban Heat Island Effect at Fairbanks, Alaska_ and _Radiation Climatology of Alaska_. Researchers can find data and statistics on Alaska's temperature, humidity, precipitation, cloudiness, pressure, and wind. The website provides Climographs for various areas throughout the state. Students can discover how latitude, continentiality, and elevation affect Alaska's climate.

300

Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.  

PubMed

The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 24%. PMID:25123485

Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

2014-08-22

301

A possible Younger Dryas record in southeastern Alaska  

SciTech Connect

A stratigraphic record of climatic cooling equal in timing and severity to the Younger Dryas event of the North Atlantic region has been obtained form lacustrine sediments in the Glacier Bay area of southeastern Alaska. Fossil pollen show that a late Wisconsin pine parkland was replaced about 10,800 years ago by shrub- and herb-dominated tundra, which lasted until about 9,800 years ago. This vegetational change is matched by geochemical evidence for loss of organic matter from catchment soils and increased mineral erosion. If this event represents the Younger Dryas, then an explanation for a hemisphere-wide propagation of a North Atlantic climatic perturbation must be sought.

Engstrom, D.R.; Hansen, B.C.S.; Wright, H.E. Jr. (Univ. of Minnesota, Minneapolis (United States))

1990-12-07

302

Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture  

NASA Technical Reports Server (NTRS)

The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

1991-01-01

303

A Possible Younger Dryas Record in Southeastern Alaska  

NASA Astrophysics Data System (ADS)

A stratigraphic record of climatic cooling equal in timing and severity to the Younger Dryas event of the North Atlantic region has been obtained from lacustrine sediments in the Glacier Bay area of southeastern Alaska. Fossil pollen show that a late Wisconsin pine parkland was replaced about 10,800 years ago by shrub- and herb-dominated tundra, which lasted until about 9,800 years ago. This vegetational change is matched by geochemical evidence for loss of organic matter from catchment soils and increased mineral erosion. If this event represents the Younger Dryas, then an explanation for a hemisphere-wide propagation of a North Atlantic climatic perturbation must be sought.

Engstrom, D. R.; Hansen, B. C. S.; Wright, H. E., Jr.

1990-12-01

304

Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models  

NASA Astrophysics Data System (ADS)

A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 41 mm (RCP4.5) and 216 44 mm (RCP8.5) over the period 2006-2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of 84 mm sea-level rise by 2100 for each projection.

Radi?, Valentina; Bliss, Andrew; Beedlow, A. Cody; Hock, Regine; Miles, Evan; Cogley, J. Graham

2014-01-01

305

Arctic Warming and Sea Ice Diminution Herald Changing Glacier and Cryospheric Hazard Regimes  

NASA Astrophysics Data System (ADS)

The recent expansion of summertime melt zones in both Greenland and some Arctic ice caps, and the clearing of perennial sea ice from much of the Arctic, may presage more rapid shifts in mass balances of land ice than glaciologists had generally expected. The summer openings of vast stretches of open water in the Arctic, particularly in straits and the Arctic Ocean shores of the Queen Elizabeth Islands and along some Greenland coastal zones, must have a large impact on summer and early autumn temperatures and precipitation now that the surface boundary condition is no longer limited by the triple-point temperature and water-vapor pressure of H2O. This state change in the Arctic probably is part of the explanation for the expanded melt zones high in the Greenland ice sheet. However, Greenland and the Canadian Arctic are vast regions subject to climatic influences of multiple marine bodies, and the situation with sea ice and climate change remains heterogeneous, and so the local climate feedbacks from sea ice diminution remain patchy. Projected forward just a few decades, it is likely that sea ice will play a significant role in the Queen Elizabeth Islands and around Greenland only in the winter months. The region is in the midst of a dramatic climate change that is affecting the mass balances of the Arctic's ice bodies; some polar-type glaciers must be transforming to polythermal, and polythermal ones to maritime-temperate types. Attendant with these shifts, glacier response times will shorten, the distribution and sizes of glacier lakes will change, unconsolidated debris will be debuttressed, and hazards-related dynamics will shift. Besides changes to outburst flood, debris flow, and rock avalanche occurrences, the tsunami hazard (with ice and debris landslide/avalanche triggers) in glacierized fjords and the surge behaviors of many glaciers is apt to increase or shift locations. For any given location, the past is no longer the key to the present, and the present is not the key to future behavior of ice in this region. Hence, as major infrastructural development and population increases, careful consideration must be given to changing dynamics of the cryospheric landscape system. Glacier lake outburst floods never have been important considerations in most of the Canadian Arctic/Greenland region due both to sparseness of population and infrastructure and low frequency and distribution of occurrence of potentially hazardous glacier dynamics. This may no longer be the case; in particular, many lakes are starting to develop where previously they were small, few, or absent; furthermore, the conditions tending toward reduction in ice flow, thinning glaciers, and debris accumulation that commonly precede lake development are now widely present. 20th century maritime glacierized parts of Alaska may be a model for the 21st century Queen Elizabeth Islands and Greenland. In Alaska, the fury and impact of glacier lake outburst floods felt in other parts of the world have largely been mitigated by wise and limited development patterns. This can hold true for Arctic Canada and Greenland this century if consideration is given to the changing crysophere.

Kargel, Jeffrey; Bush, Andrew; Leonard, Gregory

2013-04-01

306

Himalayan glacier retreat delayed by debris cover  

Microsoft Academic Search

Variable retreat rates and paucity of mass-balance data complicate a coherent picture of the current state and future fate of Himalayan glaciers. We report frontal changes and remotely-sensed surface velocities from >250 glaciers in the greater Himalayan realm (Hindu Kush, Karakoram, Himalaya, West Kunlun Shan) between 2000 and 2008 that provide evidence for widespread meltdown, which is obscured by debris

D. Scherler; B. Bookhagen; M. R. Strecker

2010-01-01

307

Muir Glacier and Muir Inlet 2003  

USGS Multimedia Gallery

This photo was taken in September 2003; in the 23 years between photographs, Muir Glacier has retreated more than a mile and ceased to have a tidewater terminus. Since 1980, Muir Glacier has thinned by more than 600 ft, permitting a view of a mountain with a summit elevation of greater than 4000 ft,...

308

Using Metaphorical Models for Describing Glaciers  

ERIC Educational Resources Information Center

To date, there has only been little conceptual change research regarding conceptions about glaciers. This study used the theoretical background of embodied cognition to reconstruct different metaphorical concepts with respect to the structure of a glacier. Applying the Model of Educational Reconstruction, the conceptions of students and scientists

Felzmann, Dirk

2014-01-01

309

A summary of ERTS data applications in Alaska  

NASA Technical Reports Server (NTRS)

ERTS has proven to be an exceedingly useful tool for the preparation of urgently needed resource surveys in Alaska. For this reason the wide utilization of ERTS data by federal, state and industrial agencies in Alaska is increasingly directed toward the solution of operational problems in resource inventories, environmental surveys, and land use planning. Examples of some applications are discussed in connection with surveys of potential agricultural lands; mapping of predicted archaeological sites; permafrost terrain and aufeis mapping; snow melt enhancement from Prudhoe Bay roads; geologic interpretations correlated ith possible new petroleum fields, with earthquake activity, and with plate tectonic motion along the Denali fault system; hydrology in monitoring surging glaciers and the break-up characteristics of the Chena River watershed; sea-ice morphology correlated with marine mammal distribution; and coastal sediment plume circulation patterns.

Miller, J. M.; Belon, A. E.

1974-01-01

310

GLACIER PEAK ROADLESS AREA, WASHINGTON.  

USGS Publications Warehouse

A mineral survey outlined areas of mineral-resource potential in the Glacier Peak Roadless Area, Washington. Substantiated resource potential for base and precious metals has been identified in four mining districts included in whole or in part within the boundary of the roadless area. Several million tons of demonstrated base- and precious-metal resources occur in numerous mines in these districts. Probable resource potential for precious metals exists along a belt of fractured and locally mineralized rock extending northeast from Monte Cristo to the northeast edge of the roadless area.

Church, S.E.; Johnson, F.L.

1984-01-01

311

Page 1 Alaska Justice Forum ALASKA JUSTICE FORUM  

E-print Network

Page 1 Alaska Justice Forum ALASKA JUSTICE FORUM Winter 2001 UNIVERSITY OFALASKAANCHORAGE Vol. 17, No. 4 A Publication of the Justice Center Alaska Justice Statistical Analysis Unit Please see Circle in Alaska (page 2). � Justice Center paralegal students participate in service learning project (page 4

Pantaleone, Jim

312

Radio-echo sounding of Caucasus glaciers  

NASA Astrophysics Data System (ADS)

Accurate glacier volume and ice-thickness estimations are highly important for many glaciological applications. Recent glacier reduction is affecting local river discharge and contributes to the global sea level rise. However, direct measurements of ice thickness are very sparse due to its high cost and laboriousness. One of the glacierized mountain regions with a lack of direct ice-thickness measurements is Caucasus. So far data for several seismic and GPR profiles have been reported for only 3 glaciers from more than 1.7 thousands located in Caucasus. In 2010-2012 a number of ground base and airborne radio-echo sounding surveys have been accomplished in Caucasus Mountains using 20 MHz monopulse radar VIRL-6. Special aerial version of this ground penetrating radar was designed for helicopter-born measurements. The radar has a relatively long (10 m) receiving and transmitting antennas, which together with receiving, recording and transmitting devices can be mounted on a special girder, being suspended from a helicopter. VIRL-6 radar is light weight and can be quickly transformed into ground version. Equipment has been used on 16 glaciers including biggest glacier in Caucasus - Bezengi (36 km2) most of which have a highly crevassed surfaces and heterogeneous internal structure. Independent data were obtained also for two glaciers using ground version of the same VIRL-6 radar. In total more than 120 km of radar profiles were obtained. Results showed good agreement between ground and aerial measurements. Ice-thickness values exceeded 420 m for some of the Central Caucasus glaciers. Successful use of VIRL-6 radar in Caucasus opens up the possibility of using such equipment on different types of glaciers in polar and mountain regions, including temperate, polythermal and surging glaciers.

