Science.gov

Sample records for taku glacier alaska

  1. Utility of late summer transient snowline migration rate on Taku Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Pelto, M.

    2011-12-01

    On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE) from snowpits and probing in the vicinity of the transient snowline (TSL) are used to quantify the mass balance gradient. The balance gradient derived from the TSL and SWE measured in snowpits at 1000 m from 1998-2010 ranges from 2.6-3.8 mm m-1. Probing transects from 950 m-1100 m directly measure SWE and yield a slightly higher balance gradient of 3.3-3.8 mm m-1. The TSL on Taku Glacier is identified in MODIS and Landsat 4 and 7 Thematic Mapper images for 31 dates during the 2004-2010 period to assess the consistency of its rate of rise and reliability in assessing ablation for mass balance assessment. For example, in 2010, the TSL was 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and 975 m on 20 September. The mean observed probing balance gradient was 3.3 mm m-1, combined with the TSL rise of 3.7 m day-1 yields an ablation rate of 12.2 mm day-1 from mid-July to mid-Sept, 2010. The TSL rise in the region from 750-1100 m on Taku Glacier during eleven periods each covering more than 14 days during the ablation season indicates a mean TSL rise of 3.7 m day-1, the rate of rise is relatively consistent ranging from 3.1 to 4.4 m day-1. This rate is useful for ascertaining the final ELA if images or observations are not available near the end of the ablation season. The mean ablation from 750-1100 m during the July-September period determined from the TSL rise and the observed balance gradient is 11-13 mm day-1 on Taku Glacier during the 2004-2010 period. The potential for providing an estimate of bn from TSL observations late in the melt season from satellite images combined with the frequent availability of such images provides a means for efficient mass balance assessment in many years and on many glaciers.

  2. Characterizing Small-Scale Variability of Snow Thickness Using GPR on Taku Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Candela, S. G.; Oneel, S.; Loso, M. G.

    2014-12-01

    Spatial variability of snow accumulation is controlled by terrain type, time, and other factors, and has proven challenging to measure. Yet snow accumulation plays an important role in hydrological and geodetic issues. For example, glacier-wide mass balance estimates rely on sparsely distributed point measurements, under the assumption that spatial variability around each measurement site is negligible. Moreover, errors in accumulation estimates are substantially greater than those in ablation estimates, primarily due to our inability to model the aforementioned variability. To fill this information gap, we used 500 MHz common offset ground-penetrating radar (GPR) to examine the local representativeness of direct point measurements of snow depth used to estimate glacier-wide mass balance at Taku Glacier in Alaska. During summer 2013, we measured snow depths in four dense 120 m square radar grids centered on ground truth snow pits, and also along longitudinal profiles between these pits. We used the results to characterize accumulation variability over multiple length scales in this maritime climate. Processed GPR traces adjacent to our snowpits resolved depths of wet, isothermal snow within the nominal error of the instrument: approximately ± 15cm. Throughout each grid, the interquartile range (IQR) of GPR-estimated snow depths was less than 10cm. This suggests that in this setting a single snow pit adequately represents nominal snow thickness within each grid, and that elevation provides a dominant control on snow accumulation.

  3. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  4. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 55 by 40 kilometers (34 by 25 miles) Location: 60.0 degrees North latitude, 140.7 degrees West longitude Orientation: North at top Image Data: ASTER bands 2, 3 and 4 Original Data Resolution: 15 meters (49 feet) Date Acquired: June 8, 2001

  5. Surface melt dominates Alaska glacier mass balance

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Burgess, E.; Arendt, A. A.; O'Neel, S.; Johnson, A. J.; Kienholz, C.

    2015-07-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of -75 ± 11 Gt yr-1 (1994-2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  6. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of ?75?±?11?Gt?yr?1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  7. Regional Observations of Alaska Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Burgess, E. W.; Forster, R. R.; Hall, D. K.

    2010-12-01

    Alaska glaciers contribute more to sea level rise than any other glacierized mountain region in the world. Alaska is loosing ~84 Gt of ice annually, which accounts for ~0.23 mm/yr of SLR (Luthcke et al., 2008). Complex glacier flow dynamics, frequently related to tidewater environments, is the primary cause of such rapid mass loss (Larsen et al., 2007). Indirect observations indicate these complex flow dynamics occur on many glaciers throughout Alaska, but no comprehensive velocity measurements exist. We are working to measure glacier surface velocities throughout Alaska using synthetic aperture radar (SAR) offset tracking. This work focuses on the Seward/Malaspina, Bering, Columbia, Kaskawulsh, and Hubbard Glaciers and uses a MODIS land surface temperature "melt-day" product (Hall et al., 2006, 2008) to identify potential links between velocity variability and summertime temperature fluctuations. Hall, D., R. Williams Jr., K. Casey, N. DiGirolamo, and Z. Wan (2006), Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance, Geophysical Research Letters, 33(11). Hall, D., J. Box, K. Casey, S. Hook, C. Shuman, and K. Steffen (2008), Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland, Remote Sensing of Environment, 112(10), 3739-3749. Larsen, C. F., R. J. Motyka, A. A. Arendt, K. A. Echelmeyer, and P. E. Geissler (2007), Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise, J. Geophys. Res. Luthcke, S., A. Arendt, D. Rowlands, J. McCarthy, and C. Larsen (2008), Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions, Journal of Glaciology, 54(188), 767-777.

  8. Analysis of time series of glacier speed: Columbia Glacier, Alaska

    USGS Publications Warehouse

    Walters, R.A.; Dunlap, W.W.

    1987-01-01

    During the summer of 1984 and 1985, laser measurements were made of the distance from a reference location to markers on the surface of the lower reach of Columbia Glacier, Alaska. The speed varies from 7 to 15 m/d and has three noteworthy components: 1) a low-frequency perturbation in speed with a time scale of days related to increased precipitation, 2) semidiurnal and diurnal variations related to sea tides, and 3) diurnal variations related to glacier surface melt. -from Authors

  9. Columbia Glacier, Alaska, 1986-2011 - Duration: 29 seconds.

    NASA Video Gallery

    The Columbia Glacier in Alaska is one of many vanishing around the world. Glacier retreat is one of the most direct and understandable effects of climate change. The consequences of the decline in ...

  10. Malaspina Glacier, Alaska, Perspective with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Malaspina Glacier in southeastern Alaska is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

    This perspective view was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Landsat views both visible and infrared light, which have been combined here into a color composite that generally shows glacial ice in light blue, snow in white, vegetation in green, bare rock in grays and tans, and the ocean (foreground) in dark blue. The back (northern) edge of the data set forms a false horizon that meets a false sky.

    Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

    Glaciers are sensitive indicators of climatic change. They can grow and thicken with increasing snowfall and/or decreased melting. Conversely, they can retreat and thin if snowfall decreases and/or atmospheric temperatures rise and cause increased melting. Landsat imaging has been an excellent tool for mapping the changing geographic extent of glaciers since 1972. The elevation measurements taken by SRTM in February 2000 now provide a near-global baseline against which future non-polar region glacial thinning or thickening can be assessed.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 55 kilometers wide x 55 kilometers distance (34 x 34 miles) Location: 60 deg N latitude, 140 deg W longitude Orientation: View North, 2X vertical exaggeration Image Data: Landsat Thematic Mapper false-color image Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Landsat 30 meters (98 feet) Date Acquired: February 2000 (SRTM), 31 August 2000 (Landsat)

  11. Columbia Glacier, Alaska: changes in velocity 1977-1986

    USGS Publications Warehouse

    Krimmel, R.M.; Vaughn, B.H.

    1987-01-01

    The Columbia Glacier, a grounded, iceberg-calving tidewater glacier near Valdez, Alaska, began to retreat about 1977. Drastic retreat occurred in 1984, and by early 1986, retreat amounted to 2km. The glacier has thinned more than 100m since 1974 at a point 4km behind the 1974 terminus position. Between 1977 and 1985 the lower glacier ice velocity increased from 3-8m/d to 10-15m/d. -from Authors

  12. Malaspina Glacier, Alaska, Anaglyph with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This anaglyph view of Malaspina Glacier in southeastern Alaska was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Malaspina Glacier is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

    Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

    Numerous other features of the glaciers and the adjacent terrain are clearly seen when viewing this image at full resolution. The series of tonal arcs on Agassiz Glacier's extension onto the piedmont are called 'ogives.' These arcs are believed to be seasonal features created by deformation of the glacier as it passes over bedrock irregularities at differing speeds through the year. Assuming one light-and-dark ogive pair per year, the rate of motion of the glacial ice can be estimated (in this case, about 200 meters per year where the ogives are most prominent). Just to the west, moraine deposits abut the eroded bedrock terrain, forming a natural dam that has created a lake. Near the northwest corner of the scene, a recent landslide has deposited rock debris atop a small glacier. Sinkholes are common in many areas of the moraine deposits. The sinkholes form when blocks of ice are caught up in the deposits and then melt, locally collapsing the deposit. The combination of Landsat imagery and SRTM elevation data used in this stereoscopic display is very effective in visualizing these and other features of this terrain.

    The stereoscopic effect of this anaglyph was created by registering a Landsat image to the SRTM elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and substantially helps in analyzing the large and growing Landsat image archive.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 55 x 55 kilometers (34 x 34 miles) Location: 60 deg N latitude, 140 deg W longitude Orientation: North at top Image Data: Landsat Thematic Mapper visible and infrared band mix Original Data Resolution: SRTM 1 arcsecond (30 mete

  13. A new satellite-derived glacier inventory for Western Alaska

    NASA Astrophysics Data System (ADS)

    Le Bris, Raymond; Frey, Holger; Paul, Frank; Bolch, Tobias

    2010-05-01

    Glaciers and ice caps are essential components of studies related to climate change impact assessment. Glacier inventories provide the required baseline data to perform the related analysis in a consistent and spatially representative manner. In particular, the calculation of the current and future contribution to global sea-level rise from heavily glacierized regions is a major demand. One of the regions, where strong mass losses and geometric changes of glaciers have been observed recently is Alaska. Unfortunately, the digitally available data base of glacier extent is quite rough and based on rather old maps from the 1960s. Accordingly, the related calculations and extrapolations are imprecise and an updated glacier inventory is urgently required. Here we present first results of a new glacier inventory for Western Alaska that is prepared in the framework of the ESA project GlobGlacier and is based on freely available orthorectified Landsat TM and ETM+ scenes from USGS. The analysed region covers the Tordrillo, Chigmit and Chugach Mts. as well as the Kenai Peninsula. In total, 8 scenes acquired between 2002 and 2009 were used covering c. 20.420 km2 of glaciers. All glacier types are present in this region, incl. outlet glaciers from icefields, glacier clad volcanoes, and calving glaciers. While well established automated glacier mapping techniques (band rationing) are applied to map clean and slightly dirty glacier ice, many glaciers are covered by debris or volcanic ash and outlines need manual corrections during post-processing. Prior to the calculation of drainage divides from DEM-based watershed analysis, we performed a cross-comparative analysis of DEMs from USGS, ASTER (GDEM) and SRTM 1 for Kenai Peninsula. This resulted in the decision to use the USGS DEM for calculating the drainage divides and most of the topographic inventory parameters, and the more recent GDEM to derive minimum elevation for each glacier. A first statistical analysis of the results revealed that large parts of the area (48%) are covered by only few (43) but large (>100 km2) glaciers, while glaciers <1 km2 contribute only 6% to the total area, but 25% to the total number of analysed glaciers (>0.1 km2). However, these percentages vary with the specific mountain range analysed. The spatial analysis of mean glacier elevation (as a proxy for the ELA) revealed a strong increase from the glaciers close to the coast towards the interior (from about 100 to 2960 m a.s.l.). This more regional trend has also a high local variability, indicating that the response of glaciers to climate change will differ locally. The entire inventory data will finally be made available in the GLIMS glacier database.

  14. Glaciers along proposed routes extending the Copper River Highway, Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    Three inland highway routes are being considered by the Alaska Department of Transportation and Public Facilities to connect the community of Cordova in southcentral Alaska to a statewide road system. The routes use part of a Copper River and Northwest Railway alignment along the Copper River through mountainous terrain having numerous glaciers. An advance of any of several glaciers could block and destroy the roadway, whereas retreating glaciers expose large quantities of unconsolidated, unvegetated, and commonly ice-rich sediments. The purpose of this study was to map historical locations of glacier termini near these routes and to describe hazards associated with glaciers and seasonal snow. Historical and recent locations of glacier termini along the proposed Copper River Highway routes were determined by reviewing reports and maps and by interpreting aerial photographs. The termini of Childs, Grinnell, Tasnuna, and Woodworth Glaciers were 1 mile or less from a proposed route in the most recently available aerial photography (1978-91); the termini of Allen, Heney, and Schwan Glaciers were 1.5 miles or less from a proposed route. In general, since 1911, most glaciers have slowly retreated, but many glaciers have had occasional advances. Deserted Glacier and one of its tributary glaciers have surge-type medial moraines, indicating potential rapid advances. The terminus of Deserted Glacier was about 2.1 miles from a proposed route in 1978, but showed no evidence of surging. Snow and rock avalanches and snowdrifts are common along the proposed routes and will periodically obstruct the roadway. Floods from ice-dammed lakes also pose a threat. For example, Van Cleve Lake, adjacent to Miles Glacier, is as large as 4.4 square miles and empties about every 6 years. Floods from drainages of Van Cleve Lake have caused the Copper River to rise on the order of 20 feet at Million Dollar Bridge.

  15. BASINWIDE SEDIMENTATION PROCESSES AT GLACIER-DAMMED ICEBERG LAKE, SOUTHCENTRAL ALASKA

    E-print Network

    Loso, Michael G.

    BASINWIDE SEDIMENTATION PROCESSES AT GLACIER-DAMMED ICEBERG LAKE, SOUTHCENTRAL 2012 BASINWIDE SEDIMENTATION PROCESSES AT GLACIER-DAMMED ICEBERG LAKE, SOUTHCENTRAL ALASKA by Katie E examining sedimentation rates and varve thickness at Iceberg Lake, a glacier-dammed proglacial lake

  16. GLACIER BAY NATIONAL MONUMENT WILDERNESS STUDY AREA, ALASKA.

    USGS Publications Warehouse

    Brew, David A.; Kimball, Arthur L.

    1984-01-01

    Glacier Bay National Monument is a highly scenic and highly mineralized area about 100 mi west of Juneau, Alaska. Four deposits with demonstrated resources of nickel, copper, zinc, and molybdenum have been identified within the monument and eleven areas of probable or substantiated mineral-resource potential have been identified. The monument is highly mineralized in comparison with most areas of similar size elsewhere in southeastern Alaska, and present estimates of mineral resources are considered conservative.

  17. foreland strata, Bering Glacier, Alaska. Geomorphology 75, 12, 201211.

    E-print Network

    Smith, Dan

    foreland strata, Bering Glacier, Alaska. Geomorphology 75, 1­2, 201­211. Fritts, H. C. (1976). Tree. (2003). Tree ring analyses and detailed geomorphological mapping on a forested debris flow cone 31(2), 243­248. Luckman, B. H. (2000). The Little Ice Age in the Canadian Rockies. Geomorphology 32

  18. Glacier erosion and response to climate, from Alaska to Michle N. Koppes

    E-print Network

    Winglee, Robert M.

    Glacier erosion and response to climate, from Alaska to Patagonia Michèle N. Koppes A dissertation ______________________________ #12;University of Washington Abstract Glacier erosion and response to climate, from Alaska and Space Sciences Contemporary glacial erosion rates based on sediment yields from tidewater glaciers

  19. Marine Geophysical Surveying Along the Hubbard Glacier Terminus, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Goff, J. A.; Davis, M.; Gulick, S. P.; Lawson, D. E.; Willems, B. A.

    2010-12-01

    Tidewater glaciers are a challenging environment for marine investigations, owing to the dangers associated with calving and restrictions on operations due to dense floating ice. We report here on recent efforts to conduct marine geophysical surveys proximal to the ice face of Hubbard Glacier, in Disenchantment Bay, Alaska. Hubbard is an advancing tidewater glacier that has twice recently (1986 and 2002) impinged on Gilbert Point, which separates Russell Fiord from Disenchantment Bay, thereby temporarily creating a glacially-dammed Russell Lake. Continued advance will likely form a more permanent dam, rerouting brackish outflow waters into the Situk River, near Yakutat, Alaska. Our primary interest is in studying the development and motion of the morainal bank which, for an advancing tidewater glacier, stabilizes it against rapid retreat. For survey work, we operated with a small, fast, aluminum-hulled vessel and a captain experienced in operating in ice-bound conditions, providing a high margin of safety and maneuverability. Differencing of multibeam bathymetric data acquired in different years can identify and quantify areas of deposition and erosion on the morainal bank front and in Disenchantment Bay proper, where accumulation rates are typically > 1 m/yr within 1 km of the glacier terminus. The advance or retreat rate of the morainal bank can be determined by changes in the bed elevation through time; we document advance rates that average > 30 m/yr in Disenchantment Bay, but which vary substantially over different time periods and at different positions along the ice face. Georeferencing of available satellite imagery allows us to directly compare the position of the glacial terminus with the position of the morainal bank. From 1978 to 1999, and then to 2006, the advances in terminus and morainal bank positions were closely synchronized along the length of the glacier face. In the shallower Russell Fiord side of the terminus, a sediment ridge was mapped both in 1999 and 2008, but shifted substantially southward in the later survey. This ridge appears to be a push moraine associated with the maximum seasonal advance position of the ice margin. CHIRP seismic reflection data, although not penetrating well into morainal sediments, nevertheless display striking variations in seafloor echo character that may be used to distinguish gravels, diamict and bedrock. We observe evidence of outwash deposits from the retreating Variegated and Orange Glaciers mantling the eastern extent of the Hubbard Glacier morainal bank; these deposits are distinct in acoustic character from the potential bedrock outcrops and overconsolidated diamict within the ‘tidal channel’ at Gilbert Point and from the surface of the morainal bank within uppermost Disenchantment Bay.

  20. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    NASA Technical Reports Server (NTRS)

    Sauber, J.; Molnia, B. F.; Lutchke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spade, G.

    2004-01-01

    Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat footprint returns to estimate glacier ice elevations and surface characteristics. Additional information is included in the original extended abstract.

  1. Growth of a post-Little Ice Age submarine fan, Glacier Bay, Alaska

    USGS Publications Warehouse

    Carlson, P.R.; Cowan, E.A.; Powell, R.D.; Cai, J.

    1999-01-01

    A small Holocene fan is forming where Queen Inlet, a hanging valley, enters West Arm fjord, Glacier Bay, Alaska. Queen fan formed in the last 80 years following retreat of the Little Ice Age glacier that filled Glacier Bay about 200 yr BP. It was built mainly by a turbidite system originating from Carroll Glacier delta, as the delta formed in the early 1900s at the head of Queen Inlet. The Late Holocene Queen fan is comparable to large Pleistocene fans that formed in the Gulf of Alaska and differs from trough-mouth fans formed by cooler climate glacier systems.

  2. Dendrochronology and late Holocene history of Bering piedmont glacier, Alaska

    USGS Publications Warehouse

    Wiles, G.C.; Post, A.; Muller, E.H.; Molnia, B.F.

    1999-01-01

    Fluctuations of the piedmont lobe of Bering Glacier and its sublobe Steller Glacier over the past two millennia are reconstructed using 34 radiocarbon dates and tree-ring data from 16 sites across the glaciers' forelands. The general sequence of glacial activity is consistent with well-dated fluctuations of tidewater and land-terminating glaciers elsewhere along the Gulf of Alaska. Extensive forested areas along 25 km of the Bering ice margin were inundated by glacio-lacustrine and glacio-fluvial sediments during a probable ice advance shortly before 500 cal yr A.D. Regrowth of forests followed the retreating ice as early as the 7th century A.D., with frequent interruptions of tree growth due to outwash aggradation. Forests overrun by ice and buried in outwash indicate readvance about 1080 cal yr A.D. Retreat followed, with ice-free conditions maintained along the distal portions of the forefield until the early 17th century after which the ice advanced to within a few kilometers of its outer Neoglacial moraine. Ice reached this position after the mid-17th century and prior to 200 yr ago. Since the early 20th century, glacial retreat has been punctuated by periodic surges. The record from forests overrun by the nonsurging Steller Lobe shows that this western ice margin was advancing by 1250 A.D., reaching near its outer moraine after 1420 cal yr A.D. Since the late 19th century, the lobe has dominantly retreated.

  3. High porosity of basal till at Burroughs glacier, southeastern Alaska

    SciTech Connect

    Ronnert, L.; Mickelson, D.M. )

    1992-09-01

    Debris-rich basal ice at Burroughs glacier, southeastern Alaska, has 60 vol% to 70 vol% debris. Recently deposited basal till exceeds 60 vol% sediment with 30% to almost 40% porosity. Where basal ice is very rich in debris, basal till is deposited through melt out with only slight compaction of the debris. Porosity this high in till is commonly associated with subglacially deforming and dilated sediment. However, the recently deposited basal melt-out till at Burroughs glacier has not been deformed after deposition, but has porosity values similar to tills elsewhere interpreted to be subglacially deforming and dilated in an unfrozen state. High porosity can occur in basal melt-out till deposited directly by basal melt out.

  4. Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    U.S. Geological Survey

    2009-01-01

    Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

  5. Holocene glacier fluctuations in Alaska David J. Barclay a,*, Gregory C. Wiles b

    E-print Network

    Barclay, David J.

    of Alaska into three groups for review of Holo- cene fluctuations. First, we consider the histories of valley and cirque glaciers that have been land-based throughout the Holo- cene. These termini occur

  6. Muir and Riggs Glaciers, Muir Inlet, Alaska - 1941

    USGS Multimedia Gallery

    This northeast-looking photograph, on the southeastern side of White Thunder Ridge ,shows the lower reaches of Muir Glacier, then a large tidewater calving valley glacier, and its tributary Riggs Glacier. The séracs in the lower right-hand corner of the photograph mark Muir Glacier’s te...

  7. Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Habermann, M.; Hood, E.; Heavner, M.; Motyka, R.

    2008-12-01

    Glaciers along the Gulf of Alaska are thinning and retreating rapidly and over the last century this loss of ice has contributed measurably to global sea level rise. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined how water inputs from large rainfall events as well as a glacier lake outburst flood affected the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice- marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice- marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, two Trimble NetRS dual frequency, differential GPS units were deployed on the glacier at approximately 1/3 and 2/3 down the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and captured the outburst flood associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us to test the hypothesis that water inputs which overwhelm subglacial drainage networks result in increased rates of basal motion.

  8. Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Heavner, M.; Habermann, M.; Hood, E. W.; Fatland, D. R.

    2009-12-01

    Glaciers along the Gulf of Alaska are thinning and retreating rapidly. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined two seasons of the effect of hydrologic controls (from large rainfall events as well as a glacier lake outburst floods) on the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice-marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice-marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, multiple Trimble NetRS dual frequency, differential GPS units were deployed on the glacier along the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and May-September 2009 and captured threee outburst floods associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us to test the hypothesis that water inputs which overwhelm subglacial drainage networks result in increased rates of basal motion. 2008 was an extremely rainy summer, and the (single) lake drainage occurred during the largest precipitation even of the summer. 2009 on the other hand, was comparatively dry and sunny for the majority of the summer--the first lake drainage occurred during a several day stretch of sunny weather. The lake refilled during an extreme rainfall (20 cm of rain was recorded in a 24 hour period at a met station 16 km away and about 500 m lower in elevation) and then subsequently drained during a rainy period. We focus on the comparison of the data from two years, including the glacial response to the lake drainage with and without accompanying precipitation inputs.

  9. Combined Ice and Water Balances of Maclure Glacier, California, South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, 1967 Hydrologic Year

    USGS Publications Warehouse

    Tangborn, Wendell V.; Mayo, Lawrence R.; Scully, David R.; Krimmel, Robert M.

    1977-01-01

    Combined ice and water balances were measured in the 1967 hydrologic year (October 1-September 30) on four glaciers in western North America ranging in latitude from 37 deg to 63 deg N. This hydrologic year was characterized by heavier than normal winter precipitation in California and Washington and abnormally dry winter conditions in coastal Alaska. In summer the western conterminous states were abnormally dry and central and southern Alaska experienced very wet conditions. Maclure Glacier (lat 37 deg 45' N., 3,650-m (metres) mean equilibrium line altitude) had an above normal winter balance of 3.46 m and a positive annual balance of 1.05 m (metres of water equivalent). South Cascade Glacier (lat 48 deg 22' N., 1900-m mean equilibrium line altitude) had a winter balance of 3.28 m, slightly above average. Above normal summer ablation resulted in a final annual balance of -0.58 m, slightly more negative than has been the case for the past decade. Wolverine Glacier's (lat 60 deg 24' N., 1,200-m mean equilibrium line altitude) winter balance was 1.17 m, considerably below normal; the annual balance was -2.04 m. Gulkana Glacier (lat 63 deg 15' N., 1,700-m mean equilibrium line altitude) had a winter balance of 1.05 m, approximately normal for this glacier; the final annual balance was -0.30 m.

  10. Bursts of calving activity and controls on the terminus position of Yahtse Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Bartholomaus, T. C.; Larsen, C. F.; West, M. E.; Oneel, S.

    2011-12-01

    The tidewater glacier terminus is the interface that links oceanic and glaciological processes. Tidewater glaciers contribute large amounts of cold, fresh water to their fjords. Ocean heat exerts a significant control on glacier mass balance. On the Gulf of Alaska, the terminus of tidewater Yahtse Glacier has advanced slowly since its 1990 post-Little Ice Age minimum. At Yahtse's terminus, ice flowing at 18 m/d encounters water with temperatures of up to 10.5°C (measured 1.5 km from the terminus). Profiles of temperature and salinity in Icy Bay, in which Yahtse Glacier terminates, have revealed a strongly stratified, single-cell circulation pattern. Fresh, glacier outflow exits the bay atop warm, saline Gulf of Alaska water. The Alaska Coastal Current, a major source of Icy Bay water, has warmed by 1°C over the last 40 years. These observations prompt the question of how a tidewater advance may be sustained in spite of warming ocean and atmosphere temperatures. Superimposed on Yahtse Glacier's longer-term advance have been smaller-scale summer retreats and winter-spring re-advances. These smaller fluctuations indicate that factors that change on short timescales, such as ocean conditions and weather, also have an important control on terminus position. Observed bursts in calving frequency are a further reflection of the unsteady conditions at the glacier terminus. In the present study, we use seismograms recorded on bedrock within 500 m of the glacier terminus as a calving counter. The epicenters of a significant majority of glacier-generated seismic events within the St. Elias Mountains have been located to within 15 km of the terminus of Yahtse Glacier. Previous study at Yahtse Glacier has revealed that at least 75% of these seismic events originate from calving processes, most notably through the interactions between iceberg and water. Calving frequency is characterized by a relatively steady rate of background events, punctuated by bursts of calving activity. These bursts are correlated with rain-associated speed-ups that are present along at least 75% of the glacier length. Our analysis of these results considers the relative importance of three potential calving-related processes: along-glacier coupling in glacier flow that forces ice off the end of a submarine terminal moraine, submarine melt and undercutting of the terminus, and enhanced subaerial melt of serac pillars by rainwater that weakens the foundations of these pillars.

  11. Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers

    USGS Publications Warehouse

    Arendt, Anthony; Luthcke, Scott; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of –65 ± 11 Gt a–1 for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of –61 ± 11 Gt a–1 from GRACE, which compares well with –65 ± 12 Gt a–1 from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June–August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements at Wolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  12. Analysis of a GRACE Global Mascon Solution for Gulf of Alaska Glaciers

    NASA Technical Reports Server (NTRS)

    Arendt, Anthony; Luthcke, Scott B.; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of -6511 Gt a(exp.-1) for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of -6111 Gt a(exp. -1) from GRACE, which compares well with -6512 Gt a(exp. -1) from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June-August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements atWolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  13. Alaska Park Science, Volume 12, Issue 2 Status and Trends of Alaska National Park Glaciers

    E-print Network

    Loso, Michael G.

    Glaciers: What Do They Tell Us About Climate Change? Michael G. Loso, Anthony Arendt, Chris Larsen, Nate with the fact that the state's many glaciers are changing. Many glaciers are shrinking, and "retreat" of the glacier terminus is usually the most obvious manifestation of that change. But while some glaciers (like

  14. Surge-like behavior at the non-surge type Matanuska Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Furuya, M.; Abe, T.

    2014-12-01

    Seasonal glacier velocity changes are attributed to subglacial slip associated with water pressure changes that occur because of the seasonal variability of meltwater input. Abe and Furuya (2014) reported winter speed-up signals and their downglacier propagation at a number of glaciers near the border of Alaska and Yukon, based on ALOS/PALSAR radar image analyses. Here we perform the similar analyses at the Chugach mountain range of South Central Alaska, and report the spatial-temporal evolution of the Matanuska Glacier. Matanuska Glacier is the largest accessible glacier in Alaska with its nearly 40 km length and 5 km width near the terminus. Comparing the winter velocity images in 2007, 2008 and 2010, those in 2010 were about 1.5-2 times faster than those during the previous two years. In addition, comparing the fall and winter velocities, winter velocities were apparently faster at every 2007-2008, 2009-2010, and 2010-2011 season. These data indicate winter speed-up or mini-surge signals even at a temperate and non-surgetype Matanuska Glacier. We also examine the spatial-temporal elevation changes, using data from the LiDAR altimeter in the Icebridge mission, and found significant elevation increase near the terminus. Winter speed-up may not be uncommon at Alaskan/Yukon glaciers. Lingle and Fatland (2003) detected faster speed in winter than in fall at non-surging Seward Glacier in the St. Elias Mountains; this is the only published and unambiguous report of winter speed-up, to our knowledge. Combined with earlier glacier hydrological studies, Lingle and Fatland proposed englacial water storage and gravity-driven water flow toward the bed in winter regardless of whether a given glacier is surge-type or not, and considered that the capacity of englacial water storage would control if a given glacier was surge-type or not. We consider that our measurements are complementary to Lingle and Fatland's observations and lend further support for their hypothesis. Basal crevasse observed at Bench Glacier, Alaska, by Harper et al (2010) could be a possible form of englacial water storage. Because it has no direct route to the surface but can store significant volume of water near the bed, basal crevasse may generate high water pressure when they become constricted due to creep closure in winter.

  15. Columbia Glacier, Alaska, photogrammetry data set, 1981-82 and 1984-85

    USGS Publications Warehouse

    Krimmel, R.M.

    1987-01-01

    Photogrammetric processing of 12 sets of vertical aerial photography of the Columbia Glacier, Alaska, has measured the altitude and velocity fields of the lowest 14,000 m of the glacier during the periods of September 1981 to October 1982 and October 1984 to September 1985. The data set consists of the location of 3,604 points on the glacier, 1,161 points along the glacier terminus, and 1,116 points along the top of the terminus ice cliff. During the 1981 to 1985 period the terminus of the glacier receded 1,350 m, the ice near the terminus thinned at a rate of 18 m/year, and ice velocity near the terminus tripled, reaching as much as 6,000 m/year. (Author 's abstract)

  16. Assessing the Response of Alaska's Glaciers to Post-Little Ice Age Climate Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2001-12-01

    A comprehensive survey of the eleven mountain ranges and three island areas in Alaska that presently support glaciers was conducted to determine how glaciers in each area have responded to post-Little Ice Age (LIA) climate change. Today, glaciers cover 5 percent of Alaska, about 75,000 sq. km., range in elevation from 6,000 m to below sea level, and span latitudes from south of 55 degrees N to north of 69 degrees N. During the LIA, Alaskan glaciers expanded significantly, covering 10 percent more area than today. Many different types of data were used to construct baselines and determine glacier change. These include: published descriptions of glaciers (1794 - 2000), historic and modern maps (1794 - 2000), aerial photography (1926 - 2001), ground photography (1884 - 2001), airborne radar (1981 - 1991), satellite radar (1978 - 1998), space photography (1984 - 1994), multi-spectral satellite imagery (1972 - 2001), aerial reconnaissance and field observations by the author (1968 - 2001), and various types of proxy data. Data available varied for each region and glacier. Every mountain range and island group investigated is characterized by significant glacier retreat, thinning, and/or stagnation, especially at lower elevations. At some locations, glaciers have completely disappeared during the twentieth century. In other areas, retreat that started as early as the early eighteenth century, has continued into the twenty-first century. Ironically, in several areas, retreat is resulting in the number of glaciers is actually increasing, but the volume and area of ice is decreasing. The key survey findings are: ALEXANDER ARCHIPELAGO, KODIAK ISLAND, ALEUTIAN ISLANDS: every glacier examined showed evidence of thinning and retreat. Some have disappeared since last being mapped in the mid-twentieth century; COAST MOUNTAINS, ST. ELIAS MOUNTAINS, CHUGACH MOUNTAINS, KENAI MOUNTAINS, WRANGELL MOUNTAINS, ALASKA RANGE, AND THE ALEUTIAN RANGE: more than 95 percent of glaciers ending below an elevation of 1,500 m are retreating, thinning, and/or stagnating. Some advancing glaciers have tidewater termini. The two largest glaciers, Bering and Malaspina Glaciers, are thinning and retreating, losing several cubic kilometers of ice each year to melting and calving; TALKEETNA MOUNTAINS, AHKLUN-WOOD RIVER MOUNTAINS, KIGLUAIK MOUNTAINS, AND THE BROOKS RANGE: every glacier examined is retreating. Some disappeared during the twentieth century. Glaciers at higher elevations show little or no change. Perhaps, at these locations, regional climate change has not resulted in temperatures being elevated to a level where they impact existing glacier ice. Increases in precipitation may also be compensating for increases in melting. Throughout Alaska, in response to post-Little Ice Age climate change, all but a few glaciers that descent below an elevation of 1,500 m have thinned, stagnated, and/or retreated. Of the nearly 700 named Alaskan glaciers, less than a dozen are currently advancing.

  17. Preliminary bathymetry of Shoup Basin and late Holocene changes of Shoup Glacier, Alaska

    USGS Publications Warehouse

    Post, Austin; Viens, R.J.

    2000-01-01

    Shoup Glacier is a retreating, tidewater-calving glacier in northeast Prince William Sound, Alaska. Historical records, vegetation distribution, and sediment depth in Shoup Bay indicate that the glacier reached a late Holocene maximum at the mouth of Shoup Bay prior to 1750. When first observed around 1900, the terminus was stable on a series of shallow, bedrock obstructions between Shoup Bay and Shoup Basin, 2 miles from the late Holocene maximum. Shoup Glacier receded into tidewater in 1957 and in the following 33 years retreated 1.3 miles to expose Shoup Basin, a deep (more than 350 feet) basin with virtually no sediment accumulation. Shoup Glacier is expected to stabilize at the head of Shoup Basin shortly after the year 2000 and will not readvance if present climatic conditions continue.

  18. A Century of Retreat at Portage Glacier, South-Central Alaska

    USGS Publications Warehouse

    Kennedy, Ben W.; Trabant, Dennis C.; Mayo, Lawrence R.

    2006-01-01

    Introduction: The Portage Glacier, in south-central Alaska, is viewed by thousands of visitors annually who come to the U.S. Forest Service Begich, Boggs Visitor Center located on the road system between Anchorage and Whittier, Alaska. During the past century, the terminus of the glacier has retreated nearly 5 kilometers to its present location (fig. 1). Like other glaciers that terminate in water, such as Columbia Glacier near Valdez or Mendenhall Glacier near Juneau, Portage Glacier has experienced accelerated retreats in recent decades that likely were initially triggered by climate change begun at the end of the Little Ice Age in the mid-1800s and subsequently controlled in recent history primarily by calving of the glacier terminus. Photographic records of the terminus covering 1914 until present day track the patterns of retreat. These data, coupled with USGS climate information collected from the southern end of the ice field, provide insight to the patterns of retreat that might be observed in the future.

  19. Distribution and spawning dynamics of capelin (Mallotus villosus) in Glacier Bay, Alaska: A cold water refugium

    USGS Publications Warehouse

    Arimitsu, M.L.; Piatt, J.F.; Litzow, M.A.; Abookire, A.A.; Romano, Marc D.; Robards, M.D.

    2008-01-01

    Pacific capelin (Mallotus villosus) populations declined dramatically in the Northeastern Pacific following ocean warming after the regime shift of 1977, but little is known about the cause of the decline or the functional relationships between capelin and their environment. We assessed the distribution and abundance of spawning, non-spawning adult and larval capelin in Glacier Bay, an estuarine fjord system in southeastern Alaska. We used principal components analysis to analyze midwater trawl and beach seine data collected between 1999 and 2004 with respect to oceanographic data and other measures of physical habitat including proximity to tidewater glaciers and potential spawning habitat. Both spawning and non-spawning adult Pacific capelin were more likely to occur in areas closest to tidewater glaciers, and those areas were distinguished by lower temperature, higher turbidity, higher dissolved oxygen and lower chlorophyll a levels when compared with other areas of the bay. The distribution of larval Pacific capelin was not sensitive to glacial influence. Pre-spawning females collected farther from tidewater glaciers were at a lower maturity state than those sampled closer to tidewater glaciers, and the geographic variation in the onset of spawning is likely the result of differences in the marine habitat among sub-areas of Glacier Bay. Proximity to cold water in Glacier Bay may have provided a refuge for capelin during the recent warm years in the Gulf of Alaska.

  20. Muir and Riggs Glaciers, Muir Inlet, Alaska - 2004

    USGS Multimedia Gallery

    The second repeat photograph documents significant changes that have occurred during the 63 years between photographs A and C, and during the 54 years between photographs B and C. Muir Glacier has retreated out of the field of view and is now more than 7 kilometers northwest. Riggs Glacier has retre...

  1. Response of glacier mass balance and discharge to future climate change, upper Susitna basin, Alaska

    NASA Astrophysics Data System (ADS)

    Aubry-Wake, C.; Hock, R.; Braun, J. L.; Zhang, J.; Wolken, G. J.; Liljedahl, A.

    2013-12-01

    As glaciers retreat, they highly alter the characteristics of the overall water budget of the larger drainage basin. Understanding and quantifying glacier melt is key to effectively project future changes in watershed-scale stream flow from glacierized landscapes. In glacierized Southcentral Alaska, the State of Alaska is reviving analyses of the Susitna River's hydroelectric potential and impact by supporting a multitude of field and modeling studies. Here, we focus on the response of discharge to projected climate change through the end-of-the century. The analyzed sub-catchment is largely untouched by humans, and covers an area of 2,230 km2 (740 - 4000 m a.s.l.) of which 25% is glacierized. We use a distributed temperature index model (DETIM), which uses daily air temperature and precipitation to compute runoff, ice and snow melt/accumulation. Model calibration included daily discharge and annual mass balance point measurements between 1955 and 2012. Output from the CCSM global climate model forced by three emission scenarios (A1B, A2 and B1) was downscaled to project future runoff and glacier mass balance until 2100. Depending on the climate scenario, runoff is projected to increase by 22 to 39% (yrs 2005-2100) due to increased mean annual air temperature ranging from 3.0 to 4.9°C and precipitation increase between 23 and 34%. During the same period, the glaciers are projected to lose between 11 to 14% of their area. The future projections show no trend in winter glacier mass balance, but suggest an increasingly negative specific summer mass balance. The DETIM model, despite its hydrologic simplicity and focus on snow and ice melt and accumulation, is able to reproduce well the observations in basin discharge and glacier mass balance.

  2. Glacier Change and Biologic Succession: a new Alaska Summer Research Academy (ASRA) Science Camp Module for Grades 8-12 in Glacier Bay National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Drake, J.; Good, C.; Fatland, R.; Hakala, M.; Woodford, R.; Donohoe, R.; Brenner, R.; Moriarty, T.

    2008-12-01

    During the summer of 2008, university faculty and instructors from southeast Alaska joined the University Alaska Fairbanks(UAF)Alaska Summer Research Academy(ASRA)to initiate a 12-day module on glacier change and biologic succession in Glacier Bay National Park. Nine students from Alaska, Colorado, Massachusetts, and Texas, made field observations and collected data while learning about tidewater glacier dynamics, plant succession, post-glacial uplift, and habitat use of terrestrial and marine vertebrates and invertebrates in this dynamic landscape that was covered by 6,000 km2 of ice just 250 years ago. ASRA students located their study sites using GPS and created maps in GIS and GOOGLE Earth. They deployed salinometers and temperature sensors to collect vertical profiles of seawater characteristics up-bay near active tidewater glacier termini and down-bay in completely deglaciated coves. ASRA student data was then compared with data collected during the same time period by Juneau undergraduates working on the SEAMONSTER project in Mendenhall Lake. ASRA students traversed actively forming, up-bay recessional moraines devoid of vegetation, and the fully reforested Little Ice Age terminal moraine near Park Headquarters in the lower bay region. Students surveyed marine organisms living between supratidal and subtidal zones near glaciers and far from glaciers, and compared up-bay and down-bay communities. Students made observations and logged sightings of bird populations and terrestrial mammals in a linear traverse from the bay's northwestern most fjord near Mt. Fairweather for 120 km to the bay's entrance, south of Park Headquarters at Bartlett Cove. One student constructed an ROV and was able to deploy a video camera and capture changing silt concentrations in the water column as well as marine life on the fjord bottom. Students also observed exhumed Neoglacial spruce forests and visited outcrops of Silurian reef faunas, now fossilized in Alexander terrane limestones in the lower bay. Park Service naturalists joined the expedition and provided important resource information to the students. ASRA students and faculty returned to the Fairbanks campus at the end of the second week where students presented their work to 114 of their peers, distributed across 15 different science modules. Camp faculty, dorm resident assistants, camp staff, an enthusiastic crowd of Fairbanks community members, and one Nobel Laureate in Chemistry rounded out the audience. This was the 8th summer of the UAF-ASRA Camp.

  3. An update on surge-type glaciers and spatial constraint of surge behavior in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Herreid, S. J.; Truffer, M.; Harrison, W. D.; Hock, R. M.

    2011-12-01

    The Alaska Range is host to many surge-type glaciers as originally identified by Post in the 1960s. A reanalysis of Post's Alaska Range surge-type glacier inventory and updates by Wilbur and Clarke has been compiled from the literature, USGS maps, nadir and oblique aerial photographs and satellite imagery with a combined time span of 1949 to 2011. Glaciers in the Alaska Range show a spectrum of surge behavior, from episodic "pulsing" (or acceleration) of a tributary glacier into a major glacier trunk, to full glacier participation resulting in kilometers of displacement. To address this spectrum a classification scheme was developed and applied to show both magnitude of surge behavior and provide a confidence index of surge-type glacier identification. Of the 356 glaciers in the Alaska Range with a surface area greater than 1 km2, 28 glaciers comprising 38% of the total glacier surface area show some degree of surge behavior. 19 major surge events have been observed or temporally constrained with imagery. To better spatially constrain surge behavior, tributary branches of surge-type glaciers were assessed individually for surge participation. The extent of displacement from the most recent surge was identified from surface expressions where possible. Pre- and post-surge moraine structures for glaciers known to have major surges since the 1990s were mapped, illustrating ice displacement and the evolution of glacier geometry during the quiescent phase. Moraine geometries of Black Rapids and Susitna glaciers were also mapped. Both are well studied glaciers whose predicted surges have not occurred. Elevation data collected along a centerline of Yanert Glacier before and after a surge in 2000-01 show a mass transfer of (6.2 ± 0.3) x 10^8 m3. These data also show the location of the hinge line or boundary between reservoir and receiving areas. Using these data as well as additional direct hinge line measurements made in the Alaska Range and elsewhere in Alaska, a 70/30 surface area ratio between the reservoir and receiving areas was derived. This ratio was applied to surge-type glaciers in the Alaska Range lacking direct hinge line measurements. We propose that knowing the location of the hinge line can aid surge forecasting.

  4. Status and Trends of Alaska NPS Glaciers: Workplan and Early Results Michael G. Loso1 Chris Larsen2 Anthony Arendt2 Nate Murphy2 Justin Rich2

    E-print Network

    Loso, Michael G.

    Status and Trends of Alaska NPS Glaciers: Workplan and Early Results Michael G. Loso1 · Chris the Project Glaciers cover about 75,000 km2 of Alaska's land surface and approximately one-quarter of those glaciers are located within National Park boundaries. To develop a more comprehensive understanding

  5. Using GIS and Remote Sensing to Map the Bedrock Morphology of Bering Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Snyder-Deaton, L. E.; Molnia, B. F.

    2014-12-01

    Subglacial environments are amongst the least known places on Earth. We have combined five different types of geophysical investigations in order to better understand the complex morphology of the >250 km long bed of Bering Glacier. The transect includes the bed segment underlying the present glacier and the segment previously under the glacier's seaward extension when it reached its maximum limit during the Pleistocene. This transect represents Bering Glacier's bed from the distal edge of the continental shelf, to its up-glacier point of origin east of the U.S.-Canadian border. The datasets used were: 1) marine air-gun and sparker seismic profiles used to define the bedrock morphology of Bering Trough, Bering Glacier's Pleistocene fiord cut into the Gulf of Alaska; 2) binary-explosive seismic refraction profiles used to confirm that fiord depth bedrock underlies the Bering Foreland coastal plain; 3) high-resolution mini-sparker seismic reflection profiles collected from Vitus Lake, Bering Glacier's ice marginal lake that confirm complex bed morphology buried under up to 100 m of recent glacial-marine sediment; 4) ice penetrating radar soundings used to measure the ice thickness and depth to bedrock at more than 30 Bering Glacier piedmont lobe locations; and 5) airborne monopulse radar profiles used for mapping nearly 190 km of glacier's current bed. Combining the results of these five geophysical investigations permits us to produce numerous cross-sections and maps that show the complexities of Bering Glacier's bedrock morphology. At its offshore end on the outer continental shelf, the bed is a trough as deep as 500 m below sea level. At its origin, east of the U.S.-Canadian Border the bed elevation is ~1,600 m above sea level.

  6. Monitoring change in the Bering Glacier region, Alaska: Using Landsat TM and ERS-1 imagery

    SciTech Connect

    Payne, J.F.; Coffeen, M.; Macleod, R.D.

    1997-06-01

    The Bering Glacier is the largest (5,180 km{sup 2}) and longest (191 km) glacier in continental North America. This glacier is one of about 200 temperate glaciers in the Alaska/Canada region that are known to surge. Surges at the Bering Glacier typically occur on a 20-30 year cycle. The objective of this project was to extract information regarding the position of the terminus of the glacier from historic aerial photography, early 20{sup th} century ground photography, Landsat Thematic Mapper (TM) satellite data, and European Space Agency, Synthetic Aperture RADAR (ERS-1 SAR) data and integrate it into a single digital database that would lend itself to change detection analysis. ERS-1 SAR data was acquired from six dates between 1992-95 and was terrain corrected and co-registered A single Landsat TM image from June 1991 was used as the base image for classifying land cover types. Historic locations of the glacier terminus were generated using traditional photo interpretation techniques from aerial and ground photography. The result of this platform combination, along with the historical data, is providing land managers with the unique opportunity to generate complete assessments of glacial movement this century and determine land cover changes which may impact wildlife and recreational opportunities.

  7. Comparison of annual accumulation rates derived from in situ and ground penetrating radar methods across Alaskan glaciers

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Gusmeroli, A.; Oneel, S.; Sass, L. C.; Arendt, A. A.; Wolken, G. J.; Kienholz, C.; McNeil, C.

    2013-12-01

    Constraining annual snowfall accumulation in mountain glacier environments is essential for determining the annual mass balance of individual glaciers and predicting seasonal meltwater runoff to river and marine ecosystems. However, large spatial and elevation gradients, coupled with sparse point measurements preclude accurate quantification of this variable using traditional methods. Here, we report on an extensive field campaign conducted in March-May 2013 on key benchmark glaciers in Alaska, including Taku Glacier near Juneau, Scott Glacier near Cordova, both Eklutna and Wolverine Glacier near Anchorage and Gulkana Glacier in the interior Alaska Range. Over 50 km of 500 MHz common-offset ground penetrating radar (GPR) surveys were collected on each glacier, with an emphasis on capturing spatial variability in the accumulation zone. Frequent in situ observations were collected for comparison with the GPR, including probe depths, snow pits and shallow firn cores (~8 m). We report on spatial and elevation gradients across this suite of glaciers and across numerous climatic zones and discuss differences between GPR and in situ derived annual accumulation estimates. This comparison is an essential first step in order to effectively evaluate regional atmospheric re-analysis products.

  8. Medial moraines of glaciers of the Copper River Basin, Alaska: Discrete landslides dominate over other sources

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Fischer, L.; Furfaro, R.; Huggel, C.; Korup, O.; Leonard, G. J.; Uhlmann, M.; Wessels, R. L.; Wolfe, D. F.

    2009-12-01

    Medial moraines are visually dominant structures of most large valley glaciers in the Copper River Basin (CRB), Alaska. Areally extensive but thin (usually <20 cm) accumulations of debris pose challenges for glacier mapping based on multispectral imagery, as done, for instance, in the GLIMS project. The sources of this material include large discrete landslides from wallrocks and from lateral moraines; diffuse contributions from rock falls and talus creep; rocks delivered via snow and ice avalanches; ingestion of lateral moraines along tributary convergences; and basal erosional debris. Evidence indicates that in CRB glaciers, discrete large avalanches predominate as the major contributors of moraine mass. Subglacial erosional debris is predominantly pulverized to small grain sizes and flushed. Many large, young avalanches exist on CRB glaciers. Evidence from colorimetry indicates that many medial moraines actually are landslides that have been sheared and swept downglacier, thus mimicking the form of other types of medial moraines formed where tributaries coalesce and flow down valley. Landcover classification of ASTER imagery, qualitative observations from air photos, and semiquantitative field-based estimations of rock color types indicate that on Allen Glacier, and other CRB glaciers, landslides are the sources of most medial moraines. On Allen and Root Glacier, for example, we see very few boulders with obvious signs of basal abrasion, whereas nearly all boulders exhibit signs of irregular fracture, for example in landslides. Such landslides have large effects on the thermal and mass balance of CRB glaciers, sometimes opposing or in other cases accentuating the effects of global/regional climate change. Considering the link between landslides and seismicity, and that Magnitude 8-9 earthquakes may occur nearby only about once a century, which is also the characteristic response time of large glaciers to climate shifts, seismicity must be considered along with climate change induced glacier responses in the CRB. Ultimately, climate has the final word, and already this is evident in the glacier record. Glacial flour is probably almost entirely from bed erosion. We will present estimates of the contributions of landslides and subglacially pulverized glacial rock flour to the overall rock mass budget of Allen Glacier. Each of the components of the rock mass budget differs in its probable distribution on the surface and within a typical glacier. We will present some preliminary empirical determinations of the influence of various thicknesses of supraglacial rock debris on the local mass balance of Allen Glacier; the net zero influence is exhibited for debris thicknesses on the order of 1 cm of fine debris or ~50% coverage by cobbles or boulders.

  9. Revealing basin and regional scale snow accumulation magnitude and variability on glaciers throughout Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Oneel, S.; Sass, L. C., III; Gusmeroli, A.; Arendt, A. A.; Wolken, G. J.; Kienholz, C.; McNeil, C.

    2014-12-01

    Mass loss from Alaskan glaciers (-50 ± 17 Gt/a, 2003-2009) constitutes one of the largest contributions to global sea level rise outside of the Greenland and Antarctic ice sheets. The largest process-related uncertainties in this calculation arise from the difficulty in accurately measuring accumulation on glaciers and from the large variability of accumulation over a range of spatio-temporal scales. Further, the physical processes governing snow distribution in complex terrain elude model parameterization. Using ground-penetrating radar, constrained with probe and pit observations, we quantify the magnitude and variability of snow accumulation at six prominent glaciers throughout Alaska at the end of 2013 winter. We find that total SWE magnitude and variability are strongly controlled by the large-scale climate system (i.e. distance from the coastal moisture source along prevailing storm track). On average, total SWE decreases by 0.33 m per 100 km from the coast, while the SWE elevation gradient decreases by 0.06 m / 100 m per 100 km from the coast. SWE variability over small spatial scales (<200 m) is similar at most sites, although two glaciers exhibit notably low and high variability, likely related to their respective climatic provenance. On individual glaciers, strong elevation gradients, increasing from 0.07 m SWE / 100 m at the interior Gulkana Glacier to 0.30 m SWE / 100 m at the coastal Scott Glacier, exert the primary control on accumulation. Results from multi-variable linear regression models (based on topographic variables) find wind exposure/shelter is the most frequent secondary control on accumulation variability. Finally, we find strong agreement (<10% difference) between the radar derived and stake derived total SWE estimates at two glaciers in the USGS Benchmark Glacier Program.

  10. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska

    USGS Publications Warehouse

    Neal, E.G.; Hood, E.; Smikrud, K.

    2010-01-01

    Watersheds along the Gulf of Alaska (GOA) are undergoing climate warming, glacier volume loss, and shifts in the timing and volume of freshwater delivered to the eastern North Pacific Ocean. We estimate recent mean annual freshwater discharge to the GOA at 870 km3 yr-1. Small distributed coastal drainages contribute 78% of the freshwater discharge with the remainder delivered by larger rivers penetrating coastal ranges. Discharge from glaciers and icefields accounts for 47% of total freshwater discharge, with 10% coming from glacier volume loss associated with rapid thinning and retreat of glaciers along the GOA. Our results indicate the region of the GOA from Prince William Sound to the east, where glacier runoff contributes 371 km3 yr -1, is vulnerable to future changes in freshwater discharge as a result of glacier thinning and recession. Changes in timing and magnitude of freshwater delivery to the GOA could impact coastal circulation as well as biogeochemical fluxes to near-shore marine ecosystems and the eastern North Pacific Ocean. Copyright ?? 2010 by the American Geophysical Union.

  11. Surface expression of subglacial meltwater movement, Bering Glacier, Alaska

    SciTech Connect

    Cadwell, D.H. ); Fleisher, P.J. . Dept. of Earth Sciences); Bailey, P.K. )

    1993-03-01

    Longitudinal topographic profiles (1988--1992) across the thermokarst terminus of the Grindle Hills Ice-tongue and interlobate moraine of the Bering Piedmont Glacier document annual changes in crevasse patterns and fluctuations in surface elevation related to subglacial water movement. A semi-continuous record of aerial photos (1978--1990), plus field observations (1988--1992), reveal the progressive enlargement of two lateral collapse basin on both sides of the thermokarst, connected by a transverse collapse trough. Seasonally generated meltwater at depth rises within the glacier, fills the basins and other depressions and lifts the thermokarst terminus of the ice-tongue a few meters by buoyancy and hydrostatic pressure. The resulting surface tension creates a chaotic crevasse pattern unrelated to normal glacier movement. The crevasses open (2 m wide, 8--10 m deep) in response to increased water accumulation at depth and close during subsidence as the ice-tongue settles following evacuation of subglacier water. A network of open conduits (>10 m diameter), exposed by surface ablation, provides evidence for the scale of englacial passageways beneath the thermokarst and represents a form of subglacial ablation that leads to removal of support and collapse in stagnant glacier masses.

  12. Muir and Riggs Glaciers, Muir Inlet, Alaska - 1950

    USGS Multimedia Gallery

    This, the first of two repeat photographs, documents significant changes that have occurred during the nine years between photographs A and B. Although Muir Glacier has retreated more than 3 kilometers and thinned more than 100 meters, exposing Muir Inlet, it remains connected with tributary Riggs G...

  13. Rapid thinning and collapse of lake calving Yakutat Glacier, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Trussel, Barbara Lea

    Glaciers around the globe are experiencing a notable retreat and thinning, triggered by atmospheric warming. Tidewater glaciers in particular have received much attention, because they have been recognized to contribute substantially to global sea level rise. However, lake calving glaciers in Alaska show increasingly high thinning and retreat rates and are therefore contributors to sea level rise. The number of such lake calving systems is increasing worldwide as land-terminating glaciers retreat into overdeepened basins and form proglacial lakes. Yakutat Glacier in Southeast Alaska is a low elevation lake calving glacier with an accumulation to total area ratio of 0.03. It experienced rapid thinning of 4.43 +/- 0.06 m w.e. yr-1 between 2000-2010 and terminus retreat of over 15 km since the beginning of the 20th century. Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.54 +/- 0.06 m w.e. yr -1 for the same time period), indicating lake calving dynamics help drive increased mass loss. Yakutat Glacier sustained a ˜3 km long floating tongue for over a decade, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. The floating ice was weakened by surface ablation, which then allowed rifts to form and intersect. Ice velocity from GPS measurements showed that the ice on the floating tongue was moving substantially faster than grounded ice, which was attributed to rift opening between the floating and grounded ice. Temporal variations of rift opening were determined from time-lapse imagery, and correlated well with variations in ice speeds. Larger rift opening rates occurred during and after precipitation or increased melt episodes. Both of these events increased subglacial discharge and could potentially increase the subaqueous currents towards the open lake and thus increase drag on the ice underside. Simultaneously, increased water input may cause lake level in rifts to rise resulting in faster rift propagation and spreading. Similar formation and disintegration of floating tongues are expected to occur in the glacier's future, as the ice divide lies below the current lake level. In addition to calving retreat, Yakutat Glacier is rapidly thinning, which lowers its surface and therefore exposes the ice to warmer air temperatures causing increased thinning. Even under a constant climate, this positive feedback mechanism would force Yakutat Glacier to quickly retreat and mostly disappear. Simulations of future mass loss were run for two scenarios, keeping the current climate and forcing it with a projected warming climate. Results showed that over 95% of the glacier ice will have disappeared by 2120 or 2070 under a constant vs projected climate, respectively. For the first few decades, the glacier will be able to maintain its current thinning rate by retreating and thus losing areas of lowest elevation. However, once higher elevations have thinned substantially, the glacier cannot compensate any more to maintain a constant thinning rate and transfers into an unstable run-away situation. To stop this collapse and transform Yakutat Glacier into equilibrium in its current geometry, air temperatures would have to drop by 1.5 K or precipitation would have to increase by more than 50%. An increase in precipitation alone is unlikely to lead to a stable configuration, due to the very small current accumulation area.

  14. Radar remote sensing of glacial features, Malaspina Glacier, Alaska

    SciTech Connect

    Molnia, B.F.; Jones, J.E. )

    1990-05-01

    Two types of radar investigations were conducted at Malaspina glacier, the largest piedmont glacier lobe in North America. Digital x-band side-looking airborne radar (SLAR) data were collected to image surface features; ice-surface, ice-penetrating radar was employed to measure ice thickness and to identify the configuration of subglacial bed rock SLAR revealed a complex pattern of surface backscatter responses related to three types of channellike features on the glacier surface, which mimic the configuration of its underlying bed rock. The features resemble (1) glacially eroded valleys with cirque-like indentations, (2) dendritic stream valleys, and (3) a greater than 40-km-long, arcuate, east-west lineament that corresponds to the Fairweather fault. Field examinations of the three types of features were made to determine relief, slope, and other conditions. The channel-like features had elevations as much as 40 m lower than adjacent high areas and were characterized by fewer crevasses, minimal surface relief, a sediment veneer, and standing and running water. Hundred-m-spaced ice-penetrating radar soundings showed that the ice thickness over these low areas is much greater than over adjacent highs. About 50 ice-thickness measurements were made elsewhere on the glacier. The maximum ice thickness measured exceeded 850 m, whereas the minimum thickness was less than 150 m. Comparison of ice-thickness measurements and ice-surface elevations at each site suggests that the Malaspina Glacier occupies a deep basin or series of basins extending well below sea level.

  15. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  16. Examining the Relationship between Surface Albedo and Glacier Mass Balance in the Central Alaska Range

    NASA Astrophysics Data System (ADS)

    Godaire, T. P.; Kreutz, K. J.; Hamilton, G. S.; Burakowski, E. A.; Campbell, S. W.; Winski, D.; Wake, C. P.; Osterberg, E. C.; Markle, B. R.

