Sample records for talpid3 gene kiaa0586

  1. TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)

    PubMed Central

    Stephen, Louise A; Tawamie, Hasan; Davis, Gemma M; Tebbe, Lars; Nürnberg, Peter; Nürnberg, Gudrun; Thiele, Holger; Thoenes, Michaela; Boltshauser, Eugen; Uebe, Steffen; Rompel, Oliver; Reis, André; Ekici, Arif B; McTeir, Lynn; Fraser, Amy M; Hall, Emma A; Mill, Pleasantine; Daudet, Nicolas; Cross, Courtney; Wolfrum, Uwe; Jamra, Rami Abou; Davey, Megan G; Bolz, Hanno J

    2015-01-01

    Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional patients with JBTS. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse photoreceptors, as is common for JBTS proteins, and also in pericentriolar locations. We show that loss of TALPID3 (KIAA0586) function in animal models causes abnormal tissue polarity, centrosome length and orientation, and centriolar satellites. We propose that JBTS and other ciliopathies may in part result from cell polarity defects. DOI: http://dx.doi.org/10.7554/eLife.08077.001 PMID:26386247

  2. The chicken talpid3 gene encodesa novel protein essentialfor Hedgehog signaling

    PubMed Central

    Davey, Megan G.; Paton, I. Robert; Yin, Yili; Schmidt, Maike; Bangs, Fiona K.; Morrice, David R.; Smith, Terence Gordon; Buxton, Paul; Stamataki, Despina; Tanaka, Mikiko; Münsterberg, Andrea E.; Briscoe, James; Tickle, Cheryll; Burt, Dave W.

    2006-01-01

    Talpid3 is a classical chicken mutant with abnormal limb patterning and malformations in other regions of the embryo known to depend on Hedgehog signaling. We combined the ease of manipulating chicken embryos with emerging knowledge of the chicken genome to reveal directly the basis of defective Hedgehog signal transduction in talpid3 embryos and to identify the talpid3 gene. We show in several regions of the embryo that the talpid3 phenotype is completely ligand independent and demonstrate for the first time that talpid3 is absolutely required for the function of both Gli repressor and activator in the intracellular Hedgehog pathway. We map the talpid3 locus to chromosome 5 and find a frameshift mutation in a KIAA0586 ortholog (ENSGALG00000012025), a gene not previously attributed with any known function. We show a direct causal link between KIAA0586 and the mutant phenotype by rescue experiments. KIAA0586 encodes a novel protein, apparently specific to vertebrates, that localizes to the cytoplasm. We show that Gli3 processing is abnormal in talpid3 mutant cells but that Gli3 can still translocate to the nucleus. These results suggest that the talpid3 protein operates in the cytoplasm to regulate the activity of both Gli repressor and activator proteins. PMID:16702409

  3. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome

    PubMed Central

    Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie

    2015-01-01

    KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. PMID:26166481

  4. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome.

    PubMed

    Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie

    2015-08-06

    KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome

    PubMed Central

    Roosing, Susanne; Hofree, Matan; Kim, Sehyun; Scott, Eric; Copeland, Brett; Romani, Marta; Silhavy, Jennifer L; Rosti, Rasim O; Schroth, Jana; Mazza, Tommaso; Miccinilli, Elide; Zaki, Maha S; Swoboda, Kathryn J; Milisa-Drautz, Joanne; Dobyns, William B; Mikati, Mohamed A; İncecik, Faruk; Azam, Matloob; Borgatti, Renato; Romaniello, Romina; Boustany, Rose-Mary; Clericuzio, Carol L; D'Arrigo, Stefano; Strømme, Petter; Boltshauser, Eugen; Stanzial, Franco; Mirabelli-Badenier, Marisol; Moroni, Isabella; Bertini, Enrico; Emma, Francesco; Steinlin, Maja; Hildebrandt, Friedhelm; Johnson, Colin A; Freilinger, Michael; Vaux, Keith K; Gabriel, Stacey B; Aza-Blanc, Pedro; Heynen-Genel, Susanne; Ideker, Trey; Dynlacht, Brian D; Lee, Ji Eun; Valente, Enza Maria; Kim, Joon; Gleeson, Joseph G

    2015-01-01

    Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. DOI: http://dx.doi.org/10.7554/eLife.06602.001 PMID:26026149

  6. Knockout Mice for Dyslexia Susceptibility Gene Homologs KIAA0319 and KIAA0319L have Unaffected Neuronal Migration but Display Abnormal Auditory Processing

    PubMed Central

    Guidi, Luiz G; Mattley, Jane; Martinez-Garay, Isabel; Monaco, Anthony P; Linden, Jennifer F; Velayos-Baeza, Antonio

    2017-01-01

    Abstract Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system. PMID:29045729

  7. KIAA0319 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children

    PubMed Central

    Zhao, Hua; Chen, Yun; Zhang, Bao-ping; Zuo, Peng-xiang

    2016-01-01

    The gene KIAA0319 has been reported to be associated with developmental dyslexia (DD) in previous studies, although the results have not always been consistent. However, few studies have been conducted in Uyghur populations. In the present study, we aimed to investigate the association of KIAA0319 polymorphisms and DD in individuals of Uyghurian descent. We used a custom-by-design 48-Plex SNPscan Kit to genotype 18 single-nucleotide polymorphisms (SNPs) of KIAA0319 in a group of 196 children with dyslexia and 196 controls of Uyghur descent aged 8–12 years. As a result, 7 SNPs (Pmin=0.001) of KIAA0319 had nominal significant differences between the cases and controls under specific genotypic models. The two SNPs rs6935076 (P=0.020 under dominant model; P=0.028 under additive model) and rs3756821 (P=0.021 under additive model) remained significantly associated with dyslexia after Bonferroni correction. Linkage disequilibrium analysis showed three blocks within KIAA0319, and only a 10-SNP haplotype in block 3 was present at significantly different frequencies in the dyslexic children and controls. This study indicated that genetic polymorphisms of KIAA0319 are associated with an increased risk of DD in the Uyghur population. PMID:27098879

  8. The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2

    USDA-ARS?s Scientific Manuscript database

    talpid2 is an avian autosomal recessive mutant with a myriad of congenital malformations, including polydactyly and facial clefting. Although phenotypically similar to talpid3, talpid2 has a distinct facial phenotype and an unknown cellular, molecular and genetic basis. We set out to determine the e...

  9. Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice.

    PubMed

    Martinez-Garay, Isabel; Guidi, Luiz G; Holloway, Zoe G; Bailey, Melissa A G; Lyngholm, Daniel; Schneider, Tomasz; Donnison, Timothy; Butt, Simon J B; Monaco, Anthony P; Molnár, Zoltán; Velayos-Baeza, Antonio

    2017-04-01

    Developmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319.

  10. Mutations in the KIAA0196 Gene at the SPG8 Locus Cause Hereditary Spastic Paraplegia

    PubMed Central

    Valdmanis, Paul N.; Meijer, Inge A.; Reynolds, Annie; Lei, Adrienne; MacLeod, Patrick; Schlesinger, David; Zatz, Mayana; Reid, Evan; Dion, Patrick A.; Drapeau, Pierre; Rouleau, Guy A.

    2007-01-01

    Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. The eighth HSP locus, SPG8, is on chromosome 8p24.13. The three families previously linked to the SPG8 locus present with relatively severe, pure spastic paraplegia. We have identified three mutations in the KIAA0196 gene in six families that map to the SPG8 locus. One mutation, V626F, segregated in three large North American families with European ancestry and in one British family. An L619F mutation was found in a Brazilian family. The third mutation, N471D, was identified in a smaller family of European origin and lies in a spectrin domain. None of these mutations were identified in 500 control individuals. Both the L619 and V626 residues are strictly conserved across species and likely have a notable effect on the structure of the protein product strumpellin. Rescue studies with human mRNA injected in zebrafish treated with morpholino oligonucleotides to knock down the endogenous protein showed that mutations at these two residues impaired the normal function of the KIAA0196 gene. However, the function of the 1,159-aa strumpellin protein is relatively unknown. The identification and characterization of the KIAA0196 gene will enable further insight into the pathogenesis of HSP. PMID:17160902

  11. KIAA1549-BRAF fusions and IDH mutations can coexist in diffuse gliomas of adults.

    PubMed

    Badiali, Manuela; Gleize, Vincent; Paris, Sophie; Moi, Loredana; Elhouadani, Selma; Arcella, Antonietta; Morace, Roberta; Antonelli, Manila; Buttarelli, Francesca Romana; Figarella-Branger, Dominique; Kim, Young-Ho; Ohgaki, Hiroko; Mokhtari, Karima; Sanson, Marc; Giangaspero, Felice

    2012-11-01

    KIAA1549-BRAF fusion gene and isocitrate dehydrogenase (IDH) mutations are considered two mutually exclusive genetic events in pilocytic astrocytomas and diffuse gliomas, respectively. We investigated the presence of the KIAA1549-BRAF fusion gene in conjunction with IDH mutations and 1p/19q loss in 185 adult diffuse gliomas. Moreover BRAF(v600E) mutation was also screened. The KIAA1549-BRAF fusion gene was evaluated by reverse-transcription polymerase chain reaction (RT-PCR) and sequencing. We found IDH mutations in 125 out 175 cases (71.4%). There were KIAA1549-BRAF fusion gene in 17 out of 180 (9.4%) cases and BRAF(v600E) in 2 out of 133 (1.5%) cases. In 11 of these 17 cases, both IDH mutations and the KIAA1549-BRAF fusion were present, as independent molecular events. Moreover, 6 of 17 cases showed co-presence of 1p/19q loss, IDH mutations and KIAA1549-BRAF fusion. Among the 17 cases with KIAA1549-BRAF fusion gene 15 (88.2%) were oligodendroglial neoplasms. Similarly, the two cases with BRAF(v600E) mutation were both oligodendroglioma and one had IDH mutations and 1p/19q co-deletion. Our results suggest that in a small fraction of diffuse gliomas, KIAA1549-BRAF fusion gene and BRAF(v600E) mutation may be responsible for deregulation of the Ras-RAF-ERK signaling pathway. Such alterations are more frequent in oligodendroglial neoplasm and may be co-present with IDH mutations and 1p/19q loss. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  12. Delineation of the KIAA2022 mutation phenotype: two patients with X-linked intellectual disability and distinctive features.

    PubMed

    Kuroda, Yukiko; Ohashi, Ikuko; Naruto, Takuya; Ida, Kazumi; Enomoto, Yumi; Saito, Toshiyuki; Nagai, Jun-Ichi; Wada, Takahito; Kurosawa, Kenji

    2015-06-01

    Next-generation sequencing has enabled the screening for a causative mutation in X-linked intellectual disability (XLID). We identified KIAA2022 mutations in two unrelated male patients by targeted sequencing. We selected 13 Japanese male patients with severe intellectual disability (ID), including four sibling patients and nine sporadic patients. Two of thirteen had a KIAA2022 mutation. Patient 1 was a 3-year-old boy. He had severe ID with autistic behavior and hypotonia. Patient 2 was a 5-year-old boy. He also had severe ID with autistic behavior, hypotonia, central hypothyroidism, and steroid-dependent nephrotic syndrome. Both patients revealed consistent distinctive features, including upswept hair, narrow forehead, downslanting eyebrows, wide palpebral fissures, long nose, hypoplastic alae nasi, open mouth, and large ears. De novo KIAA2022 mutations (p.Q705X in Patient 1, p.R322X in Patient 2) were detected by targeted sequencing and confirmed by Sanger sequencing. KIAA2022 mutations and alterations have been reported in only four families with nonsyndromic ID and epilepsy. KIAA2022 is highly expressed in the fetal and adult brain and plays a crucial role in neuronal development. These additional patients support the evidence that KIAA2022 is a causative gene for XLID. © 2015 Wiley Periodicals, Inc.

  13. [Expression and clinical significance of KIAA1199 in primary hepatocellular carcinoma].

    PubMed

    Gu, C J; Ni, Q C; Ni, K; Zhang, S; Qian, H X

    2018-05-29

    Objective: To investigate the expression and clinical significance of KIAA1199 in primary hepatocellular carcinoma. Methods: A total of 136 cases of primary hepatocellular carcinoma tissues and paired adjacent tissues were collected. Immunohistochemistry and Western blot were used to detect the expression of KIAA1199 in primary hepatocellular carcinoma tissues and paired adjacent tissues. The relationship between KIAA1199 and clinicopathological parameter of primary hepatocellular carcinoma was analyzed. Results: The positive rate of KIAA1199 in primary hepatocellular carcinoma was 82.3% (112/136), which was higher than that in paired para-cancerous tissues (14.7%, 20/136). High expression of KIAA1199 was significantly correlated with age, cirrhosis history, tumor size, tumor number, degree of differentiation, TNM staging and microvenous invasion (MVI) ( P <0.05), but without gender, drinking alcohol hobby, hepatitis history, family genetic history, tumor location ( P >0.05). The Kaplan-Meier survival curves indicated that high KIAA1199 expression was associated with poor survival ( P <0.01). In addition, Cox proportional hazards model showed that the expression of KIAA1199 was related to age, cirrhosis history, tumor size, tumor number, degree of differentiation, TNM staging and MVI ( P <0.05). Conclusion: The expression of KIAA1199 is up-regulated in primary hepatocellular carcinoma, which is significantly correlated with the clinicopathological features and prognosis, high expression of KIAA1199 increased the risk of death in patients with primary hepatocellular carcinoma.

  14. Association of a Novel Nonsense Mutation in KIAA1279 with Goldberg-Shprintzen Syndrome.

    PubMed

    Salehpour, Shadab; Hashemi-Gorji, Feyzollah; Soltani, Ziba; Ghafouri-Fard, Soudeh; Miryounesi, Mohammad

    2017-01-01

    Goldberg-Shprintzen syndrome (OMIM 609460) (GOSHS) is an autosomal recessive multiple congenital anomaly syndrome distinguished by intellectual disability, microcephaly, and dysmorphic facial characteristics. Most affected individuals also have Hirschsprung disease and/or gyral abnormalities of the brain. This syndrome has been associated with KIAA1279 gene mutations at 10q22.1. Here we report a 16 yr old male patient referred to Center for Comprehensive Genetic Services, Tehran, Iran in 2015 with cardinal features of GOSHS in addition to refractory seizures. Whole exome sequencing in the patient revealed a novel nonsense (stop gain) homozygous mutation in KIAA1279 gene (KIAA1279: NM_015634:exon6:c.C976T:p.Q326X). Considering the wide range of phenotypic variations in GOSHS, relying on phenotypic characteristics for discrimination of GOSH from similar syndromes may lead to misdiagnosis. Consequently, molecular diagnostic tools would help in accurate diagnosis of such overlapping phenotypes.

  15. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness

    PubMed Central

    2014-01-01

    Background KIAA1199 is a recently identified novel gene that is up-regulated in human cancer with poor survival. Our proteomic study on signaling polarity in chemotactic cells revealed KIAA1199 as a novel protein target that may be involved in cellular chemotaxis and motility. In the present study, we examined the functional significance of KIAA1199 expression in breast cancer growth, motility and invasiveness. Methods We validated the previous microarray observation by tissue microarray immunohistochemistry using a TMA slide containing 12 breast tumor tissue cores and 12 corresponding normal tissues. We performed the shRNA-mediated knockdown of KIAA1199 in MDA-MB-231 and HS578T cells to study the role of this protein in cell proliferation, migration and apoptosis in vitro. We studied the effects of KIAA1199 knockdown in vivo in two groups of mice (n = 5). We carried out the SILAC LC-MS/MS based proteomic studies on the involvement of KIAA1199 in breast cancer. Results KIAA1199 mRNA and protein was significantly overexpressed in breast tumor specimens and cell lines as compared with non-neoplastic breast tissues from large-scale microarray and studies of breast cancer cell lines and tumors. To gain deeper insights into the novel role of KIAA1199 in breast cancer, we modulated KIAA1199 expression using shRNA-mediated knockdown in two breast cancer cell lines (MDA-MB-231 and HS578T), expressing higher levels of KIAA1199. The KIAA1199 knockdown cells showed reduced motility and cell proliferation in vitro. Moreover, when the knockdown cells were injected into the mammary fat pads of female athymic nude mice, there was a significant decrease in tumor incidence and growth. In addition, quantitative proteomic analysis revealed that knockdown of KIAA1199 in breast cancer (MDA-MB-231) cells affected a broad range of cellular functions including apoptosis, metabolism and cell motility. Conclusions Our findings indicate that KIAA1199 may play an important role in breast

  16. The effects of Kiaa0319 knockdown on cortical and subcortical anatomy in male rats

    PubMed Central

    Szalkowski, Caitlin E.; Fiondella, Christopher F.; Truong, Dongnhu T.; Rosen, Glenn D.; LoTurco, Joseph J.; Fitch, Roslyn H.

    2012-01-01

    Developmental dyslexia is a disorder characterized by a specific deficit in reading despite adequate overall intelligence and educational resources. The neurological substrate underlying these significant behavioral impairments is not known. Studies of post mortem brain tissue from male and female dyslexic individuals revealed focal disruptions of neuronal migration concentrated in the left hemisphere, along with aberrant symmetry of the right and left the planum temporale, and changes in cell size distribution within the medial geniculate nucleus of the thalamus (Galaburda et al., 1985; Humphreys et al., 1990). More recent neuroimaging studies have identified several changes in the brains of dyslexic individuals, including regional changes in gray matter, changes in white matter, and changes in patterns of functional activation. In a further effort to elucidate the etiology of dyslexia, epidemiological and genetic studies have identified several candidate dyslexia susceptibility genes. Some recent work has investigated associations between some of these genetic variants and structural changes in the brain. Variants of one candidate dyslexia susceptibility gene, KIAA0319, have been linked to morphological changes in the cerebellum and functional activational changes in the superior temporal sulcus (Jamadar et al., 2011; Pinel et al., 2012). Animal models have been used to create a knockdown of Kiaa0319 (the rodent homolog of the human gene) via in utero RNA interference in order to study the gene’s effects on brain development and behavior. Studies using this animal model have demonstrated that knocking down the gene leads to focal disruptions of neuronal migration in the form of ectopias and heterotopias, similar to those observed in the brains of human dyslexics. However, further changes to the structure of the brain have not been studied following this genetic disruption. The current study sought to determine the effects of embryonic Kiaa0319 knockdown on

  17. KIAA0100 Modulates Cancer Cell Aggression Behavior of MDA-MB-231 through Microtubule and Heat Shock Proteins.

    PubMed

    Zhong, Zhenyu; Pannu, Vaishali; Rosenow, Matthew; Stark, Adam; Spetzler, David

    2018-06-04

    The KIAA0100 gene was identified in the human immature myeloid cell line cDNA library. Recent studies have shown that its expression is elevated in breast cancer and associated with more aggressive cancer types as well as poor outcomes. However, its cellular and molecular function is yet to be understood. Here we show that silencing KIAA0100 by siRNA in the breast cancer cell line MDA-MB-231 significantly reduced the cancer cells' aggressive behavior, including cell aggregation, reattachment, cell metastasis and invasion. Most importantly, silencing the expression of KIAA0100 particularly sensitized the quiescent cancer cells in suspension culture to anoikis. Immunoprecipitation, mass spectrometry and immunofluorescence analysis revealed that KIAA0100 may play multiple roles in the cancer cells, including stabilizing microtubule structure as a microtubule binding protein, and contributing to MDA-MB-231 cells Anoikis resistance by the interaction with stress protein HSPA1A. Our study also implies that the interaction between KIAA0100 and HSPA1A may be targeted for new drug development to specifically induce anoikis cell death in the cancer cell.

  18. Dual roles of brain serine hydrolase KIAA1363 in ether lipid metabolism and organophosphate detoxification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Daniel K.; Fujioka, Kazutoshi; Issa, Roger S.

    2008-04-01

    Serine hydrolase KIAA1363 is an acetyl monoalkylglycerol ether (AcMAGE) hydrolase involved in tumor cell invasiveness. It is also an organophosphate (OP) insecticide-detoxifying enzyme. The key to understanding these dual properties was the use of KIAA1363 +/+ (wildtype) and -/- (gene deficient) mice to define the role of this enzyme in brain and other tissues and its effectiveness in vivo in reducing OP toxicity. KIAA1363 was the primary AcMAGE hydrolase in brain, lung, heart and kidney and was highly sensitive to inactivation by chlorpyrifos oxon (CPO) (IC{sub 50} 2 nM) [the bioactivated metabolite of the major insecticide chlorpyrifos (CPF)]. Although theremore » was no difference in hydrolysis product monoalkylglycerol ether (MAGE) levels in +/+ and -/- mouse brains in vivo, isopropyl dodecylfluorophosphonate (30 mg/kg) and CPF (100 mg/kg) resulted in 23-51% decrease in brain MAGE levels consistent with inhibition of AcMAGE hydrolase activity. On incubating +/+ and -/- brain membranes with AcMAGE and cytidine-5'-diphosphocholine, the absence of KIAA1363 activity dramatically increased de novo formation of platelet-activating factor (PAF) and lyso-PAF, signifying that metabolically-stabilized AcMAGE can be converted to this bioactive lipid in brain. On considering detoxification, KIAA1363 -/- mice were significantly more sensitive than +/+ mice to ip-administered CPF (100 mg/kg) and parathion (10 mg/kg) with increased tremoring and mortality that correlated for CPF with greater brain acetylcholinesterase inhibition. Docking AcMAGE and CPO in a KIAA1363 active site model showed similar positioning of their acetyl and trichloropyridinyl moieties, respectively. This study establishes the relevance of KIAA1363 in ether lipid metabolism and OP detoxification.« less

  19. KIAA1530 Protein Is Recruited by Cockayne Syndrome Complementation Group Protein A (CSA) to Participate in Transcription-coupled Repair (TCR)

    PubMed Central

    Fei, Jia; Chen, Junjie

    2012-01-01

    Transcription-coupled repair (TCR) is the major pathway involved in the removal of UV-induced photolesions from the transcribed strand of active genes. Two Cockayne syndrome (CS) complementation group proteins, CSA and CSB, are important for TCR repair. The molecular mechanisms by which CS proteins regulate TCR remain elusive. Here, we report the characterization of KIAA1530, an evolutionarily conserved protein that participates in this pathway through its interaction with CSA and the TFIIH complex. We found that UV irradiation led to the recruitment of KIAA1530 onto chromatin in a CSA-dependent manner. Cells lacking KIAA1530 were highly sensitive to UV irradiation and displayed deficiency in TCR. In addition, KIAA1530 depletion abrogated stability of the CSB protein following UV irradiation. More excitingly, we found that a unique CSA mutant (W361C), which was previously identified in a patient with UVsS syndrome, showed defective KIAA1530 binding and resulted in a failure of recruiting KIAA1530 and stabilizing CSB after UV treatment. Together, our data not only reveal that KIAA1530 is an important player in TCR but also lead to a better understanding of the molecular mechanism underlying UVsS syndrome. PMID:22902626

  20. The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling

    PubMed Central

    Franquinho, Filipa; Nogueira-Rodrigues, Joana; Duarte, Joana M.; Esteves, Sofia S.; Carter-Su, Christin; Monaco, Anthony P.; Molnár, Zoltán; Velayos-Baeza, Antonio; Brites, Pedro; Sousa, Mónica M.

    2017-01-01

    Abstract KIAA0319 is a transmembrane protein associated with dyslexia with a presumed role in neuronal migration. Here we show that KIAA0319 expression is not restricted to the brain but also occurs in sensory and spinal cord neurons, increasing from early postnatal stages to adulthood and being downregulated by injury. This suggested that KIAA0319 participates in functions unrelated to neuronal migration. Supporting this hypothesis, overexpression of KIAA0319 repressed axon growth in hippocampal and dorsal root ganglia neurons; the intracellular domain of KIAA0319 was sufficient to elicit this effect. A similar inhibitory effect was observed in vivo as axon regeneration was impaired after transduction of sensory neurons with KIAA0319. Conversely, the deletion of Kiaa0319 in neurons increased neurite outgrowth in vitro and improved axon regeneration in vivo. At the mechanistic level, KIAA0319 engaged the JAK2-SH2B1 pathway to activate Smad2, which played a central role in KIAA0319-mediated repression of axon growth. In summary, we establish KIAA0319 as a novel player in axon growth and regeneration with the ability to repress the intrinsic growth potential of axons. This study describes a novel regulatory mechanism operating during peripheral nervous system and central nervous system axon growth, and offers novel targets for the development of effective therapies to promote axon regeneration. PMID:28334068

  1. KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome.

    PubMed

    Sanders, Anna A W M; de Vrieze, Erik; Alazami, Anas M; Alzahrani, Fatema; Malarkey, Erik B; Sorusch, Nasrin; Tebbe, Lars; Kuhns, Stefanie; van Dam, Teunis J P; Alhashem, Amal; Tabarki, Brahim; Lu, Qianhao; Lambacher, Nils J; Kennedy, Julie E; Bowie, Rachel V; Hetterschijt, Lisette; van Beersum, Sylvia; van Reeuwijk, Jeroen; Boldt, Karsten; Kremer, Hannie; Kesterson, Robert A; Monies, Dorota; Abouelhoda, Mohamed; Roepman, Ronald; Huynen, Martijn H; Ueffing, Marius; Russell, Rob B; Wolfrum, Uwe; Yoder, Bradley K; van Wijk, Erwin; Alkuraya, Fowzan S; Blacque, Oliver E

    2015-12-29

    Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures. Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556 (-/-) null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base. Second, C. elegans KIAA0056 regulates ciliary A-tubule number and genetically interacts with an ARL13B (JBTS8) orthologue to control cilium integrity. Third, human KIAA0556 binds to microtubules in vitro and appears to stabilise microtubule networks when overexpressed. Finally, human KIAA0556 biochemically interacts with ciliary proteins and p60/p80 katanins. The latter form a microtubule-severing enzyme complex that regulates microtubule dynamics as well as ciliary functions. We have identified KIAA0556 as a novel microtubule-associated ciliary base protein mutated in Joubert syndrome. Consistent with the mild patient phenotype, our nematode, mice and human cell data support the notion that KIAA0556 has a relatively subtle and variable cilia-related function, which we propose is related to microtubule regulation.