Lavrentiev, Ivan; Kutuzov, Stanislav; Vasilenko, Evgeny; Macheret, Yuri

2013-04-01

313

Geologic map of the Gulkana B-1 quadrangle, south-central Alaska  

SciTech Connect

The quadrangle includes the Capital Mountain Volcano and the northern part of Mount Sanford Volcano in the Wrangell Mountains of south-central Alaska. The Capital Mountain volcano is a relatively small, andesitic shield volcano of Pleistocene age, which contains a 4-km-diameter summit caldera and a spectacular post-caldera radial dike swam. Lava flows from the younger Pleistocene Mount Sanford Volcano overlap the south side of the Capital Mountain Volcano. Copper-stained fractures in basaltic andesite related to a dike-filled rift of the North Sanford eruptive center are the only sign of mineralization in the quadrangle. Rock glaciers, deposits of Holocene and Pleistocene valley glaciers and Pleistocene Copper River basin glaciers mantle much of the volcanic bedrock below elevations of 5,500 ft.

Richter, D.H.; Ratte, J.C.; Schmoll, H.R.; Leeman, W.P.; Smith, J.G.; Yehle, L.A.

1989-01-01

314

ALASKA CRUISE SHIP INITIATIVE  

EPA Science Inventory

During the course of the annual vacation season, luxury cruise ships carrying up to 3000 passengers visit the coastal cities and small towns of Alaska. Alaska is the first state to impose regulations requiring such vessels to submit to inspection and monitoring of gray water and...

315

Alaska drilling\\/production  

Microsoft Academic Search

Alaska overtook Louisiana in 1979 to become the number 2 oil producing state in the US. The Prudhoe Bay field, largest ever discovered in the US, supplied most of the oil, and it was transported to market along the Trans-Alaska Pipeline system with an assist from drag reduction additives. Wildcatters are continuing to search for new fields from lower Cook

Rintoul

1980-01-01

316

Renewable Energy in Alaska  

SciTech Connect

This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

Not Available

2013-03-01

317

A 1500-year record of temperature and glacial response inferred from varved Iceberg Lake, southcentral Alaska  

Microsoft Academic Search

We present a varve thickness chronology from glacier-dammed Iceberg Lake in the southern Alaska icefields. Radiogenic evidence confirms that laminations are annual and record continuous sediment deposition from A.D. 442 to A.D. 1998. Varve thickness is positively correlated with Northern Hemisphere temperature trends, and more strongly with a local, ?600 yr long tree ring width chronology. Varve thickness increases in

Michael G. Loso; Robert S. Anderson; Suzanne P. Anderson; Paula J. Reimer

2006-01-01

318

Mapping Glacier Data and Photographs via GeoServer and Virtual Globes  

Microsoft Academic Search

Two extensively used glacier data sets include the World Glacier Inventory and the Glacier Photograph Collection. Both data sets are hosted at the National Snow and Ice Data Center in Boulder, Colorado. The World Glacier Inventory encompasses over 100,000 records of glacier data and the Glacier Photograph Collection houses approximately 9,000 digitized photographs. The online Glacier Photograph Collection has doubled

L. M. Ballagh; I. Wang; A. Wallace

2008-01-01

319

Alaska Historical Society  

NSDL National Science Digital Library

This visually arresting site from the Alaska Historical Society is a superb resource for teachers of history and social studies, or for anyone fascinated by the 49th state. Discover Alaskaâs History is a great place to start. After perusing the FAQs, readers may wish to look at the subheading, For Teachers and Students, where Alaskan history has been divided into easily digestible categories such as 1989 Exxon Valdez Oil Spill, Great Alaska Earthquake of 1964, and Alaska Statehood and Constitutional Convention 1955/1956, with corresponding articles and links. The For Researchers section offers links to helpful resources around the web. The weekly AHS Blog is a well-composed and informative romp through Alaskaâs past, with posts covering canneries and gold camps, baseball and boats.

320

Alaska Volcano Observatory  

NSDL National Science Digital Library

This is the homepage of the Alaska Volcano Observatory, a joint program of the United States Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). Users can access current information on volcanic activity in Alaska and the Kamchatka Penninsula, including weekly and daily reports and information releases about significant changes in any particluar volcano. An interactive map also directs users to summaries and activity notifications for selected volcanoes, or through links to webcams and webicorders (recordings of seismic activity). General information on Alaskan volcanoes includes descriptions, images, maps, bibliographies, and eruptive histories. This can be accessed through an interactive map or by clicking on an alphabetic listing of links to individual volcanoes. There is also an online library of references pertinent to Quaternary volcanism in Alaska and an image library.

321

Glacier Change in the Rwenzori Mountains, East Africa  

Microsoft Academic Search

In East Africa glaciers currently exist on Mt. Kilimanjaro and Mt. Kenya, and in the Rwenzori Mountains. While the Mt. Kilimanjaro and Mt. Kenya glaciers have been the subject of many recent studies, the glaciers in the Rwenzori Range are less thoroughly studied. This study reexamines the satellite record of retreat of these glaciers, as well as the climatic factors

J. L. Kincaid; A. G. Klein

2007-01-01

322

Alaska Airlines Operating costs and  

E-print Network

SYS-461 Alaska Airlines Operating costs and Productivity Daric Megersa #12;Airline Business Model-largest U.S. carrier · Founded: 1932, in Anchorage, Alaska · Hubs: Seattle (main hub); Anchorage, Alaska expense, interest capitalized and some other costs · The trend shows that Alaska airlines has shown

323

Wildlife Biologist Delta Junction, Alaska  

E-print Network

Wildlife Biologist Delta Junction, Alaska POSITION A Wildlife Biologist (Research Associate II). This position is located at Donnelly Training Area, Delta Junction, Alaska. ORGANIZATION CEMML is a research south of Delta Junction in Alaska and is located approximately 100 miles southeast of Fairbanks, Alaska

324

Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland  

Microsoft Academic Search

Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with

M. Nettles; T. B. Larsen; P. Elsegui; G. S. Hamilton; L. A. Stearns; A. P. Ahlstrm; J. L. Davis; M. L. Andersen; J. de Juan; S. A. Khan; L. Stenseng; G. Ekstrm; R. Forsberg

2008-01-01

325

Sensitivity of glaciers and small ice caps to greenhouse warming  

Microsoft Academic Search

Recent field programs on glaciers have supplied information that makes simulation of glacier mass balance with meteorological models meaningful. An estimate of world-wide glacier sensitivity based on a modeling study of 12 selected glaciers situated in widely differing climatic regimes shows that for a uniform 1 K warming the area-weighted glacier mass balance will decrease by 0.40 meter per year.

J. Oerlemans; J. P. F. Fortuin

1992-01-01

326

Central Himalayan Glaciers and Climate Change- Pinder Glacier- A preliminary study  

NASA Astrophysics Data System (ADS)

Glaciers in the Indian Himalayan Region (IHR) are the prime lifeline of Indian Subcontinent. There are about nine thousand glaciers of different size in this region. It is located within the latitudes 270N to 360N and longitude 720E to 960E. The second largest glacier, outside the polar and sub polar regions, Siachen glacier of length 74 km, is located in IHR. Many rivers in this continent originated from these glaciers. Study on the fluctuations especially of the snow cover and related parameters are important for the proper management of these rivers. Annual balance, fluctuations of glaciers, hydrological behaviour and the assessment of the winter snow pack are also critical for the proper flow and control of Himalayan Rivers. There are many hydroelectric and irrigation facilities in these snow fed rivers. Glacial melt is important as far as the river flow is concerned. Researchers had observed that the glacial mass balance has been found to show an inverse relationship with the monsoon. Glacial hydrometry and glacial melt are important aspects as far the studies of glaciers in this region. Himalayan glaciers are also important for ecosystem stability. In this perspective attempts had been made to examine the various environmental parameters of Pindari glacier and the upper reaches of the Pindari river. Pindari glacier is located in the Central Himalayan region. It is of length 8 Km. A few records available with Geological Survey of India for a period of hundred years reveals that Pindari glacial have an annual retreat of 8-10 M. Pindrai glacier had retreated about 425 M with in a period of fifty seven years. Pindari river originates from the buffer zone of Nanda Devi Biosphere Reserve (NDBR) and is located in the lower regime of Pindari glacier. It is one of the prominent tributaries of Alaknanda. Tributaries of Pindari river are from Maktoli glacier, Kafani glacier and Sunderdhunga glacier. The changes in the Pindiari catchment area had been examined from the year 1990. Remote Sensing data of different years were used to analyze the changes in aerial extent of the pindari glacier. Pindari landscap is formed by the combined geomorphological process of fluvial and glacial. These processes are also maintaining the ecosystem balance of the catchment area. Snow covers area of this higher landscapet had been reduced considerably. The timberline of this region is shifting upper side of the glaciers, whereas the equilibrium line is also retreating. The spatial invasion in timber line and the retreat of the equilibrium line will further establish the negative mass balance of this glacier. However, the climatic variation may exacerbate the ecosystem balance of the region. All the reports on the glaciers in IHR regions review a negative mass balance and annual retreat up the glaciers. The observation records of these glaciers in IHR are about a period of hundred years this is quite in sufficient it establishes the relation between climate change and the glaciers retreat. However it is a known fact that the impact of rise in temperature due to anthropogenic effect may overstretch the rate the natural process of glacier retreat. The present study also discusses the unique phenomena of glacier melt due to climatic variations and its catastrophe.