    2013-12-01

    Surfaces with high reflectance values within the cryosphere such as seasonal snowpack, glacial snow and ice, and sea ice play a vital role in the global climate system and in the energy budgets of the world's glaciers. Changes in reflectance may induce feedbacks resulting in fluctuations of glacier mass balance. To understand the relationship between surface albedo and mass balance, we used an ASD Inc. FieldSpec4 spectroradiometer to measure incoming radiation, outgoing surface reflectance and optical grain size on the Kahiltna Glacier (Denali National Park, AK) during our field campaign this spring (May-June 2013). While on site, we installed two Campbell Scientific automatic weather stations; one communicates via Iridium telemetry. Comparison of our in situ data (reflectance, grain size and AWS measurements) to MODIS imagery will enable us to broaden our study area from the Kahiltna Glacier to the Central Alaska Range and to derive surface albedo values for the Range. Our final goal is to examine and quantify the relationship between our surface albedo calculations and glacier mass balance measurements from National Park Service and USGS studies. If the uncertainties are minimal, then we may apply this method of using surface albedo as a proxy for glacier mass balance in other remote regions where access is limited, but satellite imagery is available. Here we present the field albedo measurements, 6 months of the weather station data, and the MODIS-derived albedo. We will also present our findings on the relationship between the surface albedo and glacier mass balance. Quantifying the influence of albedo on mass balance will provide insight into the vulnerability of mountain glaciers to climate change, and their contribution to global sea level. Additionally, the results may offer valuable information for the enhancement of mass balance and energy balance models, temporally and spatially.

  17. Alaska: Glaciers of Kenai Fjords National Park and Katmai National Park and Preserve (Chapter 12)

    NASA Technical Reports Server (NTRS)

    Giffen, Bruce A.; Hall, Dorothy K.; Chien, Janet Y.L.

    2007-01-01

    Much recent research points to the shrinkage of the Earth's small glaciers, however, few studies have been performed to quantify the amount of change over time. We measured glacier-extent changes in two national parks in southeastern Alaska. There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2373 sq km of parkland. There are two primary areas of glaciation in KEFJ - the Harding Icefield and the Grewingk-Yalik Glacier Complex, and three primary areas of glaciation in KATM - the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area and the Mt. Martin area. We performed glacier mapping using satellite imagery, from the 1970s, 1980s, and from 2000. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period, of approximately 22 sq km of ice, approximately - 1.6% from 1986 to 2000 (for KEFJ), and of approximately 76 sq km of glacier ice, or about -7.7% from 1986187 to 2000 (for KATM). In the future, measurements of surface elevation changes of these ice masses should be acquired; together with our extent-change measurements, the volume change of the ice masses can then be determined to estimate their contribution to sea-level rise. The work is a continuation of work done in KEFJ, but in KATM, our measurements represent the first comprehensive study of the glaciers in this remote, little-studied area.

  18. Passive microwave (SSM/I) satellite predictions of valley glacier hydrology, Matanuska Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Kopczynski, S.; Ramage, J.; Lawson, D.; Goetz, S.; Evenson, E.; Denner, J.; Larson, G.

    2008-08-01

    We advance an approach to use satellite passive microwave observations to track valley glacier snowmelt and predict timing of spring snowmelt-induced floods at the terminus. Using 37 V GHz brightness temperatures (Tb) from the Special Sensor Microwave Imager (SSM/I), we monitor snowmelt onset when both Tb and the difference between the ascending and descending overpasses exceed fixed thresholds established for Matanuska Glacier. Melt is confirmed by ground-measured air temperature and snow-wetness, while glacier hydrologic responses are monitored by a stream gauge, suspended-sediment sensors and terminus ice velocity measurements. Accumulation area snowmelt timing is correlated (R2 = 0.61) to timing of the annual snowmelt flood peak and can be predicted within +/-5 days.

  19. Passive microwave (SSM/I) satellite predictions of valley glacier hydrology, Matanuska Glacier, Alaska

    USGS Publications Warehouse

    Kopczynski, S.E.; Ramage, J.; Lawson, D.; Goetz, S.; Evenson, E.; Denner, J.; Larson, G.

    2008-01-01

    We advance an approach to use satellite passive microwave observations to track valley glacier snowmelt and predict timing of spring snowmelt-induced floods at the terminus. Using 37 V GHz brightness temperatures (Tb) from the Special Sensor Microwave hnager (SSM/I), we monitor snowmelt onset when both Tb and the difference between the ascending and descending overpasses exceed fixed thresholds established for Matanuska Glacier. Melt is confirmed by ground-measured air temperature and snow-wetness, while glacier hydrologic responses are monitored by a stream gauge, suspended-sediment sensors and terminus ice velocity measurements. Accumulation area snowmelt timing is correlated (R2 = 0.61) to timing of the annual snowmelt flood peak and can be predicted within ??5 days. Copyright 2008 by the American Geophysical Union.

  20. Geologic characteristics of benthic habitats in Glacier Bay, southeast Alaska

    USGS Publications Warehouse

    Harney, Jodi N.; Cochrane, Guy R.; Etherington, Lisa L.; Dartnell, Pete; Golden, Nadine E.; Chezar, Hank

    2006-01-01

    In April 2004, more than 40 hours of georeferenced submarine digital video was collected in water depths of 15-370 m in Glacier Bay to (1) ground-truth existing geophysical data (bathymetry and acoustic reflectance), (2) examine and record geologic characteristics of the sea floor, and (3) investigate the relation between substrate types and benthic communities, and (4) construct predictive maps of seafloor geomorphology and habitat distribution. Common substrates observed include rock, boulders, cobbles, rippled sand, bioturbated mud, and extensive beds of living horse mussels and scallops. Four principal sea-floor geomorphic types are distinguished by using video observations. Their distribution in lower and central Glacier Bay is predicted using a supervised, hierarchical decision-tree statistical classification of geophysical data.

  1. Rock glaciers in different climates: the Brooks Range, Alaska, and Swiss Alps

    NASA Astrophysics Data System (ADS)

    Ikeda, A.; Yoshikawa, K.

    2005-12-01

    A rock glacier is a landform resulting from the complex input of debris, ground water, snow and glacial ice. In order to disentangle the complexity, I compare the distribution and structure of rock glaciers in different climatic conditions: the Brooks Range, Alaska, and Swiss Alps. Rock glaciers potentially develop between the snow line and the lower limit of permafrost. From this context, an arid environment has been sometimes argued to be favorable for the development of rock glaciers because of the large difference in elevation between the two boundaries. For example, rock glaciers are distributed more widely toward the southern part in the Swiss Alps where precipitation decreases from the north to south. In the Brooks Range, where the precipitation is about half of that in the southern Swiss Alps, the vertical range of the distribution is, however, similar to that in the Alps. The distribution of rock glaciers is topographically controlled below the low snow line in high latitude. The difference in precipitation in the two regions results in the different input patterns of snow. Burial of snow by rockfalls is thought to be one of the processes forming the internal ice of rock glaciers. In the Swiss Alps, snow reaches one to three m thick and it remains until the end of summer on the upper part of rock glaciers. In the Brooks Range, snow appears to rarely exceed one m thick and it disappears in early July except for the area close to the snow line. DC resistivity of rock glaciers, high values of which are a good indicator of massive ice in ground, is generally lower in the Brooks Range (10-50 kohmm) than the Alps (10-1000 kohmm). This result is contrary to the ground temperature but consistent with potential of snow burial. In the Brooks Range, high DC resistivity (>100 kohmm) was only observed on a rock glacier close to the present snow line. Such high resistivity is common in the Alps, even if rock glaciers originate from the foot of talus slopes lower than the snow line. These results from the Brooks Range are preliminary and further research will provide more information about the internal structure.

  2. Multibeam bathymetry and selected perspective views of main part of Glacier Bay, Alaska

    USGS Publications Warehouse

    Carlson, Paul R.; Hooge, Philip; Cochrane, Guy; Stevenson, Andrew; Dartnell, Pete; Lee, Kristen

    2002-01-01

    Glacier Bay is a diverse fjord ecosystem with multiple tidewater glaciers and complex biological, geological, and oceanographic patterns that vary greatly along its length. The bay was completely glaciated prior to the 1700's, and subsequently experienced the fastest glacial retreat recorded in historical times. As a result, some of the highest rates of glacial sedimentation and uplift are observed here. Glacier Bay is the deepest silled fjord in Alaska, with depths of over 450 meters. The variety of physical processes and depths creates many diverse habitats within a relatively small area. Mapping benthic (seafloor) habitats is thus crucial to understanding and managing Glacier Bay's complex marine ecosystem and the marine species therein. High-resolution multibeam mapping of the bay, funded jointly by USGS and the National Park System, provides an unprecedented new baseline for resource and habitat assessment. Full integration of the new data set will require additional ground-truthing data (sampling) and analysis. The USGS goal is to develop integrated geological and oceanographic habitat models for the marine benthos in Glacier Bay, as a step toward determining the habitat relationships of critical species and resources within the Park.

  3. Morainal bank progradation and sediment accumulation in Disenchantment Bay, Alaska: Response to advancing Hubbard Glacier

    NASA Astrophysics Data System (ADS)

    Goff, John A.; Lawson, Daniel E.; Willems, Bryce A.; Davis, Marcy; Gulick, Sean P. S.

    2012-06-01

    Morainal banks are primary features at the margins of advancing and stable to quasi-stable temperate tidewater glaciers, yet their roles in glacier dynamics and terminus stability are poorly defined by submarine observations. Analysis of new and archival multibeam data and Landsat images of the advancing Hubbard Glacier, southeast Alaska, reveal that between 1978 and 2010 the ice face and morainal bank advanced together at an average rate of ˜34 m/yr, varying spatially and temporally between 14 and 80 m/yr. Morphological features including gullies and a boulder lag suggest cyclical deposition and gravitational erosion on the proximal slope of the morainal bank (15-18°), and possible ice pushing in an area without recent sedimentation. In contrast, the morainal bank of the nearby, quasi-stable (surging) Turner Glacier advanced steadily since 1978 by proximal sedimentation on the steep fjord wall below its hanging valley. Sedimentation in the deep (>220 m) basin of Disenchantment Bay increased from 0.88 m/yr spanning 1978 to 1999, to 1.22 m/yr thereafter. This change appears to be a combined response to glacier advance and sediment dispersal farther down-fjord, and to an increase in sediment yield from other glacial and non-glacial sources. Analysis of Hubbard Glacier illustrates the direct correlation between movement of the terminus and morainal bank in advancing the grounding line of a marine-terminating glacier, and that morainal banks provide a fundamental stabilizing role for advance into a deep-water fjord, compensating for changes in water depth at the grounding line.

  4. Expanding Peatlands in Alaska Caused by Accelerated Glacier Melting Under a Warming Climate

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Yu, Z.; Jones, M. C.

    2009-05-01

    Most mountain glaciers worldwide have been retreating over the last century due to global warming. This is particularly true around the Gulf of Alaska, where glacier recession has further accelerated since 1988. It is well known that glacier meltwater plays a critical role in the global sea level rise, but its effects on structure and functioning of peatland ecosystems remain poorly understood. We have observed in the field that many peatlands in the Susitna Basin, south-central Alaska, are expanding. As high moisture conditions are needed to promote peatland development and expansion, a regional change toward wetter conditions is likely responsible for the ongoing paludification of these peatlands. However, instrumental climatic data from this region show no increase in precipitation but an increase in temperature (and presumably evaporation) over the last decades. We hypothesize that climatically-induced glacier melting is modifying the local/regional climate, especially air humidity during the growing season, promoting the expansion of peatlands. To document recent peatland vertical growth and lateral expansion, we collected two long peat cores and twelve 30-cm-long monoliths in 2008 along a 110-m transect from an expanding peatland margin toward the peatland center. Ecohydrologic changes were reconstructed from testate amoebae and plant macrofossils assemblages. Preliminary results from both long cores revealed a change in the vegetation assemblages from a mesotrophic fen dominated by sedges and brown mosses to a Sphagnum-dominated peat bog at 11 cm, suggesting a very recent modification of the local hydrologic regime. A simultaneous increase in moisture was reconstructed from testate amoebae records. These unusual shifts in peatland development and hydrology (e.g., wet conditions triggering the fen-bog transition) imply a recent increase of atmospheric water to these peatlands. Our ongoing lead-210 dating and additional proxy analysis will help us resolve the timing and nature of recent peatland changes. These data, together with glacier history and climate records, will allow us to further test our hypothesis that the increase in glacier meltwater is causing peatland expansion By acting as water sinks, peatlands located in glacierized watersheds may mediate the contribution of meltwater to present and future sea-level rise. Increases in peat accumulation rates due to favorable hydroclimatic conditions are also expected to promote carbon sequestration by these ecosystems. In contrast to the expected desiccation of peatlands under a warmer climate, enhanced growth due to glaciers-climate feedbacks in high-latitude regions may thus promote peatland expansion, even just temporally.

  5. Twenty-first century changes in the hydrology, glaciers, and permafrost of the Susitna Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Bliss, A. K.; Hock, R.; Wolken, G. J.; Zhang, J.; Whorton, E.; Braun, J. L.; Gusmeroli, A.; Liljedahl, A.; Schulla, J.

    2014-12-01

    In the face of climate change, the hydrology of the upper Susitna Basin in South-Central Alaska is expected to change. This would impact the quantity and seasonality of river flow into a proposed hydroelectric dam, if it were to be built. The upper Susitna Basin catchment area is 13,289 km², ranging from 450-4000 m a.s.l. It is 4% glacierized and is characterized by sparse vegetation, discontinuous permafrost, and little human development. We present field measurements and results from hydrological modeling. We present new field data from spring and fall 2014 along with field measurements from the 1980's, 2012, and 2013. These data are used to calibrate and validate the hydrological model. Traditional glacier mass balance measurements show that the glaciers lost more mass in 2012 and 2013 than in 1981, 1982, or 1983. Springtime snow radar surveys of the glaciers allow us to extrapolate from point measurements of snow depth to the whole glacier area. Snow depth measurements at tundra sites as well as tundra vegetation and soil characterizations help us choose appropriate model parameters for the tundra portions of the basin. Meteorological data (temperature, humidity, and precipitation) from over 20 stations in the basin show the summertime temperature lapse rate to be smaller over glacier surfaces compared to ice-free surfaces. Precipitation is highly variable across the basin. Energy balance measurements from two meteorological stations, one located on West Fork Glacier and one on a nunatak near Susitna Glacier, are used for more detailed modeling of summertime glacier melt and runoff. We run a physically-based hydrological model to project 21st century river discharge: Water Flow and Balance Simulation Model (WaSiM). Climate inputs come from a CCSM CMIP5 RCP6.0 scenario downscaled to a 20km-5km nested grid using the Weather Research and Forecasting (WRF) Model. From 2010-2029 to 2080-2099 the basin-wide mean-annual temperature will rise 2.5 degrees and total precipitation will rise 2%, with a 13% decrease in snowfall and a 20% increase in rainfall. Preliminary WaSiM runs indicate that glaciers will retreat, evapotranspiration will increase, and permafrost will thaw. Annual runoff will remain relatively steady, but the timing of the peak spring runoff will shift to an earlier date.

  6. End-of-winter snow depth variability on glaciers in Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Sass, Louis; O'Neel, Shad; Arendt, Anthony; Wolken, Gabriel; Gusmeroli, Alessio; Kienholz, Christian; McNeil, Christopher

    2015-08-01

    A quantitative understanding of snow thickness and snow water equivalent (SWE) on glaciers is essential to a wide range of scientific and resource management topics. However, robust SWE estimates are observationally challenging, in part because SWE can vary abruptly over short distances in complex terrain due to interactions between topography and meteorological processes. In spring 2013, we measured snow accumulation on several glaciers around the Gulf of Alaska using both ground- and helicopter-based ground-penetrating radar surveys, complemented by extensive ground truth observations. We found that SWE can be highly variable (40% difference) over short spatial scales (tens to hundreds of meters), especially in the ablation zone where the underlying ice surfaces are typically rough. Elevation provides the dominant basin-scale influence on SWE, with gradients ranging from 115 to 400 mm/100 m. Regionally, total accumulation and the accumulation gradient are strongly controlled by a glacier's distance from the coastal moisture source. Multiple linear regressions, used to calculate distributed SWE fields, show that robust results require adequate sampling of the true distribution of multiple terrain parameters. Final SWE estimates (comparable to winter balances) show reasonable agreement with both the Parameter-elevation Relationships on Independent Slopes Model climate data set (9-36% difference) and the U.S. Geological Survey Alaska Benchmark Glaciers (6-36% difference). All the glaciers in our study exhibit substantial sensitivity to changing snow-rain fractions, regardless of their location in a coastal or continental climate. While process-based SWE projections remain elusive, the collection of ground-penetrating radar (GPR)-derived data sets provides a greatly enhanced perspective on the spatial distribution of SWE and will pave the way for future work that may eventually allow such projections.

  7. Oceanography of Glacier Bay, Alaska: Implications for biological patterns in a glacial fjord estuary

    USGS Publications Warehouse

    Etherington, L.L.; Hooge, P.N.; Hooge, E.R.; Hill, D.F.

    2007-01-01

    Alaska, U.S.A, is one of the few remaining locations in the world that has fjords that contain temperate tidewater glaciers. Studying such estuarine systems provides vital information on how deglaciation affects oceanographic conditions of fjords and surrounding coastal waters. The oceanographic system of Glacier Bay, Alaska, is of particular interest due to the rapid deglaciation of the Bay and the resulting changes in the estuarine environment, the relatively high concentrations of marine mammals, seabirds, fishes, and invertebrates, and the Bay's status as a national park, where commercial fisheries are being phased out. We describe the first comprehensive broad-scale analysis of physical and biological oceanographic conditions within Glacier Bay based on CTD measurements at 24 stations from 1993 to 2002. Seasonal patterns of near-surface salinity, temperature, stratification, turbidity, and euphoric depth suggest that freshwater input was highest in summer, emphasizing the critical role of glacier and snowmelt to this system. Strong and persistent stratification of surface waters driven by freshwater input occurred from spring through fall. After accounting for seasonal and spatial variation, several of the external physical factors (i.e., air temperature, precipitation, day length) explained a large amount of variation in the physical properties of the surface waters. Spatial patterns of phytoplankton biomass varied throughout the year and were related to stratification levels, euphotic depth, and day length. We observed hydrographic patterns indicative of strong competing forces influencing water column stability within Glacier Bay: high levels of freshwater discharge promoted stratification in the upper fjord, while strong tidal currents over the Bay's shallow entrance sill enhanced vertical mixing. Where these two processes met in the central deep basins there were optimal conditions of intermediate stratification, higher light levels, and potential nutrient renewal. These conditions were associated with high and sustained chlorophyll a levels observed from spring through fall in these zones of the Bay and provide a framework for understanding the abundance patterns of higher trophic levels within this estuarine system. ?? 2007 Estuarine Research Federation.

  8. Glacier Basal Sliding in Two-Dimensions Quantified from Correlation of High-Resolution Satellite Imagery: A Case Study on Kennicott Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Armstrong, W. H., Jr.; Anderson, R. S.; Allen, J.; Rajaram, H.; Anderson, L. S.

    2014-12-01

    The coupling of glacial hydrology and sliding is a source of uncertainty for both ice flow modeling and prediction of future sea level rise. As basal sliding is required for a glacier to erode its bed, the spatial pattern of glacier sliding is also important for understanding alpine landscape evolution. We use multi-temporal WorldView satellite imagery (0.5 m pixel) to monitor the seasonal progression of glacier velocity across the terminal ~50 km2of Kennicott Glacier, Alaska. We employ the free image correlation software COSI-Corr to construct multiple velocity maps, using 2013 imagery with repeat times from 15 to 38 days. These short intervals between images allow us to analyze variations in glacier velocity over weekly to monthly timescales associated with hydrologically-induced basal sliding. By assuming that spring (March-April) glacier velocity results solely from viscous deformation, we produce spatially distributed maps of glacier sliding speed by differencing summer and spring ice surface speeds. For a given time, a large portion of our study reach slides with roughly uniform speed, despite significant variation in deformation speed. This suggests that glacier flow models in which basal sliding is taken simply to scale as ice surface velocity are unfounded. The upglacier end of our study reach slides at speeds that vary through the summer, whereas the terminal reach slides at a steady speed. The proportion of glacier motion due to sliding increases dramatically moving downglacier, making basal sliding especially important in the terminal region. Many formulations express glacier sliding as a function of effective pressure (ice pressure minus water pressure). If such formulations are correct, effective pressure varies little over large areas or is averaged over lengthscales equivalent to ~10 glacier thicknesses. Also, effective pressure is steady in the terminal region through the summer. We explore existing sliding laws to find which best describes the observed spatiotemporal pattern of sliding.

  9. Methane seeps along boundaries of receding glaciers in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.

    2012-12-01

    Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca. 1650-1850 C.E.). Across Alaska, we found a relationship between methane stable isotopes, radiocarbon age, and distance to faults. Faults appear to allow the escape of deeper, more 14C-depleted methane to the atmosphere, whereas seeps away from faults entrained 14C-enriched methane formed in shallower sediments from microbial decomposition of younger organic matter. Additionally, we observed younger subcap methane seeps in lakes of Greenland's Sondrestrom Fjord that were associated with ice-sheet retreat since the LIA. These correlations suggest that in a warming climate, continued disintegration of glaciers, permafrost, and parts of the polar ice sheets will weaken subsurface seals and further open conduits, allowing a transient expulsion of methane currently trapped by the cryosphere cap.

  10. Mass and Energy Balance Modeling of Glaciers in the Upper Susitna Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Hock, R.; Aubry-Wake, C.; Bliss, A.; Gusmeroli, A.; Liljedahl, A.; Gillispie, L.; Wolken, G. J.

    2014-12-01

    The State of Alaska is reviving analyses of the Susitna River's hydroelectric potential by supporting a multitude of field and modeling studies for the proposed Susitna-Watana Hydroelectric project. Critical to any effective hydroelectric development is a firm understanding of the basin-wide controls on river runoff and how seasonal reservoir recharge may change over the course of the structure's life-span. Effectively projecting future changes in watershed-scale stream flow for the Susitna river demands understanding and quantifying glacier melt in the Alaskan range. Our research is restricted to a sub-catchment of the upper Susitna basin that feeds the Susitna River covering 2,230 km2, of which 25% is glacierized. The goals of our study are to investigate the spatial and seasonal variations of the energy balance and its components across the glaciers and to model resulting streamflow from the catchment for the summer of 2013 using two models of different complexity. We apply DEBAM, a distributive energy balance model and DETIM, an enhanced temperature-index model, both coupled to a linear-reservoir runoff model, to simulate hourly surface energy fluxes, melt rates and glacier runoff using meteorological observations from an automated weather station located in the ablation zone of the West Fork glacier. Model results are compared to measurements of streamflow and mass balance at 20 ablation stakes across the glacierized area. The largest source of energy contributing to 85% of melt is net radiation followed by the sensible and latent heat fluxes. Both models capture well the seasonal and diurnal variations in streamflow and show good agreement with the mass balance point observations. The discrepancies between modeled and measured discharge can be attributed to the high uncertainty in precipitation and initial snow cover across the unglaciated part of the basin which accounts for over 75% of the modeled area.

  11. The Propagation of a Surge Front on Bering Glacier, Alaska, 2001-2011

    NASA Technical Reports Server (NTRS)

    Turrin, James; Forster, Richard R.; Larsen, Chris; Sauber, Jeanne

    2013-01-01

    Bering Glacier, Alaska, USA, has a 20 year surge cycle, with its most recent surge reaching the terminus in 2011. To study this most recent activity a time series of ice velocity maps was produced by applying optical feature-tracking methods to Landsat-7 ETM+ imagery spanning 2001-11. The velocity maps show a yearly increase in ice surface velocity associated with the down-glacier movement of a surge front. In 2008/09 the maximum ice surface velocity was 1.5 plus or minus 0.017 kilometers per a in the mid-ablation zone, which decreased to 1.2 plus or minus 0.015 kilometers per a in 2009/10 in the lower ablation zone, and then increased to nearly 4.4 plus or minus 0.03 kilometers per a in summer 2011 when the surge front reached the glacier terminus. The surge front propagated down-glacier as a kinematic wave at an average rate of 4.4 plus or minus 2.0 kilometers per a between September 2002 and April 2009, then accelerated to 13.9 plus or minus 2.0 kilometers per a as it entered the piedmont lobe between April 2009 and September 2010. Thewave seems to have initiated near the confluence of Bering Glacier and Bagley Ice Valley as early as 2001, and the surge was triggered in 2008 further down-glacier in the mid-ablation zone after the wave passed an ice reservoir area.

  12. Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A

    USGS Publications Warehouse

    Cox, L.H.; March, R.S.

    2004-01-01

    The net mass balance on Gulkana Glacier, Alaska, U.S.A., has been measured since 1966 by the glaciological method, in which seasonal balances are measured at three index sites and extrapolated over large areas of the glacier. Systematic errors can accumulate linearly with time in this method. Therefore, the geodetic balance, in which errors are less time-dependent, was calculated for comparison with the glaciological method. Digital elevation models of the glacier in 1974, 1993 and 1999 were prepared using aerial photographs, and geodetic balances were computed, giving - 6.0??0.7 m w.e. from 1974 to 1993 and - 11.8??0.7 m w.e. from 1974 to 1999. These balances are compared with the glaciological balances over the same intervals, which were - 5.8??0.9 and -11.2??1.0 m w.e. respectively; both balances show that the thinning rate tripled in the 1990s. These cumulative balances differ by <6%. For this close agreement, the glaciologically measured mass balance of Gulkana Glacier must be largely free of systematic errors and be based on a time-variable area-altitude distribution, and the photography used in the geodetic method must have enough contrast to enable accurate photogrammetry.

  13. Glaciological and marine geological controls on terminus dynamics of Hubbard Glacier, southeast Alaska

    USGS Publications Warehouse

    Stearns, Leigh A.; Hamilton, Gordon S.; van der Veen, C. J.; Finnegan, D. C.; O'Neel, Shad; Scheick, J. B.; Lawson, D. E.

    2015-01-01

    Hubbard Glacier, located in southeast Alaska, is the world's largest non-polar tidewater glacier. It has been steadily advancing since it was first mapped in 1895; occasionally, the advance creates an ice or sediment dam that blocks a tributary fjord (Russell Fiord). The sustained advance raises the probability of long-term closure in the near-future, which will strongly impact the ecosystem of Russell Fiord and the nearby community of Yakutat. Here, we examine a 43-year record of flow speeds and terminus position to understand the large-scale dynamics of Hubbard Glacier. Our long-term record shows that the rate of terminus advance has increased slightly since 1895, with the exception of a slowed advance between approximately 1972 and 1984. The short-lived closure events in 1986 and 2002 were not initiated by perturbations in ice velocity or environmental forcings, but were likely due to fluctuations in sedimentation patterns at the terminus. This study points to the significance of a coupled system where short-term velocity fluctuations and morainal shoal development control tidewater glacier terminus position.

  14. Combined Ice and Water Balances of Gulkana and Wolverine Glaciers, Alaska, and South Cascade Glacier, Washington, 1965 and 1966 Hydrologic Years

    USGS Publications Warehouse

    Meier, Mark Frederick; Tangborn, Wendell V.; Mayo, Lawrence R.; Post, Austin

    1971-01-01

    Glaciers occur in northwestern North America between lat 37 deg and 69 deg N. in two major mountain systems. The Pacific Mountain System, near the west coast, receives large amounts of precipitation, has very mild temperatures, and contains perhaps 90 percent of the glacier ice. The Rocky Mountain or Eastern System, on the other hand, receives nearly an order of magnitude less precipitation, has temperatures that range from subpolar to subtropic, and contains glaciers that are much smaller in both size and total area. As a contribution to the International Hydrological Decade program on combined balances at selected glaciers, the U.S. Geological Survey is conducting studies of ice and water balance on four glaciers in the Pacific Mountain System: Wolverine and Gulkana Glaciers in Alaska, South Cascade Glacier in Washington, and Maclure Glacier in California. Similar data are being collected by other organizations at five glaciers in western Canada, including two in the Rocky Mountain System, and at one glacier in the Rocky Mountain System in northern Alaska. Gulkana, Wolverine, South Cascade, and Maclure Glaciers have dissimilar mass balances, and each is fairly representative of the glaciers for its particular region. Gulkana Glacier (lat 63 deg 15' N., Alaska Range, Alaska) normally has an equilibrium line at an altitude of 1,800 m (meters), an activity index of about 6 mm/m (millimeters per meter), a winter balance of about 1.0 m, and an annual exchange of about 2.2 m. (Balance values are given in terms of water-equivalent measure; the winter balance of 1 m, for example, indicates a volume of ice equal in mass to a volume of water 1 m in depth covering the area of the glacier.) The normal approximate parameters for the other glaciers studied are as follows: Wolverine Glacier (lat 60 deg 24' N., Kenai Mountains, Alaska) - equilibrium-line altitude 1,200 m, activity index 9 mm/m, winter balance 2.5 m, and annual exchange 5.5 m; South Cascade Glacier (lat 48 deg 22' N., North Cascades, Wash.) - equilibrium-line altitude 1,900 m, activity index 17 mm/m, winter balance 3.1 m, and annual exchange 6.6 m; and Maclure Glacier (lat 37 deg 45' N., Sierra Nevada, Calif.) - equilibrium-line altitude 3,600 m, activity index 23 mm/m, winter balance 2.3 m, and annual exchange 4.6 m. Mass balances of these four glaciers and their drainage basins are measured annually by standard glaciological techniques. In addition, the hydrologic balance is calculated using streamflow and precipitation measurements. Combining these independent measurements results in fairly well defined values of water and ice balance for the glaciers and drainage basins. A revision of the standard International Hydrological Decade mass-balance system permits combination of annual and stratigraphic terms. The annual balance of South Cascade Glacier at the end of the 1965 hydrologic year was slightly positive (+0.07 m averaged over the glacier), but continued ablation and deficient accumulation in October 1965 resulted in slightly negative net balances for both the glacier and the drainage basin. Factors tending to produce this near-zero balance were the above-average late-winter balance (3.48 m) and the numerous summer snowfalls. Ice ablation averaged about 39 mm of water per day during the main melt season. Runoff during the summer ablation season was lower than the 1958-64 average. The South Cascade Glacier annual balance in 1966 (-0.94 m) was considerably more negative mainly owing to the deficient winter snowpack (the late-winter balance was only 2.52 m) and the warm dry summer. Ice ablation averaged about 44 mm of water per day during the melt season. The loss in storage of this and other glaciers in the North Cascades increased the runoff of many valley streams by approximately 50 percent during August and September. The 1966 Gulkana Glacier annual balance was slightly positive (+0.06 m); on the basis of past observations and the rapid terminus ret

  15. Late Holocene environmental change at three glacier-fed lakes, southern Alaska

    NASA Astrophysics Data System (ADS)

    Kaufman, D. S.; Anderson, R. S.; Daigle, T. A.; Kathan, K. M.; McKay, N. P.; Michelutti, N. N.; Werner, A.

    2007-12-01

    Lake-sediment cores and glacial geomorphology were used to infer late Holocene paleoenvironmental changes at three glacier-fed lakes across southern Alaska. The lakes form a 730-km-long transect around 60N lat, and they span the transition zone between two centers of opposite surface air-temperature responses attributed to fluctuations in the strength of the Aleutian Low, the primary indicator of winter climate in the North Pacific. Sediment cores from Hallet Lake in the NE Chugach Range display varying concentrations of biogenic silica (BSi), a measure of overall lake production. A transfer function was developed to infer summer temperature from downcore BSi content. The reconstruction shows clear evidence of first millennium AD cooling, warmth from 1300-1500 AD, Little Ice Age (LIA) cooling between 1750 and 1900 AD, and recent warming beginning ca. 1900 AD. During the last 30 yr, summer temperatures were nearly 2C warmer than the reconstructed mean of the past 2 millennia. Goat Lake is near treeline in the Kenai Mountains, and about 1 km from an outlet glacier of the Harding Icefield. Pollen assemblages show increasing abundances of mountain hemlock from 700-1200 AD, which we interpret as an expansion of treeline. The expansion was terminated around 1230 AD when 10 cm of tephra was deposited in the lake. Treeline above the modern and prior to the LIA is further indicated by a 14C age of 1470 ± 85 AD on logs exposed below till at the present glacier terminus. By 1660 AD the outlet glacier thickened by 150 m where it overtopped its drainage divide and spilled meltwater into Goat Lake, which continued until around 1890 AD. Since then, hemlock pollen has increased to levels comparable to the 1200 AD peak, and the outlet glacier has retreated 1.4 km to the location of the 1470 AD logs. At Cascade Lake, sediment traps installed for 2 yr collected 77% less BSi when spring and summer temperatures were lower, suggesting that BSi flux in the lake is related to growing-season conditions. BSi was at its minimum early during the first millennium AD. It peaked around 700 AD, then decreased during the next 400 yr. BSi flux was relatively constant until the 19th century when it decreased to near-minima values, then attained its highest values of the last 2000 yr late during the 20th century. BSi and hemlock pollen are probably related more strongly to summer conditions than to winter, whereas glaciers respond to a combination of winter and summer climate variability. Late Holocene moraines in the forefields of cirque glaciers around all study lakes were mapped and dated roughly with lichenometry. The moraines delimit maximum glacier positions attained late in the 19th century, when glacier snouts generally descended less than 100 m in elevation relative to their 1950-1970 positions. This limited LIA expansion, together with tree-ring and other independent evidence for decades-long LIA summer cooling of at least 0.8çC in south-central Alaska, indicates a reduction in accumulation-season precipitation during the LIA. A simultaneous reduction in winter precipitation across southern Alaska is difficult to ascribe to a shift in the Aleutian Low pressure system because instrumental data show dipolar responses across this region. This implies a longer- term, more general climate forcing that supersedes inter-decadal variability in the Aleutian Low.

  16. Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska

    USGS Publications Warehouse

    Walter, Fabian; O'Neel, Shad; McNamara, Daniel; Pfeffer, W.T.; Bassis, Jeremy N.; Fricker, Helen Amanda

    2010-01-01

    The terminus of Columbia Glacier, Alaska, unexpectedly became ungrounded in 2007 during its prolonged retreat. Visual observations showed that calving changed from a steady release of low-volume bergs, to episodic flow-perpendicular rifting, propagation, and release of very large icebergs - a style reminiscent of calving from ice shelves. Here, we compare passive seismic and photographic observations through this transition to examine changes in calving. Mechanical changes accompany the visible changes in calving style post flotation: generation of seismic energy during calving is substantially reduced. We propose this is partly due to changes in source processes.

  17. Late Holocene glacial history of the Copper River Delta, coastal south-central Alaska, and controls on valley glacier fluctuations

    NASA Astrophysics Data System (ADS)

    Barclay, David J.; Yager, Elowyn M.; Graves, Jason; Kloczko, Michael; Calkin, Parker E.

    2013-12-01

    Fluctuations of four valley glaciers in coastal south-central Alaska are reconstructed for the past two millennia. Tree-ring crossdates on 216 glacially killed stumps and logs provide the primary age control, and are integrated with glacial stratigraphy, ages of living trees on extant landforms, and historic forefield photographs to constrain former ice margin positions. Sheridan Glacier shows four distinct phases of advance: in the 530s to c.640s in the First Millennium A.D., and the 1240s to 1280s, 1510s to 1700s, and c.1810s to 1860s during the Little Ice Age (LIA). The latter two LIA advances are also recorded on the forefields of nearby Scott, Sherman and Saddlebag glaciers. Comparison of the Sheridan record with other two-millennia long tree-ring constrained valley glacier histories from south-central Alaska and Switzerland shows the same four intervals of advance. These expansions were coeval with decreases in insolation, supporting solar irradiance as the primary pacemaker for centennial-scale fluctuations of mid-latitude valley glaciers prior to the 20th century. Volcanic aerosols, coupled atmospheric-oceanic systems, and local glacier-specific effects may be important to glacier fluctuations as supplemental forcing factors, for causing decadal-scale differences between regions, and as a climatic filter affecting the magnitude of advances.

  18. Twenty-first century changes in the hydrology, glaciers, and permafrost of the Susitna Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Bliss, A. K.; Braun, J. L.; Daanen, R. P.; Hock, R.; Liljedahl, A.; Wolken, G. J.; Zhang, J.

    2013-12-01

    In South-Central Alaska, the Susitna River is the site of a proposed hydroelectric dam. The catchment of the reservoir in the upper Susitna watershed (13,289 km^2, 450-4000 m a.s.l.) is 4% glacierized and is characterized by sparse vegetation, discontinuous permafrost, and little human development. Glaciers, permafrost, and the water cycle are expected to change in response to anticipated future atmospheric warming by the end of this century, thus impacting water yields to the hydroelectric reservoir. We aim to quantify future changes in glacier wastage, surface- and groundwater, permafrost, and evapotranspiration. We apply the physically-based hydrological model WaSiM using daily air temperature and precipitation data from station observations and gridded climate products. The model is calibrated with runoff and glacier mass balance measurements from the 1980s and validated with measurements from ongoing field campaigns which started in spring 2012. With the past and present data, the model is able to match both the magnitude and timing of observed river discharge. However, the scarcity of meteorological observations from the upper Susitna basin presents a major challenge to simulating the catchment hydrology. We present methods for extrapolation of the spatially-sparse long-term data across the catchment, with particular emphasis on high-elevation precipitation. To project future changes in river runoff, we run WaSiM with air temperature and precipitation downscaled from global climate models and compare results from several emission scenarios (selected from CMIP5). We discuss the anticipated changes in basin hydrology as the climate warms, permafrost thaws, and glaciers shrink.

  19. Hazard assessment of the Tidal Inlet landslide and potential subsequent tsunami, Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Wieczorek, G.F.; Geist, E.L.; Motyka, R.J.; Jakob, M.

    2007-01-01

    An unstable rock slump, estimated at 5 to 10????????10 6 m3, lies perched above the northern shore of Tidal Inlet in Glacier Bay National Park, Alaska. This landslide mass has the potential to rapidly move into Tidal Inlet and generate large, long-period-impulse tsunami waves. Field and photographic examination revealed that the landslide moved between 1892 and 1919 after the retreat of the Little Ice Age glaciers from Tidal Inlet in 1890. Global positioning system measurements over a 2-year period show that the perched mass is presently moving at 3-4 cm annually indicating the landslide remains unstable. Numerical simulations of landslide-generated waves suggest that in the western arm of Glacier Bay, wave amplitudes would be greatest near the mouth of Tidal Inlet and slightly decrease with water depth according to Green's law. As a function of time, wave amplitude would be greatest within approximately 40 min of the landslide entering water, with significant wave activity continuing for potentially several hours. ?? 2007 Springer-Verlag.

  20. Glacier fluctuations in the Kenai Fjords, Alaska, U.S.A.: An evaluation of controls on Iceberg-calving glaciers

    SciTech Connect

    Wiles, G.C.; Calkin, P.E.; Post, A.

    1995-08-01

    The histories of four iceberg-calving outlet-glacier systems in the Kenai Fjords National Park underscore the importance of fiord depth, sediment supply, and fiord geometry on glacier stability. These parameters, in turn, limit the reliability of calving glacier chronologies as records of climatic change. Tree-ring analysis together with radiocarbon dating show that the Northwestern and McCarty glaciers, with large drainage basins, were advancing in concert with nearby land-terminating glaciers about A.D. 600. After an interval of retreat and possible nonclimatically induced extension during the Medieval Warm Period, these ice margins advanced again through the Little Ice Age and then retreated synchronously with the surrounding land-terminating glaciers about A.D. 1900. In contrast, Holgate and Aialik glaciers, with deeper fiords and smaller basins, retreated about 300 yr earlier. Reconstructions of Little Ice Age glaciers suggest that equilibrium-line altitudes of Northwestern and McCarty glaciers were, respectively, 270 and 500 m lower than now. Furthermore, the reconstructions show that these two glaciers were climatically sensitive when at their terminal moranies. However, with ice margins at their present recessional positions and accumulation area ratios between 0.8 and 0.9, only McCarty Glacier shows evidence of advance. Aialik and Holgate glaciers were climatically insensitive during the Little Ice Age maxima and remain insensitive to climate. 40 refs., 7 figs., 2 tabs.

  1. Marine benthic habitat mapping of the West Arm, Glacier Bay National Park and Preserve, Alaska

    USGS Publications Warehouse

    Hodson, Timothy O.; Cochrane, Guy R.; Powell, Ross D.

    2013-01-01

    Seafloor geology and potential benthic habitats were mapped in West Arm, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, groundtruthed observations, and geological interpretations. The West Arm of Glacier Bay is a recently deglaciated fjord system under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the recently developed Coastal and Marine Ecological Classification Standard (CMECS) by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Due to the high flux of glacially sourced fines, mud is the dominant substrate within the West Arm. Water-column characteristics are addressed using a combination of CTD and circulation model results. We also present sediment accumulation data derived from differential bathymetry. These data show the West Arm is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The results of these analyses serve as a test of the CMECS classification scheme and as a baseline for ongoing and future mapping efforts and correlations between seafloor substrate, benthic habitats, and glacimarine processes.

  2. Bedload component of glacially discharged sediment: Insights from the Matanuska Glacier, Alaska

    USGS Publications Warehouse

    Pearce, J.T.; Pazzaglia, F.J.; Evenson, E.B.; Lawson, D.E.; Alley, R.B.; Germanoski, D.; Denner, J.D.

    2003-01-01

    The flux of glacially derived bedload and the proportions of the suspended and bedload components carried by proglacial streams are highly debated. Published data indicate a large range-from 75%-in the bedload percentage of the total load. Two "vents," where supercooled subglacial meltwater and sediment are discharged, were sampled over the course of an entire melt season in order to quantify the flux of glacially delivered bedload at the Matanuska Glacier, Alaska. The bedload component contributed by these vents, for the one melt season monitored, is negligible. Furthermore, the bedload fluxes appear to be strongly supply limited, as shown by the poorly correlated discharge, bedload-flux magnitude, and grain-size caliber. Thus, in this case, any attempt to employ a predictive quantitative expression for coarse-sediment production based on discharge alone would be inaccurate. A nonglaciated basin proximal to the Matanuska Glacier terminus yielded higher bedload sediment fluxes and larger clast sizes than delivered by the two monitored vents. Such nonglaciated basins should not be overlooked as potentially major sources of coarse bedload that is reworked and incorporated into valley outwash.

  3. Columbia Glacier, Alaska recent ice loss and its relationship to seasonal terminal embayments, thinning and glacial flow

    USGS Publications Warehouse

    Sikonia, W.G.; Post, Austin

    1980-01-01

    In 1974 the U.S. Geological Survey began an intensive investigation of the stability of Columbia Glacier, a calving tidewater galcier terminating in Columbia Bay, near Valdez, Alaska. Aerial photographs taken in 1957 and a sequence of photographs taken at about 2-month intervals since 1976, when analyzed photogrammetrically, provided detailed data on changes in Columbia Glacier 's thickness, flow rate, and terminal position. Annual embayments in the glacier 's terminus form during the summer-autumn season in most years; the size of embayments appears to be related to (1) the thickness of the glacier, and (2) the position and nature of subglacial freshwater discharge. Embayments have apparently increased in size in recent years; the largest embayments yet observed formed in 1975, 1976, 1977, and 1978. From April 1, 1977, to April 1, 1978, the total volume of ice calved was about 1.0 cubic kilometer. By January 1979 the glacier front had retreated from Heather Island. Glacier flow varies seasonally and synchronously in the lower 17 kilometers of the glacier; large accelerations occur near the terminus in response to embayment formation. Daily speed within 5 kilometers of the terminus increased from about 1.9 meters per day between 1963 and 1968 to about 2.7 meters per day between 1977 and 1978. In the lowest 15 kilometers, the glacier surface was lowered about 9 meters between 1957 and 1974, and about 13 meters between 1974 and 1978. Columbia Glacier is being reduced in mass due, in part, to recent losses caused by large embayments forming annually. If such reduction continues it will result in a drastic retreat. (USGS)

  4. Imaging evidence for Hubbard Glacier advances and retreats since the last glacial maximum in Yakutat and Disenchantment Bays, Alaska

    NASA Astrophysics Data System (ADS)

    Zurbuchen, Julie M.; Gulick, Sean P. S.; Walton, Maureen A. L.; Goff, John A.

    2015-06-01

    High-resolution 2-D multichannel seismic data, collected during the 2012 UTIG-USGS National Earthquake Hazards Reduction Program survey of Disenchantment and Yakutat Bays in southeast Alaska, provide insight into their glacial history. These data show evidence of two unconformities, appearing in the form of channels, and are interpreted to be advance pathways for Hubbard Glacier. The youngest observable channel, thought to have culminated near the main phase of the Little Ice Age (LIA), is imaged in Disenchantment Bay and ends at a terminal moraine near Blizhni Point. An older channel, thought to be from an advance that culminated in the early phase of the LIA, extends from Disenchantment Bay into the northeastern edge of Yakutat Bay, turning southward at Knight Island and terminating on the southeastern edge of Yakutat Bay. Our interpretation is that Hubbard Glacier has repeatedly advanced around the east side of Yakutat Bay in Knight Island Channel, possibly due to the presence of Malaspina Glacier cutting off access to central Yakutat Bay during times of mutual advance. We observe two distinct erosional surfaces and retreat sequences of Hubbard Glacier in Yakutat Bay, supporting the hypothesis that minor glacial advances in fjords do not erode all prior sediment accumulations. Interpretation of chaotic seismic facies between these two unconformities suggests that Hubbard Glacier exhibits rapid retreats and that Disenchantment Bay is subject to numerous episodes of outburst flooding and morainal bank collapse. These findings also suggest that tidewater glaciers preferentially reoccupy the same channels in bay and marine settings during advances.

  5. Hydrography and circulation of ice-marginal lakes at Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Josberger, E.G.; Shuchman, R.A.; Meadows, G.A.; Savage, S.; Payne, J.

    2006-01-01

    An extensive suite of physical oceanographic, remotely sensed, and water quality measurements, collected from 2001 through 2004 in two ice-marginal lakes at Bering Glacier, Alaska-Berg Lake and Vitus Lake-show that each has a unique circulation controlled by their specific physical forcing within the glacial system. Conductivity profiles from Berg Lake, perched 135 m a.s.l., show no salt in the lake, but the temperature profiles indicate an apparently unstable situation, the 4??C density maximum is located at 10 m depth, not at the bottom of the lake (90 m depth). Subglacial discharge from the Steller Glacier into the bottom of the lake must inject a suspended sediment load sufficient to marginally stabilize the water column throughout the lake. In Vitus Lake, terminus positions derived from satellite imagery show that the glacier terminus rapidly retreated from 1995 to the present resulting in a substantial expansion of the volume of Vitus Lake. Conductivity and temperature profiles from the tidally influenced Vitus Lake show a complex four-layer system with diluted (???50%) seawater in the bottom of the lake. This lake has a complex vertical structure that is the result of convection generated by ice melting in salt water, stratification within the lake, and freshwater entering the lake from beneath the glacier and surface runoff. Four consecutive years, from 2001 to 2004, of these observations in Vitus Lake show little change in the deep temperature and salinity conditions, indicating limited deep water renewal. The combination of the lake level measurements with discharge measurements, through a tidal cycle, by an acoustic Doppler Current Profiler (ADCP) deployed in the Seal River, which drains the entire Bering system, showed a strong tidal influence but no seawater entry into Vitus Lake. The ADCP measurements combined with lake level measurements established a relationship between lake level and discharge, which when integrated over a tidal cycle, gives a tidally averaged discharge ranging from 1310 to 1510 m3 s-1. ?? 2006 Regents of the University of Colorado.

  6. Discovery of 100-160-year-old iceberg gouges and their relation to halibut habitat in Glacier Bay, Alaska

    USGS Publications Warehouse

    Carlson, P.R.; Hooge, P.N.; Cochrane, G.R.

    2005-01-01

    Side-scan sonar and multibeam imagery of Glacier Bay, Alaska, revealed complex iceberg gouge patterns at water depths to 135 m on the floor of Whidbey Passage and south to the bay entrance. These previously undiscovered gouges likely formed more than 100 years ago as the glacier retreated rapidly up Glacier Bay. Gouged areas free of fine sediment supported greater biodiversity of Pacific halibut Hippoglossus stenolepsis than nearby sediment-filled gouges, probably due to increased habitat complexity. Small Pacific halibut were forund more frequently in sediment-free gouged areas, presumably due to higher prey abundance. In contrast, large Pacific halibut were found more frequently on soft substrates such as sediment-filled gouges, where they could bury themselves and ambush prey.

  7. Muir Glacier in Glacier Bay National Monument 1941

    USGS Multimedia Gallery

    This August 1941 photograph is of Muir Glacier in Glacier Bay National Monument, Alaska. It shows the lower reaches of Muir Glacier, then a large, tidewater calving valley glacier and its tributary, Riggs Glacier. For nearly two centuries before 1941, Muir Glacier had been retreating. In places, a t...

  8. Air temperature and precipitation data, Gulkana Glacier, Alaska, 1968-96

    USGS Publications Warehouse

    Kennedy, Ben W.; Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.

    1997-01-01

    Daily, monthly, and annual average air temperature and precipitation-catch data were recorded at Gulkana Glacier basin, Alaska, between October 1967 and September 1996. The data set is important because it provides long-term climate information from the highest year-round climatological recording site in Alaska. The daily air temperature data set is 96 percent complete. The daily precipitation data set is 83 percent complete; precipitation data for 1993-96 are missing. Annual data summaries are calculated for each hydrologic year, October 1 through September 30, for years that have 12 months of data. Monthly precipitation-catch and average air temperature summaries are calculated for months with nine or fewer daily records missing. The average annual air temperature recorded at the site from hydrologic year 1968 through 1996 was -4.1 degrees Celsius. The coldest recorded year was 1972 with an average annual temperature of -6.7 degrees Celsius. The warmest year was 1981 with an average annual temperature of -2.6 degrees Celsius. January 1971 was the coldest month with an average temperature of -20.8 degrees Celsius. July 1989 was the warmest month with an average temperature of 8.7 degrees Celsius. January 17, 1971, was the coldest day with an average temperature of -35.0 degrees Celsius. June 15, 1969, was the warmest day with an average temperature of 16.4 degrees Celsius. The average annual precipitation catch recorded at the site from hydrologic year 1968 through 1992 was 1,020 millimeters. The highest annual precipitation catch recorded was 1,572 millimeters in 1981; the lowest was 555 millimeters in 1969. The highest recorded monthly precipitation catch was 448 millimeters in July 1981 and in several different months no precipitation was recorded. The highest daily precipitation catch was 99 millimeters on September 12, 1972, and on many different dates no precipitation was recorded. Because of low gage-catch efficiency the reported annual precipitation-catch data are estimated to represent about 62 percent of the actual annual basin precipitation. Snowfall is the dominant form of precipitation on the glacier from September through mid-June.

  9. Iceberg calving as a primary source of regional?scale glacier?generated seismicity in the St. Elias Mountains, Alaska

    USGS Publications Warehouse

    O'Neel, Shad; Larsen, Christopher F.; Rupert, Natalia; Hansen, Roger

    2010-01-01

    Since the installation of the Alaska Regional Seismic Network in the 1970s, data analysts have noted nontectonic seismic events thought to be related to glacier dynamics. While loose associations with the glaciers of the St. Elias Mountains have been made, no detailed study of the source locations has been undertaken. We performed a two-step investigation surrounding these events, beginning with manual locations that guided an automated detection and event sifting routine. Results from the manual investigation highlight characteristics of the seismic waveforms including single-peaked (narrowband) spectra, emergent onsets, lack of distinct phase arrivals, and a predominant cluster of locations near the calving termini of several neighboring tidewater glaciers. Through these locations, comparison with previous work, analyses of waveform characteristics, frequency-magnitude statistics and temporal patterns in seismicity, we suggest calving as a source for the seismicity. Statistical properties and time series analysis of the event catalog suggest a scale-invariant process that has no single or simple forcing. These results support the idea that calving is often a response to short-lived or localized stress perturbations. Our results demonstrate the utility of passive seismic instrumentation to monitor relative changes in the rate and magnitude of iceberg calving at tidewater glaciers that may be volatile or susceptible to ensuing rapid retreat, especially when existing seismic infrastructure can be used.

  10. Quantifying periglacial erosion: Insights on a glacial sediment budget, Matanuska Glacier, Alaska

    USGS Publications Warehouse

    O'Farrell, C. R.; Heimsath, A.M.; Lawson, D.E.; Jorgensen, L.M.; Evenson, E.B.; Larson, G.; Denner, J.

    2009-01-01

    Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8-yr record of proglacial suspended sediment yield. Non-glacial lowering rates range from 1??8 ?? 0??5 mm yr-1 to 8??5 ?? 3??4 mm yr-1 from estimates of rock fall and debris-flow fan volumes. An average erosion rate of 0??08 ?? 0??04 mm yr-1 from eight convex-up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice-cover), it was found that nonglacial processes account for an annual sediment flux of 2??3 ?? 1??0 ?? 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2??9 ?? 1??0 ?? 106 t, corresponding to an erosion rate of 1??8 ?? 0??6 mm yr-1: nonglacial sources therefore account for 80 ?? 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub-basin (32% ice-cover) to determine an erosion rate of 12??1 ?? 6??9 mm yr-1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ?? 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice-free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. ?? 2009 John Wiley & Sons, Ltd.

  11. Columbia Glacier Terminus

    USGS Multimedia Gallery

    View of Columbia Glacier's terminus as it enters the waters of Prince William Sound. Columbia Glacier is one of Alaska's many tidewater glaciers, and it has been the focus of numerous studies due to its unusually high rate of retreat. The glacier has retreated nearly 20 km (12.43 mi) since 1980. In ...

  12. A continental shelf sedimentary record of Little Ice Age to modern glacial dynamics: Bering Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Jaeger, John M.; Kramer, Branden

    2014-09-01

    The Bering Glacier System is the world's largest surging temperate glacier with seven events occurring over the past century under a range of north Pacific climatic conditions. Onshore records reveal changes in glacial termini positions and evidence of late Holocene glacial advances, but the Little Ice Age (LIA) record of potential glacial surging and associated flooding has not been examined. A 13.6 m-long jumbo core collected on the adjacent continental shelf reveals a 600-yr-long record of sedimentation associated with changing glacifluvial discharge. The chronology is based on 210Pb geochronology and five radiocarbon dates, and the core can be separated into three distinct lithologic units based on the examination of X-radiographs and physical properties: (1) an uppermost unit dating from ?125 cal yr BP to the present characterized by bioturbated mud interbedded with laminated, thick (5-20 cm) low-bulk density clay-rich beds; (2) a middle unit dating from ?120-400 cal yr BP that includes numerous interlaminated-to-interbedded low- and high-bulk density beds with infrequent evidence of bioturbation; thick laminated clay-rich beds are rare; (3) a lowermost unit that predates ?400 cal yr BP and is composed of rare laminated beds grading down into mottled to massive mud. In each of these units, the laminated lithofacies from this mid-shelf location indicates both flood deposition and likely sediment transport in the wave-current bottom-boundary layer. The thick low-density, clay-rich beds in the uppermost unit correlate with historic outburst floods associated with known surge events. Based on previous terrestrial studies, the terminus was at its Holocene Neoglacial maximum extent close to the modern coastline at some point in the middle to late stages of the LIA in southern Alaska (100-350 cal yr BP). During the LIA, preservation of bioturbated intervals is rare while laminated intervals are common. This style of interbedding indicates frequent (<10 yr recurrence interval) event-scale mud deposition, suggesting that frequent summer flooding and redistribution by winter storms were more prevalent during the LIA rather than the outburst flooding typical of the past century. Rare event-scale bedding indicative of outburst flooding and possible surge events is found within the middle unit, and may correspond to periods with similar climatic trends as in the 20th century. The infrequent deposition of event layers in the lowermost unit could be attributed to the less frequent flooding and/or enhanced diversion of glacial drainage to the eastern terminus instead of present day Seal River. The thickness and depositional frequency of event-scale bedding can be related to Gulf of Alaska tree-ring proxy temperature reconstructions, where more numerous event bed formation occurs when there are more frequent, higher-amplitude temperature excursions. These frequent fluctuations may have prevented the decadal-long periods of positive mass balance required to enable numerous surge events during this period.

  13. Mendenhall Glacier (Juneau, Alaska) icequake seismicity and its relationship to the 2012 outburst flood and other environmental forcing

    NASA Astrophysics Data System (ADS)

    Morgan, P. M.; Walter, J. I.; Peng, Z.; Amundson, J. M.; Meng, X.

    2013-12-01

    Glacial outburst floods occur when ice-dammed lakes or other reservoirs on the glacier release large volumes of water usually due to the failure of an ice dam. In 2011 and 2012 these types of floods have occurred at Mendenhall Glacier in Southeast Alaska, 15 km northwest of Juneau. The floods emanated from a lake within a remnant branch of Mendenhall Glacier, called Suicide Basin, and rapidly changed the levels of Mendenhall Lake. Homes on the shore of Mendenhall Lake were threatened by rapidly rising lake levels during such floods. We analyze data from a set of 4 short and broadband period seismometers placed in ice-boreholes in an array on Mendenhall Glacier for a period of 4 months in 2012. We also examine the outburst flood that occurred between July 4th and 8th 2012. We first manually pick icequakes as high-frequency bursts recorded by at least two stations. Next, we use a matched-filter technique to help complete the icequake record by detecting missed events with similar waveforms to those hand-picked events. While high-frequency noise was present during the flooding, the impulsive icequake activity did not appear to be modulated significantly during periods of flooding, suggesting that the flooding does not significantly deform the overlying ice. Impulsive icequake activity appears to show strongly diurnal periodicity, indicating that the icequakes were mainly caused by expansion/contraction of ice during daytime. We also analyze the activity in concert with GPS velocity and meteorological data from the area. By analyzing the temporal and spatial patterns of the events we hope to reveal more about the fundamental processes occurring beneath Mendenhall Glacier.

  14. Alaska: Glaciers of Kenai Fjords National Park and Katmai and Lake Clark National Parks and Preserve

    NASA Technical Reports Server (NTRS)

    Giffen, bruce A.; Hall, Dorothy K.; Chien, Janet Y. L.

    2011-01-01

    There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2276 sq km of park land (circa 2000). There are two primary glacierized areas in KEFJ -- the Harding Icefield and the Grewingk-Yalik Glacier Complex, and three primary glacierized areas in KATM - the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area and the Mt. Martin area. Most glaciers in these parks terminate on land, though a few terminate in lakes. Only KEFJ has tidewater glaciers, which terminate in the ocean. Glacier mapping and analysis of the change in glacier extent has been accomplished on a decadal scale using satellite imagery, primarily Landsat data from the 1970s, 1980s, and from 2000. Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery was used to map glacier extent on a park-wide basis. Classification of glacier ice using image processing software, along with extensive manual editing, was employed to create Geographic Information System (GIS) outlines of the glacier extent for each park. Many glaciers that originate in KEFJ but terminate outside the park boundaries were also mapped. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period. Our measurements show a reduction of approximately 21 sq km, or -1.5% (from 1986 to 2000), and 76 sq km, or -7.7% (from 1986/87 to 2000), in KEFJ and KATM, respectively. This work represents the first comprehensive study of glaciers of KATM. Issues that complicate the mapping of glacier extent include: debris-cover (moraine and volcanic ash), shadows, clouds, fresh snow, lingering snow from the previous season, and differences in spatial resolution between the MSS and TM or ETM+ sensors. Similar glacier mapping efforts in western Canada estimate mapping errors of 3-4%. Measurements were also collected from a suite of glaciers in KEFJ and KATM detailing terminus positions and rates of recession using datasets including the 15-minute USGS quadrangle maps (1950/1951), Landsat imagery (1986/1987, 2000, 2006) and 2005 Ikonos imagery (KEFJ only).