  2. KIAA1109 Variants Are Associated with a Severe Disorder of Brain Development and Arthrogryposis.

    PubMed

    Gueneau, Lucie; Fish, Richard J; Shamseldin, Hanan E; Voisin, Norine; Tran Mau-Them, Frédéric; Preiksaitiene, Egle; Monroe, Glen R; Lai, Angeline; Putoux, Audrey; Allias, Fabienne; Ambusaidi, Qamariya; Ambrozaityte, Laima; Cimbalistienė, Loreta; Delafontaine, Julien; Guex, Nicolas; Hashem, Mais; Kurdi, Wesam; Jamuar, Saumya Shekhar; Ying, Lim J; Bonnard, Carine; Pippucci, Tommaso; Pradervand, Sylvain; Roechert, Bernd; van Hasselt, Peter M; Wiederkehr, Michaël; Wright, Caroline F; Xenarios, Ioannis; van Haaften, Gijs; Shaw-Smith, Charles; Schindewolf, Erica M; Neerman-Arbez, Marguerite; Sanlaville, Damien; Lesca, Gaëtan; Guibaud, Laurent; Reversade, Bruno; Chelly, Jamel; Kučinskas, Vaidutis; Alkuraya, Fowzan S; Reymond, Alexandre

    2018-01-04

    Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kučinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2 nd and 3 rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Associations Between the KIAA0319 Dyslexia Susceptibility Gene Variants, Antenatal Maternal Stress, and Reading Ability in a Longitudinal Birth Cohort.

    PubMed

    D'Souza, Stephanie; Backhouse-Smith, Amelia; Thompson, John M D; Slykerman, Rebecca; Marlow, Gareth; Wall, Clare; Murphy, Rinki; Ferguson, Lynnette R; Mitchell, Edwin A; Waldie, Karen E

    2016-11-01

    Maternal stress during pregnancy has been associated with detrimental cognitive developmental outcomes in offspring. This study investigated whether antenatal maternal perceived stress and variants of the rs12193738 and rs2179515 polymorphisms on the KIAA0319 gene interact to affect reading ability and full-scale IQ (FSIQ) in members of the longitudinal Auckland Birthweight Collaborative study. Antenatal maternal stress was measured at birth, and reading ability was assessed at ages 7 and 16. Reading data were available for 500 participants at age 7 and 479 participants at age 16. FSIQ was measured at ages 7 and 11. At age 11, DNA samples were collected. Analyses of covariance revealed that individuals with the TT genotype of the rs12193738 polymorphism exposed to high maternal stress during pregnancy possessed significantly poorer reading ability (as measured by Woodcock-Johnson Word Identification standard scores) during adolescence compared with TT carriers exposed to low maternal stress. TT carriers of the rs12193738 SNP also obtained lower IQ scores at age 7 than C allele carriers. These findings suggest that the KIAA0319 gene is associated with both reading ability and general cognition, but in different ways. The effect on IQ appears to occur earlier in development and is transient, whereas the effect of reading ability occurs later and is moderated by antenatal maternal stress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Clinical spectrum of KIAA2022 pathogenic variants in males: Case report of two boys with KIAA2022 pathogenic variants and review of the literature.

    PubMed

    Lorenzo, Melissa; Stolte-Dijkstra, Irene; van Rheenen, Patrick; Smith, Ronald Garth; Scheers, Tom; Walia, Jagdeep S

    2018-06-01

    KIAA2022 is an X-linked intellectual disability (XLID) syndrome affecting males more severely than females. Few males with KIAA2022 variants and XLID have been reported. We present a clinical report of two unrelated males, with two nonsense KIAA2022 pathogenic variants, with profound intellectual disabilities, limited language development, strikingly similar autistic behavior, delay in motor milestones, and postnatal growth restriction. Patient 1, 19-years-old, has long ears, deeply set eyes with keratoconus, strabismus, a narrow forehead, anteverted nares, café-au-lait spots, macroglossia, thick vermilion of the upper and lower lips, and prognathism. He has gastroesophageal reflux, constipation with delayed rectosigmoid colonic transit time, difficulty regulating temperature, several musculoskeletal issues, and a history of one grand mal seizure. Patient 2, 10-years-old, has mild dysmorphic features, therapy resistant vomiting with diminished motility of the stomach, mild constipation, cortical visual impairment with intermittent strabismus, axial hypotonia, difficulty regulating temperature, and cutaneous mastocytosis. Genetic testing identified KIAA2022 variant c.652C > T(p.Arg218*) in Patient 1, and a novel nonsense de novo variant c.2707G > T(p.Glu903*) in Patient 2. We also summarized features of all reported males with KIAA2022 variants to date. This report not only adds knowledge of a novel pathogenic variant to the KIAA2022 variant database, but also likely extends the spectrum by describing novel dysmorphic features and medical conditions including macroglossia, café-au-lait spots, keratoconus, severe cutaneous mastocytosis, and motility problems of the GI tract, which may help physicians involved in the care of patients with this syndrome. Lastly, we describe the power of social media in bringing families with rare medical conditions together. © 2018 Wiley Periodicals, Inc.

  5. De novo mutations of KIAA2022 in females cause intellectual disability and intractable epilepsy.

    PubMed

    de Lange, Iris M; Helbig, Katherine L; Weckhuysen, Sarah; Møller, Rikke S; Velinov, Milen; Dolzhanskaya, Natalia; Marsh, Eric; Helbig, Ingo; Devinsky, Orrin; Tang, Sha; Mefford, Heather C; Myers, Candace T; van Paesschen, Wim; Striano, Pasquale; van Gassen, Koen; van Kempen, Marjan; de Kovel, Carolien G F; Piard, Juliette; Minassian, Berge A; Nezarati, Marjan M; Pessoa, André; Jacquette, Aurelia; Maher, Bridget; Balestrini, Simona; Sisodiya, Sanjay; Warde, Marie Therese Abi; De St Martin, Anne; Chelly, Jamel; van 't Slot, Ruben; Van Maldergem, Lionel; Brilstra, Eva H; Koeleman, Bobby P C

    2016-12-01

    Mutations in the KIAA2022 gene have been reported in male patients with X-linked intellectual disability, and related female carriers were unaffected. Here, we report 14 female patients who carry a heterozygous de novo KIAA2022 mutation and share a phenotype characterised by intellectual disability and epilepsy. Reported females were selected for genetic testing because of substantial developmental problems and/or epilepsy. X-inactivation and expression studies were performed when possible. All mutations were predicted to result in a frameshift or premature stop. 12 out of 14 patients had intractable epilepsy with myoclonic and/or absence seizures, and generalised in 11. Thirteen patients had mild to severe intellectual disability. This female phenotype partially overlaps with the reported male phenotype which consists of more severe intellectual disability, microcephaly, growth retardation, facial dysmorphisms and, less frequently, epilepsy. One female patient showed completely skewed X-inactivation, complete absence of RNA expression in blood and a phenotype similar to male patients. In the six other tested patients, X-inactivation was random, confirmed by a non-significant twofold to threefold decrease of RNA expression in blood, consistent with the expected mosaicism between cells expressing mutant or normal KIAA2022 alleles. Heterozygous loss of KIAA2022 expression is a cause of intellectual disability in females. Compared with its hemizygous male counterpart, the heterozygous female disease has less severe intellectual disability, but is more often associated with a severe and intractable myoclonic epilepsy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Mutations in KIAA0753 cause Joubert syndrome associated with growth hormone deficiency.

    PubMed

    Stephen, Joshi; Vilboux, Thierry; Mian, Luhe; Kuptanon, Chulaluck; Sinclair, Courtney M; Yildirimli, Deniz; Maynard, Dawn M; Bryant, Joy; Fischer, Roxanne; Vemulapalli, Meghana; Mullikin, James C; Huizing, Marjan; Gahl, William A; Malicdan, May Christine V; Gunay-Aygun, Meral

    2017-04-01

    Joubert syndrome and related disorders (JSRD) are a heterogeneous group of ciliopathies defined based on the mid-hindbrain abnormalities that result in the characteristic "molar tooth sign" on brain imaging. The core clinical findings of JSRD are hypotonia, developmental delay, abnormal eye movements and breathing abnormalities. To date, more than 30 JSRD genes that encode proteins important for structure and/or function of cilia have been identified. Here, we present 2 siblings with Joubert syndrome associated with growth hormone deficiency. Whole exome sequencing of the family identified compound heterozygous mutations in KIAA0753, i.e., a missense mutation (p.Arg257Gly) and an intronic mutation (c.2359-1G>C). The intronic mutation alters normal splicing by activating a cryptic acceptor splice site in exon 16. The novel acceptor site skips nine nucleotides, deleting three amino acids from the protein coding frame. KIAA0753 (OFIP) is a centrosome and pericentriolar satellite protein, previously not known to cause Joubert syndrome. We present comprehensive clinical descriptions of the Joubert syndrome patients as well as the cellular phenotype of defective ciliogenesis in the patients' fibroblasts.

  7. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    PubMed

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  8. ALS5/SPG11/ KIAA1840 mutations cause autosomal recessive axonal Charcot–Marie–Tooth disease

    PubMed Central

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L.; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H.; Barsottini, Orlando G. P.; Kawarai, Toshitaka

    2016-01-01

    Abstract Charcot–Marie–Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/ KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot–Marie–Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot–Marie–Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/ KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot–Marie–Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot–Marie–Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot–Marie-Tooth disease (CMT2A2/HMSN2A2/ MFN2 , CMT2B1/ LMNA , CMT2B2/ MED25 , CMT2B5/ NEFL , ARCMT2F/dHMN2B/ HSPB1 , CMT2K/ GDAP1 , CMT2P/ LRSAM1 , CMT2R/ TRIM2 , CMT2S/ IGHMBP2 , CMT2T/ HSJ1 , CMTRID/ COX6A1 , ARAN-NM/ HINT and GAN/ GAN ), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/ PGN , SPG15/ ZFYVE26, SPG21/ ACP33 , SPG35/ FA2H , SPG46/ GBA2 , SPG55/ C12orf65 and SPG56/ CYP2U1 ), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum ( SLC12A6 ) . Mitochondrial disorders related to Charcot–Marie–Tooth disease type 2 were also excluded by sequencing POLG and

  9. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212.

    PubMed

    Kim, Ju Young; Duan, Xin; Liu, Cindy Y; Jang, Mi-Hyeon; Guo, Junjie U; Pow-anpongkul, Nattapol; Kang, Eunchai; Song, Hongjun; Ming, Guo-li

    2009-09-24

    Disrupted-in-schizophrenia 1 (DISC1), a susceptibility gene for major mental illnesses, regulates multiple aspects of embryonic and adult neurogenesis. Here, we show that DISC1 suppression in newborn neurons of the adult hippocampus leads to overactivated signaling of AKT, another schizophrenia susceptibility gene. Mechanistically, DISC1 directly interacts with KIAA1212, an AKT binding partner that enhances AKT signaling in the absence of DISC1, and DISC1 binding to KIAA1212 prevents AKT activation in vitro. Functionally, multiple genetic manipulations to enhance AKT signaling in adult-born neurons in vivo exhibit similar defects as DISC1 suppression in neuronal development that can be rescued by pharmacological inhibition of mammalian target of rapamycin (mTOR), an AKT downstream effector. Our study identifies the AKT-mTOR signaling pathway as a critical DISC1 target in regulating neuronal development and provides a framework for understanding how multiple susceptibility genes may functionally converge onto a common pathway in contributing to the etiology of certain psychiatric disorders.

  10. Mutations in KIAA0753 cause Joubert syndrome associated with growth hormone deficiency

    PubMed Central

    Stephen, Joshi; Vilboux, Thierry; Mian, Luhe; Kuptanon, Chulaluck; Sinclair, Courtney M.; Yildirimli, Deniz; Maynard, Dawn M.; Bryant, Joy; Fischer, Roxanne; Vemulapalli, Meghana; Mullikin, James C.; Huizing, Marjan; Gahl, William A.

    2017-01-01

    Joubert syndrome and related disorders (JSRD) are a heterogeneous group of ciliopathies defined based on the mid-hindbrain abnormalities that result in the characteristic “molar tooth sign” on brain imaging. The core clinical findings of JSRD are hypotonia, developmental delay, abnormal eye movements and breathing abnormalities. To date, more than 30 JSRD genes that encode proteins important for structure and/or function of cilia have been identified. Here, we present 2 siblings with Joubert syndrome associated with growth hormone deficiency. Whole exome sequencing of the family identified compound heterozygous mutations in KIAA0753, i.e., a missense mutation (p.Arg257Gly) and an intronic mutation (c.2359-1G>C). The intronic mutation alters normal splicing by activating a cryptic acceptor splice site in exon 16. The novel acceptor site skips nine nucleotides, deleting three amino acids from the protein coding frame. KIAA0753 (OFIP) is a centrosome and pericentriolar satellite protein, previously not known to cause Joubert syndrome. We present comprehensive clinical descriptions of the Joubert syndrome patients as well as the cellular phenotype of defective ciliogenesis in the patients’ fibroblasts. PMID:28220259

  11. Oncogenic KIAA1549-BRAF fusion with activation of the MAPK/ERK pathway in pediatric oligodendrogliomas.

    PubMed

    Kumar, Anupam; Pathak, Pankaj; Purkait, Suvendu; Faruq, Mohammed; Jha, Prerana; Mallick, Supriya; Suri, Vaishali; Sharma, Mehar C; Suri, Ashish; Sarkar, Chitra

    2015-03-01

    Pediatric oligodendrogliomas (pODGs) are rare central nervous system tumors, and comparatively little is known about their molecular pathogenesis. Co-deletion of 1p/19q; and IDH1, CIC, and FUBP1 mutations, which are molecular signatures of adult oligodendrogliomas, are extremely rare in pODGs. In this report, two pODGs, one each of grade II and grade III, were evaluated using clinical, radiological, histopathologic, and follow-up methods. IDH1, TP53, CIC, H3F3A, and BRAF-V600 E mutations were analyzed by Sanger sequencing and immunohistochemical methods, and 1p/19q co-deletion was analyzed by fluorescence in situ hybridization. PDGFRA amplification, BRAF gain, intragenic duplication of FGFR-TKD, and KIAA1549-BRAF fusion (validated by Sanger sequencing) were analyzed by real-time reverse transcription PCR. Notably, both cases showed the oncogenic KIAA1549_Ex15-BRAF_Ex9 fusion transcript. Further, immunohistochemical analysis showed activation of the MAPK/ERK pathway in both of these cases. However, neither 1p/19q co-deletion; IDH1, TP53, CIC, H3F3A, nor BRAF-V600 E mutation; PDGFRA amplification; BRAF gain; nor duplication of FGFR-TKD was identified. Overall, this study highlights that pODGs can harbor the KIAA1549-BRAF fusion with aberrant MAPK/ERK signaling, and there exists an option of targeting these pathways in such patients. These results indicate that pODGs with the KIAA1549-BRAF fusion may represent a subset of this rare tumor that shares molecular and genetic features of pilocytic astrocytomas. These findings will increase our understanding of pODGs and may have clinical implications. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth.

    PubMed

    Van Maldergem, Lionel; Hou, Qingming; Kalscheuer, Vera M; Rio, Marlène; Doco-Fenzy, Martine; Medeira, Ana; de Brouwer, Arjan P M; Cabrol, Christelle; Haas, Stefan A; Cacciagli, Pierre; Moutton, Sébastien; Landais, Emilie; Motte, Jacques; Colleaux, Laurence; Bonnet, Céline; Villard, Laurent; Dupont, Juliette; Man, Heng-Ye

    2013-08-15

    Existence of a discrete new X-linked intellectual disability (XLID) syndrome due to KIAA2022 deficiency was questioned by disruption of KIAA2022 by an X-chromosome pericentric inversion in a XLID family we reported in 2004. Three additional families with likely pathogenic KIAA2022 mutations were discovered within the frame of systematic parallel sequencing of familial cases of XLID or in the context of routine array-CGH evaluation of sporadic intellectual deficiency (ID) cases. The c.186delC and c.3597dupA KIAA2022 truncating mutations were identified by X-chromosome exome sequencing, while array CGH discovered a 70 kb microduplication encompassing KIAA2022 exon 1 in the third family. This duplication decreased KIAA2022 mRNA level in patients' lymphocytes by 60%. Detailed clinical examination of all patients, including the two initially reported, indicated moderate-to-severe ID with autistic features, strabismus in all patients, with no specific dysmorphic features other than a round face in infancy and no structural brain abnormalities on magnetic resonance imaging (MRI). Interestingly, the patient with decreased KIAA2022 expression had only mild ID with severe language delay and repetitive behaviors falling in the range of an autism spectrum disorder (ASD). Since little is known about KIAA2022 function, we conducted morphometric studies in cultured rat hippocampal neurons. We found that siRNA-mediated KIAA2022 knockdown resulted in marked impairment in neurite outgrowth including both the dendrites and the axons, suggesting a major role for KIAA2022 in neuron development and brain function.

  13. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected].

    PubMed

    Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo

    2014-04-01

    p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.

  14. DRAGO (KIAA0247), a New DNA Damage–Responsive, p53-Inducible Gene That Cooperates With p53 as Oncosupprossor

    PubMed Central

    Polato, Federica; Rusconi, Paolo

    2014-01-01

    Background p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. Methods DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53−/− and 107 p53+/− mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan–Meier curves and the Mantel–Haenszel test. All statistical tests were two-sided. Results We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO−/− mice are viable without macroscopic alterations. However, in p53−/− or p53+/− mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53−/− or p53+/− mice bearing wild-type DRAGO alleles (p53−/−, DRAGO−/− mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53+/−, DRAGO−/− mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO+/+ counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional—through p53 (and p73) and methylation-dependent control—and post-transcriptional levels by miRNAs. Conclusions DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions. PMID:24652652

  15. Higher-order assembly of BRCC36–KIAA0157 is required for DUB activity and biological function

    DOE PAGES

    Zeqiraj, Elton; Tian, Lei; Piggott, Christopher  A.; ...

    2015-09-03

    BRCC36 is a Zn 2+-dependent deubiquitinating enzyme (DUB) that hydrolyzes lysine-63-linked ubiquitin chains as part of distinct macromolecular complexes that participate in either interferon signaling or DNA-damage recognition. The MPN + domain protein BRCC36 associates with pseudo DUB MPN– proteins KIAA0157 or Abraxas, which are essential for BRCC36 enzymatic activity. Here, to understand the basis for BRCC36 regulation, we have solved the structure of an active BRCC36-KIAA0157 heterodimer and an inactive BRCC36 homodimer. Structural and functional characterizations show how BRCC36 is switched to an active conformation by contacts with KIAA0157. Higher-order association of BRCC36 and KIAA0157 into a dimer ofmore » heterodimers (super dimers) was required for DUB activity and interaction with targeting proteins SHMT2 and RAP80. Lastly, these data provide an explanation of how an inactive pseudo DUB allosterically activates a cognate DUB partner and implicates super dimerization as a new regulatory mechanism underlying BRCC36 DUB activity, subcellular localization, and biological function.« less

  16. Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein.

    PubMed

    Subbiah, Vivek; Westin, Shannon N; Wang, Kai; Araujo, Dejka; Wang, Wei-Lien; Miller, Vincent A; Ross, Jeffrey S; Stephens, Phillip J; Palmer, Gary A; Ali, Siraj M

    2014-01-14

    Oncologic patients who are extreme responders to molecularly targeted therapy provide an important opportunity to better understand the biologic basis of response and, in turn, inform clinical decision making. Malignant neoplasms with an uncertain histologic and immunohistochemical characterization present challenges both on initial diagnostic workups and then later in management, as current treatment algorithms are based on a morphologic diagnosis. Herein, we report a case of a difficult to characterize sarcoma-like lesion for which genomic profiling with clinical next generation sequencing (NGS) identified the molecular underpinnings of arrested progression(stable disease) under combination targeted therapy within a phase I clinical trial. Genomic profiling with clinical next generation sequencing was performed on the FoundationOne™ platform (Foundation Medicine, Cambridge MA). Histopathology and immunohistochemical studies were performed in the Department of Pathology, MD Anderson Cancer Center (Houston, TX). Treatment was administered in the context of a phase I clinical trial ClinicalTrials.gov Identifier: (NCT01187199). The histology of the tumor was that of a spindle cell neoplasm, grade 2 by FNCLCC standards. Immunohistochemical staining was positive for S100 and CD34. Genomic profiling identified the following alterations: a KIAA1549-BRAF gene fusion resulting from a tandem duplication event, a homozygous deletion of PTEN, and frameshift insertion/deletions in CDKN2A A68fs*51, SUFU E283fs*3, and MAP3K1 N325fs*3. The patient had a 25% reduction in tumor (RECIST v1.1) following combination therapy consisting of sorafenib, temsirolimus, and bevazicumab within a phase I clinical trial. The patient responded to combination targeted therapy that fortuitously targeted KIAA1549-BRAF and PTEN loss within a spindle cell neoplasm, as revealed by genomic profiling based on NGS. This is the first report of a tumor driven by a KIAA1549-BRAF fusion responding to

  17. Down-regulation of KIAA1199/CEMIP by miR-216a suppresses tumor invasion and metastasis in colorectal cancer.

    PubMed

    Zhang, Dejun; Zhao, Lei; Shen, Qiong; Lv, Qing; Jin, Min; Ma, Hong; Nie, Xiu; Zheng, Xiumei; Huang, Shaoyi; Zhou, Pengfei; Wu, Gang; Zhang, Tao

    2017-05-15

    Colorectal cancer is one of the major causes of death from cancer. Metastasis is the leading cause of treatment failure, in which cancer stem cells and circulating tumor cells play crucial roles. Identifying the involved metastatic biomarkers and clarifying the regulation mechanisms are of great importance for targeting tumor metastasis. In the current research, we discovered that KIAA1199, a cell-migration inducing protein, showed higher expression in CD44+ cancer cells from metastatic compared with the paired primary tissues, and was upregulated in colorectal cancer and positively correlated with numbers and mesenchymal phenotype of circulating tumor cells, and predicted shorter progress-free survival. Moreover, we indicated that down-regulation of KIAA1199 suppressed migration and invasion of colorectal cancer cells in vitro, and inhibited metastasis in vivo. Furthermore, we demonstrated that KIAA1199 was one of the direct and functional targets of miR-216a, and miR-216a overexpression led to decreased migration and invasion of colorectal cancer cells in vitro, and inhibited metastasis in vivo. Collectively, KIAA1199 plays a critical role in maintaining an aggressive phenotype of tumor cells, and suppression of KIAA1199-related motilities of tumor cells contributes to reduced tumor metastasis in colorectal cancer. © 2017 UICC.

  18. Carfilzomib induces leukaemia cell apoptosis via inhibiting ELK1/KIAA1524 (Elk-1/CIP2A) and activating PP2A not related to proteasome inhibition.

    PubMed

    Liu, Chun-Yu; Hsieh, Feng-Shu; Chu, Pei-Yi; Tsai, Wen-Chun; Huang, Chun-Teng; Yu, Yuan-Bin; Huang, Tzu-Ting; Ko, Po-Shen; Hung, Man-Hsin; Wang, Wan-Lun; Shiau, Chung-Wai; Chen, Kuen-Feng

    2017-06-01

    Enhancing the tumour suppressive activity of protein phosphatase 2A (PP2A) has been suggested to be an anti-leukaemic strategy. KIAA1524 (also termed CIP2A), an oncoprotein inhibiting PP2A, is associated with disease progression in chronic myeloid leukaemia and may be prognostic in cytogenetically normal acute myeloid leukaemia. Here we demonstrated that the selective proteasome inhibitor, carfilzomib, induced apoptosis in sensitive primary leukaemia cells and in sensitive leukaemia cell lines, associated with KIAA1524 protein downregulation, increased PP2A activity and decreased p-Akt, but not with the proteasome inhibition effect of carfilzomib. Ectopic expression of KIAA1524, or pretreatment with the PP2A inhibitor, okadaic acid, suppressed carfilzomib-induced apoptosis and KIAA1524 downregulation in sensitive cells, whereas co-treatment with the PP2A agonist, forskolin, enhanced carfilzomib-induced apoptosis in resistant cells. Mechanistically, carfilzomib affected KIAA1524 transcription through disturbing ELK1 (Elk-1) binding to the KIAA1524 promoter. Moreover, the drug sensitivity and mechanism of carfilzomib in xenograft mouse models correlated well with the effects of carfilzomib on KIAA1524 and p-Akt expression, as well as PP2A activity. Our data disclosed a novel drug mechanism of carfilzomib in leukaemia cells and suggests the potential therapeutic implication of KIAA1524 in leukaemia treatment. © 2017 John Wiley & Sons Ltd.

  19. Dyslexia susceptibility genes influence brain atrophy in frontotemporal dementia.

    PubMed

    Paternicó, Donata; Premi, Enrico; Alberici, Antonella; Archetti, Silvana; Bonomi, Elisa; Gualeni, Vera; Gasparotti, Roberto; Padovani, Alessandro; Borroni, Barbara

    2015-10-01

    In this study, we evaluated whether variations within genes specifically associated with dyslexia, namely KIAA0319, DCDC2, and CNTNAP2, were associated with greater damage of language-related regions in patients with frontotemporal dementia (FTD) and primary progressive aphasia (PPA) in particular. A total of 118 patients with FTD, 84 with the behavioral variant of FTD (bvFTD) and 34 with PPA, underwent neuropsychological examination, genetic analyses, and brain MRI. KIAA0319 rs17243157 G/A, DCDC2 rs793842 A/G, and CNTNAP2 rs17236239 A/G genetic variations were assessed. Patients were grouped according to clinical phenotype and genotype status (GA/AA or GG). Gray matter (GM) and white matter (WM) differences were assessed by voxel-based morphometry and structural intercorrelation pattern analyses. Patients carrying KIAA0319 A* (GA or AA) showed greater GM and WM atrophy in the left middle and inferior temporal gyri, as compared with KIAA0319 GG (p < 0.001). The effect of KIAA0319 polymorphism was mainly reported in patients with PPA. In patients with PPA carrying at-risk polymorphism, temporal damage led to loss of interhemispheric and intrahemispheric GM and WM structural association. No effect of DCDC2 and CNTNAP2 was found. Genes involved in dyslexia susceptibility, such as KIAA0319, result in language network vulnerability in FTD, and in PPA in particular.

