Sample records for tallinna brsi katsejnes

  1. Surface correlation behaviors of metal-organic Langmuir-Blodgett films on differently passivated Si(001) surfaces

    NASA Astrophysics Data System (ADS)

    Bal, J. K.; Kundu, Sarathi

    2013-03-01

    Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.

  2. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil.

    PubMed

    Fatima, Kaneez; Afzal, Muhammad; Imran, Asma; Khan, Qaiser M

    2015-03-01

    Different grasses and trees were tested for their growth in a crude oil contaminated soil. Three grasses, Lolium perenne, Leptochloa fusca, Brachiaria mutica, and two trees, Lecucaena leucocephala and Acacia ampliceps, were selected to investigate the diversity of hydrocarbon-degrading rhizospheric and endophytic bacteria. We found a higher number of hydrocarbon degrading bacteria associated with grasses than trees and that the endophytic bacteria were taxonomically different from rhizosphere associated bacteria showing their spatial distribution with reference to plant compartment as well as genotype. The rhizospheric soil yielded 22 (59.45 %), root interior yielded 9 (24.32 %) and shoot interior yielded 6 (16.21 %) hydrocarbon-degrading bacteria. These bacteria possessed genes encoding alkane hydroxylase and showed multiple plant growth-promoting activities. Bacillus (48.64 %) and Acinetobacter (18.91 %) were dominant genera found in this study. At 2 % crude oil concentration, all bacterial isolates exhibited 25 %-78 % oil degradation and Acinetobacter sp. strain BRSI56 degraded maximum. Our study suggests that for practical application, support of potential bacteria combined with the grasses is more effective approach than trees to remediate oil contaminated soils.

  3. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil.

    PubMed

    Fatima, K; Imran, A; Amin, I; Khan, Q M; Afzal, M

    2016-04-01

    Plants coupled with endophytic bacteria hold great potential for the remediation of polluted environment. The colonization patterns and activity of inoculated endophytes in rhizosphere and endosphere of host plant are among the primary factors that may influence the phytoremediation process. However, these colonization patterns and metabolic activity of the inoculated endophytes are in turn controlled by none other than the host plant itself. The present study aims to determine such an interaction specifically for plant-endophyte systems remediating crude oil-contaminated soil. A consortium (AP) of two oil-degrading endophytic bacteria (Acinetobacter sp. strain BRSI56 and Pseudomonas aeruginosa strain BRRI54) was inoculated to two grasses, Brachiaria mutica and Leptochloa fusca, vegetated in crude oil-contaminated soil. Colonization patterns and metabolic activity of the endophytes were monitored in the rhizosphere and endosphere of the plants. Bacterial augmentation enhanced plant growth and crude oil degradation. Maximum crude oil degradation (78%) was achieved with B. mutica plants inoculated with AP consortium. This degradation was significantly higher than those treatments, where plants and bacteria were used individually or L. fusca and endophytes were used in combination. Moreover, colonization and metabolic activity of the endophytes were higher in the rhizosphere and endosphere of B. mutica than L. fusca. The plant species affected not only colonization pattern and biofilm formation of the inoculated bacteria in the rhizosphere and endosphere of the host plant but also affected the expression of alkane hydroxylase gene, alkB. Hence, the investigation revealed that plant species can affect colonization patterns and metabolic activity of inoculated endophytic bacteria and ultimately the phytoremediation process.

  4. Rare earth (Eu{sup 3+}, Tb{sup 3+}) mesoporous hybrids with calix[4]arene derivative covalently linking MCM-41: Physical characterization and photoluminescence property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yajuan; Yan Bing, E-mail: byan@tongji.edu.cn; Wang Li

    2011-09-15

    MCM-41 mesoporous silica has been functionalized with two kinds of macrocylic calixarene derivatives Calix[4] and Calix[4]Br (Calix[4]=P-tert-butylcalix[4]arene, Calix[4]Br=5.11,17.23-tetra-tert-butyl-25.27-bihydroxy- 26.28-bibromopropoxycalix[4]arene) through condensation approach of tetraethoxysilane (TEOS) in the presence of the cetyltrimethylammonium bromide (CTAB) surfactant as a template. Novel organic-inorganic mesoporous luminescent hybrid containing RE{sup 3+} (Eu{sup 3+}, Tb{sup 3+}) complexes covalently attached to the functionalized ordered mesoporous MCM-41, which are designated as RE-Calix[4]-MCM-41 and RE-Calix[4]Br-MCM-41, respectively, are obtained by sol-gel process. It is found that they all have high surface area, uniform in the mesostructure and good crystallinity. Measurement of the photoluminescence properties show the mesoporous material covalently bonded Tb{supmore » 3+} complexes (Tb-Calix[4]-MCM-41 and Tb-Calix[4]Br-MCM-41) exhibit the stronger characteristic emission of Tb{sup 3+} and longer lifetime than the corresponding Eu-containing materials Eu-Calix[4]-MCM-41 and Eu-Calix[4]Br-MCM-41 due to the triplet state energy of modified organic ligands Calix[4]-Si and Calix[4]Br-Si match with the emissive energy level of Tb{sup 3+} very well. - Graphical abstract: MCM-41 mesoporous silica is functionalized with two kinds of macrocylic calixarene derivatives and luminescent organic-inorganic mesoporous hybrids containing Ln{sup 3+} complexes covalently attached to the functionalized ordered mesoporous MCM-41. Highlights: > Novel linkages of functionalized calixarene derivative. > New rare earth mesoporous hybrids. > Luminescence in visible region.« less