  15. Alaska: Glaciers of Kenai Fjords National Park and Katmai National Park and Preserve

    NASA Technical Reports Server (NTRS)

    Giffens, Bruce A.; Hall, Dorothy K.; Chien, Janet Y. L.

    2014-01-01

    There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2,276 sq km of park land (ca. 2000). There are two primary glacierized areas in KEFJ (the Harding Icefield and the Grewingk-Yalik Glacier Complex) and three primary glacierized areas in KATM (the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area, and the Mt. Martin area). Most glaciers in these parks terminate on land, though a few terminate in lakes. Only KEFJ has tidewater glaciers, which terminate in the ocean. Glacier mapping and analysis of the change in glacier extent has been accomplished on a decadal scale using satellite imagery, primarily Landsat data from the 1970s, 1980s, and from2000. Landsat Multispectral Scanner (MSS),Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM) imagery was used to map glacier extent on a park-wide basis. Classification of glacier ice using image-processing software, along with extensive manual editing, was employed to create Geographic Information System (GIS)outlines of the glacier extent for each park. Many glaciers that originate in KEFJ but terminate outside the park boundaries were also mapped. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period. Our measurements show a reduction of approximately 21 sq km, or 1.5(from 1986 to 2000), and 76 sq km, or 7.7 (from19861987 to 2000), in KEFJ and KATM, respectively. This work represents the first comprehensive study of glaciers of KATM. Issues that complicate the mapping of glacier extent include debris cover(moraine and volcanic ash), shadows, clouds, fresh snow, lingering snow from the previous season, and differences in spatial resolution between the MSS,TM, or ETM sensors. Similar glacier mapping efforts in western Canada estimate mapping errors of 34. Measurements were also collected from a suite of glaciers in KEFJ and KATM detailing terminus positions and rates of recession using datasets including 15 min USGS quadrangle maps(19501951), Landsat imagery (19861987, 2000,2006), and 2005 IKONOS imagery (KEFJ only).

  16. Gulkana Glacier, Alaska-Mass balance, meteorology, and water measurements, 1997-2001

    USGS Publications Warehouse

    March, Rod S.; O'Neel, Shad

    2011-01-01

    The measured winter snow, maximum winter snow, net, and annual balances for 1997-2001 in the Gulkana Glacier basin are determined at specific points and over the entire glacier area using the meteorological, hydrological, and glaciological data. We provide descriptions of glacier geometry to aid in estimation of conventional and reference surface mass balances and descriptions of ice motion to aid in the understanding of the glacier's response to its changing geometry. These data provide annual estimates for area altitude distribution, equilibrium line altitude, and accumulation area ratio during the study interval. New determinations of historical area altitude distributions are given for 1900 and annually from 1966 to 2001. As original weather instrumentation is nearing the end of its deployment lifespan, we provide new estimates of overlap comparisons and precipitation catch efficiency. During 1997-2001, Gulkana Glacier showed a continued and accelerated negative mass balance trend, especially below the equilibrium line altitude where thinning was pronounced. Ice motion also slowed, which combined with the negative mass balance, resulted in glacier retreat under a warming climate. Average annual runoff augmentation by glacier shrinkage for 1997-2001 was 25 percent compared to the previous average of 13 percent, in accordance with the measured glacier volume reductions.

  17. Lithofacies and seismic-reflection interpretation of temperate glacimarine sedimentation in Tarr Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.

    1997-01-01

    High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded homogeneous or laminated mud and massive or stratified sand and coarse silt. This depositional system shows continuously stratified seismic facies with smooth and flat surfaces on minisparker records, and continuously stratified seismic facies which are interlayered with thin weakly stratified facies on Huntec records.

  18. The potential of lidar imaging for ecosystem mapping in Glacier Bay National Park, Alaska.

    NASA Astrophysics Data System (ADS)

    Kidd, Chris; Klaar, Megan; Larsen, Chris; Malone, Edward; Milner, Alexander

    2014-05-01

    Data from remotely sensed Earth observation facilitates the mapping and monitoring of remote regions enabling us to improve our understanding of key areas of the Earth System. In particular, the mapping of changes to these systems as a result of recent climate change is important to help assess and predict the impact of these changes, and the implications for the wider Earth System. One of the best-studied regions for the succession in landscape evolution is Glacier Bay National park (GBNP) in Alaska which has experienced rapid glacial retreat over the last 250 years. This study assesses the potential of aircraft-derived lidar data to map a number of catchments in GBNP for the purpose of studying the biogeochemical cycles and ecosystem change in this region. Three catchments were selected for the study, Ice Valley, Stonefly Creek and Wolf Point, representing a range of between 38-133 years since glacial retreat and therefore providing different levels of vegetation succession and vegetation maturity. The lidar used in this study, an aircraft mounted Riegl LMS-Q240i, operates at 905 nm in the near infrared, scans 30 degrees either side of nadir, and samples 10,000 points per second, resulting in a pixel density of about 1-1.2 points/m with a sample resolution of about 20 cm. On-board waveform processing records alternately records the first and last return from the surface, together with the intensity of the return. The high repetition rate allows the aggregation of data over areas enabling the three-dimensional distribution of the vegetation to be measured, and thus improving the identification of canopy tops. Post-processing of the data is tailored towards the detailed mapping of the riparian system and surrounding environments and in particular, gathering information on the vegetation and potential watershed pathways. Bespoke software is used to extract vegetation cover, slope of ground surface, break in slope etc. This enables regions where the confluence of different surface (and inferred sub-surface) pathways is likely to occur, enabling the targeting of field sites to study the biogeochemical cycling in these remote regions.

  19. Hubbard Glacier, Alaska: growing and advancing in spite of global climate change and the 1986 and 2002 Russell Lake outburst floods

    USGS Publications Warehouse

    Trabant, Dennis C.; March, Rod S.; Thomas, Donald S.

    2003-01-01

    Hubbard Glacier, the largest calving glacier on the North American Continent (25 percent larger than Rhode Island), advanced across the entrance to 35-mile-long Russell Fiord during June 2002, temporarily turning it into a lake. Hubbard Glacier has been advancing for more than 100 years and has twice closed the entrance to Russell Fiord during the last 16 years by squeezing and pushing submarine glacial sediments across the mouth of the fiord. Water flowing into the cutoff fiord from mountain streams and glacier melt causes the level of Russell Lake to rise. However, both the 1986 and 2002 dams failed before the lake altitude rose enough for water to spill over a low pass at the far end of the fiord and enter the Situk River drainage, a world-class sport and commercial fishery near Yakutat, Alaska.

  20. Southern Alaska as an Example of the Long-Term Consequences of Mountain Building Under the Influence of Glaciers

    NASA Technical Reports Server (NTRS)

    Meigs, Andrew; Sauber, Jeanne

    2000-01-01

    Southern Alaska is a continent-scale region of ongoing crustal deformation within the Pacific-North American plate boundary zone. Glaciers and glacial erosion have dictated patterns of denudation in the orogen over the last approx. 5 My. The orogen comprises three discrete topographic domains from south to north, respectively: (1) the Chugach/St. Elias Range; (2) the Wrangell Mountains; and (3) the eastern Alaska Range. Although present deformation is distributed across the orogen, much of the shortening and uplift are concentrated in the Chugach/St. Elias Range. A systematic increase in topographic wavelength of the range from east to west reflects east-to-west increases in the width of a shallowly-dipping segment of the plate interface, separation of major upper plate structures, and a decrease in the obliquity of plate motion relative to the plate boundary. Mean elevation decays exponentially from approx. 2500 m to approx. 1100 m from east to west, respectively. Topographic control on the present and past distribution of glaciers is indicated by close correspondence along the range between mean elevation and the modern equilibrium line altitude of glaciers (ELA) and differences in the modern ELA, mean annual precipitation and temperature across the range between the windward, southern and leeward, northern flanks. Net, range- scale erosion is the sum of: (1) primary bedrock erosion by glaciers and (2) erosion in areas of the landscape that are ice-marginal and are deglaciated at glacial minima. Oscillations between glacial and interglacial climates controls ice height and distribution, which, in turn, modulates the locus and mode of erosion in the landscape. Mean topography and the mean position of the ELA are coupled because of the competition between rock uplift, which tends to raise the ELA, and enhanced orographic precipitation accompanying mountain building, which tends to lower the ELA. Mean topography is controlled both by the 60 deg latitude and maritime setting of active deformation and by the feedback between shortening and uplift, glacial erosion, and orographic effects on climate accompanying mountain building.

  1. Tracking seasonal subglacial drainage evolution of alpine glaciers using radiogenic Nd and Sr isotope systematics: Lemon Creek Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Clinger, A. E.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.

    2014-12-01

    The transport pathways of water beneath a glacier are subject to change as melt seasons progress due to variability in the balance between basal water pressure and water flux. Subglacial hydrology has been well studied, but the understanding of spatial distribution is less well constrained. Whereas radiogenic isotopic tracers have been traditionally used as proxies to track spatial variability and weathering rates in fluvial and riverine systems, these techniques have yet to be applied extensively to the subglacial environment and may help resolve ambiguity in subglacial hydrology. Research has shown the 143Nd/144Nd values can reflect variation in source provenance processes due to variations in the age of the continental crust. Correlating the 143Nd/144Nd with other radiogenic isotope systematics such as strontium (87Sr/86Sr) provides important constraints on the role of congruent and incongruent weathering processes. Our study presents the application of Nd and Sr systematics using isotopic ratios to the suspended load of subglacial meltwater collected over a single melt season at Lemon Creek Glacier, USA (LCG). The time-series data show an average ?Nd ~ -6.83, indicating a young bedrock (~60 MYA). Isotopic variation helps track the seasonal expansion of the subglacial meltwater channels and subsequent return to early season conditions due to the parabolic trend towards less radiogenic Nd in June and towards more radiogenic Nd beginning in mid-August. However, the high variability in July and early August may reflect a mixture of source as the channels diverge and derive sediment from differently aged lithologies. We find a poor correlation between 143Nd/144Nd and 87Sr/86Sr (R2= 0.38) along with a slight trend towards more radiogenic 87Sr/86Sr values with time ((R2= 0.49). This may indicate that, even as the residence time decreases over the melt season, the LCG subglacial system is relatively stable and that the bedrock is congruently weathered. Our study suggests that the 143Nd/144Nd is a useful tool for tracking sediment source and hydrological dynamics in the subglacial environment.

  2. An integrated geospatial approach to monitoring the Bering Glacier system, Alaska

    USGS Publications Warehouse

    Josberger, E.G.; Payne, J.; Savage, S.; Shuchman, R.; Meadows, G.

    2004-01-01

    The Bering Glacier is the largest and longest glacier in continental North America, with an area of approximately 5,175 km2, and a length of 190 km. It is also the largest surging glacier in America, having surged at least five times during the twentieth century. The last surge of the Bering Glacier occurred in 1993-1995, since then, the glacier has undergone constant and significant retreat thereby expanding the boundaries of Vitus Lake and creating a highly dynamic system, both ecologically and hydrologically. This study utilized GIS to integrate remote sensing observations, with detailed bathymetric, hydrographic and in situ water quality measurements of the rapidly expanding Vitus Lake. Vitus Lake has nearly doubled in surface area from 58.4 km2 to 108.8 km2, with a corresponding increase in water volume from 6.1 km3 to 10.5 km3 over the same period. The remote sensing observations were used to direct a systematic bathymetric, hydrographic and water quality measurement survey in Vitus Lake which revealed a complex three dimensional structure that is the result of sea water inflow, convection generated by ice melting and the injection of fresh water from beneath the glacier.

  3. Streamflow changes in Alaska between the cool phase (1947-1976) and the warm phase (1977-2006) of the Pacific Decadal Oscillation: The influence of glaciers

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2009-01-01

    Streamflow data from 35 stations in and near Alaska were analyzed for changes between the cool phase (1947-1976) and the warm phase (1977-2006) of the Pacific Decadal Oscillation. Winter, spring, and summer flow changes and maximum annual flow changes were different for glaciated basins (more than 10% glacier-covered area) than for nonglaciated basins, showing the influence of glaciers on historical streamflowchanges. Mean February flows, for example, increased for the median of available stations by 45% for glaciated basins and by 17% for nonglaciated ones.

  4. Seismic stratigraphy of the Bering Trough, Gulf of Alaska: Late Quaternary history of Bering Glacier dynamics

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Gulick, S. P. S.; Worthington, L. L.; Mix, A. C.; Zellers, S.; Jaeger, J. M.

    2014-12-01

    Sedimentary architecture of the cross-shelf Bering Trough is studied using 5 high resolution seismic profiles integrated with the drilling data acquired during Integrated Ocean Drilling Program (IODP) Expedition 341. The objectives of this work are to constrain the number of advance-retreat cycles that have occurred through the Late Quaternary, examine the impact of the Bering Glacier on the continental shelf and slope, and reconstruct Bering Glacier dynamics. By tying these sequences with ?18O stratigraphy, we can test the Bering Glacier's relation to global ice sheet evolution and better understand the degree to which the glacial advance-retreat cycles were in phase with global events. Our results show that: (1) Identification of erosional surfaces and glacigenic landforms that record positions of stillstand events and diagnose the style of retreat allow us to distinguish nine phases of glacial advances and subsequent retreats. (2) Mapping shows that glacier pathways and flow directions through time are influenced by the occurrence of thick grounding-zone deposits and shifting foci of erosion. (3) Continuous buildup of glacigenic sediment fills tectonically created accommodation space and allows the glacier to advance seaward for the last three advances. Discovery of systematic, prominent deposition of glacial diamict and ice-rafted debris (IRD) during phases of glacial retreat is supported by the drilling data and suggests reconsideration of IRD impact on slope sedimentation. (4) The trough mouth fan started its development during marine isotope stage (MIS) 6, progressively advancing to the position of present shelf edge during the subsequent MIS 4 and MIS 2 and is recognized by evidence of extensive deposition of glacigenic debris flows on the slope. (5) Sedimentation rates in the depocenter are exceptionally high and are estimated to be 1-2 m/k.y. through the middle Pleistocene on the shelf and 4-5 m/k.y. average through MIS 6 on the slope.

  5. Use of the Coastal and Marine Ecological Classification Standard (CMECS) for Geological Studies in Glacier Bay, Alaska

    NASA Astrophysics Data System (ADS)

    Cochrane, G. R.; Hodson, T. O.; Allee, R.; Cicchetti, G.; Finkbeiner, M.; Goodin, K.; Handley, L.; Madden, C.; Mayer, G.; Shumchenia, E.

    2012-12-01

    The U S Geological Survey (USGS) is one of four primary organizations (along with the National Oceanographic and Atmospheric Administration, the Evironmental Protection Agency, and NatureServe) responsible for the development of the Coastal and Marine Ecological Classification Standard (CMECS) over the past decade. In June 2012 the Federal Geographic Data Committee approved CMECS as the first-ever comprehensive federal standard for classifying and describing coastal and marine ecosystems. The USGS has pioneered the application of CMECS in Glacier Bay, Alaska as part of its Seafloor Mapping and Benthic Habitat Studies Project. This presentation briefly describes the standard and its application as part of geological survey studies in the Western Arm of Glacier Bay. CMECS offers a simple, standard framework and common terminology for describing natural and human influenced ecosystems from the upper tidal reaches of estuaries to the deepest portions of the ocean. The framework is organized into two settings, biogeographic and aquatic, and four components, water column, geoform, substrate, and biotic. Each describes a separate aspect of the environment and biota. Settings and components can be used in combination or independently to describe ecosystem features. The hierarchical arrangement of units of the settings and components allows users to apply CMECS to the scale and specificity that best suits their needs. Modifiers allow users to customize the classification to meet specific needs. Biotopes can be described when there is a need for more detailed information on the biota and their environment. USGS efforts focused primarily on the substrate and geoform components. Previous research has demonstrated three classes of bottom type that can be derived from multibeam data that in part determine the distribution of benthic organisms: soft, flat bottom, mixed bottom including coarse sediment and low-relief rock with low to moderate rugosity, and rugose, hard bottom. The West Arm of Glacier Bay has all of these habitats, with the greatest abundance being soft, flat bottom. In Glacier Bay, species associated with soft, flat bottom habitats include gastropods, algae, flatfish, Tanner crabs, shrimp, sea pen, and other crustaceans; soft corals and sponge dominate areas of boulder and rock substrate. Video observations in the West Arm suggest that geological-biological associations found in central Glacier Bay to be at least partially analogous to associations in the West Arm. Given that soft, mud substrate is the most prevalent habitat in the West Arm, it is expected that the species associated with a soft bottom in the bay proper are the most abundant types of species within the West Arm. While mud is the dominant substrate throughout the fjord, the upper and lower West Arm are potentially very different environments due to the spatially and temporally heterogeneous influence of glaciation and associated effects on fjord hydrologic and oceanographic conditions. Therefore, we expect variations in the distribution of species and the development of biotopes for Glacier Bay will require data applicable to the full spectrum of CMECS components.

  6. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations exceeds 10 m year-1.

  7. Accumulation Rate Variability and Winter Mass Balance Estimates using High Frequency Ground-Penetrating Radar and Snow Pit Stratigraphy on the Juneau Icefield, Alaska

    NASA Astrophysics Data System (ADS)

    Braddock, S. S.; Boucher, A. L.; Sandler, H. C.; McNeil, C.; Campbell, S. W.; Kreutz, K. J.

    2012-12-01

    In July 2012, 200 km of 400 MHz ground-penetrating radar (GPR) profiles were collected across the Juneau Icefield, Alaska. The goal was to determine if spatial accumulation rate variability and winter mass balance estimates could be improved by linking stratigraphic features between yearly-excavated snow pits through GPR. Profiles were collected along the centerline and cross sections of the main branch, northwest, and Southwest branch of the Taku Glacier as well as the Mathes, Llewellyn, and Demorest Glaciers. Over 650 km^2 of area and 1000 m of elevation range were covered during this pilot project linking sixteen snow pits with GPR data across the icefield. The field work was conducted as part of the Juneau Icefield Research Program (JIRP) with hopes of continuing this method in future years if first year results show promise. As an annually operated field research and education program, JIRP creates a unique opportunity to provide significant future contributions to Alaska mass balance records if the program is continued. Signal penetration reached ? 25 m with maximum depths reached at higher elevations of the icefield. Conversely, minimal penetration occurred in wetter regions at lower elevations, likely caused by volume scattering from free water within the firn and ice. Ice lenses and the annual layer located in mass balance snow pits correlated well with continuous stratigraphy imaged in GPR profiles suggesting that the lenses are relatively uninterrupted across the icefield and that GPR may be an appropriate tool for extrapolating point mass balance pit depths in this part of Alaska. The Northwest and Southwest Branches of the Taku Glacier show a strong stratigraphic thinning gradient, west to east; the main trunk of the Taku Glacier which originates from the Mathes-Llewellyn ice divide showed a similar thinning from the divide to the ELA. The thinning displayed by all three glacier systems matches a typical gradient from accumulation zone to ELA. However, it is also likely that a local influx of accumulation at the higher elevations of the Southwest and Northwest Branches result from their close proximity of the ocean. Beyond mass balance estimates, radar profiles also revealed ablation horizons underlying the annual layer near the ELA. Monitoring the location of this ablation horizon relative to the annual balance reflector may be helpful in quantifying changes in the ELA at the end of each previous melt season. Perched water tables were also imaged in several locations which may be suitable for future hydrological studies focused on delineation of sub-glacial drainage systems and their impact on local glacier dynamics. This is a particularly interesting finding considering the unprecedented recent jokulhlaup of the Mendenhall Glacier and re-routing of the primary water drainage at the Llewellyn Glacier terminus in 2011.

  8. Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat

    USGS Publications Warehouse

    O'Neel, S.; Pfeffer, W.T.; Krimmel, R.; Meier, M.

    2005-01-01

    Changes in driving and resistive stresses play an essential role in governing the buoyancy forces that are important controls on the speed and irreversibility of tidewater glacier retreats. We describe changes in geometry, velocity, and strain rate and present a top-down force balance analysis performed over the lower reach of Columbia Glacier. Our analysis uses new measurements and estimates of basal topography and photogrammetric surface velocity measurements made between 1977 and 2001, while assuming depth-independent strain. Sensitivity tests show that the method is robust and insensitive to small changes in the calculation parameters. Spatial distributions of ice speed show little correspondence with driving stress. Instead, spatial patterns of ice speed exhibit a nonlinear correspondence with basal drag. Primary resistance to flow comes from basal drag, but lateral drag becomes increasingly more important throughout the retreat, which may account for observed increases in speed. Maximum basal drag is always located in a prominent constriction located ???12 km upstream from the preretreat terminus. Once the terminus retreated into deep water off the terminal moraine marking the modern maximum extent, the upstream location of this maximum basal drag helped to promote thinning and decrease effective pressure in the lower region by limiting replenishing ice flow from upstream. An increase in both ice velocity and calving resulted, initiating what appears to be an irreversible retreat. Copyright 2005 by the American Geophysical Union.

  9. Ice-proximal sediment dynamics and their effect on the stability of Muir Glacier, Alaska: A case study of non-climatic glacier response

    SciTech Connect

    Hunter, L.E.; Powell, R.D. . Dept. of Geology)

    1992-01-01

    Recent studies have shown that water depth at tidewater termini affect calving rates and, therefore, glacier mass balance and terminus stability. Grounding-line water depths are themselves governed by glacial and marine processes that interact during the formation of morainal bank depocenters. These morainal banks can fluctuate 10s of meters in height within an interval of a few weeks. Recent investigations in Glacier Bay have focused on quantitatively assessing sediment budgets in the ice-proximal environment. The monitoring of morainal banks in upper Muir Inlet has included repeated bathymetric mapping, sediment trap studies, bottom grab sampling, glacier and iceberg sampling, and submersible ROV investigations within 1 km of the terminus. Such relationships are important in interpreting recent changes in the dynamics of Muir Glacier where a century of retreat has been succeeded by quasi stability. The new glacier regime has accompanied basin infilling from approximately 100 m depth to a maximum of 52 m at the grounding line. Two large grounding-line fans have aggraded to deltas and reduced the length of the calving margin from 900 m to 290 m wide. These effects have reduced the ice flow velocities by 45%. Annual morainal bank growth ranged from 10[sup 6] to 10[sup 7] m[sup 3] and is the result of glacifluvial dumping, suspension settling from turbid overflow plumes, debris dumping from ice-cliff and iceberg melting, glacier squeezing and pushing of morainal bank sediment, and sediment gravity flow processes. Each of these processes are an integral facet of the morainal bank dynamics and glacier response. These studies of Muir Glacier indicate that glacier response to sediment dynamics need to be addresses before climatic implications are made.

  10. A 30-year record of surface mass balance (1966-95) and motion and surface altitude (1975-95) at Wolverine Glacier, Alaska

    USGS Publications Warehouse

    Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.

    2004-01-01

    Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.

  11. Effects of Bedrock Lithology and Subglacial Till on the Motion of Ruth Glacier, Alaska, Deduced from Five Pulses from 1973-2012

    NASA Technical Reports Server (NTRS)

    Turrin, J.; Forster, R.; Sauber, Jeanne; Hall, Dorothy K.; Bruhn, R.

    2013-01-01

    A pulse is a type of unstable glacier flow intermediate between normal flow and surging. Using Landsat MSS, TM, and ETM+ imagery and feature tracking software, a time-series of mostly annual velocity maps from 1973 to 2012 was produced that reveals five pulses of Ruth Glacier, Alaska. Peaks in ice velocity were found in the 1981, 1989, 1997, 2003, and 2010; approximately every 7 years. During these peak years the ice velocity increased 300%, from approximately 40 m/yr to 160 m/yr, and occurred in an area of the glacier underlain by sedimentary bedrock. Based on the spatio-temporal behavior of Ruth Glacier during the pulse cycles, we suggest the pulses are due to enhanced basal motion via deformation of a subglacial till. The cyclical nature of the pulses is theorized to be due to a thin till, with low permeability, that causes incomplete drainage of the till between the pulses, followed by eventual recharge and dilation of the till. These findings suggest care is needed when attempting to correlate changes in regional climate with decadal-scale changes in velocity, because in some instances basal conditions may have a greater influence on ice dynamics than climate.

  12. Columbia Glacier Calving

    USGS Multimedia Gallery

    A dramatic iceberg calving from Columbia Glacier in Prince William Sound, Alaska. The iceberg has just broken free from under the water and shot to the surface, spinning towards the ice face. The ice cliff here is about 70 m (229.7 ft) tall. Icebergs are calved as stress fractures in the glacier mer...

  13. Photographer Overlooking Columbia Glacier

    USGS Multimedia Gallery

    Photographer Tad Pfeffer capturing images of Columbia Glacier in Prince William Sound, Alaska. He is looking down-glacier towards the ice front, which faces open water in the fjord. This open water is extremely rare, and has not happened again since 2005. The fjord is typically covered with iceberg ...

  14. Diurnal discharge fluctuations and streambed ablation in a supraglacial stream on the Vaughan-Lewis and Gilkey glaciers, Juneau Icefield, Alaska

    SciTech Connect

    Stock, J.W.; Pinchak, A.C.

    1995-12-31

    The study reported here focuses on the dynamics of two supraglacial streams on the Juneau Icefield in southeast Alaska. Data on streambed ablation (melting) rates, stream discharge, radiation, and air temperature and humidity were collected in August 1990 and 1991. Radiation had the greatest effect on stream discharge. Daily peak discharges occurred only 30 minutes after peak radiation, but two hours after peak temperature. Factors influencing variation in discharge of the streams were velocity, stream depth, and stream width, in decreasing order of importance. Streambed ablation due to radiation was greater than glacier surface ablation due to radiation. Streambed ablation due to frictional heating was very small.

  15. Object-Based Image Classification of Floating Ice Used as Habitat for Harbor Seals in a Tidewater Glacier Fjord in Alaska

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Womble, J. N.; Prakash, A.; Gens, R.; Ver Hoef, J.

    2014-12-01

    Tidewater glaciers play an important role in many landscape and ecosystem processes in fjords, terminating in the sea and calving icebergs and discharging meltwater directly into the ocean. Tidewater glaciers provide floating ice for use as habitat for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing, molting, and avoiding predators. Tidewater glaciers are found in high concentrations in Southeast and Southcentral Alaska; currently, many of these glaciers are retreating or have stabilized in a retracted state, raising questions about the future availability of ice in these fjords as habitat for seals. Our primary objective is to investigate the relationship between harbor seal distribution and ice availability at an advancing tidewater glacier in Johns Hopkins Inlet, Glacier Bay National Park, Alaska. To this end, we use a combination of visible and infrared aerial photographs, object-based image analysis (OBIA), and statistical modeling techniques. We have developed a workflow to automate the processing of the imagery and the classification of the fjordscape (e.g., individual icebergs, brash ice, and open water), providing quantitative information on ice coverage as well as properties not typically found in traditional pixel-based classification techniques, such as block angularity and seal density across the fjord. Reflectance variation in the red channel of the optical images has proven to be the most important first-level criterion to separate open water from floating ice. This first-level criterion works well in areas without dense brash ice, but tends to misclassify dense brash ice as single icebergs. Isolating these large misclassified regions and applying a higher reflectance threshold as a second-level criterion helps to isolate individual ice blocks surrounded by dense brash ice. We present classification results from surveys taken during June and August, 2007-2013, as well as preliminary results from statistical modeling of the spatio-temporal distribution of seals and ice. OBIA is a powerful method of habitat classification and offers an effective approach to compare the spatio-temporal distribution and availability of glacial ice habitats for harbor seals in tidewater glacial fjords.

  16. Subglacial source of meltwater discharge in an emerging ice-marginal channel, Bering Glacier, Alaska

    SciTech Connect

    Priscott, G.; Fleisher, P.J. . Dept. of Earth Sciences)

    1993-03-01

    The retreating eastern margin of Bering Piedmont Glacier terminates in two ice-contact lakes separated by an island that has been uncovered in the last decade. A semi-continuous aerial photo record (1978--1991) and field observations (1992) confirms a newly-developed ice-marginal channel linking these two lakes that is fed by a persistent subglacial conduit system. This investigation documents channel characteristic, discharge, turbidity, water temperature and the location of the present ice margin. Bathymetry along the channel reveals a highly irregular profile consisting of low-gradient reaches 3--5 m deep interrupted by shallow sills (< 1 m) of grounded, subaqueous ice and a 40 m basin among ice islands. Channel dimensions measured in 5 cross section reveal abrupt, small-scale changes typical of sub-bottom ice. Discharge varies from 72.24 cms near a node of upwelling to 40.38 cms 2 km down stream, then back up to 42.25 cms within 0.4 km, where the channel enters a lake. Turbidity values between 1.67 g/l and 4.20 g/l, of 10 water samples vary irregularly along the channel and with depth at-a-station. Early July water temperatures from 7 widely-spaced locations indicate the thermocline occurs at depths from 1 to 3 m and separates surface water at +1.1 C from supercooled water at [minus]1.0 C. Clusters of in situ platy frazil ice crystals several centimeters in diameter were observed on floating ice in the area of upwelling supercooled water. The presence of upwelling, highly-turbid, supercooled water indicates that the primary meltwater source is a subglacial conduit network at the ice margin, from which flow separates and discharges through a leaky channel into both lakes.

  17. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    USGS Publications Warehouse

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  18. Seasonal changes of surface velocity and elevation of Columbia Glacier, Alaska using time-series TerraSAR-X/TanDEM-X data

    NASA Astrophysics Data System (ADS)

    Vijay, Saurabh; Braun, Matthias

    2015-04-01

    Alaskan glaciers are a major contributor to global sea-level rise from glaciers and ice caps outside the polar ice sheets. Columbia Glacier is a large tidewater glacier located on the coast of south-central Alaska. The glacier has retreated ˜ 21 km and lost half of its volume during 1957-2007, more rapidly after 1980. It is now split into two branches, known as Main/East and West branch. In this study, we used time series of high-resolution TerraSAR-X/TanDEM-X stripmap satellite imagery during 2011-2014 to investigate the temporal development of glacier surface velocities, elevation and mass changes. The active SLC images of the bistatic TanDEM-X acquisitions, acquired over 11 or 22 days repeat intervals, are utilized to derive surface velocity fields using SAR intensity offset tracking. We observed a very strong seasonal variability in the surface velocities. Maximum values at the ice front reach up to 14.43 m/day in May and reduced to 2 m/day in October in the year 2012. However, at a distance of 17.5 km from the ice front, almost no seasonal variability can be observed. A significant influence in the distance to the terminus and elevation was detected. We attributed this temporal and spatial variability of surface velocity to changes in the basal hydrology and lubrification of the glacier bed. Similar fluctuations are observed in consecutive years. In a second step, we exploited TanDEM-X data by interferometrically generating time series of digital elevation models (DEMs) . For quantitative volume change estimates, we used DEMs of almost similar months of the observational years in order to minimize errors resulting from variable X-band radar penetration. The main branch gained a volume of 12.77± 2.89km^3in 2011-12, but lost -18.94± 3.21km^3in 2012-13 . A slight gain was observed with 1.05± .88km^3in 2013-14. However, the west branch gained volume only in 2011-12 and lost in the consecutive years. Moreover, the west branch retreated by ˜ 3km and lost its area twice faster than the main branch during 2011-14.

  19. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  20. Distribution of Ground-Nesting Marine Birds Along Shorelines in Glacier Bay, Southeastern Alaska: An Assessment Related to Potential Disturbance by Back-Country Users

    USGS Publications Warehouse

    Arimitsu, M.L.; Piatt, J.F.; Romano, Marc D.

    2007-01-01

    With the exception of a few large colonies, the distribution of ground-nesting marine birds in Glacier Bay National Park in southeastern Alaska is largely unknown. As visitor use increases in back-country areas of the park, there is growing concern over the potential impact of human activities on breeding birds. During the 2003i??05 breeding seasons, the shoreline of Glacier Bay was surveyed to locate ground-nesting marine birds and their nesting areas, including wildlife closures and historical sites for egg collection by Alaska Native peoples. The nesting distribution of four common ground-nesting marine bird species was determined: Arctic Tern (Sterna paradisaea), Black Oystercatcher (Haematopus bachmani), Mew Gull (Larus canus), and Glaucous-winged Gull (Larus glaucescens). Observations of less abundant species also were recorded, including Herring Gull (Larus argentatus), Red-throated Loon (Gavia stellata), Canada Goose (Branta canadensis), Willow Ptarmigan (Lagopus lagopus), Semipalmated Plover (Charadrius semipalmatus), Spotted Sandpiper (Actitis macularia), Least Sandpiper (Calidris minutilla), Parasitic Jaeger (Stercorarius parasiticus), and Aleutian Tern (Sterna aleutica). Nesting distribution for Arctic Terns was largely restricted to the upper arms of the bay and a few treeless islets in the lower bay, whereas Black Oystercatchers were more widely distributed along shorelines in the park. Mew Gulls nested throughout the upper bay in Geikie Inlet and in Fingers and Berg Bays, and most Glaucous-winged Gull nests were found at wildlife closures in the central and lower bays. Several areas were identified where human disturbance could affect breeding birds. This study comprises the first bay-wide survey for the breeding distribution of ground-nesting marine birds in Glacier Bay National Park, providing a minimum estimate of their numbers and distribution within the park. This information can be used to assess future human disturbance and track natural changes in nesting bird distribution over time.

  1. Response of glaciers in northwestern North America to future climate change: an atmosphere/glacier

    E-print Network

    Bhatt, Uma

    Response of glaciers in northwestern North America to future climate change: an atmosphere/glacier@gi.alaska.edu 2 HyMet, Inc., 13629 Burma Road SW, Vashon Island, WA 98070, USA ABSTRACT. The response of glaciers to changing climate is explored with an atmosphere/glacier hierarchical modeling approach, in which global

  2. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [North Cascades, Washington and Tweedsmuir Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (principal investigator)

    1974-01-01

    The author has identified the following significant results. Snowlines on a small (6 sq km) drainage basin were accurately measured without use of digital processing, and snow patches as small as 150 m (maximum dimension) were correctly identified, proving that the resolution of ERTS is ample for snow mapping needs. The area of snow cover on 10 individual drainage basins in the North Cascades, Washington, has been determined at 12 different times; these data can be used for more accurate forecasts of streamflow. Progress has been made in distinguishing snow in trees using multispectral analysis. Motion of the surging Tweedsmuir Glacier was measured. Velocities ranged from 2 to 88 m per day; a zone of intense crevassing also appeared to spread up and down the glacier (at about 200 m per day upglacier). This tentative result may be of great importance to an understanding of surging glacier dynamics. ERTS images also show that the most recent debris flow (20-21 August 1973) from Mount Baker can be clearly discerned and mapped, in order to monitor this potential hazard.

  3. Glacier Ecosystems of Himalaya

    NASA Astrophysics Data System (ADS)

    Kohshima, S.; Yoshimura, Y.; Takeuchi, N.; Segawa, T.; Uetake, J.

    2012-12-01

    Biological activity on glaciers has been believed to be extremely limited. However, we found various biotic communities specialized to the glacier environment in various part of the world, such as Himalaya, Patagonia and Alaska. Some of these glacier hosted biotic communities including various cold-tolerant insects, annelids and copepods that were living in the glacier by feeding on algae and bacteria growing in the snow and ice. Thus, the glaciers are simple and relatively closed ecosystems sustained by the primary production in the snow and ice. In this presentation, we will briefly introduce glacier ecosystems in Himalaya; ecology and behavior of glacier animals, altitudinal zonation of snow algal communities, and the structure of their habitats in the glacier. Since the microorganisms growing on the glacier surface are stored in the glacial strata every year, ice-core samples contain many layers with these microorganisms. We showed that the snow algae in the ice-core are useful for ice core dating and could be new environmental signals for the studies on past environment using ice cores. These microorganisms in the ice core will be important especially in the studies of ice core from the glaciers of warmer regions, in which chemical and isotopic contents are often heavily disturbed by melt water percolation. Blooms of algae and bacteria on the glacier can reduce the surface albedo and significantly affect the glacier melting. For example, the surface albedo of some Himalayan glaciers was significantly reduced by a large amount of dark-colored biogenic material (cryoconite) derived from snow algae and bacteria. It increased the melting rates of the surfaces by as much as three-fold. Thus, it was suggested that the microbial activity on the glacier could affect the mass balance and fluctuation of the glaciers.

  4. Dramatic increase in the relative abundance of large male dungeness crabs Cancer magister following closure of commercial fishing in Glacier Bay, Alaska

    USGS Publications Warehouse

    Taggart, S.J.; Shirley, T.C.; O'Clair, C. E.; Mondragon, J.

    2004-01-01

    The size structure of the population of the Dungeness crab Cancer magister was studied at six sites in or near Glacier Bay, Alaska, before and after the closure of commercial fishing. Seven years of preclosure and 4 years of postclosure data are presented. After the closure of Glacier Bay to commercial fishing, the number and size of legal-sized male Dungeness crabs increased dramatically at the experimental sites. Female and sublegal-sized male crabs, the portions of the population not directly targeted by commercial fishing, did not increase in size or abundance following the closure. There was not a large shift in the size-abundance distribution of male crabs at the control site that is still open to commercial fishing. Marine protected areas are being widely promoted as effective tools for managing fisheries while simultaneously meeting marine conservation goals and maintaining marine biodiversity. Our data demonstrate that the size of male Dungeness crabs can markedly increase in a marine reserve, which supports the concept that marine reserves could help maintain genetic diversity in Dungeness crabs and other crab species subjected to size-limit fisheries and possibly increase the fertility of females. ?? 2004 by the American Fisheries Society.

  5. Muir Glacier and Muir Inlet 1980

    USGS Multimedia Gallery

    This ship-deck-based August 1980 photograph of Muir Glacier and Muir Inlet, Glacier Bay National Park and Preserve, St. Elias Mountains, Alaska, shows the nearly 200-ft-high retreating tidewater end of Muir Glacier with part of its face capped by a few angular pinnacles of ice, called séracs....

  6. Flow velocities of Alaskan glaciers.

    PubMed

    Burgess, Evan W; Forster, Richard R; Larsen, Christopher F

    2013-01-01

    Our poor understanding of tidewater glacier dynamics remains the primary source of uncertainty in sea level rise projections. On the ice sheets, mass lost from tidewater calving exceeds the amount lost from surface melting. In Alaska, the magnitude of calving mass loss remains unconstrained, yet immense calving losses have been observed. With 20% of the global new-water sea level rise coming from Alaska, partitioning of mass loss sources in Alaska is needed to improve sea level rise projections. Here we present the first regionally comprehensive map of glacier flow velocities in Central Alaska. These data reveal that the majority of the regional downstream flux is constrained to only a few coastal glaciers. We find regional calving losses are 17.1?Gt?a(-1), which is equivalent to 36% of the total annual mass change throughout Central Alaska. PMID:23857302

  7. Damming of Russell Fiord by Tidewater Hubbard Glacier, Alaska: Role of Subglacial Meltwater in Preventing Closure in 2010

    NASA Astrophysics Data System (ADS)

    Lawson, D. E.; Hamilton, G. S.; Finnegan, D. C.; Stearns, L. A.; Willems, B. A.; O'Neel, S.; Goff, J. A.; Gulick, S. P.; Davis, M. B.

    2010-12-01

    The Hubbard Glacier is advancing into tidewater at a net annual average rate of ~32 m/yr resulting from a seasonal cycle of advance and retreat ranging from less than 100 meters to over 600 meters per year. The eastern margin of the glacier fronts on Gilbert Point where a tidal channel connecting Disenchantment Bay and Russell Fiord could be dammed by ice with continuing advance; after filling to ~43m elevation, lake waters would drain into an abandoned channel of the Situk River and cross the coastal plain near the Town of Yakutat. Ice dams formed in 1986 and 2002 but both dams failed within six months; the Hubbard Glacier came within 60 meters of closing the channel in 2009, but failed to achieve closure before the seasonal retreat phase began in mid-summer. On going field investigations of ice flow and ice face motion and the ice marginal environment provide a means to evaluate the processes and parameters that may limit closure rates and thus the ability of the glacier to dam the connecting channel. The seasonal cycle commonly limits first closure by ice to the period of time before slowing and retreat begins, typically late June to mid-July. Seasonally increasing ice flow rate, rising air temperature and net solar flux, cool sea water temperature, high tidal range, fast currents between Russell Fiord and Disenchantment Bay, and meltwater influx and submarine discharge all appear important to determining the closure rate in and adjacent to the channel at Gilbert Point. In 2010, the primary control on ice marginal advance appears to be subglacial meltwater discharging as distinct jets from subglacial conduits and as expansive sheet flows from thin films on the bed of the glacier. Climatic data and local observations of snowfall suggest that warm winter temperatures and a large snow fall provided meltwater in large volume to the glacier bed earlier than previous years of record (limited), and that discharge locations migrated laterally, affecting a wider area along the connecting channel. Calving rates apparently increased relative to ice flux above flowing subglacial waters, resulting in the cessation of significant advance around the 1 May and a channel that did not narrow beyond ~ 300 m. The ice face remained around this distance with limited advance of tens of meters through mid-July when the ice face began a slow, seasonal retreat. Continuing observations at the ice margin and on the glacier coupled with imagery analyses will provide a better understanding of the role of subglacial meltwater on ice advance if this change in drainage pattern and location remain into the spring melt season of 2011.

  8. Imaging Evidence for Hubbard Glacier Advances and Retreats since the Last Glacial Maximum in Disenchantment and Yakutat Bays, Alaska

    NASA Astrophysics Data System (ADS)

    Zurbuchen, J.; Gulick, S. P.; Levoir, M. A.; Goff, J. A.; Haeussler, P. J.

    2013-12-01

    As glaciers advance and retreat, they leave erosional surfaces, retreat sequences, morainal banks, and terminal moraines. These features can be imaged and interpreted in seismic reflection data to gain insight into ice routing, ice-sediment processes, and preserved glacial history. High-resolution 2-D multichannel seismic data gathered on the August 2012 UTIG-USGS National Earthquake Hazards Reduction Program survey of Disenchantment and Yakutat Bays have provided understanding of the advance pathways of the Hubbard Glacier and the glacial history of the bays. These data show evidence of three unconformities appearing in the form of channels and interpreted to be glacial advance and retreat paths. The youngest observable channel in Disenchantment Bay is ~2 km wide, forming morainal banks along the edges of the bay. The depth below modern sea level in two-way travel time (twtt) shallows from 510 ms in the middle of the bay to 400 ms ~4 km north of the entrance to Yakutat Bay. The sediment contained within the youngest channel measured from the seafloor thins southward from a twtt thickness of 260 ms to 115 ms. Beneath the youngest channel lies an older, 2.2 km-wide channel which is observed at ~580 ms below sea level, and is filled with sediments ranging in thickness from 480 ms to 180 ms at the terminus. This older channel extends from Disenchantment Bay into Yakutat Bay, staying to the northeast of Yakutat Bay, then turns southward at Knight Island and shallows to 450 ms twtt before forming a terminal moraine ~10 km north of the mouth of Yakutat Bay. Evidence for the third and oldest unconformity can only be seen within a very small number of short seismic lines in Disenchantment Bay. It is the largest of the channels, at ~3 km wide and 720 ms below modern sea level. The evidence of three nested unconformities suggests that the Hubbard Glacier has had at least three major advances in recent history. Radiocarbon dating of wooden branches in moraine deposits confirms at least two of these advances to be during the Holocene while the oldest may represent the Last Glacial Maximum. The most recent advance likely reached its terminal position at the mouth of Disenchantment Bay, never entering Yakutat Bay. Our interpretation suggests that the Hubbard Glacier has repeatedly advanced around the east side of Yakutat Bay in Knight Island Channel, possibly due to the presence of Malaspina Glacier cutting off access to the central Yakutat Bay during a time of mutual advance. Within the range of the seismic data available for the area, it seems unlikely that the Hubbard Glacier fills all of Yakutat Bay when it advances.

  9. Alaska

    SciTech Connect

    Jones, B.C.; Sears, D.W.

    1981-10-01

    Twenty-five exploratory wells were drilled in Alaska in 1980. Five oil or gas discovery wells were drilled on the North Slope. One hundred and seventeen development and service wells were drilled and completed, primarily in the Prudhoe Bay and Kuparuk River fields on the North Slope. Geologic-geophysical field activity consisted of 115.74 crew months, an increase of almost 50% compared to 1979. These increases affected most of the major basins of the state as industry stepped up preparations for future lease sales. Federal acreage under lease increased slightly, while state lease acreage showed a slight decline. The year's oil production showed a increase of 16%, while gas production was down slightly. The federal land freeze in Alaska showed signs of thawing, as the US Department of Interior asked industry to identify areas of interest onshore for possible future leasing. National Petroleum Reserve in Alaska was opened to private exploration, and petroleum potential of the Arctic Wildlife Refuge will be studied. One outer continental shelf lease sale was held in the eastern Gulf of Alaska, and a series of state and federal lease sales were announced for the next 5 years. 5 figures, 5 tables.

  10. Delineation of landform and lithologic units for Ecological Landtype-Association analysis in Glacier Bay National Park, Southeast Alaska

    USGS Publications Warehouse

    Brew, David A.

    2008-01-01

    In this study, landforms were classified-by using topographic maps and personal experience-into eight categories similar to those used by the U.S. Forest Service. The 90 bedrock-lithologic units on the current Glacier Bay geologic map were classified into 13 generalized lithologic units corresponding exactly to those used by the U.S. Forest Service. Incomplete storm-track, storm-intensity, and limited climatic information have also been compiled.

  11. Apogean-perigean signals encoded in tidal flats at the fluvio-estuarine transition of Glacier Creek, Turnagain Arm, Alaska; implications for ancient tidal rhythmites

    USGS Publications Warehouse

    Greb, S.F.; Archer, A.W.; Deboer, D.G.

    2011-01-01

    Turnagain Arm is a macrotidal fjord-style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio-estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap-spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well-preserved apogean-perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well-developed neap-spring cyclicity is possible because of the near-complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick-thin spring cycles encoding the apogean and perigean tidal cycle. The apogean-perigean signal was not observed in subsequent years. ?? 2011 The Authors.

  12. The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska

    PubMed Central

    Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID:24023925

  13. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  14. Geochronology of plutonic rocks and their tectonic terranes in Glacier Bay National Park and Preserve, southeast Alaska: Chapter E in Studies by the U.S. Geological Survey in Alaska, 2008-2009

    USGS Publications Warehouse

    Brew, David A.; Tellier, Kathleen E.; Lanphere, Marvin A.; Nielsen, Diane C.; Smith, James G.; Sonnevil, Ronald A.

    2014-01-01

    We have identified six major belts and two nonbelt occurrences of plutonic rocks in Glacier Bay National Park and Preserve and characterized them on the basis of geologic mapping, igneous petrology, geochemistry, and isotopic dating. The six plutonic belts and two other occurrences are, from oldest to youngest: (1) Jurassic (201.6–145.5 Ma) diorite and gabbro of the Lituya belt; (2) Late Jurassic (161.0–145.5 Ma) leucotonalite in Johns Hopkins Inlet; (3) Early Cretaceous (145.5–99.6 Ma) granodiorite and tonalite of the Muir-Chichagof belt; (4) Paleocene tonalite in Johns Hopkins Inlet (65.5–55.8 Ma); (5) Eocene granodiorite of the Sanak-Baranof belt; (6) Eocene and Oligocene (55.8–23.0 Ma) granodiorite, quartz diorite, and granite of the Muir-Fairweather felsic-intermediate belt; (7) Eocene and Oligocene (55.8–23.0 Ma) layered gabbros of the Crillon-La Perouse mafic belt; and (8) Oligocene (33.9–23.0 Ma) quartz monzonite and quartz syenite of the Tkope belt. The rocks are further classified into 17 different combination age-compositional units; some younger belts are superimposed on older ones. Almost all these plutonic rocks are related to Cretaceous and Tertiary subduction events. The six major plutonic belts intrude the three southeast Alaska geographic subregions in Glacier Bay National Park and Preserve, from west to east: (1) the Coastal Islands, (2) the Tarr Inlet Suture Zone (which contains the Border Ranges Fault Zone), and (3) the Central Alexander Archipelago. Each subregion includes rocks assigned to one or more tectonic terranes. The various plutonic belts intrude different terranes in different subregions. In general, the Early Cretaceous plutons intrude rocks of the Alexander and Wrangellia terranes in the Central Alexander Archipelago subregion, and the Paleogene plutons intrude rocks of the Chugach, Alexander, and Wrangellia terranes in the Coastal Islands, Tarr Inlet Suture Zone, and Central Alexander Archipelago subregions.

  15. Marine benthic habitat mapping of Muir Inlet, Glacier Bay National Park and Preserve, Alaska, with an evaluation of the Coastal and Marine Ecological Classification Standard III

    USGS Publications Warehouse

    Trusel, Luke D.; Cochrane, Guy R.; Etherington, Lisa L.; Powell, Ross D.; Mayer, Larry A.

    2010-01-01

    Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes.

  16. Black and Brown Bear Activity at Selected Coastal Sites in Glacier Bay National Park and Preserve, Alaska: A Preliminary Assessment Using Noninvasive Procedures

    USGS Publications Warehouse

    Partridge, Steve; Smith, Tom; Lewis, Tania

    2009-01-01

    A number of efforts in recent years have sought to predict bear activity in various habitats to minimize human disturbance and bear/human conflicts. Alaskan coastal areas provide important foraging areas for bears (Ursus americanus and U. arctos), particularly following den emergence when there may be no snow-free foraging alternatives. Additionally, coastal areas provide important food items for bears throughout the year. Glacier Bay National Park and Preserve (GLBA) in southeastern Alaska has extensive coastal habitats, and the National Park Service (NPS) has been long interested in learning more about the use of these coastal habitats by bears because these same habitats receive extensive human use by park visitors, especially kayaking recreationists. This study provides insight regarding the nature and intensity of bear activity at selected coastal sites within GLBA. We achieved a clearer understanding of bear/habitat relationships within GLBA by analyzing bear activity data collected with remote cameras, bear sign mapping, scat collections, and genetic analysis of bear hair. Although we could not quantify actual levels of bear activity at study sites, agreement among measures of activity (for example, sign counts, DNA analysis, and video record) lends support to our qualitative site assessments. This work suggests that habitat evaluation, bear sign mapping, and periodic scat counts can provide a useful index of bear activity for sites of interest.

  17. Gagiwdul.at: Brought Forth To Reconfirm. The Legacy of a Taku River Tlingit Clan.

    ERIC Educational Resources Information Center

    Nyman, Elizabeth; Leer, Jeff

    The six legends told here, in Tlingit on the left page and in English on the right page, are told by Elizabeth Nyman, a Tlingit elder of the Taku River clan. The narratives represent a portion of the clan's oral history. Introductory sections provide some historical background concerning the clan, the story teller, and the traditions with which…

  18. Alaska

    USGS Publications Warehouse

    Chapin, F. Stuart, III; Trainor, Sarah F.; Cochran, Patricia; Huntington, Henry; Markon, Carl J.; McCammon, Molly; McGuire, A. David; Serreze, Mark

    2014-01-01

    Alaska is the United States' only Arctic region. Its marine, tundra, boreal (northern) forest, and rainforest ecosystems differ from most of those in other states and are relatively intact. Alaska is home to millions of migratory birds, hundred of thousands of caribou, some of the nation's largest salmon runs, a significant proportion of he nation's marine mammals, and half of the nation's fish catch. Energy production is the main driver of the state's economy, providing more than 80% of state government revenue and thousands of jobs. Continuing pressure for oil, gas, and mineral development on land and offshore in ice-covered waters increases the demand for infrastructure, placing additional stresses on ecosystems. Land-based energy exploration will be affected by a shorter season when ice roads are viable, yet reduced sea ice extent may create more opportunity for offshore development. Climate also affects hydropower generation. Mining and fishing are the second and third largest industries in the state, with tourism rapidly increasing the 1990s. Fisheries are vulnerable to changes in fish abundance and distribution that result from both climate change and fishing pressure. Tourism might respond positively to warmer springs and autumns but negatively to less favorable conditions for winter activities and increased summer smoke from wildfire. Alaska is home to 40% (229 of 566) of the federally recognized tribes in the United States. The small number of jobs, high cost of living, and rapid social change make rural, predominantly Native, communities highly vulnerable to climate change through impacts on tradition hunting and fishing and cultural connection to the land and sad. Because most of these communities re not connected to the state's road system or electrical grid, the cost of living is high, and it is challenging to supply good, fuel, materials, health care, and other services. Climate impacts on these communities are magnified by additional social and economic stresses. However, Alaskan Native communities have for centuries dealt with scarcity and high environmental variability and thus have deep cultural reservoirs of flexibility and adaptability.

  19. Bivachnyy Glacier

    USGS Multimedia Gallery

    Photograph of Bivachnyy Glacier, a surging valley glacier in the central Pamir Mountains. The glacier has a thick debris cover derived from adjacent mountains. Photograph courtesy of V.M. Kotlyakov, Russian Academy of Sciences, Moscow....

  20. Factors Affecting Haul-Out Behavior of Harbor Seals (Phoca vitulina) in Tidewater Glacier Inlets in Alaska: Can Tourism Vessels and Seals Coexist?

    PubMed Central

    2015-01-01

    Large numbers of harbor seals (Phoca vitulina) use habitat in tidewater glaciers in Alaska for pupping, breeding, and molting. Glacial fjords are also popular tourist destinations; however, visitation by numerous vessels can result in disturbance of seals during critical life-history phases. We explored factors affecting haul-out behavior of harbor seals at a glacial site frequented by tourism vessels. In 2008-10, we deployed VHF transmitters on 107 seals in Endicott Arm, Alaska. We remotely monitored presence and haul-out behavior of tagged seals and documented vessel presence with time-lapse cameras. We evaluated the influence of environmental and physical factors on the probability of being hauled out, duration of haul-out bouts, and as factors associated with the start and end of a haulout. Location, season, hour, and interactions of location by year, season, hour, and sex significantly influenced haul-out probability, as did ice, weather, and vessels. Seals were more likely to be hauled out with greater ice availability during the middle of the day, and less likely to be hauled out if vessels were present. Cruise ships had the strongest negative effect; however, most vessel types negatively affected haul-out probability. Haul-out duration was longest in association with starting on incoming tides, clear skies, no precipitation, occurring in the middle of the day, and ending in the late afternoon or evening. End of haulouts was associated with increasing cloud cover, low ice availability, and vessel presence; large-sized tourism vessels or all-vessel-types combined were significant predictors of ending a haul-out bout. Probability of being hauled out was highest in June, during pupping season. Potential disturbances of harbor seals could be reduced, enabling longer resting times for seals and fewer interruptions for nursing pups, if vessels focused the majority of visits to glacial habitat to before or after the hours of 08:00-17:00 or, less optimally, 09:00-16:00. PMID:26017404

  1. 76 FR 29707 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ...Professional Plaza Building B, 9309 Glacier Highway, Suite B-200, Juneau...Professional Plaza Building B, 9309 Glacier Highway, Suite B-200, Juneau, Alaska...Professional Plaza Building B, 9309 Glacier Highway, Suite B-200, Juneau,...

  2. Toward tracking glacier ice-balance with seismology Y a h t s e g l a c i e r , A l a s k a

    E-print Network

    West, Michael

    Toward tracking glacier ice-balance with seismology Y a h t s e g l a c i e r , A l a s k a Michael West, mewest@alaska.edu Geophysical Institute, Univ. Alaska Fairbanks Glaciers generate extremely by iceberg calving at the terminus of tidewater glaciers. A recent surge in glacier

  3. Deglaciation and latest Pleistocene and early Holocene glacier readvances on the Alaska Peninsula: Records of rapid climate change due to transient changes in solar intensity and atmospheric CO sub 2 content

    SciTech Connect

    Pinney, D.S.; Beget, J.E.

    1992-03-01

    Geologic mapping near Windy Creek, Katmai National Park, identified two sets of glacial deposits postdating late-Wisconsin Iliuk moraines and separated from them by volcaniclastic deposits laid down under ice-free conditions. Radiocarbon dating of organic material incorporated in the younger Katolinat till and in adjacent peat and lake sediments suggests that alpine glaciers on the northern Alaska Peninsula briefly expanded between ca. 8500 and 10,000 years B.P. Stratigraphic relationships and radiocarbon dates suggest an age for the older Ukak drift near the Pleistocene-Holocene boundary between ca. 10,000 and 12,000 years B.P. The authors suggest that rapid deglaciation following deposition of the Iliuk drift occurred ca. 13,000-12,000 years B.P. in response to large increases in global atmospheric greenhouse gas content, including C02. Short-term decreases in these concentrations, as recorded in polar ice cores, may be linked with brief periods of glacier expansion during the latest Pleistocene and early Holocene. A transient episode of low solar intensity may also have occurred during parts of the early Holocene. Rapid environmental changes and glacial fluctuations on the Alaska Peninsula may have been in response to transient changes in the concentration of atmospheric greenhouse gases and solar intensity.

  4. Neogene marine sedimentary record of the Gulf of Alaska: from the glaciers to the distal submarine fan systems

    NASA Astrophysics Data System (ADS)

    Ridgway, K. D.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Moy, C. M.; Müller, J.; Ribeiro, F.; Gupta, S.; Gulick, S. P.; Jaeger, J. M.

    2013-12-01

    The marine sedimentary record of Miocene to Pleistocene tectonics and glaciation is well preserved along the southern Alaska convergent margin. This margin is well suited for linking proximal to distal sediment transport processes because sediment is being generated by glacial erosion in the highest coastal mountain range on earth and subsequently being transported to the Aleutian subduction zone. We will discuss the sedimentary record from two end members of this system: (1) the proximal marine record now exposed onshore in the high peaks of the coastal ranges, and (2) the offshore distal record preserved in the Surveyor submarine fan system that was cored during the 2013 IODP Expedition 341. Onshore the Miocene non-glacial strata are represented by the Poul Creek Fm. This unit is 2000 m thick and in its upper part consists of mudstone, thin sandstone beds (10-30 cm thick), and thick bedded (1-2 m) highly bioturbated green sandstone beds that contain hummocky stratification. We interpret this unit as being deposited mainly in marine shelf environments. A gradational contact between the Poul Creek and the overlying upper Miocene-Pleistocene Yakataga Formation is marked by a transition to mudstone, thick bedded sandstone and glacial diamictite. This transition to glacial dominated deposition is interpreted to have occurred around 5 Ma based on previous studies. The onshore glacimarine strata are 5 km thick and grade up section from submarine fan to marine shelf strata. In the distal submarine fan record at IODP Site U1417, the upper Miocene strata in the lower part of the Site consist of 340 m of highly bioturbated gray to green mud interbedded with coarse sand and sandy diamict. These coarse-grained units are lithic rich with mainly sedimentary, volcanic, and coal clasts. We interpret these units as being derived from coal-bearing sedimentary strata exposed in the onshore thrust belt. These facies are interbedded with diatom ooze; we interpret this combination of facies as representing deposition of coarse-grained detritus originating from sedimentary gravity flows followed by longer periods of hemipelagic deposition. The first clear record of glacial sediment input in the distal submarine fan environment is late Pliocene - early Pleistocene muddy diamict beds that probably are the products of ice-rafting. This unit is about 30 m in thickness. The overlying 260 m of the core are mainly dark gray mud with thin beds of volcanic ash and sand/silt beds. Lonestones are common and are mainly argillite and metasiltstone clasts suggesting at least a component of sediment derivation from onshore metamorphosed parts of the Mesozoic accretionary prism. In general, the overall Neogene sedimentary record in both the proximal and distal marine settings appears to be similar but requires a sediment link between the proximal strata deposited on the Yakutat microplate and the Surveyor fan system deposited on the Pacific Plate.