  20. Haplotypes and gene expression implicate the MAPT region for Parkinson disease

    PubMed Central

    Tobin, J.E.; Latourelle, J.C.; Lew, M.F.; Klein, C.; Suchowersky, O.; Shill, H.A.; Golbe, L.I.; Mark, M.H.; Growdon, J.H.; Wooten, G.F.; Racette, B.A.; Perlmutter, J.S.; Watts, R.; Guttman, M.; Baker, K.B.; Goldwurm, S.; Pezzoli, G.; Singer, C.; Saint-Hilaire, M.H.; Hendricks, A.E.; Williamson, S.; Nagle, M.W.; Wilk, J.B.; Massood, T.; Laramie, J.M.; DeStefano, A.L.; Litvan, I.; Nicholson, G.; Corbett, A.; Isaacson, S.; Burn, D.J.; Chinnery, P.F.; Pramstaller, P.P.; Sherman, S.; Al-hinti, J.; Drasby, E.; Nance, M.; Moller, A.T.; Ostergaard, K.; Roxburgh, R.; Snow, B.; Slevin, J.T.; Cambi, F.; Gusella, J.F.; Myers, R.H.

    2009-01-01

    Background Microtubule-associated protein tau (MAPT) has been associated with several neurodegenerative disorders including forms of parkinsonism and Parkinson disease (PD). We evaluated the association of the MAPT region with PD in a large cohort of familial PD cases recruited by the GenePD Study. In addition, postmortem brain samples from patients with PD and neurologically normal controls were used to evaluate whether the expression of the 3-repeat and 4-repeat isoforms of MAPT, and neighboring genes Saitohin (STH) and KIAA1267, are altered in PD cerebellum. Methods Twenty-one single-nucleotide polymorphisms (SNPs) in the region of MAPT on chromosome 17q21 were genotyped in the GenePD Study. Single SNPs and haplotypes, including the H1 haplotype, were evaluated for association to PD. Relative quantification of gene expression was performed using real-time RT-PCR. Results After adjusting for multiple comparisons, SNP rs1800547 was significantly associated with PD affection. While the H1 haplotype was associated with a significantly increased risk for PD, a novel H1 subhaplotype was identified that predicted a greater increased risk for PD. The expression of 4-repeat MAPT, STH, and KIAA1267 was significantly increased in PD brains relative to controls. No difference in expression was observed for 3-repeat MAPT. Conclusions This study supports a role for MAPT in the pathogenesis of familial and idiopathic Parkinson disease (PD). Interestingly, the results of the gene expression studies suggest that other genes in the vicinity of MAPT, specifically STH and KIAA1267, may also have a role in PD and suggest complex effects for the genes in this region on PD risk. PMID:18509094

  1. Dyslexia risk gene relates to representation of sound in the auditory brainstem.

    PubMed

    Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D

    2017-04-01

    Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. BRAF Fusion Analysis in Pilocytic Astrocytomas: KIAA1549-BRAF 15-9 Fusions Are More Frequent in the Midline Than Within the Cerebellum

    PubMed Central

    Faulkner, Claire; Ellis, Hayley Patricia; Shaw, Abigail; Penman, Catherine; Palmer, Abigail; Wragg, Christopher; Greenslade, Mark; Haynes, Harry Russell; Williams, Hannah; Lowis, Stephen; White, Paul; Williams, Maggie; Capper, David; Kurian, Kathreena Mary

    2015-01-01

    Abstract Pilocytic astrocytomas (PAs) are increasingly tested for KIAA1549-BRAF fusions. We used reverse transcription polymerase chain reaction for the 3 most common KIAA1549-BRAF fusions, together with BRAF V600E and histone H3.3 K27M analyses to identify relationships of these molecular characteristics with clinical features in a cohort of 32 PA patients. In this group, the overall BRAF fusion detection rate was 24 (75%). Ten (42%) of the 24 had the 16-9 fusion, 8 (33%) had only the 15-9 fusion, and 1 (4%) of the patients had only the 16-11 fusion. In the PAs with only the 15-9 fusion, 1 PA was in the cerebellum and 7 were centered in the midline outside of the cerebellum, that is, in the hypothalamus (n = 4), optic pathways (n = 2), and brainstem (n = 1). Tumors within the cerebellum were negatively associated with fusion 15-9. Seven (22%) of the 32 patients had tumor-related deaths and 25 of the patients (78%) were alive between 2 and 14 years after initial biopsy. Age, sex, tumor location, 16-9 fusion, and 15-9 fusion were not associated with overall survival. Thus, in this small cohort, 15-9 KIAA1549-BRAF fusion was associated with midline PAs located outside of the cerebellum; these tumors, which are generally difficult to resect, are prone to recurrence. PMID:26222501

  3. Overcoming resistance to single-agent therapy for oncogenic BRAF gene fusions via combinatorial targeting of MAPK and PI3K/mTOR signaling pathways

    PubMed Central

    Jain, Payal; Silva, Amanda; Han, Harry J.; Lang, Shih-Shan; Zhu, Yuankun; Boucher, Katie; Smith, Tiffany E.; Vakil, Aesha; Diviney, Patrick; Choudhari, Namrata; Raman, Pichai; Busch, Christine M.; Delaney, Tim; Yang, Xiaodong; Olow, Aleksandra K.; Mueller, Sabine; Haas-Kogan, Daphne; Fox, Elizabeth; Storm, Phillip B.; Resnick, Adam C.; Waanders, Angela J.

    2017-01-01

    Pediatric low-grade gliomas (PLGGs) are frequently associated with activating BRAF gene fusions, such as KIAA1549-BRAF, that aberrantly drive the mitogen activated protein kinase (MAPK) pathway. Although RAF inhibitors (RAFi) have been proven effective in BRAF-V600E mutant tumors, we have previously shown how the KIAA1549-BRAF fusion can be paradoxically activated by RAFi. While newer classes of RAFi, such as PLX8394, have now been shown to inhibit MAPK activation by KIAA1549-BRAF, we sought to identify alternative MAPK pathway targeting strategies using clinically relevant MEK inhibitors (MEKi), along with potential escape mechanisms of acquired resistance to single-agent MAPK pathway therapies. We demonstrate effectiveness of multiple MEKi against diverse BRAF-fusions with novel N-terminal partners, with trametinib being the most potent. However, resistance to MEKi or PLX8394 develops via increased RTK expression causing activation of PI3K/mTOR pathway in BRAF-fusion expressing resistant clones. To circumvent acquired resistance, we show potency of combinatorial targeting with trametinib and everolimus, an mTOR inhibitor (mTORi) against multiple BRAF-fusions. While single-agent mTORi and MEKi PLGG clinical trials are underway, our study provides preclinical rationales for using MEKi and mTORi combinatorial therapy to stave off or prevent emergent drug-resistance in BRAF-fusion driven PLGGs. PMID:29156677

  4. Revisiting genome wide association studies (GWAS) in coeliac disease: replication study in Spanish population and expression analysis of candidate genes.

    PubMed

    Plaza-Izurieta, Leticia; Castellanos-Rubio, Ainara; Irastorza, Iñaki; Fernández-Jimenez, Nora; Gutierrez, Galder; Bilbao, Jose Ramon

    2011-07-01

    Recent genome wide association studies (GWAS) on coeliac disease (CD) have identified risk loci harbouring genes that fit the accepted pathogenic model and are considered aetiological candidates. Using Taqman single nucleotide polymorphism (SNP) and expression assays, the study genotyped 11 SNPs tagging eight GWAS regions (1q31, 2q11-2q12, 3p21, 3q25-3q26, 3q28, 4q27, 6q25 and 12q24) in a Spanish cohort of 1094 CD patients and 540 controls, and performed expression analyses of candidate genes (RGS1, IL18R1/IL18RAP, CCR3, IL12A/SCHIP1, LPP, IL2/IL21-KIAA1109, TAGAP, and SH2B3) in intestinal mucosa from 29 CD children and eight controls. Polymorphisms in 1q31, 2q11-2q12, and 3q25 showed association in our cohort, and also 3q28 and 4q27 when combined with a previous study. Expression levels of IL12A, IL18RAP, IL21, KIAA1109, LPP, SCHIP1, and SH2B3 were affected by disease status, but the correlation between genotype and mRNA levels was observed only in IL12A, LPP, SCHIP1, and SH2B3. Expression differences between treated CD patients and controls along with SNP expression associations suggest a possible primary role for these four genes and their variants in pathogenesis. The lack of SNP effect in the remaining genes is probably a consequence of arbitrary candidate gene selection within association signals that are not based on functional studies.

  5. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci.

    PubMed

    Harley, John B; Alarcón-Riquelme, Marta E; Criswell, Lindsey A; Jacob, Chaim O; Kimberly, Robert P; Moser, Kathy L; Tsao, Betty P; Vyse, Timothy J; Langefeld, Carl D; Nath, Swapan K; Guthridge, Joel M; Cobb, Beth L; Mirel, Daniel B; Marion, Miranda C; Williams, Adrienne H; Divers, Jasmin; Wang, Wei; Frank, Summer G; Namjou, Bahram; Gabriel, Stacey B; Lee, Annette T; Gregersen, Peter K; Behrens, Timothy W; Taylor, Kimberly E; Fernando, Michelle; Zidovetzki, Raphael; Gaffney, Patrick M; Edberg, Jeffrey C; Rioux, John D; Ojwang, Joshua O; James, Judith A; Merrill, Joan T; Gilkeson, Gary S; Seldin, Michael F; Yin, Hong; Baechler, Emily C; Li, Quan-Zhen; Wakeland, Edward K; Bruner, Gail R; Kaufman, Kenneth M; Kelly, Jennifer A

    2008-02-01

    Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (lambda(S) = approximately 30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 x 10(-7) < P(overall) < 1.6 x 10(-23); odds ratio = 0.82-1.62) in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 x 10(-5)) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at > or =9 other loci (P < 2 x 10(-7)). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.

  6. Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival

    PubMed Central

    Fink, Stephen P.; Myeroff, Lois L.; Kariv, Revital; Platzer, Petra; Xin, Baozhong; Mikkola, Debra; Lawrence, Earl; Morris, Nathan; Nosrati, Arman; Willson, James K. V.; Willis, Joseph; Veigl, Martina; Barnholtz-Sloan, Jill S.; Wang, Zhenghe; Markowitz, Sanford D.

    2015-01-01

    Genes induced in colon cancer provide novel candidate biomarkers of tumor phenotype and aggressiveness. We originally identified KIAA1199 (now officially called CEMIP) as a transcript highly induced in colon cancer: initially designating the transcript as Colon Cancer Secreted Protein 1. We molecularly characterized CEMIP expression both at the mRNA and protein level and found it is a secreted protein induced an average of 54-fold in colon cancer. Knockout of CEMIPreduced the ability of human colon cancer cells to form xenograft tumors in athymic mice. Tumors that did grow had increased deposition of hyaluronan, linking CEMIP participation in hyaluronan degradation to the modulation of tumor phenotype. We find CEMIP mRNA overexpression correlates with poorer patient survival. In stage III only (n = 31) or in combined stage II plus stage III colon cancer cases (n = 73), 5-year overall survival was significantly better (p = 0.004 and p = 0.0003, respectively) among patients with low CEMIP expressing tumors than those with high CEMIP expressing tumors. These results demonstrate that CEMIP directly facilitates colon tumor growth, and high CEMIP expression correlates with poor outcome in stage III and in stages II+III combined cohorts. We present CEMIP as a candidate prognostic marker for colon cancer and a potential therapeutic target. PMID:26437221

  7. Speech Sound Processing Deficits and Training-Induced Neural Plasticity in Rats with Dyslexia Gene Knockdown

    PubMed Central

    Centanni, Tracy M.; Chen, Fuyi; Booker, Anne M.; Engineer, Crystal T.; Sloan, Andrew M.; Rennaker, Robert L.; LoTurco, Joseph J.; Kilgard, Michael P.

    2014-01-01

    In utero RNAi of the dyslexia-associated gene Kiaa0319 in rats (KIA-) degrades cortical responses to speech sounds and increases trial-by-trial variability in onset latency. We tested the hypothesis that KIA- rats would be impaired at speech sound discrimination. KIA- rats needed twice as much training in quiet conditions to perform at control levels and remained impaired at several speech tasks. Focused training using truncated speech sounds was able to normalize speech discrimination in quiet and background noise conditions. Training also normalized trial-by-trial neural variability and temporal phase locking. Cortical activity from speech trained KIA- rats was sufficient to accurately discriminate between similar consonant sounds. These results provide the first direct evidence that assumed reduced expression of the dyslexia-associated gene KIAA0319 can cause phoneme processing impairments similar to those seen in dyslexia and that intensive behavioral therapy can eliminate these impairments. PMID:24871331

  8. 15 years of research on Oral-Facial-Digital syndromes: from 1 to 16 causal genes

    PubMed Central

    Bruel, Ange-Line; Franco, Brunella; Duffourd, Yannis; Thevenon, Julien; Jego, Laurence; Lopez, Estelle; Deleuze, Jean-François; Doummar, Diane; Giles, Rachel H.; Johnson, Colin A.; Huynen, Martijn A.; Chevrier, Véronique; Burglen, Lydie; Morleo, Manuela; Desguerres, Isabelle; Pierquin, Geneviève; Doray, Bérénice; Gilbert-Dussardier, Brigitte; Reversade, Bruno; Steichen-Gersdorf, Elisabeth; Baumann, Clarisse; Panigrahi, Inusha; Fargeot-Espaliat, Anne; Dieux, Anne; David, Albert; Goldenberg, Alice; Bongers, Ernie; Gaillard, Dominique; Argente, Jesús; Aral, Bernard; Gigot, Nadège; St-Onge, Judith; Birnbaum, Daniel; Phadke, Shubha R.; Cormier-Daire, Valérie; Eguether, Thibaut; Pazour, Gregory J.; Herranz-Pérez, Vicente; Lee, Jaclyn S.; Pasquier, Laurent; Loget, Philippe; Saunier, Sophie; Mégarbané, André; Rosnet, Olivier; Leroux, Michel R.; Wallingford, John B.; Blacque, Oliver E.; Nachury, Maxence V.; Attie-Bitach, Tania; Rivière, Jean-Baptiste; Faivre, Laurence; Thauvin-Robinet, Christel

    2017-01-01

    Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterized by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFD subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 OFDS cases. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753, IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231, WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterizing three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the MKS module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these 3 main subtypes, a further classification could be based on the genotype. PMID:28289185

  9. Computational genomic analysis of PARK7 interactome reveals high BBS1 gene expression as a prognostic factor favoring survival in malignant pleural mesothelioma.

    PubMed

    Vavougios, Georgios D; Solenov, Evgeniy I; Hatzoglou, Chrissi; Baturina, Galina S; Katkova, Liubov E; Molyvdas, Paschalis Adam; Gourgoulianis, Konstantinos I; Zarogiannis, Sotirios G

    2015-10-01

    The aim of our study was to assess the differential gene expression of Parkinson protein 7 (PARK7) interactome in malignant pleural mesothelioma (MPM) using data mining techniques to identify novel candidate genes that may play a role in the pathogenicity of MPM. We constructed the PARK7 interactome using the ConsensusPathDB database. We then interrogated the Oncomine Cancer Microarray database using the Gordon Mesothelioma Study, for differential gene expression of the PARK7 interactome. In ConsensusPathDB, 38 protein interactors of PARK7 were identified. In the Gordon Mesothelioma Study, 34 of them were assessed out of which SUMO1, UBC3, KIAA0101, HDAC2, DAXX, RBBP4, BBS1, NONO, RBBP7, HTRA2, and STUB1 were significantly overexpressed whereas TRAF6 and MTA2 were significantly underexpressed in MPM patients (network 2). Furthermore, Kaplan-Meier analysis revealed that MPM patients with high BBS1 expression had a median overall survival of 16.5 vs. 8.7 mo of those that had low expression. For validation purposes, we performed a meta-analysis in Oncomine database in five sarcoma datasets. Eight network 2 genes (KIAA0101, HDAC2, SUMO1, RBBP4, NONO, RBBP7, HTRA2, and MTA2) were significantly differentially expressed in an array of 18 different sarcoma types. Finally, Gene Ontology annotation enrichment analysis revealed significant roles of the PARK7 interactome in NuRD, CHD, and SWI/SNF protein complexes. In conclusion, we identified 13 novel genes differentially expressed in MPM, never reported before. Among them, BBS1 emerged as a novel predictor of overall survival in MPM. Finally, we identified that PARK7 interactome is involved in novel pathways pertinent in MPM disease. Copyright © 2015 the American Physiological Society.

  10. Fifteen years of research on oral-facial-digital syndromes: from 1 to 16 causal genes.

    PubMed

    Bruel, Ange-Line; Franco, Brunella; Duffourd, Yannis; Thevenon, Julien; Jego, Laurence; Lopez, Estelle; Deleuze, Jean-François; Doummar, Diane; Giles, Rachel H; Johnson, Colin A; Huynen, Martijn A; Chevrier, Véronique; Burglen, Lydie; Morleo, Manuela; Desguerres, Isabelle; Pierquin, Geneviève; Doray, Bérénice; Gilbert-Dussardier, Brigitte; Reversade, Bruno; Steichen-Gersdorf, Elisabeth; Baumann, Clarisse; Panigrahi, Inusha; Fargeot-Espaliat, Anne; Dieux, Anne; David, Albert; Goldenberg, Alice; Bongers, Ernie; Gaillard, Dominique; Argente, Jesús; Aral, Bernard; Gigot, Nadège; St-Onge, Judith; Birnbaum, Daniel; Phadke, Shubha R; Cormier-Daire, Valérie; Eguether, Thibaut; Pazour, Gregory J; Herranz-Pérez, Vicente; Goldstein, Jaclyn S; Pasquier, Laurent; Loget, Philippe; Saunier, Sophie; Mégarbané, André; Rosnet, Olivier; Leroux, Michel R; Wallingford, John B; Blacque, Oliver E; Nachury, Maxence V; Attie-Bitach, Tania; Rivière, Jean-Baptiste; Faivre, Laurence; Thauvin-Robinet, Christel

    2017-06-01

    Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes ( C2CD3 , TMEM107 , INTU , KIAA0753 and IFT57 ) and related the clinical spectrum of four genes in other ciliopathies ( C5orf42 , TMEM138 , TMEM231 and WDPCP ) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs

    PubMed Central

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-01-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. PMID:27451412

  12. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

    PubMed

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-10-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. © The Author(s).

  13. The regulatory element READ1 epistatically influences reading and language, with both deleterious and protective alleles

    PubMed Central

    Powers, Natalie R; Eicher, John D; Miller, Laura L; Kong, Yong; Smith, Shelley D; Pennington, Bruce F; Willcutt, Erik G; Olson, Richard K; Ring, Susan M; Gruen, Jeffrey R

    2016-01-01

    Background Reading disability (RD) and language impairment (LI) are heritable learning disabilities that obstruct acquisition and use of written and spoken language, respectively. We previously reported that two risk haplotypes, each in strong linkage disequilibrium (LD) with an allele of READ1, a polymorphic compound short tandem repeat within intron 2 of risk gene DCDC2, are associated with RD and LI. Additionally, we showed a non-additive genetic interaction between READ1 and KIAHap, a previously reported risk haplotype in risk gene KIAA0319, and that READ1 binds the transcriptional regulator ETV6. Objective To examine the hypothesis that READ1 is a transcriptional regulator of KIAA0319. Methods We characterised associations between READ1 alleles and RD and LI in a large European cohort, and also assessed interactions between READ1 and KIAHap and their effect on performance on measures of reading, language and IQ. We also used family-based data to characterise the genetic interaction, and chromatin conformation capture (3C) to investigate the possibility of a physical interaction between READ1 and KIAHap. Results and conclusions READ1 and KIAHap show interdependence—READ1 risk alleles synergise with KIAHap, whereas READ1 protective alleles act epistatically to negate the effects of KIAHap. The family data suggest that these variants interact in trans genetically, while the 3C results show that a region of DCDC2 containing READ1 interacts physically with the region upstream of KIAA0319. These data support a model in which READ1 regulates KIAA0319 expression through KIAHap and in which the additive effects of READ1 and KIAHap alleles are responsible for the trans genetic interaction. PMID:26660103

  14. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate.

    PubMed

    Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J

    2011-06-14

    The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.

  15. A recessive contiguous gene deletion of chromosome 2p16 associated with cystinuria and a mitochondrial disease.

    PubMed

    Parvari, R; Brodyansky, I; Elpeleg, O; Moses, S; Landau, D; Hershkovitz, E

    2001-10-01

    Deletions ranging from 100 Kb to 1 Mb--too small to be detected under the microscope--may still involve dozens of genes, thus causing microdeletion syndromes. The vast majority of these syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We identified seven patients originating from an extended family and presenting with a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and lactic acidemia. Reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria was found in muscle biopsy specimens of the patients examined. The molecular basis of this disorder is a homozygous deletion of 179,311 bp on chromosome 2p16, which includes the type I cystinuria gene (SLC3A1), the protein phosphatase 2Cbeta gene (PP2Cbeta), an unidentified gene (KIAA0436), and several expressed sequence tags. The extent of the deletion suggests that this unique syndrome is related to the complete absence of these genes' products, one of which may be essential for the synthesis of mitochondrial encoded proteins.

  16. A Recessive Contiguous Gene Deletion of Chromosome 2p16 Associated with Cystinuria and a Mitochondrial Disease

    PubMed Central

    Parvari, Ruti; Brodyansky, Irena; Elpeleg, Orly; Moses, Shimon; Landau, Daniel; Hershkovitz, Eli

    2001-01-01

    Deletions ranging from 100 Kb to 1 Mb—too small to be detected under the microscope—may still involve dozens of genes, thus causing microdeletion syndromes. The vast majority of these syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We identified seven patients originating from an extended family and presenting with a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and lactic acidemia. Reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria was found in muscle biopsy specimens of the patients examined. The molecular basis of this disorder is a homozygous deletion of 179,311 bp on chromosome 2p16, which includes the type I cystinuria gene (SLC3A1), the protein phosphatase 2Cβ gene (PP2Cβ), an unidentified gene (KIAA0436), and several expressed sequence tags. The extent of the deletion suggests that this unique syndrome is related to the complete absence of these genes’ products, one of which may be essential for the synthesis of mitochondrial encoded proteins. PMID:11524703

  17. Variation in the myosoricine hand skeleton and its implications for locomotory behavior (Eulipotyphla: Soricidae)

    USGS Publications Warehouse

    Woodman, Neal; Stabile, Frank A.

    2015-01-01

    Substrate use and locomotory behavior of mammals are typically reflected in external characteristics of the forefeet, such as the relative proportions of the digits and claws. Although skeletal anatomy of the forefeet can be more informative than external characters, skeletons remain rare in systematic collections. This is particularly true for the Myosoricinae (Eulipotyphla: Soricidae), a small clade of African shrews that includes both ambulatory forest shrews (Myosorex) and semifossorial mole shrews (Surdisorex). Most species in this subfamily have restricted distributions, and their behavior and ecology are mostly unstudied. To better understand the potential range of locomotory behavior among myosoricines, we used digital x-rays to image and facilitate measuring the forefoot skeletons of 9 species. As a gauge of potential variation, we compared them with the ambulatory talpid Uropsilus (Talpidae) and the semifossorial talpid Neurotrichus. The hand morphologies of myosoricines show a graded range of potential substrate use between ambulatory and semifossorial. Some of these shrews exhibit adaptations for increased burrowing efficiency that are similar to those seen in talpids and other mammals, such as longer, broader distal phalanges and claws and shorter, wider metacarpals and proximal and middle phalanges. They also, however, have characteristics that are distinct from talpids, such as maintenance of forefoot asymmetry and an increased emphasis of ray III.

  18. Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues.

    PubMed

    Chen, Jing; Guo, Liping; Peiffer, Daniel A; Zhou, Lixin; Chan, Owen Tsan Mo; Bibikova, Marina; Wickham-Garcia, Eliza; Lu, Shih-Hsin; Zhan, Qimin; Wang-Rodriguez, Jessica; Jiang, Wei; Fan, Jian-Bing

    2008-05-15

    We employed the BeadArraytrade mark technology to perform a genetic analysis in 33 formalin-fixed, paraffin-embedded (FFPE) human esophageal carcinomas, mostly squamous-cell-carcinoma (ESCC), and their adjacent normal tissues. A total of 1,432 single nucleotide polymorphisms (SNPs) derived from 766 cancer-related genes were genotyped with partially degraded genomic DNAs isolated from these samples. This directly targeted genomic profiling identified not only previously reported somatic gene amplifications (e.g., CCND1) and deletions (e.g., CDKN2A and CDKN2B) but also novel genomic aberrations. Among these novel targets, the most frequently deleted genomic regions were chromosome 3p (including tumor suppressor genes FANCD2 and CTNNB1) and chromosome 5 (including tumor suppressor gene APC). The most frequently amplified genomic region was chromosome 3q (containing DVL3, MLF1, ABCC5, BCL6, AGTR1 and known oncogenes TNK2, TNFSF10, FGF12). The chromosome 3p deletion and 3q amplification occurred coincidently in nearly all of the affected cases, suggesting a molecular mechanism for the generation of somatic chromosomal aberrations. We also detected significant differences in germline allele frequency between the esophageal cohort of our study and normal control samples from the International HapMap Project for 10 genes (CSF1, KIAA1804, IL2, PMS2, IRF7, FLT3, NTRK2, MAP3K9, ERBB2 and PRKAR1A), suggesting that they might play roles in esophageal cancer susceptibility and/or development. Taken together, our results demonstrated the utility of the BeadArray technology for high-throughput genetic analysis in FFPE tumor tissues and provided a detailed genetic profiling of cancer-related genes in human esophageal cancer. (c) 2008 Wiley-Liss, Inc.