Pillai, J.; Patel, L. K.

2011-12-01

327

Interaction between glacier and glacial lake in the Bhutan, Himalaya  

NASA Astrophysics Data System (ADS)

Recession of mountain glaciers in the Himalayas has been reported in the context of global warming. Associated with the glacier retreat, supraglacial lakes have been formed on the termini of debris-covered glaciers. Although it has been said that lake-terminating glaciers flow faster than land-terminating glaciers, observational evidence was scarce. We observationally investigated the influence of the presence/absence of glacial lakes on changes in surface elevation through glacier dynamics in two debris-covered glaciers, Thorthormi Glacier (land-terminating) and Lugge Glacier (lake-terminating), in the Lunana region, the Bhutan Himalaya. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier was much more negative than that of the land-terminating Thorthormi Glacier. Considering almost flat slope and location at lower elevation, however, larger ice thinning rate of the Thorthormi Glacier should have been expected than the Lugge Glacier. We measured surface flow speed of the two glaciers during 2009-2010 by multitemporal orthorectified The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) images of ALOS. Surface flow speed of the Thorthormi Glacier was faster in the upper reaches and reduced toward the downstream. In contrast, the flow speed at the Lugge Glacier measured in the same periods was greatest at the lower most part. Observed spatial distribution of surface flow speed at both glaciers are evaluated by a two-dimensional numerical flow model. The model shows that contribution of basal sliding to surface flow velocity is large in the lower part of both glaciers. Particularly in the Thorthormi Glacier, approximately 100% of surface flow velocity attribute to basal sliding. Calculated emergence velocity at the Thorthormi Glacier is larger than that at the Lugge Glacier. This result suggests that decreasing in flow velocity towards the terminus in the Thorthormi Glacier causes compressive flow and thus counterbalances surface melting, resulting in inhibition of the surface lowering. In contrast, the extensional flow of the Lugge Glacier accelerated the surface lowering. In this study we show the observational evidences, in which the glacier lake formation makes contrast the thinning rates of glaciers in the Bhutan Himalaya. If the supraglacial lake on Thorthormi Glacier expands, the surface lowering will be accelerated in the future.

Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Sugiyama, S.; Komori, J.; Takenaka, S.; Tshering, P.

2012-12-01

328

Repeat Photography of Alaskan Glaciers and Landscapes as Both Art and as a Means of Communicating Climat Change  

NASA Astrophysics Data System (ADS)

For nearly 15 years, I have used repeat photography of Alaskan glaciers and landscapes to communicate to fellow scientists, policymakers, the media, and society that Alaskan glaciers and landscapes have been experiencing significant change in response to post-Little Ice Age climate change. I began this pursuit after being contacted by a U.S. Department of the Interior senior official who requested unequivocal and unambiguous documentation that climate change was real and underway. After considering several options as to how best respond to this challenge, I decided that if a picture is worth a thousand words, then a pair of photographs, both with the same field of view, spanning a century or more, and showing dramatic differences, would speak volumes to documenting that dynamic climate change is occurring over a very broad region of Alaska. To me, understating the obvious with photographic pairs was the best mechanism to present irrefutable, unambiguous, nonjudgmental, as well as unequivocal visual documentation that climate change was both underway and real. To date, more than 150 pairs that meet these criteria have been produced. What has surprised me most is that the many of the photographs contained in the pairs present beautiful images of stark, remote landscapes that convey the majestic nature of this dynamic region with its unique topography and landscapes. Typically, over periods of just several decades, the photographed landscapes change from black and white to blue and green. White ice becomes blue water and dark rock becomes lush vegetation. Repeat photography is a technique in which a historical photograph and a modern photograph, both having the same field of view, are compared and contrasted to quantitatively and qualitatively determine their similarities and differences. I have used this technique from both ground-based photo stations and airborne platforms at Alaskan locations in Kenai Fjords National Park, Glacier Bay National Park and Preserve, Wrangell-St. Elias National Park and Preserve, Denali National Park and Preserve, the northern and northwestern Prince William Sound area of the Chugach National Forest, and the Mendenhall Glacier area of the Tongass National Forest to document and determine the extent of changing glaciers and landscapes. The use of repeat photography to document temporal change is not new. It originated as a glacier-monitoring technique in the European Alps more than 150 years ago. What is unique in this Alaskan application of repeat photography is the systematic approach being used to obtain photographic documentation of glacier and landscape change for every glacier-hosting fiord in western southcentral Alaska, as well as at many Alaskan valley glacier sites. What is also unique is the development of an annotated website which presents many pairs of these photographs as well as ancillary materials to help convey the basics of Alaskan glaciers and climate change. The website, titled 'Glacier and Landscape Change in Response to Changing Climate', (http://www.usgs.gov/climate_landuse/glaciers/) was awarded the 2010 USGS Shoemaker External Communications Award.

Molnia, B. F.

2013-12-01

329

UNIVERSITY of ALASKA ANCHORAGE ALASKA JUSTICE FORUM  

E-print Network

Vol. 27, No. 1 Please see Sex offenders, page 7 Sex Offenders in the Alaska Juvenile Justice System offenders at the McLaughlin Youth Center (MYC) who participated in the sex offender treatment program and were released during the period July 1, 2004 � June 20, 2007. All of the 29 juvenile sex offenders

Pantaleone, Jim

330

Alaska Resource Data File, Juneau quadrangle, Alaska  

USGS Publications Warehouse

Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

Barnett, John C.; Miller, Lance D.

2003-01-01

331

ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE  

E-print Network

that prosecution rates in Alaska were even higher than the national average prosecution rates reported by Gar- ner Vol. 26, No. 3 Please see DV cases, page 8 HIGHLIGHTS INSIDE THIS ISSUE � An examination of attrition was not rare, but acknowledged that prosecution rates varied considerably across jurisdic- tions. They also

Pantaleone, Jim

332

ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE  

E-print Network

Justice Minority youths in Anchorage are re- ferred to the Alaska Division of Juvenile Justice (DJJ that looked at referrals on a statewide basis in the 1990s. The 2002 Juvenile Justice and Delin- quency disproportion- ate minority contact in the field of juvenile justice. Numerous studies have shown

Pantaleone, Jim

333

AVO: Alaska Volcano Observatory  

NSDL National Science Digital Library

This site illustrates the Alaska Volcano Observatory's (AVO) objective to monitor Alaska's volcanoes for the purpose of forecasting volcanic activity and alleviating hazards. AVO's seismometers and satellite imagery allow visitors to obtain current information on selected volcanoes. Because AVO is responsible for volcanic emergencies, people in Alaska can visit the Web site to determine their vulnerability. The site also features AVO's research in geological mapping, modeling of magnetic systems, and development of new instrumentation for predication and interpretation of volcanic unrest. Everyone can appreciate the images of past volcanic eruptions.

334

Alaska Science Forum  

NSDL National Science Digital Library

The Alaska Science Forum Web site is provided by the Geophysical Institute of the University of Alaska Fairbanks. The forum consists of articles written about various science subjects by scientists from the Geophysical Institute. Categories include the aurora, earthquakes, fun science facts, historic Alaska, mountains, rocks and geology, volcanoes, weather, and more. One of the latest articles, by Ned Rozell, is titled: Bogs, Permafrost and the Global Carbon Equation. Each of the articles is listed along with the author's name and a direct link to the online publication, most of which are fairly short and geared towards nonscientists making reading easy and interesting. [JAB

335

Modeled Climate-Induced Glacier Change in Glacier National Park, 1850--2100  

NSDL National Science Digital Library

This peer-reviewed article from BioScience journal is about the glacier change in Glacier National park. The glaciers in the Blackfoot--Jackson Glacier Basin of Glacier National Park, Montana, decreased in area from 21.6 square kilometers (km2) in 1850 to 7.4 km2 in 1979. Over this same period global temperatures increased by 0.45 degrees C (+/- 0.15 degrees C). We analyzed the climatic causes and ecological consequences of glacier retreat by creating spatially explicit models of the creation and ablation of glaciers and of the response of vegetation to climate change. We determined the melt rate and spatial distribution of glaciers under two possible future climate scenarios, one based on carbon dioxide--induced global warming and the other on a linear temperature extrapolation. Under the former scenario, all glaciers in the basin will disappear by the year 2030, despite predicted increases in precipitation; under the latter, melting is slower. Using a second model, we analyzed vegetation responses to variations in soil moisture and increasing temperature in a complex alpine landscape and predicted where plant communities are likely to be located as conditions change.