  5. The length of the world's glaciers - a new approach for the global calculation of center lines

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Huss, M.

    2014-09-01

    Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all ~ 200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km, with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on the output of our algorithm we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models.

  6. Alexander Archipelago, Southeastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  7. Alaska: A frontier divided

    SciTech Connect

    O'Dell, R. )

    1986-09-01

    The superlatives surrounding Alaska are legion. Within the borders of the 49th US state are some of the world's greatest concentrations of waterfowl, bald eagles, fur seals, walrus, sea lions, otters, and the famous Kodiak brown bear. Alaska features the highest peak of North America, the 20,320-foot Mount McKinley, and the longest archipelago of small islands, the Aleutians. The state holds the greatest percentage of protected wilderness per capita in the world. The expanse of some Alaskan glaciers dwarfs entire countries. Like the periodic advance and retreat of its glaciers, Alaska appears with some regularity on the national US agenda. It last achieved prominence when President Jimmy Carter signed the Alaska National Interest Lands Conservation Act in 1980. Since then the conflict between environmental protection and economic development has been played out throughout the state, and Congress is expected to turn to Alaskan issues again in its next sessions.

  8. An 850 year record of climate and fluctuations of the iceberg-calving NellieJuan Glacier, south central Alaska, U.S.A.

    E-print Network

    Barclay, David J.

    An 850 year record of climate and fluctuations of the iceberg- calving NellieJuan Glacier, south that subse- quent slow retreat changed to rapid iceberg-calving retreat after 1935, and that the tide- water temperature and radiation. However, rapid iceberg-calving retreat did not begin until 40years of slow retreat

  9. International Symposium on Fast Glacier Flow

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.

    1990-01-01

    Cryospheric Sciences Program "International Symposium on Fast Glacier Flow" (PI, C. Lingle) provided partial support for publication of Annals of Glaciology 36 by the International Glaciological Society. Annals of Glaciology is a peer-reviewed journal. Annals 36, which was published in 2003, contains 39 peer-reviewed and edited papers from the International Symposium on Fast Glacier Flow, which was held in Yakutat, Alaska, 10-14 June 2002.

  10. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  11. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...a permit required for a vessel in Glacier Bay? 13.1150 Section 13.1150 Parks...IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits...a permit required for a vessel in Glacier Bay? A permit from the superintendent...

  12. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Do I need a camping permit in Glacier Bay? 13.1116 Section 13.1116 Parks...IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions... Do I need a camping permit in Glacier Bay? From May 1 through September 30,...

  13. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...false Off-road vehicle use in Glacier Bay National Preserve. 13.1109 Section...IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative...1109 Off-road vehicle use in Glacier Bay National Preserve. The use of...

  14. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...of commercial fishing are authorized in Glacier Bay? 13.1132 Section 13.1132...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial...of commercial fishing are authorized in Glacier Bay? Three types of commercial...

  15. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Is a permit required for a vessel in Glacier Bay? 13.1150 Section 13.1150...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel... Is a permit required for a vessel in Glacier Bay? A permit from the...

  16. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...of commercial fishing are authorized in Glacier Bay? 13.1132 Section 13.1132...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial...of commercial fishing are authorized in Glacier Bay? Three types of commercial...

  17. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Off-road vehicle use in Glacier Bay National Preserve. 13.1109 ...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative...13.1109 Off-road vehicle use in Glacier Bay National Preserve. The use...

  18. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... false Do I need a camping permit in Glacier Bay? 13.1116 Section 13.1116...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General...1116 Do I need a camping permit in Glacier Bay? From May 1 through September...

  19. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Is a permit required for a vessel in Glacier Bay? 13.1150 Section 13.1150...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel... Is a permit required for a vessel in Glacier Bay? A permit from the...

  20. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Is a permit required for a vessel in Glacier Bay? 13.1150 Section 13.1150...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel... Is a permit required for a vessel in Glacier Bay? A permit from the...

  1. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Off-road vehicle use in Glacier Bay National Preserve. 13.1109 ...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative...13.1109 Off-road vehicle use in Glacier Bay National Preserve. The use...

  2. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...of commercial fishing are authorized in Glacier Bay? 13.1132 Section 13.1132...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial...of commercial fishing are authorized in Glacier Bay? Three types of commercial...

  3. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... false Do I need a camping permit in Glacier Bay? 13.1116 Section 13.1116...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General...1116 Do I need a camping permit in Glacier Bay? From May 1 through September...

  4. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Off-road vehicle use in Glacier Bay National Preserve. 13.1109 ...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative...13.1109 Off-road vehicle use in Glacier Bay National Preserve. The use...

  5. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Off-road vehicle use in Glacier Bay National Preserve. 13.1109 ...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative...13.1109 Off-road vehicle use in Glacier Bay National Preserve. The use...

  6. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Is a permit required for a vessel in Glacier Bay? 13.1150 Section 13.1150...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel... Is a permit required for a vessel in Glacier Bay? A permit from the...

  7. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... false Do I need a camping permit in Glacier Bay? 13.1116 Section 13.1116...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General...1116 Do I need a camping permit in Glacier Bay? From May 1 through September...

  8. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... false Do I need a camping permit in Glacier Bay? 13.1116 Section 13.1116...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General...1116 Do I need a camping permit in Glacier Bay? From May 1 through September...

  9. Monitoring glacier surface seismicity in time and space using Rayleigh waves

    E-print Network

    Boise State University

    Monitoring glacier surface seismicity in time and space using Rayleigh waves T. D. Mikesell,1,2 K 2011; revised 24 February 2012; accepted 22 March 2012; published 10 May 2012. [1] Sliding glaciers located on Bench Glacier, Alaska (USA) (61.033 N, 145.687 W). We focus on the arrival-time and amplitude

  10. Intrusive rocks and plutonic belts of southeastern Alaska, U.S.A.

    USGS Publications Warehouse

    Brew, David A.; Morrell, Robert P.

    1983-01-01

    About 30 percent of the 175,000-km2 area of southeastern Alaska is underlain by intrusive igneous rocks. Compilation of available information on the distribution, composition, and ages of these rocks indicates the presence of six major and six minor plutonic belts. From west to east, the major belts are: the Fairweather-Baranof belt of early to mid-Tertiary granodiorite; the Muir-Chichagof belt of mid-Cretaceous tonalite and granodiorite; the Admiralty-Revillagigedo belt of porphyritic granodiorite, quartz diorite, and diorite of probable Cretaceous age; the Klukwan-Duke belt of concentrically zoned or Alaskan-type ultramafic-mafic plutons of mid-Cretaceous age within the Admiralty-Revillagigedo belt; the Coast Plutonic Complex sill belt of tonalite of unknown, but perhaps mid-Cretaceous, age; and the Coast Plutonic Complex belt I of early to mid-Tertiary granodiorite and quartz monzonite. The minor belts are distributed as follows: the Glacier Bay belt of Cretaceous and(or) Tertiary granodiorite, tonalite, and quartz diorite lies within the Fair-weather-Baranof belt; layered gabbro complexes of inferred mid-Tertiary age lie within and are probably related to the Fairweather-Baranof belt; the Chilkat-Chichagof belt of Jurassic granodiorite and tonalite lies within the Muir-Chichagof belt; the Sitkoh Bay alkaline, the Kendrick Bay pyroxenite to quartz monzonite, and the Annette and Cape Fox trondhjemite plutons, all interpreted to be of Ordovician(?) age, together form the crude southern southeastern Alaska belt within the Muir-Chichagof belt; the Kuiu-Etolin mid-Tertiary belt of volcanic and plutonic rocks extends from the Muir-Chichagof belt eastward into the Admiralty-Revillagigedo belt; and the Behm Canal belt of mid- to late Tertiary granite lies within and next to Coast Plutonic Complex belt II. In addition, scattered mafic-ultramafic bodies occur within the Fairweather-Baranof, Muir-Chichagof, and Coast Plutonic Complex belts I and II. Palinspastic reconstruction of 200 km of right-lateral movement on the Chatham Strait fault does not significantly change the pattern of the major belts but does bring parts of the minor mid-Tertiary and Ordovician(?) belts closer together. The major belts are related to the stratigraphic-tectonic terranes of Berg, Jones, and Coney (1978) as follows: the Fairweather-Baranof belt is largely in the Chugach, Wrangell (Wrangellia), and Alexander terranes; the Muir-Chichagof belt is in the Alexander and Wrangell terranes; the Admiralty-Revillagigedo belt is in the Gravina and Taku terranes; the Klukwan-Duke belt is in the Gravina, Taku, and Alexander terranes; the Coast Plutonic Complex sill belt is probably between the Taku and Tracy Arm terranes; and the Coast Plutonic Complex belts I and II are in the Tracy Arm and Stikine terranes. Significant metallic-mineral deposits are spatially related to certain of these belts, and some deposits may be genetically related. Gold, copper, and molybdenum occurrences may be related to granodiorites of the Fairweather-Baranof belt. Magmatic copper-nickel deposits occur in the layered gabbro within that belt. The Juneau gold belt, which contains gold, silver, copper, lead, and zinc occurrences, parallels and lies close to the Coast Plutonic Complex sill belt; iron deposits occur in the Klukwan-Duke belt; and porphyry molybdenum deposits occur in the Behm Canal belt. The Muir-Chichagof belt of mid-Cretaceous age and the Admiralty-Revillagigedo belt of probable Cretaceous age are currently interpreted as possible magmatic arcs associated with subduction events. In general, the other belts of intrusive rocks are spatially related to structural discontinuities, but genetic relations, if any, are not yet known. The Coast Plutonic Complex sill belt is probably related to a post-Triassic, pre-early Tertiary suture zone that nearly corresponds to the boundary between the Tracy Arm and Taku terranes. The boundary between the Admiralty-Revillagigedo and Muir-Chichagof belts coincides nearly with the Seymour Canal-Clarence Strait lineament and also is probably a

  11. The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier Thrust Fault region of the intracontinental strike-slip Denali Fault system

    NASA Astrophysics Data System (ADS)

    Riccio, Steven J.; Fitzgerald, Paul G.; Benowitz, Jeff A.; Roeske, Sarah M.

    2014-11-01

    Horizontal-slip along restraining bends of strike-slip faults is often partitioned into a vertical component via splay faults. The active Susitna Glacier Thrust Fault (SGTF), as shown by its initiation of the 2002 M7.9 Denali Fault earthquake, lies south of, and intersects the dextral strike-slip Denali Fault. Geochronology and thermochronology data from samples across the SGTF constrain the region's tectonic history and the role of thrusting in the formation of the eastern Alaska Range south of the Denali fault. U-Pb zircon ages indicate intrusion of plutons in the footwall (~57 Ma) and hanging wall (~98 Ma). These U-Pb zircon ages correlate to those from the Ruby Batholith/Kluane Terrane ~400 km east along the Denali Fault, supporting geologic correlations and hence constraints on long-term slip rates. 40Ar/39Ar mica and K-feldspar data from footwall and hanging wall samples (~54 to ~46 Ma) reflect cooling following magmatism and/or regional Eocene metamorphism related to ridge subduction. Combined with apatite fission track data (ages 43-28 Ma) and thermal models, both sides of the SGTF acted as a coherent block during the Eocene and early Oligocene. Contrasting apatite (U-Th)/He ages across the Susitna Glacier (~25 Ma footwall, ~15 Ma hanging wall) suggest initiation of faulting during the middle Miocene. Episodic cooling and exhumation is related to thrusting on known or hypothesized faults that progressively activate due to varying partition of strain along the Denali Fault associated with changing kinematics and plate interaction (Yakutat microplate collision, flat-slab subduction and relative plate motion change) at the southern Alaskan plate margin.

  12. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Vermilyea, Andrew; Fellman, Jason; Raymond, Peter; Stubbins, Aron; Scott, Durelle; Hood, Eran

    2014-05-01

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in ? 14C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, ? 13C-DOC, ? 14C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the ? 14C-DOC of stream samples at the outflow (-181.7 to -355.3‰) was comparable to the ? 14C-DOC for snow samples from the accumulation zone (-207.2 to -390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century.

  13. Western Glacier Stonefly

    USGS Multimedia Gallery

     The rare western glacier stonefly (Zapada glacier) is native to Glacier National Park and is seeking habitat at higher elevations due to warming stream temperature and glacier loss due to climate warming. ...

  14. Western Glacier Stonefly

    USGS Multimedia Gallery

    The rare western glacier stonefly (Zapada glacier) is native to Glacier National Park and is seeking habitat at higher elevations due to warming stream temperature and glacier loss due to climate warming. ...

  15. The Bay in Place of a Glacier.

    ERIC Educational Resources Information Center

    Howell, Wayne

    1997-01-01

    The cultural resource specialist at Glacier Bay National Park (Alaska) explains the collaborative efforts of park staff and the Hoonah Tlingit to overcome language and cultural barriers in documenting park place names and clan oral history and traditions. The new park-community relationship, which follows decades of conflict, includes training…

  16. An Initial AUV Investigation of the Morainal Bank and Ice-Proximal Submarine Processes of the Advancing Hubbard Glacier, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Lawson, D. E.; Gulick, S. P. S.; Goff, J. A.; O'Halloran, W.

    2014-12-01

    The movement of an advancing tidewater glacier occurs in concert with the morainal bank that underlies its terminus. The mechanics of motion and sedimentological processes responsible for this advance of the morainal bank with the calving terminus are not well-defined and based largely on inferences from geophysical analyses of remnant morainal banks on fjord floors. There is a general absence of in situ or direct observation of the submarine margin because it is nearly impossible to access the immediate area of the ice face by boat safely. In order to obtain such data, in June 2014 we tested the ability of a Bluefin 9M AUV (autonomous underwater vehicle) to acquire high resolution swath bathymetry and sidescan backscatter across a ~2 km long section of the ice face of Hubbard Glacier (see also Goff et al., this meeting). Additionally onboard oceanographic measurements were taken that can be compared with surface cast CTD profiles obtained during AUV deployment, including locations with subglacial discharges. The AUV test provides details on the geometry of the morainal bank and nature of the fjord wall surfaces. The decimeter-scale imagery of the seabed reveals numerous erosional and depositional bedforms and gravitational features on the morainal bank's proximal slope. Closer to the ice face, the morainal bank surface appears much coarser, with textural patterns of unknown origin, and gravel lags including boulder fields. Comparing the water depth from the AUV survey with that of NOAA bathymetric data from 2004/2006 shows the morainal bank continued to advance in pace with ice advance into fjord waters over 200m deep, water depths shoaling up to 100m near the present ice margin. The glimpse of the morainal bank afforded by the AUV test clearly demonstrated the value of this technology to ice marginal submarine investigations.

  17. 50 CFR 600.1107 - Southeast Alaska Purse Seine Salmon Fishery capacity reduction program, including fee payment and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Rehfeld, Mertz, LLC, Professional Plaza Building B, 9309 Glacier Highway, Suite B-200, Juneau, Alaska 99801. The initial...Rehfeld, Mertz, LLC, Professional Plaza Building B, 9309 Glacier Highway, Suite B-200, Juneau, AK 99801. 11....

  18. 50 CFR 600.1107 - Southeast Alaska Purse Seine Salmon Fishery capacity reduction program, including fee payment and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Rehfeld, Mertz, LLC, Professional Plaza Building B, 9309 Glacier Highway, Suite B-200, Juneau, Alaska 99801. The initial...Rehfeld, Mertz, LLC, Professional Plaza Building B, 9309 Glacier Highway, Suite B-200, Juneau, AK 99801. 11....

  19. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...fishing authorized in the marine waters of Glacier Bay National Park? 13.1130 Section...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial...fishing authorized in the marine waters of Glacier Bay National Park?...

  20. 36 CFR 13.1134 - Who is eligible for a Glacier Bay commercial fishing lifetime access permit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Who is eligible for a Glacier Bay commercial fishing lifetime access...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial... § 13.1134 Who is eligible for a Glacier Bay commercial fishing lifetime...

  1. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...fishing authorized in the marine waters of Glacier Bay National Park? 13.1130 Section...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial...fishing authorized in the marine waters of Glacier Bay National Park?...

  2. 36 CFR 13.1134 - Who is eligible for a Glacier Bay commercial fishing lifetime access permit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Who is eligible for a Glacier Bay commercial fishing lifetime access...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial... § 13.1134 Who is eligible for a Glacier Bay commercial fishing lifetime...

  3. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...fishing authorized in the marine waters of Glacier Bay National Park? 13.1130 Section...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial...fishing authorized in the marine waters of Glacier Bay National Park?...

  4. 36 CFR 13.1134 - Who is eligible for a Glacier Bay commercial fishing lifetime access permit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Who is eligible for a Glacier Bay commercial fishing lifetime access...UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial... § 13.1134 Who is eligible for a Glacier Bay commercial fishing lifetime...

  5. Jakobshavn Glacier

    Atmospheric Science Data Center

    2013-04-17

    ... are visible in the bright white ice. A scattering of small icebergs in Disco Bay adds a touch of glittery sparkle to the scene. The ... for a large portion of the western side of the ice sheet. Icebergs released from the glacier drift slowly with the ocean currents and ...

  6. Changes in Alaskan glacier surface velocities observed from SAR offset tracking

    NASA Astrophysics Data System (ADS)

    Burgess, E. W.; Forster, R. R.; Hall, D. K.

    2009-12-01

    Alaskan mountain glaciers contribute about half of the sea level rise (SLR) originating from mountain glaciers worldwide. Alaskan glacier termini are steadily retreating and rapidly thinning in response to warmer temperatures. However, some of the largest mass losses in Alaska are more attributable to erratic glacier dynamics than a warming climate. Nonetheless, no regional studies of Alaskan glacier velocities exist. In Greenland, acceleration of outlet glaciers may contribute more to SLR than runoff; whether a similar process of glacier acceleration is occurring in Alaska must be determined. We construct the first regionally-comprehensive database of Alaskan glacier surface velocities using offset tracking and traditional interferometric synthetic aperture radar. Velocity fields are obtained from multiple SAR platforms and wavelengths, in all seasons and in both accumulation and ablation zones. Uncertainty within velocity fields is also addressed. Temporal velocity changes are examined on a subset of key glaciers contributing to 75% of Alaska’s total SLR contribution. We investigate relationships between temporal velocity changes and surface-temperature anomalies using the Moderate-Resolution Imaging Spectroradiometer (MODIS) land-surface temperature (LST) standard product.

  7. Columbia Glacier in 1986; 800 meters retreat

    USGS Publications Warehouse

    Krimmel, R.M.

    1987-01-01

    Columbia Glacier, in Prince William Sound, Alaska, continued its rapid retreat in 1986, with a retreat of 800 m. Average velocity of the lower portion of the glacier, 10 September 1986 to 26 January 1987, was three km/yr, or about one-half of the velocity during similar periods for the previous three years. This reduced velocity is a new development in the progression of the retreat, and if the calving rate follows the pattern of previous years, will result in continued retreat. (Author 's abstract)

  8. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1312 Climbing and walking on Exit Glacier. Except for areas designated...

  9. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1312 Climbing and walking on Exit Glacier. Except for areas designated...

  10. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1312 Climbing and walking on Exit Glacier. Except for areas designated...

  11. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1312 Climbing and walking on Exit Glacier. Except for areas designated...

  12. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1312 Climbing and walking on Exit Glacier. Except for areas designated...

  13. Shepard Glacier, Glacier National Park, Montana - 2005

    USGS Multimedia Gallery

    The thick, crevassed, ice flows of historic Shepard Glacier have been diminished to less than 0.1 square kilometer in area by 2005. According to the criteria set by the USGS Repeat Photography Project, Shepard Glacier is now considered to be too small to be defined as a glacier. (Blase Reardon)...

  14. Phase transition in MgSiO3 perovskite in the earth's lower mantle Taku Tsuchiya*, Jun Tsuchiya, Koichiro Umemoto, Renata M. Wentzcovitch

    E-print Network

    Vocadlo, Lidunka

    Phase transition in MgSiO3 perovskite in the earth's lower mantle Taku Tsuchiya*, Jun Tsuchiya April 2004; accepted 11 May 2004 Abstract A new polymorph of MgSiO3 more stable than the Pbnm-perovskite to those in which a phase transition in MgSiO3-perovskite has been observed by in situ angle dispersive X

  15. Muir Glacier Retreats

    USGS Multimedia Gallery

    Muir Glacier has retreated out of the field of view and is now nearly 5 miles to the northwest. Riggs Glacier has retreated as much as 2000 ft and thinned by more than 800 feet. Note the dense vegetation that has developed. Also note the correlation between Muir Glacier’s 1941 thickness and th...

  16. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Do I need a camping permit in... OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1116 Do I need a camping permit in Glacier Bay? From May...

  17. Southeastern Alaska tectonostratigraphic terranes revisited

    SciTech Connect

    Brew, D.A.; Ford, A.B.

    1985-04-01

    The presence of only three major tectonostratigraphic terranes (TSTs) in southeastern Alaska and northwestern British Columbia (Chugach, Wrangell, and Alexander) is indicated by critical analysis of available age, stratigraphic, and structural data. A possible fourth TST (Stikine) is probably an equivalent of part or all of the Alexander. The Yakutat block belongs to the Chugach TST, and both are closely linked to the Wrangell and Alexander(-Stikine) TSTs; the Gravina TST is an overlap assemblage. THe Alexander(-Stikine) TSTs is subdivided on the basis of age and facies. The subterranes within it share common substrates and represent large-scale facies changes in a long-lived island-arc environment. The Taku TSTs is the metamorphic equivalent of the upper part (Permian and Upper Triassic) of the Alexander(-Stikine) TSTs with some fossil evidence preserved that indicates the age of protoliths. Similarly, the Tracy Arm TST is the metamorphic equivalent of (1) the lower (Ordovician to Carboniferous) Alexander TST without any such fossil evidence and (2) the upper (Permian to Triassic) Alexander(-Stikine) with some newly discovered fossil evidence. Evidence for the ages of juxtaposition of the TSTs is limited. The Chugach TST deformed against the Wrangell and Alexander TSTs in late Cretaceous. Gravina rocks were deformed at the time and also earlier. The Wrangell TST was stitched to the Alexander(-Stikine) by middle Cretaceous plutons but may have arrived before its Late Jurassic plutons were emplaced. The Alexander(-Stikine) and Cache Creek TSTs were juxtaposed before Late Triassic.

  18. Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier change and comparison with

    E-print Network

    Rabatel, Antoine

    Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier Chile, Portugal 84, Casilla 3387, Santiago, Chile ABSTRACT. Results of a new glacier inventory identified, and glaciers with surface areas glacierized area and 3% of the water

  19. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native and minority students into the geosciences. View them as they explore the permafrost tunnel in Fairbanks, sand dunes in Anchorage, Portage Glacier, Matanuska-Susitna Glacier, and the Trans-Alaska pipeline damage from the earthquake of 2002.

  20. Columbia Bay, Alaska: an 'upside down' estuary

    USGS Publications Warehouse

    Walters, R.A.; Josberger, E.G.; Driedger, C.L.

    1988-01-01

    Circulation and water properties within Columbia Bay, Alaska, are dominated by the effects of Columbia Glacier at the head of the Bay. The basin between the glacier terminus and the terminal moraine (sill depth of about 22 m) responds as an 'upside down' estuary with the subglacial discharge of freshwater entering at the bottom of the basin. The intense vertical mixing caused by the bouyant plume of freshwater creates a homogeneous water mass that exchanges with the far-field water through either a two- or a three-layer flow. In general, the glacier acts as a large heat sink and creates a water mass which is cooler than that in fjords without tidewater glaciers. The predicted retreat of Columbia Glacier would create a 40 km long fjord that has characteristics in common with other fjords in Prince William Sound. ?? 1988.

  1. Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt

    USGS Publications Warehouse

    Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad

    2015-01-01

    In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120?dB (re 1 ?Pa) with a broad peak between 1000 and 3000?Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.

  2. Columbia Glacier stake location, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year

    USGS Publications Warehouse

    Mayo, L.R.; Trabant, D.C.; March, Rod; Haeberli, Wilfried

    1979-01-01

    A 1 year data-collection program on Columbia Glacier, Alaska has produced a data set consisting of near-surface ice kinematics, mass balance, and altitude change at 57 points and 34 ice radar soundings. These data presented in two tables, are part of the basic data required for glacier dynamic analysis, computer models, and predictions of the number and size of icebergs which Columbia Glacier will calve into shipping lanes of eastern Prince William Sound. A metric, sea-level coordinate system was developed for use in surveying throughout the basin. Its use is explained and monument coordinates listed. A series of seven integrated programs for calculators were used in both the field and office to reduce the surveying data. These programs are thoroughly documented and explained in the report. (Kosco-USGS)

  3. Glacier-terminus fluctuations in the Wrangell and Chugach mountains resulting from non-climate controls

    SciTech Connect

    Sturm, M.; Hall, D.K.; Benson, C.S.; Field, W.O.

    1992-03-01

    Non-climatically controlled fluctuations of glacier termini were studied in two regions in Alaska. In the Wrangell Mountains, eight glaciers on Mt. Wrangell, an active volcano, have been monitored over the past 30 years using terrestrial surveys, aerial photogrammetry and digitally registered satellite images. Results, which are consistent between different methods of measurement, indicate that the termini of most glaciers were stationary or had retreated slightly. However, the termini of the 30-km-long Ahtna Glacier and the smaller Center and South MacKeith glaciers began to advance in the early 1960s and have advanced steadily at rates between 5 and 18 m yr-1 since then. These three glaciers flow from the summit caldera of ML Wrangell near the active North Crater, where increased volcanic heating since 1964 has melted over 7 x 107 M3 of ice. The authors suspect that volcanic meltwater has changed the basal conditions for the glaciers, resulting in their advance. In College Fjord, Prince William Sound, the terminus fluctuations of two tidewater glaciers have been monitored since 1931 by terrestrial surveying, photogrammetry, and most recently, from satellite imagery. Harvard Glacier, a 40-kmlong tidewater glacier, has been advancing steadily at nearly 20 m yr-1 since 1931, while the adjacent Yale Glacier has retreated at approximately 50 m yr-1 during the same period, though for short periods, both rates have been much higher.

  4. Comparative metagenome analysis of an Alaskan glacier.

    PubMed

    Choudhari, Sulbha; Lohia, Ruchi; Grigoriev, Andrey

    2014-04-01

    The temperature in the Arctic region has been increasing in the recent past accompanied by melting of its glaciers. We took a snapshot of the current microbial inhabitation of an Alaskan glacier (which can be considered as one of the simplest possible ecosystems) by using metagenomic sequencing of 16S rRNA recovered from ice/snow samples. Somewhat contrary to our expectations and earlier estimates, a rich and diverse microbial population of more than 2,500 species was revealed including several species of Archaea that has been identified for the first time in the glaciers of the Northern hemisphere. The most prominent bacterial groups found were Proteobacteria, Bacteroidetes, and Firmicutes. Firmicutes were not reported in large numbers in a previously studied Alpine glacier but were dominant in an Antarctic subglacial lake. Representatives of Cyanobacteria, Actinobacteria and Planctomycetes were among the most numerous, likely reflecting the dependence of the ecosystem on the energy obtained through photosynthesis and close links with the microbial community of the soil. Principal component analysis (PCA) of nucleotide word frequency revealed distinct sequence clusters for different taxonomic groups in the Alaskan glacier community and separate clusters for the glacial communities from other regions of the world. Comparative analysis of the community composition and bacterial diversity present in the Byron glacier in Alaska with other environments showed larger overlap with an Arctic soil than with a high Arctic lake, indicating patterns of community exchange and suggesting that these bacteria may play an important role in soil development during glacial retreat. PMID:24712530

  5. Late nineteenth to early twenty-first century behavior of Alaskan glaciers as indicators of changing regional climate

    USGS Publications Warehouse

    Molnia, B.F.

    2007-01-01

    Alaska's climate is changing and one of the most significant indications of this change has been the late 19th to early 21st century behavior of Alaskan glaciers. Weather station temperature data document that air temperatures throughout Alaska have been increasing for many decades. Since the mid-20th century, the average change is an increase of ?????2.0????C. In order to determine the magnitude and pattern of response of glaciers to this regional climate change, a comprehensive analysis was made of the recent behavior of hundreds of glaciers located in the eleven Alaskan mountain ranges and three island areas that currently support glaciers. Data analyzed included maps, historical observations, thousands of ground-and-aerial photographs and satellite images, and vegetation proxy data. Results were synthesized to determine changes in length and area of individual glaciers. Alaskan ground photography dates from 1883, aerial photography dates from 1926, and satellite photography and imagery dates from the early 1960s. Unfortunately, very few Alaskan glaciers have any mass balance observations. In most areas analyzed, every glacier that descends below an elevation of ?????1500??m is currently thinning and/or retreating. Many glaciers have an uninterrupted history of continuous post-Little-Ice-Age retreat that spans more than 250??years. Others are characterized by multiple late 19th to early 21st century fluctuations. Today, retreating and/or thinning glaciers represent more than 98% of the glaciers examined. However, in the Coast Mountains, St. Elias Mountains, Chugach Mountains, and the Aleutian Range more than a dozen glaciers are currently advancing and thickening. Many currently advancing glaciers are or were formerly tidewater glaciers. Some of these glaciers have been expanding for more than two centuries. This presentation documents the post-Little-Ice-Age behavior and variability of the response of many Alaskan glaciers to changing regional climate. ?? 2006.

  6. Afghanistan Glacier Diminution

    NASA Astrophysics Data System (ADS)

    Shroder, J. F.; Bishop, M.; Haritashya, U.; Olsenholler, J.

    2008-12-01

    Glaciers in Afghanistan represent a late summer - early fall source of melt water for late season crop irrigation in a chronically drought-torn region. Precise river discharge figures associated with glacierized drainage basins are generally unavailable because of the destruction of hydrological gauging stations built in pre-war times although historic discharge data and prior (1960s) mapped glacier regions offer some analytical possibilities. The best satellite data sets for glacier-change detection are declassified Cornona and Keyhole satellite data sets, standard Landsat sources, and new ASTER images assessed in our GLIMS (Global Land Ice Measurements from Space) Regional Center for Southwest Asia (Afghanistan and Pakistan). The new hyperspectral remote sensing survey of Afghanistan completed by the US Geological Survey and the Afghanistan Ministry of Mines offers potential for future detailed assessments. Long-term climate change in southwest Asia has decreased precipitation for millennia so that glaciers, rivers and lakes have all declined from prehistoric and historic highs. As many glaciers declined in ice volume, they increased in debris cover until they were entirely debris-covered or became rock glaciers, and the ice was protected thereby from direct solar radiation, to presumably reduce ablation rates. We have made a preliminary assessment of glacier location and extent for the country, with selected, more-detailed, higher-resolution studies underway. In the Great Pamir of the Wakhan Corridor where the largest glaciers occur, we assessed fluctuations of a randomly selected 30 glaciers from 1976 to 2003. Results indicate that 28 glacier-terminus positions have retreated, and the largest average retreat rate was 36 m/yr. High albedo, non-vegetated glacier forefields formed prior to 1976, and geomorphological evidence shows apparent glacier-surface downwasting after 1976. Climatic conditions and glacier retreat have resulted in disconnection of tributary glaciers to their main trunk, the formation of high-altitude lakes, and an increased frequency and size of proglacial lakes that are, however, genrally unavailable for irrigation sources. Similar conditions of glacier diminution have occurred in almost all other high altitude parts of the country. Generally decreased precipitation in all seasons, coupled with decreased glacier storage of potential melt-water, augers continued severe problems for beleaguered Afghanistan agriculture, along with concomitant social problems as a result.

  7. The thermophysics of glaciers

    SciTech Connect

    Zotikov, I.A.

    1986-01-01

    This volume presents the results of experimental and theoretical work on the thermodynamics of ice sheets and glaciers. The author has carried out extensive field work in both the Soviet Union and Antarctica over the last 25 years and has contributed to the understanding of the thermophysics of glaciers. The topics covered in this volume embrace heat flow measurement and temperature distributions in glaciers, the thermal drilling of glaciers, the melting and freezing of ice sheets, and other thermophysical problems. Also included are topics of relevance to glacial engineering.

  8. Dynamic behavior of the Bering Glacier-Bagley icefield system during a surge, and other measurements of Alaskan glaciers with ERS SAR imagery

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.; Fatland, Dennis R.; Voronina, Vera A.; Ahlnaes, Kristina; Troshina, Elena N.

    1997-01-01

    ERS-1 synthetic aperture radar (SAR) imagery was employed for the measurement of the dynamics of the Bagley icefield during a major surge in 1993-1994, the measurement of ice velocities on the Malaspina piedmont glacier during a quiescent phase between surges, and for mapping the snow lines and the position of the terminus of Nabesna glacier on Mount Wrangell (a 4317 m andesitic shield volcano) in the heavily glacierized Saint Elias and Wrangell Mountains of Alaska. An overview and summary of results is given. The methods used include interferometry, cross-correlation of sequential images, and digitization of boundaries using terrain-corrected SAR imagery.

  9. Unusually loud ambient noise in tidewater glacier fjords: A signal of ice melt

    NASA Astrophysics Data System (ADS)

    Pettit, Erin Christine; Lee, Kevin Michael; Brann, Joel Palmer; Nystuen, Jeffrey Aaron; Wilson, Preston Scot; O'Neel, Shad

    2015-04-01

    In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and nonglacierized fjords). Icy Bay, Alaska, has an annual average sound pressure level of 120 dB (referenced to 1 ?Pa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.

  10. Dendrochronology to the Beat of a Different Drummer: Lakes Dammed by a Tidewater Glacier Out of Phase with Climate

    NASA Astrophysics Data System (ADS)

    Capps, D.; Wiles, G.; Clague, J.

    2009-04-01

    Glacier-dammed lakes typically form during glacier advance or retreat that is in phase with climate change. Most glacier-dammed lakes that have formed in the past century are located in closed basins created by glacier retreat and downwasting. However, tidewater glaciers can be relatively insensitive to climate and can advance when adjacent land-based glaciers are in retreat. The regimen of tidewater glaciers is strongly controlled by the nature of the terminus. When a morainal shoal or fjord constriction limits mass loss due to calving, the glacier may remain stable or advance even in a warming climate. However, a small perturbation in climate can cause the terminus to retreat off a shoal or beyond a constriction into deeper, open water. Once this happens, more mass is lost through calving than is replenished and the glacier may catastrophically retreat. Because many tidewater glaciers are large, this cycle can be several hundred years in length, thereby lagging climatic perturbations that affect other glaciers. Many tidewater glaciers have dammed lakes as they advanced over the past century. Brady Glacier, at the head of Taylor Bay in southeast Alaska, advanced through most of the 20th century. When George Vancouver's party mapped Taylor Bay in 1794, the glacier terminus was a steep calving front. In 1880 John Muir visited the glacier and commented that it was advancing onto an outwash plain that it had built. It continued to advance until the 1960s and has remained at almost the same position since then, despite thinning many tens of meters. As Brady Glacier advanced, it buried trees along the walls of the fjord and impounded large lakes in tributary valleys. At least two of these lakes formed on opposite sides of the glacier in areas occupied by mature forest. We collected incremental cores and discs of trees killed by overriding ice and rising lake waters in order to establish a dendrochronological history of the last glacier advance and the filling of the lakes. The samples are from rooted subfossil trees located at different elevations within the lake basins and below the previous limit of the glacier. The elevation and location of each tree base were determined with a differential GPS. The results show that the Brady was advancing through the area in the early 1800s and that it killed trees along the valley margins at progressively higher levels through time. The oldest and lowest trees that were sampled in the Spur Lake basin on the east side of the glacier were killed in the early 1800s. The lake rose tens of meters over a few decades. The oldest and lowest trees sampled in the North Trick Lake basin on the west side of the glacier were killed in the early 1830s. Like Spur Lake, North Trick Lake increased in depth over a few decades. Many of these trees in both Spur and North Trick lakes were over 300 years old, which indicates that the glacier had been less extensive than today for at least that long. Just to the east, the tidewater glacier in Glacier Bay had advanced about a century earlier than Brady Glacier, underscoring non-climatic controls on glacier activity in the area. As Glacier Bay ice retreated and presumably ice-dammed lakes drained in Glacier Bay, Brady Glacier advanced, damming lakes at its margins. The lakes impounded by Brady Glacier and frequent jökulhlaups derived from them affect glacier motion, mass balance, and glacier stability. The lakes extend beneath portions of the glacier, and significant ice mass is lost to the lakes by calving. Jökulhlaups carve channels into the base of Brady Glacier and could erode the outwash plain at the glacier terminus. Both processes could initiate catastrophic retreat of the glacier.

  11. Denali Fault: Susitna Glacier

    USGS Multimedia Gallery

    Helicopters and satellite phones were integral to the geologic field response. Here, Peter Haeussler is calling a seismologist to pass along the discovery of the Susitna Glacier thrust fault. View is to the north up the Susitna Glacier. The Denali fault trace lies in the background where the two lan...

  12. 2. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF DOME AT CENTER REAR. LOOKING NNE. GIS N-37 43 44.3 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  13. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF DOME AT CENTER REAR. SAME VIEW AT CA-157-2. LOOKING NNE. GIS: N-37' 43 44.3 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  14. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at the beginning of each activity. A complete explanation, including the format of the Alaska State Science Standards and Grade Level Expectations, is available at the beginning of each grade link at http://www.eed.state.ak.us/tls/assessment/GLEHome.html.

  15. Ground-based portable radar interferometer for imaging glacier flow, ocean-glacier ice interactions, and river ice breakup

    NASA Astrophysics Data System (ADS)

    Fahnestock, M. A.; Cassotto, R.; Truffer, M.

    2013-12-01

    Over the last 18 months we have deployed new 17 GHz imaging radars from Gamma Remote Sensing to document flow on land terminating and tidewater glaciers in Greenland and Alaska; to image glacier response to tides and calving; to track floating ice in fjords; and to document river ice movement, ice jams, and associated flooding during breakup on the Tanana River in Alaska. During these deployments we have learned much about atmospheric influences on interferometric measurements; combination of flow direction determinations from feature tracking in amplitude imagery with short-term flow variability from interferometry. We show examples documenting measurement capabilities and limitations from each of these deployments. These radars represent unique tools for study of rapid changes in dynamic parts of the cryosphere.

  16. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    USGS Publications Warehouse

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  17. The seismic signature of glacier outburst floods (Invited)

    NASA Astrophysics Data System (ADS)

    Walter, J. I.; Amundson, J. M.; Peng, Z.; Prejean, S. G.; Morgan, P.

    2013-12-01

    Glacier outburst floods discharge large volumes of water from ice-dammed lakes, moraine-dammed lakes, subglacial cavities, or other reservoirs of liquid water. Breaching of moraine- or ice-dammed lakes represent significant hazards for communities adjacent to mountainous regions and a better understanding of the phenomena is warranted. Identifying a unique seismic signature may aid in development of an early warning system and provide the ability to 'remotely' detect when areas are undergoing flooding. We focus efforts on examining seismic data from two distinct regions in Alaska. First, we recorded an outburst flood from a glacier-dammed lake adjacent to Mendenhall Glacier near Juneau, using an array of short- and broadband-period seismometers installed in ice boreholes. We manually pick icequakes and then use the template waveforms in a waveform matching technique that allows us to identify missed events during very active or otherwise noisy time periods. Second, we observe glacier-related seismicity at the Alaska Volcano Observatory network installed on the flanks of Mt Spurr, a relatively active Aleutian arc volcano 130 km west of Anchorage. The activity is plausibly a repeat of a glacier outburst flood that occurred during 1992. During the 1992 flood, an outburst flood exited from beneath a glacier that flows down the southern slope of Mt. Spurr. In both cases, the observed seismicity indicates long, emergent periods (hours to days) of continuous high frequency energy (>10 Hz) at stations closest to the outlet, during vigorous flooding. Secondly, after flooding peaks, distinct short-duration (seconds) icequake events are observed, likely due to collapse of subglacial drainages. No distinct precursors appear in the seismic record, though this may be due to aseismic small-scale failures or ice floatation that lead to the breach.

  18. Continuous Monitoring of Greenland Outlet Glaciers Using an Autonomous Terrestrial LiDAR Scanning System: Design, Development and Testing at Helheim Glacier

    NASA Astrophysics Data System (ADS)

    LeWinter, A. L.; Finnegan, D. C.; Hamilton, G. S.; Stearns, L. A.; Gadomski, P. J.

    2014-12-01

    Greenland's fast-flowing tidewater outlet glaciers play a critical role in modulating the ice sheet's contribution to sea level rise. Increasing evidence points to the importance of ocean forcing at the marine margins as a control on outlet glacier behavior, but a process-based understanding of glacier-ocean interactions remains elusive in part because our current capabilities for observing and quantifying system behavior at the appropriate spatial and temporal scales are limited. A recent international workshop on Greenland's marine terminating glaciers (US CLIVAR, Beverly, MA, June 2013) recommended the establishment of a comprehensive monitoring network covering Greenland's largest outlet glacier-fjord systems to collect long-term time series of critical in situ glaciological, oceanographic and atmospheric parameters needed to understand evolving relationships between different climate forcings and glacier flow. Given the remote locations and harsh environments of Greenland's glacial fjords, the development of robust autonomous instrumentation is a key step in making the observing networks a reality. This presentation discusses the design and development of a fully-autonomous ground-based Light Detection and Ranging (LiDAR) system for monitoring outlet glacier behavior. Initial deployment of the system is planned for spring 2015 at Helheim Glacier in southeast Greenland. The instrument will acquire multi-dimensional point-cloud measurements of the mélange, terminus, and lower-reaches of the glacier. The heart of the system is a long-range, 1064 nm wavelength Terrestrial Laser Scanner (TLS) that we have previously used in campaign-style surveys at Helheim Glacier and at Hubbard Glacier in Alaska. We draw on this experience to design and fabricate the power and enclosure components of the new system, and use previously acquired data from the instrument, collected August 2013 and July 2014 at Helheim, to optimize our data collection strategy and design the data processing and telemetry subsystems to ensure year-round data collection.

  19. Ablation of Martian glaciers

    NASA Technical Reports Server (NTRS)

    Moore, Henry J.; Davis, Philip A.

    1987-01-01

    Glacier like landforms are observed in the fretted terrain of Mars in the latitude belts near + or - 42 deg. It was suggested that sublimation or accumulation-ablation rates could be estimated for these glaciers if their shapes were known. To this end, photoclinometric profiles were obtained of a number of these landforms. On the basis of analyses of these profiles, it was concluded that ice is chiefly ablating from these landforms that either are inactive rock-glaciers or have materials within them that are moving exceedingly slowly at this time. These conclusions are consistent with other geologic information. The analyses were performed using a two-dimensional model of an isothermal glacier.

  20. A strategy for monitoring glaciers

    USGS Publications Warehouse

    Fountain, Andrew G.; Krimmel, Robert M.; Trabant, Dennis C.

    1997-01-01

    Glaciers are important features in the hydrologic cycle and affect the volume, variability, and water quality of runoff. Assessing and predicting the effect of glaciers on water resources require a monitoring program to provide basic data for this understanding. The monitoring program of the U.S. Geological Survey employs a nested approach whereby an intensively studied glacier is surrounded by less intensively studied glaciers and those monitored solely by remote sensing. Ideally, each glacierized region of the United States would have such a network of glaciers. The intensively studied glacier provides a detailed understanding of the physical processes and their temporal changes that control the mass exchange of the glaciers in that region. The less intensively studied glaciers are used to assess the variability of such processes within the region.

  1. Bruggen Glacier, Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Expedition 3 crew of the International Space Station caught a rare glimpse of the massive ice fields and glaciers of Patagonia early in the afternoon on September 25, 2001. This part of the South American coast sees frequent storms and is often obscured from view by cloud cover. Bruggen Glacier in southern Chile is the largest western outflow from the Southern Patagonian Ice Field and, unlike most glaciers worldwide, advanced significantly since 1945. From 1945 to 1976, Bruggen surged 5 km across the Eyre Fjord, reaching the western shore by 1962 and cutting off Lake Greve from the sea. The glacier continued advancing both northward and southward in the fjord to near its present position before stabilizing. The growth covers a distance of more than 10 km north to south, adding nearly 60 square km of ice. Additional information on this and other Patagonian glaciers may be found at the following link: USGS - Historic Fluctuations of Outlet Glaciers from the Patagonian Ice Fields. Image ISS003-E-6061 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  2. Getting the Shot, Grinnell Glacier, Glacier National Park.

    USGS Multimedia Gallery

    USGS scientist shoots a repeat photograph of Grinnell Glacier in Glacier National Park to illustrate glacial recession due to impacts of climate change.  *note – logo on scientists hat is logo from USGS Northern Rocky Mountain Science Center, not private....

  3. Getting the Shot, Grinnell Glacier, Glacier National Park.

    USGS Multimedia Gallery

    USGS scientist shoots a repeat photograph of Grinnell Glacier in Glacier National Park to illustrate glacial recession due to impacts of climate change. *note ? logo on scientists hat is logo from USGS Northern Rocky Mountain Science Center, not private. ...

  4. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Climbing and walking on Exit Glacier. 13.1312 Section 13.1312 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National...

  5. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Climbing and walking on Exit Glacier. 13.1312 Section 13.1312 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National...

  6. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Climbing and walking on Exit Glacier. 13.1312 Section 13.1312 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National...

  7. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Climbing and walking on Exit Glacier. 13.1312 Section 13.1312 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National...

  8. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Climbing and walking on Exit Glacier. 13.1312 Section 13.1312 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National...

  9. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 1: Observations

    NASA Technical Reports Server (NTRS)

    Meier, Mark; Lundstrom, Scott; Stone, Dan; Kamb, Barclay; Engelhardt, Hermann; Humphrey, Neil; Dunlap, William W.; Fahnestock, Mark; Krimmel, Robert M.; Walters, Roy

    1994-01-01

    Measurements of glacier flow velocity and basal water pressure at two sites on Columbia Glacier, Alaska, are combined with meteorological and hydrologic data to provide an observational basis for assessing the role of water storage and basal water pressure in the rapid movement of this large glacier. During the period from July 5 to August 31, 1987, coordinated observations were made of glacier surface motion and of water level in five boreholes drilled to (or in one case near to) the glacier bed at two sites, 5 and 12 km from the terminus. Glacier velocities increased downglacier in this reach from about 4 m/d to about 7 m/d. Three types of time variation in velocity and other variables were revealed: (1) Diurnal fluctuation in water input/output, borehole water level, and ice velocity (fluctuation amplitude 5 to 8%); (2) Speed-up events in glacier motion (15-30% speed-up), lasting about three days, and ocurring at times of enhanced input of water, in some cases from rain and in others from ice ablation enhanced by strong, warm winds; (3) 'Extra-slowdown' events, in which, after a speed-up event, the ice velocity decreased in about 3 days to a level consistently lower than that prior to the speed-up event. All of the time variations were due, directly or indirectly, to variations in water input to the glacier.

  10. Debris-Free Plateau Glacier

    USGS Multimedia Gallery

    Small debris-free plateau glacier with glacier lakes at Gangrinchemzoe Pass at 5,200 m, south of the main Himalayan divide, Bhutan. Image courtesy of Shuji Iwata, Tokyo Metropolitan University, Japan....

  11. Alaska Permafrost

    USGS Multimedia Gallery

    General view of a 35-meter-high riverbank exposure of the ice-rich syngenetic permafrost (yedoma) containing large ice wedges along the Itkillik River in northern Alaska. Copyright-free photo courtesy of Mikhail Kanevskiy; University of Alaska Fairbanks, Institute of Northern Engineering....

  12. The Mass Balance of Circum-Arctic Glaciers and Recent Climate Change

    NASA Astrophysics Data System (ADS)

    Dowdeswell, Julian A.; Hagen, Jon Ove; Björnsson, Helgi; Glazovsky, Andrey F.; Harrison, William D.; Holmlund, Per; Jania, Jacek; Koerner, Roy M.; Lefauconnier, Bernard; Ommanney, C. Simon L.; Thomas, Robert H.

    1997-07-01

    The sum of winter accumulation and summer losses of mass from glaciers and ice sheets (net surface mass balance) varies with changing climate. In the Arctic, glaciers and ice caps, excluding the Greenland Ice Sheet, cover about 275,000 km 2of both the widely glacierized archipelagos of the Canadian, Norwegian, and Russian High Arctic and the area north of about 60°N in Alaska, Iceland, and Scandinavia. Since the 1940s, surface mass balance time-series of varying length have been acquired from more than 40 Arctic ice caps and glaciers. Most Arctic glaciers have experienced predominantly negative net surface mass balance over the past few decades. There is no uniform recent trend in mass balance for the entire Arctic, although some regional trends occur. Examples are the increasingly negative mass balances for northern Alaska, due to higher summer temperatures, and increasingly positive mass balances for maritime Scandinavia and Iceland, due to increased winter precipitation. The negative mass balance of most Arctic glaciers may be a response to a step-like warming in the early twentieth century at the termination of the cold Little Ice Age. Arctic ice masses outside Greenland are at present contributing about 0.13 mm yr -1to global sea-level rise.

  13. Denali Fault: Black Rapids Glacier

    USGS Multimedia Gallery

    View eastward along Black Rapids Glacier. The Denali fault follows the trace of the glacier. These very large rockslides went a mile across the glacier on the right side. Investigations of the headwall of the middle landslide indicate a volume at least as large as that which fell, has dropped a mete...

  14. Karakoram glacier surge dynamics

    NASA Astrophysics Data System (ADS)

    Quincey, D. J.; Braun, M.; Glasser, N. F.; Bishop, M. P.; Hewitt, K.; Luckman, A.

    2011-09-01

    We examine the surges of five glaciers in the Pakistan Karakoram using satellite remote sensing to investigate the dynamic nature of surges in this region and how they may be affected by climate. Surface velocity maps derived by feature-tracking quantify the surge development spatially in relation to the terminus position, and temporally with reference to seasonal weather. We find that the season of surge initiation varies, that each surge develops gradually over several years, and that maximum velocities are recorded within the lowermost 10 km of the glacier. Measured peak surge velocities are between one and two orders of magnitude greater than during quiescence. We also note that two of the glaciers are of a type not previously reported to surge. The evidence points towards recent Karakoram surges being controlled by thermal rather than hydrological conditions, coinciding with high-altitude warming from long-term precipitation and accumulation patterns.

  15. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  16. Climate regime of Asian glaciers revealed by GAMDAM Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Nuimura, T.; Fujita, K.; Takenaka, S.; Nagai, H.; Lamsal, D.

    2014-07-01

    Among meteorological elements, precipitation has a large spatial variability and less observation, particularly in High Mountain Asia, although precipitation in mountains is an important parameter for hydrological circulation. We estimated precipitation contributing to glacier mass at median elevation of glaciers, which is presumed to be at equilibrium-line altitude (ELA) so that mass balance is zero at that elevation, by tuning adjustment parameters of precipitation. We also made comparisons between median elevation of glaciers, including the effect of drifting snow and avalanche, and eliminated those local effects. Then, we could obtain median elevation of glaciers depending only on climate to estimate glacier surface precipitation. The calculated precipitation contributing to glacier mass can elucidate that glaciers in the arid High Mountain Asia have very less precipitation, while much precipitation contribute to glacier mass in the Hindu Kush, the Himalayas, and the Hengduan Shan due to not only direct precipitation amount but also avalanche nourishment. We classified glaciers in High Mountain Asia into summer-accumulation type and winter-accumulation type using the summer accumulation ratio, and confirmed that summer-accumulation type glaciers have a higher sensitivity than winter-accumulation type glaciers.

  17. Climate regime of Asian glaciers revealed by GAMDAM glacier inventory

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Nuimura, T.; Fujita, K.; Takenaka, S.; Nagai, H.; Lamsal, D.

    2015-05-01

    Among meteorological elements, precipitation has a large spatial variability and less observation, particularly in high-mountain Asia, although precipitation in mountains is an important parameter for hydrological circulation. We estimated precipitation contributing to glacier mass at the median elevation of glaciers, which is presumed to be at equilibrium-line altitude (ELA) such that mass balance is zero at that elevation, by tuning adjustment parameters of precipitation. We also made comparisons between the median elevation of glaciers, including the effect of drifting snow and avalanche, and eliminated those local effects. Then, we could obtain the median elevation of glaciers depending only on climate to estimate glacier surface precipitation. The calculated precipitation contributing to glacier mass can elucidate that glaciers in arid high-mountain Asia receive less precipitation, while much precipitation makes a greater contribution to glacier mass in the Hindu Kush, the Himalayas, and the Hengduan Shan due to not only direct precipitation amount but also avalanche nourishment. We classified glaciers in high-mountain Asia into summer-accumulation type and winter-accumulation type using the summer-accumulation ratio and confirmed that summer-accumulation-type glaciers have a higher sensitivity than winter-accumulation-type glaciers.

  18. Svalbard surging glacier landsystems

    NASA Astrophysics Data System (ADS)

    Lovell, Harold; Benn, Douglas; Lukas, Sven; Flink, Anne

    2014-05-01

    The percentage of Svalbard glaciers thought to be of surge-type is somewhere between 13-90% according to different sources variously based on statistical analysis and observations of diagnostic glaciological and geomorphological features, e.g. looped moraines. Developing a better understanding of which of these figures, if either, is most realistic is important in the context of glacier dynamics and related contributions of small glaciers and ice caps to sea level change in the immediate future. We present detailed geomorphological assessments of the margins of several known surge-type glaciers in Svalbard in order to update and improve the existing framework by which they are identified, and to provide a foundation for future reassessments of the surge-type glacier population based on distinct landform-sediment assemblages. Three landsystems are proposed: (1) Surges of small valley glaciers produce a prominent ice-cored latero-frontal moraine at their surge maximum and are characterised by an inner zone of ice stagnation terrain (hummocky topography, kettle lakes, debris flows) with no or only very few poorly-defined bedforms (crevasse squeeze ridges, eskers and flutes) and no recessional moraines. Many of these glaciers may have surged in the past but show no signs that they have the capability to do so again in the future. (2) Larger land-terminating glaciers, often with several tributaries, typically produce a push moraine complex which contains evidence for multiple advances, as identified from ridge-meltwater channel relationships. The inner zone often contains a large lagoon, partly dammed by the push moraine complex, and widespread ice stagnation terrain. Crevasse squeeze ridges, eskers and flutes are well-defined but small and limited in number and distribution. (3) Surges of large tidewater glaciers produce distinctive, often multi-generational, landform assemblages both in submarine and lateral terrestrial positions. The well-preserved submarine record is characterised by large cross-fjord push moraines of fjord floor sediments with lobe-shaped debris flows on their distal slope, glacial lineations, dense rhombohedral networks of crevasse squeeze ridges, and eskers. Annual push moraines associated with the quiescent phase are also observed and are unique to the submarine record. The terrestrial record consists of large lateral moraine systems alongside the fjord which contain outer push ridges composed of shallow marine sediments and an inner zone of ice stagnation terrain. Eskers, flutes and large, sharp-crested crevasse fill ridges in dense networks are superimposed on this inner zone; the latter are similar in character to their submarine counterparts but typically higher. We suggest that these three landsystems broadly characterise the geomorphology of the vast majority of known Svalbard surge-type glaciers and may allow previously unknown surge-type glaciers to be identified, both in the field and from aerial photographs and sea floor imagery.

  19. Mount Cheops Cirque Glacier: Response of a Small Debris Covered Glacier to Climate Change

    E-print Network

    Smith, Dan

    Mount Cheops Cirque Glacier: Response of a Small Debris Covered Glacier of a microclimate cirque glacier on Mount Cheops in Glacier National Park of Canada the valley bottom and within the cirque. Simple observations, such as water clarity

  20. Glacier generated floods

    USGS Publications Warehouse

    Walder, J.S.; Fountain, A.G.

    1997-01-01

    Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.

  1. Annual satellite imaging of the world's glaciers Assessment of glacier extent and change

    E-print Network

    GLIMS HIGH ICE Annual satellite imaging of the world's glaciers Assessment of glacier extent and change Development and population of a digital glacier data inventory #12;Glaciers of High Asia: Where was a debris-covered glacier near Mt. Everest J.S. Kargel, April 2001 #12;Gangotri Glacier, India #12;A. Kääb

  2. A World of Changing Glaciers: Hazards, Opportunities, and Measures of Global Climate Change

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Glaciers around the world are, with rare exceptions, stagnating or in hasty retreat. Whether growing or shrinking, significant changes in the extent of glaciers have major impacts on nature and humanity in their immediate vicinity, because land uses are utterly different depending on whether the land is covered by ice. Upon glacier retreat, new land uses may become possible: (1) Transportation corridors may become feasible where previously there were barriers. (2) Exposure of the lithosphere may yield mineral riches that previously were inaccessible. (3) New wildlife habitat and migration routes may develop, thus promoting genetic diffusion/interbreeding of previously isolated populations. Glacier impacts go well beyond the locality where they occur. Many glaciers regulate water flow, and contribute to annual water availability and hydropower production. In some regions, such in the Hindu Kush-Himlaya (HKH), especially the western provinces of China, the carrying capacity of the land and further economic development and well-being of the populace is partly dependent on melting glaciers. In India, \\8 billion worth of hydroelectric power (at U.S. electric rates) is generated each year; 50% of that is attributable to runoff from Himalayan glaciers and high-altitude snow fields. Nearly \\1 billion worth of hydroelectric power is due to the current negative mass balance of glaciers. In Nepal, glaciogenic hydropower is even more crucial. Although it may be many decades in coming, the ongoing sharp reduction in glacier area in the HKH will eventually be reflected in heightened water shortages in a region where water already is in short supply. Other glaciers store large amounts of meltwater and release it suddenly, causing havoc and taking lives downstream. This is a major problem in the HKH region and is significant locally in other heavily glaciated regions, such as Alaska. Sea level is a global issue impacted significantly by melting glaciers wherever they occur. Receding and wasting glaciers is a chief telltale sign that global climate change is real and accelerating. Although details of glacier responses to climate change are very complex and not always according to inuition, the basic idea that glaciers tend to melt when the climate warms is understood by the public. Thus, public knowledge of glacier change may help prompt millions of individuals to modify their climate-altering behaviors. The net loss or benefit of receding glaciers has not been calculated, but the effect is apt to be sharply negative. Long-term, negative economic impacts related to water resources and sea level are likely to be the largest concerns. However, an objective accounting must consider positives as well. In Alaska alone, an estimated 20,000 square km of "new land" will emerge from beneath ice over the next century. At present rates of generation of goods and services averaged over Alaska's whole area, this land will be worth at least \\$360M per year, plus other noneconomic benefits. For a variety of reasons, its actual value will likely be far greater, thus partly offsetting the considerable disruptive effects of glacier recession.

  3. Seismic Tremor Reveals Subglacial Discharge at Tidewater Glaciers

    NASA Astrophysics Data System (ADS)

    Bartholomaus, T. C.; Larsen, C. F.; O'Neel, S.; West, M. E.; Amundson, J. M.; Walter, J. I.; Catania, G. A.; Stearns, L. A.; Walker, R. T.; Sutherland, D.; Shroyer, E.; Nash, J. D.

    2014-12-01

    Subglacial discharge from the termini of tidewater glaciers drives submarine terminus melting, influences fjord circulation, erodes and redeposits subglacial sediment, and is a central component of proglacial marine ecosystems. The timing and variability of subglacial discharge can also exert a strong influence on the upstream flow of tidewater glaciers through hydrology-mediated changes in basal motion. However, a lack of observations of subglacial discharge at the ice-ocean interface hinders progress in understanding these processes and contributes to some of the largest uncertainties in sea level rise projections. Here we demonstrate that passive seismic observations collected adjacent to glaciers can meet this observational need. At tidewater and lake-terminating glaciers in Alaska and Greenland, we observe hourly to seasonal variations in low-amplitude, background seismic noise, termed glacio-hydraulic tremor. Variations in tremor amplitude correlate with discharge during the drainage of a glacially-dammed lake and reveal increases in discharge efficiency over the course of the melt season. Recordings of glacio-hydraulic tremor across a range of settings suggest widespread utility for our method. Reliable prediction of future sea level rise requires observations of subglacial discharge that elicit physical insight and can validate models. Our findings provide a platform for new understanding of ice-ocean interactions and related oceanographic, geologic, and ecological disciplines.