  19. Presymptomatic Diagnosis of Celiac Disease in Predisposed Children: The Role of Gene Expression Profile.

    PubMed

    Galatola, Martina; Cielo, Donatella; Panico, Camilla; Stellato, Pio; Malamisura, Basilio; Carbone, Lorenzo; Gianfrani, Carmen; Troncone, Riccardo; Greco, Luigi; Auricchio, Renata

    2017-09-01

    The prevalence of celiac disease (CD) has increased significantly in recent years, and risk prediction and early diagnosis have become imperative especially in at-risk families. In a previous study, we identified individuals with CD based on the expression profile of a set of candidate genes in peripheral blood monocytes. Here we evaluated the expression of a panel of CD candidate genes in peripheral blood mononuclear cells from at-risk infants long time before any symptom or production of antibodies. We analyzed the gene expression of a set of 9 candidate genes, associated with CD, in 22 human leukocyte antigen predisposed children from at-risk families for CD, studied from birth to 6 years of age. Nine of them developed CD (patients) and 13 did not (controls). We analyzed gene expression at 3 different time points (age matched in the 2 groups): 4-19 months before diagnosis, at the time of CD diagnosis, and after at least 1 year of a gluten-free diet. At similar age points, controls were also evaluated. Three genes (KIAA, TAGAP [T-cell Activation GTPase Activating Protein], and SH2B3 [SH2B Adaptor Protein 3]) were overexpressed in patients, compared with controls, at least 9 months before CD diagnosis. At a stepwise discriminant analysis, 4 genes (RGS1 [Regulator of G-protein signaling 1], TAGAP, TNFSF14 [Tumor Necrosis Factor (Ligand) Superfamily member 14], and SH2B3) differentiate patients from controls before serum antibodies production and clinical symptoms. Multivariate equation correctly classified CD from non-CD children in 95.5% of patients. The expression of a small set of candidate genes in peripheral blood mononuclear cells can predict CD at least 9 months before the appearance of any clinical and serological signs of the disease.

  20. The human lexinome: Genes of language and reading

    PubMed Central

    Gibson, Christopher J.; Gruen, Jeffrey R.

    2008-01-01

    Within the human genome, genetic mapping studies have identified ten regions of different chromosomes, known as DYX loci, in genetic linkage with dyslexia, and two, known as SLI loci, in genetic linkage with Specific Language Impairment. Further genetic studies have identified four dyslexia genes within the DYX loci: DYX1C1 on 15q, KIAA0319 and DCDC2 on 6p22, and ROBO1on 13q. FOXP2 on 7q has been implicated in the development of Speech-Language Disorder. No genes for Specific Language impairment have yet been identified within the two SLI loci. Functional studies have shown that all four dyslexia genes play roles in brain development, and ongoing molecular studies are attempting to elucidate how these genes exert their effects at a subcellular level. Taken together, these genes and loci likely represent only a fraction of the human lexinome, a term we introduce here to refer to the collection of all the genetic and protein elements involved in the development of human language, expression, and reading. Learning outcomes The reader will become familiar with (i) methods for identifying genes for complex diseases, (ii) the application of these methods in the elucidation of genes underlying disorders of language and reading, and (iii) the cellular pathways through which polymorphisms in these genes may contribute to the development of the disorders. PMID:18466916

  1. Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism.

    PubMed

    Fan, Qianrui; Wang, Wenyu; Hao, Jingcan; He, Awen; Wen, Yan; Guo, Xiong; Wu, Cuiyan; Ning, Yujie; Wang, Xi; Wang, Sen; Zhang, Feng

    2017-08-01

    Neuroticism is a fundamental personality trait with significant genetic determinant. To identify novel susceptibility genes for neuroticism, we conducted an integrative analysis of genomic and transcriptomic data of genome wide association study (GWAS) and expression quantitative trait locus (eQTL) study. GWAS summary data was driven from published studies of neuroticism, totally involving 170,906 subjects. eQTL dataset containing 927,753 eQTLs were obtained from an eQTL meta-analysis of 5311 samples. Integrative analysis of GWAS and eQTL data was conducted by summary data-based Mendelian randomization (SMR) analysis software. To identify neuroticism associated gene sets, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). The gene set annotation dataset (containing 13,311 annotated gene sets) of GSEA Molecular Signatures Database was used. SMR single gene analysis identified 6 significant genes for neuroticism, including MSRA (p value=2.27×10 -10 ), MGC57346 (p value=6.92×10 -7 ), BLK (p value=1.01×10 -6 ), XKR6 (p value=1.11×10 -6 ), C17ORF69 (p value=1.12×10 -6 ) and KIAA1267 (p value=4.00×10 -6 ). Gene set enrichment analysis observed significant association for Chr8p23 gene set (false discovery rate=0.033). Our results provide novel clues for the genetic mechanism studies of neuroticism. Copyright © 2017. Published by Elsevier Inc.

  2. Loss of MACF1 Abolishes Ciliogenesis and Disrupts Apicobasal Polarity Establishment in the Retina.

    PubMed

    May-Simera, Helen L; Gumerson, Jessica D; Gao, Chun; Campos, Maria; Cologna, Stephanie M; Beyer, Tina; Boldt, Karsten; Kaya, Koray D; Patel, Nisha; Kretschmer, Friedrich; Kelley, Matthew W; Petralia, Ronald S; Davey, Megan G; Li, Tiansen

    2016-10-25

    Microtubule actin crosslinking factor 1 (MACF1) plays a role in the coordination of microtubules and actin in multiple cellular processes. Here, we show that MACF1 is also critical for ciliogenesis in multiple cell types. Ablation of Macf1 in the developing retina abolishes ciliogenesis, and basal bodies fail to dock to ciliary vesicles or migrate apically. Photoreceptor polarity is randomized, while inner retinal cells laminate correctly, suggesting that photoreceptor maturation is guided by polarity cues provided by cilia. Deletion of MACF1 in adult photoreceptors causes reversal of basal body docking and loss of outer segments, reflecting a continuous requirement for MACF1 function. MACF1 also interacts with the ciliary proteins MKKS and TALPID3. We propose that a disruption of trafficking across microtubles to actin filaments underlies the ciliogenesis defect in cells lacking MACF1 and that MKKS and TALPID3 are involved in the coordination of microtubule and actin interactions. Published by Elsevier Inc.

  3. Hox gene expression in the specialized limbs of the Iberian mole (Talpa occidentalis).

    PubMed

    Bickelmann, Constanze; van der Vos, Wessel; de Bakker, Merijn A G; Jiménez, Rafael; Maas, Saskia; Sánchez-Villagra, Marcelo R

    2017-01-01

    Fossorial talpid moles use their limbs predominantly for digging, which explains their highly specialized anatomy. The humerus is particularly short and dorsoventrally rotated, with broadened distal and proximal parts where muscles attach and which facilitate powerful abductive movements. The radius and ulna are exceptionally robust and short. The ulna has an expanded olecranon process. The femur is generalized, but the fused tibia-fibula complex is short and robust. To understand the developmental bases of these specializations, we studied expression patterns of four 5' Hox genes in the fossorial Iberian mole (Talpa occidentalis). These genes are known to play major roles in patterning the developing limb skeleton in the mouse, with which comparisons were made (Mus musculus, C57BL/6Jico strain). We find that HoxA9 expression is spatially expanded in the developing stylopodial area in the mole forelimb, compared to the less specialized mouse forelimb and mole hind limb. HoxD9 expression does not extend into the thoracic body wall in the mole forelimb in contrast to the mouse, and is also reduced in the presumptive zeugopodium in mole forelimb, compared to mouse. Expression of HoxD11 is upregulated in the mole in the postaxial area of the hind limb zeugopod, compared to the mouse. On the other hand, HoxD13 is downregulated in the postaxial zeugopodial area in the forelimb of the mole, compared to the mouse. The differences in the expression patterns of these 5' Hox genes between Talpa and Mus are an indication of the developmental changes going hand in hand with anatomical digging adaptations in the mole adult. © 2016 Wiley Periodicals, Inc.

  4. Novel candidate genes of the PARK7 interactome as mediators of apoptosis and acetylation in multiple sclerosis: An in silico analysis.

    PubMed

    Vavougios, George D; Zarogiannis, Sotirios G; Krogfelt, Karen Angeliki; Gourgoulianis, Konstantinos; Mitsikostas, Dimos Dimitrios; Hadjigeorgiou, Georgios

    2018-01-01

    currently only 4 studies have explored the potential role of PARK7's dysregulation in MS pathophysiology Currently, no study has evaluated the potential role of the PARK7 interactome in MS. The aim of our study was to assess the differential expression of PARK7 mRNA in peripheral blood mononuclears (PBMCs) donated from MS versus healthy patients using data mining techniques. The PARK7 interactome data from the GDS3920 profile were scrutinized for differentially expressed genes (DEGs); Gene Enrichment Analysis (GEA) was used to detect significantly enriched biological functions. 27 differentially expressed genes in the MS dataset were detected; 12 of these (NDUFA4, UBA2, TDP2, NPM1, NDUFS3, SUMO1, PIAS2, KIAA0101, RBBP4, NONO, RBBP7 AND HSPA4) are reported for the first time in MS. Stepwise Linear Discriminant Function Analysis constructed a predictive model (Wilk's λ = 0.176, χ 2 = 45.204, p = 1.5275e -10 ) with 2 variables (TIDP2, RBBP4) that achieved 96.6% accuracy when discriminating between patients and controls. Gene Enrichment Analysis revealed that induction and regulation of programmed / intrinsic cell death represented the most salient Gene Ontology annotations. Cross-validation on systemic lupus erythematosus and ischemic stroke datasets revealed that these functions are unique to the MS dataset. Based on our results, novel potential target genes are revealed; these differentially expressed genes regulate epigenetic and apoptotic pathways that may further elucidate underlying mechanisms of autorreactivity in MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less

  6. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    DOE PAGES

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai; ...

    2016-07-12

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less

  7. XLID-Causing Mutations and Associated Genes Challenged in Light of Data From Large-Scale Human Exome Sequencing

    PubMed Central

    Piton, Amélie; Redin, Claire; Mandel, Jean-Louis

    2013-01-01

    Because of the unbalanced sex ratio (1.3–1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases. PMID:23871722

  8. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing.

    PubMed

    Piton, Amélie; Redin, Claire; Mandel, Jean-Louis

    2013-08-08

    Because of the unbalanced sex ratio (1.3-1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort.

    PubMed

    Becker, Jessica; Czamara, Darina; Scerri, Tom S; Ramus, Franck; Csépe, Valéria; Talcott, Joel B; Stein, John; Morris, Andrew; Ludwig, Kerstin U; Hoffmann, Per; Honbolygó, Ferenc; Tóth, Dénes; Fauchereau, Fabien; Bogliotti, Caroline; Iannuzzi, Stéphanie; Chaix, Yves; Valdois, Sylviane; Billard, Catherine; George, Florence; Soares-Boucaud, Isabelle; Gérard, Christophe-Loïc; van der Mark, Sanne; Schulz, Enrico; Vaessen, Anniek; Maurer, Urs; Lohvansuu, Kaisa; Lyytinen, Heikki; Zucchelli, Marco; Brandeis, Daniel; Blomert, Leo; Leppänen, Paavo H T; Bruder, Jennifer; Monaco, Anthony P; Müller-Myhsok, Bertram; Kere, Juha; Landerl, Karin; Nöthen, Markus M; Schulte-Körne, Gerd; Paracchini, Silvia; Peyrard-Janvid, Myriam; Schumacher, Johannes

    2014-05-01

    Dyslexia is one of the most common childhood disorders with a prevalence of around 5-10% in school-age children. Although an important genetic component is known to have a role in the aetiology of dyslexia, we are far from understanding the molecular mechanisms leading to the disorder. Several candidate genes have been implicated in dyslexia, including DYX1C1, DCDC2, KIAA0319, and the MRPL19/C2ORF3 locus, each with reports of both positive and no replications. We generated a European cross-linguistic sample of school-age children - the NeuroDys cohort - that includes more than 900 individuals with dyslexia, sampled with homogenous inclusion criteria across eight European countries, and a comparable number of controls. Here, we describe association analysis of the dyslexia candidate genes/locus in the NeuroDys cohort. We performed both case-control and quantitative association analyses of single markers and haplotypes previously reported to be dyslexia-associated. Although we observed association signals in samples from single countries, we did not find any marker or haplotype that was significantly associated with either case-control status or quantitative measurements of word-reading or spelling in the meta-analysis of all eight countries combined. Like in other neurocognitive disorders, our findings underline the need for larger sample sizes to validate possibly weak genetic effects.

  10. KSC-00pp0586

    NASA Image and Video Library

    2000-04-25

    Astronaut Andy Thomas holds a facsimile of the Olympic torch that is being carried on Space Shuttle Atlantis during mission STS-101. Thomas is from Australia, which is the site of the 2000 Olympics. He coordinated the effort to have the torch added to the manifest so that it would truly circle the Earth in the spirit of the worldwide sporting event. The Sydney Olympic Torch Relay will arrive in Australia on June 8. The games begin Sept. 1

  11. KSC-99pp0586

    NASA Image and Video Library

    1999-05-27

    In the Operations and Checkout Building, STS-96 Pilot Rick D. Husband waves while being checked by a suit technician after donning his launch and entry suit during final launch preparations. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction.. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT

  12. Functional skeletal morphology and its implications for locomotory behavior among three genera of myosoricine shrews (Mammalia: Eulipotyphla: Soricidae)

    USGS Publications Warehouse

    Woodman, Neal; Stabile, Frank A.

    2015-01-01

    Myosoricinae is a small clade of shrews (Mammalia, Eulipotyphla, Soricidae) that is currently restricted to the African continent. Individual species have limited distributions that are often associated with higher elevations. Although the majority of species in the subfamily are considered ambulatory in their locomotory behavior, species of the myosoricine genus Surdisorex are known to be semifossorial. To better characterize variation in locomotory behaviors among myosoricines, we calculated 32 morphological indices from skeletal measurements from nine species representing all three genera that comprise the subfamily (i.e., Congosorex, Myosorex, Surdisorex) and compared them to indices calculated for two species with well-documented locomotory behaviors: the ambulatory talpid Uropsilus soricipes and the semifossorial talpid Neurotrichus gibbsii. We summarized the 22 most complete morphological variables by 1) calculating a mean percentile rank for each species and 2) using the first principal component from principal component analysis of the indices. The two methods yielded similar results and indicate grades of adaptations reflecting a range of potential locomotory behaviors from ambulatory to semifossorial that exceeds the range represented by the two talpids. Morphological variation reflecting grades of increased semifossoriality among myosoricine shrews is similar in many respects to that seen for soricines, but some features are unique to the Myosoricinae.

  13. Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites.

    PubMed

    Kamalakaran, Sitharthan; Radhakrishnan, Senthil K; Beck, William T

    2005-06-03

    We developed a pipeline to identify novel genes regulated by the steroid hormone-dependent transcription factor, estrogen receptor, through a systematic analysis of upstream regions of all human and mouse genes. We built a data base of putative promoter regions for 23,077 human and 19,984 mouse transcripts from National Center for Biotechnology Information annotation and 8793 human and 6785 mouse promoters from the Data Base of Transcriptional Start Sites. We used this data base of putative promoters to identify potential targets of estrogen receptor by identifying estrogen response elements (EREs) in their promoters. Our program correctly identified EREs in genes known to be regulated by estrogen in addition to several new genes whose putative promoters contained EREs. We validated six genes (KIAA1243, NRIP1, MADH9, NME3, TPD52L, and ABCG2) to be estrogen-responsive in MCF7 cells using reverse transcription PCR. To allow for extensibility of our program in identifying targets of other transcription factors, we have built a Web interface to access our data base and programs. Our Web-based program for Promoter Analysis of Genome, PAGen@UIC, allows a user to identify putative target genes for vertebrate transcription factors through the analysis of their upstream sequences. The interface allows the user to search the human and mouse promoter data bases for potential target genes containing one or more listed transcription factor binding sites (TFBSs) in their upstream elements, using either regular expression-based consensus or position weight matrices. The data base can also be searched for promoters harboring user-defined TFBSs given as a consensus or a position weight matrix. Furthermore, the user can retrieve putative promoter sequences for any given gene together with identified TFBSs located on its promoter. Orthologous promoters are also analyzed to determine conserved elements.

  14. [Molecular genetics of functional articulation disorder in children].

    PubMed

    Zhao, Yun-Jing; Ma, Hong-Wei

    2012-04-01

    Genetic factors are an important cause of functional articulation disorder in children. This article reviews some genes and chromosome regions associated with a genetic susceptibility to functional articulation disorders. The forkhead box P2 (FOXP2) gene on chromosome 7 is introduced in details including its structure, expression and function. The relationship between the FOXP2 gene and developmental apraxia of speech is discussed. As a transcription factor, FOXP2 gene regulates the expression of many genes. CNTNAP2 as an important target gene of FOXP2 is a key gene influencing language development. Functional articulation disorder may be developed to dyslexia, therefore some candidate regions and genes related to dyslexia, such as 3p12-13, 15q11-21, 6p22 and 1p34-36, are also introduced. ROBO1 gene in 3p12.3, ZNF280D gene, TCF12 gene, EKN1 gene in 15q21, and KIAA0319 gene in 6p22 have been candidate genes for the study of functional articulation disorder.

  15. Identification and characterization of human GUKH2 gene in silico.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  16. Function of ZFAND3 in the DNA Damage Response

    DTIC Science & Technology

    2013-06-01

    Department of Defense Breast Cancer Program Era of Hope Conference August 2011 iv. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D...Analysis of protein dynamics at active, stalled and collapsed replication forks; Vanderbilt Institute of Chemical and Physical Biology August 2011...BRIP1 MED16 FANCD2 COMT TONSL FANCI CUL2 TRRAP MDC1 DMD UNG PDS5B DNPH1 WRN POLE FANCI RFC1 INCENP RPA1 JMJD6 SART3 KIAA1598 BLM SMARCAD1 NBAS BRIP1

  17. Phylogenetic analysis of the cytochrome P450 3 (CYP3) gene family.

    PubMed

    McArthur, Andrew G; Hegelund, Tove; Cox, Rachel L; Stegeman, John J; Liljenberg, Mette; Olsson, Urban; Sundberg, Per; Celander, Malin C

    2003-08-01

    Cytochrome P450 genes (CYP) constitute a superfamily with members known from the Bacteria, Archaea, and Eukarya. The CYP3 gene family includes the CYP3A and CYP3B subfamilies. Members of the CYP3A subfamily represent the dominant CYP forms expressed in the digestive and respiratory tracts of vertebrates. The CYP3A enzymes metabolize a wide variety of chemically diverse lipophilic organic compounds. To understand vertebrate CYP3 diversity better, we determined the killifish (Fundulus heteroclitus) CYP3A30 and CYP3A56 and the ball python (Python regius) CYP3A42 sequences. We performed phylogenetic analyses of 45 vertebrate CYP3 amino acid sequences using a Bayesian approach. Our analyses indicate that teleost, diapsid, and mammalian CYP3A genes have undergone independent diversification and that the ancestral vertebrate genome contained a single CYP3A gene. Most CYP3A diversity is the product of recent gene duplication events. There is strong support for placement of the guinea pig CYP3A genes within the rodent CYP3A diversification. The rat, mouse, and hamster CYP3A genes are mixed among several rodent CYP3A subclades, indicative of a complex history involving speciation and gene duplication.

  18. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana.

    PubMed

    Wollmann, Heike; Stroud, Hume; Yelagandula, Ramesh; Tarutani, Yoshiaki; Jiang, Danhua; Jing, Li; Jamge, Bhagyshree; Takeuchi, Hidenori; Holec, Sarah; Nie, Xin; Kakutani, Tetsuji; Jacobsen, Steven E; Berger, Frédéric

    2017-05-18

    Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.

  19. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation

    PubMed Central

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849

  20. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

    PubMed

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo . The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

  1. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci

    PubMed Central

    Martin, Jose-Ezequiel; Assassi, Shervin; Diaz-Gallo, Lina-Marcela; Broen, Jasper C.; Simeon, Carmen P.; Castellvi, Ivan; Vicente-Rabaneda, Esther; Fonollosa, Vicente; Ortego-Centeno, Norberto; González-Gay, Miguel A.; Espinosa, Gerard; Carreira, Patricia; Camps, Mayte; Sabio, Jose M.; D'alfonso, Sandra; Vonk, Madelon C.; Voskuyl, Alexandre E.; Schuerwegh, Annemie J.; Kreuter, Alexander; Witte, Torsten; Riemekasten, Gabriella; Hunzelmann, Nicolas; Airo, Paolo; Beretta, Lorenzo; Scorza, Raffaella; Lunardi, Claudio; Van Laar, Jacob; Chee, Meng May; Worthington, Jane; Herrick, Arianne; Denton, Christopher; Fonseca, Carmen; Tan, Filemon K.; Arnett, Frank; Zhou, Xiaodong; Reveille, John D.; Gorlova, Olga; Koeleman, Bobby P.C.; Radstake, Timothy R.D.J.; Vyse, Timothy; Mayes, Maureen D.; Alarcón-Riquelme, Marta E.; Martin, Javier

    2013-01-01

    Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are two archetypal systemic autoimmune diseases which have been shown to share multiple genetic susceptibility loci. In order to gain insight into the genetic basis of these diseases, we performed a pan-meta-analysis of two genome-wide association studies (GWASs) together with a replication stage including additional SSc and SLE cohorts. This increased the sample size to a total of 21 109 (6835 cases and 14 274 controls). We selected for replication 19 SNPs from the GWAS data. We were able to validate KIAA0319L (P = 3.31 × 10−11, OR = 1.49) as novel susceptibility loci for SSc and SLE. Furthermore, we also determined that the previously described SLE susceptibility loci PXK (P = 3.27 × 10−11, OR = 1.20) and JAZF1 (P = 1.11 × 10−8, OR = 1.13) are shared with SSc. Supporting these new discoveries, we observed that KIAA0319L was overexpressed in peripheral blood cells of SSc and SLE patients compared with healthy controls. With these, we add three (KIAA0319L, PXK and JAZF1) and one (KIAA0319L) new susceptibility loci for SSc and SLE, respectively, increasing significantly the knowledge of the genetic basis of autoimmunity. PMID:23740937

  2. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci.

    PubMed

    Martin, Jose-Ezequiel; Assassi, Shervin; Diaz-Gallo, Lina-Marcela; Broen, Jasper C; Simeon, Carmen P; Castellvi, Ivan; Vicente-Rabaneda, Esther; Fonollosa, Vicente; Ortego-Centeno, Norberto; González-Gay, Miguel A; Espinosa, Gerard; Carreira, Patricia; Camps, Mayte; Sabio, Jose M; D'alfonso, Sandra; Vonk, Madelon C; Voskuyl, Alexandre E; Schuerwegh, Annemie J; Kreuter, Alexander; Witte, Torsten; Riemekasten, Gabriella; Hunzelmann, Nicolas; Airo, Paolo; Beretta, Lorenzo; Scorza, Raffaella; Lunardi, Claudio; Van Laar, Jacob; Chee, Meng May; Worthington, Jane; Herrick, Arianne; Denton, Christopher; Fonseca, Carmen; Tan, Filemon K; Arnett, Frank; Zhou, Xiaodong; Reveille, John D; Gorlova, Olga; Koeleman, Bobby P C; Radstake, Timothy R D J; Vyse, Timothy; Mayes, Maureen D; Alarcón-Riquelme, Marta E; Martin, Javier

    2013-10-01

    Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are two archetypal systemic autoimmune diseases which have been shown to share multiple genetic susceptibility loci. In order to gain insight into the genetic basis of these diseases, we performed a pan-meta-analysis of two genome-wide association studies (GWASs) together with a replication stage including additional SSc and SLE cohorts. This increased the sample size to a total of 21,109 (6835 cases and 14,274 controls). We selected for replication 19 SNPs from the GWAS data. We were able to validate KIAA0319L (P = 3.31 × 10(-11), OR = 1.49) as novel susceptibility loci for SSc and SLE. Furthermore, we also determined that the previously described SLE susceptibility loci PXK (P = 3.27 × 10(-11), OR = 1.20) and JAZF1 (P = 1.11 × 10(-8), OR = 1.13) are shared with SSc. Supporting these new discoveries, we observed that KIAA0319L was overexpressed in peripheral blood cells of SSc and SLE patients compared with healthy controls. With these, we add three (KIAA0319L, PXK and JAZF1) and one (KIAA0319L) new susceptibility loci for SSc and SLE, respectively, increasing significantly the knowledge of the genetic basis of autoimmunity.

  3. Co-expression of mitosis-regulating genes contributes to malignant progression and prognosis in oligodendrogliomas

    PubMed Central

    Liu, Yanwei; Hu, Huimin; Zhang, Chuanbao; Wang, Haoyuan; Zhang, Wenlong; Wang, Zheng; Li, Mingyang; Zhang, Wei; Zhou, Dabiao; Jiang, Tao

    2015-01-01

    The clinical prognosis of patients with glioma is determined by tumor grades, but tumors of different subtypes with equal malignancy grade usually have different prognosis that is largely determined by genetic abnormalities. Oligodendrogliomas (ODs) are the second most common type of gliomas. In this study, integrative analyses found that distribution of TCGA transcriptomic subtypes was associated with grade progression in ODs. To identify critical gene(s) associated with tumor grades and TCGA subtypes, we analyzed 34 normal brain tissue (NBT), 146 WHO grade II and 130 grade III ODs by microarray and RNA sequencing, and identified a co-expression network of six genes (AURKA, NDC80,CENPK, KIAA0101, TIMELESS and MELK) that was associated with tumor grades and TCGA subtypes as well as Ki-67 expression. Validation of the six genes was performed by qPCR in additional 28 ODs. Importantly, these genes also were validated in four high-grade recurrent gliomas and the initial lower-grade gliomas resected from the same patients. Finally, the RNA data on two genes with the highest discrimination potential (AURKA and NDC80) and Ki-67 were validated on an independent cohort (5 NBTs and 86 ODs) by immunohistochemistry. Knockdown of AURKA and NDC80 by siRNAs suppressed Ki-67 expression and proliferation of gliomas cells. Survival analysis showed that high expression of the six genes corporately indicated a poor survival outcome. Correlation and protein interaction analysis provided further evidence for this co-expression network. These data suggest that the co-expression of the six mitosis-regulating genes was associated with malignant progression and prognosis in ODs. PMID:26468983

  4. [Genes for Fibrogenesis in the Determination of Susceptibility to Myocardial Infarction].