MYRNA H. P. HALL and DANIEL B. FAGRE (;)

2002-02-01

336

Marine predator surveys in Glacier Bay National Park and Preserve  

USGS Publications Warehouse

Since 1999, vessel based surveys to estimate species composition, distribution and relative abundance of marine birds and mammals have been conducted along coastal and pelagic (offshore) transects in Glacier Bay, Alaska. Surveys have been conducted during winter (November-March) and summer (June). This annual report presents the results of those surveys conducted in March and June of 2001. Following completion of surveys in 2002 we will provide a final report of the results of all surveys conducted between 1999 and 2002. Glacier Bay supports diverse and abundant assemblages of marine birds and mammals. In 2001 we identified 58 species of bird, 7 species of marine mammal, and 6 species of terrestrial mammal on transects sampled during winter and summer. Of course all species are not equally abundant. Among all taxa, in both seasons, sea ducks were the numerically dominant group. In their roles as consumers and because of their generally large size, marine mammals are also likely important in the consumption of energy produced in the Glacier Bay ecosystem. Most common and abundant marine birds and mammals can be placed in either a fish based (e.g. alcids and pinnipeds), or a benthic invertebrate (e.g. sea ducks and sea otters) based food web. Distinct differences in the species composition and abundance of marine birds were observed between winter and summer surveys. Winter marine bird assemblages were dominated numerically (> 11,000; 65% of all birds) by a relatively few species of sea ducks (scoters, goldeneye, Bufflehead, Harlequin and Long-tailed ducks). The sea ducks were distributed almost exclusively along near shore habitats. The prevalence of sea ducks during the March surveys indicates the importance of Glacier Bay as a wintering area for this poorly understood group of animals that occupy a high trophic position in a principally benthic invertebrate (mussel and clam) food web. Marine mammal assemblages were generally consistent between seasons, although Humpback and Killer whales were not observed in winter 2001. Summer marine bird assemblages remained numerically dominated by sea ducks, but species composition shifted between the goldeneye whose density was 44/m2 in winter to 2 in summer, to scoters, whose density was 29/m2 in winter to > 60/m2 in summer. Large increases in Black-legged kittiwake, murrelet (Marbled and Kittlitzs) and Common merganser densities were detected during summer surveys. Seasonal differences in abundance of species likely reflected differences in life history attributes (e.g. reproductive biology, foraging ecology) among species. Because of differences observed in species composition between the winter and summer, it is apparent that a single annual survey cannot accurately describe the populations of marine birds and mammals that occur in Glacier Bay. Preliminary analysis further suggests that interpretations of data resulting from this type of survey may depend to a large extent on the individual species. Because species exhibit differences in behavior, morphology, coloration, and distribution, accuracy and precision of abundance estimates likely vary among species. Confidence in survey results should be evaluated in consideration of life history and detection probabilities at the species level. However, survey results likely provide reasonable estimates of species composition and relative abundance, as well as accurate abundance estimates for those species whose detection closely approximates one.

Bodkin, James L.; Kloecker, Kimberly A.; Coletti, Heather A.; Esslinger, George G.; Monson, Daniel H.; Ballachey, Brenda E.

2002-01-01

337

Field-based Digital Mapping of the November 3, 2002 Susitna Glacier Fault Rupture - Integrating remotely sensed data, GIS, and photo-linking technologies  

Microsoft Academic Search

In July 2003, the U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys (DGGS) conducted field studies on the Susitna Glacier Fault (SGF), which ruptured on November 2002 during the M 7.9 Denali fault earthquake. The DGGS assumed responsibility for Geographic Information System (GIS) and data management, integrating remotely sensed imagery, GPS data, GIS, and photo-linking software

L. A. Staft; P. A. Craw

2003-01-01

338

The susitna glacier thrust fault: Characteristics of surface ruptures on the fault that initiated the 2002 denali fault earthquake  

USGS Publications Warehouse

The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.

Crone, A. J.; Personius, S. F.; Craw, P. A.; Haeussler, P. J.; Staft, L. A.

2004-01-01

339

Common Misconceptions about Icebergs and Glaciers  

NSDL National Science Digital Library

This article describes some common misconceptions that elementary students may have about icebergs and glaciers (including density and buoyancy). It also includes suggestions for formative assessment and teaching for conceptual change.

Fries-Gaither, Jessica

340

Liss M. Andreassen Glacier variations in  

E-print Network

by The University Foundation for Student Life (SiO) #12;"Jeg hilser dig land i det luftige blå, forklaret av ....................................................................................................................... 15 1.1 Motivation........................................................................................... 21 2.3 Glacier survey using remote sensing methods

Andreassen, Liss Marie

341

What Are the Physical Effects of Glaciers?  

NSDL National Science Digital Library

This text explains how glaciers scour and grind the Earth's surface, and about the sorts of deposits they leave behind. Emphasis is on glaciation in the mountains and valleys of Vermont. Links to related topics are included.

342

Geothermal Technologies Program: Alaska  

SciTech Connect

This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01

343

Alaska Earthquake Information Center  

NSDL National Science Digital Library

Housed at the Geophysical Institute at the University of Alaska Fairbanks, the Alaska Earthquake Information Center reports and provides information on seismic activity in Alaska. While its southern Pacific coast colleague, California, gets a lot more attention when it comes to earthquakes, Alaska experienced a magnitude 6.7 earthquake already this summer and was rocked by a 7.9 in 2002. The site offers links to general information about the center, general earthquake information, research activities at the center, education and outreach materials (including information on seismology education projects), and much more. The site is well populated with materials and should provide a great resources for those interested in North American seismic events.

344

Towards a complete World Glacier Inventory  

NASA Astrophysics Data System (ADS)

The need for an inventory of the world's glaciers evolved during the International Hydrological Decade (1965-74). As a result, guidelines were established in the mid 1970s to compile a worldwide detailed inventory of existing perennial snow and ice masses. Following these international guidelines, several countries started compiling national glacier inventories based primarily on aerial photographs and maps. In the 1980s, the World Glacier Inventory (WGI) database was launched together with a status report about global and regional glacierised surface areas for the second half of the 20th century. These estimates were based on the detailed inventory data together with preliminary estimates of the remaining glacierised regions derived from early satellite imagery. In the late 1990s, the Global Land Ice Measurements from Space (GLIMS) database was initiated to continue the inventory task with space-borne sensors. In the WGI, glaciers are represented by geographical point coordinates. The GLIMS database includes digital outlines. Both include exact time stamps and tabular information on glacier classifications, length, area, orientation, and altitude range. Both are regularly updated with newly available data: the WGI stores point information for the second half of the 20th century whereas the GLIMS includes digital outlines for the 21st century. Since these detailed glacier inventories are not (yet) globally complete, there have been several efforts towards preliminary estimates of the overall global glacier coverage. A first, well elaborated one was included in the original status report of the WGI, published in 1989, and was refined in 2005 with information from other sources by Dyurgerov and Meier. Other studies used the detailed WGI, or an extended format by Cogley, for regional or global up-scaling of glacier extents. In 2003, Cogley published a global map of percentage glacier coverage per 1x1 grid box (GGHydro) that is widely used for modeling at global scale. A first globally and almost complete map with (generalized) digital outlines of all ice covered regions (incl. Greenland but excluding Antarctica) was derived from ESRI's Digital Chart of the World (DCW) and other sources by Raup and colleagues in 2000. Most recently, Arendt and colleagues produced the Randolph dataset which combines available outlines from the GLIMS, DCW, and WGI datasets as well as from many other (often unpublished) sources by using the highest quality version in each region. However, while having the advantage of being almost complete, these global estimates lack time stamps and attributes for individual glaciers. The present work provides a brief review of the various efforts, its methodological differences, and findings towards the completion of a World Glacier Inventory.

Zemp, Michael

2013-04-01

345

Glacier Inventory: A Case in Semiarid Chile  

Microsoft Academic Search

\\u000a Glaciers are the most important water reservoirs found in the Andes. While the scientific community has conducted more extensive\\u000a glaciological studies in southern Chile, it is only recently that attention has been focused on northern Chile. In the Chilean\\u000a Norte Chico region, where glaciation is restricted to the highest summits, the sparse glacier network provides the majority\\u000a of water to

Jorge Marn; Jos Araos

346

Impacts of Change in Glacier Ice  

NSDL National Science Digital Library

This is a five-activity module that explores the evidence for and impacts of melting glacial ice, with resources from major institutions and scientists who study glaciers -- primarily in Arctic areas. The suite of activities includes both glaciers and melting ice, as well as the impact of melt water downstream. Each activity follows the 5E model of Engagement, Exploration, Explanation, Elaboration, and Evaluation.

Grant, Alaska S.

347

The concept of glacier storage: a review  

Microsoft Academic Search

Glacier storage is a widely used term, applied to different processes and time-scales by different disciplines in hydrology and glaciology. We identify that storage occurs as ice, snow, and water associated with three time-scales. Long-term storage concerns storage of ice and firn as glaciers on time-scales of years to centuries and longer. This storage affects global sea level and long-term

Peter Jansson; Regine Hock; Thomas Schneider

2003-01-01

348

USGS Repeat Photography Project: Glacier National Park  

NSDL National Science Digital Library

This project, conducted by the United States Geological Survey (USGS), documents changes over time in the landscape of Glacier National Park, particularly the retreat of the park's glaciers. The project involves pairing historic photos from the park's archives with recent photos to illustrate how the landscape has changed. Users can view and download the photos in pairs with dates and a caption describing the scene and the changes that have taken place.

2010-11-22

349

Alaska looks HOT!  