  4. 100 Years of Glacier Retreat in Central Asia

    E-print Network

    100 Years of Glacier Retreat in Central Asia 100 Years of Glacier Retreat in Central Asia · Jeffrey+GLIMS Glacier databaseMODIS+GLIMS Glacier database #12;Benchmark GlaciersBenchmark Glaciers #12;Everest ASTER Mosaic, 2001Everest ASTER Mosaic, 2001 #12;KhumbuKhumbu Glacier, Nepal, 1958Glacier, Nepal, 1958 #12

  5. Pine Island Glacier, Antarctica

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This pair of MISR images of the Pine Island Glacier in western Antarctica was acquired on December 12, 2000 during Terra orbit 5246. At left is a conventional, true-color image from the downward-looking (nadir) camera. The false-color image at right is a composite of red band data taken by the MISR forward 60-degree, nadir, and aftward 60-degree cameras, displayed in red, green, and blue colors, respectively. Color variations in the left (true-color) image highlight spectral differences. In the multi-angle composite, on the other hand, color variations act as a proxy for differences in the angular reflectance properties of the scene. In this representation, clouds show up as light purple. Blue to orange gradations on the surface indicate a transition in ice texture from smooth to rough. For example, the bright orange 'carrot-like' features are rough crevasses on the glacier's tongue. In the conventional nadir view, the blue ice labeled 'rough crevasses' and 'smooth blue ice' exhibit similar coloration, but the multi-angle composite reveals their different textures, with the smoother ice appearing dark purple instead of orange. This could be an indicator of different mechanisms by which this ice is exposed. The multi-angle view also reveals subtle roughness variations on the frozen sea ice between the glacier and the open water in Pine Island Bay.

    To the left of the 'icebergs' label are chunks of floating ice. Additionally, smaller icebergs embedded in the frozen sea ice are visible below and to the right of the label. These small icebergs are associated with dark streaks. Analysis of the illumination geometry suggests that these streaks are surface features, not shadows. Wind-driven motion and thinning of the sea ice in the vicinity of the icebergs is one possible explanation.

    Recently, Robert Bindschadler, a glaciologist at the NASA Goddard Space Flight Center discovered in Landsat 7 imagery a newly-formed crack traversing the Pine Island Glacier. This crack is visible as an off-vertical dark line in the MISR nadir view. In the multi-angle composite, the crack and other stress fractures show up very clearly in bright orange. Radar observations of Pine Island Glacier in the 1990's showed the glacier to be shrinking, and the newly discovered crack is expected to eventually lead to the calving of a major iceberg.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  6. Liss M. Andreassen Glacier variations in

    E-print Network

    Andreassen, Liss Marie

    Liss M. Andreassen Glacier variations in Norway - Measurements and modelling Faculty of Mathematics and Natural Sciences University of Oslo 2008 #12;#12;Glacier variations in Norway - Measurements and modelling.................................................................................................................... 15 1.2 Glaciers in Norway

  7. 2011 Updates on the Long-term Glacier Monitoring Program in Denali National Park and Preserve

    NASA Astrophysics Data System (ADS)

    Burrows, R. A.; Adema, G. W.; Herreid, S. J.; Arendt, A. A.; Larsen, C. F.

    2011-12-01

    The area of Denali National Park and Preserve (DENA) dominated by ice is vast, with glaciers covering 3,780 km^2, approximately one sixth of the park's area. They are integral components of the region's hydrologic, ecologic, and geologic systems - with changes to the glacier systems driving the dependent ecosystems. The National Park Service (NPS) conducts long term monitoring of glaciers in Denali with a variety of methods at a range of spatial and temporal scales. This includes seasonal mass balance and surface movement data collection, annual searches for surging glaciers, and decadal areal extent mapping and volume change estimates of all glaciers in the park. If a glacier surge is detected, the event is documented via photography and surface measurements, when possible. In addition, more intensive ground-based GPS surveys of termini and ice surface elevations are conducted on ten study glaciers every 5-10 years, on a rotating basis. Many of the glaciers are located in designated Wilderness, hence the use of mechanized transport is reduced as much as possible. Monitoring objectives are accomplished by park staff and with cooperative agreements with other agencies and universities. Research to understand the context of the long term data is encouraged and supported as much as possible by the NPS and has recently yielded significant results. The year 2011 marks the 20th anniversary of glacier mass balance monitoring on Kahiltna and Traleika Glaciers, located on the south and north sides of Mt. McKinley respectively. A single "index" site near the ELA of each glacier provides an index of winter, summer, and net balances each year as well as flow velocities and changes in surface elevation. Long-term net balance trends are positive from 1991-2003, and negative since 2003, including the 2009-2010 balance year. The average flow velocity at the Kahiltna index site is 200 +/- 21 m/year with a neutral to slightly negative trend, while on Traleika average velocity is 67 +/- 29 m/year with a positive trend. Monitoring glacier behavior and trends using a variety of techniques provides insight to the complexity of glacier change and increases our ability to distinguish local effects from regional and global trends. Parkwide analysis of glacier extent change since the 1950's shows a consistent trend of retreat, except for glaciers that have surged. Longitudinal surface elevation profiling and comparative photography shows relative stability in larger glaciers, but dramatic long-term mass loss on small, relatively low elevation, valley glaciers characteristic of the eastern portion of DENA. These patterns of ice loss are somewhat unique to the Alaska Range and contrast with big losses of ice mass from large glaciers that border the Gulf of Alaska.

  8. Holocene glacier activity in the British Columbia Coast Mountains, Canada

    NASA Astrophysics Data System (ADS)

    Mood, Bryan J.; Smith, Dan J.

    2015-11-01

    The Coast Mountains flank the Pacific Ocean in western British Columbia, Canada. Subdivided into the southern Pacific Ranges, central Kitimat Ranges and northern Boundary Ranges, the majority of large glaciers and icefields are located in the Boundary and Pacific ranges. Prior descriptions of the Holocene glacial history of this region indicate the Holocene was characterized by repeated episodes of ice expansion and retreat. Recent site-specific investigations augment our understanding of the regional character and duration of these events. In this paper, previously reported and new radiocarbon evidence is integrated to provide an updated regional assessment. The earliest evidence of glacier expansion in the Coast Mountains comes from the Boundary Ranges at 8.9 and 7.8 ka and in the Pacific Ranges at 8.5-8.2 ka, with the latter advance corresponding to an interval of rapid, global climate deterioration. Although generally warm and dry climates from 7.3 to 5.3 ka likely limited the size of glaciers in the region, there is radiocarbon evidence for advances over the interval from 7.3 to 6.0 and at 5.4-5.3 ka in the Pacific Ranges. Following these advances, glaciers in the Pacific Ranges expanded down valley at 4.8-4.6, 4.4-4.0, 3.5-2.6, 1.4-1.2, and 0.8-0.4 ka, while glaciers in Boundary Ranges were advancing at 4.1-4.0, 3.7-3.4, 3.1-2.8, 2.3, 1.7-1.1, and 0.8-0.4 ka. After 0.4 ka, it appears that most glaciers in the Coast Mountains continued to expand to attain their maximum Holocene extents by the early 18th to late 19th centuries. This enhanced record of Holocene glacier activity highlights the temporal synchrony in the Coast Mountains. Individual expansion events in the mid-to late Holocene broadly correspond to intervals of regional glacier activity reported in the Canadian Rocky Mountains, in Alaska, and on high-elevation volcanic peaks in Washington State.

  9. Ancient soil organic carbon in glaciers supports downstream metabolism in the European Alps

    NASA Astrophysics Data System (ADS)

    Fasching, C.; Singer, G.; Steier, P.; Niggemann, J.; Dittmar, T.; Battin, T. J.

    2012-04-01

    Mountain glaciers and ice caps shrink at unprecedented pace with major implications for macroscale runoff patterns and sea-level rise. Building evidence suggests that glaciers, beside their prominent role in the hydrological cycle, are place for microbial and biogeochemical processes. In the Gulf of Alaska, glacial runoff was shown to be a quantitatively important source of ancient and labile organic carbon to marine ecosystems. However, both origin and chemical composition of glacial organic carbon nurturing downstream ecosystems remain elusive. This makes it difficult to understand the role of glaciers in carbon cycling. Here we present first evidence from 26 Alpine glaciers that glacial dissolved organic carbon (DOC), although very low in concentration (138±96 ?g C L-1), contributes to carbon cycling in pro-glacial streams. We found that the bioavailability of glacial DOC (25 to 86 % labile) for microbial heterotrophs increased with its proteinaceous content and with age. Black carbon did not explain the variation in DOC age (600 to 8500 years), suggesting that ancient organic carbon other than black carbon contributes to DOC bioavailability. Proteinaceous moieties from glacial DOC were rapidly removed in the pro-glacial stream, where DOC bioavailability rather than physical processes drove excess pCO2 (EpCO2) in the streamwater as a proxy for in situ metabolism. Using mass loss data and carbon use efficiency (19.4±7.2 %) data from glacial ice, we estimate that glaciers in the European Alps deliver 340 tons C yr-1, of which 162 tons C are potentially respired as CO2 to the atmosphere. These fluxes are small compared to those from high-mass-loss glaciers, such in Alaska, but they are unexpected biogeochemical links between low-DOC glaciers and the smallest of the headwaters in alpine fluvial networks.

  10. Chernobyl fallout on Alpine glaciers

    SciTech Connect

    Ambach, W.; Rehwald, W.; Blumthaler, M.; Eisner, H.; Brunner, P.

    1989-01-01

    Measurements of the gross beta activity of snow samples from four Alpine glaciers contaminated by radioactive fallout from the Chernobyl nuclear accident and a gamma-spectrum analysis of selected samples are reported. The results are discussed with respect to possible risks to the population from using meltwater from these glaciers as drinking water.

  11. ASTER Image of Gangotri Glacier

    USGS Multimedia Gallery

    Sept 9, 2001 ASTER image showing the position of the terminus of Gangotri Glacier, India, between 1780 and 2001. Image from Jesse Allen, NASA's Earth Observatory. Glacier retreat boundaries courtesy of the U.S. Land Processes Distributed Active Archive Center...

  12. Shrinkage of selected southcentral Alaskan glaciers AD 1900-2010 - a spatio-temporal analysis using photogrammetric, GIS-based and historical techniques

    NASA Astrophysics Data System (ADS)

    Kienholz, Christian; Prakash, Anupma; Nussbaumer, Samuel; Zumbühl, Heinz

    2010-05-01

    The knowledge about the recent glacier change in the Chugach Mountains of southcentral Alaska is still scarce. In an effort to fill this gap we took an interdisciplinary approach and reconstructed the history of ten selected glaciers in the vicinity of Valdez (e.g., Valdez Glacier) and Cordova (e.g., Sheridan, Childs and Allen Glacier): Historical data such as early maps and photographs allowed for refining the glacier outlines of the early 20th century. Based upon photogrammetric methods, we further derived elevation models and orthomosaics from various airborne images. The Alaska High Altitude Program (AHAP) imagery, taken during the late 1970s, were the primary data of interest and provided a valuable source of information, primarily because they had not been quantitatively evaluated before. Together with the first USGS maps from the1950s and most recent data (airborne LiDAR; as well as air- and space-borne optical data), they allowed for determining the volume and area changes that have occurred within the last 60 years. A GIS analysis revealed that the recent decades have been characterized by rising equilibrium lines and thus retreating and thinning glaciers. The glaciers did not show a consistent recession pattern, which might partly be attributed to the varying area-altitude distributions. Simple hypsographic modeling indicated that the glaciers generally are far away from a state of equilibrium. Given the current climate scenarios and the unfavorable hypsography of most glaciers, the hitherto prevailing trend of glacier melt and recession is likely to continue or accelerate in the upcoming years. Reliably predicting the extents and characteristics of these glaciers at the end of the century remains an important yet poorly answered research question.

  13. Mapping the Retreat of the Asulkan Glacier in Glacier National Park, British Columbia, Canada

    E-print Network

    Smith, Dan

    1 Mapping the Retreat of the Asulkan Glacier in Glacier National Park, British Columbia, Canada, 2007 Abstract To map the retreat of the Asulkan Glacier in Glacier National Park, British Columbia time of till in the study area was determined with increasing distance from the current glacier front

  14. Primer on glacier flows Christian Heining

    E-print Network

    Sainudiin, Raazesh

    Primer on glacier flows Christian Heining University of Bayreuth, Germany, Department of Applied Mechanics and Fluid Dynamics 1. Why is it important to understand the physics of glaciers? - Glaciers ocean sediments (ice shelfs in antarctica) o pollen - Glaciers contribute to the raise

  15. Recent behaviour of Slovenian glaciers

    NASA Astrophysics Data System (ADS)

    Gabrovec, Matej; Ferk, Mateja; Ortar, Jaka

    2014-05-01

    Just two glaciers, below the peaks of Triglav (2864 m) and Skuta (2532 m), are persisting in Slovenian Alps, both on a relatively very low elevation. Their present surfaces do not exceed one hectare, thus we can speak only about two glacierets or very small glaciers. The Anton Melik Geographical Institute of the Scientific Research Centre at the Slovenian Academy of Sciences and Arts has regularly performed measurements since 1946. The size of the Triglav glacier, measured in 1946, was 14.4 hectares, and by the year 2012 the glacier had shrunk to a half of a hectare. The direct vicinity of the meteorological station on Mt. Kredarica makes possible an analysis of the dependency of the glacier's fluctuation on weather changes. Several methods of measuring have been applied. Since 1999 we have regularly performed photogrammetric measurements of the glacier, which render possible exact calculations of changes in the glacier's area and volume by individual years. In addition, we also performed georadar measurements in 2000 and 2013. Besides regular annual measurements performed at the end of melting seasons, the Triglav glacier has also been photographed monthly since 1976, from two fixed positions on Mt. Kredarica. In 2012, we performed aerial laser scanning (LIDAR) of the Triglav glacier. While for the last decade of the 20th century we reported that the Triglav glacier has not only retreated but literally disintegrated, in the first decade of the 21st century we can observe its stagnation. Due to the present concave form of the glacier's surface, snow remains on it late into summer, and since the year 2007, the ice of the lower part of the glacier has not been revealed even at the end of the melting season but has remained covered with the firn and snow of previous winters. Should such weather conditions continue and the amount of winter precipitation further increase, the remainder of the Triglav glacier will, though very small in size, continue to exist for next ten years or even more.

  16. Digital outlines and topography of the glaciers of the American West

    USGS Publications Warehouse

    Fountain, Andrew G.; Hoffman, Matthew; Jackson, Keith; Basagic, Hassan; Nylen, Thomas; Percy, David

    2007-01-01

    Alpine glaciers have generally receded during the past century (post-“Little Ice Age”) because of climate warming (Oerlemans and others, 1998; Mann and others, 1999; Dyurgerov and Meier, 2000; Grove, 2001). This general retreat has accelerated since the mid 1970s, when a shift in atmospheric circulation occurred (McCabe and Fountain, 1995; Dyurgerov and Meier, 2000). The loss in glacier cover has had several profound effects. First, the shrinkage of glaciers results in a net increase in stream flow, typically in late summer when water supplies are at the lowest levels (Fountain and Tangborn, 1985). This additional water is important to ecosystems (Hall and Fagre, 2003) and to human water needs (Tangborn, 1980). However, if shrinkage continues, the net contribution to stream flow will diminish, and the effect upon these benefactors will be adverse. Glacier shrinkage is also a significant factor in current sea level rise (Meier, 1984; Dyurgerov and Meier, 2000). Second, many of the glaciers in the West Coast States are located on stratovolcanoes, and continued recession will leave oversteepened river valleys. These valleys, once buttressed by ice are now subject to failure, creating conditions for lahars (Walder and Driedger, 1994; O’Connor and others, 2001). Finally, reduction or loss of glaciers reduce or eliminate glacial activity as an important geomorphic process on landscape evolution and alters erosion rates in high alpine areas (Hallet and others, 1996). Because of the importance of glaciers to studies of climate change, hazards, and landscape modification, glacier inventories have been published for Alaska (Manley, in press), China (http://wdcdgg.westgis.ac.cn/DATABASE/Glacier/Glacier.asp), Nepal (Mool and others, 2001), Switzerland (Paul and others, 2002), and the Tyrolian Alps of Austria (Paul, 2002), among other locales. To provide the necessary data for assessing the magnitude and rate of glacier change in the American West, exclusive of Alaska (fig. 1), we are constructing a geographic information system (GIS) database. The data on glacier location and change will be derived from maps, ground-based photographs, and aerial and satellite images. Our first step, reported here, is the compilation of a glacier inventory of the American West. The inventory is compiled from the 1:100,000 (100K) and 1:24,000 (24K)-scale topographic maps published by the U.S. Geological Survey (USGS) and U.S. Forest Service (USFS). The 24K-scale maps provide the most detailed mapping of perennial snow and ice features. This report informs users of the data about the challenges we faced in compiling the data and discusses its errors and uncertainties. We rely on the expertise of the original cartographers in distinguishing “permanent snow and ice” from seasonal snow, although we know, through personal experience, of cartographic misjudgments. Whether “permanent” means indefinite or resident for several years is impossible to determine within the scope of this study. We do not discriminate between “glacier,” defined as permanent snow or ice that moves (Paterson, 1994), and stagnant snow and ice features. Therefore, we leave to future users the final determination of seasonal versus permanent snow features and the discrimination between true glaciers and stagnant snow and ice bodies. We believe that future studies of more regional focus and knowledge can most accurately refine our initial inventory. For simplicity we refer to all snow and ice bodies in this report as glaciers, although we recognize that most probably do not strictly meet the requirements; many may be snow patches.

  17. A moderate resolution inventory of small glaciers and ice caps surrounding Greenland and the Antarctic peninsula

    NASA Astrophysics Data System (ADS)

    Chen, C.; Box, J. E.; Hock, R. M.; Cogley, J. G.

    2011-12-01

    Current estimates of global Mountain Glacier and Ice Caps (MG&IC) mass changes are subject to large uncertainties due to incomplete inventories and uncertainties in land surface classification. This presentation features mitigative efforts through the creation of a MODIS dependent land ice classification system and its application for glacier inventory. Estimates of total area of mountain glaciers [IPCC, 2007] and ice caps (including those in Greenland and Antarctica) vary 15%, that is, 680 - 785 10e3 sq. km. To date only an estimated 40% of glaciers (by area) is inventoried in the World Glacier Inventory (WGI) and made available through the World Glacier Monitoring System (WGMS) and the National Snow and Ice Data Center [NSIDC, 1999]. Cogley [2009] recently compiled a more complete version of WGI, called WGI-XF, containing records for just over 131,000 glaciers, covering approximately half of the estimated global MG&IC area. The glaciers isolated from the conterminous Antarctic and Greenland ice sheets remain incompletely inventoried in WGI-XF but have been estimated to contribute 35% to the MG&IC sea-level equivalent during 1961-2004 [Hock et al., 2009]. Together with Arctic Canada and Alaska these regions alone make up almost 90% of the area that is missing in the global WGI-XF inventory. Global mass balance projections tend to exclude ice masses in Greenland and Antarctica due to the paucity of data with respect to basic inventory base data such as area, number of glaciers or size distributions. We address the need for an accurate Greenland and Antarctic peninsula land surface classification with a novel glacier surface classification and inventory based on NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data gridded at 250 m pixel resolution. The presentation includes a sensitivity analysis for surface mass balance as it depends on the land surface classification. Works Cited +Cogley, J. G. (2009), A more complete version of the World Glacier Inventory, Ann. Glaciol. 50(53). +Hock, R., M. de Woul, V. Radi and M. Dyurgerov, 2009. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36, L07501, doi:10.1029/2008GL037020. +IPCC, Climate Change 2007 The Physical Science Basis, 2007. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S. et al.) Cambridge University Press, Cambridge, UK.

  18. Melt Undercutting and Calving from Tidewater Glaciers: Observations and Model Results

    NASA Astrophysics Data System (ADS)

    Benn, D.; Cook, S.; Åström, J. A.; Luckman, A. J.; Zwinger, T.

    2014-12-01

    Dynamic models incorporating crevasse-depth calving laws have enjoyed considerable success in simulating observed behavior of tidewater glaciers. Such models are based on the assumption that longitudinal strain rates exert a first-order control on calving, and that penetration of surface and basal crevasses provides the ultimate constraint on glacier extent. However, 'second-order' processes such as melt undercutting may significantly amplify calving rates, initiating seasonal and longer-term glacier retreats. We present high temporal and spatial resolution TerraSAR-X data from Svalbard that indicate a strong annual cycle in calving rates, peaking in September-October coincident with maximum fjord temperatures. This pattern is consistent for all studied glaciers irrespective of glacier activity (fast, slow, surging or quiescent), and we conclude that in Svalbard calving is paced by melt-undercutting followed by mechanical destabilization of the ice tongue. Although parameterizations of melt undercutting are included in many models employing the crevasse-depth calving criterion, amplification of calving by melt undercutting (the 'O'Leary Effect') has not been rigorously analyzed or tested against observations. We take a novel approach to this problem, and couple the finite element model Elmer-Ice with a discrete particle model (DPM) to explore in detail the links between melt undercutting and failure of the ice tongue. Employing glacier front geometries representative of Kronebreen (Svalbard), Columbia Glacier (Alaska) and Helheim Glacier (Greenland), we use Elmer-Ice to simulate progressive undercutting of the ice front by melting. At selected time steps, the model geometry was exported into the DPM, and runs conducted to study fracturing and calving behavior using different values of the fracture stress. We quantify the O'Leary Effect for different geometries, and propose a modified calving law incorporating the effects of melt-undercutting. The results highlight the importance of accounting for the impact of melt undercutting on calving losses in dynamic calving models.

  19. Termini of calving glaciers as self-organized critical systems

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Vallot, D.; Schäfer, M.; Welty, E. Z.; O'Neel, S.; Bartholomaus, T. C.; Liu, Yan; Riikilä, T. I.; Zwinger, T.; Timonen, J.; Moore, J. C.

    2014-12-01

    Over the next century, one of the largest contributions to sea level rise will come from ice sheets and glaciers calving ice into the ocean. Factors controlling the rapid and nonlinear variations in calving fluxes are poorly understood, and therefore difficult to include in prognostic climate-forced land-ice models. Here we analyse globally distributed calving data sets from Svalbard, Alaska (USA), Greenland and Antarctica in combination with simulations from a first-principles, particle-based numerical calving model to investigate the size and inter-event time of calving events. We find that calving events triggered by the brittle fracture of glacier ice are governed by the same power-law distributions as avalanches in the canonical Abelian sandpile model. This similarity suggests that calving termini behave as self-organized critical systems that readily flip between states of sub-critical advance and super-critical retreat in response to changes in climate and geometric conditions. Observations of sudden ice-shelf collapse and tidewater glacier retreat in response to gradual warming of their environment are consistent with a system fluctuating around its critical point in response to changing external forcing. We propose that self-organized criticality provides a yet unexplored framework for investigations into calving and projections of sea level rise.

  20. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  1. Climate variations and changes in mass of three glaciers in western North America

    USGS Publications Warehouse

    Hodge, S.M.; Trabant, D.C.; Krimmel, R.M.; Heinrichs, T.A.; March, R.S.; Josberger, E.G.

    1998-01-01

    Time series of net and seasonal mass balances for three glaciers in western North America, one in the Pacific Northwest and two in Alaska, show various relationships to Pacific hemisphere climate indexes. During the winter season the two coastal, maritime-regime glaciers, over 2000 km apart, are affected almost identically, albeit inversely, by atmospheric and oceanic conditions in both the tropical and North Pacific. The two Alaska glaciers, only 350 km apart, have almost no coherence. Lag correlations show that in winter the maritime glaciers are influenced by concurrent conditions in the North Pacific, but by conditions in the tropical Pacific in August-September of the prior northern summer. The winter balance variations contain interannual El Nino-Southern Oscillation variability superimposed on North Pacific interdecadal variability; the interdecadal 1976-77 climate regime shift is clearly evident. The summer balances and the continental-regime glacier have a general lack of correlations, with no clear, strong, consistent patterns, probably a result of being influenced more by local processes or by circulation patterns outside the Pacific Ocean basin. The results show the Pacific Northwest is strongly influenced by conditions in the tropical Pacific, but that this teleconnection has broken down in recent years, starting in 1989. During the seven years since then (1989-95), all three glaciers have shown, for the first time, coherent signals, which were net mass loss at the highest rate in the entire record. The authors' results agree with those of other recent studies that suggest these recent years are unusual and may be a signature of climate warming.

  2. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  3. Identification, definition and mapping of terrestrial ecosystems in interior Alaska. [vegetation, land use, glaciology

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (principal investigator)

    1973-01-01

    The author has identified the following significant results. The vegetation map in preparation at the time of the last report was refined and labeled. This map is presented as an indication of the spatial and classificatory detail possible from interpretations of enlarged ERTS-1 color photographs. Using this map, areas covered by the several vegetation types characterized by white spruce were determined by planimetry. A 1:63,360 scale land use map of the Juneau area was drawn. This map incorporates the land use classification system now under development by the U.S. Geological Survey. The ERTS-1 images used in making the Juneau map were used to determine changes in surface area of the terminal zones of advancing and receding glaciers, the Taku, Norris, and Mendenhall. A new 1:63,360 scale land use map of the Bonanza Creek Experimental Forest and vicinity was drawn. Several excellent new sciences of test areas were received from NASA in color-infrared transparency format. These are being used for making photographic prints for analysis and mapping according to procedures outlined in this report.

  4. Remote sensing and modeling of sub-glacier geomorphology: the role geological structures play in controlling the geometry and dynamics of ice flow on the Malaspina Glacier, AK

    NASA Astrophysics Data System (ADS)

    Cotton, M. M.; Bruhn, R. L.; Sauber, J. M.; Burgess, E. W.

    2011-12-01

    Deformation and uplift of the Saint Elias Mountains of southern Alaska, due to the collision and accretion of the Yakutat mircoplate, coincided with the onset of glaciation in the Late Miocene. Several large alpine glaciers coalesce on the piedmont of the Saint Elias Mountains to form the Malaspina Glacier, the largest piedmont glacier in North America. We investigate the interaction of the young tectonic structures and glacier flow to better understand the roles these structures play in controlling the geometry and dynamics of the Malaspina Glacier. Specifically, we use feature tracking by cross-correlation of satellite images to map the velocity and strain-rate fields of the Malaspina Glacier to explore how the structural geology at the bed of the glacier affects the dynamics and structure of moving ice on the surface. Analog modeling of glacial ice is also used to physically model how the magnitude and direction of ice flow responds to underlying topographic features. Feature tracking was done over periods ranging from one month up to one to two years in duration depending upon the rate of ice flow and the ability to achieve satisfactory correlations between images acquired by the optical sensors on Landsat 5 TM and Landsat 7 ETM+ satellites. The ice surface velocity fields bear directly on the origin of ice falls that originate above thrust faults on the limbs of large folds, the origin of fast glacier flow along fault zones where rheology at the bed of the glacier is presumably impacted by rapid erosion and development of weak water saturated till, and the pattern of ice flow around the termination of a large strike-slip fault. The morphology and dynamics of the Malaspina piedmont lobes also provide insight into the strike-slip component of motion along the Esker Creek Fault that was activated during an M 8.1 earthquake in 1899. Feature tracking also provides a method to detect the presence and extent of sub-glacial lakes and distributary channels that feed outburst flooding at the terminus of glaciers.

  5. Ocean Observing System Demonstrated in Alaska

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; Chao, Yi

    2010-05-01

    To demonstrate the utility of an ocean observing and forecasting system with diverse practical applications—such as search and rescue, oil spill response (perhaps relevent to the current Gulf of Mexico oil spill), fisheries, and risk management—a unique field experiment was conducted in Prince William Sound, Alaska, in July and August 2009. The objective was to quantitatively evaluate the performance of numerical models developed for the sound with an array of fixed and mobile observation platforms (Figure 1). Prince William Sound was chosen for the demonstration because of historical efforts to monitor ocean circulation following the 1989 oil spill from the Exxon Valdez tanker. The sound, a highly crenulated embayment of about 10,000 square kilometers at approximately 60°N latitude along the northern coast of the Gulf of Alaska, includes about 6900 kilometers of shoreline, numerous islands and fjords, and an extensive system of tidewater glaciers descending from the highest coastal mountain range in North America. Hinchinbrook Entrance and Montague Strait are the two main deep water connections with the Gulf of Alaska. The economic base of communities in the region is almost entirely resource-dependent. For example, Cordova's economy is based on commercial fishing and Valdez's economy is supported primarily by the trans-Alaska oil pipeline terminal.

  6. Co-occurrence of Pacific sleeper sharks Somniosus pacificus and harbor seals Phoca vitulina in Glacier Bay

    USGS Publications Warehouse

    Taggart, S.J.; Andrews, A.G.; Mondragon, J.; Mathews, E.A.

    2005-01-01

    We present evidence that Pacific sleeper sharks Somniosus pacificus co-occur with harbor seals Phoca vitulina in Glacier Bay, Alaska, and that these sharks scavenge or prey on marine mammals. In 2002, 415 stations were fished throughout Glacier Bay on a systematic sampling grid. Pacific sleeper sharks were caught at 3 of the 415 stations, and at one station a Pacific halibut Hippoglossus stenolepis was caught with a fresh bite, identified as the bite of a sleeper shark. All 3 sharks and the shark-bitten halibut were caught at stations near the mouth of Johns Hopkins Inlet, a glacial fjord with the highest concentration of seals in Glacier Bay. Using a bootstrap technique, we estimated the probability of sampling the sharks (and the shark-bitten halibut) in the vicinity of Johns Hopkins Inlet. If sharks were randomly distributed in Glacier Bay, the probability of sampling all 4 pots at the mouth of Johns Hopkins Inlet was very low (P = 0.00002). The highly non-random distribution of the sleeper sharks located near the largest harbor seal pupping and breeding colony in Glacier Bay suggests that these 2 species co-occur and may interact ecologically in or near Johns Hopkins Inlet. Copyright ?? 2005 by the Alaska Department of Fish and Game.

  7. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early seasonal timing of surveys, strip transects).

  8. Glacier discharge and climate variations

    NASA Astrophysics Data System (ADS)

    Dominguez, M. Carmen; Rodriguez-Puebla, Concepcion; Encinas, Ascension H.; Visus, Isabel; Eraso, Adolfo

    2010-05-01

    Different studies account for the warming in the polar regions that consequently would affect Glacier Discharge (GD). Since changes in GD may cause large changes in sensible and latent heat fluxes, we ask about the relationships between GD and climate anomalies, which have not been quantified yet. In this study we apply different statistical methods such as correlation, Singular Spectral Analysis and Wavelet to compare the behaviour of GD data in two Experimental Pilot Catchments (CPE), one (CPE-KG-62°S) in the Antarctica and the other (CPE-KVIA-64°N) in the Arctic regions. Both CPE's are measuring sub- and endo-glacier drainage for recording of glacier melt water run-off. The CPE-KG-62°S is providing hourly GD time series since January 2002 in Collins glacier of the Maxwell Bay in King George Island (62°S, 58°W). The second one, CPE-KVIA-64°N, is providing hourly GD time series since September 2003 in the Kviarjökull glacier of the Vatnajökull ice cap in Iceland (64°N, 16°W). The soundings for these measurements are pressure sensors installed in the river of the selected catchments for the ice cap (CPE-KG-62°S) and in the river of the glacier for (CPE-KVIA-64°N). In each CPE, the calibration function between level and discharge has been adjusted, getting a very high correlation coefficient (0.99 for the first one and 0.95 for the second one), which let us devise a precise discharge law for the glacier. We obtained relationships between GD with atmospheric variables such as radiation, temperature, relative humidity, atmospheric pressure and precipitation. We also found a negative response of GD to El Niño teleconnection index. The results are of great interest due to the GD impact on the climate system and in particular for sea level rise.

  9. 115GLACIERS AND ICE CAPSCHAPTER 6B Glaciers and Ice Caps

    E-print Network

    Fountain, Andrew G.

    115GLACIERS AND ICE CAPSCHAPTER 6B 6B Glaciers and Ice Caps Michael Zemp (lead author, Department of Sciences, China) #12;116 GLOBAL OUTLOOK FOR ICE AND SNOW Summary Glaciers and ice caps are among the most hazards. Because they are close to the melting point and react strongly to climate change, glaciers

  10. Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 19782002, in the central

    E-print Network

    Kääb, Andreas

    Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978 56, Dunedin 9054, New Zealand ABSTRACT. We have measured the glacier area changes in the central Southern Alps, New Zealand, between 1978 and 2002 and have compiled the 2002 glacier outlines using

  11. The GLIMS geospatial glacier database: A new tool for studying glacier change

    E-print Network

    The GLIMS geospatial glacier database: A new tool for studying glacier change Bruce Raup a,, Adina's estimated 160000 glaciers. Each institution (called a Regional Center, or RC) oversees the analysis of satellite imagery for a particular region containing glacier ice. Data received by the GLIMS team

  12. Arctic polynya and glacier interactions

    NASA Astrophysics Data System (ADS)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring tidewater glaciers. The work presented discusses preliminary satellite observations of concurrent changes in the North Water and Nares Strait polynyas and neighbouring tidewater glaciers in Greenland and the Canadian Arctic where notable thinning and acceleration of glaciers have been observed. Also included is an outline of how these observations will fit into a much wider project on the topic involving ocean, atmosphere and sea ice modelling and short-term and longer-term in-situ measurements.

  13. Fast shrinkage of tropical glaciers in Colombia

    NASA Astrophysics Data System (ADS)

    Ceballos, Jorge Luis; Euscátegui, Christian; Ramírez, Jair; Cañon, Marcela; Huggel, Christian; Haeberli, Wilfried; Machguth, Horst

    As a consequence of ongoing atmospheric temperature rise, tropical glaciers belong to the unique and threatened ecosystems on Earth, as defined by the Intergovernmental Panel on Climate Change (Houghton and others, 2001). Worldwide glacier monitoring, especially as part of the Global Climate Observing System (GCOS), includes the systematic collection of data on such perennial surface ice masses. Several peaks in the sierras of Colombia have lost their glacier cover during recent decades. Today, high-altitude glaciers still exist in Sierra Nevada de Santa Marta, in Sierra Nevada del Cocuy and on the volcanoes of Nevados del Ruiz, de Santa Isabel, del Tolima and del Huila. Comparison of reconstructions of maximum glacier area extent during the Little Ice Age with more recent information from aerial photographs and satellite images clearly documents a fast-shrinking tendency and potential disappearance of the remaining glaciers within the next few decades. In the past 50 years, Colombian glaciers have lost 50% or more of their area. Glacier shrinkage has continued to be strong in the last 15 years, with a loss of 10-50% of the glacier area. The relationship between fast glacier retreat and local, regional and global climate change is now being investigated. Preliminary analyses indicate that the temperature rise of roughly 1° C in the last 30 years recorded at high-altitude meteorological stations exerts a primary control on glacier retreat. The investigations on the Colombian glaciers thus corroborate earlier findings concerning the high sensitivity of glaciers in the wet inner tropics to temperature rise. To improve understanding of fast glacier retreat in Colombia, a modern monitoring network has been established according to the multilevel strategy of the Global Terrestrial Network for Glaciers (GTN-G) within GCOS. The observations are also contributions to continued assessments of hazards from the glacier-covered volcanoes and to integrated global change research in mountain biosphere reserves.

  14. Glacier Mass Balance measurements in Bhutan

    NASA Astrophysics Data System (ADS)

    Jackson, Miriam; Tenzin, Sangay; Tashi, Tshering

    2014-05-01

    Long-term glacier measurements are scarce in the Himalayas, partly due to lack of resources as well as inaccessibility of most of the glaciers. There are over 600 glaciers in Bhutan in the Eastern Himalayas, but no long-term measurements. However, such studies are an important component of hydrological modelling, and especially relevant to the proposed expansion of hydropower resources in this area. Glaciological studies are also critical to understanding the risk of jøkulhlaups or GLOFS (glacier lake outburst floods) from glaciers in this region. Glacier mass balance measurements have been initiated on a glacier in the Chamkhar Chu region in central Bhutan by the Department of Hydro-Met Services in co-operation with the Norwegian Water Resources and Energy Directorate. Chamkhar Chu is the site of two proposed hydropower plants that will each generate over 700 MW, although the present and future hydrological regimes in this basin, and especially the contribution from glaciers, are not well-understood at present. There are about 94 glaciers in the Chamkhar Chhu basin and total glacier area is about 75 sq. km. The glaciers are relatively accessible for the Himalayas, most of them can be reached after only 4-5 days walk from the nearest road. One of the largest, Thana glacier, has been chosen as a mass balance glacier and measurements were initiated in 2013. The glacier area is almost 5 sq. km. and the elevation range is 500 m (5071 m a.s.l. to 5725 m a.s.l.) making it suitable as a benchmark glacier. Preliminary measurements on a smaller, nearby glacier that was visited in 2012 and 2013 showed 1 m of firn loss (about 0.6 m w.eq.) over 12 months.

  15. Erosion by an Alpine glacier

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric; Beyssac, Olivier; Lane, Stuart; Brughelli, Mattia; Leprince, Sebastien; Brun, Fanny

    2015-04-01

    Most mountain ranges on Earth owe their morphology to the action of glaciers and icecaps over the last few million years. Our current understanding of how glaciers have modified mountainous landforms has mainly been driven through landscape evolution models. These have included an array of erosion laws and mainly progressed through the implementation of various levels of sophistication regarding ice dynamics, subglacial hydrology or thermodynamics of water flow. However, the complex nature of the erosion processes involved and the difficulty of directly examining the ice-bedrock interface of contemporary glaciers has precluded the establishment of a prevailing erosion theory. Here we quantify the spatial variations in ice sliding velocity and erosion rate of a fast-flowing Alpine glacier in New Zealand during a 5-month period. By combining high resolution 3D measurements of surface velocity from optical satellite imagery with the quantification of both the production and provenance of sediments by the glacier, we show that erosion rates are proportional to sliding velocity raised to a power of about two. This result is consistent with abrasion theory. Given that the ice sliding velocity is a nonlinear function of ice thickness and ice surface slope, the response of glacial erosion to precipitation changes is highly nonlinear. Finally, our ability to constrain the glacial abrasion law present opportunities to further examine the interaction between glaciation and mountain evolution.

  16. Longitudinal surface structures (flowstripes) on Antarctic glaciers

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Gudmundsson, G. H.

    2012-03-01

    Longitudinal surface structures ("flowstripes") are common on many glaciers but their origin and significance are poorly understood. In this paper we present observations of the development of these longitudinal structures from four different Antarctic glacier systems; the Lambert Glacier/Amery Ice Shelf area, the Taylor and Ferrar Glaciers in the Ross Sea sector, Crane and Jorum Glaciers (ice-shelf tributary glaciers) on the Antarctic Peninsula, and the onset zone of a tributary to the Recovery Glacier Ice Stream in the Filchner Ice Shelf area. Mapping from optical satellite images demonstrates that longitudinal surface structures develop in two main situations: (1) as relatively wide flow stripes within glacier flow units and (2) as relatively narrow flow stripes where there is convergent flow around nunataks or at glacier confluence zones. Our observations indicate that the confluence features are narrower, sharper, and more clearly defined features. They are characterised by linear troughs or depressions on the ice surface and are much more common than the former type. Longitudinal surface structures within glacier flow units have previously been explained as the surface expression of localised bed perturbations but a universal explanation for those forming at glacier confluences is lacking. Here we propose that these features are formed at zones of ice acceleration and extensional flow at glacier confluences. We provide a schematic model for the development of longitudinal surface structures based on extensional flow that can explain their ridge and trough morphology as well as their down-ice persistence.

  17. Fate of Mountain Glaciers in the Anthropocene

    E-print Network

    Stocker, Thomas

    Fate of Mountain Glaciers in the Anthropocene A Report by the Working Group Commissioned of Sciences at the Vatican, to contemplate the observed retreat of the mountain glaciers, its causes and consequences. This report resulted from a workshop in April 2011 at the Vatican. 2007 Courtesy of Glacier

  18. Get Close to Glaciers with Satellite Imagery.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1986-01-01

    Discusses the use of remote sensing from satellites to monitor glaciers. Discusses efforts to use remote sensing satellites of the Landsat series for examining the global distribution, mass, balance, movements, and dynamics of the world's glaciers. Includes several Landsat images of various glaciers. (TW)

  19. Glaciers as a source of ancient and labile organic matter to the marine environment.

    PubMed

    Hood, Eran; Fellman, Jason; Spencer, Robert G M; Hernes, Peter J; Edwards, Rick; D'Amore, David; Scott, Durelle

    2009-12-24

    Riverine organic matter supports of the order of one-fifth of estuarine metabolism. Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. The lability of DOM is thought to vary with age, with younger, relatively unaltered organic matter being more easily metabolized by aquatic heterotrophs than older, heavily modified material. This view is developed exclusively from work in watersheds where terrestrial plant and soil sources dominate streamwater DOM. Here we characterize streamwater DOM from 11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage (0-64 per cent). In contrast to non-glacial rivers, we find that the bioavailability of DOM to marine microorganisms is significantly correlated with increasing (14)C age. Moreover, the most heavily glaciated watersheds are the source of the oldest ( approximately 4 kyr (14)C age) and most labile (66 per cent bioavailable) DOM. These glacial watersheds have extreme runoff rates, in part because they are subject to some of the highest rates of glacier volume loss on Earth. We estimate the cumulative flux of dissolved organic carbon derived from glaciers contributing runoff to the Gulf of Alaska at 0.13 +/- 0.01 Tg yr(-1) (1 Tg = 10(12) g), of which approximately 0.10 Tg is highly labile. This indicates that glacial runoff is a quantitatively important source of labile reduced carbon to marine ecosystems. Moreover, because glaciers and ice sheets represent the second largest reservoir of water in the global hydrologic system, our findings indicate that climatically driven changes in glacier volume could alter the age, quantity and reactivity of DOM entering coastal oceans. PMID:20033045

  20. Estimating glacier mass changes by GRACE satellite gravimetry in the Pamir and Tien-Shan mountains

    NASA Astrophysics Data System (ADS)

    Baumann, S.; Menzel, A.; Seitz, F.

    2012-04-01

    In 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission was launched, to obtain more information about the Earth's geoid and gravity field. The satellites measure the changes of the Earth's gravity field on a monthly basis until today. These data can be used to estimate glacier mass balance. Previous studies have mainly focused on the large ice sheets and glaciers of Greenland and Antarctica. In recent years, the GRACE data was also applied to mountain glaciers, e.g. in the St Elias Mountains in Alaska (Arendt et al. 2008) and in the Himalayas (Muskett 2010). In this study, the mass change data of GRACE are applied to the Pamir and Tien-Shan mountains. Mass balance measurements, mass balance and volume estimations, and other data are used to compare and verify the results of the GRACE estimates. Obstacles in this area are especially the inadequate glacier mass balance data, their representativeness, the availability of data, the time coverage, the insufficient spatial mapping, and the influence of other mass changing signals in the area (e.g. lake Issyk-Kul). Therefore, much attention is given to specify the corresponding uncertainties. The results of this study are rough estimations of the mass change development sine 2002, but give a good assessment of the usability of GRACE in this area. Arendt, A.A., Luthcke, S.B., Larsen, C.F., Abdalati, W., Krabill, W.B. & Beedle, M.J. (2008): Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry. Journal of Glaciology, 54: 778-787. Muskett, R.R. (2010): Water Mass Loss of the Himalayas from GRACE, ICESat and SRTM. EGU 2010, Number 20101037.

  1. Indicators of recent environmental change in Alaska

    SciTech Connect

    Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

    1997-12-31

    Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

  2. Erosion by an Alpine glacier

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N.; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y. Y.; Avouac, Jean-Philippe; Cox, Simon C.

    2015-10-01

    Assessing the impact of glaciation on Earth’s surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years.

  3. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-01

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. PMID:26450208

  4. Geodetic Glacier Mass Balance of Norway

    NASA Astrophysics Data System (ADS)

    Andreassen, L. M.; Elvehøy, H.; Kjøllmoen, B.

    2014-12-01

    Glaciers in mainland Norway cover 2692 km2and span a large range from south to north. Glacier surface mass balance is monitored by the direct (also called glaciological, traditional or conventional) method and indirectly assessed by the geodetic (or cartographic) method. The current glacier monitoring programme includes direct surface mass-balance investigations on 14 glaciers. Since measurements started at Storbreen in 1949, mass balance has been measured on a total of 43 glaciers. The accuracy of the direct measurements depends on both the accuracy of the point observations and inter- and extrapolation of point values to spatially distributed values. Long series of measurements can be inhomogeneous because of changes in personnel, methods, and glacier topography. Reanalysing glacier mass balance series is recommended as standard procedure for every mass balance monitoring programme with increasing importance for long time series. Repeated, detailed glacier mapping by aerial photography and photogrammetric methods, and recently by laser scanning (LIDAR), have been performed to calculate geodetic mass balance. The geodetic results are used as an independent check of the direct method as well as to monitor volume, area and mass changes of glaciers that lack direct measurements. Since 2007, LIDAR campaigns have been conducted on a 1/3 of the glacier area in Norway including all current mass balance glaciers. The objectives of the surveys are to produce high quality digital elevation models (DEMs) and orthophotos to document the present state of the glaciers and assess glacier changes since previous surveys. Furthermore, the DEMs and orthophotos provide an accurate baseline for future repeated mapping and glacier change detection. Here we present geodetic mass balance results for Norway over the last 50 years and compare the results with the direct in-situ measurements where available. We also show examples of how glacier mass balance data are being reanalyzed including homogenization and uncertainty assessments, and, in cases of unexplained discrepancies, adjusting the (annual) glaciological to the (multi-annual) geodetic balances.

  5. Glacier recession in Iceland and Austria

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Bayr, Klaus J.

    1992-01-01

    It has been possible to measure glacier recession on the basis of Landsat data, in conjunction with comparisons of the magnitude of recession of a glacier margin with in situ measurements at fixed points along the same margin. Attention is presently given to the cases of Vatnajokull ice cap, in Iceland, and the Pasterze Glacier, in Austria, on the basis of satellite data from 1973-1987 and 1984-1990, respectively. Indications of a trend toward negative mass balance are noted. Nevertheless, while most of the world's small glaciers have been receding, some are advancing either due to local climate or the tidewater glacier cycle.

  6. Glacier recession in Iceland and Austria

    SciTech Connect

    Hall, D.K.; Williams, R.S. Jr.; Bayr, K.J. USGS, Reston, VA Keene State College, NH )

    1992-03-01

    It has been possible to measure glacier recession on the basis of Landsat data, in conjunction with comparisons of the magnitude of recession of a glacier margin with in situ measurements at fixed points along the same margin. Attention is presently given to the cases of Vatnajokull ice cap, in Iceland, and the Pasterze Glacier, in Austria, on the basis of satellite data from 1973-1987 and 1984-1990, respectively. Indications of a trend toward negative mass balance are noted. Nevertheless, while most of the world's small glaciers have been receding, some are advancing either due to local climate or the tidewater glacier cycle. 21 refs.

  7. Recent fluctuations of the Argentinian glaciers

    NASA Astrophysics Data System (ADS)

    Leiva, Juan Carlos

    1999-10-01

    Some of the results obtained in the glaciological research carried out since 1979 at the Argentinian Andes are shown in this paper. The research covers a wide latitudinal gap extending from the Agua Negra glacier in the province of San Juan to the Fr?´as glacier situated at Mount Tronador. Agua Negra and Piloto glaciers show a very similar behavior of almost continuous retreat since 1965 while at the Plomo region a small advance period, starting in 1982, is observed in five of the 10 glaciers studied. Finally, the Fr?´as glacier fluctuations record shows a very strong recession since 1850 only interrupted by the 1976 advance that continued in 1977.

  8. Four+ Years of Measurements from the Mendenhall Glacier Terminus

    NASA Astrophysics Data System (ADS)

    Heavner, M.; Fatland, D. R.

    2012-12-01

    We describe the instrumentation, power, communications, and lessons learned from ongoing four+ years of measurements at the terminus of Mendenhall Glacier. In this presentation we focus on the most successful microserver deployment. The microserver is a simple rugged computer with a radio modem that can survive and operate outdoors in harsh environments like Antarctica. The system is called a microserver because of the networking capabilities, particularly as it may act as anchor points for localized lightweight sensor networks. SEAMONSTER, the SouthEast Alaska MOnitoring Network for Science, Technology, Education and Research, is a demonstration sensor web effort. The microserver design for SEAMONSTER is intended to provide general capabilities that could be used in harsh environments specifically for cryospheric observations. At the Mendenhall terminus the observations included meteorologic data and repeat digital photography. Other SEAMONSTER stations included snow accumulation and density, precision GPS, seismic, water pressure, and other measurements. Power generation at the Mendenhall deployment is both solar and wind.

  9. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers

    NASA Astrophysics Data System (ADS)

    Walter Anthony, Katey M.; Anthony, Peter; Grosse, Guido; Chanton, Jeffrey

    2012-06-01

    Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs, such as coal beds and natural gas deposits. In the Arctic, permafrost and glaciers form a `cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. With a carbon store of over 1,200Pg, the Arctic geologic methane reservoir is large when compared with the global atmospheric methane pool of around 5Pg. As such, the Earth's climate is sensitive to the escape of even a small fraction of this methane. Here, we document the release of 14C-depleted methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska and Greenland, using aerial and ground surface survey data and in situ measurements of methane isotopes and flux. We mapped over 150,000 seeps, which we identified as bubble-induced open holes in lake ice. These seeps were characterized by anomalously high methane fluxes, and in Alaska by ancient radiocarbon ages and stable isotope values that matched those of coal bed and thermogenic methane accumulations. Younger seeps in Greenland were associated with zones of ice-sheet retreat since the Little Ice Age. Our findings imply that in a warming climate, disintegration of permafrost, glaciers and parts of the polar ice sheets could facilitate the transient expulsion of 14C-depleted methane trapped by the cryosphere cap.

  10. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  11. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  12. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data

    NASA Astrophysics Data System (ADS)

    Radi?, Valentina; Hock, Regine

    2010-03-01

    Very few global-scale ice volume estimates are available for mountain glaciers and ice caps, although such estimates are crucial for any attempts to project their contribution to sea level rise in the future. We present a statistical method for deriving regional and global ice volumes from regional glacier area distributions and volume area scaling using glacier area data from ˜123,000 glaciers from a recently extended World Glacier Inventory. We compute glacier volumes and their sea level equivalent (SLE) for 19 glacierized regions containing all mountain glaciers and ice caps on Earth. On the basis of total glacierized area of 741 × 103 ± 68 × 103 km2, we estimate a total ice volume of 241 × 103 ± 29 × 103 km3, corresponding to 0.60 ± 0.07 m SLE, of which 32% is due to glaciers in Greenland and Antarctica apart from the ice sheets. However, our estimate is sensitive to assumptions on volume area scaling coefficients and glacier area distributions in the regions that are poorly inventoried, i.e., Antarctica, North America, Greenland, and Patagonia. This emphasizes the need for more volume observations, especially of large glaciers and a more complete World Glacier Inventory in order to reduce uncertainties and to arrive at firmer volume estimates for all mountain glaciers and ice caps.

  13. The contribution of glacier melt to streamflow

    SciTech Connect

    Schaner, Neil; Voisin, Nathalie; Nijssen, Bart; Lettenmaier, D. P.

    2012-09-13

    Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier melt contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.

  14. UV - GLACIER NATIONAL PARK MT

    EPA Science Inventory

    Brewer 134 is located in Glacier NP, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc. of ...

  15. Mountain Glaciers and Ice Caps

    USGS Publications Warehouse

    Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.

    2011-01-01

    Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.

  16. Radiocarbon Dates Link Marine Incursion and Neoglacial Ice Terminus Advance With Tlingit Ethnohistory and Archeology in Lower Glacier Bay

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Monteith, D.; Howell, W.; Strevelar, G.; Leirer, M.

    2004-12-01

    Radiocarbon dates from wood, organic sediments, and marine shells were collected from eroded beach terraces and upper beach sediments in the Beardslee Islands and Berg Bay in Glacier Bay National Park, Alaska. These provide a timetable for the the outwash plain construction and final advance of the Late Neoglacial glacier front over this outwash plain into lower Glacier Bay. On Kidney Island in the central Beardslee Islands, marine sediments containing Macoma baltica shells were deposited 4310 +/- 40 years BP. Outwash from advancing up-bay glaciers, buried these sediments and created terrestrial substrates upon which forests existed by 1630 +/- 60 BP and 1300 +/- 50 yrs BP. Final ice advance over this forested outwash plain occurred after 430 +/- 60 BP (1430 to 1510 AD) on Kidney Island. This ice arrived at the southern edge of Lester Island in Bartlett Cove after 370 +/- 50 BP (1440 to 1520 AD); preceding the arrival of George Vancouver in 1794 AD. In nearby Icy Straits, archeological investigations have yielded some of the oldest dates of human occupation in the region at 10,180 +/- 800 uncorrected years BP (Ackerman, 1968). In Glacier Bay's ethno-historically rich areas of Bartlett Cove, the Beardslee Islands and Berg Bay the Huna people have names for places and narratives that describe late Neoglacial landscapes. S'é Shuyee is the "area at the end of the glacial mud", L'awsha Shakee Aan "town on top of the glacial sand dunes". There are accounts of villages overrun by surging glaciers, and a name for the bay Sit' eeti Geeyi that translates as "bay in place of the glacier". These dates provide linkage between the geological, archeological, and ethnohistorical evidence that chronicles the history of the Huna people in this dynamic glacier marine environment.

  17. Heterogeneity in Karakoram glacier surges

    NASA Astrophysics Data System (ADS)

    Quincey, Duncan J.; Glasser, Neil F.; Cook, Simon J.; Luckman, Adrian

    2015-07-01

    Many Karakoram glaciers periodically undergo surges during which large volumes of ice and debris are rapidly transported downglacier, usually at a rate of 1-2 orders of magnitude greater than during quiescence. Here we identify eight recent surges in the region and map their surface velocities using cross-correlation feature tracking on optical satellite imagery. In total, we present 44 surface velocity data sets, which show that Karakoram surges are generally short-lived, lasting between 3 and 5 years in most cases, and have rapid buildup and relaxation phases, often lasting less than a year. Peak velocities of up to 2 km a-1 are reached during summer months, and the surges tend to diminish during winter months. Otherwise, they do not follow a clearly identifiable pattern. In two of the surges, the peak velocity travels down-ice through time as a wave, which we interpret as a surge front. Three other surges are characterized by high velocities that occur simultaneously across the entire glacier surface, and acceleration and deceleration are close to monotonic. There is also no consistent seasonal control on surge initiation or termination. We suggest that the differing styles of surge can be partly accounted for by individual glacier configurations and that while some characteristics of Karakoram surges are akin to thermally controlled surges elsewhere (e.g., Svalbard), the dominant surge mechanism remains unclear. We thus propose that these surges represent a spectrum of flow instabilities and the processes controlling their evolution may vary on a glacier by glacier basis.

  18. Glacier area changes in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khromova, Tatiana; Nosenko, Gennady; Kutuzov, Stanislav; Muraviev, Anton; Chernova, Ludmila

    2014-01-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies landscape changes in the glacial zone, the origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, etc. The absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies and their changes. The first estimation of glacier state and glacier distribution on the territory of the former Soviet Union has been done in the USSR Glacier Inventory (UGI) published in 1965-1982. The UGI is based on topographic maps and air photos and reflects the status of the glaciers in the 1940s-1970s. There is information about 28?884 glaciers with an area of 7830.75 km2 in the inventory. It covers 25 glacier systems in Northern Eurasia. In the 1980s the UGI has been transformed into digital form as a part of the World Glacier Inventory (WGI). Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of the 20th century. About 15?000 glacier outlines for the Caucasus, Polar Urals, Pamir Alay, Tien Shan, Altai, Kamchatka and Russian Arctic have been derived from ASTER and Landsat imagery and can be used for glacier change evaluation. Results of the analysis indicate the steady trend in glacier shrinkage in all mountain regions for the second part of the 20th century. Glacier area loss for the studied regions varies from 13% (Tien Shan) to 22.3% (Polar Urals). The common driver, most likely, is an increase in summer air temperature. There is also a very large variability in the degree of individual glacier degradation, very much depending on the morphology and local meteorological conditions.

  19. Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

    2009-12-01

    The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

  20. From 'true' glaciers to rock glaciers? The case of the Llanos la Liebre rock glacier, dry Andes of Chile.

    NASA Astrophysics Data System (ADS)

    Monnier, S.; Kinnard, C.

    2012-04-01

    In the dry Andes of Chile, rock glaciers are the most widespread and remarkable superficial landforms, and may constitute important solid water reservoirs. The existence of huge (up to 2-3 kilometres of length) rock glaciers located in deep cirques questions possible derivation from former 'true' glaciers. The issue is of importance (i) for understanding the mechanisms of the landscape evolution from glacial realm to periglacial realm, and (ii) because it may determine the ice content of the concerned rock glaciers. In the Colorado Río valley, in the upper part of the Elqui catchment (~30.15 deg. S and 70.80 deg. W), we investigated the internal structure of the Llanos la Liebre rock glacier using ground-penetrating radar (GPR). With 50 MHz antennas and a constant offset of 2 m between antennas, we performed various GPR profiles, especially a ~2.2 km-long one almost covering the entire length of the rock glacier. The processing and the subsequent interpretation of the GPR data were mainly based on the modelling of the radar wave velocity. Hence, the final representation of the internal structure of the rock glacier integrates the reconstructed stratigraphy, the 2-D velocity model, and first attempts for estimating the ice/water contents. The most striking results are: the neat identification of the base of the superficial blocky layer and of the rock glacier floor; the occurrence of stratigraphic patterns reminiscent of 'true' glaciers; the supremacy of high radar wave velocities in the upper part of the rock glacier. On the latter bases and taking into account the whole geomorphology of the site, the derivation of the Llanos la Liebre rock glacier from a former, buried glacier is debated.

  1. Recent Observations and Structural Analysis of Surge-Type Glaciers in the Glacier Bay Area

    NASA Astrophysics Data System (ADS)

    Mayer, H.; Herzfeld, U. C.

    2003-12-01

    The Chugach-St.-Elias Mountains in North America hold the largest non-polar connected glaciated area of the world. Most of its larger glaciers are surge-type glaciers. In the summer of 2003, we collected aerial photographic and GPS data over numerous glaciers in the eastern St. Elias Mountains, including the Glacier Bay area. Observed glaciers include Davidson, Casement, McBride, Riggs, Cushing, Carroll, Rendu, Tsirku, Grand Pacific, Melbern, Ferris, Margerie, Johns Hopkins, Lamplugh, Reid, Burroughs, Morse, Muir and Willard Glaciers, of which Carroll, Rendu, Ferris, Grand Pacific, Johns Hopkins and Margerie Glaciers are surge-type glaciers. Our approach utilizes a quantitative analysis of surface patterns, following the principles of structural geology for the analysis of brittle-deformation patterns (manifested in crevasses) and ductile deformation patterns (visible in folded moraines). First results will be presented.

  2. Recent acceleration of Thwaites Glacier

    NASA Technical Reports Server (NTRS)

    Ferrigno, J. G.