    PubMed

    Goncharova, I A; Makeeva, O A; Golubenko, M V; Markov, A V; Tarasenko, N V; Sleptsov, A A; Puzyrev, V P

    2016-01-01

    A group of patients with ischemic heart disease and myocardial infarction (N = 156) and a reference population sample (N = 300) were genotyped for 58 single nucleotide polymorphisms (SNPs) in the genes involved in extracellular matrix function and collagen metabolism or associated with cardiovascular diseases and atherosclerotic plaque stability. Genotyping was performed by mass-spectrometry with two multiplex sets of 27 and 31 SNPs. The study revealed different genetic composition of predisposition to cardiovascular disease continuum (CVDC) syntropy (patients with concomitant conditions: hypercholesterolemia, hypertension, and type-II diabetes mellitus, N = 96) and to isolated myocardial infarction (without these conditions, N = 60). Only the KIAA1462 gene (rs3739998) showed associations with both CVDC syntropy (OR = 1.71; 95% CI 1.19-2.45; р = 0.003) and isolated infarction (OR = 1.58; 95% CI 1.05-2.40; р = 0.028). Isolated myocardial infarction was also associated with LIG1 (rs20579) (OR = 2.08; 95% CI 1.06-4.17; р = 0.028) and ADAMDEC1 (rs3765124) (OR = 1.63; 95% CI 1.07-2.50; р = 0.020). CVDC syntropy was associated with CDKN2BAS1 (rs1333049) (OR = 1.48; 95% CI 1.03-2.12; р = 0.029) and APOA2 (rs5082) (OR = 1.47; 95% CI 1.02-2.11; р = 0.035). So, genes involved in fibrogenesis contribute to predisposition to the myocardial infarction as well. Isolated myocardial infarction and CVDC syntropy can be considered as pathogenetically different cardiovascular conditions, with different genes that contribute to the susceptibility.

  5. Analysis of autosomal genes reveals gene-sex interactions and higher total genetic risk in men with systemic lupus erythematosus.

    PubMed

    Hughes, Travis; Adler, Adam; Merrill, Joan T; Kelly, Jennifer A; Kaufman, Kenneth M; Williams, Adrienne; Langefeld, Carl D; Gilkeson, Gary S; Sanchez, Elena; Martin, Javier; Boackle, Susan A; Stevens, Anne M; Alarcón, Graciela S; Niewold, Timothy B; Brown, Elizabeth E; Kimberly, Robert P; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Reveille, John D; Criswell, Lindsey A; Vilá, Luis M; Jacob, Chaim O; Gaffney, Patrick M; Moser, Kathy L; Vyse, Timothy J; Alarcón-Riquelme, Marta E; James, Judith A; Tsao, Betty P; Scofield, R Hal; Harley, John B; Richardson, Bruce C; Sawalha, Amr H

    2012-05-01

    Systemic lupus erythematosus (SLE) is a sexually dimorphic autoimmune disease which is more common in women, but affected men often experience a more severe disease. The genetic basis of sexual dimorphism in SLE is not clearly defined. A study was undertaken to examine sex-specific genetic effects among SLE susceptibility loci. A total of 18 autosomal genetic susceptibility loci for SLE were genotyped in a large set of patients with SLE and controls of European descent, consisting of 5932 female and 1495 male samples. Sex-specific genetic association analyses were performed. The sex-gene interaction was further validated using parametric and non-parametric methods. Aggregate differences in sex-specific genetic risk were examined by calculating a cumulative genetic risk score for SLE in each individual and comparing the average genetic risk between male and female patients. A significantly higher cumulative genetic risk for SLE was observed in men than in women. (P=4.52x10-8) A significant sex-gene interaction was seen primarily in the human leucocyte antigen (HLA) region but also in IRF5, whereby men with SLE possess a significantly higher frequency of risk alleles than women. The genetic effect observed in KIAA1542 is specific to women with SLE and does not seem to have a role in men. The data indicate that men require a higher cumulative genetic load than women to develop SLE. These observations suggest that sex bias in autoimmunity could be influenced by autosomal genetic susceptibility loci.

  6. A cluster of novel serotonin receptor 3-like genes on human chromosome 3.

    PubMed

    Karnovsky, Alla M; Gotow, Lisa F; McKinley, Denise D; Piechan, Julie L; Ruble, Cara L; Mills, Cynthia J; Schellin, Kathleen A B; Slightom, Jerry L; Fitzgerald, Laura R; Benjamin, Christopher W; Roberds, Steven L

    2003-11-13

    The ligand-gated ion channel family includes receptors for serotonin (5-hydroxytryptamine, 5-HT), acetylcholine, GABA, and glutamate. Drugs targeting subtypes of these receptors have proven useful for the treatment of various neuropsychiatric and neurological disorders. To identify new ligand-gated ion channels as potential therapeutic targets, drafts of human genome sequence were interrogated. Portions of four novel genes homologous to 5-HT(3A) and 5-HT(3B) receptors were identified within human sequence databases. We named the genes 5-HT(3C1)-5-HT(3C4). Radiation hybrid (RH) mapping localized these genes to chromosome 3q27-28. All four genes shared similar intron-exon organizations and predicted protein secondary structure with 5-HT(3A) and 5-HT(3B). Orthologous genes were detected by Southern blotting in several species including dog, cow, and chicken, but not in rodents, suggesting that these novel genes are not present in rodents or are very poorly conserved. Two of the novel genes are predicted to be pseudogenes, but two other genes are transcribed and spliced to form appropriate open reading frames. The 5-HT(3C1) transcript is expressed almost exclusively in small intestine and colon, suggesting a possible role in the serotonin-responsiveness of the gut.

  7. Analysis of the aac(3)-VIa gene encoding a novel 3-N-acetyltransferase.

    PubMed Central

    Rather, P N; Mann, P A; Mierzwa, R; Hare, R S; Miller, G H; Shaw, K J

    1993-01-01

    Biochemical analysis (G. A. Papanicolaou, R. S. Hare, R. Mierzwa, and G. H. Miller, abstr. 152, Program Abstr. 29th Intersci. Conf. Antimicrob. Agents Chemother., 1989) demonstrated the presence of a novel 3-N-acetyltransferase in Enterobacter cloacae 88020217. This organism was resistant to gentamicin, and the MIC of 2'-N-ethylnetilmicin for it was fourfold lower than that of 6'-N-ethylnetilmicin, a resistance pattern which suggested 2'-acetylating activity. However, high-pressure liquid chromatography analysis demonstrated that the enzyme acetylated sisomicin in the 3 position. We have cloned the structural gene for this enzyme from a large (> 70-kb) conjugative plasmid present in E. cloacae. Subcloning experiments have localized the aac(3)-VIa gene to a 2.1-kb Sau3A fragment. The deduced AAC(3)-VIa protein showed 48% amino acid identity to the AAC(3)-IIa protein and 39% identity to the AAC(3)-VII protein. Examination of the 5'-flanking sequences demonstrated that the aac(3)-VIa gene was located 167 bp downstream of the aadA1 gene and was present in an integron. In addition, the aac(3)-VIa gene is also downstream of a 59-base element often seen in an integron environment. Primer extension analysis has identified a promoter for the aac(3)-VIa gene downstream of both the aadA1 gene and a 59-base element. Images PMID:8257126

  8. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue

  9. Comparative and evolutionary analysis of the 14-3-3 family genes in eleven fishes.

    PubMed

    Cao, Jun; Tan, Xiaona

    2018-07-01

    14-3-3 proteins are a type of highly conserved acidic proteins, which are distributed over a wide variety of organisms and are involved in multiple cellular processes. While the comparative and evolutionary analysis of this gene family is unavailable in various fish species. In this study, we identified 101 putative 14-3-3 genes in 11 fish species and divided them into 5 groups via phylogenetic analysis. Synteny analysis implied conserved and dynamic evolution characteristics near the 14-3-3 gene loci in some vertebrates. We also found that some recombination events have accelerated the evolution of this gene family. Moreover, a positive selection site was also identified, and mutation of this site could reduce the 14-3-3 stability. Divergent expression profiles of the zebrafish 14-3-3 genes were further investigated under organophosphorus stress, suggesting that they may be involved in the different osmoregulation and immune response. The results will serve as a foundation for the further functional investigation into the 14-3-3 genes in fishes. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Finding approximate gene clusters with Gecko 3.

    PubMed

    Winter, Sascha; Jahn, Katharina; Wehner, Stefanie; Kuchenbecker, Leon; Marz, Manja; Stoye, Jens; Böcker, Sebastian

    2016-11-16

    Gene-order-based comparison of multiple genomes provides signals for functional analysis of genes and the evolutionary process of genome organization. Gene clusters are regions of co-localized genes on genomes of different species. The rapid increase in sequenced genomes necessitates bioinformatics tools for finding gene clusters in hundreds of genomes. Existing tools are often restricted to few (in many cases, only two) genomes, and often make restrictive assumptions such as short perfect conservation, conserved gene order or monophyletic gene clusters. We present Gecko 3, an open-source software for finding gene clusters in hundreds of bacterial genomes, that comes with an easy-to-use graphical user interface. The underlying gene cluster model is intuitive, can cope with low degrees of conservation as well as misannotations and is complemented by a sound statistical evaluation. To evaluate the biological benefit of Gecko 3 and to exemplify our method, we search for gene clusters in a dataset of 678 bacterial genomes using Synechocystis sp. PCC 6803 as a reference. We confirm detected gene clusters reviewing the literature and comparing them to a database of operons; we detect two novel clusters, which were confirmed by publicly available experimental RNA-Seq data. The computational analysis is carried out on a laptop computer in <40 min. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Increased variability of stimulus-driven cortical responses is associated with genetic variability in children with and without dyslexia.

    PubMed

    Centanni, T M; Pantazis, D; Truong, D T; Gruen, J R; Gabrieli, J D E; Hogan, T P

    2018-05-26

    Individuals with dyslexia exhibit increased brainstem variability in response to sound. It is unknown as to whether increased variability extends to neocortical regions associated with audition and reading, extends to visual stimuli, and whether increased variability characterizes all children with dyslexia or, instead, a specific subset of children. We evaluated the consistency of stimulus-evoked neural responses in children with (N = 20) or without dyslexia (N = 12) as measured by magnetoencephalography (MEG). Approximately half of the children with dyslexia had significantly higher levels of variability in cortical responses to both auditory and visual stimuli in multiple nodes of the reading network. There was a significant and positive relationship between the number of risk alleles at rs6935076 in the dyslexia-susceptibility gene KIAA0319 and the degree of neural variability in primary auditory cortex across all participants. This gene has been linked with neural variability in rodents and in typical readers. These findings indicate that unstable representations of auditory and visual stimuli in auditory and other reading-related neocortical regions are present in a subset of children with dyslexia and support the link between the gene KIAA0319 and the auditory neural variability across children with or without dyslexia. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. STAT3 Target Genes Relevant to Human Cancers

    PubMed Central

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers. PMID:24743777

  13. Identification of the 14-3-3 gene family in Rafflesia cantleyi

    NASA Astrophysics Data System (ADS)

    Rosli, Khadijah; Wan, Kiew-Lian

    2018-04-01

    Rafflesia is known to be the largest flower in the world. Due to its size and appearance, it is considered to be very unique. Little is known about the molecular biology of this rare parasitic flowering plant as it is very difficult to locate and has a short life-span as a flower. Physiological activities in plants are regulated by signalling regulators such as the members of the 14-3-3 gene family. The number of members of this gene family varies in plants and there are thirteen known members in Arabidopsis thaliana. Their role is to bind to phosphorylated targets to complete signal transduction processes. Sequence comparison using BLAST of transcriptome data from three different Rafflesia cantleyi floral bud stages against the Swissprot database revealed 27 transcripts annotated as members of this gene family. All of the transcripts were expressed during floral bud stage 1 (S1) while 14 and four transcripts were expressed during floral bud stages 2 (S2) and 3 (S3), respectively. Significant downregulation was recorded for six and nine transcripts at S1 vs. S2 and S2 vs. S3 respectively. This gene family may play a critical role as signalling regulators during the development of Rafflesia floral bud.

  14. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts.

    PubMed

    Nagaoka, Aya; Yoshida, Hiroyuki; Nakamura, Sachiko; Morikawa, Tomohiko; Kawabata, Keigo; Kobayashi, Masaki; Sakai, Shingo; Takahashi, Yoshito; Okada, Yasunori; Inoue, Shintaro

    2015-12-25

    Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Genomic organization and expression of the human MSH3 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Atsushi; Ikejima, Miyoko; Suzuki, Noriko

    1996-02-01

    We have studied the expression and genomic organization of the human MSH3 gene, which encodes a human homologue of the bacterial DNA mismatch repair protein MutS. This gene is located upstream of the dihydrofolate reductase (DHFR) gene. Northern analysis has demonstrated that the hMSH3 gene is expressed in a variety of human tissues at low levels, like the DHFR gene. Characterization of cosmid clones has shown that the hMSH3 gene consists of 24 exons spanning at least 160 kb. All exon-intron junction sequences match the classical GT/AG rule, except that intron 6 has AT and AA at the ends. Twomore » major transcripts of 5.0 and 3.8 kb have been shown to be derived from the differential use of two polyadenylation sites. Elucidation of the complete genomic organization and the nucleotide sequences of the introns of the hMSH3 gene should be useful for studying the function of this gene and the possible involvement of specific mutations of the hMSH3 gene in some diseases. 34 refs., 5 figs., 1 tab.« less

  16. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter.

    PubMed

    Su, Zhao-Zhong; Sarkar, Devanand; Emdad, Luni; Duigou, Gregory J; Young, Charles S H; Ware, Joy; Randolph, Aaron; Valerie, Kristoffer; Fisher, Paul B

    2005-01-25

    One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.

  17. Pleiotropic genes for metabolic syndrome and inflammation

    PubMed Central

    Kraja, Aldi T.; Chasman, Daniel I.; North, Kari E.; Reiner, Alexander P.; Yanek, Lisa R.; Kilpeläinen, Tuomas O.; Smith, Jennifer A.; Dehghan, Abbas; Dupuis, Josée; Johnson, Andrew D.; Feitosa, Mary F.; Tekola-Ayele, Fasil; Chu, Audrey Y.; Nolte, Ilja M.; Dastani, Zari; Morris, Andrew; Pendergrass, Sarah A.; Sun, Yan V.; Ritchie, Marylyn D.; Vaez, Ahmad; Lin, Honghuang; Ligthart, Symen; Marullo, Letizia; Rohde, Rebecca; Shao, Yaming; Ziegler, Mark A.; Im, Hae Kyung; Schnabel, Renate B.; Jørgensen, Torben; Jørgensen, Marit E.; Hansen, Torben; Pedersen, Oluf; Stolk, Ronald P.; Snieder, Harold; Hofman, Albert; Uitterlinden, Andre G.; Franco, Oscar H.; Ikram, M. Arfan; Richards, J. Brent; Rotimi, Charles; Wilson, James G.; Lange, Leslie; Ganesh, Santhi K.; Nalls, Mike; Rasmussen-Torvik, Laura J.; Pankow, James S.; Coresh, Josef; Tang, Weihong; Kao, W.H. Linda; Boerwinkle, Eric; Morrison, Alanna C.; Ridker, Paul M.; Becker, Diane M.; Rotter, Jerome I.; Kardia, Sharon L.R.; Loos, Ruth J.F.; Larson, Martin G.; Hsu, Yi-Hsiang; Province, Michael A.; Tracy, Russell; Voight, Benjamin F.; Vaidya, Dhananjay; O’Donnell, Christopher; Benjamin, Emelia J.; Alizadeh, Behrooz Z.; Prokopenko, Inga; Meigs, James B.; Borecki, Ingrid B.

    2014-01-01

    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic

  18. Pleiotropic genes for metabolic syndrome and inflammation.

    PubMed

    Kraja, Aldi T; Chasman, Daniel I; North, Kari E; Reiner, Alexander P; Yanek, Lisa R; Kilpeläinen, Tuomas O; Smith, Jennifer A; Dehghan, Abbas; Dupuis, Josée; Johnson, Andrew D; Feitosa, Mary F; Tekola-Ayele, Fasil; Chu, Audrey Y; Nolte, Ilja M; Dastani, Zari; Morris, Andrew; Pendergrass, Sarah A; Sun, Yan V; Ritchie, Marylyn D; Vaez, Ahmad; Lin, Honghuang; Ligthart, Symen; Marullo, Letizia; Rohde, Rebecca; Shao, Yaming; Ziegler, Mark A; Im, Hae Kyung; Schnabel, Renate B; Jørgensen, Torben; Jørgensen, Marit E; Hansen, Torben; Pedersen, Oluf; Stolk, Ronald P; Snieder, Harold; Hofman, Albert; Uitterlinden, Andre G; Franco, Oscar H; Ikram, M Arfan; Richards, J Brent; Rotimi, Charles; Wilson, James G; Lange, Leslie; Ganesh, Santhi K; Nalls, Mike; Rasmussen-Torvik, Laura J; Pankow, James S; Coresh, Josef; Tang, Weihong; Linda Kao, W H; Boerwinkle, Eric; Morrison, Alanna C; Ridker, Paul M; Becker, Diane M; Rotter, Jerome I; Kardia, Sharon L R; Loos, Ruth J F; Larson, Martin G; Hsu, Yi-Hsiang; Province, Michael A; Tracy, Russell; Voight, Benjamin F; Vaidya, Dhananjay; O'Donnell, Christopher J; Benjamin, Emelia J; Alizadeh, Behrooz Z; Prokopenko, Inga; Meigs, James B; Borecki, Ingrid B

    2014-08-01

    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic

  19. Transformation of NIH3T3 Cells with Synthetic c‐Ha‐ras Genes

    PubMed Central

    Kamiya, Hiroyuki; Miura, Kazunobu; Ohtomo, Noriko; Koda, Toshiaki; Kakinuma, Mitsuaki; Nishimura, Susumu

    1989-01-01

    Synthetic human c‐Ha‐ras genes in which amino acid codons were altered to those which are frequently used in highly expressed Escherichia coli genes were ligated to the 3′‐end of Rous sarcoma virus long terminal repeat. When NIH3T3 cells were transfected with the plasmids having those genes with valine at codon 12, leucine at codon 61 or arginine at codon 61, transformants were efficiently produced. These results indicated that the synthetic c‐Ha‐ras genes are expressed in a mammalian system even though their codon usage is altered to correspond with that of E. colt. This expression vector system should he useful for studies on the structure‐function relationships of c‐Ha‐ras, since the synthetic gene can be easily modified to have multiple base alterations, and can also be used simultaneously for the production of large amounts of p21 in E. coli for biochemical and biophysical studies. PMID:2542206

  20. The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested PCR

    PubMed Central

    Zhang, Peng

    2012-01-01

    Background Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. Methodology/Principal Findings We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. Conclusions/Significance Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for

  1. Functional Analysis of Chk2-Kiaa0170 Interaction

    DTIC Science & Technology

    2006-09-01

    terminal repeat; NEO, neomycin resistance gene; pA, poly-A; PGK, phosphoglycerate kinase-1; BTK , Bru- ton’s tyrosine kinase; SA and SD, splice acceptor...Briefly, MEFs were lysed in buffer I (50 mM HEPES [pH 7.5], 150 mM NaCl, 1 mM EDTA, 0.05% NP40, and protease and phosphatase inhibitors ) for 5 min on...0.5% DOC, 0.1% SDS, and protease and phosphatase inhibitors ) on ice for 20 min. The extracts were centrifuged at 14,000 rpm for 20 min at 4ºC. The

  2. Genes that characterize T3-predominant Graves' thyroid tissues.

    PubMed

    Matsumoto, Chisa; Ito, Mitsuru; Yamada, Hiroya; Yamakawa, Noriko; Yoshida, Hiroshi; Date, Arisa; Watanabe, Mikio; Hidaka, Yoh; Iwatani, Yoshinori; Miyauchi, Akira; Takano, Toru

    2013-02-01

    3,5,3'-Triiodothyronine (T(3))-predominant Graves' disease is characterized by the increasing volume of thyroid goiter resulting in poor prognosis. Although type 1 and type 2 iodothyronine deiodinases (DIO1 and DIO2 respectively) are known to be overexpressed in the thyroid tissues of T(3)-predominant Graves' disease, the pathogenesis of this disease is still unclear. The aim of our study is to identify genes that characterize T(3)-predominant Graves' disease tissue in order to clarify the molecular mechanism of this disease. mRNAs from two thyroid tissues of both typical T(3)-predominant and common-type Graves' disease were analyzed with DNA microarrays with probes for 28 869 genes. Genes identified to be differentially expressed between the two groups were further analyzed in the second and third screenings using 70 Graves' thyroid tissues by real-time quantitative RT-PCR. Twenty-three candidate genes were selected as being differentially expressed in the first screening with microarrays. Among these, seven genes, leucine-rich repeat neuronal 1 (LRRN1), bone morphogenetic protein 8a (BMP8A), N-cadherin (CDH2), phosphodiesterase 1A (PDE1A), creatine kinase mitochondrial 2 (CKMT2), integrin beta-3 (ITGB3), and protein tyrosine phosphatase non-receptor type 4 (PTPN4), were confirmed to be differentially expressed in DIO1 or DIO2 over- and underexpressing Graves' tissues. These genes are related to the characteristics of T(3)-predominant Graves' disease, such as high titer level of serum anti-TSH receptor antibody, high free T(3) to free thyroxine ratio, and a large goiter size. They might play a role in the pathogenesis of T(3)-predominant Graves' disease.

  3. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma.

    PubMed

    Parker, Brittany C; Annala, Matti J; Cogdell, David E; Granberg, Kirsi J; Sun, Yan; Ji, Ping; Li, Xia; Gumin, Joy; Zheng, Hong; Hu, Limei; Yli-Harja, Olli; Haapasalo, Hannu; Visakorpi, Tapio; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Fuller, Gregory N; Chen, Kexin; Lang, Frederick F; Nykter, Matti; Zhang, Wei

    2013-02-01

    Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3'-untranslated region (3'-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3'-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma.

  4. Genes encoding p-coumarate 3-hydroxylase (C3H) and methods of use

    DOEpatents

    Chapple, Clinton C. S.; Franke, Rochus; Ruegger, Max O.

    2006-07-04

    The present invention is directed to a method for altering secondary metabolism in plants, specifically phenylpropanoid metabolism. The present invention is further directed to a mutant p-coumarate 3-hydroxylase gene, referred to herein as the ref8 gene, its protein product which can be used to prepare gene constructs and transgenic plants. The gene constructs and transgenic plants are further aspects of the present invention.

  5. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma

    PubMed Central

    Parker, Brittany C.; Annala, Matti J.; Cogdell, David E.; Granberg, Kirsi J.; Sun, Yan; Ji, Ping; Li, Xia; Gumin, Joy; Zheng, Hong; Hu, Limei; Yli-Harja, Olli; Haapasalo, Hannu; Visakorpi, Tapio; Liu, Xiuping; Liu, Chang-gong; Sawaya, Raymond; Fuller, Gregory N.; Chen, Kexin; Lang, Frederick F.; Nykter, Matti; Zhang, Wei

    2013-01-01

    Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3′–untranslated region (3′-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3′-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma. PMID:23298836

  6. KLF15 promotes transcription of KLF3 gene in bovine adipocytes.

    PubMed

    Guo, Hongfang; Khan, Rajwali; Raza, Sayed Haidar Abbas; Ning, Yue; Wei, Dawei; Wu, Sen; Hosseini, Seyed Mahdi; Ullah, Irfan; Garcia, Matthew D; Zan, Linsen

    2018-06-15

    The Krüppel-like factors (KLF) family plays an important role in adipogenesis, which is subject to internal hierarchical regulation. KLF3 is a member of KLF family, mainly responsible for adipocyte differentiation and fat deposition. However, the transcriptional regulation of bovine KLF3 gene and its relationship with KLF15 gene remains unclear during bovine adipogenesis. Here, we report that the expression pattern of KLF3 and KLF15 genes during bovine adipogenesis, when KLF15 gene was overexpressed through adenoviral vector (Ad-KLF15) in bovine adipocytes the expression level of KLF3 gene was increased, similarly when KLF15 was down regulated through siRNA the expression level of KLF3 was also reduced. To explore the transcriptional regulation of bovine KLF3 gene and its relationship with KLF15, serial deletion constructs of the 5'flanking region of bovine KLF3gene revealed through dual-luciferase reporter assay that the core promoter is located in -264 to -76 regions. The most proximal GGGG element in the promoter of the bovine KLF3 gene (located in -264 to -76 regions) is required for promotion by KLF15. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays further confirmed that KLF15 gene binds to the KLF3 gene core promoter region in bovine adipocytes. These findings conclude that KLF15 promotes the transcriptional activity of KLF3 in bovine adipocytes. This mechanism to provides a new direction for further study of adipogenesis by internal regulation of members within KLF family. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Characterization and anti-inflammation role of swine IFITM3 gene

    PubMed Central

    Li, He-Ping; Chen, Pei-Ge; Liu, Fu-Tao; Zhu, He-Shui; Jiao, Xian-Qin; Zhong, Kai; Guo, Yu-Jie; Zha, Guang-Ming; Han, Li-Qiang; Lu, Wei-Fei; Wang, Yue-Ying; Yang, Guo-Yu

    2017-01-01

    IFITM3 is involved in cell adhesion, apoptosis, immune, and antivirus activity. Furthermore, IFITM3 gene has been considered as a preferential marker for inflammatory diseases, and positive correlation to pathological grades. Therefore, we assumed that IFITM3 was regulated by different signal pathways. To better understand IFITM3 function in inflammatory response, we cloned swine IFITM3 gene, and detected IFITM3 distribution in tissues, as well as characterized this gene. Results indicated that the length of swine IFITM3 gene was 438 bp, encoding 145 amino acids. IFITM3 gene expression abundance was higher in spleen and lungs. Moreover, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, finally obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited time-dependent effect for LPS treatment. To further demonstrate the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling molecules. However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells. In conclusion, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation. PMID:29088728

  8. H3K27me3 and H3K4me3 chromatin environment at super-induced dehydration stress memory genes of Arabidopsis thaliana.

    PubMed

    Liu, Ning; Fromm, Michael; Avramova, Zoya

    2014-03-01

    Pre-exposure to a stress may alter the plant's cellular, biochemical, and/or transcriptional responses during future encounters as a 'memory' from the previous stress. Genes increasing transcription in response to a first dehydration stress, but producing much higher transcript levels in a subsequent stress, represent the super-induced 'transcription memory' genes in Arabidopsis thaliana. The chromatin environment (histone H3 tri-methylations of Lys 4 and Lys 27, H3K4me3, and H3K27me3) studied at five dehydration stress memory genes revealed existence of distinct memory-response subclasses that responded differently to CLF deficiency and displayed different transcriptional activities during the watered recovery periods. Among the most important findings is the novel aspect of the H3K27me3 function observed at specific dehydration stress memory genes. In contrast to its well-known role as a chromatin repressive mechanism at developmentally regulated genes, H3K27me3 did not prevent transcription from the dehydration stress-responding genes. The high H3K27me3 levels present during transcriptionally inactive states did not interfere with the transition to active transcription and with H3K4me3 accumulation. H3K4me3 and H3K27me3 marks function independently and are not mutually exclusive at the dehydration stress-responding memory genes.