Microsoft Academic Search

Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo\\/d, with 1.6 MMbo\\/d from Prudhoe Bay. This year operators expect to produce 788 Mbo\\/d from Prudhoe Bay, falling to 739 Mbo\\/d next year. ANS

Belcher

1997-01-01

350

Linking glacier annual mass balance and glacier albedo retrieved from MODIS data  

NASA Astrophysics Data System (ADS)

Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the Root Mean Square Deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000-2009) of MODIS data were then processed to create a time series of albedo maps of four glaciers in the French Alps including Saint Sorlin Glacier during the ablation season. The annual mass balance of each glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snowline is located at its highest elevation, thus when the snowline is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains a considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the inter-annual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.

Dumont, M.; Gardelle, J.; Sirguey, P. J.; Guillot, A.; Dcaux, L.; Rabatel, A.; Six, D.; Arnaud, Y.

2012-12-01

351

Linking glacier annual mass balance and glacier albedo retrieved from MODIS data  

NASA Astrophysics Data System (ADS)

Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the Root Mean Square Deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000-2009) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snowline is located at its highest elevation, thus when the snowline is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains a considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the inter-annual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.

Dumont, M.; Gardelle, J.; Sirguey, P.; Guillot, A.; Six, D.; Rabatel, A.; Arnaud, Y.

2012-07-01

352

Linking glacier annual mass balance and glacier albedo retrieved from MODIS data  

NASA Astrophysics Data System (ADS)

Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the root mean square deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000-2009) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snow line is located at its highest elevation, thus when the snow line is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the interannual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.

Dumont, M.; Gardelle, J.; Sirguey, P.; Guillot, A.; Six, D.; Rabatel, A.; Arnaud, Y.

2012-12-01

353

Glacier area and length changes in Norway from repeat inventories  

NASA Astrophysics Data System (ADS)

In this study, we assess glacier area and length changes in mainland Norway from repeat Landsat TM/ETM+-derived inventories and digitized topographic maps. The multi-temporal glacier inventory consists of glacier outlines from three time ranges: 1947 to 1985 (GIn50), 1988 to 1997 (GI1990), and 1999 to 2006 (GI2000). For the northernmost regions, we include an additional inventory (GI1900) based on historic maps surveyed between 1895 and 1907. Area and length changes are assessed per glacier unit, 36 subregions, and for three main parts of Norway: southern, central, and northern. The results show a decrease in the glacierized area from 2994 km2 in GIn50 to 2668 km2 in GI2000 (total 2722 glacier units), corresponding to an area reduction of -326 km2, or -11% of the initial GIn50 area. The average length change for the full epoch (within GIn50 and GI2000) is -240 m. Overall, the comparison reveals both area and length reductions as general patterns, even though some glaciers have advanced. The three northernmost subregions show the highest retreat rates, whereas the central part of Norway shows the lowest change rates. Glacier area and length changes indicate that glaciers in maritime areas in southern Norway have retreated more than glaciers in the interior, and glaciers in the north have retreated more than southern glaciers. These observed spatial trends in glacier change are related to a combination of several factors such as glacier geometry, elevation, and continentality, especially in southern Norway.

Winsvold, S. H.; Andreassen, L. M.; Kienholz, C.

2014-10-01

354

A data set of worldwide glacier length fluctuations  

NASA Astrophysics Data System (ADS)

Glacier fluctuations contribute to variations in sea level and historical glacier length fluctuations are natural indicators of past climate change. To study these subjects, long-term information of glacier change is needed. In this paper we present a data set of global long-term glacier length fluctuations. The data set is a compilation of available information on changes in glacier length worldwide, including both measured and reconstructed glacier length fluctuations. All 471 length series start before 1950 and cover at least four decades. The longest record starts in 1535, but the majority of time series start after 1850. The number of available records decreases again after 1962. The data set has global coverage including records from all continents. However, the Canadian Arctic is not represented in the data set. The available glacier length series show relatively small fluctuations until the mid-19th century, followed by a global retreat. The retreat was strongest in the first half of the 20th century, although large variability in the length change of the different glaciers is observed. During the 20th century, calving glaciers retreated more than land-terminating glaciers, but their relative length change was approximately equal. Besides calving, the glacier slope is the most important glacier property determining length change: steep glaciers have retreated less than glaciers with a gentle slope.

Leclercq, P. W.; Oerlemans, J.; Basagic, H. J.; Bushueva, I.; Cook, A. J.; Le Bris, R.

2014-04-01

355

Alaska looks HOT!  

SciTech Connect

Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude and markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.

Belcher, J.

1997-07-01

356

Economic impacts of the S. S. Glacier Bay oil spill: Social and economic studies. Technical report (Final)  

SciTech Connect

On July 2, 1987, an oil spill occurred in Cook Inlet when the S.S. Glacier Bay hit a submerged obstacle while enroute to Kenai Pipeline Company facilities to offload oil. The 1987 commercial fishery in Cook Inlet was barely underway when the S.S. Glacier Bay oil spill occurred, and the largest salmon return in history was moving up the inlet. The sockeye salmon run alone totaled over 12 million, providing a seasonal catch of 9.25 million salmon. The 1987 sport fishery in Cook Inlet was in mid-season at the time of the spill. The S.S. Glacier Bay oil spill represents an opportunity to study the economic impacts of an oil spill event in Alaska, particularly with regard to commercial fishing impacts and the public costs of cleanup. The report evaluates the existing information on the spill, response measures, and economic impacts, and adds discussions with individuals and groups involved in or affected by the spill to this data base. The report reviewed accounts of the oil spill and its costs; identified types and sources of data, developed protocol, and contacted groups and people for data collection and verification; and described, analyzed, and prepared reports of the economic effects of the S.S. Glacier Bay oil spill.

Burden, P.; Isaacs, J.; Richardson, J.; Braund, S.; Witten, E.

1990-11-01

357

Buried glacier ice in permafrost, a window to the past: examples from Bylot Island, Canadian Arctic  

NASA Astrophysics Data System (ADS)

Bylot Island is located north of Baffin Island (73N, 80W) and is extensively covered by an ice cap and its outlet glaciers flowing towards the arctic lowland of the Lancaster formation. During summers of 2009 and 2011 several active-layer detachment slides exposed large massive ice bodies and other types of debris-rich ice that were interpreted as buried glacier ice. The upper part of the massive ice and debris-rich ice were usually in contact with various types of ice-contact or glacio-fluvial sediments and in some cases they were covered by mass wasting/colluvial deposits. This suggests that their preservation was likely related to burial of the ice and refreezing of the overlying sediments following permafrost aggradation. A preliminary analysis of the ice facies and ice crystals revealed the presence of four distinct types of ice: 1) clear-ice bodies with very few sediment and no organic inclusions. The ice crystals were large (cm), randomly oriented and air bubbles were observed at the junction of crystals. These characteristics could potentially indicate an englacial (snow-neve metamorphism) origin for these clear ice bodies; 2) large, meter thick, clear ice layers with no sediment, nor organics. The ice crystals were large (cm), several cm long, oriented in the same direction, and vertically aligned. These characteristics could potentially point to water that refroze in a tunnel incised in englacial ice; 3) Successive, mm to cm thick, ice layers, separated by undulating sand and gravel bands also containing cobles to boulder size rock fragments. These characteristics could potentially represent regelation ice formed at the base of glaciers and incorporated to the glacier sole; 4) mm to cm suspended aggregate of fine-grained sediments in clear ice. These micro-suspended and suspended cryostructures were sometimes deformed and aligned in the form of thin (mm) undulating layers. These micro-structures were very similar to basal ice facies, presumably related to glacio-hydrologic supercooling, that we observed at the Matanuska Glacier in Alaska. Interestingly, the various types of ice contained in buried glacier ice permafrost date back to the englacial ice formation and its subsequent deformation by glacier flow and glacio-hydrological dynamics. It is thus older by several centuries to millennia than the permafrost aggradation itself (burial and active layer development) and we used the term antegenetic, in opposition to epigenetic or syngenetic, to characterize this type of permafrost. Buried glacier ice is a window to the past and a unique tool to reconstruct the paleogeography and paleoclimatology of Arctic regions. In a warming climate, as glaciers are receding, the burial of ice in the proglacial environment will offer opportunities to characterize antegenetic permafrost aggradation and its related cryofacies. In warming permafrost environments, as active layers on slope deepen and detachment slides are triggered, more buried Pleistocene glacier ice will likely be exposed.

Fortier, D.; Coulombe, S.; Kanevskiy, M. Z.; Paquette, M.; Shur, Y.; Stephani, E.

2011-12-01

358

Glaciers in the Earth's Hydrological Cycle: Assessments of Glacier Mass and Runoff Changes on Global and Regional Scales  

NASA Astrophysics Data System (ADS)

Changes in mass contained by mountain glaciers and ice caps can modify the Earth's hydrological cycle on multiple scales. On a global scale, the mass loss from glaciers contributes to sea-level rise. On regional and local scales, glacier meltwater is an important contributor to and modulator of river flow. In light of strongly accelerated worldwide glacier retreat, the associated glacier mass losses raise concerns over the sustainability of water supplies in many parts of the world. Here, we review recent attempts to quantify glacier mass changes and their effect on river runoff on regional and global scales. We find that glacier runoff is defined ambiguously in the literature, hampering direct comparison of findings on the importance of glacier contribution to runoff. Despite consensus on the hydrological implications to be expected from projected future warming, there is a pressing need for quantifying the associated regional-scale changes in glacier runoff and responses in different climate regimes.