    1993-01-01

    The first velocity measurements for Thwaites Glacier were made by R. J. Allen in 1977. He compared features of Thwaites Glacier and Iceberg Tongue on aerial photography from 1947 and 1967 with 1972 Landsat images, and measured average annual displacements of 3.7 and 2.3 km/a. Using his photogrammetric experience and taking into consideration the lack of definable features and the poor control in the area, he estimated an average velocity of 2.0 to 2.9 km/a to be more accurate. In 1985, Lindstrom and Tyler also made velocity estimates for Thwaites Glacier. Using Landsat imagery from 1972 and 1983, their estimates of the velocities of 33 points ranged from 2.99 to 4.02 km/a, with an average of 3.6 km/a. The accuracy of their estimates is uncertain, however, because in the absence of fixed control points, they assumed that the velocities of icebergs in the fast ice were uniform. Using additional Landsat imagery in 1984 and 1990, accurate coregistration with the 1972 image was achieved based on fixed rock points. For the period 1972 to 1984, 25 points on the glacier surface ranged in average velocity from 2.47 to 2.76 km/a, with an overall average velocity of 2.62 +/- 0.02 km/a. For the period 1984 to 1990, 101 points ranged in velocity from 2.54 to 3.15 km/a, with an overall average of 2.84 km/a. During both time periods, the velocity pattern showed the same spatial relationship for three longitudinal paths. The 8-percent acceleration in a decade is significant. This recent acceleration may be associated with changes observed in this region since 1986. Fast ice melted and several icebergs calved from the base of the Iceberg Tongue and the terminus of Thwaites Glacier. However, as early as 1972, the Iceberg Tongue had very little contact with the glacier.

  3. 5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. LOOKING E. GIS: N-37 42 43.8 / W-119 35 12.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  4. 1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER REAR. LOOKING NE. GIS: N-36 43 45.8 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  5. Integrated research on mountain glaciers: Current status, priorities and future prospects

    E-print Network

    Roe, Gerard

    Integrated research on mountain glaciers: Current status, priorities and future prospects Lewis A: Glaciation Glaciers Mountains Glaciology Geochronology Modeling Mountain glaciers are sensitive probes and to predict future changes. Furthermore, glaciers can constitute hazards, including: glacier outburst floods

  6. NASA's DESDynI in Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.

    2010-12-01

    In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS/PALSAR (Mode: Fine beam, HH) we have been able to estimate ice velocities from offset-tracking in the Upper and Lower Seward Basin even though the acquisitions are 46 days apart. We anticipate with the shorter repeat time for DESDynI-SAR acquisitions that we will be able to estimate seasonal ice velocities over a larger range of regions within both the ablation and accumulation zones.

  7. The GAMDAM Glacier Inventory: a quality controlled inventory of Asian glaciers

    NASA Astrophysics Data System (ADS)

    Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; Tsunematsu, K.; Tshering, P.; Fujita, K.

    2014-06-01

    We present a new glacier inventory for the high mountain Asia named "Glacier Area Mapping for Discharge from the Asian Mountains" (GAMDAM). Glacier outlines were delineated manually using more than 226 Landsat ETM+ scenes from the period 1999-2003, in conjunction with a digital elevation model (DEM) and high-resolution Google Earth imagery. Geolocations are consistent between the Landsat imagery and DEM due to systematic radiometric and geometric corrections made by the United States Geological Survey. We performed repeated delineation tests and rigorous peer review of all scenes used in order to maintain the consistency and quality of the inventory. Our GAMDAM Glacier Inventory (GGI) includes 82776 glaciers covering a total area of 87507 ± 13126 km2 in the high mountain Asia. Thus, our inventory represents a greater number (+4%) of glaciers but significantly less surface area (-31%) than a recent global glacier inventory (Randolph Glacier Inventory, RGI). The employed definition of the upper boundaries of glaciers, glacier recession since the 1970s, and misinterpretation of seasonal snow cover are likely causes of discrepancies between the inventories, though it is difficult to evaluate these effects quantitatively. The GGI will help improve the temporal consistency of the RGI, which incorporated glacier outlines from the 1970s for the Tibetan Plateau, and will provide new opportunities to study Asian glaciers.

  8. Brief Communication: Getting Greenland's glaciers right - a new dataset of all official Greenlandic glacier names

    NASA Astrophysics Data System (ADS)

    Bjørk, A. A.; Kruse, L. M.; Michaelsen, P. B.

    2015-03-01

    With this new dataset we wish to give the researcher working with Greenlandic glaciers the proper tool to finding the correct name for glaciers and ice caps in Greenland, as well as to locate glaciers described in the historic literature with the old Greenlandic orthography.

  9. Antarctica: measuring glacier velocity from satellite images

    SciTech Connect

    Lucchitta, B.K.; Ferguson, H.M.

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  10. Antarctica: Measuring glacier velocity from satellite images

    USGS Publications Warehouse

    Lucchitta, B.K.; Ferguson, H.M.

    1986-01-01

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  11. Internationally coordinated glacier monitoring: strategy and datasets

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Haeberli, Wilfried; Kääb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael

    2014-05-01

    Internationally coordinated monitoring of long-term glacier changes provide key indicator data about global climate change and began in the year 1894 as an internationally coordinated effort to establish standardized observations. Today, world-wide monitoring of glaciers and ice caps is embedded within the Global Climate Observing System (GCOS) in support of the United Nations Framework Convention on Climate Change (UNFCCC) as an important Essential Climate Variable (ECV). The Global Terrestrial Network for Glaciers (GTN-G) was established in 1999 with the task of coordinating measurements and to ensure the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. The basic monitoring principles must be relevant, feasible, comprehensive and understandable to a wider scientific community as well as to policy makers and the general public. Data access has to be free and unrestricted, the quality of the standardized and calibrated data must be high and a combination of detailed process studies at selected field sites with global coverage by satellite remote sensing is envisaged. Recently a GTN-G Steering Committee was established to guide and advise the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. Several online databases containing a wealth of diverse data types having different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. For world-wide inventories, data are now available through (a) the World Glacier Inventory containing tabular information of about 130,000 glaciers covering an area of around 240,000 km2, (b) the GLIMS-database containing digital outlines of around 118,000 glaciers with different time stamps and (c) the Randolph Glacier Inventory (RGI), a new and globally complete digital dataset of outlines from about 180,000 glaciers with some meta-information, which has been used for many applications relating to the IPCC AR5 report. Concerning glacier changes, a database (Fluctuations of Glaciers) exists containing information about mass balance, front variations including past reconstructed time series, geodetic changes and special events. Annual mass balance reporting contains information for about 125 glaciers with a subset of 37 glaciers with continuous observational series since 1980 or earlier. Front variation observations of around 1800 glaciers are available from most of the mountain ranges world-wide. This database was recently updated with 26 glaciers having an unprecedented dataset of length changes from from reconstructions of well-dated historical evidence going back as far as the 16th century. Geodetic observations of about 430 glaciers are available. The database is completed by a dataset containing information on special events including glacier surges, glacier lake outbursts, ice avalanches, eruptions of ice-clad volcanoes, etc. related to about 200 glaciers. A special database of glacier photographs contains 13,000 pictures from around 500 glaciers, some of them dating back to the 19th century. A key challenge is to combine and extend the traditional observations with fast evolving datasets from new technologies.

  12. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  13. A possible Younger Dryas record in southeastern Alaska

    SciTech Connect

    Engstrom, D.R.; Hansen, B.C.S.; Wright, H.E. Jr. )

    1990-12-07

    A stratigraphic record of climatic cooling equal in timing and severity to the Younger Dryas event of the North Atlantic region has been obtained form lacustrine sediments in the Glacier Bay area of southeastern Alaska. Fossil pollen show that a late Wisconsin pine parkland was replaced about 10,800 years ago by shrub- and herb-dominated tundra, which lasted until about 9,800 years ago. This vegetational change is matched by geochemical evidence for loss of organic matter from catchment soils and increased mineral erosion. If this event represents the Younger Dryas, then an explanation for a hemisphere-wide propagation of a North Atlantic climatic perturbation must be sought.

  14. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  15. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  16. Arctic Warming and Sea Ice Diminution Herald Changing Glacier and Cryospheric Hazard Regimes

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey; Bush, Andrew; Leonard, Gregory

    2013-04-01

    The recent expansion of summertime melt zones in both Greenland and some Arctic ice caps, and the clearing of perennial sea ice from much of the Arctic, may presage more rapid shifts in mass balances of land ice than glaciologists had generally expected. The summer openings of vast stretches of open water in the Arctic, particularly in straits and the Arctic Ocean shores of the Queen Elizabeth Islands and along some Greenland coastal zones, must have a large impact on summer and early autumn temperatures and precipitation now that the surface boundary condition is no longer limited by the triple-point temperature and water-vapor pressure of H2O. This state change in the Arctic probably is part of the explanation for the expanded melt zones high in the Greenland ice sheet. However, Greenland and the Canadian Arctic are vast regions subject to climatic influences of multiple marine bodies, and the situation with sea ice and climate change remains heterogeneous, and so the local climate feedbacks from sea ice diminution remain patchy. Projected forward just a few decades, it is likely that sea ice will play a significant role in the Queen Elizabeth Islands and around Greenland only in the winter months. The region is in the midst of a dramatic climate change that is affecting the mass balances of the Arctic's ice bodies; some polar-type glaciers must be transforming to polythermal, and polythermal ones to maritime-temperate types. Attendant with these shifts, glacier response times will shorten, the distribution and sizes of glacier lakes will change, unconsolidated debris will be debuttressed, and hazards-related dynamics will shift. Besides changes to outburst flood, debris flow, and rock avalanche occurrences, the tsunami hazard (with ice and debris landslide/avalanche triggers) in glacierized fjords and the surge behaviors of many glaciers is apt to increase or shift locations. For any given location, the past is no longer the key to the present, and the present is not the key to future behavior of ice in this region. Hence, as major infrastructural development and population increases, careful consideration must be given to changing dynamics of the cryospheric landscape system. Glacier lake outburst floods never have been important considerations in most of the Canadian Arctic/Greenland region due both to sparseness of population and infrastructure and low frequency and distribution of occurrence of potentially hazardous glacier dynamics. This may no longer be the case; in particular, many lakes are starting to develop where previously they were small, few, or absent; furthermore, the conditions tending toward reduction in ice flow, thinning glaciers, and debris accumulation that commonly precede lake development are now widely present. 20th century maritime glacierized parts of Alaska may be a model for the 21st century Queen Elizabeth Islands and Greenland. In Alaska, the fury and impact of glacier lake outburst floods felt in other parts of the world have largely been mitigated by wise and limited development patterns. This can hold true for Arctic Canada and Greenland this century if consideration is given to the changing crysophere.

  17. Scaling the Teflon Peaks: Granite, Glaciers, and the Highest Relief in North America

    NASA Astrophysics Data System (ADS)

    Ward, D.; Anderson, R. S.; Haeussler, P. J.

    2010-12-01

    We use a combination of field observations, remote sensing, and digital elevation data to demonstrate how the topographic character of the Alaska Range (Alaska, USA) has been influenced by the exhumation of Tertiary granitic plutons among more erodible sedimentary and metamorphic rocks. Observations that the mean elevations of many tectonically active mountain ranges follow closely the elevation of the mean Cenozoic snowline or glacial equilibrium line (ELA), rather than rates of tectonic rock uplift, have led to the “glacial buzzsaw hypothesis” - that terrain raised above the ELA is rapidly denuded by glaciers. The Alaska Range stands in prominent exception to this observation. Much of the range is developed on pervasively fractured sedimentary and metamorphic rocks and has local relief of 1000-1500 m. In contrast, early and mid-Tertiary plutons of relatively intact granite support most of the range's impressive mountains (including Mt. McKinley, or Denali, the highest mountain in North America at 6194 m), with 2500-5000 m of local relief. Moreover, these plutons are where the range's modern glaciers originate, as the high peaks protrude in some cases kilometers above modern snowlines. These glaciers flow off of the plutons onto the surrounding, softer rocks, where mean summit elevations are similar to modern snowline elevations. We exploit the Denali massif and the Kichatna Mountains to its west to illustrate the direct ways in which exhumation of granite plutons affects glacial erosion, glacier long profiles, the glacial drainage network, and the effectiveness of periglacial processes. We use simple scaling calculations to explore the potential feedbacks of relief enhancement - specifically, that of avalanching from steep valley walls - on the health of the glaciers occupying the valleys, and describe ways in which peaks can be preserved and allowed to grow to great heights. Our work indicates that most of the Alaska Range has developed in accordance with the glacial buzzsaw hypothesis, except where resistant granite has been exhumed among the weaker rocks. Differential erosion has progressively localized divides on the plutons as they were exhumed, leading to focused glaciation there. However, glacier long profiles provide evidence that glacial incision is less efficient on the granite. Cirques cannot form on the steep valley walls that are maintained by detachment of rock slabs along sheeting joints. The strong granites can therefore sustain steep walls that act as Teflon, efficiently shedding snow to the valley below. These avalanches can greatly enhance the health and the erosive power of the modern glaciers in parts of the range. During glaciations, mass is removed efficiently from the surrounding sedimentary landscape, promoting isostatic uplift of the granitic massifs. We conclude that, in places such as Denali, unusual combinations of tectonic uplift rate and rock strength have enacted a set of feedbacks that allowed the development of the highest relief in North America by enhancing glacial erosion in the valleys while preserving the peaks.

  18. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.

    PubMed

    Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

    2014-08-22

    The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%. PMID:25123485

  19. Holocene loess and paleosols in central Alaska: A proxy record of Holocene climate change

    SciTech Connect

    Bigelow, N.H.; Beget, J.E.

    1992-03-01

    Episodic Holocene loess deposition and soil formation in the sediments of the Nenana valley of Central Alaska may reflect Holocene climate change. Periods of loess deposition seem to correlate with times of alpine glacier activity, while paleosols correspond to times of glacial retreat These variations may reflect changes in solar activity Stuiver and Braziunas, 1989. Other mechanisms, such as orbitally forced changes in seasonality, volcanism, and atmospheric C02 variability may also have affected Holocene climates and loess deposition.

  20. Geologic map of the Gulkana B-1 quadrangle, south-central Alaska

    SciTech Connect

    Richter, D.H.; Ratte, J.C.; Schmoll, H.R.; Leeman, W.P.; Smith, J.G.; Yehle, L.A.

    1989-01-01

    The quadrangle includes the Capital Mountain Volcano and the northern part of Mount Sanford Volcano in the Wrangell Mountains of south-central Alaska. The Capital Mountain volcano is a relatively small, andesitic shield volcano of Pleistocene age, which contains a 4-km-diameter summit caldera and a spectacular post-caldera radial dike swam. Lava flows from the younger Pleistocene Mount Sanford Volcano overlap the south side of the Capital Mountain Volcano. Copper-stained fractures in basaltic andesite related to a dike-filled rift of the North Sanford eruptive center are the only sign of mineralization in the quadrangle. Rock glaciers, deposits of Holocene and Pleistocene valley glaciers and Pleistocene Copper River basin glaciers mantle much of the volcanic bedrock below elevations of 5,500 ft.

  1. The impact of changing glacial coverage on yields of freshwater and nutrients from coastal watersheds with in southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Hood, E.; Scott, D.

    2007-12-01

    Glaciers in southeastern Alaska are particularly sensitive to climate change because of their low elevation and proximity to the coast. Currently, glaciers in this region are experiencing high rates of ice loss resulting in rapid thinning and retreat. We are examining how changing glacial coverage is altering fluxes of freshwater and nutrients from coastal watersheds in southeastern Alaska. Our study includes three adjacent watersheds that range in area from 37 km2 to 230 km2 and span a range of watershed glacier coverage from 0% to 55%. Physical and hydrochemical parameters were sampled weekly to bi-monthly for the period May 2006-April 2007 in the three watersheds. Physical measurements included temperature, suspended sediment and conductivity; and hydrochemical parameters included total and inorganic nitrogen, dissolved organic carbon, sulfate, and orthophosphate. During the glacier melt season, glacial coverage within a watershed exerted a strong influence on physiochemical properties. Streamwater temperature and conductivity, as well as nutrient concentrations, were negatively correlated with glacier coverage, while suspended sediment loads were positively correlated with glacial coverage. Changing glacial coverage had a strong impact on watershed yields of carbon, nitrogen, and phosphorus. Watershed yields of dissolved organic carbon (DOC) ranged from 4246 to 7646 kg km-2 yr- 1 and were strongly negatively correlated with percent glacier coverage. Watershed yields of dissolved inorganic nitrogen ranged from 180 to 498 kg km-2 yr-1 and were highest in the watershed with intermediate glacier coverage that has a high proportion of transitional nitrogen fixing plant species. Watershed yields of orthophosphate ranged from 19 to 46 kg km-2 yr-1 and were strongly positively correlated with glacier coverage. Our findings suggest that the magnitude and timing of freshwater and nutrient fluxes from coastal watersheds to receiving marine ecosystems will be altered dramatically as glaciers in southeastern Alaska continue to decrease in volume. In addition, we hypothesize that changes in nutrient fluxes are mediated both by two basic factors: 1) changes in landcover associated with glacial recession and 2) changes in biological activity in riverine systems resulting from decreased inputs of glacial meltwater as glaciers continue to recede.

  2. Muir Glacier and Muir Inlet 2003

    USGS Multimedia Gallery

    This photo was taken in September 2003; in the 23 years between photographs, Muir Glacier has retreated more than a mile and ceased to have a tidewater terminus. Since 1980, Muir Glacier has thinned by more than 600 ft, permitting a view of a mountain with a summit elevation of greater than 4000 ft,...

  3. Microbial biodiversity in glacier-fed streams

    PubMed Central

    Wilhelm, Linda; Singer, Gabriel A; Fasching, Christina; Battin, Tom J; Besemer, Katharina

    2013-01-01

    While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest ? diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest ? diversity. Biofilms in the glacier-fed streams had intermediate ? diversity and species sorting by local environmental conditions likely shaped their community composition. ? diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, ? diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams. PMID:23486246

  4. Using Metaphorical Models for Describing Glaciers

    ERIC Educational Resources Information Center

    Felzmann, Dirk

    2014-01-01

    To date, there has only been little conceptual change research regarding conceptions about glaciers. This study used the theoretical background of embodied cognition to reconstruct different metaphorical concepts with respect to the structure of a glacier. Applying the Model of Educational Reconstruction, the conceptions of students and scientists…

  5. Glaciers in 21st Century Himalayan Geopolitics

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Glaciers are ablating rapidly the world over. Nowhere are the rates of retreat and downwasting greater than in the Hindu Kush-Himalaya (HKH) region. It is estimated that over the next century, 40,000 square kilometers of present glacier area in the HKH region will become ice free. Most of this area is in major valleys and the lowest glaciated mountain passes. The existence and characteristics of glaciers have security impacts, and rapidly changing HKH glaciers have broad strategic implications: (1) Glaciers supply much of the fresh water and hydroelectric power in South and Central Asia, and so glaciers are valuable resources. (2) Shared economic interests in water, hydroelectricity, flood hazards, and habitat preservation are a force for common cause and reasoned international relations. (3) Glaciers and their high mountains generally pose a natural barrier tending to isolate people. Historically, they have hindered trade and intercultural exchanges and have protected against aggression. This has further promoted an independent spirit of the region's many ethnic groups. (4) Although glaciers are generally incompatible with human development and habitation, many of the HKH region's glaciers and their mountains have become sanctuaries and transit routes for militants. Siachen Glacier in Kashmir has for 17 years been "the world's highest battlefield," with tens of thousands of troops deployed on both sides of the India/Pakistan line of control. In 1999, that conflict threatened to trigger all-out warfare, and perhaps nuclear warfare. Other recent terrorist and military action has taken place on glaciers in Kyrgyzstan and Tajikistan. As terrorists are forced from easily controlled territories, many may tend to migrate toward the highest ground, where definitive encounters may take place in severe alpine glacial environments. This should be a major concern in Nepali security planning, where an Army offensive is attempting to reign in an increasingly robust and brutal Maoist insurgency. (5) Glacier lakes are in many cases very fragile and their natural dams routinely rupture, causing devastating floods. A rising regional terrorist threat in several countries could target these dams and precipitate calamitous and terrifying results. (6) Over the next century, retreating glaciers may open new corridors for trade and human migration across the Himalaya and pave the way for possible new economic, military and political alliances in the region. (7) Glacier retreat might open new sanctuaries for terrorists and open new corridors for possible ground-based military offensive action across the HKH ranges. The documentation of glacier characteristics that may influence their trafficability, and projections of future glacier extent and behavior are relevant to wide ranging concerns of the region's inhabitants. Satellite remote sensing and mapping of glaciers is one approach to defining and monitoring the problems and opportunities presented by HKH glaciers. Global Land Ice Measurements from Space (GLIMS) is a joint USGS/NASA Pathfinder project that has formed a global consortium of glaciologists in several regional centers that are mapping and monitoring the HKH glaciers using repeat-pass ASTER and Landsat ETM+ data. We are currently building a comprehensive satellite multispectral image and GIS database that is providing detailed information on the state and rates of change of each glacier in the HKH region and other areas of the world. Merging these results with DEMs allows a predictive capability that could be useful in policy development and security planning.

  6. Effects of basal debris on glacier flow.

    PubMed

    Iverson, Neal R; Cohen, Denis; Hooyer, Thomas S; Fischer, Urs H; Jackson, Miriam; Moore, Peter L; Lappegard, Gaute; Kohler, Jack

    2003-07-01

    Glacier movement is resisted partially by debris, either within glaciers or under glaciers in water-saturated layers. In experiments beneath a thick, sliding glacier, ice containing 2 to 11% debris exerted shear traction of 60 to 200 kilopascals on a smooth rock bed, comparable to the total shear traction beneath glaciers and contrary to the usual assumption that debris-bed friction is negligible. Imposed pore-water pressure that was 60 to 100% of the normal stress in a subglacial debris layer reduced shear traction on the debris sufficiently to halt its deformation and cause slip of ice over the debris. Slip resistance was thus less than debris shearing resistance. PMID:12843389

  7. Little Ice Age Glaciation in Alaska: A record of recent global climatic change

    SciTech Connect

    Calkin, P.E.; Wiles, G.C.

    1992-03-01

    General global cooling and temperature fluctuation accompanied by expansion of mountain glaciers characterized the Little Ice Age of about A.D. 1200 through A.D. 1900. The effects of such temperature changes appear first and are strongest at high latitudes. Therefore the Little Ice Age record of glacial fluctuation in Alaska may provide a good proxy for these events and a test for models of future climatic change. Holocene expansions began here as early as 7000 B.P. and locally show a periodicity of 350 years after about 4500 years B.P. The Little Ice Age followed a late Holocene interval of minor ice advance and a subsequent period of ice margin recession lasting one to seven centuries. The timing of expansions since about A.D. 1200 have often varied between glaciers, but these are the most pervasive glacial events of the Holocene in Alaska and frequently represent ice marginal maxima for this interval. At least two major expansions are, apparent in forefields of both land-terminating and fjord-calving glaciers, but the former display the most reliable and detailed climatic record. Major maxima occurred by the 16th century and into the mid-18th century. Culmination of advances occurred throughout Alaska during the 19th century followed within a few decades by general glacial retreat. Concurrently, equilibrium line altitudes have been raised 100-400 m, representing a rise of 2-3 deg C in mean summer temperature.

  8. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  9. Renewable Energy in Alaska

    SciTech Connect

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  10. ALASKA CRUISE SHIP INITIATIVE

    EPA Science Inventory

    During the course of the annual vacation season, luxury cruise ships carrying up to 3000 passengers visit the coastal cities and small towns of Alaska. Alaska is the first state to impose regulations requiring such vessels to submit to inspection and monitoring of gray water and...

  11. Black soot and the survival of Tibetan glaciers

    PubMed Central

    Xu, Baiqing; Cao, Junji; Hansen, James; Yao, Tandong; Joswia, Daniel R.; Wang, Ninglian; Wu, Guangjian; Wang, Mo; Zhao, Huabiao; Yang, Wei; Liu, Xianqin; He, Jianqiao

    2009-01-01

    We find evidence that black soot aerosols deposited on Tibetan glaciers have been a significant contributing factor to observed rapid glacier retreat. Reduced black soot emissions, in addition to reduced greenhouse gases, may be required to avoid demise of Himalayan glaciers and retain the benefits of glaciers for seasonal fresh water supplies. PMID:19996173

  12. Extracting a Climate Signal from 169 Glacier Records

    E-print Network

    Wright, Dawn Jeannine

    Extracting a Climate Signal from 169 Glacier Records J. Oerlemans I constructed a temperature history for different parts of the world from 169 glacier length records. Using a first-order theory of glacier dynamics, I related changes in glacier length to changes in temperature. The derived temperature

  13. Using glacier inventory data to determine the sea-level contribution of glaciers

    NASA Astrophysics Data System (ADS)

    Paul, Frank

    2014-05-01

    Glaciers are widely considered as the best natural climate indicators. While this is certainly the case for glacier changes (length, volume), it also applies to glaciers itself as they can only exist within a certain range of climate conditions. A key parameter for the climatic classification of glaciers is their equilibrium line altitude (ELA) when referring to a balanced mass budget (ELA0). The ELA0 can be approximated by the mean or median elevation that is readily available for individual glaciers from inventories. Using well-established relations between temperature and precipitation at the ELA0, precipitation can be derived from mean elevations. Annual precipitation sums are indicative of the climatic regime and can be used to infer mass balance gradients. Once these are known, mass loss by melt can be approximated for each glacier under balanced conditions. By shifting the ELA0 upwards, the ablation region is increased and in combination with the mass balance gradient the additional glacier melt can be calculated for each glacier. In this contribution we applied the above methods to all glaciers in the Swiss Alps using glacier outlines from the mid 1970s and a digital elevation model (DEM) from the mid 1980s as an input. The mass balance gradients derived from annual precipitation are within the range of known values (measured and modeled). The modelled ablation under balanced conditions is rather similar to the observed precipitation amounts over glaciers (considering measurement uncertainties). For a one degree temperature increase, specific mass loss increases by about 0.65 m / yr (the mass balance sensitivity) which gives a total mass loss of about 1 Gt / year over a glacier area of 1000 sqkm and for a temperature increase of 1.5 degrees. These values are in good agreement with the observed annual mass changes of glaciers in the Alps over the past two decades, thus confirming the observed temperature increase in the mid 1980s.

  14. The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers

    NASA Astrophysics Data System (ADS)

    Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; Tsunematsu, K.; Tshering, P.; Fujita, K.

    2015-05-01

    We present a new glacier inventory for high-mountain Asia named "Glacier Area Mapping for Discharge from the Asian Mountains" (GAMDAM). Glacier outlines were delineated manually using 356 Landsat ETM+ scenes in 226 path-row sets from the period 1999-2003, in conjunction with a digital elevation model (DEM) and high-resolution Google EarthTM imagery. Geolocations are largely consistent between the Landsat imagery and DEM due to systematic radiometric and geometric corrections made by the United States Geological Survey. We performed repeated delineation tests and peer review of glacier outlines in order to maintain the consistency and quality of the inventory. Our GAMDAM glacier inventory (GGI) includes 87 084 glaciers covering a total area of 91 263 ± 13 689 km2 throughout high-mountain Asia. In the Hindu Kush-Himalaya range, the total glacier area in our inventory is 93% that of the ICIMOD (International Centre for Integrated Mountain Development) inventory. Discrepancies between the two regional data sets are due mainly to the effects of glacier shading. In contrast, our inventory represents significantly less surface area (-24%) than the recent global Randolph Glacier Inventory, version 4.0 (RGI), which includes 119 863 ± 9201 km2 for the entirety of high Asian mountains. Likely causes of this disparity include headwall definition, effects of exclusion of shaded glacier areas, glacier recession since the 1970s, and inclusion of seasonal snow cover in the source data of the RGI, although it is difficult to evaluate such effects quantitatively. Further rigorous peer review of GGI will both improve the quality of glacier inventory in high-mountain Asia and provide new opportunities to study Asian glaciers.

  15. Quantifying global warming from the retreat of glaciers

    SciTech Connect

    Oerlemans, J. )

    1994-04-08

    Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure; one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.

  16. Reconstructing glaciers: Sedimentary sources, sinks and fingerprints

    NASA Astrophysics Data System (ADS)

    Paasche, O.; Lovlie, R.; Bakke, J.; Hirt, A. M.

    2012-12-01

    Glaciers are natural systems that shape and influence their geological surroundings through erosion and redistribution of sediments and rocks from one place to another. Their presence are determined by the landscape, regional climatic parameters such as wind, precipitation and temperature, and for these reasons they are valuable proxies of present and past climatic change. During the last four decades researchers have attempted to develop and assess methods that reliably and accurately reproduce continuous glacier variability over timescales extending thousands of years back in time. At the core of this multi-disciplinary endeavour is a strong desire to enhance our knowledge about how glaciers respond to a wider spectre of climatic change beyond what has been observed and documented for the last ~100 years. By far the majority of existing continuous glacier reconstructions are based on empirical evidence derived from soft sediment archives - mainly from lakes and fjords - making it quintessential to understand the sedimentary sources and sinks operating in glacierized catchment systems. If paleoclimatic inferences are to be made from such glacier reconstructions it is imperative that relevant sources of noise is considered, identified and, preferentially, eliminated. Here we review some of the problems and prospects of reconstructing temperate mountain or cirque glaciers as well as basic assumptions underlying most continuous glacier reconstructions. We will illustrate this challenge by presenting new data from a glacierized catchment surrounding a small lake called Blåvatnet located in Northern Norway at 68°N. A suit of piston and short gravity cores from the lake have been analysed and the results have been tested and corroborated by catchment samples from different sedimentary sources - an approach that is deemed to be of critical value when it comes to fingerprinting the glacier signal. Methodological emphasis is put on rock magnetism, which we demonstrate to be exceptionally well suited for identifying different sedimentary sources and characteristics typical for glacierized catchments. High sedimentation rates allow for a decadal glacier reconstruction covering the last 4000 years. Specifically, we observe major fluctuations in glacier activity that corresponds to an Equilibrium-Line-Altitude (ELA) variability of +/- 100 m. Peak activity is associated with the 'Little Ice Age' (1400-1800 AD) and a Neoglacial Maximum which occurred around 2500 years ago.

  17. Methane seeps along boundaries of arctic permafrost thaw and melting glaciers

    NASA Astrophysics Data System (ADS)

    Anthony, P.; Walter Anthony, K. M.; Grosse, G.; Chanton, J.

    2014-12-01

    Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs. In the Arctic, impermeable icy permafrost and glacial overburden form a 'cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. We document the release of geologic methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska. Through aerial and ground surveys we mapped >150,000 seeps identified as bubbling-induced open holes in lake ice. Subcap methane seeps had anomalously high fluxes, 14C-depletion, and stable isotope values matching known coalbed and thermogenic methane accumulations in Alaska. Additionally, we observed younger subcap methane seeps in Greenland that were associated with ice-sheet retreat since the Little Ice Age. These correlations suggest that in a warming climate, continued disintegration of permafrost, glaciers, and parts of the polar ice sheets will relax pressure on subsurface seals and further open conduits, allowing a transient expulsion of geologic methane currently trapped by the cryosphere cap.

  18. Repeat Photography of Alaskan Glaciers and Landscapes as Both Art and as a Means of Communicating Climat Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2013-12-01

    For nearly 15 years, I have used repeat photography of Alaskan glaciers and landscapes to communicate to fellow scientists, policymakers, the media, and society that Alaskan glaciers and landscapes have been experiencing significant change in response to post-Little Ice Age climate change. I began this pursuit after being contacted by a U.S. Department of the Interior senior official who requested unequivocal and unambiguous documentation that climate change was real and underway. After considering several options as to how best respond to this challenge, I decided that if a picture is worth a thousand words, then a pair of photographs, both with the same field of view, spanning a century or more, and showing dramatic differences, would speak volumes to documenting that dynamic climate change is occurring over a very broad region of Alaska. To me, understating the obvious with photographic pairs was the best mechanism to present irrefutable, unambiguous, nonjudgmental, as well as unequivocal visual documentation that climate change was both underway and real. To date, more than 150 pairs that meet these criteria have been produced. What has surprised me most is that the many of the photographs contained in the pairs present beautiful images of stark, remote landscapes that convey the majestic nature of this dynamic region with its unique topography and landscapes. Typically, over periods of just several decades, the photographed landscapes change from black and white to blue and green. White ice becomes blue water and dark rock becomes lush vegetation. Repeat photography is a technique in which a historical photograph and a modern photograph, both having the same field of view, are compared and contrasted to quantitatively and qualitatively determine their similarities and differences. I have used this technique from both ground-based photo stations and airborne platforms at Alaskan locations in Kenai Fjords National Park, Glacier Bay National Park and Preserve, Wrangell-St. Elias National Park and Preserve, Denali National Park and Preserve, the northern and northwestern Prince William Sound area of the Chugach National Forest, and the Mendenhall Glacier area of the Tongass National Forest to document and determine the extent of changing glaciers and landscapes. The use of repeat photography to document temporal change is not new. It originated as a glacier-monitoring technique in the European Alps more than 150 years ago. What is unique in this Alaskan application of repeat photography is the systematic approach being used to obtain photographic documentation of glacier and landscape change for every glacier-hosting fiord in western southcentral Alaska, as well as at many Alaskan valley glacier sites. What is also unique is the development of an annotated website which presents many pairs of these photographs as well as ancillary materials to help convey the basics of Alaskan glaciers and climate change. The website, titled 'Glacier and Landscape Change in Response to Changing Climate', (http://www.usgs.gov/climate_landuse/glaciers/) was awarded the 2010 USGS Shoemaker External Communications Award.

  19. Glaciers in Patagonia: Controversy and prospects

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Alho, P.; Buytaert, W.; Célleri, R.; Cogley, J. G.; Dussaillant, A.; Guido, Z.; Haeberli, W.; Harrison, S.; Leonard, G.; Maxwell, A.; Meier, C.; Poveda, G.; Reid, B.; Reynolds, J.; Rodríguez, C. A. Portocarrero; Romero, H.; Schneider, J.

    2012-05-01

    Lately, glaciers have been subjects of unceasing controversy. Current debate about planned hydroelectric facilities—a US$7- to $10-billion megaproject—in a pristine glacierized area of Patagonia, Chile [Romero Toledo et al., 2009; Vince, 2010], has raised anew the matter of how glaciologists and global change experts can contribute their knowledge to civic debates on important issues. There has been greater respect for science in this controversy than in some previous debates over projects that pertain to glaciers, although valid economic motivations again could trump science and drive a solution to the energy supply problem before the associated safety and environmental problems are understood. The connection between glaciers and climate change—both anthropogenic and natural—is fundamental to glaciology and to glaciers' practical importance for water and hydropower resources, agriculture, tourism, mining, natural hazards, ecosystem conservation, and sea level [Buytaert et al., 2010; Glasser et al., 2011]. The conflict between conservation and development can be sharper in glacierized regions than almost anywhere else. Glaciers occur in spectacular natural landscapes, but they also supply prodigious exploitable meltwater.

  20. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

    NASA Astrophysics Data System (ADS)

    Janke, Jason R.; Bellisario, Antonio C.; Ferrando, Francisco A.

    2015-07-01

    In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content. Debris-covered glaciers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3 m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced transverse ridges and furrows that arch across the surface, which indicates flow produced via ice. Class 5 rock glaciers have ridges and furrows that appear linear in the direction of flow, indicating reduced flow from limited internal ice; and class 6 rock glaciers have subdued surface topography because the movement of the rock glacier has ceased. Ice content decreases from 25-45%, to 10-25%, to < 10% from class 4 to 6, respectively. Examples from digital imagery, aerial photographs, and field photographs are provided for each class. The classification scheme can be used to identify and map debris-covered glaciers and rock glaciers to create an inventory. This will help improve recognition of these landforms as an important water resource in the dry Andes of Chile, which will aid in sustainable planning and development in basins that hold the majority of the population and support a large share of the economic activity in Chile.

  1. Central Himalayan Glaciers and Climate Change- Pinder Glacier- A preliminary study

    NASA Astrophysics Data System (ADS)

    Pillai, J.; Patel, L. K.

    2011-12-01

    Glaciers in the Indian Himalayan Region (IHR) are the prime lifeline of Indian Subcontinent. There are about nine thousand glaciers of different size in this region. It is located within the latitudes 270N to 360N and longitude 720E to 960E. The second largest glacier, outside the polar and sub polar regions, Siachen glacier of length 74 km, is located in IHR. Many rivers in this continent originated from these glaciers. Study on the fluctuations especially of the snow cover and related parameters are important for the proper management of these rivers. Annual balance, fluctuations of glaciers, hydrological behaviour and the assessment of the winter snow pack are also critical for the proper flow and control of Himalayan Rivers. There are many hydroelectric and irrigation facilities in these snow fed rivers. Glacial melt is important as far as the river flow is concerned. Researchers had observed that the glacial mass balance has been found to show an inverse relationship with the monsoon. Glacial hydrometry and glacial melt are important aspects as far the studies of glaciers in this region. Himalayan glaciers are also important for ecosystem stability. In this perspective attempts had been made to examine the various environmental parameters of Pindari glacier and the upper reaches of the Pindari river. Pindari glacier is located in the Central Himalayan region. It is of length 8 Km. A few records available with Geological Survey of India for a period of hundred years reveals that Pindari glacial have an annual retreat of 8-10 M. Pindrai glacier had retreated about 425 M with in a period of fifty seven years. Pindari river originates from the buffer zone of Nanda Devi Biosphere Reserve (NDBR) and is located in the lower regime of Pindari glacier. It is one of the prominent tributaries of Alaknanda. Tributaries of Pindari river are from Maktoli glacier, Kafani glacier and Sunderdhunga glacier. The changes in the Pindiari catchment area had been examined from the year 1990. Remote Sensing data of different years were used to analyze the changes in aerial extent of the pindari glacier. Pindari landscap is formed by the combined geomorphological process of fluvial and glacial. These processes are also maintaining the ecosystem balance of the catchment area. Snow covers area of this higher landscapet had been reduced considerably. The timberline of this region is shifting upper side of the glaciers, whereas the equilibrium line is also retreating. The spatial invasion in timber line and the retreat of the equilibrium line will further establish the negative mass balance of this glacier. However, the climatic variation may exacerbate the ecosystem balance of the region. All the reports on the glaciers in IHR regions review a negative mass balance and annual retreat up the glaciers. The observation records of these glaciers in IHR are about a period of hundred years this is quite in sufficient it establishes the relation between climate change and the glaciers retreat. However it is a known fact that the impact of rise in temperature due to anthropogenic effect may overstretch the rate the natural process of glacier retreat. The present study also discusses the unique phenomena of glacier melt due to climatic variations and its catastrophe.

  2. A graph-based approach to glacier flowline extraction: An application to glaciers in Switzerland

    NASA Astrophysics Data System (ADS)

    Le Moine, Nicolas; Gsell, Pierre-Stéphane

    2015-12-01

    In this paper we propose a new, graph-based approach to glacier segmentation and flowline extraction. The method, which requires a set of glacier contours and a Digital Elevation Model (DEM), consists in finding an optimum branching that connects a set of vertices belonging to the topological skeleton of each glacier. First, the challenges associated with glacier flowline extraction are presented. Then, the three main steps of the method are described: the skeleton extraction and pruning algorithm, the definition and computation of a travel cost between all pairs of skeleton vertices, and the identification of the directed minimum spanning tree in the resulting directed graph. The method, which is mainly designed for valley glaciers, is applied to glaciers in Switzerland.

  3. Glacier Monitoring: Opportunities, Accomplishments, and Limitations.

    NASA Astrophysics Data System (ADS)

    Meier, M. F.; Dyurgerov, M. B.

    2001-12-01

    Glaciers and ice caps, exclusive of the two major ice sheets, have been monitored for more than a century. Initially sparked by interest in the effect of glaciers on the landscape and their sensitive response to changes of climate, glacier study is now additionally motivated because of impacts on cold-regions ecology and hydrology as well as global sea-level rise. Glacier observations in many areas provide the only real data on climate change in the mountains. A substantial number of mass balance programs were initiated during the 1960s that improved our understanding of spatial and temporal changes in climate, and provided a basis for projecting future changes to glaciers and sea level. These results show a general increase in both snow accumulation and ice melting during the last 40 years (but with net wastage predominating), and a marked increase in the sensitivity of ice wastage to air temperature since the late 1980s. The World Data Center system provided unrestricted exchange of data among glaciologists during the `cold war.' The World Glacier Monitoring Service together with the National Snow and Ice Data Center and several individuals now provide ready access to glacier data. Remaining problems include inadequate access to digital data, a size bias to small glaciers, some traditional methodologies which limit the usefulness of the results, slow incorporation of new technologies, complexity of incorporating glacier dynamics in mass balance analysis, and insufficient attention by some investigators to reporting observational error. Perhaps the most difficult problems are the extension of limited data to the synthesis of broad regional or global conclusions, and a general dwindling of support for monitoring activities.

  4. GLACIER and related R&D

    E-print Network

    Curioni, Alessandro

    2011-01-01

    Liquid argon detectors, with mass up to 100 kton, are being actively studied in the context of proton decay searches, neutrino astrophysics and for the next generation of long baseline neutrino oscillation experiments to study the neutrino mass hierarchy and CP violation in the leptonic sector. The proposed Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER) offers a well defined conceptual design for such a detector. In this paper we present the GLACIER design and some of the R&D activities pursued within the GLACIER.

  5. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging

    NASA Astrophysics Data System (ADS)

    Sevestre, Heïdi; Benn, Douglas I.; Hulton, Nicholas R. J.; Bælum, Karoline

    2015-10-01

    Switches between cold- and warm-based conditions have long been invoked to explain surges of High Arctic glaciers. Here we compile existing and new data on the thermal regime of six glaciers in Svalbard to test the applicability of thermal switch models. Two of the large glaciers of our sample are water terminating while one is land terminating. All three have a well-known surge history. They have a thick basal layer of temperate ice, superimposed by cold ice. A cold terminus forms during quiescence but is mechanically removed by calving on tidewater glaciers. The other three glaciers are relatively small and are either entirely cold or have a diminishing warm core. All three bear evidence of former warm-based thermal regimes and, in two cases, surge-like behavior during the Little Ice Age. In Svalbard, therefore, three types of glaciers have switched from slow to fast flow: (1) small glaciers that underwent thermal cycles during and following the Little Ice Age (switches between cold- and warm-based conditions), (2) large terrestrial glaciers which remain warm based throughout the entire surge cycle but develop cold termini during quiescence, and (3) large tidewater glaciers that remain warm based throughout the surge cycle. Our results demonstrate that thermal switching cannot explain the surges of large glaciers in Svalbard. We apply the concept of enthalpy cycling to the spectrum of surge and surge-like behavior displayed by these glaciers and demonstrate that all Svalbard surge-type glaciers can be understood within a single conceptual framework.

  6. Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time

    PubMed Central

    Sheik, Cody S.; Stevenson, Emily I.; Den Uyl, Paul A.; Arendt, Carli A.; Aciego, Sarah M.; Dick, Gregory J.

    2015-01-01

    Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical, and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG) in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream, and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria, and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time. PMID:26042114

  7. Marine predator surveys in Glacier Bay National Park and Preserve

    USGS Publications Warehouse

    Bodkin, James L.; Kloecker, Kimberly A.; Coletti, Heather A.; Esslinger, George G.; Monson, Daniel H.; Ballachey, Brenda E.

    2002-01-01

    Since 1999, vessel based surveys to estimate species composition, distribution and relative abundance of marine birds and mammals have been conducted along coastal and pelagic (offshore) transects in Glacier Bay, Alaska. Surveys have been conducted during winter (November-March) and summer (June). This annual report presents the results of those surveys conducted in March and June of 2001. Following completion of surveys in 2002 we will provide a final report of the results of all surveys conducted between 1999 and 2002. Glacier Bay supports diverse and abundant assemblages of marine birds and mammals. In 2001 we identified 58 species of bird, 7 species of marine mammal, and 6 species of terrestrial mammal on transects sampled during winter and summer. Of course all species are not equally abundant. Among all taxa, in both seasons, sea ducks were the numerically dominant group. In their roles as consumers and because of their generally large size, marine mammals are also likely important in the consumption of energy produced in the Glacier Bay ecosystem. Most common and abundant marine birds and mammals can be placed in either a fish based (e.g. alcids and pinnipeds), or a benthic invertebrate (e.g. sea ducks and sea otters) based food web. Distinct differences in the species composition and abundance of marine birds were observed between winter and summer surveys. Winter marine bird assemblages were dominated numerically (> 11,000; 65% of all birds) by a relatively few species of sea ducks (scoters, goldeneye, Bufflehead, Harlequin and Long-tailed ducks). The sea ducks were distributed almost exclusively along near shore habitats. The prevalence of sea ducks during the March surveys indicates the importance of Glacier Bay as a wintering area for this poorly understood group of animals that occupy a high trophic position in a principally benthic invertebrate (mussel and clam) food web. Marine mammal assemblages were generally consistent between seasons, although Humpback and Killer whales were not observed in winter 2001. Summer marine bird assemblages remained numerically dominated by sea ducks, but species composition shifted between the goldeneye whose density was 44/m2 in winter to 2 in summer, to scoters, whose density was 29/m2 in winter to > 60/m2 in summer. Large increases in Black-legged kittiwake, murrelet (Marbled and Kittlitz’s) and Common merganser densities were detected during summer surveys. Seasonal differences in abundance of species likely reflected differences in life history attributes (e.g. reproductive biology, foraging ecology) among species. Because of differences observed in species composition between the winter and summer, it is apparent that a single annual survey cannot accurately describe the populations of marine birds and mammals that occur in Glacier Bay. Preliminary analysis further suggests that interpretations of data resulting from this type of survey may depend to a large extent on the individual species. Because species exhibit differences in behavior, morphology, coloration, and distribution, accuracy and precision of abundance estimates likely vary among species. Confidence in survey results should be evaluated in consideration of life history and detection probabilities at the species level. However, survey results likely provide reasonable estimates of species composition and relative abundance, as well as accurate abundance estimates for those species whose detection closely approximates one.

  8. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m on average over the last four decades, similar to other studies in the same climatic area. However, at small scales, the behavior of glaciers is highly heterogenous, with contrasting patterns of thickening glacier termini versus retreating nad thinning glacier tongues.

  9. Reconsidering the glacier to rock glacier transformation problem: New insights from the central Andes of Chile

    NASA Astrophysics Data System (ADS)

    Monnier, Sébastien; Kinnard, Christophe

    2015-06-01

    The glacier to rock glacier transformation problem is revisited from a previously unseen angle. A striking case in the Juncal Massif (located in the upper Aconcagua Valley, Chilean central Andes) is documented. There, the Presenteseracae debris-covered glacier has advanced several tens of metres and has developed a rock glacier morphology in its lower part over the last 60 years. The conditions for a theoretically valid glacier to rock glacier transformation are discussed and tested. Permafrost probability in the area of the studied feature is highlighted by regional-scale spatial modelling together with on-site shallow ground temperature records. Two different methods are used to estimate the mean surface temperature during the summer of 2014, and the sub-debris ice ablation rates are calculated as ranging between 0.05 and 0.19 cm d- 1, i.e., 0.04 and 0.17 m over the summer. These low ablation rates are consistent with the development of a coherent surface morphology over the last 60 years. Furthermore, the rates of rock wall retreat required for covering the former glacier at Presenteseracae lie within the common 0.1-2 mm y- 1 range, assuming an average debris thickness and a range of debris-covering time intervals. The integration of the geomorphological observations with the numerical results confirms that the studied debris-covered glacier is evolving into a rock glacier.

  10. Alaska Resource Data File, Nabesna quadrangle, Alaska

    USGS Publications Warehouse

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  11. Alaska Resource Data File, Wiseman quadrangle, Alaska

    USGS Publications Warehouse

    Britton, Joe M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  12. Alaska Resource Data File, Juneau quadrangle, Alaska

    USGS Publications Warehouse

    Barnett, John C.; Miller, Lance D.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  13. A Revised Glacier Inventory of Bhaga Basin Himachal Pradesh, India : Current Status and Recent Glacier Variations

    NASA Astrophysics Data System (ADS)

    Birajdar, F.; Venkataraman, G.; Bahuguna, I.; Samant, H.

    2014-11-01

    Himalayan glaciers show large uncertainty regarding their present and future state due to their sensitive reaction towards change in climatic condition. Himalayan glaciers are unique as they are located in tropical, high altitude regions, predominantly valley type and many are covered with debris. The great northern plains of India sustain on the perennial melt of glaciers meeting the water requirements of agriculture, industries, domestic sector even in the months of summer when large tracts of the country go dry. Therefore, it is important to monitor and assess the state of snow and glaciers and to know the sustainability of glaciers in view of changing global scenarios of climate and water security of the nation. Any information pertaining to Himalayan glaciers is normally difficult to be obtained by conventional means due to its harsh weather and rugged terrains. Due to the ecological diversity and geographical vividness, major part of the Indian Himalaya is largely un-investigated. Considering the fact that Himalayan glaciers are situated in a harsh environment, conventional techniques of their study is challenging and difficult both in terms of logistics and finances whereas the satellite remote sensing offers a potential mode for monitoring glaciers in long term. In order to gain an updated overview of the present state of the glacier cover and its changes since the previous inventories, an attempt has been made to generate a new remotesensing- derived glacier inventory on 1:50,000 scale for Bhaga basin (N32°28'19.7'' - N33°0'9.9'' ; E76°56'16.3'' - E77°25'23.7'' ) Western Himalaya covering an area of 1695.63 km2. having 231 glaciers and occupying glacierized area of 385.17 ±3.71 km2. ranging from 0.03 km2. to 29.28 km2. Glacier inventory has been carried out using high resolution IRS P6 LISS III data of 2011, ASTER DEM and other ancillary data. Specific measurements of mapped glacier features are the inputs for generating the glacier inventory data sheet with 37 parameters as per the UNESCO/TTS format, 11 additional parameters associated with the de-glaciated valley as per the suggestions of Space Application Center Ahmadabad and 9 newly introduced parameters of present study. The data sheet provides glacier wise details for each glacier on the significant glacier parameters like morphology, dimensions, orientation, elevation, etc. for both the active glacier component as well as the associated de-glaciated valley features. Assessment of recent variation in the glacierized area between 2001 and 2011. Results indicate that 231 glaciers covering an area of 391.56 ±3.76 km2. in 2001 has been reduced to 385.17 ±3.71 km2. in 2011; a loss of 1.63 ±1.0% in glacierized area within a period of 10 years. The present paper brings out the methodology adopted and salient results of the glacier inventory carried out which will help to enrich the existing database required for water resources assessment of the country and also meet the requirements of various researches working on climate change related studies.

  14. Economic impacts of the S. S. Glacier Bay oil spill: Social and economic studies. Technical report (Final)

    SciTech Connect

    Burden, P.; Isaacs, J.; Richardson, J.; Braund, S.; Witten, E.

    1990-11-01

    On July 2, 1987, an oil spill occurred in Cook Inlet when the S.S. Glacier Bay hit a submerged obstacle while enroute to Kenai Pipeline Company facilities to offload oil. The 1987 commercial fishery in Cook Inlet was barely underway when the S.S. Glacier Bay oil spill occurred, and the largest salmon return in history was moving up the inlet. The sockeye salmon run alone totaled over 12 million, providing a seasonal catch of 9.25 million salmon. The 1987 sport fishery in Cook Inlet was in mid-season at the time of the spill. The S.S. Glacier Bay oil spill represents an opportunity to study the economic impacts of an oil spill event in Alaska, particularly with regard to commercial fishing impacts and the public costs of cleanup. The report evaluates the existing information on the spill, response measures, and economic impacts, and adds discussions with individuals and groups involved in or affected by the spill to this data base. The report reviewed accounts of the oil spill and its costs; identified types and sources of data, developed protocol, and contacted groups and people for data collection and verification; and described, analyzed, and prepared reports of the economic effects of the S.S. Glacier Bay oil spill.

  15. Counseling in Bush Alaska.

    ERIC Educational Resources Information Center

    Foy, Steve; Wolfe, Michael P.

    1985-01-01

    Describes the demanding role and responsibilities of a district school guidance counselor serving 10 grade K-12 schools with a total enrollment of 490 students in an isolated region of Alaska covering 26,000 square miles. (NEC)

  16. Underwater acoustic signatures of glacier calving

    NASA Astrophysics Data System (ADS)

    Glowacki, O.; Deane, G. B.; Moskalik, M.; Blondel, Ph.; Tegowski, J.; Blaszczyk, M.

    2015-02-01

    Climate-driven ice-water interactions in the contact zone between marine-terminating glaciers and the ocean surface show a dynamic and complex nature. Tidewater glaciers lose volume through the poorly understood process of calving. A detailed description of the mechanisms controlling the course of calving is essential for the reliable estimation and prediction of mass loss from glaciers. Here we present the potential of hydroacoustic methods to investigate different modes of ice detachments. High-frequency underwater ambient noise recordings are combined with synchronized, high-resolution, time-lapse photography of the Hans Glacier cliff in Hornsund Fjord, Spitsbergen, to identify three types of calving events: typical subaerial, sliding subaerial, and submarine. A quantitative analysis of the data reveals a robust correlation between ice impact energy and acoustic emission at frequencies below 200 Hz for subaerial calving. We suggest that relatively inexpensive acoustic methods can be successfully used to provide quantitative descriptions of the various calving types.

  17. Distinct patterns of seasonal Greenland glacier velocity

    NASA Astrophysics Data System (ADS)

    Moon, Twila; Joughin, Ian; Smith, Ben; Broeke, Michiel R.; Berg, Willem Jan; Noël, Brice; Usher, Mika

    2014-10-01

    Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes.

  18. Stabilizing feedbacks in glacier-bed erosion.

    PubMed

    Alley, R B; Lawson, D E; Larson, G J; Evenson, E B; Baker, G S

    2003-08-14

    Glaciers often erode, transport and deposit sediment much more rapidly than nonglacial environments, with implications for the evolution of glaciated mountain belts and their associated sedimentary basins. But modelling such glacial processes is difficult, partly because stabilizing feedbacks similar to those operating in rivers have not been identified for glacial landscapes. Here we combine new and existing data of glacier morphology and the processes governing glacier evolution from diverse settings to reveal such stabilizing feedbacks. We find that the long profiles of beds of highly erosive glaciers tend towards steady-state angles opposed to and slightly more than 50 per cent steeper than the overlying ice-air surface slopes, and that additional subglacial deepening must be enabled by non-glacial processes. Climatic or glaciological perturbations of the ice-air surface slope can have large transient effects on glaciofluvial sediment flux and apparent glacial erosion rate. PMID:12917679

  19. Flow dynamics of Byrd Glacier, East Antarctica

    E-print Network

    Vanderveen, Cornelis J.; Stearns, Leigh A.; Johnson, Jay T.; Csatho, B.

    2014-12-01

    Force-balance calculations on Byrd Glacier, East Antarctica, reveal large spatial variations in the along-flow component of driving stress with corresponding sticky spots that are stationary over time. On the large scale, flow resistance...

  20. Glacier National Park Bighorn Sheep Studies

    USGS Multimedia Gallery

    The USGS studies bighorn sheep movements, population structures, and habitat use in and near Glacier National Park. Here, USGS scientist Tabitha Graves sets up remote camera at a salt lick in the park as a sheep stands in background....

  1. Hidden Lake in Glacier National Park, Montana

    USGS Multimedia Gallery

    Hidden Lake in Glacier National Park, Montana, USA, a high mountain lake in an alpine setting. This lake is kept full of water mainly from precipitation runoff from the surrounding hills and, in the spring, from snowmelt....

  2. The geochemical record in rock glaciers

    USGS Publications Warehouse

    Steig, E.J.; Fitzpatrick, J.J.; Potter, N., Jr.; Clark, D.H.

    1998-01-01

    A 9.5 m ice core was extracted from beneath the surficial debris cover of a rock glacier at Galena Creek, northwestern Wyoming. The core contains clean, bubble-rich ice with silty debris layers spaced at roughly 20 cm intervals. The debris layers are similar in appearance to those in typical alpine glaciers, reflecting concentration of debris by melting at the surface during the summer ablation season. Profiles of stable isotope concentrations and electrical conductivity measurements provide independent evidence for melting in association with debris layers. These observations are consistent with a glacial origin for the ice, substantiating the glacigenic model for rock glacier formation. The deuterium excess profile in the ice indicates that the total depth of meltwater infiltration is less than the thickness of one annual layer, suggesting that isotope values and other geochemical signatures are preserved at annual resolution. This finding demonstrates the potential for obtaining useful paleoclimate information from rock glacier ice.

  3. Glacier area and length changes in Norway from repeat inventories

    NASA Astrophysics Data System (ADS)

    Winsvold, S. H.; Andreassen, L. M.; Kienholz, C.

    2014-10-01

    In this study, we assess glacier area and length changes in mainland Norway from repeat Landsat TM/ETM+-derived inventories and digitized topographic maps. The multi-temporal glacier inventory consists of glacier outlines from three time ranges: 1947 to 1985 (GIn50), 1988 to 1997 (GI1990), and 1999 to 2006 (GI2000). For the northernmost regions, we include an additional inventory (GI1900) based on historic maps surveyed between 1895 and 1907. Area and length changes are assessed per glacier unit, 36 subregions, and for three main parts of Norway: southern, central, and northern. The results show a decrease in the glacierized area from 2994 km2 in GIn50 to 2668 km2 in GI2000 (total 2722 glacier units), corresponding to an area reduction of -326 km2, or -11% of the initial GIn50 area. The average length change for the full epoch (within GIn50 and GI2000) is -240 m. Overall, the comparison reveals both area and length reductions as general patterns, even though some glaciers have advanced. The three northernmost subregions show the highest retreat rates, whereas the central part of Norway shows the lowest change rates. Glacier area and length changes indicate that glaciers in maritime areas in southern Norway have retreated more than glaciers in the interior, and glaciers in the north have retreated more than southern glaciers. These observed spatial trends in glacier change are related to a combination of several factors such as glacier geometry, elevation, and continentality, especially in southern Norway.

  4. The fleeting glaciers of the Arctic

    NASA Astrophysics Data System (ADS)

    Bakke, Jostein; Røthe, Torgeir; van der Bilt, Willem; Paasche, Øyvind

    2015-04-01

    Glaciers and snow are the very symbol of the Arctic, covering large parts of its terrestrial surface throughout the year. The cool temperatures that have allowed for the widespread coverage of glaciers are now trending towards a warmer climate, and with this gradual shift we observe a non-linear response in the cryosphere of which glaciers are a key component. This change is manifested in retreating fronts and an overall thinning. Because the typology of Arctic glaciers is rich and varied, the response pattern to the on-going warming is not unison. Instead we observe large spatial variations due to the critical balance between summer temperature and winter precipitation, but also other factors such as aspect, altitude, geographical location, debris cover and so forth. Even so, minor variations is superimposed on a larger trends which suggests that in a not so distant future, glaciers will probably be less abundant than what has been common for the last 100 years. In the context of the last 10 000 years it is evident that arctic glaciers have changed significantly and they have even been smaller than they are today, which was the case 9000 to 5000 years ago. On Svalbard, three glacier lake sediment records foretell of large past variations, indicating a more articulated sensitivity to climate change than what is commonly perceived for the Arctic cryosphere. Based on the lake sediment studies we will discuss Arctic glaciers sensitivity to decadal to millenium scale climate fluctuations and discuss possible forcing mechanims behind suitable for explaining what we see.

  5. Possible glacio-fluvial landforms in southern Argyre Planitia, Mars: Implications for glacier thickness and depositional settings

    NASA Astrophysics Data System (ADS)

    Bernhardt, H.; Hiesinger, H.; Reiss, D.; Ivanov, M.; Erkeling, G.