  9. PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma

    PubMed Central

    Liu, Shi-Yuan; Chen, Wei; Chughtai, Ehtesham Annait; Qiao, Zhe; Jiang, Jian-Tao; Li, Shao-Min; Zhang, Wei; Zhang, Jin

    2017-01-01

    AIM To evaluate PIK3CA gene mutational status in Northwest Chinese esophageal squamous cell carcinoma (ESCC) patients, and examine the associations of PIK3CA gene mutations with clinicopathological characteristics and clinical outcome. METHODS A total of 210 patients with ESCC who underwent curative resection were enrolled in this study. Pyrosequencing was applied to investigate mutations in exons 9 and 20 of PIK3CA gene in 210 Northwest Chinese ESCCs. The associations of PIK3CA gene mutations with clinicopathological characteristics and clinical outcome were examined. RESULTS PIK3CA gene mutations in exon 9 were detected in 48 cases (22.9%) of a non-biased database of 210 curatively resected Northwest Chinese ESCCs. PIK3CA gene mutations were not associated with sex, tobacco use, alcohol use, tumor location, stage, or local recurrence. When compared with wild-type PIK3CA gene cases, patients with PIK3CA gene mutations in exons 9 experienced significantly better disease-free survival and overall survival rates. CONCLUSION The results of this study suggest that PIK3CA gene mutations could act as a prognostic biomarker in Northwest Chinese ESCC patients. PMID:28465643

  10. [Association between aryl hydrocarbon receptor gene polymorphisms and chromosomal damage in coke-oven workers].

    PubMed

    Bin, Ping; Leng, Shuguang; Liang, Xuemiao; Cheng, Juan

    2007-11-01

    To investigate the association of single nucleotide polymorphisms (SNPs) or haplotypes of aryl hydrocarbon receptor (AHR) gene and chromosomal damage in peripheral blood lymphocytes among coke-oven workers. Eighty-nine coke-oven workers exposed to a high level of polycyclic aromatic hydrocarbons (PAHs) and sixty non-exposed workers were selected as the study subjects. Urinary 1-hydroxypyrene (1-OHPyr) levels were measured as the internal dose of PAHs exposure. The chromosomal damage in peripheral lymphocyte was measured by the cytokinesis-block micronucleus (CBMN) assay. Two SNPs in AHR gene, including rs6960165, rs2282885 were detected by PCR-RFLP. The AHR haplotypes were estimated by Bayesian statistical method with the software of PHASE Version 2.1. The associations between SNPs or haplotypes pairs and CBMN were assessed by analysis of covariance in the coke-oven workers and non-exposed workers. The level of 1-OHPyr among coke-oven workers was significantly higher than that among non-exposed workers (P < 0.01). The CBMN among coke-oven workers was significantly higher than that among non-exposed workers (P < 0.01). After adjusting the age and the level of 1-OHPyr, the different SNPs of AHR gene rs6960165 in coke-oven workers were related to the CBMN frequencies (P = 0.014), but no association between the different SNPs of AHR gene rs2282885 and the rates of CBMN was observed in coke-oven workers (P = 0.586), either in the controls (P = 0.308 and P = 0.415, respectively), the haplotypes in coke-oven workers were significantly related to the rates of CBMN (P = 0.007), while there was no significant association in non-exposed workers (P = 0.768). Our results suggested that SNPs rs6960165 or haplotypes of AHR were associated with the CBMN frequencies in coke-oven workers.

  11. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    PubMed Central

    2013-01-01

    Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration

  12. The 14-3-3σ gene promoter is methylated in both human melanocytes and melanoma

    PubMed Central

    2009-01-01

    Background Recent evidence demonstrates that 14-3-3σ acts as a tumor suppressor gene inactivated by methylation of its 5' CpG islands in epithelial tumor cells, while remaining un-methylated in normal human epithelia. The methylation analysis of 14-3-3σ has been largely overlooked in melanoma. Methods The methylation status of 14-3-3σ CpG island in melanocytes and melanoma cells was analyzed by methylation-specific sequencing (MSS) and quantitative methylation-specific PCR (Q-MSP). 14-3-3σ mRNA and protein expression in cell lines was detected by real-time RT-PCR and western blot. Melanoma cells were also treated by 5-aza-2'-deoxycytidine (DAC), a demethylating agent, and/or histone deacetylase inhibitor, Trichostatin A (TSA), to evaluate their effects on 14-3-3σ gene expression. Results 14-3-3σ is hypermethylated in both human melanocytes and most melanoma cells in a lineage-specific manner, resulting in the silencing of 14-3-3σ gene expression and the active induction of 14-3-3σ mRNA and protein expression following treatment with DAC. We also observed a synergistic effect upon gene expression when DAC was combined with TSA. The promoter methylation status of 14-3-3σ was analyzed utilizing Q-MSP in 20 melanoma tissue samples and 10 cell lines derived from these samples, showing that the majority of melanoma samples maintain their hypermethylation status of the 14-3-3σ gene. Conclusion 14-3-3σ is hypermethylated in human melanoma in a cell-linage specific manner. Spontaneous demethylation and re-expression of 14-3-3σ is a rare event in melanoma, indicating 14-3-3σ might have a tentative role in the pathogenesis of melanoma. PMID:19473536

  13. [Construction and function identification of luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR].

    PubMed

    Yang, Shuo; Li, Jia-li; Bi, Hui-chang; Zhou, Shou-ning; Liu, Xiao-man; Zeng, Hang; Hu, Bing-fang; Huang, Min

    2016-01-01

    This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity.

  14. Tumor suppressor function of Betaig-H3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we showed previously that expression of a list of genes including Betaig-h3 (induced by transforming growth factor-β) DCC (deleted in colorectal cancer), p21 cip1, c-fos , Heat shock protein (HSP27) and cytokeratin 14 were differentially expressed in several independently generated, radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Our previous data further demonstrated that loss of tumor suppressor gene(s) as a likely mechanism of radiation carcinogenesis. In the present study, we chose Betaig-h3 and DCC that were downregulated in tumorigenic cells for further study. Restored expression of Betaig-h3 gene, not DCC gene, by transfecting cDNA into tumor cells resulted in a significant reduction in tumor growth. While integrin receptor α5β1 was overexpressed in tumor cells, its expression was corrected to the level found in control BEP2D cells after Betaig-h3 transfection. These data suggest that Betaig-h3 gene is involved in tumor progression by regulating integrin α5β1 receptor. Furthermore, exogenous TGF-β1 induced expression of Betaig-h3 gene and inhibited the growth of both control and tumorigenic BEP2D cells. Therefore, downregulation of Betaig-h3 gene may results from the decreased expression of upstream mediators such as TGF-β. The findings provide strong evidence that the Betaig-h3 gene has tumor suppressor function in radiation-induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  15. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells.

    PubMed

    Takeshige, Keiko; Sekido, Takashi; Kitahara, Jun-ichirou; Ohkubo, Yousuke; Hiwatashi, Dai; Ishii, Hiroaki; Nishio, Shin-ichi; Takeda, Teiji; Komatsu, Mitsuhisa; Suzuki, Satoru

    2014-01-01

    μ-Crystallin (CRYM) is also known as NADPH-dependent cytosolic T3-binding protein. A study using CRYM-null mice suggested that CRYM stores triiodothyronine (T3) in tissues. We previously established CRYM-expressing cells derived from parental GH3 cells. To examine the precise regulation of T3-responsive genes in the presence of CRYM, we evaluated serial alterations of T3-responsive gene expression by changing pericellular T3 concentrations in the media. We estimated the constitutive expression of three T3-responsive genes, growth hormone (GH), deiodinase 1 (Dio1), and deiodinase 2 (Dio2), in two cell lines. Subsequently, we measured the responsiveness of these three genes at 4, 8, 16, and 24 h after adding various concentrations of T3. We also estimated the levels of these mRNAs 24 and 48 h after removing T3. The levels of constitutive expression of GH and Dio1 were low and high in C8 cells, respectively, while Dio2 expression was not significantly different between GH3 and C8 cells. When treated with T3, Dio2 expression was significantly enhanced in C8 cells, while there were no differences in GH or Dio1 expression between GH3 and C8 cell lines. In contrast, removal of T3 retained the mRNA expression of GH and Dio2 in C8 cells. These results suggest that CRYM expression increases and sustains the T3 responsiveness of genes in cells, especially with alteration of the pericellular T3 concentration. The heterogeneity of T3-related gene expression is dependent on cellular CRYM expression in cases of dynamic changes in pericellular T3 concentration.

  16. Functions, structure, and read-through alternative splicing of feline APOBEC3 genes

    PubMed Central

    Münk, Carsten; Beck, Thomas; Zielonka, Jörg; Hotz-Wagenblatt, Agnes; Chareza, Sarah; Battenberg, Marion; Thielebein, Jens; Cichutek, Klaus; Bravo, Ignacio G; O'Brien, Stephen J; Lochelt, Martin; Yuhki, Naoya

    2008-01-01

    Background Over the past years a variety of host restriction genes have been identified in human and mammals that modulate retrovirus infectivity, replication, assembly, and/or cross-species transmission. Among these host-encoded restriction factors, the APOBEC3 (A3; apolipoprotein B mRNA-editing catalytic polypeptide 3) proteins are potent inhibitors of retroviruses and retrotransposons. While primates encode seven of these genes (A3A to A3H), rodents carry only a single A3 gene. Results Here we identified and characterized several A3 genes in the genome of domestic cat (Felis catus) by analyzing the genomic A3 locus. The cat genome presents one A3H gene and three very similar A3C genes (a-c), probably generated after two consecutive gene duplications. In addition to these four one-domain A3 proteins, a fifth A3, designated A3CH, is expressed by read-through alternative splicing. Specific feline A3 proteins selectively inactivated only defined genera of feline retroviruses: Bet-deficient feline foamy virus was mainly inactivated by feA3Ca, feA3Cb, and feA3Cc, while feA3H and feA3CH were only weakly active. The infectivity of Vif-deficient feline immunodeficiency virus and feline leukemia virus was reduced only by feA3H and feA3CH, but not by any of the feA3Cs. Within Felidae, A3C sequences show significant adaptive selection, but unexpectedly, the A3H sequences present more sites that are under purifying selection. Conclusion Our data support a complex evolutionary history of expansion, divergence, selection and individual extinction of antiviral A3 genes that parallels the early evolution of Placentalia, becoming more intricate in taxa in which the arms race between host and retroviruses is harsher. PMID:18315870

  17. 3. LOOKING EAST OVER GENE PUMP PLANT AND CAMP; PARKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING EAST OVER GENE PUMP PLANT AND CAMP; PARKER DAM VILLAGE IN BACKGROUND. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  18. Organization of the qa Gene Cluster in NEUROSPORA CRASSA: Direction of Transcription of the qa-3 Gene

    PubMed Central

    Strøman, Per; Reinert, William; Case, Mary E.; Giles, Norman H.

    1979-01-01

    In Neurospora crassa, the enzyme quinate (shikimate) dehydrogenase catalyzes the first reaction in the inducible quinic acid catabolic pathway and is encoded in the qa-3 gene of the qa cluster. In this cluster, the order of genes has been established as qa-1 qa-3 qa-4 qa-2. Amino-terminal sequences have been determined for purified quinate dehydrogenase from wild type and from UV-induced revertants in two different qa-3 mutants. These two mutants (M16 and M45) map at opposite ends of the qa-3 locus. In addition, mapping data (Case et al. 1978) indicate that the end of the qa-3 gene specified by M45 is closer to the adjacent qa-1 gene than is the end specified by the M16 mutant site. In one of the revertants (R45 from qa-3 mutant M45), the aminoterminal sequence for the first ten amino acids is identical to that of wild type. The other revertant (R1 from qa-3 mutant M16) differs from wild type at the amino-terminal end by a single altered residue at position three in the sequence. The observed change involves the substitution of an isoleucine in M16-R1 for a proline in wild type. This substitution requires a two-nucleotide change in the corresponding wild-type codon.——The combined genetic and biochemical data indicate that the qa-3 mutants M16 and M45 carry amino acid substitutions near the amino-terminal and carboxyl-terminal ends of the quinate dehydrogenase enzyme, respectively. On this basis we conclude that transcription of the qa-3 gene proceeds from the end specified by the M16 mutant site in the direction of the qa-1 gene. It appears probable that transcription is initiated from a promoter site within the qa cluster, possibly immediately adjacent to the qa-3 gene. PMID:159203

  19. ACTN3: More than Just a Gene for Speed.

    PubMed

    Pickering, Craig; Kiely, John

    2017-01-01

    Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3 , which has commonly been referred to as "a gene for speed". Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes.

  20. ACTN3: More than Just a Gene for Speed

    PubMed Central

    Pickering, Craig; Kiely, John

    2017-01-01

    Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3, which has commonly been referred to as “a gene for speed”. Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes. PMID:29326606

  1. Docosahexaenoic Acid (DHA) and Hepatic Gene Transcription1,3

    PubMed Central

    Jump, Donald B.; Botolin, Daniela; Wang, Yun; Xu, Jinghua; Demeure, Olivier; Christian, Barbara

    2008-01-01

    The type and quantity of dietary fat ingested contributes to the onset and progression of chronic diseases, like diabetes and atherosclerosis. The liver plays a central role in whole body lipid metabolism and responds rapidly to changes in dietary fat composition. Polyunsaturated fatty acids (PUFA) play a key role in membrane composition and function, metabolism and the control of gene expression. Certain PUFA, like the n-3 PUFA, enhance hepatic fatty acid oxidation and inhibit fatty acid synthesis and VLDL secretion, in part, by regulating gene expression. Our studies have established that key transcription factors, like PPARα, SREBP-1, ChREBP and MLX, are regulated by n-3 PUFA, which in turn control levels of proteins involved in lipid and carbohydrate metabolism. Of the n-3 PUFA, 22:6,n-3 has recently been established as a key controller of hepatic lipid synthesis. 22:6,n-3 controls the 26S proteasomal degradation of the nuclear form of SREBP-1. SREBP-1 is a major transcription factor that controls the expression of multiple genes involved fatty acid synthesis and desaturation. 22:6,n-3 suppresses nuclear SREBP-1 which, in turn suppresses lipogenesis. This mechanism is achieved, in part, through control of the phosphorylation status of protein kinases. This review will examine both the general features of PUFA-regulated hepatic gene transcription and highlight the unique mechanisms by which 22:6,n-3 impacts gene expression. The outcome of this analysis will reveal that changes in hepatic 22:6,n-3 content has a major impact on hepatic lipid and carbohydrate metabolism. Moreover, the mechanisms involve 22:6,n-3 control of several well-known signaling pathways, such as Akt, Erk1/2, Gsk3β and PKC (novel or atypical). 22:6,n-3 control of these same signaling pathways in non-hepatic tissues may help explain the diverse actions of n-3 PUFA on such complex physiological processes as visual acuity and learning. PMID:18343222

  2. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression.

    PubMed

    Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N; Klibanski, Anne

    2010-03-15

    Meningiomas are common tumors, representing 15% to 25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. The chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore, it has been proposed that an as yet unidentified tumor suppressor is present at this locus. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 which encodes a noncoding RNA with an antiproliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in bromodeoxyuridine incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a noncoding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism.

  3. EcoGene 3.0

    PubMed Central

    Zhou, Jindan; Rudd, Kenneth E.

    2013-01-01

    EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection. PMID:23197660

  4. EcoGene 3.0.

    PubMed

    Zhou, Jindan; Rudd, Kenneth E

    2013-01-01

    EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection.

  5. Gene Duplication and Transference of Function in the paleoAP3 Lineage of Floral Organ Identity Genes

    PubMed Central

    Galimba, Kelsey D.; Martínez-Gómez, Jesús; Di Stilio, Verónica S.

    2018-01-01

    The floral organ identity gene APETALA3 (AP3) is a MADS-box transcription factor involved in stamen and petal identity that belongs to the B-class of the ABC model of flower development. Thalictrum (Ranunculaceae), an emerging model in the non-core eudicots, has AP3 homologs derived from both ancient and recent gene duplications. Prior work has shown that petals have been lost repeatedly and independently in Ranunculaceae in correlation with the loss of a specific AP3 paralog, and Thalictrum represents one of these instances. The main goal of this study was to conduct a functional analysis of the three AP3 orthologs present in Thalictrum thalictroides, representing the paleoAP3 gene lineage, to determine the degree of redundancy versus divergence after gene duplication. Because Thalictrum lacks petals, and has lost the petal-specific AP3, we also asked whether heterotopic expression of the remaining AP3 genes contributes to the partial transference of petal function to the first whorl found in insect-pollinated species. To address these questions, we undertook functional characterization by virus-induced gene silencing (VIGS), protein–protein interaction and binding site analyses. Our results illustrate partial redundancy among Thalictrum AP3s, with deep conservation of B-class function in stamen identity and a novel role in ectopic petaloidy of sepals. Certain aspects of petal function of the lost AP3 locus have apparently been transferred to the other paralogs. A novel result is that the protein products interact not only with each other, but also as homodimers. Evidence presented here also suggests that expression of the different ThtAP3 paralogs is tightly integrated, with an apparent disruption of B function homeostasis upon silencing of one of the paralogs that codes for a truncated protein. To explain this result, we propose two testable alternative scenarios: that the truncated protein is a dominant negative mutant or that there is a compensational

  6. STAT3 or USF2 Contributes to HIF Target Gene Specificity

    PubMed Central

    Pawlus, Matthew R.; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun

    2013-01-01

    The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein. PMID:23991099

  7. Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors.

    PubMed

    de Souza, Robson Ramos; Oliveira, Indhira Dias; Caran, Eliana Maria Monteiro; Alves, Maria Teresa de Seixas; Abib, Simone; Toledo, Silvia Regina Caminada

    2012-12-01

    The purpose of our study was to investigate the prevalence of the PAX3/7-FKHR fusion genes and quantify the IGF2 gene expression in rhabdomyosarcoma (RMS) samples. Soft tissue sarcomas account 5% of childhood cancers and 50% of them are RMS. Morphological evaluation of pediatric RMS has defined two histological subtypes, embryonal (ERMS) and alveolar (ARMS). Chromosomal analyses have demonstrated two translocations associated with ARMS, resulting in the PAX3/7-FKHR rearrangements. Reverse transcriptase-polymerase chain reaction (RT-PCR) is extremely useful in the diagnosis of ARMS positive for these rearrangements. Additionally, several studies have shown a significant involvement of IGF pathway in the pathogenesis of RMS. The presence of PAX3/7-FKHR gene fusions was studied in 25 RMS samples from patients attending the IOP-GRAACC/UNIFESP and three RMS cell lines by RT-PCR. IGF2 gene expression was quantified by qPCR and related with clinic pathological parameters. Of the 25 samples, nine (36%) were ARMS and 16 (64%) were ERMS. PAX3/7-FKHR gene fusions expression was detected in 56% of ARMS tumor samples. IGF2 overexpression was observed in 80% of samples and could indicate an important role of this pathway in RMS biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mutation analysis of the Smad3 gene in human osteoarthritis.

    PubMed

    Yao, Jun-Yan; Wang, Yan; An, Jing; Mao, Chun-Ming; Hou, Ning; Lv, Ya-Xin; Wang, You-Liang; Cui, Fang; Huang, Min; Yang, Xiao

    2003-09-01

    Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients with knee OA and 50 patients with only bone fracture. A missense mutation of the Smad3 gene was found in one patient. The single base mutation located in the linker region of the SMAD3 protein was A --> T change in the position 2 of codon 197 and resulted in an asparagine to isoleucine amino-acid substitution. The expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 in sera of the patient carrying the mutation were higher than other OA patients and controls. This is the first report showing that the Smad3 gene mutations could be associated with the pathogenesis of human OA.

  9. Gene end-like sequences within the 3' non-coding region of the Nipah virus genome attenuate viral gene transcription.

    PubMed

    Sugai, Akihiro; Sato, Hiroki; Yoneda, Misako; Kai, Chieko

    2017-08-01

    The regulation of transcription during Nipah virus (NiV) replication is poorly understood. Using a bicistronic minigenome system, we investigated the involvement of non-coding regions (NCRs) in the transcriptional re-initiation efficiency of NiV RNA polymerase. Reporter assays revealed that attenuation of NiV gene expression was not constant at each gene junction, and that the attenuating property was controlled by the 3' NCR. However, this regulation was independent of the gene-end, gene-start and intergenic regions. Northern blot analysis indicated that regulation of viral gene expression by the phosphoprotein (P) and large protein (L) 3' NCRs occurred at the transcription level. We identified uridine-rich tracts within the L 3' NCR that are similar to gene-end signals. These gene-end-like sequences were recognized as weak transcription termination signals by the viral RNA polymerase, thereby reducing downstream gene transcription. Thus, we suggest that NiV has a unique mechanism of transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Genome-wide linkage and copy number variation analysis reveals 710 kb duplication on chromosome 1p31.3 responsible for autosomal dominant omphalocele

    PubMed Central

    Radhakrishna, Uppala; Nath, Swapan K; McElreavey, Ken; Ratnamala, Uppala; Sun, Celi; Maiti, Amit K; Gagnebin, Maryline; Béna, Frédérique; Newkirk, Heather L; Sharp, Andrew J; Everman, David B; Murray, Jeffrey C; Schwartz, Charles E; Antonarakis, Stylianos E; Butler, Merlin G

    2017-01-01

    Background Omphalocele is a congenital birth defect characterised by the presence of internal organs located outside of the ventral abdominal wall. The purpose of this study was to identify the underlying genetic mechanisms of a large autosomal dominant Caucasian family with omphalocele. Methods and findings A genetic linkage study was conducted in a large family with an autosomal dominant transmission of an omphalocele using a genome-wide single nucleotide polymorphism (SNP) array. The analysis revealed significant evidence of linkage (non-parametric NPL = 6.93, p=0.0001; parametric logarithm of odds (LOD) = 2.70 under a fully penetrant dominant model) at chromosome band 1p31.3. Haplotype analysis narrowed the locus to a 2.74 Mb region between markers rs2886770 (63014807 bp) and rs1343981 (65757349 bp). Molecular characterisation of this interval using array comparative genomic hybridisation followed by quantitative microsphere hybridisation analysis revealed a 710 kb duplication located at 63.5–64.2 Mb. All affected individuals who had an omphalocele and shared the haplotype were positive for this duplicated region, while the duplication was absent from all normal individuals of this family. Multipoint linkage analysis using the duplication as a marker yielded a maximum LOD score of 3.2 at 1p31.3 under a dominant model. The 710 kb duplication at 1p31.3 band contains seven known genes including FOXD3, ALG6, ITGB3BP, KIAA1799, DLEU2L, PGM1, and the proximal portion of ROR1. Importantly, this duplication is absent from the database of genomic variants. Conclusions The present study suggests that development of an omphalocele in this family is controlled by overexpression of one or more genes in the duplicated region. To the authors’ knowledge, this is the first reported association of an inherited omphalocele condition with a chromosomal rearrangement. PMID:22499347

  11. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems

    PubMed Central

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-01-01

    Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914

  12. Knockdown of Dyslexia-Gene Dcdc2 Interferes with Speech Sound Discrimination in Continuous Streams.

    PubMed

    Centanni, Tracy Michelle; Booker, Anne B; Chen, Fuyi; Sloan, Andrew M; Carraway, Ryan S; Rennaker, Robert L; LoTurco, Joseph J; Kilgard, Michael P

    2016-04-27

    Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC-) before any behavioral training. A separate group of 8 rats (3 DC-) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing

  13. Knockdown of Dyslexia-Gene Dcdc2 Interferes with Speech Sound Discrimination in Continuous Streams

    PubMed Central

    Booker, Anne B.; Chen, Fuyi; Sloan, Andrew M.; Carraway, Ryan S.; Rennaker, Robert L.; LoTurco, Joseph J.; Kilgard, Michael P.