Radi?, Valentina; Hock, Regine

2014-05-01

359

Alaska Resource Data File, Point Lay quadrangle, Alaska  

USGS Publications Warehouse

This report gives descriptions of the mineral occurrences in the Point Lay 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

Grybeck, Donald J.

2006-01-01

360

What Influences Climate and Glacier Change in the Southwestern China?  

NASA Technical Reports Server (NTRS)

The subject of climate change in the areas of the Tibetan Plateau (TP) and the Himalayas has taken on increasing importance because of available water resources from their mountain glaciers. Many of these glaciers over the region have been retreating, while some are advancing and stable. Other studies report that some glaciers in the Himalayas show acceleration on their shrinkage. However, the causes of the glacier meltings are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. However, it is vital that we pursue further study to enable the future prediction on glacier changes.

Yasunari, Teppei J.

2012-01-01

361

Decay of a long-term monitored glacier: Careser Glacier (Ortles-Cevedale, European Alps)  

NASA Astrophysics Data System (ADS)

The continuation of valuable, long-term glacier observation series is threatened by the accelerated mass loss which currently affects a large portion of so-called "benchmark" glaciers. In this work we present the evolution of the Careser Glacier, from the beginning of systematic observation at the end of the 19th century to its current condition in 2012. In addition to having one of the longest and richest observation records among the Italian glaciers, Careser is unique in the Italian Alps for its 46 yr mass balance series that started in 1967. In the present study, variations in the length, area and volume of the glacier since 1897 are examined, updating and validating the series of direct mass balance observations and adding to the mass balance record into the past using the geodetic method. The glacier is currently strongly out of balance and in rapid decay; its average mass loss rate over the last 3 decades was 1.5 m water equivalent per year, increasing to 2.0 m water equivalent per year in the last decade. Although these rates are not representative at a regional scale, year-to-year variations in mass balance show an unexpected increase in correlation with other glaciers in the Alps, during the last 3 decades. If mass loss continues at this pace, the glacier will disappear within a few decades, putting an end to this unique observation series.

Carturan, L.; Baroni, C.; Becker, M.; Bellin, A.; Cainelli, O.; Carton, A.; Casarotto, C.; Dalla Fontana, G.; Godio, A.; Martinelli, T.; Salvatore, M. C.; Seppi, R.

2013-12-01

362

Glacier acceleration, glacial earthquakes, and ice loss at Helheim Glacier, Greenland  

Microsoft Academic Search

Satellite observations during the last decade have shown dramatic changes in flow speed at Greenland's outlet glaciers, often accompanied by retreats of several km in calving-front location and increasing numbers of glacial earthquakes. Geodetic, seismological, and oceanographic data collected as part of a multidisciplinary field experiment at Helheim Glacier, East Greenland, over three summer seasons (2006--2008), together with satellite imagery,

M. Nettles; T. B. Larsen; P. Elsegui; G. S. Hamilton; L. A. Stearns; A. P. Ahlstrm; J. L. Davis; M. L. Andersen; J. de Juan; S. A. Khan; L. Stenseng; G. Ekstrm; R. Forsberg; K. M. Schild

2008-01-01

363

Impacts of climate warming on alpine glacier tourism and adaptive measures: A case study of Baishui Glacier No. 1 in Yulong Snow Mountain, Southwestern China  

Microsoft Academic Search

Alpine glaciers usually feature with best hydrothermal condition in mountain climate, and present beautiful glacier scenery,\\u000a various glacier landforms, rich biodiversity, and easier accessibility, compared with continental glaciers or ice sheets.\\u000a Nevertheless, Alpine glaciers are more sensitive to climate warming, and climate warming has seriously affected Alpine glaciers\\u000a and surrounding environment. The quality and attractiveness of Alpine glaciers to tourism

Shijin Wang; Yuanqing He; Xiaodong Song

2010-01-01

364

Evaluating the performance of a glacier erosion model applied to Peyto Glacier, Alberta, Canada  

NASA Astrophysics Data System (ADS)

Glaciers are effective agents of erosion for many mountainous regions, but primary rates of erosion are difficult to quantify due to unknown conditions at the glacier bed. We develop a numerical model of subglacial erosion and passively couple it to a vertically integrated ice flow model (UBC regional glaciation model). The model accounts for seasonal changes in water pressure at the glacier bed which affect rates of abrasion and quarrying. We apply our erosion model to Peyto Glacier, and compare estimates of glacier erosion to the mass of fine sediment contained in a lake immediately down valley from the glacier. A series of experiments with our model and ones based on subglacial sliding rates are run to explore model sensitivity to bedrock hardness, seasonal hydrology, changes in mass balance, and longer-term dimensional changes of the glacier. Our experiments show that, as expected, erosion rates are most sensitive to bedrock hardness and changes in glacier mass balance. Silt and clay contained in Peyto Lake primarily originate from the glacier, and represent sediments derived from abrasion and comminution of material produced by quarrying. Average specific sediment yield during the period AD1917-1970 from the lake is 467190 Mg km-2yr-1 and reaches a maximum of 928 Mg km-2yr-1 in AD1941. Converting to a specific sediment yield, modelled average abrasion and quarrying rates during the comparative period are 14244 Mg km-2yr-1 and 1167213 Mg km-2yr-1 respectively. Modelled quarrying accounts for approximately 85-95% of the erosion occurring beneath the glacier. The basal sliding model estimates combined abrasion and quarrying. During the comparative period, estimated yields average 427136 Mg km-2yr-1, lower than the combined abrasion and quarrying models. Both models predict maximum sediment yield when Peyto Glacier reached its maximum extent. The simplistic erosion model shows higher sensitivity to climate, as seen by accentuated sediment yield peaks during the Little Ice Age. In all of our experiments to date, modelled sediment yield closely follow maximum ice cover. In contrast, sediment yields obtained from the lake indicate that maximum sediment delivery to the lake lagged maximum ice cover and occurred during a period of rapid glacier retreat. We interpret this lag to indicate removal of stored sediments beneath the glacier and subaerial erosion from recently exposed sediments in the glacier forefield rather than an increase in primary erosion of bedrock.

Vogt, R.; Mlynowski, T. J.; Menounos, B.

2013-12-01

365

Building the Alaska Oil Pipeline  

NSDL National Science Digital Library

This video segment adapted from AMERICAN EXPERIENCE tells the story of how environmentalists, Alaska Native peoples, and engineers concerned about the effects of permafrost challenged plans for the Alaska oil pipeline.

Foundation, Wgbh E.

2009-02-25

366

Alaska Native Teens Help Researchers  

NSDL National Science Digital Library

In this video adapted from KUAC-TV and the Geophysical Institute at the University of Alaska, Fairbanks, Alaska Native students contribute to research on how their environment is changing as a result of global warming.

Foundation, Wgbh E.

2009-01-13

367

Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America  

USGS Publications Warehouse

The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. UPb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 1 Ma followed by rapid cooling through ca. 550 C at 176 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirinefluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NESW rifting that was followed by NESW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ~30 km north and ~100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and YukonTanana pericratonic terranes of the CanadianAlaskan Cordillera.

Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory

2013-01-01

368

Snow and ice volume on Mount Spurr Volcano, Alaska, 1981  

USGS Publications Warehouse

Mount Spurr (3,374 meters altitude) is an active volcano 130 kilometers west of Anchorage, Alaska, with an extensive covering of seasonal and perennial snow, and glaciers. Knowledge of the volume and distribution of snow and ice on a volcano aids in assessing hydrologic hazards such as floods, mudflows, and debris flows. In July 1981, ice thickness was measured at 68 locations on the five main glaciers of Mount Spurr: 64 of these measurements were made using a portable 1.7 megahertz monopulse ice-radar system, and 4 measurements were made using the helicopter altimeter where the glacier bed was exposed by ice avalanching. The distribution of snow and ice derived from these measurements is depicted on contour maps and in tables compiled by altitude and by drainage basins. Basal shear stresses at 20 percent of the measured locations ranged from 200 to 350 kilopascals, which is significantly higher than the 50 to 150 kilopascals commonly referred to in the literature as the 'normal' range for glaciers. Basal shear stresses higher than 'normal' have also been found on steep glaciers on volcanoes in the Cascade Range in the western United States. The area of perennial snow and ice coverage on Mount Spurr was 360 square kilometers in 1981, with an average thickness of 190?50 meters. Seasonal snow increases the volume about 1 percent and increases the area about 30 percent with a maximum in May or June. Runoff from Mount Spurr feeds the Chakachatna River and the Chichantna River (a tributary of the Beluga River). The Chakachatna River drainage contains 14 cubic kilometers of snow and ice and the Chichantna River drainage contains 53 cubic kilometers. The snow and ice volume on the mountain was 67?17 cubic kilometers, approximately 350 times more snow and ice than was on Mount St. Helens before its May 18, 1980, eruption, and 15 times more snow and ice than on Mount Rainier, the most glacierized of the measured volcanoes in the Cascade Range. On the basis of these relative quantities, hazard-producing glaciovolcanic phenomena at Mount Spurr could be significantly greater than similar phenomena at Cascade Volcanoes.

March, Rod S.; Mayo, Lawrence R.; Trabant, Dennis C.