    2012-09-01

    Our study presents new insights into possible formation mechanisms and glacio-fluvial implications of previously identified esker-like sinuous ridges on layered terrain in southern Argyre Planitia [1,2,3,4,5]. Based on detailed morphologic analyses and comparisons with terrestrial analogs, we interpret the ridges and their surroundings to be eskers on glacio-fluvial sediments. We propose the formation of northward trending degraded ridges to have involved back- and downwasting ice near the glacier rim comparable to the Piedmont-style Malaspina Glacier, Alaska [6]. Computational reconstruction suggests the eastward trending, more pristine ridges to have formed beneath a ~2 km thick ice sheet before its stagnant retreat. Fluvial landforms on top of or etched into possible glacial deposits also point to a distinct period of fluvial activity after glacial activity ceased.

  6. Fuzzy Cognitive Maps for Glacier Hazards Assessment: Application to Predicting the Potential for Glacier Lake Outbursts

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.

    2010-12-01

    Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow Potential and Impound Water Upstream Flow Potential. The FCM is constructed using what is currently our understanding of how glacier lake outbursts occur, whereas the causal connection between concepts is defined to capture the expertise of glacier scientists. The proposed graph contains 27 nodes and a network of connections that represent the causal link between concepts. To test the developed FCM, we defined three scenarios representing glacier lake environmental conditions that either occurred or that are likely to occur in such highly dynamic environments. For each case, the FCM has been initialized using observables extracted from hypothesized remote sensing imagery. The map, which converges to a fixed point for all of the test scenarios within 15 iterations, shows reasoning consistent with that of glacier experts. The FCM-based cognitive approach has the potential to be the AI core of real-time operational hazards assessment and detection systems.

  7. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Gardelle, J.; Sirguey, P.; Guillot, A.; Six, D.; Rabatel, A.; Arnaud, Y.

    2012-07-01

    Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the Root Mean Square Deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000-2009) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snowline is located at its highest elevation, thus when the snowline is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains a considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the inter-annual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.

  8. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Gardelle, J.; Sirguey, P.; Guillot, A.; Six, D.; Rabatel, A.; Arnaud, Y.

    2012-12-01

    Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the root mean square deviation (RMSD) between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000-2009) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface) observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snow line is located at its highest elevation, thus when the snow line is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally low albedo values) and the accumulation zone (i.e. snow with a relatively high albedo). As a consequence, the monitoring of the glacier surface albedo using MODIS data can provide a useful means to evaluate the interannual variability of the glacier mass balance. Finally, the albedo in the ablation area of Saint Sorlin Glacier does not exhibit any decreasing trend over the study period, contrasting with the results obtained on Morteratsch Glacier in the Swiss Alps.

  9. Integrated glacier and snow hydrological modelling in the Urumqi No.1 Glacier catchment

    NASA Astrophysics Data System (ADS)

    Gao, Hongkai; Hrachowitz, Markus; Savenije, Hubert

    2015-04-01

    The glacier and snow melt water from mountainous area is an essential water resource in Northwest China, where the climate is arid. Therefore a hydrologic model including glacier and snow melt simulation is in an urgent need for water resources management and prediction under climate change in this region. In this study, the Urumqi No.1 Glacier catchment in Northwest China, with 51% area covered by glacier, was selected as the study site. An integrated daily hydrological model was developed to systematically simulate the hydrograph, runoff separation (glacier and non-glacier runoff), the glacier mass balance (GMB), the equilibrium line altitude (ELA), and the snow water equivalent (SWE). Only precipitation, temperature and sunshine hour data is required as forcing input. A combination method, which applies degree-day approach during dry periods and empirical energy balance formulation during wet seasons, was implemented to simulate snow and glacier melt. Detailed snow melt processes were included in the model, including the water holding capacity of snow pack, the liquid water refreezing process in snow pack, and the change of albedo with time. A traditional rainfall-runoff model (Xinanjiang) was applied to simulate the rainfall(snowmelt)-runoff process in non-glacierized area. Additionally, the influence of elevation on temperature and precipitation distribution, and the impact of different aspect on snow and glacier melting were considered. The model was validated, not only by long-term observed daily runoff data, but also by measured snow (SWE) and glacier data (GMB, ELA) of over 50 years. Furthermore, the calibrated model can be upscaled into a larger catchment, which further supports our proposed model and optimized parameter sets.

  10. The GLIMS geospatial glacier database: A new tool for studying glacier change

    NASA Astrophysics Data System (ADS)

    Raup, Bruce; Racoviteanu, Adina; Khalsa, Siri Jodha Singh; Helm, Christopher; Armstrong, Richard; Arnaud, Yves

    2007-03-01

    The Global Land Ice Measurement from Space (GLIMS) project is a cooperative effort of over sixty institutions world-wide with the goal of inventorying a majority of the world's estimated 160 000 glaciers. Each institution (called a Regional Center, or RC) oversees the analysis of satellite imagery for a particular region containing glacier ice. Data received by the GLIMS team at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado are ingested into a spatially-enabled database (PostGIS) and made available via a website featuring an interactive map, and a Web-Mapping Service (WMS). The WMS, an Open Geospatial Consortium (OGC)-compliant web interface, makes GLIMS glacier data available to other data servers. The GLIMS Glacier Database is accessible on the World Wide Web at " http://nsidc.org/glims/". There, users can browse custom maps, display various data layers, query information within the GLIMS database, and download query results in different GIS-compatible formats. Map layers include glacier outlines, footprints of ASTER satellite optical images acquired over glaciers, and Regional Center information. The glacier and ASTER footprint layers may be queried for scalar attribute data, such as analyst name and date of contribution for glacier data, and acquisition time and browse imagery for the ASTER footprint layer. We present an example analysis of change in Cordillera Blanca glaciers, as determined by comparing data in the GLIMS Glacier Database to historical data. Results show marked changes in that system over the last 30 years, but also point out the need for establishing clear protocols for glacier monitoring from remote-sensing data.

  11. Alaska looks HOT!

    SciTech Connect

    Belcher, J.

    1997-07-01

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude and markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.

  12. Seismotectonics of northern Alaska

    NASA Astrophysics Data System (ADS)

    Estabrook, Charles H.; Stone, David B.; Davies, John N.

    1988-10-01

    Data from earthquakes occurring in northern Alaska collected by the Geophysical Institute of the University of Alaska, Fairbanks, have been reprocessed using a seismic velocity model developed for the Dall City and Fort Yukon areas of north central Alaska. A study of the relocated events shows that microearthquakes occur in a zone roughly parallel to, but south of, the crest of the Brooks Range. The events also show that the Kobuk, central Kaltag, Porcupine, Dall, Rampart, northwest Tintina, and Eskimo Lakes faults in northern Alaska and northwest Canada are seismically active, with the Eskimo Lakes fault being most active. Eight new focal mechanisms were determined for northern Alaska which show strike-slip faulting south of the Brooks Range. This movement is consistent with the known movement on the associated faults. The orientation of the pressure axes derived from these and other fault plane solutions is consistent with Pacific-North American plate convergence. Large-scale shearing appears to extend northward from the Pacific-North America transform boundary into arctic Alaska and allows the interpretation that the Seward Peninsula extensional zone is a large-scale pull-apart feature.

  13. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  14. Greenland's pronounced glacier retreat not irreversible

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-02-01

    In recent decades, the combined forces of climate warming and short-term variability have forced the massive glaciers that blanket Greenland into retreat, with some scientists worrying that deglaciation could become irreversible. The short history of detailed glacier observations, however, makes pinning the ice loss to either short-term dynamics or long-term change difficult. Research by Young et al. detailing the effects of two bouts of sudden and temporary cooling during an otherwise warm phase in Greenland's climate history could help answer that question by showing just how heavy a hand short-term variability can have in dictating glacier dynamics. Along the western edge of Greenland the massive Jakobshavn Isbræ glacier reaches out to the coast, its outflow dropping icebergs into Baffin Bay during the summer months. Flanking the glacier's tongue are the Tasiussaq and Marrait moraines—piles of rock marking the glacier's former extent. Researchers suspected the moraines were tied to two periods of abrupt cooling that hit Greenland 9300 and 8200 years ago, and that association was reinforced by the authors' radiocarbon and beryllium isotope analyses of the area surrounding the moraines. Beryllium-10 forms when cosmic radiation travels through the atmosphere and strikes the Earth's surface, with surface rock concentrations indicating how long it has been ice-free.

  15. Alaska Resource Data File, Point Lay quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Point Lay 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  16. Contribution of mountain glaciers and ice caps to sea-level rise

    NASA Astrophysics Data System (ADS)

    Hock, R. M.; de Woul, M.; Radic, V.; Dyurgerov, M.

    2009-12-01

    Mountain glaciers and ice caps (MG&IC) have been identified as primary source of eustatic sea level rise, ahead of the ice sheets, during recent decades. The Intergovernmental Panel on Climate Change (IPCC) estimates that the sum of all contributions to sea-level rise for the period 1961-2004 was 1.1± 0.5 mm a-1, leaving 0.7±0.7 of the 1.8±0.5 mm a-1 observed sea-level rise unexplained. Here, we compute the global surface mass balance of all mountain glaciers and ice caps and find that part of this much-discussed gap can be attributed to a larger contribution than previously assumed from mass loss of MG&IC, especially those around the Antarctic Peninsula. We find a global surface mass loss of all MG&IC of 0.79±0.34 mm a-1 sea-level equivalent compared to IPCC’s 0.50±0.18 mm a-1. The Antarctic MG&IC contributed 28% of the global estimate due to exceptional warming around the Antarctic Peninsula and high mass-balance sensitivities to temperature similar to those we find in maritime Iceland, Patagonia and Alaska. Our results highlight the role of the MG&IC around the Antarctic Peninsula where climate is distinctly different from the cold conditions of the ice sheet, and large mass balance sensitivities to temperature, exceptional warming and large area combine to yield large potential for glacier mass loss. We emphasize an urgent need for improved glacier inventory and in-situ mass balance data from this region especially in light of recently accelerated mass loss from MG&IC.

  17. Glaciers in the Earth's Hydrological Cycle: Assessments of Glacier Mass and Runoff Changes on Global and Regional Scales

    NASA Astrophysics Data System (ADS)

    Radi?, Valentina; Hock, Regine

    2014-05-01

    Changes in mass contained by mountain glaciers and ice caps can modify the Earth's hydrological cycle on multiple scales. On a global scale, the mass loss from glaciers contributes to sea-level rise. On regional and local scales, glacier meltwater is an important contributor to and modulator of river flow. In light of strongly accelerated worldwide glacier retreat, the associated glacier mass losses raise concerns over the sustainability of water supplies in many parts of the world. Here, we review recent attempts to quantify glacier mass changes and their effect on river runoff on regional and global scales. We find that glacier runoff is defined ambiguously in the literature, hampering direct comparison of findings on the importance of glacier contribution to runoff. Despite consensus on the hydrological implications to be expected from projected future warming, there is a pressing need for quantifying the associated regional-scale changes in glacier runoff and responses in different climate regimes.

  18. What Influences Climate and Glacier Change in the Southwestern China?

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.

    2012-01-01

    The subject of climate change in the areas of the Tibetan Plateau (TP) and the Himalayas has taken on increasing importance because of available water resources from their mountain glaciers. Many of these glaciers over the region have been retreating, while some are advancing and stable. Other studies report that some glaciers in the Himalayas show acceleration on their shrinkage. However, the causes of the glacier meltings are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. However, it is vital that we pursue further study to enable the future prediction on glacier changes.

  19. Winter speed-up during a quiescent phase of surge-type glaciers: observations and implications

    NASA Astrophysics Data System (ADS)

    Abe, T.; Furuya, M.

    2014-12-01

    Glacier surface velocity is a combination of the internal deformation of ice and basal slip (including till deformation overlying bedrock) (Cuffey and Paterson, 2010). Short-term velocity changes can be attributed to basal slip associated with water pressure changes because of both the seasonal meltwater input and the evolution of the englacial and subglacial hydrological system. Thus, examining the velocity changes with high spatial and temporal resolution is helpful to understand how subglacial conditions evolve and control the surface velocities. We examined spatial and temporal velocity changes at quiescent surge-type glaciers near the border of Alaska/Yukon by SAR offset tracking and found significant acceleration from fall to winter regardless of surge events. Moreover, whereas the upstream propagating summer speed-up was observed, the winter speed-up propagated from upstream to downstream. Lingle and Fatland (2003) proposed the englacial water storages as the fundamental driver of temperate-glacier surge. Although our observations were performed at the quiescent and rather poly-thermal than temperate surge-type glaciers, our observations also support the englacial water storage hypothesis. Namely, the englacial water storages that do not directly connect to the surface can promote basal sliding through increased water pressure as winter approaches. Glacier surge often initiates in winter (Raymond, 1987), which has been explained by creep closure of efficient drainage system in fall and subsequent higher water pressure in winter. Mini-surges are also known in this area, and have been interpreted in a similar mechanism. However, in order to maintain the higher water pressure for some time period in winter, there should be such sources that can keep supplying the water to the bed. It has been uncertain, however, if, how and where the water can be stored in winter. Also, we should keep in mind that many of the previously known mini-surges were actually occurring in spring and summer (Kamb and Engelhardt, 1987; Harrison and Post, 2003). There are, to our knowledge, few comprehensive velocity observations in terms of both spatial and temporal coverages. Here we review some previous observations, place our observations in context of the glacier surge dynamics, and propose the winter speed-up mechanism.

  20. Controls on advance of tidewater glaciers: results from numerical modeling applied to Columbia Glacier

    E-print Network

    Nick, F. M.; van der Veen, Cornelis J.; Oerlemans, J.

    2007-07-11

    A one-dimensional numerical ice flow model is used to study the advance of a tidewater glacier into deep water. Starting with ice-free conditions, the model simulates glacier growth at higher elevations followed by advance on land to the head...

  1. Assessment of particulate accumulation climatology under inversions in Glacier Bay for the 2008 tourist season using WRF/Chem data

    NASA Astrophysics Data System (ADS)

    Pirhalla, Michael A.

    Each summer, roughly one million tourists come to Southeast Alaska aboard cruise ships to see the pristine landscape and wildlife. Tourism is an integral component in the economy for most of the towns and villages on the Alaska Panhandle. With ship emissions only modestly regulated, there have been some concerns regarding the potential environmental impacts that cruise ships have on air quality, wildlife, and visitor experience. Cruise ships travel to remote regions, and are frequently the only anthropogenic emissions source in federally protected parks, such as Glacier Bay National Park and Preserve. In the absence of winds and synoptic scale storm systems common in the Gulf of Alaska, temperature inversions frequently develop inside Glacier Bay due to radiative cooling influenced by the complex topography inside the park. Inversions act as a lid, and may trap pollutants from cruise-ship emissions depending on the meteorological conditions present. Since meteorological observations are sparse and frequently skewed to easily accessible locations, data from the Weather Research and Forecasting Model, coupled with a chemistry package (WRF/Chem), were used to examine the physical and chemical processes that are impossible to determine through direct observations. Model simulation data for 124 days during the 2008 tourist season (May 15 to September 15), including a cruise-ship emission inventory for all 225 cruise ship entries in Glacier Bay, was analyzed. Evaluation of WRF/Chem through meteorological observations reveals that the model accurately captures the synoptic conditions for most of the summer, despite problems with complex topography. WRF/Chem simulated quasi-multi-day inversion events, with strengths as high as 6.7 K (100 m)-1. Inversions were present in all grid-cell locations in Glacier Bay, with inversions occurring on average of 42% of the days during the tourist season. WRF/Chem was able to model PM 10 (particulate matter with diameter less than 10 micrometers) concentrations from cruise ships, but the absence of aerosol monitoring sites does not allow us to confirm the results. However, no simulated particulates ever exceed the daily average National Ambient Air Quality Standard (NAAQS) of 150 micrograms per cubic meter. The high variability of particle concentrations in Glacier Bay suggests the need for an air quality observational network to further assess local air quality issues.

  2. Glacier Changes in the Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Willis, M. J.; Melkonian, A. K.; Golos, E. M.; Stewart, A.; Ornelas, G.; Ramage, J. M.

    2014-12-01

    We provide new surveys of ice speeds and surface elevation changes for ~40,000 km2 of glaciers and ice caps at the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) Archipelagoes in the Russian High Arctic. The contribution to sea level rise from this ice is expected to increase as the region continues to warm at above average rates. We derive ice speeds using pixel-tracking on radar and optical imagery, with additional information from InSAR. Ice speeds have generally increased at outlet glaciers compared to those measured using interferometry from the mid-1990s'. The most pronounced acceleration is at Inostrantseva Glacier, one of the northernmost glaciers draining into the Barents Sea on NovZ. Thinning rates over the last few decades are derived by regressing stacked elevations from multiple Digital Elevations Models (DEMs) sourced from ASTER and Worldview stereo-imagery and cartographically derived DEMs. DEMs are calibrated and co-registered using ICESat returns over bedrock. On NovZ thinning of between 60 and 100 meters since the 1950s' is common. Similar rates between the late 1980s' and the present are seen at SevZ. We examine in detail the response of the outlet glaciers of the Karpinsky and Russanov Ice Caps on SevZ to the rapid collapse of the Matusevich Ice Shelf in the late summer of 2012. We do not see a dynamic thinning response at the largest feeder glaciers. This may be due to the slow response of the cold polar glaciers to changing boundary conditions, or the glaciers may be grounded well above sea level. Speed increases in the interior are difficult to assess with optical imagery as there are few trackable features. We therefore use pixel tracking on Terra SARX acquisitions before and after the collapse of the ice shelf to compute rates of flow inland, at slow moving ice. Interior ice flow has not accelerated in response to the collapse of the ice shelf but interior rates at the Karpinsky Ice Cap have increased by about 50% on the largest outlet glacier compared to rates found using ERS data in the mid-90s. Speeds have at least doubled at some of the smaller glaciers that feed the Matusevich from the south. We investigate the causes of acceleration at both archipelagoes by comparing sea surface temperatures and passive microwave observations of the timing and duration of ice surface melting.

  3. Alaska Resource Data File: Chignik quadrangle, Alaska

    USGS Publications Warehouse

    Pilcher, Steven H.

    2000-01-01

    Descriptions of the mineral occurrences can be found in the report. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska. There is a website from which you can obtain the data for this report in text and Filemaker Pro formats

  4. Climate sensitivity of Tibetan Plateau glaciers - past and future implications

    NASA Astrophysics Data System (ADS)

    Heyman, Jakob; Hubbard, Alun; Stroeven, Arjen P.; Harbor, Jonathan M.

    2013-04-01

    The Tibetan Plateau is one of the most extensively glaciated, non-Polar regions of the world, and its mountain glaciers are the primary source of melt water for several of the largest Asian rivers. During glacial cycles, Tibetan Plateau glaciers advanced and retreated multiple times, but remained restricted to the highest mountain areas as valley glaciers and ice caps. Because glacier extent is dominantly controlled by climate, the past extent of Tibetan glaciers provide information on regional climate. Here we present a study analyzing the past maximum extents of glaciers on the Tibetan Plateau with the output of a 3D glacier model, in an effort to quantify Tibetan Plateau climate. We have mapped present-day glaciers and glacial landforms deposited by formerly more extensive glaciers in eight mountain regions across the Tibetan Plateau, allowing us to define present-day and past maximum glacier outlines. Using a high-resolution (250 m) higher-order glacier model calibrated against present-day glacier extents, we have quantified the climate perturbations required to expand present-day glaciers to their past maximum extents. We find that a modest cooling of at most 6°C for a few thousand years is enough to attain past maximum extents, even with 25-75% precipitation reduction. This evidence for limited cooling indicates that the temperature of the Tibetan Plateau remained relatively stable over Quaternary glacial cycles. Given the significant sensitivity to temperature change, the expectation is perhaps that a future warmer climate might result in intense glacier reduction. We have tested this hypothesis and modeled the future glacier development for the three mountain regions with the largest present-day glacier cover using a projected warming of 2.8 to 6.2°C within 100 years (envelope limits from IPCC). These scenarios result in dramatic glacier reductions, including 24-100% ice volume loss after 100 years and 77-100% ice volume loss after 300 years.

  5. STREAM CATALOG OF SOUTHEASTERN ALASKA

    E-print Network

    465 STREAM CATALOG OF SOUTHEASTERN ALASKA REGULATORY DISTRICT No. 3 AND 4 SPECIAL SaENTIFIC REPORT part of Southeastern Alaska salmon streams is cata- loged from the voluminous records of the Alaska of Washington, the U.S. Fish and Wildlife Service, and other agencies. Stream descriptions, maps, and historical

  6. STREAM CATALOG OF SOUTHEASTERN ALASKA

    E-print Network

    453 STREAM CATALOG OF SOUTHEASTERN ALASKA REGULATORY DISTRICT No. 2 SPECIAL SCIENTIFIC REPORT part of Southeastern Alaska salmon streams is cata- loged from the voluminous records of the Alaska of Washington, the U. S. Fish and Wildlife Service, and other agencies. Stream descriptions, maps

  7. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Connor, C.

    2008-12-01

    Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a practice sessions at the University and then in an actual competition in a Regional High School Science Fair at which they could qualify to compete at the Intel International Science and Engineering fair. Thirty-four teachers, 30 high school students (over 40 percent of whom were Alaska Native) and over 1000 middle school students (25 percent Alaska natives) participated in EDGE activities, increasing their knowledge of Earth science, GIS skills, and data management and analysis. More information on the EDGE project is available at www.edge.alaska.edu.

  8. Flood frequency in Alaska

    USGS Publications Warehouse

    Childers, J.M.

    1970-01-01

    Records of peak discharge at 183 sites were used to study flood frequency in Alaska. The vast size of Alaska, its great ranges of physiography, and the lack of data for much of the State precluded a comprehensive analysis of all flood determinants. Peak stream discharges, where gaging-station records were available, were analyzed for 2-year, 5-year, 10-year, 25-year, and 50-year average-recurrence intervals. A regional analysis of the flood characteristics by multiple-regression methods gave a set of equations that can be used to estimate floods of selected recurrence intervals up to 50 years for any site on any stream in Alaska. The equations relate floods to drainage-basin characteristics. The study indicates that in Alaska the 50-year flood can be estimated from 10-year gaging- station records with a standard error of 22 percent whereas the 50-year flood can be estimated from the regression equation with a standard error of 53 percent. Also, maximum known floods at more than 500 gaging stations and miscellaneous sites in Alaska were related to drainage-area size. An envelope curve of 500 cubic feet per second per square mile covered all but 2 floods in the State.

  9. Jakobshavn Glacier, west Greenland: 30 years of spaceborne observations

    E-print Network

    Sohn, Hong-Gyoo; Jezek, Kenneth C.; van der Veen, Cornelis J.

    1998-07-05

    m from the geocoding procedure. Localized areas of retreat are especially evident around nunataks (rocky islands protruding through the glacier) located in the northern part of the study area. South of Jakobshavn Glacier we find weak evidence...

  10. Mass balance of four East Antarctic outlet glaciers

    E-print Network

    Stearns, Leigh

    2011-12-01

    Mountains, the balance characteristics of which are largely unknown. Here the mass balance is estimated for four glaciers draining ice from the EAIS through the Transantarctic Mountains into the Ross Sea embayment: David, Mulock, Byrd and Nimrod glaciers...

  11. Test of a simple glacier retreat parameterization for two Norwegian ice cap glaciers

    NASA Astrophysics Data System (ADS)

    Alesina, Samuel; Beldring, Stein; Melvold, Kjetil; Schaefli, Bettina

    2014-05-01

    In Norway, the ice cap glacier retreat will be an important phenomena under climate change projections and will largely influence water resources.Three new versions of a glacier retreat algorithm based on the parameterization proposed by Huss et al. (2010) are implemented and tested on the Distributed Element Water Model of the Norwegian Water Resources and Energy Directorate. After selection of the best performing algorithm version, the glacier retreat parameters of the model are calibrated on observed discharge and mass balance data for two ice cap glaciers in Norway: Nigardsbreen (maritime glacier) and Midtdalsbreen (semi continental glacier). The calibration performance is acceptable: ice thickness is reproduced with a Root Mean Square Error of 20 respectively 15 m for the two case studies; glacier annual mass balance is overestimated for negative years; daily discharge is reproduced with a Nash Sutcliffe performance criterion between 0.80-0.86 for the period of 1961-1990: Climate change projections are performed for these 2 glaciers using downscaled Regional Climate Models (RCMs) from IPCC A1B emission scenario for greenhouse gases. According to our results, these glaciers are going to decrease dramatically: the ice volume could be reduced by 70 to 80 % in 2100, the annual discharge could increase by 30% till 2070-2080. The annual daily regime can also be assumed to change: the simulation results show that the maximum discharge during summer will decrease whereas winter discharge will increase after a longer recession period in autumn. The beginning of the melting period will not change substantially. The model sensitivity of the applied glacier retreat parameterization (Huss et al. 2010) is analyzed with two approaches: 1/ comparing the ice volume evolution for all Huss parameters sets obtained through calibration in this study to the ones proposed in literature; 2/ varying one parameter after the other keeping the three others fixed. The evolution of the ice volume largely varies in function of the glacier retreat parameters and the parameter sets proposed in Huss et al. 2010 seem not to be able to capture the behavior of ice cap glaciers . From this study, the Huss parameterization implemented produced satisfying results and can be apply to ice cap in nordic countries for glacier retreat parameters calibrated. A classification of the ice cap could be necessary in order to widely apply this model without calibration process.

  12. Linking glacier annual mass balance and glacier albedo from MODIS data

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Gardelle, J.; Arnaud, Y.; Guillot, A.; Sirguey, P.; Six, D.

    2012-04-01

    The albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODIS on board TERRA and AQUA, provide a means to monitor glacier albedo. In this study, different methods to retrieve broadband glacier albedo from MODIS data are compared. In particular, the effect of the multiple reflections due to the rugged topography and that of the anisotropic reflection of snow and ice are investigated. The methods are tested on the Saint Sorlin glacier (Grandes Rousses area, French Alps). The accuracy of the retrieved albedo is estimated using both field measurements and albedo derived from terrestrial photographs. The root mean square deviation between field measurements and the broadband albedo retrieved from MODIS pixels at 250m spatial resolution was found to be less than 0.06. One decade (2000-2010) of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin glacier during the ablation season. It appears that the albedo in the ablation area of the glacier does not exhibit any marked decreasing trend during the decade under study. This contrasts with the situation observed on other glaciers in the Alps. In addition, the annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (spatial averaged over the whole glacier) observed with MODIS during the ablation season. A high linear correlation exists between the two variables. Furthermore, the day on which the albedo reaches a minimum over the glacier closely corresponds to the day on which the snowline is found to be at its highest elevation, thus close to the glacier's equilibrium line. This indicates that the high correlation can be explained by the fact that this minimal albedo contains a high degree of information regarding the relative share of areal surfaces between the ablation zone (i.e., ice with a generally lower albedo) and the accumulation zone (i.e., snow with a relatively high albedo). This implies that monitoring the albedo of glacier with MODIS data can provide a useful means to approach the inter-annual variability of the glacier's mass balance.

  13. Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India

    NASA Astrophysics Data System (ADS)

    Mandal, Arindan; Ramanathan, Alagappan; Farooq Azam, Mohd; Wagnon, Patrick; Vincent, Christian; Linda, Anurag; Sharma, Parmanand; Angchuk, Thupstan; Bahadur Singh, Virendra; Pottakkal, Jose George; Kumar, Naveen; Soheb, Mohd

    2015-04-01

    Several studies on Himalayan glaciers have been recently initiated as they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring program was initiated on Chhota Shigri Glacier (15.7 square km, 9 km long, 6263-4050 m a.s.l.) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) and is a representative glacier in Lahaul and Spiti Valley. While annual mass balances have been measured continuously since 2002 using the glaciological method, seasonal scale observations began in 2009. The annual and seasonal mass balances were then analyzed along with meteorological conditions in order to understand the role of winter and summer balances on annual glacier-wide mass balance of Chhota Shigri glacier. During the period 2002-2013, the glacier experienced a negative glacier-wide mass balance of -0.59±0.40 m w.e. a-1 with a cumulative glaciological mass balance of -6.45 m w.e. Annual glacier-wide mass balances were negative except for four years (2004/05, 2008/09, 2009/10 and 2010/11) where it was generally close to balanced conditions. Equilibrium line altitude (ELA) for steady state condition is calculated as 4950 m a.s.l. corresponding to an accumulation area ratio (AAR) of 62% using annual glacier-wide mass balance, ELA and AAR data between 2002 and 2013. The winter glacier-wide mass balance between 2009 and 2013 ranges from a maximum value of 1.38 m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas the summer glacier-wide mass balance varies from the highest value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. The mean vertical mass balance gradient between 2002 and 2013 was 0.66 m w.e. (100 m)-1 quite similar to Alps, Nepalese Himalayas etc. Over debris covered area, the gradients are highly variable with a negative mean value of -2.15 m w.e. (100 m)-1 over 2002-2013 observation period. The negative gradients can be explained by the thickness of debris cover that increases with decrease in altitude, thus protecting the glacier more efficiently at lower altitudes. Mass balance is strongly dependent on debris cover, exposure (solar radiation) and the shading effect of surrounding steep slopes.

  14. Striated boulder pavements within glaciomarine diamicts of the Yakataga Formation, Middleton Island, Alaska

    SciTech Connect

    Eyles, C.H.

    1985-01-01

    The presence of striated boulder pavements in glacial sequences is often cited as evidence of transport and deposition by grounded glacier ice. However, recent reports show that striated pavements also form in non-glacial environments by the abrasion of boulder lag surfaces by floating glacier and seasonal ice. Several striated boulder pavements are identified within Early Pleistocene upper Yakataga Formation sediments exposed on Middleton Island close to the southern edge of the Gulf of Alaska continental shelf. The sequence is dominated by thick stratiform units of massive and stratified diamict formed by the settling of fine-grained sands and muds from suspension together with ice-rafted debris. Boulder pavements outcrop as extensive planar horizons within the diamicts, can be traced for several kilometers along strike and consist of single lines of clasts with faceted upper surfaces showing consistently oriented striation directions. Clasts are not preferentially aligned, however, and do not have the characteristic bullet shape of boulders transported at a glacier base and deposited by lodgement processes. Striated boulder pavements on Middleton Island appear to have formed as boulder lag surfaces generated by wave and tidal current reworking of diamict on relatively shallow banks. Lags were then overridden and abraded by a grounding ice shelf. The glacially-abraded boulder pavements on Middleton Island record the repeated expansion of a continuous ice shelf to the edge of the Gulf of Alaska continental shelf during the Early Pleistocene.

  15. Distinct patterns of seasonal Greenland glacier velocity

    PubMed Central

    Moon, Twila; Joughin, Ian; Smith, Ben; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Usher, Mika

    2014-01-01

    Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5?year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes. Key Points First multi-region seasonal velocity measurements show regional differences Seasonal velocity fluctuations on most glaciers appear meltwater controlled Seasonal development of efficient subglacial drainage geographically divided PMID:25821275

  16. Exploration of Uncertainty in Glacier Modelling

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    1999-01-01

    There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.

  17. Modeled climate-induced glacier change in Glacier National Park, 1850-2100

    USGS Publications Warehouse

    Hall, M.H.P.; Fagre, D.B.

    2003-01-01

    The glaciers in the Blackfoot-Jackson Glacier Basin of Glacier National Park, Montana, decreased in area from 21.6 square kilometers (km2) in 1850 to 7.4 km2 in 1979. Over this same period global temperatures increased by 0.45??C (?? 0. 15??C). We analyzed the climatic causes and ecological consequences of glacier retreat by creating spatially explicit models of the creation and ablation of glaciers and of the response of vegetation to climate change. We determined the melt rate and spatial distribution of glaciers under two possible future climate scenarios, one based on carbon dioxide-induced global warming and the other on a linear temperature extrapolation. Under the former scenario, all glaciers in the basin will disappear by the year 2030, despite predicted increases in precipitation; under the latter, melting is slower. Using a second model, we analyzed vegetation responses to variations in soil moisture and increasing temperature in a complex alpine landscape and predicted where plant communities are likely to be located as conditions change.

  18. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

    E-print Network

    Nettles, M.; Larsen, T. B.; Elosegui, P.; Hamilton, Gordon S.; Stearns, Leigh; Ahlstrom, A. P.; Davis, J. L.; Anderson, M. L.; de Juan, J.; Khan, S. A.; Stenseng, L.; Ekstrom, G.; Forsberg, R.

    2008-12-30

    with teleseismically detected glacial earthquakes and major iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic...

  19. Depth-varying constitutive properties observed in an isothermal glacier

    E-print Network

    Marshall, Hans-Peter

    Depth-varying constitutive properties observed in an isothermal glacier H. P. Marshall,1 J. T. Humphrey, Depth-varying constitutive properties observed in an isothermal glacier, Geophys. Res. Lett., 29 of polycrystalline glacier ice such as large crystals, widely ranging crystal sizes, and natural inhomo- geneities

  20. Contrasting responses of Central Asian rock glaciers to global warming

    PubMed Central

    Sorg, Annina; Kääb, Andreas; Roesch, Andrea; Bigler, Christof; Stoffel, Markus

    2015-01-01

    While the responses of Tien Shan glaciers – and glaciers elsewhere – to climatic changes are becoming increasingly well understood, this is less the case for permafrost in general and for rock glaciers in particular. We use a novel approach to describe the climate sensitivity of rock glaciers and to reconstruct periods of high and low rock glacier activity in the Tien Shan since 1895. Using more than 1500 growth anomalies from 280 trees growing on rock glacier bodies, repeat aerial photography from Soviet archives and high-resolution satellite imagery, we present here the world's longest record of rock glacier movements. We also demonstrate that the rock glaciers exhibit synchronous periods of activity at decadal timescales. Despite the complex energy-balance processes on rock glaciers, periods of enhanced activity coincide with warm summers, and the annual mass balance of Tuyuksu glacier fluctuates asynchronously with rock glacier activity. At multi-decadal timescales, however, the investigated rock glaciers exhibit site-specific trends reflecting different stages of inactivation, seemingly in response to the strong increase in air temperature since the 1970s. PMID:25657095

  1. Glacier: A Query-to-Hardware Compiler Rene Mueller

    E-print Network

    Teubner, Jens

    Glacier: A Query-to-Hardware Compiler Rene Mueller rene.mueller@inf.ethz.ch Jens Teubner jens systems. In this demonstration we show Glacier, a library and a compiler that can be employed to implement streaming queries as hardware circuits on FPGAs. Glacier consists of a library of compositional hardware

  2. Dating the Cheops Glacier with Lichenometry, Dendrochronology and Air

    E-print Network

    Smith, Dan

    1 Dating the Cheops Glacier with Lichenometry, Dendrochronology and Air Photo Analyses By: Janek ....................................................................... 3 1.1 Background Information ................................................3 1.10 Cirque Glacier.0 Introduction 1.1 Background Information Glacier National Park which was established in 1886 is situated

  3. Glacier: Highly durable, decentralized storage despite massive correlated failures

    E-print Network

    Ives, Zachary G.

    Glacier: Highly durable, decentralized storage despite massive correlated failures Andreas be considered when attempting to provide highly durable storage. In this paper, we describe Glacier failures. Glacier is designed to aggressively minimize the cost of this redun- dancy in space and time

  4. Tracing Increasing Tropical Andean Glacier Melt with Stable Isotopes in

    E-print Network

    McKenzie, Jeffrey M.

    Tracing Increasing Tropical Andean Glacier Melt with Stable Isotopes in Water B R Y A N G . M A R K short-term increases in discharge as glaciers melt and demonstrate the utility of stable isotopes in water for tracing relative glacier melt water contributions to watersheds. Introduction The future

  5. WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1

    E-print Network

    Fountain, Andrew G.

    WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1 Department of Geology Portland State, Washington Abstract. Understanding water movement through a glacier is fundamental to several critical issues glacierized drainage basins. To this end we have synthesized a conceptual model of water movement through

  6. Genetic Analysis of Bull Trout in Glacier National Park

    E-print Network

    Genetic Analysis of Bull Trout in Glacier National Park Report 02/102 Wild Trout and Salmon within Glacier National Park and surrounding watersheds. Bull trout within the park were variable at five also found substantial genetic differentiation among lake populations in the western portion of Glacier

  7. Contrasting responses of Central Asian rock glaciers to global warming.

    PubMed

    Sorg, Annina; Kääb, Andreas; Roesch, Andrea; Bigler, Christof; Stoffel, Markus

    2015-01-01

    While the responses of Tien Shan glaciers--and glaciers elsewhere--to climatic changes are becoming increasingly well understood, this is less the case for permafrost in general and for rock glaciers in particular. We use a novel approach to describe the climate sensitivity of rock glaciers and to reconstruct periods of high and low rock glacier activity in the Tien Shan since 1895. Using more than 1500 growth anomalies from 280 trees growing on rock glacier bodies, repeat aerial photography from Soviet archives and high-resolution satellite imagery, we present here the world's longest record of rock glacier movements. We also demonstrate that the rock glaciers exhibit synchronous periods of activity at decadal timescales. Despite the complex energy-balance processes on rock glaciers, periods of enhanced activity coincide with warm summers, and the annual mass balance of Tuyuksu glacier fluctuates asynchronously with rock glacier activity. At multi-decadal timescales, however, the investigated rock glaciers exhibit site-specific trends reflecting different stages of inactivation, seemingly in response to the strong increase in air temperature since the 1970s. PMID:25657095

  8. Rock glacier monitoring with low-cost GPS

    E-print Network

    Rock glacier monitoring with low-cost GPS: Case study at Dirru glacier, Mattertal Dr. Philippe, Switzerland 05.11.2009 #12;2Goal Description of GPS test network for rock glacier monitoring Data processing & preliminary results - accuracy ? Conclusions & outlook Contents Investigate the potential of low-cost GPS

  9. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram

    NASA Astrophysics Data System (ADS)

    Collier, E.; Maussion, F.; Nicholson, L. I.; Mölg, T.; Immerzeel, W. W.; Bush, A. B. G.

    2015-08-01

    The Karakoram range of the Hindu-Kush Himalaya is characterized by both extensive glaciation and a widespread prevalence of surficial debris cover on the glaciers. Surface debris exerts a strong control on glacier surface-energy and mass fluxes and, by modifying surface boundary conditions, has the potential to alter atmosphere-glacier feedbacks. To date, the influence of debris on Karakoram glaciers has only been directly assessed by a small number of glaciological measurements over short periods. Here, we include supraglacial debris in a high-resolution, interactively coupled atmosphere-glacier modeling system. To investigate glaciological and meteorological changes that arise due to the presence of debris, we perform two simulations using the coupled model from 1 May to 1 October 2004: one that treats all glacier surfaces as debris-free and one that introduces a simplified specification for the debris thickness. The basin-averaged impact of debris is a reduction in ablation of ~ 14 %, although the difference exceeds 5 m w.e. on the lowest-altitude glacier tongues. The relatively modest reduction in basin-mean mass loss results in part from non-negligible sub-debris melt rates under thicker covers and from compensating increases in melt under thinner debris, and may help to explain the lack of distinct differences in recent elevation changes between clean and debris-covered ice. The presence of debris also strongly alters the surface boundary condition and thus heat exchanges with the atmosphere; near-surface meteorological fields at lower elevations and their vertical gradients; and the atmospheric boundary layer development. These findings are relevant for glacio-hydrological studies on debris-covered glaciers and contribute towards an improved understanding of glacier behavior in the Karakoram.

  10. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram

    NASA Astrophysics Data System (ADS)

    Collier, E.; Maussion, F.; Nicholson, L. I.; Mölg, T.; Immerzeel, W. W.; Bush, A. B. G.

    2015-04-01

    The Karakoram range of the Hindu-Kush-Himalaya is characterized by both extensive glaciation and a widespread prevalence of surficial debris cover on the glaciers. Surface debris exerts a strong control on glacier surface-energy and mass fluxes and, by modifying surface boundary conditions, has the potential to alter atmosphere-glacier feedbacks. To date, the influence of debris on Karakoram glaciers has only been directly assessed by a small number of glaciological measurements over short periods. Here, we include supraglacial debris in a high-resolution, interactively coupled atmosphere-glacier modelling system. To investigate glaciological and meteorological changes that arise due to the presence of debris, we perform two simulations using the coupled model from 1 May to 1 October 2004: one that treats all glacier surfaces as debris-free and one that introduces an simplified specification for mapping debris thickness. The basin-averaged impact of debris is a reduction in ablation of ~7%, although the difference exceeds 2.5 m w.e. on the lowest-altitude glacier tongues. The modest reduction in mean mass loss results in part from non-negligible sub-debris melt rates under thicker covers and from compensating increases in melt under thinner debris, and may help to explain the lack of distinct differences in recent elevations changes between clean and debris-covered ice. The presence of debris also strongly alters the surface boundary condition and thus heat exchanges with the atmosphere; near-surface meteorological fields at lower elevations and their vertical gradients; and the atmospheric boundary layer development. These findings are relevant for glacio-hydrological studies on debris-covered glaciers and contribute towards an improved understanding of glacier behaviour in the Karakoram.

  11. Active crustal dynamics in the bend of the southern Alaska orocline, USA

    NASA Astrophysics Data System (ADS)

    Glen, J. M.

    2003-04-01

    The recent M7.9, Nov. 3, 2002 Denali earthquake ruptured along a slip suface extending over 300 km and involved several different faults. This event confirmed that the Totschunda Fault is the currently active strand in eastern Alaska, revealed that strike-slip offset up to 8 m occurs on the McKinley strand, and documented an associated thrust component along a previously unknown east-northeast-trending fault called the Susitna Glacier fault (e.g. Craw et al., 2002). This event supports a kinematic model (Glen, 2002) of oroclinal bending and subsequent advection of crust through the Alaska orocline. In this model, major dextral shear zones, like the Denali and Tintina Faults transport blocks of crust through the bend of the orocline in response to stresses imposed on the western edge of North America by oblique subduction and transcurrent motion along the North American margin. Crustal shortening within the bend, resulting from both an initial bending of the crust to form the orocline and subsequent advection of crust through the orocline, is accommodated by a system of northeast-trending thrust faults. The distribution of northeast trending faults shows a consistent pattern within the bend: the faults appear to intersect at or near, the major dextral shear zones and generally occur west of the orocline’s axis. That these faults occur where deformation would be greatest to crust advected through the bend, indicates that the faults are directly related to crustal dynamics within the bend. This model furthermore predicts the expected sense and timing of motion along many faults (like the Susitna Glacier fault) which otherwise lack or have limited documented histories. In southern Alaska the Yakutat terrane, which is actively accreting and working its way into the bend, likely represents a present-day analog for crustal deformation of interior Alaska. It may therefore provide further clues to the early stages (e.g. post mid-Cretaceous) of crustal deformation in central Alaska.

  12. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... affecting § 81.302 see the List of CFR Sections Affected, which appears in the Finding Aids section of the... South Central Alaska Intrastate AQCR 10 X Southeastern Alaska Intrastate AQCR 11 X Alaska—SO2 Designated... Intrastate AQCR 10 X Southeastern Alaska Intrastate AQCR 11 X Alaska—Carbon Monoxide Designated...

  13. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Editorial Note: For Federal Register citations affecting § 81.302 see the List of CFR Sections Affected... South Central Alaska Intrastate AQCR 10 X Southeastern Alaska Intrastate AQCR 11 X Alaska—SO2 Designated... Intrastate AQCR 10 X Southeastern Alaska Intrastate AQCR 11 X Alaska—Carbon Monoxide Designated...

  14. 2012 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2012-01-01

    As set forth in Alaska Statute 14.43.840, Alaska's Departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this first annual report on the Alaska Performance Scholarship to the public, the Governor,…

  15. Sherman landslide, alaska.

    PubMed

    Shreve, R L

    1966-12-30

    Triggered by the earthquake of 27 March 1964, 3 x 10(7) cubic meters of rock fell 600 meters, then slid at high speed 5 kilometers across the nearly level Sherman glacier near Cordova. The landslide has a number of significant new features in addition to those typical of other large landslides that may have slid on a layer of trapped and compressed air. PMID:17837524

  16. Integration Of Reflectance To Study Glacier Surface Using Landsat 7 ETM+: A Case Study Of The Petermann Glacier In Greenland

    E-print Network

    Gilbes, Fernando

    Integration Of Reflectance To Study Glacier Surface Using Landsat 7 ETM+: A Case Study Of The Petermann Glacier In Greenland Félix O. Rivera Santiago Department Of Geology, University Of Puerto Rico, Mayaguez Campus, P.O. Box 9017 Mayaguez Puerto Rico,00681 Abstract- Glaciers are masses of ice and granular snow

  17. Glacier area and length changes in Norway from repeat inventories

    NASA Astrophysics Data System (ADS)

    Winsvold, S. H.; Andreassen, L. M.; Kienholz, C.

    2014-06-01

    In this study, we assess glacier area and length changes in mainland Norway from repeat Landsat TM/ETM+ derived inventories and digitized topographic maps. The multi-temporal glacier inventory consists of glacier outlines from within three time ranges: 1947 to 1985 (GIn50), 1988 to 1997 (GI1990), and 1999 to 2006 (GI2000). For the northernmost regions, we include an additional inventory (GI1900), based on historic maps surveyed between 1895 to 1907. Area and length changes are assessed per glacier unit, for 36 subregions, and for three main parts of Norway: southern, central and northern Norway. The results show a decrease of the glacierized area from 2994 km2 in GIn50, to 2668 km2 in GI2000 (totally 2722 glacier units), corresponding to an area reduction of -326 km2, or -11% of the initial GIn50 area. This is equivalent to an average change rate of -11 km2 a-1 over the past 30 years. The average length change for the full epoch (within GIn50 and GI2000) is -240 m, corresponding to an average length change rate of -8 m a-1. Overall, the comparison reveals both area and length reduction as a general pattern, even though some glaciers have advanced. The three northernmost glacier regions show the strongest retreat rates, whereas the central part of Norway shows the lowest change rates. Glacier area and length changes indicate that glaciers in maritime areas in southern Norway have retreated more than glaciers in the interior, and glaciers in the north have retreated more than southern glaciers. These observed spatial trends in glacier change are related to a combination of several geographical factors like glacier geometry and elevation, and other climatic aspects, such as continentality and the North Atlantic Oscillation.

  18. Testing geographical and climatic controls on glacier retreat

    NASA Astrophysics Data System (ADS)

    Freudiger, Daphné; Stahl, Kerstin; Weiler, Markus

    2015-04-01

    Glacier melt provides an important part of the summer discharge in many mountainous basins. The understanding of the processes behind the glacier mass losses and glacier retreats observed during the last century is therefore relevant for a sustainable management of the water resources and reliable models for the prediction of future changes. The changes in glacier area of 49 sub-basins of the Rhine River in the Alps were analyzed for the time period 1900-2010 by comparing the glacier areas of Siegfried maps for the years 1900 and 1940 with satellite derived glacier areas for the years 1973, 2003 and 2010. The aim was to empirically investigate the controls of glacier retreat and its regional differences. All glaciers in the glacierized basins retreated over the last 110 years with some variations in the sub-periods. However, the relative changes in glacier area compared to 1900 differed for every sub-basin and some glaciers decreased much faster than others. These observed differences were related to a variety of different potential controls derived from different sources, including mean annual solar radiation on the glacier surface, average slope, mean glacier elevation, initial glacier area, average precipitation (summer and winter), and the precipitation catchment area of the glacier. We fitted a generalized linear model (GLM) and selected predictors that were significant to assess the individual effects of the potential controls. The fitted model explains more than 60% of the observed variance of the relative change in glacier area with the initial area alone only explaining a small proportion. Some interesting patterns emerge with higher average elevation resulting in higher area changes, but steeper slopes or solar radiation resulting in lower relative glacier area changes. Further controls that will be tested include snow transport by wind or avalanches as they play an important role for the glacier mass balance and potentially reduce the changes in glacier area. The derived predictors will be further analyzed and the observed general patterns will be compared to modeling studies of glacier changes.

  19. Contrasting response of South Greenland glaciers to recent climatic change

    SciTech Connect

    Warren, C.R.; Glasser, N.F. )

    1992-05-01

    A unique geographical configuration of glaciers exists in the Narsarsuaq district of South Greenland. Two large outlet glaciers divide into seven distributaries, such that each glacier system has land-terminating, tidewater-calving, and fresh-water-calving termini. Despite a similar climatic regime, these seven glaciers have exhibited strongly contrasting terminal behavior in historical time, as shown by historical records, aerial photographs, and fieldwork in 1989. The behavior of the calving glaciers cannot be accounted for with reference solely to climatic parameters. The combination of iceberg calving dynamics and topographic control has partially decoupled them from climatic forcing such that their oscillations relate more closely to glaciodynamic than glacioclimatic factors.

  20. Sensitivity of glaciers and small ice caps to greenhouse warming.

    PubMed

    Oerlemans, J; Fortuin, J P

    1992-10-01

    Recent field programs on glaciers have supplied information that makes simulation of glacier mass balance with meteorological models meaningful. An estimate of world-wide glacier sensitivity based on a modeling study of 12 selected glaciers situated in widely differing climatic regimes shows that for a uniform 1 K warming the area-weighted glacier mass balance will decrease by 0.40 meter per year. This corresponds to a sea-level rise of 0.58 millimeter per year, a value significantly less than earlier estimates. PMID:17835895

  1. Sensitivity of glaciers and small ice caps to greenhouse warming

    SciTech Connect

    Oerlemans, J.; Fortuin, J.P.F. )

    1992-10-02

    Recent field programs on glaciers have supplied information that makes simulation of glacier mass balance with meteorological models meaningful. An estimate of world-wide glacier sensitivity based on a modeling study of 12 selected glaciers situated in widely differing climatic regimes shows that for a uniform 1 K warming the area-weighted glacier mass balance will decrease by 0.40 meter per year. This corresponds to a sea-level rise of 0.58 millimeter per year, a value significantly less than earlier estimates.

  2. Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska

    USGS Publications Warehouse

    Zander, Paul D.; Kaufman, Darrell S.; Kuehn, Stephen C.; Wallace, Kristi L.; Anderson, R. Scott

    2013-01-01

    Marked changes in sediment types deposited in Cabin Lake, near Cordova, Alaska, represent environmental shifts during the early and late Holocene, including fluctuations in the terminal position of Sheridan Glacier. Cabin Lake is situated to receive meltwater during periods when the outwash plain of the advancing Sheridan Glacier had aggraded. A brief early Holocene advance from 11.2 to 11.0 cal ka is represented by glacial rock flour near the base of the sediment core. Non-glacial lake conditions were restored for about 1000 years before the water level in Cabin Lake lowered and the core site became a fen. The fen indicates drier-than-present conditions leading up to the Holocene thermal maximum. An unconformity spanning 5400 years during the mid-Holocene is overlain by peat until 1110 CE when meltwater from Sheridan Glacier returned to the basin. Three intervals of an advanced Sheridan Glacier are recorded in the Cabin Lake sediments during the late Holocene: 1110–1180, 1260–1540 and 1610–1780 CE. The sedimentary sequence also contains the first five reported tephra deposits from the Copper River delta region, and their geochemical signatures suggest that the sources are the Cook Inlet volcanoes Redoubt, Augustine and Crater Peak, and possibly Mt Churchill in the Wrangell Volcanic field.

  3. Recent Changes in High-Latitude Glaciers, Ice Caps, and Ice Sheets

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2004-12-01

    The mass balance of high-latitude glaciers and ice sheets is highly variable on a wide range of spatial and temporal scales, but through a combination of remote sensing and in situ measurements, some significant changes have been observed in recent years. On the Greenland ice sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism between the ice sheet and a warming climate. Throughout much of the rest of the Arctic, glaciers and ice caps have been shrinking in recent decades, with increased mass losses during the 1990s in parts of Canada and Alaska. The picture is more complicated in the southern hemisphere, where Antarctic ice is growing in some areas, shrinking dramatically in others, and is essentially in balance elsewhere. The West Antarctic Ice Sheet (WAIS) shows thinning along its northern margin, particularly in the glaciers that flow into the Amundsen Sea. The western portions of the WAIS, however, show thickening, but in the aggregate the mass loss is believed to exceed the gain. Changes in the East Antarctic Ice Sheet are small, but we don't know at this point whether it is growing or shrinking. On the Antarctic Peninsula, the rapid disintegration of the Larsen B ice shelf has resulted in acceleration and thinning of a small number of glaciers that once fed the ice shelf. This behavior raises questions about relatively near-term consequences of climate change and the Antarctic Ice Sheet's contribution to sea level rise. These recent observations offer only a snapshot in time of their long-term behavior, but they are providing crucial information about the current state of ice mass balance and the mechanisms that control it. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level.

  4. Annual satellite imaging of the world's glaciers Assessment of glacier extent and change

    E-print Network

    .S. National Research Applications: · Energy Forecasting: Energy for U.S. Northwest derived partly from hydropower. · Community disaster preparedness: Mt Rainer/Tacoma; Alaska. · Water management: Washington

  5. ECOREGIONS OF ALASKA

    EPA Science Inventory

    A map of ecoregions of Alaska has been produced as a framework for organizing and interpreting environmental data for state, national, and international inventory, monitoring, and research efforts. he map and descriptions for 20 ecological regions were derived by synthesizing inf...

  6. Scientists Explore Alaska's Coast

    USGS Multimedia Gallery

    This oblique aerial photograph is of Flaxman Island off the Alaska coast and shows a tapped thermokarst lakes, caribou tracks and ice-rich bluffs that are eroding. Coastal erosion along the Arctic coast is chronic, widespread and potentially accelerating, posing threats to infrastructure important f...

  7. Caribou Along Alaska's Coast

    USGS Multimedia Gallery

    This photograph shows three caribou escape the mosquitos on the mudflats of Kasegaluk Lagoon on the Chukchi Sea coast of Alaska. Coastal erosion along the Arctic coast is chronic, widespread and potentially accelerating, posing threats to infrastructure important for defense and energy purposes, nat...

  8. Scientists Explore Alaska's Coast

    USGS Multimedia Gallery

    This photograph shows snow and ice melt along the rolling hills and coastal bluffs near Cape Sabine on the western Chukchi Sea coast of Alaska. Coastal erosion along the Arctic coast is chronic, widespread and potentially accelerating, posing threats to infrastructure important for defense and energ...

  9. Denali Fault: Alaska Pipeline

    USGS Multimedia Gallery

    View south along the Trans Alaska Pipeline in the zone where it was engineered for the Denali fault. The fault trace passes beneath the pipeline between the 2nd and 3rd slider supports at the far end of the zone. A large arc in the pipe can be seen in the pipe on the right, due to shortening of the ...

  10. Alaska's Cold Desert.

    ERIC Educational Resources Information Center

    Brune, Jeff; And Others

    1996-01-01

    Explores the unique features of Alaska's Arctic ecosystem, with a focus on the special adaptations of plants and animals that enable them to survive in a stressful climate. Reviews the challenges facing public and private land managers who seek to conserve this ecosystem while accommodating growing demands for development. Includes classroom…

  11. Seismology Outreach in Alaska

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  12. Suicide in Northwest Alaska.

    ERIC Educational Resources Information Center

    Travis, Robert

    1983-01-01

    Between 1975 and 1979 the Alaskan Native suicide rate (90.9 per 100,000) in Northwest Alaska was more than seven times the national average. Alienation, loss of family, low income, alcohol abuse, high unemployment, and more education were factors related to suicidal behavior. Average age for suicidal behavior was 22.5. (Author/MH)

  13. Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America

    USGS Publications Warehouse

    Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory

    2013-01-01

    The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. U–Pb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 ± 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 ± 1 Ma followed by rapid cooling through ca. 550 °C at 176 ± 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirine–fluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NE–SW rifting that was followed by NE–SW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ~30 km north and ~100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic – Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and Yukon–Tanana pericratonic terranes of the Canadian–Alaskan Cordillera.

  14. Mapping the retreat of the Asulkan Glacier in Glacier National Park, British Columbia

    E-print Network

    Smith, Dan

    · Dendrochronology with Jacolby · Dendroclimatology with Markus and Kyla · Lichenometry with Erin · Moraine #12;190520071918 #12;Site Map #12;DendrochronologyDendrochronology #12;Dendrochronology · Tree age lichen size and proximity to glacier snout. #12;Moraine Interpretation 3 Approaches: · Dendrochronology

  15. Eicken: GEOS 120 -Glaciers, volcanoes and earthquakes, lecture notes 1 GEOS 120, Part B: GLACIERS

    E-print Network

    layers of Jupiter and Saturn are composed of different types of ices and one of Jupiter's moons, Europa soil layers - on earth, we find glaciers and icesheets on (almost) every continent (in fact, if one

  16. Little Ice Age glaciers in Britain: Glacier–climate modelling in the Cairngorm Mountains

    SciTech Connect

    Stephan Harrison; Ann V. Rowan; Neil F. Glasser; Jasper Knight; Mitchell A. Plummer; Stephanie C. Mills

    2014-02-01

    It is widely believed that the last glaciers in the British Isles disappeared at the end of the Younger Dryas stadial (12.9–11.7 cal. kyr BP). Here, we use a glacier–climate model driven by data from local weather stations to show for the first time that glaciers developed during the Little Ice Age (LIA) in the Cairngorm Mountains. Our model is forced from contemporary conditions by a realistic difference in mean annual air temperature of -1.5 degrees C and an increase in annual precipitation of 10%, and confirmed by sensitivity analyses. These results are supported by the presence of small boulder moraines well within Younger Dryas ice limits, and by a dating programme on a moraine in one cirque. As a result, we argue that the last glaciers in the Cairngorm Mountains (and perhaps elsewhere in upland Britain) existed in the LIA within the last few hundred years, rather than during the Younger Dryas.

  17. Spatial Variation in the Origin of Dissolved Organic Carbon in Snow on the Juneau Icefield, Southeast Alaska.

    PubMed

    Fellman, Jason B; Hood, Eran; Raymond, Peter A; Stubbins, Aron; Spencer, Robert G M

    2015-10-01

    Dissolved organic carbon (DOC) plays a fundamental role in the biogeochemistry of glacier ecosystems. However, the specific sources of glacier DOC remain unresolved. To assess the origin and nature of glacier DOC, we collected snow from 10 locations along a transect across the Juneau Icefield, Alaska extending from the coast toward the interior. The ?(14)C-DOC of snow varied from -743 to -420‰ showing progressive depletion across the Icefield as ?(18)O of water became more depleted (R(2) = 0.56). Older DOC corresponded to lower DOC concentrations in snow (R(2) = 0.31) and a decrease in percent humic-like fluorescence (R(2) = 0.36), indicating an overall decrease in modern DOC across the Icefield. Carbon isotopic signatures ((13)C and (14)C) combined with a three-source mixing model showed that DOC deposited in snow across the Icefield reflects fossil fuel combustion products (43-73%) and to a lesser extent marine (21-41%) and terrestrial sources (1-26%). Our finding that combustion aerosols are a large source of DOC to the glacier ecosystem during the early spring (April-May) together with the pronounced rates of glacier melting in the region suggests that the delivery of relic DOC to the ocean may be increasing and consequently impacting the biogeochemistry of glacial and proglacial ecosystems in unanticipated ways. PMID:26348607

  18. Recent thinning of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Tsutaki, S.; Sugiyama, S.; Sakakibara, D.; Sawagaki, T.; Maruyama, M.