    2016-01-01

    Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC−) before any behavioral training. A separate group of 8 rats (3 DC−) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. SIGNIFICANCE STATEMENT Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of

  14. A primary cilia-dependent etiology for midline facial disorders

    PubMed Central

    Brugmann, Samantha A.; Allen, Nancy C.; James, Aaron W.; Mekonnen, Zesemayat; Madan, Elena; Helms, Jill A.

    2010-01-01

    Human faces exhibit enormous variation. When pathological conditions are superimposed on normal variation, a nearly unbroken series of facial morphologies is produced. When viewed in full, this spectrum ranges from cyclopia and hypotelorism to hypertelorism and facial duplications. Decreased Hedgehog pathway activity causes holoprosencephaly and hypotelorism. Here, we show that excessive Hedgehog activity, caused by truncating the primary cilia on cranial neural crest cells, causes hypertelorism and frontonasal dysplasia (FND). Elimination of the intraflagellar transport protein Kif3a leads to excessive Hedgehog responsiveness in facial mesenchyme, which is accompanied by broader expression domains of Gli1, Ptc and Shh, and reduced expression domains of Gli3. Furthermore, broader domains of Gli1 expression correspond to areas of enhanced neural crest cell proliferation in the facial prominences of Kif3a conditional knockouts. Avian Talpid embryos that lack primary cilia exhibit similar molecular changes and similar facial phenotypes. Collectively, these data support our hypothesis that a severe narrowing of the facial midline and excessive expansion of the facial midline are both attributable to disruptions in Hedgehog pathway activity. These data also raise the possibility that genes encoding ciliary proteins are candidates for human conditions of hypertelorism and FNDs. PMID:20106874

  15. Regulation of sphingomyelin phosphodiesterase acid-like 3A gene (SMPDL3A) by liver X receptors.

    PubMed

    Noto, Paul B; Bukhtiyarov, Yuri; Shi, Meng; McKeever, Brian M; McGeehan, Gerard M; Lala, Deepak S

    2012-10-01

    Liver X receptor (LXR) α and LXRβ function as physiological sensors of cholesterol metabolites (oxysterols), regulating key genes involved in cholesterol and lipid metabolism. LXRs have been extensively studied in both human and rodent cell systems, revealing their potential therapeutic value in the contexts of atherosclerosis and inflammatory diseases. The LXR genome landscape has been investigated in murine macrophages but not in human THP-1 cells, which represent one of the frequently used monocyte/macrophage cell systems to study immune responses. We used a whole-genome screen to detect direct LXR target genes in THP-1 cells treated with two widely used LXR ligands [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)-ethyl]phenyl]-benzenesulfonamide (T0901317) and 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyloxy] phenylacetic acid hydrochloride (GW3965)]. This screen identified the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene as a novel LXR-regulated gene, with an LXR response element within its promoter. We investigated the regulation of SMPDL3A gene expression by LXRs across several human and mouse cell types. These studies indicate that the induction of SMPDL3A is LXR-dependent and is restricted to human blood cells with no induction observed in mouse cellular systems.

  16. Analysis of hepatic gene transcription in mice expressing insulin-insensitive GSK3

    PubMed Central

    2005-01-01

    GSK3 (glycogen synthase kinase-3) regulation is proposed to play a key role in the hormonal control of many cellular processes. Inhibition of GSK3 in animal models of diabetes leads to normalization of blood glucose levels, while high GSK3 activity has been reported in Type II diabetes. Insulin inhibits GSK3 by promoting phosphorylation of a serine residue (Ser-21 in GSK3α, Ser-9 in GSK3β), thereby relieving GSK3 inhibition of glycogen synthesis in muscle. GSK3 inhibition in liver reduces expression of the gluconeogenic genes PEPCK (phosphoenolpyruvate carboxykinase), G6Pase (glucose-6-phosphatase), as well as IGFBP1 (insulin-like growth factor binding protein-1). Overexpression of GSK3 in cells antagonizes insulin regulation of these genes. In the present study we demonstrate that regulation of these three genes by feeding is normal in mice that express insulin-insensitive GSK3. Therefore inactivation of GSK3 is not a prerequisite for insulin repression of these genes, despite the previous finding that GSK3 activity is absolutely required for maintaining their expression. Interestingly, insulin injection of wild-type mice, which activates PKB (protein kinase B) and inhibits GSK3 to a greater degree than feeding (50% versus 25%), does not repress these genes. We suggest for the first time that although pharmacological inhibition of GSK3 reduces hepatic glucose production even in insulin-resistant states, feeding can repress the gluconeogenic genes without inhibiting GSK3. PMID:16176184

  17. [Regional features of obesity-associated gene polymorphism (rs9939609 FTO gene and gene Trp64Arg ADRB3) in Russian population].

    PubMed

    Baturin, A K; Sorokina, E Iu; Pogozheva, A V; Peskova, E V; Makurina, O N; Tutel'ian, V A

    2014-01-01

    Recent studies have shown a significant association with obesity polymorphisms: rs9939609 gene due to fat mass and obesity FTO in European and some Asian and African American populations Trp64Arg ADRB3 gene in several European populations. Association of variants rs9939609 and Trp64Arg obesity was studied in 1244 the inhabitants of Moscow and Sverdlovsk regions. Genotyping was performed using allele-specific amplification, detection results in real time using TaqMan-probes complementary DNA polymorphic sites. The frequency of the mutant allele of the FTO gene in the population of Moscow and Sverdlovsk region was 45.1%, with the TT genotype was detected in 30.2% of cases, AT--49.5%, AA--20.3%. Women had the presence of the mutant allele more likely than men (48.4 vs. 42.5%). People with obesity were more genotypes AA (26.3%) and AT (52.8%) compared to the surveyed with a BMI of less than 30 kg/m2 (respectively 18.1 and 50.7%). A significantly higher incidence of risk allele A was found in individuals with obesity (52.6 and 43.4%). The presence of the mutant allele of the gene ADRB3 among the population of Moscow and Sverdlovsk regions was noted in 7.4% of cases. While 15.5% of patients had a heterozygous genotype Trp64Arg ADRB3, that is consistent with international research. The frequency of the risk allele and genotype Arg64 Trp64Arg in women (9.3 and 18.5%) was significantly higher than men (6.2 and 12.2%). The presence of the mutant allele and genotype Trp64Arg ADRB3 (respectively, 9.1 and 18.1%) were significantly more marked in the examined obese compared with those with a body mass index less than 30 kg/m2 (7.4 and 14.9%), but these differences were not statistically significant. The results of these studies suggest that genetic variants of the FTO gene rs9939609 genotype and Trp64Arg ADRB3 contribute to the development of obesity among residents of Moscow and Sverdlovsk Region of Russia. The risk of obesity increases in the case of combined polymorphisms in

  18. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech.

    PubMed

    Worthey, Elizabeth A; Raca, Gordana; Laffin, Jennifer J; Wilk, Brandon M; Harris, Jeremy M; Jakielski, Kathy J; Dimmock, David P; Strand, Edythe A; Shriberg, Lawrence D

    2013-10-02

    Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker's speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX). A total of 8 (80%) of the 10 participants had clinically reportable variants in one or two of the six genes, with variants in ATP13A4, KIAA0319 and CNTNAP2 being the most prevalent. Similar to the results reported in emerging WES studies of other complex neurodevelopmental disorders, our findings from this first WES study of CAS are interpreted as support for heterogeneous genetic origins of

  19. Gene expression profiling of 3T3-L1 adipocytes exposed to phloretin.

    PubMed

    Hassan, Meryl; El Yazidi, Claire; Malezet-Desmoulins, Christiane; Amiot, Marie-Josèphe; Margotat, Alain

    2010-07-01

    Adipocyte dysfunction plays a major role in the outcome of obesity, insulin resistance and related cardiovascular complications. Thus, considerable efforts are underway in the pharmaceutical industry to find molecules that target the now well-documented pleiotropic functions of adipocyte. We previously reported that the dietary flavonoid phloretin enhances 3T3-L1 adipocyte differentiation and adiponectin expression at least in part through PPAR gamma activation. The present study was designed to further characterize the molecular mechanisms underlying the phloretin-mediated effects on 3T3-L1 adipocytes using microarray technology. We show that phloretin positively regulates the expression of numerous genes involved in lipogenesis and triglyceride storage, including GLUT4, ACSL1, PEPCK1, lipin-1 and perilipin (more than twofold). The expression of several genes encoding adipokines, in addition to adiponectin and its receptor, is positively or negatively regulated in a way that suggests a possible reduction in systemic insulin resistance and obesity-associated inflammation. Improvement of insulin sensitivity is also suggested by the overexpression of genes associated with insulin signal transduction, such as CAP, PDK1 and Akt2. Many of these genes are PPAR gamma targets, confirming the involvement of PPAR gamma pathway in the phloretin effects on adipocytes. In light of these microarray data, it is reasonable to assume that phloretin may be beneficial for reducing insulin resistance, in a similar way to the thiazolidinedione class of antidiabetic drugs. (c) 2010 Elsevier Inc. All rights reserved.

  20. RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells.

    PubMed

    Zhang, Honglian; Gan, Haiyun; Wang, Zhiquan; Lee, Jeong-Heon; Zhou, Hui; Ordog, Tamas; Wold, Marc S; Ljungman, Mats; Zhang, Zhiguo

    2017-01-19

    The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. MTA3 regulates CGB5 and Snail genes in trophoblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Miyazaki, Jun; Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed inmore » the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA

  2. Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a novel mammalian homologue of ACE

    PubMed Central

    Rella, Monika; Elliot, Joann L; Revett, Timothy J; Lanfear, Jerry; Phelan, Anne; Jackson, Richard M; Turner, Anthony J; Hooper, Nigel M

    2007-01-01

    Background Mammalian angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple sequence alignment and molecular modelling have been employed to characterise the predicted ACE3 protein. In mouse, rat, cow and dog, the predicted protein has mutations in some of the critical residues involved in catalysis, including the catalytic Glu in the HEXXH zinc binding motif which is Gln, and ESTs or reverse-transcription PCR indicate that the gene is expressed. In humans, the predicted ACE3 protein has an intact HEXXH motif, but there are other deletions and insertions in the gene and no ESTs have been identified. Conclusion In the genomes of several mammalian species there is a gene that encodes a novel, single domain ACE-like protein, ACE3. In mouse, rat, cow and dog ACE3, the catalytic Glu is replaced by Gln in the putative zinc binding motif, indicating that in these species ACE3 would lack catalytic activity as a zinc metalloprotease. In humans, no evidence was found that the ACE3 gene is expressed and the presence of deletions and insertions in the sequence indicate that ACE3 is a pseudogene. PMID:17597519

  3. 3-Hydroxy-3-methylglutaryl CoA lyase (HL): Mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.P.; Robert, M.F.; Mitchell, G.A.

    1996-04-01

    3-hydroxy-3-methylglutaryl CoA lyase (HL, EC 4.1.3.4) catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetic acid and acetyl CoA, the final reaction of both ketogenesis and leucine catabolism. Autosomal-recessive HL deficiency in humans results in episodes of hypoketotic hypoglycemia and coma. Using a mouse HL cDNA as a probe, we isolated a clone containing the full-length mouse HL gene that spans about 15 kb of mouse chromosome 4 and contains nine exons. The promoter region of the mouse HL gene contains elements characteristic of a housekeeping gene: a CpG island containing multiple Sp1 binding sites surrounds exon 1, and neither amore » TATA nor a CAAT box are present. We identified multiple transcription start sites in the mouse HL gene, 35 to 9 bases upstream of the translation start codon. We also isolated two human HL genomic clones that include HL exons 2 to 9 within 18 kb. The mouse and human HL genes (HGMW-approved symbol HMGCL) are highly homologous, with identical locations of intron-exon junctions. By genomic Southern blot analysis and exonic PCR, was found 2 of 33 HL-deficient probands to be homozygous for large deletions in the HL gene. 26 refs., 4 figs., 2 tabs.« less

  4. Age-Specific Gene Expression Signatures for Breast Tumors and Cross-Species Conserved Potential Cancer Progression Markers in Young Women

    PubMed Central

    Colak, Dilek; Nofal, Asmaa; AlBakheet, AlBandary; Nirmal, Maimoona; Jeprel, Hatim; Eldali, Abdelmoneim; AL-Tweigeri, Taher; Tulbah, Asma; Ajarim, Dahish; Malik, Osama Al; Kaya, Namik; Park, Ben H.; Bin Amer, Suad M.

    2013-01-01

    Breast cancer in young women is more aggressive with a poorer prognosis and overall survival compared to older women diagnosed with the disease. Despite recent research, the underlying biology and molecular alterations that drive the aggressive nature of breast tumors associated with breast cancer in young women have yet to be elucidated. In this study, we performed transcriptomic profile and network analyses of breast tumors arising in Middle Eastern women to identify age-specific gene signatures. Moreover, we studied molecular alterations associated with cancer progression in young women using cross-species comparative genomics approach coupled with copy number alterations (CNA) associated with breast cancers from independent studies. We identified 63 genes specific to tumors in young women that showed alterations distinct from two age cohorts of older women. The network analyses revealed potential critical regulatory roles for Myc, PI3K/Akt, NF-κB, and IL-1 in disease characteristics of breast tumors arising in young women. Cross-species comparative genomics analysis of progression from pre-invasive ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) revealed 16 genes with concomitant genomic alterations, CCNB2, UBE2C, TOP2A, CEP55, TPX2, BIRC5, KIAA0101, SHCBP1, UBE2T, PTTG1, NUSAP1, DEPDC1, HELLS, CCNB1, KIF4A, and RRM2, that may be involved in tumorigenesis and in the processes of invasion and progression of disease. Array findings were validated using qRT-PCR, immunohistochemistry, and extensive in silico analyses of independently performed microarray datasets. To our knowledge, this study provides the first comprehensive genomic analysis of breast cancer in Middle Eastern women in age-specific cohorts and potential markers for cancer progression in young women. Our data demonstrate that cancer appearing in young women contain distinct biological characteristics and deregulated signaling pathways. Moreover, our integrative genomic and cross

  5. Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.

    PubMed

    Colak, Dilek; Nofal, Asmaa; Albakheet, Albandary; Nirmal, Maimoona; Jeprel, Hatim; Eldali, Abdelmoneim; Al-Tweigeri, Taher; Tulbah, Asma; Ajarim, Dahish; Malik, Osama Al; Inan, Mehmet S; Kaya, Namik; Park, Ben H; Bin Amer, Suad M

    2013-01-01

    Breast cancer in young women is more aggressive with a poorer prognosis and overall survival compared to older women diagnosed with the disease. Despite recent research, the underlying biology and molecular alterations that drive the aggressive nature of breast tumors associated with breast cancer in young women have yet to be elucidated. In this study, we performed transcriptomic profile and network analyses of breast tumors arising in Middle Eastern women to identify age-specific gene signatures. Moreover, we studied molecular alterations associated with cancer progression in young women using cross-species comparative genomics approach coupled with copy number alterations (CNA) associated with breast cancers from independent studies. We identified 63 genes specific to tumors in young women that showed alterations distinct from two age cohorts of older women. The network analyses revealed potential critical regulatory roles for Myc, PI3K/Akt, NF-κB, and IL-1 in disease characteristics of breast tumors arising in young women. Cross-species comparative genomics analysis of progression from pre-invasive ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) revealed 16 genes with concomitant genomic alterations, CCNB2, UBE2C, TOP2A, CEP55, TPX2, BIRC5, KIAA0101, SHCBP1, UBE2T, PTTG1, NUSAP1, DEPDC1, HELLS, CCNB1, KIF4A, and RRM2, that may be involved in tumorigenesis and in the processes of invasion and progression of disease. Array findings were validated using qRT-PCR, immunohistochemistry, and extensive in silico analyses of independently performed microarray datasets. To our knowledge, this study provides the first comprehensive genomic analysis of breast cancer in Middle Eastern women in age-specific cohorts and potential markers for cancer progression in young women. Our data demonstrate that cancer appearing in young women contain distinct biological characteristics and deregulated signaling pathways. Moreover, our integrative genomic and cross

  6. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, Flora Aparecida; Genomic Medicine, Houston Methodist Research Institute, Houston, TX; Cvoro, Aleksandra

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1more » adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.« less

  7. NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model.

    PubMed

    Yang, Hyun; Ahn, Changhwan; Shin, Eun-Kyeong; Lee, Ji-Sun; An, Beum-Soo; Jeung, Eui-Bae

    2017-10-15

    Gene knockout is the most powerful tool for determination of gene function or permanent modification of the phenotypic characteristics of an animal. Existing methods for gene disruption are limited by their efficiency, time required for completion and potential for confounding off-target effects. In this study, a rapid single-step approach to knockout of a targeted gene in mice using zinc-finger nucleases (ZFNs) was demonstrated for generation of mutant (knockout; KO) alleles. Specifically, ZFNs to target the sodium/calcium/potassium exchanger3 (NCKX3) gene in C57bl/6j were designed using the concept of this approach. NCKX3 KO mice were generated and the phenotypic characterization and molecular regulation of active calcium transporting genes was assessed when mice were fed different calcium diets during growth. General phenotypes such as body weight and plasma ion level showed no distinct abnormalities. Thus, the potassium/sodium/calcium exchanger of NCKX3 KO mice proceeded normally in this study. As a result, the compensatory molecular regulation of this mechanism was elucidated. Renal TRPV5 mRNA of NCKX3 KO mice increased in both male and female mice. Expression of TRPV6 mRNA was only down-regulated in the duodenum of male KO mice. Renal- and duodenal expression of PTHR and VDR were not changed; however, GR mRNA expression was increased in the kidney of NCKX3 KO mice. Depletion of the NCKX3 gene in a KO mouse model showed loss of bone mineral contents and increased plasma parathyroid hormone, suggesting that NCKX3 may play a role in regulating calcium homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Genes Responsive to Low-Intensity Pulsed Ultrasound in MC3T3-E1 Preosteoblast Cells

    PubMed Central

    Tabuchi, Yoshiaki; Sugahara, Yuuki; Ikegame, Mika; Suzuki, Nobuo; Kitamura, Kei-ichiro; Kondo, Takashi

    2013-01-01

    Although low-intensity pulsed ultrasound (LIPUS) has been shown to enhance bone fracture healing, the underlying mechanism of LIPUS remains to be fully elucidated. Here, to better understand the molecular mechanism underlying cellular responses to LIPUS, we investigated gene expression profiles in mouse MC3T3-E1 preosteoblast cells exposed to LIPUS using high-density oligonucleotide microarrays and computational gene expression analysis tools. Although treatment of the cells with a single 20-min LIPUS (1.5 MHz, 30 mW/cm2) did not affect the cell growth or alkaline phosphatase activity, the treatment significantly increased the mRNA level of Bglap. Microarray analysis demonstrated that 38 genes were upregulated and 37 genes were downregulated by 1.5-fold or more in the cells at 24-h post-treatment. Ingenuity pathway analysis demonstrated that the gene network U (up) contained many upregulated genes that were mainly associated with bone morphology in the category of biological functions of skeletal and muscular system development and function. Moreover, the biological function of the gene network D (down), which contained downregulated genes, was associated with gene expression, the cell cycle and connective tissue development and function. These results should help to further clarify the molecular basis of the mechanisms of the LIPUS response in osteoblast cells. PMID:24252911

  9. Epstein-Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis.

    PubMed

    Zheng, Ruijuan; Liu, Haipeng; Song, Peng; Feng, Yonghong; Qin, Lianhua; Huang, Xiaochen; Chen, Jianxia; Yang, Hua; Liu, Zhonghua; Cui, Zhenglin; Hu, Zhongyi; Ge, Baoxue

    2015-07-01

    Tuberculosis (TB) remains a major global health problem and host genetic factors play a critical role in susceptibility and resistance to TB. The aim of this study was to identify novel candidate genes associated with TB susceptibility. We performed a population-based case-control study to genotype 13 tag SNPs spanning Epstein-Barr virus-induced gene 3 (EBI3), colony stimulating factor 2 (CSF2), IL-4, interferon beta 1 (IFNB1), chemokine (C-X-C motif) ligand 14 (CXCL14) and myeloid differentiation primary response gene 88 (Myd88) genes in 435 pulmonary TB patients and 375 health donors from China. We observed that EBI3 gene rs4740 polymorphism was associated with susceptibility to pulmonary tuberculosis (PTB) and the allele G was associated with a protective effect against PTB. Furthermore, EBI3 deficiency led to reduced bacterial burden and histopathological impairment in the lung of mice infected with Mycobacterium bovis BCG. Meanwhile, higher abundance of EBI3 was observed in the granuloma of PTB patients and in the lung tissue of BCG-infected mice. Of note, the expression of EBI3 in macrophages was remarkably induced by mycobacteria infection at both mRNA and protein level. In conclusion, EBI3 gene rs4740 polymorphism is closely associated with susceptibility to PTB and the elevation and enrichment of EBI3 in the lung which at least partially derived from macrophages may contribute to the exacerbation of mycobacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts.

    PubMed

    Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja Katrin

    2015-01-01

    Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3'UTR binding site for miR-188-5p. COL1A1 and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA.

  11. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts

    PubMed Central

    Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja-Katrin

    2015-01-01

    Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3’UTR binding site for miR-188-5p. COL1A1and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA. PMID:26191188

  12. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts

    PubMed Central

    Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja Katrin

    2015-01-01

    Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3’UTR binding site for miR-188-5p. COL1A1 and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA. PMID:26261542

  13. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts.

    PubMed

    Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja-Katrin

    2015-01-01

    Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3'UTR binding site for miR-188-5p. COL1A1and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA.

  14. [Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].

    PubMed

    Liao, R Y; Liu, S

    2016-06-20

    To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, P<0.05). The L02 cells in the 0.8~3.2 mmol/L trichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (P<0.05) , as well as the oncogenes c-myc, c-fos, and k-ras (P<0.05). Compared with the L02 cells, the cells with CYP3A4 gene defect showed significant reductions in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 and the oncogenes c-myc, c-fos, and k-ras (P<0.05). Trichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.

  15. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    PubMed

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that

  16. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allelemore » or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.« less

  17. A New Genomewide Association Meta-Analysis of Alcohol Dependence.

    PubMed

    Zuo, Lingjun; Tan, Yunlong; Zhang, Xiangyang; Wang, Xiaoping; Krystal, John; Tabakoff, Boris; Zhong, Chunlong; Luo, Xingguang

    2015-08-01

    Conventional meta-analysis based on genetic markers may be less powerful for heterogeneous samples. In this study, we introduced a new meta-analysis for 4 genomewide association studies on alcohol dependence that integrated the information of putative causal variants. A total of 12,481 subjects in 4 independent cohorts were analyzed, including 1 European American cohort (1,409 cases with alcohol dependence and 1,518 controls), 1 European Australian cohort (a total of 6,438 family subjects with 1,645 probands), 1 African American cohort from SAGE + COGA (681 cases and 508 controls), and 1 African American cohort from Yale (1,429 cases and 498 controls). The genomewide association analysis was conducted for each cohort, and then, a new meta-analysis was performed to derive the combined p-values. cis-Acting expression of quantitative locus (cis-eQTL) analysis of each risk variant in human tissues and RNA expression analysis of each risk gene in rat brain served as functional validation. In meta-analysis of European American and European Australian cohorts, we found 10 top-ranked single nucleotide polymorphisms (SNPs) (p < 10(-6) ) that were associated with alcohol dependence. They included 6 at SERINC2 (3.1 × 10(-8) ≤ p ≤ 9.6 × 10(-8) ), 1 at STK40 (p = 1.3 × 10(-7) ), 2 at KIAA0040 (3.3 × 10(-7) ≤ p ≤ 5.2 × 10(-7) ), and 1 at IPO11 (p = 6.9 × 10(-7) ). In meta-analysis of 2 African American cohorts, we found 2 top-ranked SNPs including 1 at SLC6A11 (p = 2.7 × 10(-7) ) and 1 at CBLN2 (p = 7.4 × 10(-7) ). In meta-analysis of all 4 cohorts, we found 2 top-ranked SNPs in PTP4A1-PHF3 locus (6.0 × 10(-7) ≤ p ≤ 7.2 × 10(-7) ). In an African American cohort only, we found 1 top-ranked SNP at PLD1 (p = 8.3 × 10(-7) ; OR = 1.56). Many risk SNPs had positive cis-eQTL signals, and all these risk genes except KIAA0040 were found to express in both rat and mouse brains. We found multiple genes that were significantly or suggestively associated with alcohol

  18. Promoter-Terminator Gene Loops Affect Alternative 3'-End Processing in Yeast.

    PubMed

    Lamas-Maceiras, Mónica; Singh, Badri Nath; Hampsey, Michael; Freire-Picos, María A

    2016-04-22

    Many eukaryotic genes undergo alternative 3'-end poly(A)-site selection producing transcript isoforms with 3'-UTRs of different lengths and post-transcriptional fates. Gene loops are dynamic structures that juxtapose the 3'-ends of genes with their promoters. Several functions have been attributed to looping, including memory of recent transcriptional activity and polarity of transcription initiation. In this study, we investigated the relationship between gene loops and alternative poly(A)-site. Using the KlCYC1 gene of the yeast Kluyveromyces lactis, which includes a single promoter and two poly(A) sites separated by 394 nucleotides, we demonstrate in two yeast species the formation of alternative gene loops (L1 and L2) that juxtapose the KlCYC1 promoter with either proximal or distal 3'-end processing sites, resulting in the synthesis of short and long forms of KlCYC1 mRNA. Furthermore, synthesis of short and long mRNAs and formation of the L1 and L2 loops are growth phase-dependent. Chromatin immunoprecipitation experiments revealed that the Ssu72 RNA polymerase II carboxyl-terminal domain phosphatase, a critical determinant of looping, peaks in early log phase at the proximal poly(A) site, but as growth phase advances, it extends to the distal site. These results define a cause-and-effect relationship between gene loops and alternative poly(A) site selection that responds to different physiological signals manifested by RNA polymerase II carboxyl-terminal domain phosphorylation status. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A metabolic function of FGFR3-TACC3 gene fusions in cancer.