1997-01-01

369

Assessment of particulate accumulation climatology under inversions in Glacier Bay for the 2008 tourist season using WRF/Chem data  

NASA Astrophysics Data System (ADS)

Each summer, roughly one million tourists come to Southeast Alaska aboard cruise ships to see the pristine landscape and wildlife. Tourism is an integral component in the economy for most of the towns and villages on the Alaska Panhandle. With ship emissions only modestly regulated, there have been some concerns regarding the potential environmental impacts that cruise ships have on air quality, wildlife, and visitor experience. Cruise ships travel to remote regions, and are frequently the only anthropogenic emissions source in federally protected parks, such as Glacier Bay National Park and Preserve. In the absence of winds and synoptic scale storm systems common in the Gulf of Alaska, temperature inversions frequently develop inside Glacier Bay due to radiative cooling influenced by the complex topography inside the park. Inversions act as a lid, and may trap pollutants from cruise-ship emissions depending on the meteorological conditions present. Since meteorological observations are sparse and frequently skewed to easily accessible locations, data from the Weather Research and Forecasting Model, coupled with a chemistry package (WRF/Chem), were used to examine the physical and chemical processes that are impossible to determine through direct observations. Model simulation data for 124 days during the 2008 tourist season (May 15 to September 15), including a cruise-ship emission inventory for all 225 cruise ship entries in Glacier Bay, was analyzed. Evaluation of WRF/Chem through meteorological observations reveals that the model accurately captures the synoptic conditions for most of the summer, despite problems with complex topography. WRF/Chem simulated quasi-multi-day inversion events, with strengths as high as 6.7 K (100 m)-1. Inversions were present in all grid-cell locations in Glacier Bay, with inversions occurring on average of 42% of the days during the tourist season. WRF/Chem was able to model PM 10 (particulate matter with diameter less than 10 micrometers) concentrations from cruise ships, but the absence of aerosol monitoring sites does not allow us to confirm the results. However, no simulated particulates ever exceed the daily average National Ambient Air Quality Standard (NAAQS) of 150 micrograms per cubic meter. The high variability of particle concentrations in Glacier Bay suggests the need for an air quality observational network to further assess local air quality issues.

Pirhalla, Michael A.

370

Updated: April 2013 Alaska Native  

E-print Network

fCOLLEGEo CHARLESTON Updated: April 2013 American Indian or Alaska Native Asian Black or African or Alaska Native Asian Black or African American Hispanic or Latino Native Hawaiian or Other Pacific of C Acceptances who Enrolled American Indian or Alaska Native Asian Black or African American Hispanic

Kunkle, Tom

371

Vehicular Technology Conference Anchorage, Alaska  

E-print Network

IEEE 70th Vehicular Technology Conference Anchorage, Alaska September 2023, 2009 #12;Downtown, University of Alaska, Anchorage · Panel Discussions ­ Mix of experts from industry and academia discussing future of vehicular communications #12;What else is there to do in Alaska? #12;Fishing, Fishing, Fishing

Miller, Jeffrey A.

372

PROGRESS REPORT ON ALASKA FISHERY  

E-print Network

PROGRESS REPORT ON ALASKA FISHERY MANAGEMENT AND RESEARCH 1958 Marine Biological Laboratory, Arnie J, Suomela, Commissioner PROGRESS REPORT ON ALASKA FISHERY MANAGEMENT AND RESEARCH, 1958 Prepared by The Staff of the Alaska Region Bureau of Commercial Fisheries United States Fish and Wildlife Service

373

Linking glacier annual mass balance and glacier albedo from MODIS data  

NASA Astrophysics Data System (ADS)

The albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODIS on board TERRA and AQUA, provide a means to monitor glacier albedo. In this study, different methods to retrieve broadband glacier albedo from MODIS data are compared. In particular, the effect of the multiple reflections due to the rugged topography and that of the anisotropic reflection of snow and ice are investigated. The methods are tested on the Saint Sorlin glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements and albedo derived from terrestrial photographs. The root mean square deviation between field measurements and the broadband albedo retrieved from MODIS pixels at 250m spatial resolution was found to be less than 0.06. One decade (2000-2010) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin glacier during the ablation season. It appears that the albedo in the ablation area of the glacier does not exhibit any marked decreasing trend during the decade under study. This contrasts with the situation observed on other glaciers in the Alps. In addition, the annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (spatial averaged over the whole glacier) observed with MODIS during the ablation season. A high linear correlation exists between the two variables. Furthermore, the day on which the albedo reaches a minimum over the glacier closely corresponds to the day on which the snowline is found to be at its highest elevation, thus close to the glacier's equilibrium line. This indicates that the high correlation can be explained by the fact that this minimal albedo contains a high degree of information regarding the relative share of areal surfaces between the ablation zone (i.e., ice with a generally lower albedo) and the accumulation zone (i.e., snow with a relatively high albedo). This implies that monitoring the albedo of glacier with MODIS data can provide a useful means to approach the inter-annual variability of the glacier's mass balance.

Dumont, M.; Gardelle, J.; Arnaud, Y.; Guillot, A.; Sirguey, P.; Six, D.

2012-04-01

374

Glaciological investigations beneath an active polar glacier  

NASA Astrophysics Data System (ADS)

Meserve Glacier, Antarctica, was used as a natural laboratory for research on the effective viscosity of subfreezing polycrystalline ice, and on the interaction of cold-based glaciers with their beds. A tunnel was excavated through basal layers of this glacier, which allowed sampling of ice for subsequent measurements of physical and chemical properties and allowed in-situ measurements of ice deformation and glacier sliding. Analyses of deformation reveal a direct dependence of strain rate on crystal size, which reflects an important role for grain-size-sensitive deformation mechanisms such as grain boundary sliding. The sensitivity of strain rate to chemical impurity content and rock particle content is found to be very low. Variations of crystal size probably are an important control on shear enhancement in the ice sheets. The enhanced shear strain rate inferred from tilt of the Dye 3 borehole can be explained as a result of combined fabric and crystal size variations. I infer that interactions between Meserve glacier and its bed are influenced by the presence of liquid water films at ice-rock interfaces despite the low temperature of -17C. Such films allow slip at ice-rock interfaces and cause in-situ segregation of ice into clean lenses amidst dirty layers. Using slip rate and bed surface roughness measurements I infer la liquid film thickness of at least tens of nanometers. Such films should generally be present in polar glaciers, and will have a thickness controlled by soluble impurities and temperature. Analyses of gas and isotopic composition of basal ices reveal that entrainment of bed material into this glacier actively occurs without bulk freeze-on and conventional regelation. Cold-based glaciers have the capacity to striate and erode their beds, and to create glacial landforms. I reinterpret the clear and persistent relationship between d18O and dD of polar precipitation, which allows isotopic composition to be an important tool for studying glacier-bed interactions and deuterium excess measurements on ice cores to reveal subtropical paleoclimate. I argue that the isotopic composition of precipitation is determined by water-vapor equilibrium to temperatures as low as -35C. This implies deuterium excess is not sensitive to cloud supersaturation.

Cuffey, Kurt Marshall

375

Coseismic slip distribution of the 2002 MW7.9 Denali fault earthquake, Alaska, determined from GPS measurements  

Microsoft Academic Search

On 3 November 2002 an M W7.9 earthquake occurred in central Alaska. The earthquake ruptured portions of the Susitna Glacier, Denali, and Totschunda faults. Inversion of the GPS-measured displacement field indicates that the event was dominated by a complex, right-lateral strike-slip rupture along the Denali fault. GPS sites closest to the epicenter show the effect of thrust motion on the

Sigrn Hreinsdttir; Jeffrey T. Freymueller; Hilary J. Fletcher; Christopher F. Larsen; Roland Brgmann

2003-01-01

376

Kinematic and Dynamic Rupture Models of the November 3, 2002 Mw7.9 Denali, Alaska, Earthquake  

Microsoft Academic Search

Regional seismic waveforms, continuous and campaign-mode GPS data, and surface slip measurements were used to obtain a kinematic model of the rupture process of the November 3, 2002 Mw7.9 Denali, Alaska, earthquake. The event initiated as a Mw7.0 reverse slip event on the north-dipping Susitna Glacier fault with subsequent right-lateral slip distributed over approximately 300 km of the Denali fault

D. S. Dreger; D. Oglesby; R. Harris; N. Ratchkovski; R. Hansen

2003-01-01

377

Kinematic and dynamic rupture models of the November 3, 2002 Mw7.9 Denali, Alaska, earthquake  

Microsoft Academic Search

Regional seismic waveforms, continuous and campaign-mode GPS data, and surface slip measurements were used to obtain a kinematic model of the rupture process of the November 3, 2002 Mw 7.9 Denali, Alaska, earthquake. The event initiated as a Mw 7.0 reverse slip event on the north-dipping Susitna Glacier fault with subsequent right-lateral slip distributed over approximately 300 km of the

Douglas S. Dreger; David D. Oglesby; Ruth Harris; Natalia Ratchkovski; Roger Hansen

2004-01-01

378

Mathematical challenges in glacier modeling (Invited)  

NASA Astrophysics Data System (ADS)

Many of Earth's glaciers are currently shrinking and it is expected that this trend will continue as global warming progresses. To virtually reproduce the evolution of glaciers and finally to predict their future, one needs to couple models of different disciplines and scales. Indeed, the slow motion of ice is described by fluid mechanics equations while the daily snow precipitations and melting are described by hydrological and climatic models. Less visible, applied mathematics are essential to run such a coupling at two different levels: by solving numerically the underlying equations and by seeking parameters using optimisation methods. This talk aims to make visible the role of mathematics in this area. I will first present a short educational film I have made for the "Mathematics of Planet Earth 2013", which is an introduction to the topic. To go further, solving the mechanical model of ice poses several mathematical challenges due to the complexity of the equations and geometries of glaciers. Then, I will describe some strategies to deal with such difficulties and design robust simulation tools. Finally, I will present some simulations of the largest glacier of the European Alps, the Aletsch glacier. As a less unexpected application, I will show how these results allowed us to make a major advance in a police investigation started in 1926.

jouvet, G.