    2014-12-01

    Ice discharge from calving glaciers has increased in the Greenland ice sheet (GrIS), and this increase plays important roles in the volume change of GrIS and its contribution to sea level rise. Thinning of GrIS calving glaciers has been studied by the differentiation of digital elevation models (DEMs) derived by satellite remote-sensing (RS). Such studies rely on the accuracy of DEMs, but calibration of RS data with ground based data is difficult. This is because field data on GrIS calving glaciers are few. In this study, we combined field and RS data to measure surface elevation change of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland (77°41'18?N, 68°29'47?W). The fast flowing part of the glacier is approximately 3 km wide and 10 km long. Ice surface elevation within 6 km from the glacier terminus was surveyed in the field in July 2013 and 2014, by using the global positioning system. We also measured the surface elevation over the glacier on August 20, 2007 and September 4, 2010, by analyzing Advanced Land Observing Satellite (ALOS), Panchromatic remote-sensing Instrument for Stereo Mapping (PRISM) images. We calibrated the satellite derived elevation data with our field measurements, and generated DEM for each year with a 25 m grid mesh. The field data and DEMs were compared to calculate recent glacier elevation change. Mean surface elevation change along the field survey profiles were -16.3±0.2 m (-5.3±0.1 m yr-1) in 2007-2010 and -10.8±0.2 m (-3.8±0.1 m yr-1) in 2010-2013. These rates are much greater than those observed on non-calving ice caps in the region, and similar to those reported for other calving glaciers in northwestern Greenland. Loss of ice was greater near the glacier terminus, suggesting the importance of ice dynamics and/or interaction with the ocean.

  19. A complex relationship between calving glaciers and climate

    USGS Publications Warehouse

    Post, A.; O'Neel, S.; Motyka, R.J.; Streveler, G.

    2011-01-01

    Many terrestrial glaciers are sensitive indicators of past and present climate change as atmospheric temperature and snowfall modulate glacier volume. However, climate interpretations based on glacier behavior require careful selection of representative glaciers, as was recently pointed out for surging and debris-covered glaciers, whose behavior often defies regional glacier response to climate [Yde and Paasche, 2010]. Tidewater calving glaciers (TWGs)mountain glaciers whose termini reach the sea and are generally grounded on the seaflooralso fall into the category of non-representative glaciers because the regional-scale asynchronous behavior of these glaciers clouds their complex relationship with climate. TWGs span the globe; they can be found both fringing ice sheets and in high-latitude regions of each hemisphere. TWGs are known to exhibit cyclic behavior, characterized by slow advance and rapid, unstable retreat, largely independent of short-term climate forcing. This so-called TWG cycle, first described by Post [1975], provides a solid foundation upon which modern investigations of TWG stability are built. Scientific understanding has developed rapidly as a result of the initial recognition of their asynchronous cyclicity, rendering greater insight into the hierarchy of processes controlling regional behavior. This has improved the descriptions of the strong dynamic feedbacks present during retreat, the role of the ocean in TWG dynamics, and the similarities and differences between TWG and ice sheet outlet glaciers that can often support floating tongues.

  20. Effects of volcanism on the glaciers of Mount St. Helens

    USGS Publications Warehouse

    Brugman, Melinda M.; Post, Austin

    1981-01-01

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 km2 (about 0.13 km3) of glacier snow and ice including a large part of Shoestring, Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystalization of snow and ice surviving on Mount St. Helens could cause and lubricate mudflows and generate outburst floods. Study of glaciers that remain on this active volcano may assist in recognizing potential hazards on other volcanoes and lead to new contributions to knowledge of the transient response of glaciers to changes in mass balance or geometry.

  1. Assessing streamflow sensitivity to variations in glacier mass balance

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Arendt, Anthony; Sass, Louis

    2014-01-01

    Quantifying the impacts of changing glacier geometries (annual balance) on glacier runoff is essential for predicting future changes in streamflow in glacierized basins. However, determining the role that this component plays in total glacier runoff (Definition 5) requires consistent measurements of seasonal (or shorter period) mass balances, measurements of precipitation at multiple locations within a basin, and streamflow measurements in close proximity to a glacier’s terminus. Practical and logistical challenges associated with assembling such data sets typically preclude such partitioning. As a result, most analyses of the relationship between annual mass balance and streamflow rely on some component of model output to compute glacier runoff (e.g. Huss et al. 2008; Kaser et al. 2010). Ultimately, developing an understanding of how total gl

  2. SAR investigations of glaciers in northwestern North America

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.; Harrison, William D.

    1995-01-01

    The objective of this project was to investigate the utility of satellite synthetic aperture radar (SAR) imagery for measurement of geophysical parameters on Alaskan glaciers relevant to their mass balance and dynamics, including: (1) the positions of firn lines (late-summer snow lines); (2) surface velocities on fast-flowing (surging) glaciers, and also on slower steady-flow glaciers; and (3) the positions and changes in the positions of glacier termini. Preliminary studies of topography and glacier surface velocity with SAR interferometry have also been carried out. This project was motivated by the relationships of multi-year to decadal changes in glacier geometry to changing climate, and the probable significant contribution of Alaskan glaciers to rising sea level.

  3. Sediment delivery to the Gulf of Alaska: source mechanisms along a glaciated transform margin

    USGS Publications Warehouse

    Dobson, M.R.; O'Leary, D.; Veart, M.

    1998-01-01

    Sediment delivery to the Gulf of Alaska occurs via four areally extensive deep-water fans, sourced from grounded tidewater glaciers. During periods of climatic cooling, glaciers cross a narrow shelf and discharge sediment down the continental slope. Because the coastal terrain is dominated by fjords and a narrow, high-relief Pacific watershed, deposition is dominated by channellized point-source fan accumulations, the volumes of which are primarily a function of climate. The sediment distribution is modified by a long-term tectonic translation of the Pacific plate to the north along the transform margin. As a result, the deep-water fans are gradually moved away from the climatically controlled point sources. Sets of abandoned channels record the effect of translation during the Plio-Pleistocene.

  4. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Kjeldsen, K. K.; Kjær, K. H.; Bevan, S.; Luckman, A.; Aschwanden, A.; Bjørk, A. A.; Korsgaard, N. J.; Box, J. E.; van den Broeke, M.; van Dam, T. M.; Fitzner, A.

    2014-08-01

    Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion of Helheim Glacier thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40-50 m from 1981 to 1998 and major thinning of more than 100 m after 2003. Extending the record back to the end of the Little Ice Age (prior to 1930) shows no thinning of Helheim Glacier from its maximum extent during the Little Ice Age to 1981, while Kangerdlugssuaq Glacier underwent substantial thinning of 230 to 265 m. Comparison of sub-surface water temperature anomalies and variations in air temperature to records of thickness and velocity change suggest that both glaciers are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. On century timescales, however, multiple external parameters (e.g. outlet glacier shape) may dominate the mass change. These findings suggest that special care must be taken in the projection of future dynamic ice loss.

  5. Malaspina Glacier: a modern analog to the Laurentide Glacier in New England

    SciTech Connect

    Gustavson, T.C.; Boothroyd, J.C.

    1985-01-01

    The land-based temperate Malaspina Glacier is a partial analog to the late Wisconsinan Laurentide Ice Sheet that occupied New England and adjacent areas. The Malaspina occupies a bedrock basin similar to basins occupied by the margin of the Laurentide Ice Sheet. Ice lobes of the Malaspina are similar in size to end moraine lobes in southern New England and Long Island,New York. Estimated ice temperature, ablation rates, surface slopes and meltwater discharge per unit of surface area for the Laurentide Ice Sheet are similar to those for the Malaspina Glacier. In a simple hydrologic-fluvial model for the Malaspina Glacier meltwater moves towards the glacier bed and down-glacier along intercrystalline pathways, crevasses and moulins, and a series of tunnels. Regolith and bedrock at the glacier floor, which are eroded and transported by subglacial and englacial streams, are the sources of essentially all fluvio-lacustrine sediment on the Malaspina Foreland. Supraglacial eskers containing coarse gravels occur as much as 100 m above the glacier bed and are evidence that bedload can be lifted hydraulically. Subordinant amounts of sediment are contributed to outwash by small surface streams draining the ice margin. By analogy a similar hydrologic-fluvial system existed along the southeastern margin of the Laurentide Ice Sheet. Subglacial regolith and bedrock eroded from beneath the Laurentide Ice Sheet by meltwater was also the source of most glaciofluvial and glaciolacustrine deposits in southern New England, not sediment carried to the surface of the ice sheet along shear planes and washed off the glacier by meltwater.

  6. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to hunting, fishing and trapping pursuant to the Alaska...

  7. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to hunting, fishing and trapping pursuant to the Alaska...

  8. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to hunting, fishing and trapping pursuant to the Alaska...

  9. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to hunting, fishing and trapping pursuant to the Alaska...

  10. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to hunting, fishing and trapping pursuant to the Alaska...

  11. 'Unlocking the archive': Using photogrammetry of historic aerial photographs to extend the record of glacier change on the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; Fox, Adrian

    2014-05-01

    Changes to glacier fronts and ice shelves and glacier acceleration are well documented, but there is almost no data on mass changes for the more than 400 glaciers on the Antarctic Peninsula. Current research demonstrates that the Antarctic Peninsula is contributing to sea-level change at a similar rate to that of other fast-changing near-polar or large mountain-glacier environments such as Iceland, Patagonia and Alaska (Hock, 2009). Forecasting the future impacts of the Antarctic Peninsula ice sheet on sea level will require a much improved understanding of 20th Century and contemporary glacier mass changes. Satellite data has been used to calculate these changes over the last three decades, but methods to quantify this over a longer time scale have eluded researchers. However, there is an archive of aerial photography of the Antarctic Peninsula dating back to the 1940s, this has been largely ignored due to the range of technical problems associated with deriving quantitative data from historic aerial photographs. This presentation demonstrates how advances in photogrammetric processing and capture of modern aerial photography have allowed this archive to be 'unlocked'. Accurate photogrammetric reconstruction from aerial photographs traditionally requires known ground control points acquired in the field; in remote and inaccessible areas, such as the Antarctic Peninsula, this is often impossible and so has restricted the use of photogrammetric analysis of the available aerial photography. A method for providing control for historic photos without fieldwork on the ground, by linking them to a newly acquired, highly accurate photogrammetric model adjusted through direct kinematic GPS positioning of the camera was developed by Fox and Cziferszky (2008), and this is now being applied to a number of glaciers across the Antarctic Peninsular using Intergraph Photogrammetry Suite (Erdas LPS 2013) software. This presentation will outline the photogrammetric workflow and associated errors using an example glacier from the Antarctic Peninsula to highlight the suitability of this technique and demonstrate the data that can be obtained. The photogrammetric technique that is being employed for this research allows accurate measurements of surface elevation change on glaciers on the Antarctic Peninsula over a 50 year-time span, enabling both spatial and temporal patterns of change and improving understanding of glacier response in this area. The use of this technique opens up possibilities for 'unlocking the archive' in other remote glacial areas where historic aerial photography exists but the collection of ground control points is limited. References: Fox, A. J. and Cziferszky, A. 2008. Unlocking the time capsule of historic aerial photography to measure changes in Antarctic Peninsula glaciers. Photogrammetric Record, 23 (121): 51-68. Hock, R., de Woul, M., Radic, V. and Dyurgerov, M. 2009. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophysical Research Letters, 36, L07501.

  12. Changes in the Surface Area of Glaciers in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khromova, T.; Nosenko, G.

    2012-12-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies the landscape changes in the glacial zone, origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, and etc. The presence of glaciers in itself threats to human life, economic activity and growing infrastructure. Economical and recreational human activity in mountain regions requires relevant information on snow and ice objects. Absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies, their volume and changes The first estimation of glaciers state and glaciers distribution in the big part of Northern Eurasia has been done in the USSR Glacier Inventory published in 1966 -1980 as a part of IHD activity. The Inventory is based on topographic maps and air photos and reflects the status of the glaciers in 1957-1970y. There is information about 23796 glaciers with area of 78222.3 km2 in the Inventory. It covers 23 glacier systems on Northern Eurasia. In the 80th the USSR Glacier Inventory has been transformed in the digital form as a part of the World Glacier Inventory. Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of XX century. In the paper we report about 15 000 glaciers outlines for Caucasus, Pamir, Tien-Shan, Altai, Syntar-Khayata, Cherskogo Range, Kamchatka and Russian Arctic which have been derived from ASTER and Landsat imagery and could be used for glacier changes evaluation. The results show that glaciers are retreating in all these regions. There is, however, a rather large variability in degree of reduction very much depending on special local conditions and this was particularly notable with regard to smaller glaciers.

  13. Panoramic of Glaciers in the Caucasus Moutains

    USGS Multimedia Gallery

    Panoramic photographic mosaic of several glaciers on the northern slope of Gora Elbrus, a volcanic massif in the Central Caucasus Mountains. The photographic survey was done by N. Nikulin in 1957 during the International Geophysical Year. Photograph courtesy of V.M. Kotlyakov, Russian Academy of Sci...

  14. A Facies Model for Temperate Continental Glaciers.

    ERIC Educational Resources Information Center

    Ashley, Gail Mowry

    1987-01-01

    Discusses the presence and dynamics of continental glaciers in the domination of the physical processes of erosion and deposition in the mid-latitudes during the Pleistocene period. Describes the use of a sedimentary facies model as a guide to recognizing ancient temperate continental glacial deposits. (TW)

  15. Rapid ice discharge from southeast Greenland glaciers

    E-print Network

    Rignot, E.; Braaten, David A.; Gogineni, S. Prasad; Krabill, William B.; McConnell, J. R.

    2004-03-25

    [1] Interferometric synthetic-aperture radar (InSAR) observations of southeast Greenland glaciers acquired by the Earth Remote Sensing Satellites (ERS-1/2) in 1996 were combined with ice sounding radar data collected in the late 1990s to estimate a...

  16. GEOMORPHOLOGY Erosion by an Alpine glacier

    E-print Network

    Avouac, Jean-Philippe

    GEOMORPHOLOGY Erosion by an Alpine glacier Frédéric Herman,1 * Olivier Beyssac,2 Mattia Brughelli,1. Cox6 Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes

  17. Geomorphic Consequences of Volcanic Eruptions in Alaska: A Review

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large, with flow volumes in the range of 107–109 m3. A review of the lahars generated during the 2009 eruption of Redoubt volcano will illustrate the geomorphic impacts of lahars on stream channels and riparian habitat. Although much work is needed to develop a comprehensive understanding of the geomorphic consequences of volcanic activity in Alaska, this review provides a synthesis of some of the best-studied eruptions and perhaps will serve as a starting point for future work on this topic.

  18. Geomorphic consequences of volcanic eruptions in Alaska: A review

    NASA Astrophysics Data System (ADS)

    Waythomas, Christopher F.

    2015-10-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta-Katmai eruption, the 1989-1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed. A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment-water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large, with flow volumes in the range of 107-109 m3. A review of the lahars generated during the 2009 eruption of Redoubt volcano will illustrate the geomorphic impacts of lahars on stream channels and riparian habitat. Although much work is needed to develop a comprehensive understanding of the geomorphic consequences of volcanic activity in Alaska, this review provides a synthesis of some of the best-studied eruptions and perhaps will serve as a starting point for future work on this topic.

  19. The first glacier inventory for entire Greenland

    NASA Astrophysics Data System (ADS)

    Rastner, P.; Bolch, T.; Mölg, N.; Le Bris, R.; Paul, F.

    2012-04-01

    Detailed glacier data is becoming more and more important in the last decades to solve several research issues. One of the most prominent questions in this regard is the potential contribution of glaciers and icecaps (GIC) to global sea-level rise. Primarily, estimates are uncertain due to the globally still incomplete information about glacier location and size, as well as large uncertainties in future climate scenarios. Recent studies that calculate global sea-level rise from GIC have developed simplified approaches using information from glacier inventories or gridded data sets and a range of different global climate models and emission scenarios. However, for several strongly glacierized regions very rough assumptions about the ice distribution have to be made and an urgent demand for a globally complete glacier inventory is expressed. The GIC on Greenland are one of the regions with lacking information. Within the EU FP7 project ice2sea we mapped the GIC on Greenland using Landsat TM/ETM+ imagery acquired around the year 2000, along with an additional dataset in the North (DCW - Digital Chart of the World). A digital elevation model (DEM) with 90 m resolution (GIMP DEM) was used to derive drainage divides and henceforth topographic parameters for each entity. A major challenge in this regard is the application of a consistent strategy to separate the local GIC from the ice sheet. For this purpose we have defined different levels of connectivity (CL) of the local GIC with the ice sheet: CL0: Not connected. CL1: Connected but separable (either with drainage divides in the accumulation region or in touch only - and thus separable - in the ablation region). CL2: Connected but non-separable (the local GIC contribute to the flow of an ice sheet outlet in the ablation area). Up to now close to 12'000 GIC (only CL0 and CL1) with a total area of about 129'000 km2 have been mapped considering only entities larger than 0.1 km2. The area of the ice sheet itself is approximately 1'684'000 km2. The entire ice-covered area on Greenland is thus 1'813'000 km2. We will present the results of the GIC mapping along with an analysis of glacier inventory statistics.

  20. Northern Hemisphere Glacier and ice cap surface mass balance and runoff modeling

    NASA Astrophysics Data System (ADS)

    Mernild, S. H.; Liston, G. E.; Hiemstra, C. A.

    2012-12-01

    Mass loss of land-terminating glaciers and ice caps (GIC) has been documented in high-latitude regions, even though repeat observations have been limited. Here, we present new surface simulations for every individual GIC on the Northern Hemisphere north of 25 deg. N latitude and with surface areas greater than or equal to 1 km2. Recent dataset and modeling developments permit relatively high-resolution (1-km horizontal grid; 3-h time step) GIC estimates for 1979 through present. Using MicroMet and SnowModel in conjunction with land cover (the Randolph glacier inventory), topography, and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis data, a distributed and individual GIC dataset was created including air temperature, snow precipitation, winter mass-balance, summer mass-balance, net mass-balance, and freshwater runoff. Regional variability was analyzed to highlight the spatial and temporal variability in mass-balance between GIC in e.g., Alaska, Svalbard, Himalaya, Central Europe, Caucasus, etc., and the GIC contribution to global sea-level rise.

  1. The response of glaciers to climate change

    NASA Astrophysics Data System (ADS)

    Klok, Elisabeth Jantina

    2003-12-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the glacier albedo from satellite images, (2) investigating the spatial distribution of the surface energy and mass balance of a glacier, and (3) investigating the sensitivity of the mass balance to climate change. All of these studies are focused on Morteratschgletscher in Switzerland. The second aspect is the climatic interpretation of glacier length fluctuations. This was studied by developing a model that calculates historical mass balance records from global glacier length fluctuations. To increase our understanding of the variations in glacier albedo, we derived surface albedos from 12 Landsat images. This constituted a stringent test for the retrieval methodology applied because Morteratschgletscher is very steep and rugged, which strongly influences the satellite signal. We aimed to retrieve surface albedos while taking into account all important processes that influence the relationship between the satellite signal and the surface albedo, e.g. the topographic effects on incoming solar radiation, and the anisotropic nature of the reflection pattern of ice and snow surfaces. We then analysed the spatial and temporal pattern of the surface albedo. We developed a two-dimensional mass balance model based on the surface energy balance to study the spatial distribution of the energy and mass balance fluxes of Morteratschgletscher. Meteorological data from weather stations in the vicinity of Morteratschgletscher serve as input for the model. We corrected incoming solar radiation for shading, aspect, slope, reflection from surrounding slopes, and obstruction of the sky. Ignoring these effects results in an increase in solar radiation of 37%, causing a decrease in the mass balance of 0.34 m w.e. We modelled the mass balance for 1999 and 2000 and analysed the spatial distribution. We then ran the model for a period of 23 years and calculated the mass balance sensitivity to climate change by perturbing air temperature and precipitation. The mass balance sensitivity to temperature and precipitation are ˜0.59 m w.e. a-1 K-1 and 0.17 m w.e. a-1 per 10 percent respectively. We also used three other albedo parameterisations to calculate the mass balance sensitivity since albedo parameterisations are often regarded as a main source of error in mass balance models. We concluded that an accurate estimate of the mass balance sensitivity requires a parameterisation that captures the process of a decreasing snow albedo when a snow pack gets older or thinner. To extract a climate signal from worldwide glacier length fluctuations, we developed a simple model. The climate signal is represented as a reconstruction of the mass balance and the equilibrium line altitude (ELA). The model was tested on seventeen European glacier length records and then applied to nineteen glacier length records from different parts of the world. Between 1910 and 1959, the average increase in the reconstructed ELAs is 33 m. This implies that during the first half of the twentieth century, the climate was warmer or drier than before. The reconstructed ELAs decrease to lower elevations after 1960 and up till 1980, when most of the reconstructions end. The results can be translated into a global temperature increase of about 0.8 K for the period 1910-1959

  2. In-situ glacier monitoring in Zackenberg (NE Greenland): Freya Glacier and A.P. Olsen Ice Cap

    NASA Astrophysics Data System (ADS)

    Hynek, Bernhard; Hillerup Larsen, Signe; Binder, Daniel; Weyss, Gernot; Citterio, Michele; Schöner, Wolfgang; Ahlstrøm, Andreas Peter

    2015-04-01

    Due to the scarceness of glacier mass balance measurements from glaciers and local ice caps in East Greenland and the strong impact that local glaciers and ice caps outside the Ice Sheet are expected to exert on sea level rise in the present century, in 2007 and 2008 two glaciological monitoring programmes of peripheral Greenlandic glaciers started to operate near the Zackenberg Research Station in NE Greenland (74° N, 21° W). Freya (Fröya) Glacier is a 6 km long valley glacier situated on Clavering Island 10 km southeast of the Zackenberg research station with a surface area of 5.3 km2 (2013), reaching from 1305 m to 273 m a.s.l. The glacier is mainly oriented to NW and surrounded by high mountain ridges on both sides. A.P. Olsen Ice Cap is a 295 km2 peripheral ice cap located 35 km northeast of Zackenberg. The mass balance monitoring network is situated on the SE outlet glacier reaching from 1425 m to 525 m which drains into the hydrological basin of Zackenberg. This outlet glacier dams a lake which caused several glacial outburst floods within the period of investigation. The two studied glaciers are very close to each other (35 km), but they are complementary in many ways. Apart from the difference in size, which requires different monitoring strategies, Freya Glacier is nearer to the coast and therefore exposed to a more maritime climate with higher winter accumulation. The different area-altitude distribution of both glaciers is one of the main reason for the significantly more positive mean specific mass balance of A.P. Olsen Ice Cap compared to Freya Glacier. In this talk we present the glaciological monitoring on both glaciers and the main results of the first seven years of data.

  3. Volume Change Rates of Southeast Alaskan Icefields from Stacked Digital Elevation Models, 2000-2009/2010

    NASA Astrophysics Data System (ADS)

    Melkonian, A. K.; Elliott, J.; Willis, M. J.; Pritchard, M. E.

    2012-12-01

    We derive volume change rates (dV/dt) for the three major temperate icefields of Southeast Alaska. The Juneau, Stikine, and Glacier Bay icefields cover approximately 14,300 km2 and have recently been contributing disproportionately to sea level rise. In this study we provide estimates of volume change rates between 2000 and 2009/2010 based on near-complete spatial coverage from stacked digital elevations models (DEMs) acquired by the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Our method applies a weighted linear regression to elevations on a pixel-by-pixel basis over each icefield, and we filter out elevations based on deviation from the first elevation (which is SRTM about 90% of the time) to exclude ASTER elevations influenced by clouds, shadow, etc. The maximum positive deviation allowed is ~5 m a-1, which comes from estimates of precipitation in this region and probably overestimates the amount of thickening actually occurring. This large positive constraint means our volume change rates are likely more representative of lower bounds on volume loss. All three icefields are losing volume - the combined rate is approximately -7.7±0.9 km3 a-1, equivalent to a mass loss rate of 6.9±0.8 Gt a-1 assuming a density of 900 kg m3 for the lost material. The area-averaged elevation change rate (dh/dt) is -0.44±0.05 m a-1 w.e., with most loss occurring at the Glacier Bay and Stikine Icefields. Juneau Icefield (~3,900 km2) has a small dV/dt, at -0.3±0.1 km3 a-1. This is due to the positive dV/dt of the Taku Glacier, the largest outlet glacier of the Juneau Icefield. Our results are consistent with previous studies that document the recent advance of Taku and its status as the glacier with the highest positive volume change rate in Alaska. The dh/dt pattern we observe elsewhere over the Juneau Icefield is similar to previous studies, with practically every outlet glacier except Taku experiencing thinning. For example, our 2000-2010 dh/dt for the ablation zone of Mendenhall Glacier (-2 m a-1) is approximately the same as the rate from Motyka et al. (2002) for 1982-2000 (from differencing a 2000 airborne laser altimetry profile with a 1982 DEM and extrapolating), with thinning and retreat continuing. We estimate a dV/dt for Stikine Icefield (~5,200 km2) of -3.8±0.4 km3 a-1, with almost all outlet glaciers thinning. The maximum thinning rates at Stikine are much higher than at the Juneau Icefield, reaching almost -30 m a-1 near the front of Sawyer Glacier. The icefield at Glacier Bay (~5,200 km2) has a dV/dt of -3.5±0.4 km3 a-1. Maximum thinning rates are ~-15 m a-1 near the front of glaciers such as McBride and Grand Plateau. A few other glaciers, e.g. John Hopkins, are characterized by positive dh/dt near their front, though none of these are as large as the Taku Glacier on the Juneau Icefield.

  4. Mapping benefits from updated ifsar data in Alaska: improved source data enables better maps

    USGS Publications Warehouse

    Craun, Kari J.

    2015-01-01

    The U.S. Geological Survey (USGS) and partners in other Federal and State agencies are working collaboratively toward Statewide coverage of interferometric synthetic aperture radar (ifsar) elevation data in Alaska. These data will provide many benefits to a wide range of stakeholders and users. Some applications include development of more accurate and highly detailed topographic maps; improvement of surface water information included in the National Hydrography (NHD) and Watershed Boundary Datasets (WBDs); and use in scientific modeling applications such as calculating glacier surface elevation differences over time and estimating tsunami inundation areas.

  5. A 2000 year varve-based climate record from the central Brooks Range, Alaska

    SciTech Connect

    Bird, B.W.; Abbott, M.B.; Finney, B.P.; Kutchko, Barbara

    2009-01-01

    Varved minerogenic sediments from glacial-fed Blue Lake, northern Alaska, are used to investigate late Holocene climate variability. Varve thickness measurements track summer temperature recorded at Atigun Pass, located 41 km east at a similar elevation (r2 = 0.31, P = 0.08). Results indicate that climate in the Brooks Range from 10 to 730 AD (varve year) was warm with precipitation inferred to be higher than during the twentieth century. The varve-temperature relationship for this period was likely compromised and not used in our temperature reconstruction because the glacier was greatly reduced, or absent, exposing sub-glacial sediments to erosion from enhanced precipitation.

  6. Holocene geologic and climatic history around the Gulf of Alaska

    USGS Publications Warehouse

    Mann, D.H.; Crowell, A.L.; Hamilton, T.D.; Finney, B.P.

    1998-01-01

    Though not as dramatic as during the last Ice Age, pronounced climatic changes occurred in the northeastern Pacific over the last 10,000 years. Summers warmer and drier than today's accompanied a Hypsithermal interval between 9 and 6 ka. Subsequent Neoglaciation was marked by glacier expansion after 5-6 ka and the assembly of modern-type plant communities by 3-4 ka. The Neoglacial interval contained alternating cold and warm intervals, each lasting several hundred years to one millennium, and including both the Medieval Warm Period (ca. AD 900-1350) and the Little Ice Age (ca. AD 1350-1900). Salmon abundance fluctuated during the Little Ice Age in response to local glaciation and probably also to changes in the intensity of the Aleutian Low. Although poorly understood at present, climate fluctuations at all time scales were intimately connected with oceanographic changes in the North Pacific Ocean. The Gulf of Alaska region is tectonically highly active, resulting in a history of frequent geological catastrophes during the Holocene. Twelve to 14 major volcanic eruptions occurred since 12 ka. At intervals of 20-100 years, large earthquakes have raised and lowered sea level instantaneously by meters and generated destructive tsunamis. Sea level has often varied markedly between sites only 50-100 km apart due to tectonism and the isostatic effects of glacier fluctuations.

  7. Increases and fluctuations in thermal activity at Mount Wrangell, Alaska

    SciTech Connect

    Motyka, R.J.

    1983-01-01

    The objectives of this study were to document and interpret changes in thermal activity at two of three craters located on the rim of the ice-filled summit caldera of Mount Wrangell, an active glacier-clad shield volcano in south-central Alaska. The technique of glacier calorimetry was developed, through which changes in the volume of glacier ice in the craters and caldera were measured and related to changes in heat flow. Chemical analysis of gases and acid-thermal waters provided information on the underlying heat source. In 1965, thermal activity began increasing at both the North and West Craters. During the ensuing years, heat flow increased significantly at the North Crater, although in a highly fluctuating manner, while gradually declining at the West Crater. Pulses in heat flow at the North Crater occurred in 1966-68 and 1972-74, with both pulses followed by a four year decline in activity. Increases in heat flow began again in 1978-79 and have continued unabated through the summer of 1983. Over 80% of the 4.4 x 10/sup 7/m/sup 3/ ice volume within the crater in 1966 was melted by 1982, and the meltwaters have drained or evaporated from the crater. The subsequent rapid development of numerous fumaroles, the large dry-gas proportion of SO/sub 2/ (27%), and the inferred presence of gaseous HCl indicate that a shallow degassing magma body is the source of heat driving the thermal system. Seismically induced fracturing above the magma body is hypothesized to explain the initial increases in thermal activity.

  8. Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Hood, Eran; Berner, Logan

    2009-09-01

    Runoff from mountain glaciers and icecaps is a critical control on physical and chemical conditions of aquatic ecosystems in glaciated watersheds. To date, there has been little research on the biogeochemistry of proglacial streams. Here we use a space for time substitution to evaluate how stream water physical conditions and concentrations of carbon, nitrogen, and phosphorus may be altered by diminishing glacial coverage. For a full annual hydrograph, we sampled six watersheds in southeastern Alaska that ranged in glacier coverage from 0 to 55%. We found that during the summer runoff season (May-October), stream water temperature and specific conductivity were negatively correlated with the percentage of the watershed covered by glacial ice, while stream water turbidity showed a significant positive correlation. Stream water concentrations of dissolved organic carbon (DOC) were typically low (0.5-3.0 mg C L-1) and showed a significant trend toward higher concentrations as watershed glacier coverage decreased. Concentrations of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen also increased significantly with decreasing glacial coverage. In contrast, concentrations of soluble reactive phosphorus decreased with lower glacial coverage. Interestingly, we found that the DOC:DON ratio of stream water dissolved organic matter (DOM) decreased with increasing glacier coverage, suggesting that glaciers may be a source of N-rich DOM. During winter low flows (November-April) there were few differences in stream water physical and biogeochemical conditions across the six watersheds as glacial inputs diminished and streamflow was dominated by groundwater. Our findings suggest that in southeastern Alaska ongoing glacial recession and the associated land cover change will impact physical and biogeochemical conditions in coastal streams, with implications for salmon spawning habitat, aquatic ecosystem productivity, and fluxes of reactive nutrients to downstream nearshore marine ecosystems.

  9. Glacier Changes in the Bhutanese Himalaya - Present and Future

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Schaefer, J. M.; Burgener, L. K.; Maurer, J.; Smith, R.; Cook, E.; Putnam, A. E.; Krusic, P.; Tsering, K.; Koenig, L.

    2012-12-01

    Glacierized change in the Himalayas affects river-discharge, hydro-energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. The most conservative results indicate that, even if climate were to remain at the present-day mean values (1980-2000), almost 10% of Bhutan's glacierized area would vanish and the meltwater flux would drop by as much as 30%. New mapping of glacierized area from 2000-2010 shows a significant change in glacierized area of 4-6%. Thus the conservative steady-state area changes predicted by the model are already being realized. Under the conservative scenario of an additional 1°C regional warming, glacier retreat is predicted to continue until about 25% of Bhutan's glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%.

  10. Franz Josef and Fox Glaciers, New Zealand: Historic length records

    NASA Astrophysics Data System (ADS)

    Purdie, Heather; Anderson, Brian; Chinn, Trevor; Owens, Ian; Mackintosh, Andrew; Lawson, Wendy

    2014-10-01

    Compilation of modern and historical length change records for Franz Josef and Fox Glaciers demonstrates that these glaciers have lost ~ 3 km in length and at least 3-4 km2 in area since the 1800s, with the greatest overall loss occurring between 1934 and 1983. Within this dramatic and ongoing retreat, both glaciers have experienced periods of re-advance. The record from Franz Josef Glacier is the most detailed, and shows major advances from 1946 to 1951 (340 m), 1965-1967 (400 m), 1983-1999 (1420 m) and 2004-2008 (280 m). At Fox Glacier the record is similar, with advances recorded during 1964-1968 (60 m), 1985-1999 (710 m) and 2004-2008 (290 m). Apart from the latest advance event, the magnitude of advance has been greater at Franz Josef Glacier, suggesting a higher length sensitivity. Analysis of the relationship between glacier length and a reconstructed annual equilibrium line altitude (ELA) record shows that the glaciers react very quickly to ELA variations - with the greatest correlation at 3-4 years' lag. The present (2014) retreat is the fastest retreat in the records of both glaciers. While decadal length fluctuations have been linked to hemispheric ocean-atmosphere variability, the overall reduction in length is a clear sign of twentieth century warming. However, documenting glacier length changes can be challenging; especially when increased surface debris-cover makes identification of the ‘true’ terminus a convoluted process.

  11. Modelling glacier change in the Everest region, Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Shea, J. M.; Immerzeel, W. W.; Wagnon, P.; Vincent, C.; Bajracharya, S.

    2014-10-01

    In this study, we apply a glacier mass balance and ice redistribution model to simulate historical and future glacier change in the Everest region of Nepal. High-resolution temperature and precipitation fields derived from gridded APHRODITE data, and validated against independent station observations from the EVK2CNR network, are used to drive the historical model from 1961 to 2007. The model is calibrated against geodetically derived estimates of net glacier mass change from 1992 to 2008, termini position of four large glaciers at the end of the calibration period, average velocities observed on selected debris-covered glaciers, and total glacierized area. We integrate field-based observations of glacier mass balance and ice thickness with remotely-sensed observations of decadal glacier change to validate the model. Between 1961 and 2007, the mean modelled volume change over the Dudh Kosi basin is -6.4 ± 1.5 km3, a decrease of 15.6% from the original estimated ice volume in 1961. Modelled glacier area change between 1961 and 2007 is -101.0 ± 11.4 km2, a decrease of approximately 20% from the initial extent. Scenarios of future climate change, based on CMIP5 RCP4.5 and RCP8.5 end members, suggest that glaciers in the Everest region will continue to lose mass through the 21st century. Glaciers in the basin are concentrated between 5000 and 6000 m of elevation, and are thus expected to be sensitive to changes in temperature and equilibrium line altitude (ELA). Glacier volume reductions between -35 to -62% are possible by 2050, and sustained temperature increases to 2100 may result in total glacier volume losses of between -73 and -96%.

  12. Coal resources of Alaska

    SciTech Connect

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  13. Hydrologic reconnaissance of the Chilkat River basin, Southeast Alaska; with special reference to the Alaska Chilkat Bald Eagle Preserve

    USGS Publications Warehouse

    Bugliosi, E.F.

    1988-01-01

    The Chilkat River Basin of Alaska is characterized by glaciers, highly dissected mountains with steep-gradient streams, and braided rivers in broad, alluvium-filled valleys. Orographic effects and a wide seasonal range in temperature cause variations in the amount and distribution of precipitation, and thus in the resulting runoff and streamflow. Seeps and springs flowing from alluvial fans contribute to streamflow year round. Infiltration of water from the Tsirku River and its distributary channels is the most important source of groundwater recharge on the river 's alluvial fan, 20 mi north of Haines. Groundwater discharge along the toe of the fan maintains open leads in a reach of the Chilkat River downstream from the fan. This ice-free reach provides spawning habitat for a late run of salmon, which in turn attracts the world 's largest concentration of bald eagles (more than 3,000 birds). Both surface and groundwater are a calcium bicarbonate type. Stream samples had dissolved-solids concentrations < 115 mg/L; values for groundwater were slightly greater. The glacier-fed Chilkat, Tsirku, and Klehini Rivers carry large concentrations of suspended sediment during periods of high flow. (USGS)

  14. Recent changes of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, Mauro; Huss, Matthias; Hoelzle, Martin

    2013-04-01

    Present knowledge about Alpine glaciers is not representative in terms of glacier size distribution. More than 80% of all Swiss glaciers are smaller than 0.5 km2 and hence belong to the class of very small glaciers. In the context of fast glacier wastage in the European Alps, the near-future development of the size class distribution will most probably be in favour of very small glaciers which will comparably increase in number. However, there has been little research carried out about very small glaciers so far. It is not clear whether findings and theoretical concepts elaborated for medium and large valley glaciers (> 3 km2) can be directly transferred to very small glaciers, whose accumulation patterns are, for instance, characteristically exceptional because winter precipitation is multiplied by wind drift and avalanching. The extent of glaciers in the European Alps has recently been mapped and inventoried spatio-temporally consistently. Nevertheless, such glacier outlines derived by satellite remote-sensing techniques are not accurate enough for the special case of investigating changes in very small glaciers. Therefore, glacier outlines are digitized manually using high-resolution (25 cm) orthophotographs covering the entire Swiss Alps acquired twice for every scene (both in the early and late noughties). In contrast to the known shortcomings of satellite remote-sensing based approaches, the margins of very small glaciers are (with few exceptions) clearly distinguishable on these orthophotos, even in shaded, snow- or debris-covered areas. For the eastern Swiss Alps (east of the rivers Reuss and Ticino), about one third of all glaciers has vanished since 1973. The total area presently still glacierized amounts to 140 km2, whereof very small glaciers cover only 25% but account for almost 90% of the total number of glaciers. Retreat rates are highest for very small glaciers but seem to be stabilizing or even decreasing since the early noughties, implying that many of them have retreated far back into shaded cirques and below headwalls. Downwasting and disintegration into different ice patches has become the dominant process of mass loss. Furthermore, we evaluate changes in ice volume over the last three decades for a large set of Swiss glaciers by combining the glacier outlines for the late noughties with a new precision DEM (swissALTI3D) for the same date with outlines and elevation information from around 1980. Ice volume changes are compared to measured and estimated total glacier ice volume in order to quantify relative volume losses over the last decades. Moreover, annual surface mass balance was determined for three very small glaciers complementing the analysis of recent changes in this glacier size class. Very small glaciers in the Swiss Alps show fast mass loss but the picture is not uniform both in space and time.

  15. Recent Changes in Canada's Arctic Glaciers

    NASA Astrophysics Data System (ADS)

    Sharp, M.; Burgess, D. O.; Copland, L.; Filbert, K.; Williamson, S.

    2004-05-01

    Canada's Arctic islands contain over 110,000 km2 of ice caps and glaciers, the largest area of land ice in the world outside Antarctica and Greenland. This region is projected to experience summer warming of 1-4°C over the next century due to the build-up of greenhouse gases in the atmosphere. The small ice masses in this region are likely to respond more rapidly to this warming than the larger Greenland ice sheet, and they may contribute appreciably to sea level changes over the next century. Glacier mass balance in the region has been persistently negative over the past 40 years. On Devon ice cap, the mass balance of the accumulation zone has become progressively more positive over that period, while that of the ablation zone has become progressively more negative. This suggests that the hydrological cycle in this part of the Arctic has become more vigorous over time. Balance fluxes computed for Devon ice cap were compared with observed fluxes (determined from ice thickness and surface velocity measurements derived from airborne radio echo sounding and SAR interferometry respectively). This comparison suggests that, over most of the ice cap, accumulation areas are thickening at rates of up to 0.15 m a-1, while ablation areas are thinning at rates of up to 0.8 m a-1. The exception is the southeast sector of the ice cap where accumulation areas appear to be thinning at up to 0.3 m a-1. Since 1960, the extent of land ice cover in the Arctic islands has decreased by around 1.8%. Rates of change are largest along the northern and southern coastal fringes of the Arctic Archipelago and lowest in interior regions. The margins of larger ice caps and glaciers terminating on land show little change. Small ice caps and tidewater-terminating outlet glaciers are most strongly affected. This suggests that iceberg calving may have contributed significantly to mass loss in some regions. For Devon ice cap, the calving contribution may be as large as 35%. Volume-area scaling techniques have been used to make a preliminary estimate of the ice volume loss associated with the reduction in ice-covered area. The potential contribution to global sea level is on the order of 1.5mm for the period 1960-2000. A significant number of glaciers show evidence of changes in flow regime, and such changes have resulted in both advances and retreats of glacier margins. Whether these flow regime changes represent normal surge-type behaviour or a response to climate forcing is not yet clear.

  16. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., ?34Ssulfate, ?33Ssulfate, ?18Osulfate, ?18Owater, ?14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 ?M C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology imparts strong feedbacks on the availability of oxygen as an electron acceptor and may be a robust regulator of the in situ metabolism. This biogeochemical regulation in turn affects the chemical nature of subglacial efflux. Blood Falls demonstrates that measurements of geochemistry and microbial diversity can support models of subglacial hydrology.

  17. Active tectonics in Southern Alaska and the role of the Yakutat block constrained by GPS measurements

    NASA Astrophysics Data System (ADS)

    Elliott, Julie

    2011-12-01

    GPS data from southern Alaska and the northern Canadian Cordillera have helped redefine the region's tectonic landscape. Instead of a comparatively simple interaction between the Pacific and North American plates, with relative motion accommodated on a single boundary fault, the margin is made up of a number of small blocks and deformation zones with relative motion distributed across a variety of structures. Much of this complexity can be attributed to the Yakutat block, an allochthonous terrane that has been colliding with southern Alaska since the Miocene. This thesis presents GPS data from across the region and uses it to constrain a tectonic model for the Yakutat block collision and its effects on southern Alaska and eastern Canada. The Yakutat block itself moves NNW at a rate of 50 mm/yr. Along its eastern edge, the Yakutat block is fragmenting into small crustal slivers. Part of the strain from the collision is transferred east of the Fairweather -- Queen Charlotte fault system, causing the region inboard of the Fairweather fault to undergo a distinct clockwise rotation into the northern Canadian Cordillera. About 5% of the relative motion is transferred even further east, causing small northeasterly motions well into the northern Cordillera. Further north, the GPS data and model results indicate that the current deformation front between the Yakutat block and southern Alaska runs along the western side of the Malaspina Glacier. The majority of the ˜37 mm/yr of relative convergence is accommodated along a narrow band of thrust faults concentrated in the southeastern part of the St. Elias orogen. Near the Bering Glacier, the tectonic regime abruptly changes as crustal thrust faults give way to subduction of the Yakutat block beneath the western St. Elias orogen and Prince William Sound. This change aligns with the Gulf of Alaska shear zone, implying that the Pacific plate is fragmenting in response to the Yakutat collision. The Bering Glacier region is undergoing internal deformation and may represent the final stage of accretion of the Yakutat block sedimentary layers. Further west, modeled block motions suggest the crust is laterally escaping along the Aleutian forearc.

  18. Glacier Dynamics and Outburst Flood Potential from the Imja and Thulagi Glacier-Lake Systems (Nepal)

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey; Leonard, Gregory; Regmi, Dhananjay; Haritashya, Umesh; Chand, Mohan; Pradhan, Suresh; Sapkota, Nawaraj; Byers, Alton; Joshi, Sharad; McKinney, Daene; Mool, Pradeep; Somos-Valenzuela, Marcelo; Huggel, Christian

    2015-04-01

    Thulagi and Imja lakes are, according to ICIMOD, among Nepal's most dangerous glacier lakes, i.e., most likely to cause death and destruction in case of a glacier lake outburst flood (GLOF). Imja Lake and the associated Imja and Lhoste-Shar glaciers have been intensively studied; Thulagi Glacier and its lake are much less studied. Collectively, we have undertaken a series of increasingly thorough bathymetric and land surveys and satellite remote sensing analyses of Imja Lake and its glacier setting. We are analyzing several expeditions' data to build a detailed assessment of the glacier and lake to better establish the dynamical evolution of the system and its future GLOF potential. Our most recent, most complete bathymetric survey of Imja Lake has revealed a much greater volume (75,200,000 cubic meters) and maximum depth (149.8 m) than found before. Our analysis suggests that not all possible Imja GLOF scenarios would result in devastation. Some moraine melt-through or down-cutting mechanisms -- perhaps induced by extreme monsoon precipitation or an earthquake -- could generate outbursts lasting from 10,000-100,000 seconds ("slow GLOFs"), thus limiting peak flows and downstream damage. The potential damage from a slow GLOF from Imja Lake -- even if there is a large total volume -- is lessened by the relatively low peak discharge and because the major villages downstream from Imja Lake are situated just outside of and above a deep, broad outwash and debris-flow channel system. Imja and other glaciers in the area have built a large fan, now deeply trenched, which is able to accommodate the peak discharges of potential slow GLOFs, such that Dingboche and other villages would be spared. However, local geomorphology also bears evidence of "fast GLOFs," such as may be issued by a tsunami, which could be initiated by a large mass movement into Imja Lake and which might override and damage the end moraine in <100 seconds. Dingboche and other villages are vulnerable to such a "fast GLOF." Thulagi lake, on the other hand, exhibits a much larger hazard potential even from slow GLOFs simply because downstream developments -- particularly Tal village -- are established on the lowest part of the floodplain of an outwash channel system, and there is a lack of deep channel entrenchment. We will present some details of both glacier-lake systems from our recent bathymetric and satellite remote sensing of glacier behavior and the characteristics of downstream developments to explain why the two lakes pose different likelihoods of causing downstream devastation. Neither system is safe, but the hazards differ.

  19. Quantitative estimates of velocity sensitivity to surface melt variations at a large Greenland outlet glacier

    E-print Network

    Anderson, M. L.; Nettles, M.; Larsen, T. B.; Hamilton, Gordon S.; Stearns, Leigh

    2011-09-01

    The flow speed of Greenland outlet glaciers is governed by several factors, the relative importance of which is poorly understood. The delivery of surface-generated meltwater to the bed of alpine glaciers has been shown to influence glacier flow...

  20. Glacier Meltwater Contributions and Glaciometeorological Regime of the Illecillewaet River Basin, British Columbia,

    E-print Network

    Smith, Dan

    Glacier Meltwater Contributions and Glaciometeorological Regime of the Illecillewaet River Basin This study characterizes the meteorological parameters influencing glacier runoff and quantifies recent glacier contributions to streamflow in the Illecillewaet River basin, British Columbia. The Illecillewaet

  1. Melt water driven stream and groundwater stage fluctuations on a glacier forefield (Dammagletscher, Switzerland)

    E-print Network

    Kirchner, James W.

    Melt water driven stream and groundwater stage fluctuations on a glacier forefield (Dammagletscher, the melt of the remaining glaciers typically drives pronounced diurnal stream level fluctuations information about the subsurface hydrology of alpine watersheds dominated by glacier melt. Copyright © 2012

  2. Integrated research on mountain glaciers: Current status, priorities and future prospects

    E-print Network

    Briner, Jason P.

    Integrated research on mountain glaciers: Current status, priorities and future prospects Lewis A: Glaciation Glaciers Mountains Glaciology Geochronology Modeling Mountain glaciers are sensitive probes; changes in the magnitude and timing of runoff in the mountains and adjacent regions; and, through

  3. Snow glacier melt estimation in tropical Andean glaciers using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Moya Quiroga, V.; Mano, A.; Asaoka, Y.; Kure, S.; Udo, K.; Mendoza, J.

    2013-04-01

    Snow and glacier melt (SGM) estimation plays an important role in water resources management. Although melting process can be modelled by energy balance methods, such studies require detailed data, which is rarely available. Hence, new and simpler approaches are needed for SGM estimations. The present study aims at developing an artificial neural networks (ANN) based technique for estimating the energy available for melt (EAM) and SGM rates using available and easy to obtain data such as temperature, short-wave radiation and relative humidity. Several ANN and multiple linear regression models (MLR) were developed to represent the energy fluxes and estimate the EAM. The models were trained using measured data from the Zongo glacier located in the outer tropics and validated against measured data from the Antizana glacier located in the inner tropics. It was found that ANN models provide a better generalisation when applied to other data sets. The performance of the models was improved by including Antizana data into the training set, as it was proved to provide better results than other techniques like the use of a prior logarithmic transformation. The final model was validated against measured data from the Alpine glaciers Argentière and Saint-Sorlin. Then, the models were applied for the estimation of SGM at Condoriri glacier. The estimated SGM was compared with SGM estimated by an enhanced temperature method and proved to have the same behaviour considering temperature sensibility. Moreover, the ANN models have the advantage of direct application, while the temperature method requires calibration of empirical coefficients.

  4. Mass loss on Himalayan glacier endangers water resources

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie M.; Thompson, Lonnie G.; Tandong, Yao; Mosley-Thompson, Ellen; Schotterer, Ulrich; Alfimov, Vasily; Beer, Jürg; Eikenberg, Jost; Davis, Mary E.

    2008-11-01

    Ice cores drilled from glaciers around the world generally contain horizons with elevated levels of beta radioactivity including 36Cl and 3H associated with atmospheric thermonuclear bomb testing in the 1950s and 1960s. Ice cores collected in 2006 from Naimona'nyi Glacier in the Himalaya (Tibet) lack these distinctive marker horizons suggesting no net accumulation of mass (ice) since at least 1950. Naimona'nyi is the highest glacier (6050 masl) documented to be losing mass annually suggesting the possibility of similar mass loss on other high-elevation glaciers in low and mid-latitudes under a warmer Earth scenario. If climatic conditions dominating the mass balance of Naimona'nyi extend to other glaciers in the region, the implications for water resources could be serious as these glaciers feed the headwaters of the Indus, Ganges, and Brahmaputra Rivers that sustain one of the world's most populous regions.

  5. Glacial cycles and the growth and destruction of Alaska volcanoes

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Calvert, A. T.; Bacon, C. R.

    2014-12-01

    Glaciers have affected profoundly the growth, collapse, preservation, and possibly, eruptive behavior of Quaternary stratovolcanoes in Alaska. Holocene alpine glaciers have acted as effective agents of erosion on volcanoes north of ~55 °N and especially north of 60 °N. Cook Inlet volcanoes are particularly vulnerable as they sit atop rugged intrusive basement as high as 3000 m asl. Holocene glaciers have swept away or covered most of the deposits and dome lavas of frequently active Redoubt (60.5 °N); carved through the flanks of Spurr's active vent, Crater Peak (61.3 °N); and all but obscured the edifice of Hayes (61.6 °N), whose Holocene eruptive history is known almost exclusively though far-traveled tephra and flowage deposits. Relationships between Pleistocene eruptive histories, determined by high-precision Ar-Ar dating of lava flows, and marine oxygen isotope stages (MIS) 2-8 (Bassinot et al., 1994, EPSL, v. 126, p. 91­-108) vary with a volcano's latitude, size, and elevation. At Spurr, 26 ages cluster in interglacial periods. At Redoubt, 28 ages show a more continual eruptive pattern from the end of MIS 8 to the present, with a slight apparent increase in output following MIS 6, and almost no preservation before 220 ka. Veniaminof (56.2 °N) and Emmons (55.5°N), large, broad volcanoes with bases near sea level, had voluminous eruptive episodes during the profound deglaciations after MIS 8 and MIS 6. At Akutan (54.1 °N), many late Pleistocene lavas show evidence for ice contact; ongoing dating will be able to pinpoint ice thicknesses. Furthest south and west, away from thick Pleistocene ice on the Alaska Peninsula and mainland, the Tanaga volcanic cluster (51.9 °N) has a relatively continuous eruptive record for the last 200 k.y. that shows no clear-cut correlation with glacial cycles, except a possible hiatus during MIS 6. Finally, significant edifice collapse features have been temporally linked with deglaciations. A ~10-km3 debris-avalanche deposit from Spurr directly overlies bedrock, suggesting that edifice collapse closely followed MIS 2. The geologic history of Veniaminof suggests possible massive edifice collapse following MIS 6. A stack of westward-dipping lavas and breccias on the east flank of Redoubt Volcano erupted during MIS 6, and may have also failed during the major deglaciation of MIS 5.5.

  6. Snow cover surveys in Alaska from ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Benson, C. S.

    1973-01-01

    September and October ERTS scenes have been analyzed to delineate snow cover patterns in northern Alaska's Brooks Range and on Mt. Wrangell, and active volcano in South Central Alaska. ERTS images demonstrate that the snow on the northern foothills of the Brooks Range are significantly more affected by katabatic wind action than are the southern foothills. Aufeis deposits along arctic rivers also can be identified in late summer. A survey of such aufeis deposits could identify additional summertime sources of fresh water supplies. Images of Mt. Wrangell permit monitoring of the interaction between volcanic heat and the mass balance of glaciers that exist on active volcanoes. Temporal changes in the areas of bare rock on the rim of the caldera on the summit reveal significant melting of new snow from an extensive storm on August 18. Digital analysis of data from subsequent passes over the summit on September 7, 23 and 24 revealed considerable bare rock exposed by melting, which is virtually impossible from solar heating at this altitude and date.

  7. GLACIER FLUCTUATIONS IN THEALPS OVER THE LAST FOURMILLENNIA-PART 3 59 Precisely dated glacier fluctuations in theAlps over the

    E-print Network

    Nicolussi, Kurt

    GLACIER FLUCTUATIONS IN THEALPS OVER THE LAST FOURMILLENNIA-PART 3 59 Precisely dated glacier;?Instituteof GeologicalSciences, Universip$Ben, Ben, Sm'tzerland; WSL,Birmensdolf;Switzerland Mountain glaciers are highly glacier retreat in the European Alps is the most striking en+ronmental evidencefor currentclimaticchange

  8. Alaska Natives In Higher Education.

    ERIC Educational Resources Information Center

    Kohout, Karen; Kleinfeld, Judith

    This study examines changes in the entrance and success rates of Native students in Alaska colleges from 1963 to 1972, a time when special college recruitment and assistance programs were being developed. Information is based on the college records of those Natives who entered college for the first time at the University of Alaska at Fairbanks…

  9. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  10. Glaciers and ice caps outside Greenland

    USGS Publications Warehouse

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (?M) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  11. Holocene cirque glacier activity in Rondane, southern Norway

    NASA Astrophysics Data System (ADS)

    Kvisvik, Bjørn Christian; Paasche, Øyvind; Dahl, Svein Olaf

    2015-10-01

    Skriufonnen is a small cirque glacier (0.03 km2) in the continental mountains of Rondane in southern Norway. At present, it is the only glacier in Rondane, and very little is known about Holocene glacier fluctuations in this region. Direct observations of the glacier began in 2002, since which time Skriufonnen has been in a state of strong decline. In order to provide a temporal context, past glacier fluctuations were reconstructed based on a series of short HTH gravity cores (n = 8) and long piston cores (n = 6) retrieved from three downstream lakes of Skriufonnen. The cores were analysed for selected magnetic properties (?bulk, ARM, SIRM, 77 K/293 K), organic content (LOI), and geochemical trace elements. Soil catchment samples (n = 6) were collected along a transect running from the three lakes up to the present glacier terminus. Bulk susceptibility (?bulk) measurements show that the finest fractions systematically return the highest values and that ferromagnetic minerals are depleted with distance to the glacier front. This means that periods dominated by paramagnetic minerals indicate very little or no glacier activity, whereas intervals with more ferromagnetic minerals suggest increased glacier activity. The quantitative core analyses indicate that Skriufonnen existed prior to 10,200 b2k (years before A.D. 2000) and disappeared ~ 10,000 b2k. No glacier activity is recorded from c. 10,000 b2k until the glacier reoccurred at the onset of the local Neoglacial period, c. 4000 b2k. The glacier attained its maximum extent between 3200 and 2400 b2k and during the end of the 'Little Ice Age' (LIA) c. A.D. 1800. Neoglacial fluctuations of Skriufonnen are in line with shifts in local summer temperatures and show a delayed Neoglacial inception compared to western Norway.

  12. Quality controlled glacier inventory in high Asian mountains

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Nuimura, T.; Taniguchi, K.; Lamsal, D.; Nagai, H.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; Tsunematsu, K.; Tshering, P.; Fujita, K.; Okamoto, S.

    2013-12-01

    Glacier inventories provide a basic information for the water resources, glacier mass balance and ice volume at continental areas. Although glaciers in the Asian mountain are thought to play an important role for the regional water resources (Immerzeel et al., 2010), glacier distribution in the Asia have been poorly understood. Our GAMDAM (Glacier Area Mapping for Discharge in Asian Mountains) project have conducted to establish a glacier inventory with the aim of estimating glacier runoff contribution to river runoff. Our target region covers the High Mountain Asia, extending from 27 to 52 degrees N and from 68 to 104 degrees E. Glacier outlines were manually delineated using more than 260 of LANDSAT images taken from 1999 to 2003. Thermal infrared band was also used to delineate termini of debris-covered glaciers with help of high resolution images on Google Earth. The manual delineation has been conducted for more than two years by 5-7 operators. We conducted several tests, along which the operators delineated the same regions, and assessed the quality and criteria, and fed them back to the operators. At the end of June 2013, the inventory was completed 80% with about 63000 glaciers covering 7.8 × 10^4 km^2. Median elevation of glaciers has been interpreted as a proxy for the equilibrium line altitude (ELA), at which the accumulation and ablation were equal and thus the mass balance was zero (Braithwaite and Raper, 2009). Distribution of the median altitude derived from the GAMDAM glacier inventory was well consistent with that previously reported (Shi et al., 1980).

  13. Geochemical evidence for the origin of late Quaternary loess in central Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.

    2006-01-01

    Loess is extensive in central Alaska, but there are uncertainties about its source and the direction of paleo-winds that deposited it. Both northerly and southerly winds have been inferred. The most likely sources of loess are the Tanana River (south), the Nenana River (southeast), and the Yukon River (north). Late Quaternary loess in central Alaska has immobile trace-element compositions (Cr/Sc, Th/Ta, Th/ Sc, Th/U, Eu/Eu*, GdN/YbN) that indicate derivation mostly from the Tanana River. However, other ratios (As/Sb, Zr/Hf, LaN/YbN) and quantitative modeling indicate that the Yukon River was also a source. During the last glacial period, there may have been a longer residence time of the Siberian and Canadian high-pressure cells, along with a strengthened Aleutian low-pressure cell. This would have generated regional-scale northeasterly winds and explains derivation of loess from the Yukon River. However, superim-posed upon this synoptic-scale circulation, there may have been strong, southerly katabatic winds from expanded glaciers on the northern flank of the Alaska Range. These winds could have provided eolian silt from the Tanana River. Yukon River and Tanana River sediments are highly calcareous, whereas Fairbanks-area loess is not. This suggests that carbonate leaching in loess kept ahead of sedimentation and that late Quaternary loess in central Alaska was deposited relatively slowly. ?? 2006 NRC Canada.

  14. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Editorial Note: For Federal Register citations affecting § 81.302 see the List of CFR Sections Affected... South Central Alaska Intrastate AQCR 10 X Southeastern Alaska Intrastate AQCR 11 X Alaska—1971 Sulfur... Intrastate AQCR 11 X Alaska—Carbon Monoxide Designated Area Designation Date 1 Type Classification Date...

  15. 2013 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2013-01-01

    In accordance with Alaska statute the departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this second annual report on the Alaska Performance Scholarship (APS). Among the highlights: (1) In the public…

  16. Reyes et al., p. 1 DATA REPOSITORY ITEM FOR: Expansion of alpine glaciers in Pacific North

    E-print Network

    Barclay, David J.

    Reyes et al., p. 1 DATA REPOSITORY ITEM FOR: Expansion of alpine glaciers in Pacific North America in the first millennium A.D. Site Latitude Longitude (ºN) (ºW) Lillooet Glacier 50º45' 123º46' Bridge Glacier 50º49' 123º29' Miserable Glacier 51°04' 123°52' Tiedemann Glacier 51º21' 124º56' Frank Mackie Glacier

  17. An evaluation of errors of Himalayan glacier outlines