2013-12-01

379

Exploration of Uncertainty in Glacier Modelling  

NASA Technical Reports Server (NTRS)

There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.

Thompson, David E.

1999-01-01

380

Submarine landforms in the fjords of southern Chile: implications for glacimarine processes and sedimentation in a mild glacier-influenced environment  

NASA Astrophysics Data System (ADS)

Chilean fjords are the lowest latitude at which glaciers reach the sea today. High accumulation and mass throughput sustain tidewater glacier margins in this relatively mild climatic and oceanographic setting. 27,000 km2 of swath bathymetry allow mapping of sea-floor landforms and inferences on glacimarine sediments and sedimentation. Tidewater glaciers are present in several fjords. Beyond retreating Tempano glacier, a terminal moraine marks the limit of probable Little Ice Age advance with smaller transverse ridges closer to the glacier. Beyond advancing Pio XI Glacier there are few signs of organised submarine landforms. Older moraine ridges along several fjords formed at still-stands during deglaciation. Elsewhere, meltwater-fed braided rivers connect the glacial and marine sedimentary systems. Swath imagery shows glacifluvial and fluvial deltas with small channels and chutes that develop into long and sinuous turbidity-current channels. Few iceberg ploughmarks and submarine slope failures were observed, but several fields of pockmarks were present. The fjords of Chile are dominated by sediment delivery from turbid meltwater which distributes fine-grained debris widely, producing sorted and laminated fine-grained ice-proximal wedges and draping ice-distal seismic architecture to give a predominantly smooth sea floor. Turbidity currents also transfer sediments to some ice-distal environments. The Chilean fjordlands represent the mildest climatic and oceanographic end-member of a continuum of glacier-influenced marine settings; similar to south-east Alaska in the northern hemisphere. Components of a landform-assemblage model for climatically mild meltwater-dominated fjords include ice-contact moraine ridges, glacifluvial and fluvial deltas, and turbidity-current channels. Full-glacial and deglacial streamlined subglacial landforms are likely to have been buried in many areas by subsequent glacimarine sedimentation.

Dowdeswell, J. A.; Vsquez, M.

2013-03-01

381

Satellite image atlas of glaciers of the world  

USGS Publications Warehouse

The world's glaciers react to and interact with changes in global and regional climates. Most mountain glaciers worldwide have been retreating since the latter part of the 19th century; global sea level has risen about 10 centimeters during the past century. Glaciers vary in size as a result of several factors, of which climate variation is probably the most important. The reasons we are interested in glacier variation include its connection to climate change and to global sea level.

U.S. Geological Survey

1994-01-01

382

Antarctic glaciers shrinking due to ice shelf collapse  

NSDL National Science Digital Library

Mass and velocity measurements taken from satellites and airplanes between 1995 and 2004 were studied to determine if glaciers on the West Antarctic Peninsula were growing or shrinking. It was found that loss of glacier mass from melting and movement into the ocean exceeded snowfall accumulation for several glaciers on the peninsula. The authors propose that as the region continues to warm, the Wordie Bay glaciers will melt more quickly, causing sea level to rise.

Al., Rignot E.; Agu

383

Accretion of southern Alaska  

USGS Publications Warehouse

Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

Hillhouse, J.W.

1987-01-01

384

Alaska Native Science Commission  

NSDL National Science Digital Library

This is the homepage of the Alaska Native Science Commission (ANSC), an organization dedicated to bringing together research and science in partnership with the Native community. Site materials include information on Alaska Native communities; a searchable database of contacts for community knowledge and a directory of local, statewide, and federally recognized Alaska Native agencies. There is also information on organizational ethics and protocols, regulatory agencies, a browsable database of research projects, and information on sources of funding. The Key Issues page provides information on issues of concern, such as avian flu, climate change, observations about contaminants and environmental change, traditional knowledge systems, traditional foods, and views on climate change and ecology. For students, there is information on einternship and scholarship opportunities. The publications page provides access to archived newsletters, presentations, and reports.

2010-10-05

385

Treasure Hunt in Alaska  

NSDL National Science Digital Library

This is a Web-based story of three children who venture out to find their great-grandfather's treasure box that was lost in the remote state of Alaska. Using simple terminology, the story integrates complex Earth and space science concepts, such as the formation of gold deposits and the operation of satellites. The children model creative thinking, acquire and interpret radar images, plan a treasure hunt, work systematically, and learn about Alaska. They also experience the successes and setbacks of actual research. The story provides opportunities for readers to engage in coloring activities, model building, unit conversions, and math calculations. Additionally, readers can interactively view an image from different heights and compare the size of Alaska to other U.S. states.

2006-02-01

386

Logistic regression modeling of rock glacier and glacier distribution: Topographic and climatic controls in the semi-arid Andes  

NASA Astrophysics Data System (ADS)

Logistic regression is applied to a random sample of surface points in the semi-arid Andes of Santiago and Mendoza (Chile/Argentina, 32 45'-34 30' S, 12 000 km 2 above 3000 m a.s.l.) to identify local and regional controls on rock glacier and glacier distribution. The study area is among the areas with the greatest abundance of rock glaciers worldwide. The explanatory variables used for model selection are related to local and regional morphometric and climatic characteristics. The models achieve a very good fit (area under the ROC curve 0.84 for rock glaciers and 0.95 for glaciers) and are able to reproduce the regional distribution pattern. Model results are used to determine the optimal morphographic and climatic niche of rock glaciers and glaciers in the study area, and help explain the presence of low-elevation rock glaciers under favorable topoclimatic conditions.

Brenning, Alexander; Trombotto, Dario

2006-11-01

387

Sherman landslide, alaska.  

PubMed

Triggered by the earthquake of 27 March 1964, 3 x 10(7) cubic meters of rock fell 600 meters, then slid at high speed 5 kilometers across the nearly level Sherman glacier near Cordova. The landslide has a number of significant new features in addition to those typical of other large landslides that may have slid on a layer of trapped and compressed air. PMID:17837524

Shreve, R L

1966-12-30

388

Subglacial melting of glaciers by catchment streams is a missing link in temperate glacier mass balance  

NASA Astrophysics Data System (ADS)

The influence of snowmelt and rain water on subglacial hydrology and glacier mass balance of temperate valley glaciers is poorly understood. We present a thermo-hydraulic melt model to improve understanding of the potential influence that streams sourced from snowmelt and rain have on the subglacial hydrology and melting of the high-precipitation Franz Josef Glacier, New Zealand. The model simulates conduit expansion due to melting caused by heat advection and contraction to due ice deformation at an hourly time-step to obtain an annual melt rate along the length of individual subglacial conduits fed from terrestrial streams that enter the glacier from the ice-free sub-catchments surrounding it. These streams are fed by snowmelt and rainfall that enter the glacier well above 0C (up to ~10C at low altitudes). Our model is calibrated using terrestrial stream temperature data and is validated with field measurements of surface and proglacial meltwater temperatures, as well as internal water flow velocities. Modelled outputs based on the best available data from measurements and observations indicate that streams entering the Franz Josef Glacier contribute an estimated 7% to the total glacier melt. This is the equivalent of more than twice the surface rainfall heat flux, which shows that rain and snowmelt may melt significant quantities of ice within a glacier. Not accounting for this melting mechanism in glaciological models where streams enter glaciers may lead to: 1) an incorrect characterisation of the subglacial hydrological drainage system; and 2) a potentially serious bias error in mass balance estimations. The second implication is fundamentally important for model robustness given that glaciological models are increasingly being used to predict the effects of future climate change.

Alexander, David; Shulmeister, James; Davies, Tim; Callow, Nik

2013-04-01

389

Losing a Legacy: A photographic story of disappearing glaciers  

E-print Network

Losing a Legacy: A photographic story of disappearing glaciers W.C. Alden photo, GNP Archives B and into the existing forest, bulldozing down trees and creating a "trimline". During the drought between 1917 and 1941 of the earliest photographs repeated from Glacier Park that shows the disappearance of glacier ice and helped

390

WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1  

E-print Network

WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1 Department of Geology Portland State, Washington Abstract. Understanding water movement through a glacier is fundamental to several critical issues glacierized drainage basins. To this end we have synthesized a conceptual model of water movement through

Fountain, Andrew G.

391

Rock glacier monitoring with low-cost GPS  

E-print Network

Rock glacier monitoring with low-cost GPS: Case study at Dirru glacier, Mattertal Dr. Philippe, Switzerland 05.11.2009 #12;2Goal Description of GPS test network for rock glacier monitoring Data processing & preliminary results - accuracy ? Conclusions & outlook Contents Investigate the potential of low-cost GPS

392

The Role of Glaciers in the Hydrology of Nepal (Invited)  

Microsoft Academic Search

Glaciers are a component of the hydrologic regime of many large mountain ranges of the world, including the Himalaya. However, the hydrologic regime of Himalayan catchment basins and the role of glaciers in the hydrologic regime of this region are not well understood. Current concern regarding the impact of the retreat of Himalayan glaciers on water supplies poses an urgent

R. L. Armstrong; A. Racoviteanu; D. Alford

2010-01-01