    PubMed

    Frattini, Véronique; Pagnotta, Stefano M; Tala; Fan, Jerry J; Russo, Marco V; Lee, Sang Bae; Garofano, Luciano; Zhang, Jing; Shi, Peiguo; Lewis, Genevieve; Sanson, Heloise; Frederick, Vanessa; Castano, Angelica M; Cerulo, Luigi; Rolland, Delphine C M; Mall, Raghvendra; Mokhtari, Karima; Elenitoba-Johnson, Kojo S J; Sanson, Marc; Huang, Xi; Ceccarelli, Michele; Lasorella, Anna; Iavarone, Antonio

    2018-01-11

    Chromosomal translocations that generate in-frame oncogenic gene fusions are notable examples of the success of targeted cancer therapies. We have previously described gene fusions of FGFR3-TACC3 (F3-T3) in 3% of human glioblastoma cases. Subsequent studies have reported similar frequencies of F3-T3 in many other cancers, indicating that F3-T3 is a commonly occuring fusion across all tumour types. F3-T3 fusions are potent oncogenes that confer sensitivity to FGFR inhibitors, but the downstream oncogenic signalling pathways remain unknown. Here we show that human tumours with F3-T3 fusions cluster within transcriptional subgroups that are characterized by the activation of mitochondrial functions. F3-T3 activates oxidative phosphorylation and mitochondrial biogenesis and induces sensitivity to inhibitors of oxidative metabolism. Phosphorylation of the phosphopeptide PIN4 is an intermediate step in the signalling pathway of the activation of mitochondrial metabolism. The F3-T3-PIN4 axis triggers the biogenesis of peroxisomes and the synthesis of new proteins. The anabolic response converges on the PGC1α coactivator through the production of intracellular reactive oxygen species, which enables mitochondrial respiration and tumour growth. These data illustrate the oncogenic circuit engaged by F3-T3 and show that F3-T3-positive tumours rely on mitochondrial respiration, highlighting this pathway as a therapeutic opportunity for the treatment of tumours with F3-T3 fusions. We also provide insights into the genetic alterations that initiate the chain of metabolic responses that drive mitochondrial metabolism in cancer.

  20. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau-Merck, M.F.; Derre, J.; Berger, R.

    1995-11-20

    Vasopressin exerts its physiological effects on liver metabolism, fluid osmolarity, and corticotrophic response to stress through a set of at least three receptors, V1a, V2, and V3 (also called V1b), respectively. These receptors constitute a distinct group of the superfamily of G-protein-coupled cell surface receptors. When bound to vasopressin, they couple to G proteins activating phospholipase C for the V1a and V3 types and adenylate cyclase for the V2. The vasopressin receptor subfamily also includes the receptor for oxytocin, a structurally related hormone that signals through the activation of phospholipase C. The chromosomal position of the V2 receptor gene hasmore » been assigned to Xq28-qter by PCR-based screening of somatic cell hybrids, whereas the oxytocin receptor gene has been mapped to chromosome 3q26.2 by fluorescence in situ hybridization (FISH). The chromosomal location of the V1a gene is currently unknown. We recently cloned the cDNA and the gene coding for the human pituitary-specific V3 receptor (HGMW-approved symbol AVPR3). We report here the chromosomal localization of this gene by two distinct in situ hybridization techniques using radioactive and fluorescent probes. 11 refs., 1 fig.« less

  1. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes

    PubMed Central

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-01-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12–ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex. PMID:25046113

  2. The Histone Modification H3K27me3 Is Retained after Gene Duplication and Correlates with Conserved Noncoding Sequences in Arabidopsis

    PubMed Central

    Berke, Lidija; Snel, Berend

    2014-01-01

    The histone modification H3K27me3 is involved in repression of transcription and plays a crucial role in developmental transitions in both animals and plants. It is deposited by PRC2 (Polycomb repressive complex 2), a conserved protein complex. In Arabidopsis thaliana, H3K27me3 is found at 15% of all genes. These tend to encode transcription factors and other regulators important for development. However, it is not known how PRC2 is recruited to target loci nor how this set of target genes arose during Arabidopsis evolution. To resolve the latter, we integrated A. thaliana gene families with five independent genome-wide H3K27me3 data sets. Gene families were either significantly enriched or depleted of H3K27me3, showing a strong impact of shared ancestry to H3K27me3 distribution. To quantify this, we performed ancestral state reconstruction of H3K27me3 on phylogenetic trees of gene families. The set of H3K27me3-marked genes changed less than expected by chance, suggesting that H3K27me3 was retained after gene duplication. This retention suggests that the PRC2-recruiting signal could be encoded in the DNA and also conserved among certain duplicated genes. Indeed, H3K27me3-marked genes were overrepresented among paralogs sharing conserved noncoding sequences (CNSs) that are enriched with transcription factor binding sites. The association of upstream CNSs with H3K27me3-marked genes represents the first genome-wide connection between H3K27me3 and potential regulatory elements in plants. Thus, we propose that CNSs likely function as part of the PRC2 recruitment in plants. PMID:24567304

  3. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat.

    PubMed

    Rustenholz, Camille; Choulet, Frédéric; Laugier, Christel; Safár, Jan; Simková, Hana; Dolezel, Jaroslav; Magni, Federica; Scalabrin, Simone; Cattonaro, Federica; Vautrin, Sonia; Bellec, Arnaud; Bergès, Hélène; Feuillet, Catherine; Paux, Etienne

    2011-12-01

    To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.

  4. Isolation of a promoter region in mouse cytochrome P450 3A (Cyp3A16) gene and its transcriptional control.

    PubMed

    Itoh, S; Abe, Y; Kubo, A; Okuda, M; Shimoji, M; Nakayama, K; Kamataki, T

    1997-02-07

    An 11.5 kb fragment of the mouse Cyp3a16 gene containing the 5' flanking region was isolated from the lambda DASHII mouse genomic library. A part of the 5' flanking region and the first exon of Cyp3a16 gene were sequenced. S1 mapping analysis showed the presence of two transcriptional initiation sites. The first exon was completely identical to Cyp3a16 cDNA. The identity of 5' flanking sequences between Cyp3a16 and Cyp3a11 genes was about 69%. A typical TATA box and a basic transcription element (BTE) were found as seen with other CYP3A genes from various animal species Moreover, some putative transcriptional regulatory elements were also found in addition to the sequence motif seen for the formation of Z-type DNA. To examine the transcriptional activity of Cyp3a11 gene, DNA fragments in the 5'-flanking region of the gene were inserted front of the luciferase structural gene, and the constructs were transfected in primary hepatocytes. The analysis of the luciferase activity indicated that the region between -146 and -56 was necessary for the transcription of CYP3a16 gene.

  5. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute

  6. Expression of Glycogen synthase kinase 3-β (GSK3-β) gene in azoospermic men.

    PubMed

    Nazarian, Hamid; Ghaffari Novin, Marefat; Jalili, Mohammad Reza; Mirfakhraie, Reza; Heidari, Mohammad Hassan; Hosseini, Seyed Jalil; Norouzian, Mohsen; Ehsani, Nahid

    2014-05-01

    The Wnt/β- The Wnt/β-catenin signaling pathway is involved in many developmental processes in both fetal and adult life; its abnormalities can lead to disorders including several types of cancers and malfunction of specific cells and tissues in both animals and humans. Its role in reproductive processes has been proven. This study was designed to evaluate the expression of the key regulator of this signaling pathway GSK3-β and its presumed role in azoospermia. WNT3a protein concentration and GSK3gene expression levels were measured and compared between two groups of infertile men. The test groups consisted of 10 patients with obstructive and 10 non-obstructive azoospermia. The control group was selected among healthy men after vasectomies that were willing to conceive a child using a testicular biopsy technique. Samples were obtained by testicular biopsy and screened for the most common mutations (84, 86 and 255) in the SRY region before analyzing. GSK3gene expression was assessed quantitatively by real time-PCR. The WNT3a protein concentration had no significant difference between the two test groups and controls. Expression of GSK3-β was down-regulated in non-obstructive azoospermia (3.10±0.19) compared with normal (7.12±0.39) and obstructive azoospermia (6.32±0.42) groups (p=0.001). Down-regulation of GSK-3β may cause to non-obstructive azoospermia. Regulation and modification of GSK-3β gene expression by drugs could be used as a therapeutic solution.

  7. A Biallelic Mutation in the Homologous Recombination Repair Gene SPIDR Is Associated With Human Gonadal Dysgenesis.

    PubMed

    Smirin-Yosef, Pola; Zuckerman-Levin, Nehama; Tzur, Shay; Granot, Yaron; Cohen, Lior; Sachsenweger, Juliane; Borck, Guntram; Lagovsky, Irina; Salmon-Divon, Mali; Wiesmüller, Lisa; Basel-Vanagaite, Lina

    2017-02-01

    Primary ovarian insufficiency (POI) is caused by ovarian follicle depletion or follicle dysfunction, characterized by amenorrhea with elevated gonadotropin levels. The disorder presents as absence of normal progression of puberty. To elucidate the cause of ovarian dysfunction in a family with POI. We performed whole-exome sequencing in 2 affected individuals. To evaluate whether DNA double-strand break (DSB) repair activities are altered in biallelic mutation carriers, we applied an enhanced green fluorescent protein-based assay for the detection of specific DSB repair pathways in blood-derived cells. Diagnoses were made at the Pediatric Endocrine Clinic, Clalit Health Services, Sharon-Shomron District, Israel. Genetic counseling and sample collection were performed at the Pediatric Genetics Unit, Schneider Children's Medical Center Israel, Petah Tikva, Israel. Two sisters born to consanguineous parents of Israeli Muslim Arab ancestry presented with a lack of normal progression of puberty, high gonadotropin levels, and hypoplastic or absent ovaries on ultrasound. Blood samples for DNA extraction were obtained from all family members. Exome analysis to elucidate the cause of POI in 2 affected sisters. Analysis revealed a stop-gain homozygous mutation in the SPIDR gene (KIAA0146) c.839G>A, p.W280*. This mutation altered SPIDR activity in homologous recombination, resulting in the accumulation of 53BP1-labeled DSBs postionizing radiation and γH2AX-labeled damage during unperturbed growth. SPIDR is important for ovarian function in humans. A biallelic mutation in this gene may be associated with ovarian dysgenesis in cases of autosomal recessive inheritance. Copyright © 2017 by the Endocrine Society

  8. Validation of microRNA pathway polymorphisms in esophageal adenocarcinoma survival.

    PubMed

    Faluyi, Olusola O; Eng, Lawson; Qiu, Xin; Che, Jiahua; Zhang, Qihuang; Cheng, Dangxiao; Ying, Nanjiao; Tse, Alvina; Kuang, Qin; Dodbiba, Lorin; Renouf, Daniel J; Marsh, Sharon; Savas, Sevtap; Mackay, Helen J; Knox, Jennifer J; Darling, Gail E; Wong, Rebecca K S; Xu, Wei; Azad, Abul Kalam; Liu, Geoffrey

    2017-02-01

    Polymorphisms in miRNA and miRNA pathway genes have been previously associated with cancer risk and outcome, but have not been studied in esophageal adenocarcinoma outcomes. Here, we evaluate candidate miRNA pathway polymorphisms in esophageal adenocarcinoma prognosis and attempt to validate them in an independent cohort of esophageal adenocarcinoma patients. Among 231 esophageal adenocarcinoma patients of all stages/treatment plans, 38 candidate genetic polymorphisms (17 biogenesis, 9 miRNA targets, 5 pri-miRNA, 7 pre-miRNA) were genotyped and analyzed. Cox proportional hazard models adjusted for sociodemographic and clinicopathological covariates helped assess the association of genetic polymorphisms with overall survival (OS) and progression-free survival (PFS). Significantly associated polymorphisms were then evaluated in an independent cohort of 137 esophageal adenocarcinoma patients. Among the 231 discovery cohort patients, 86% were male, median diagnosis age was 64 years, 34% were metastatic at diagnosis, and median OS and PFS were 20 and 12 months, respectively. GEMIN3 rs197412 (aHR = 1.37, 95%CI: [1.04-1.80]; P = 0.02), hsa-mir-124-1 rs531564 (aHR = 0.60, 95% CI: [0.53-0.90]; P = 0.05), and KIAA0423 rs1053667 (aHR = 0.51, 95% CI: [0.28-0.96]; P = 0.04) were found associated with OS. Furthermore, GEMIN3 rs197412 (aHR = 1.33, 95% CI: [1.03-1.74]; P = 0.03) and KRT81 rs3660 (aHR = 1.29, 95% CI: [1.01-1.64]; P = 0.04) were found associated with PFS. Although none of these polymorphisms were significant in the second cohort, hsa-mir-124-1 rs531564 and KIAA0423 rs1053667 had trends in the same direction; when both cohorts were combined together, GEMIN3 rs197412, hsa-mir-124-1 rs531564, and KIAA0423 rs1053667 remained significantly associated with OS. We demonstrate the association of multiple miRNA pathway polymorphisms with esophageal adenocarcinoma prognosis in a discovery cohort of patients, which did not validate in a separate cohort

  9. Polymorphic human somatostatin gene is located on chromosome 3.

    PubMed Central

    Naylor, S L; Sakaguchi, A Y; Shen, L P; Bell, G I; Rutter, W J; Shows, T B

    1983-01-01

    Somatostatin is a 14-amino-acid neuropeptide and hormone that inhibits the secretion of several peptide hormones. The human gene for somatostatin SST has been cloned, and the sequence has been determined. This clone was used as a probe in chromosome mapping studies to detect the human somatostatin sequence in human-rodent hybrids. Southern blot analysis of 41 hybrids, including some containing translocations of human chromosomes, placed SST in the q21 leads to qter region of chromosome 3. Human DNAs from unrelated individuals were screened for restriction fragment polymorphisms detectable by the somatostatin gene probe. Two polymorphisms were found: (i) an EcoRI variant located at the 3' end of the gene, found in Caucasian, U.S. Black, and Asian populations with a frequency of approximately 0.10 and (ii) a BamHI variant in the intron, which occurs in Caucasians at a frequency of 0.13. Images PMID:6133281

  10. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL INVESTIGATOR...Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 14-1-0586 5c. PROGRAM ELEMENT...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also

  11. Association of HS6ST3 gene polymorphisms with obesity and triglycerides: gene x gender interaction.

    PubMed

    Wang, Ke-Sheng; Wang, Liang; Liu, Xuefeng; Zeng, Min

    2013-12-01

    The heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene is involved in heparan sulphate and heparin metabolism, and has been reported to be associated with diabetic retinopathy in type 2 diabetes.We hypothesized that HS6ST3 gene polymorphisms might play an important role in obesity and related phenotypes (such as triglycerides). We examined genetic associations of 117 single-nucleotide polymorphisms (SNPs) within the HS6ST3 gene with obesity and triglycerides using two Caucasian samples: the Marshfield sample (1442 obesity cases and 2122 controls), and the Health aging and body composition (Health ABC) sample (305 cases and 1336 controls). Logistic regression analysis of obesity as a binary trait and linear regression analysis of triglycerides as a continuous trait, adjusted for age and sex, were performed using PLINK. Single marker analysis showed that six SNPs in the Marshfield sample and one SNP in the Health ABC sample were associated with obesity (P < 0.05). SNP rs535812 revealed a stronger association with obesity in meta-analysis of these two samples (P = 0.0105). The T-A haplotype from rs878950 and rs9525149 revealed significant association with obesity in the Marshfield sample (P = 0.012). Moreover, nine SNPs showed associations with triglycerides in the Marshfield sample (P < 0.05) and the best signal was rs1927796 (P = 0.00858). In addition, rs7331762 showed a strong gene x gender interaction (P = 0.00956) for obesity while rs1927796 showed a strong gene x gender interaction (P = 0.000625) for triglycerides in the Marshfield sample. These findings contribute new insights into the pathogenesis of obesity and triglycerides and demonstrate the importance of gender differences in the aetiology.

  12. Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana.

    PubMed

    Aguadé, M

    2001-01-01

    The FAH1 and F3H genes encode ferulate-5-hydroxylase and flavanone-3-hydroxylase, which are enzymes in the pathways leading to the synthesis of sinapic acid esters and flavonoids, respectively. Nucleotide variation at these genes was surveyed by sequencing a sample of 20 worldwide Arabidopsis thaliana ecotypes and one Arabidopsis lyrata spp. petraea stock. In contrast with most previously studied genes, the percentage of singletons was rather low in both the FAH1 and the F3H gene regions. There was, therefore, no footprint of a recent species expansion in the pattern of nucleotide variation in these regions. In both FAH1 and F3H, nucleotide variation was structured into two major highly differentiated haplotypes. In both genes, there was a peak of silent polymorphism in the 5' part of the coding region without a parallel increase in silent divergence. In FAH1, the peak was centered at the beginning of the second exon. In F3H, nucleotide diversity was highest at the beginning of the gene. The observed pattern of variation in both FAH1 and F3H, although suggestive of balancing selection, was compatible with a neutral model with no recombination.

  13. Maternally Expressed Gene 3, an imprinted non-coding RNA gene, is associated with meningioma pathogenesis and progression

    PubMed Central

    Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A.; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N.; Klibanski, Anne

    2010-01-01

    Meningiomas are common tumors, representing 15-25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. Chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore it has been proposed that an as yet unidentified tumor suppressor is present at this locus. MEG3 is an imprinted gene located at 14q32 that encodes a non-coding RNA with an anti-proliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in BrdU incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a non-coding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism. PMID:20179190

  14. Transcriptional regulation of FoxO3 gene by glucocorticoids in murine myotubes

    PubMed Central

    Kuo, Taiyi; Liu, Patty H.; Chen, Tzu-Chieh; Lee, Rebecca A.; New, Jenny; Zhang, Danyun; Lei, Cassandra; Chau, Andy; Tang, Yicheng; Cheung, Edna

    2016-01-01

    Glucocorticoids and FoxO3 exert similar metabolic effects in skeletal muscle. FoxO3 gene expression was increased by dexamethasone (Dex), a synthetic glucocorticoid, both in vitro and in vivo. In C2C12 myotubes the increased expression is due to, at least in part, the elevated rate of FoxO3 gene transcription. In the mouse FoxO3 gene, we identified three glucocorticoid receptor (GR) binding regions (GBRs): one being upstream of the transcription start site, −17kbGBR; and two in introns, +45kbGBR and +71kbGBR. Together, these three GBRs contain four 15-bp glucocorticoid response elements (GREs). Micrococcal nuclease (MNase) assay revealed that Dex treatment increased the sensitivity to MNase in the GRE of +45kbGBR and +71kbGBR upon 30- and 60-min Dex treatment, respectively. Conversely, Dex treatment did not affect the chromatin structure near the −17kbGBR, in which the GRE is located in the linker region. Dex treatment also increased histone H3 and/or H4 acetylation in genomic regions near all three GBRs. Moreover, using chromatin conformation capture (3C) assay, we showed that Dex treatment increased the interaction between the −17kbGBR and two genomic regions: one located around +500 bp and the other around +73 kb. Finally, the transcriptional coregulator p300 was recruited to all three GBRs upon Dex treatment. The reduction of p300 expression decreased FoxO3 gene expression and Dex-stimulated interaction between distinct genomic regions of FoxO3 gene identified by 3C. Overall, our results demonstrate that glucocorticoids activated FoxO3 gene transcription through multiple GREs by chromatin structural change and DNA looping. PMID:26758684

  15. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes

    PubMed Central

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-01-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. PMID:25977299

  16. Homozygous hereditary C3 deficiency due to a partial gene deletion.

    PubMed Central

    Botto, M; Fong, K Y; So, A K; Barlow, R; Routier, R; Morley, B J; Walport, M J

    1992-01-01

    The molecular mechanism of C3 deficiency in an Afrikaans patient with recurrent pyogenic infections was studied. Restriction enzyme analysis showed a gene deletion of 800 base pairs (bp) mapping to the alpha chain of C3. Amplification of genomic DNA, using the PCR, demonstrated that the deletion included exons 22 and 23 of the C3 gene. Truncated mRNA was shown in an Epstein-Barr virus-transformed B-cell line by PCR amplification of first-strand cDNA. A consequence of this deletion was that the RNA transcribed 3' to the deletion was out of frame, resulting in formation of a stop codon 19 bp downstream from the deletion. The molecular basis of the deletion was compatible with homologous recombination between two Alu sequences located in introns 21 and 23. An unrelated nonconsanguineous relative and two of a sample of 174 Afrikaans-speaking individuals were heterozygous carriers of the same gene deletion. The wide prevalence of this null allele in this population is probably due to the effects of a small founder population. The presence of this deletion in the C3 gene is not compatible with production of any functional C3, supporting the idea that study of such patients offers a valid model for understanding physiological activities of C3 in vivo in humans. Images PMID:1350678

  17. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.

    PubMed

    Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M

    2001-10-01

    Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

  18. An ADP-Ribosylation Factor GTPase-activating Protein Git2-short/KIAA0148 Is Involved in Subcellular Localization of Paxillin and Actin Cytoskeletal Organization

    PubMed Central

    Mazaki, Yuichi; Hashimoto, Shigeru; Okawa, Katsuya; Tsubouchi, Asako; Nakamura, Kuniaki; Yagi, Ryohei; Yano, Hajime; Kondo, Akiko; Iwamatsu, Akihiro; Mizoguchi, Akira; Sabe, Hisataka

    2001-01-01

    Paxillin acts as an adaptor protein in integrin signaling. We have shown that paxillin exists in a relatively large cytoplasmic pool, including perinuclear areas, in addition to focal complexes formed at the cell periphery and focal adhesions formed underneath the cell. Several ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs; ARFGAPs) have been shown to associate with paxillin. We report here that Git2-short/KIAA0148 exhibits properties of a paxillin-associated ARFGAP and appears to be colocalized with paxillin, primarily at perinuclear areas. A fraction of Git2-short was also localized to actin-rich structures at the cell periphery. Unlike paxillin, however, Git2-short did not accumulate at focal adhesions underneath the cell. Git2-short is a short isoform of Git2, which is highly homologous to p95PKL, another paxillin-binding protein, and showed a weaker binding affinity toward paxillin than that of Git2. The ARFGAP activities of Git2 and Git2-short have been previously demonstrated in vitro, and we provided evidence that at least one ARF isoform, ARF1, is an intracellular substrate for the GAP activity of Git2-short. We also showed that Git2-short could antagonize several known ARF1-mediated phenotypes: overexpression of Git2-short, but not its GAP-inactive mutant, caused the redistribution of Golgi protein β-COP and reduced the amounts of paxillin-containing focal adhesions and actin stress fibers. Perinuclear localization of paxillin, which was sensitive to ARF inactivation, was also affected by Git2-short overexpression. On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression. Therefore, an ARFGAP protein weakly interacting with paxillin, Git2-short, exhibits pleiotropic functions involving the regulation of Golgi organization, actin cytoskeletal organization, and subcellular localization of paxillin, all of which need to be coordinately regulated during

  19. Identification of the gene transcription repressor domain of Gli3.

    PubMed

    Tsanev, Robert; Tiigimägi, Piret; Michelson, Piret; Metsis, Madis; Østerlund, Torben; Kogerman, Priit

    2009-01-05

    Gli transcription factors are downstream targets of the Hedgehog signaling pathway. Two of the three Gli proteins harbor gene transcription repressor function in the N-terminal half. We have analyzed the sequences and identified a potential repressor domain in Gli2 and Gli3 and have tested this experimentally. Overexpression studies confirm that the N-terminal parts harbor gene repression activity and we mapped the minimal repressor to residues 106 till 236 in Gli3. Unlike other mechanisms that inhibit Gli induced gene transcription, the repressor domain identified here does not utilize Histone deacetylases (HDACs) to achieve repression, as confirmed by HDAC inhibition studies and pull-down assays. This distinguishes the identified domain from other regulatory parts with negative influence on transcription.

  20. 3-Coumaranone derivatives as inhibitors of monoamine oxidase.

    PubMed

    Van Dyk, Adriaan S; Petzer, Jacobus P; Petzer, Anél; Legoabe, Lesetja J

    2015-01-01

    The present study examines the monoamine oxidase (MAO) inhibitory properties of a series of 20 3-coumaranone [benzofuran-3(2H)-one] derivatives. The 3-coumaranone derivatives are structurally related to series of α-tetralone and 1-indanone derivatives, which have recently been shown to potently inhibit MAO, with selectivity for MAO-B (in preference to the MAO-A isoform). 3-Coumaranones are similarly found to selectively inhibit human MAO-B with half-maximal inhibitory concentration (IC50) values of 0.004-1.05 µM. Nine compounds exhibited IC50<0.05 µM for the inhibition of MAO-B. For the inhibition of human MAO-A, IC50 values ranged from 0.586 to >100 µM, with only one compound possessing an IC50<1 µM. For selected 3-coumaranone derivatives, it is established that MAO-A and MAO-B inhibition are reversible since dialysis of enzyme-inhibitor mixtures almost completely restores enzyme activity. On the basis of the selectivity profiles and potent action, it may be concluded that the 3-coumaranone derivatives are suitable leads for the development of selective MAO-B inhibitors as potential treatment for disorders such as Parkinson's disease and Alzheimer's disease.

  1. 3-Coumaranone derivatives as inhibitors of monoamine oxidase

    PubMed Central

    Van Dyk, Adriaan S; Petzer, Jacobus P; Petzer, Anél; Legoabe, Lesetja J

    2015-01-01

    The present study examines the monoamine oxidase (MAO) inhibitory properties of a series of 20 3-coumaranone [benzofuran-3(2H)-one] derivatives. The 3-coumaranone derivatives are structurally related to series of α-tetralone and 1-indanone derivatives, which have recently been shown to potently inhibit MAO, with selectivity for MAO-B (in preference to the MAO-A isoform). 3-Coumaranones are similarly found to selectively inhibit human MAO-B with half-maximal inhibitory concentration (IC50) values of 0.004–1.05 µM. Nine compounds exhibited IC50<0.05 µM for the inhibition of MAO-B. For the inhibition of human MAO-A, IC50 values ranged from 0.586 to >100 µM, with only one compound possessing an IC50<1 µM. For selected 3-coumaranone derivatives, it is established that MAO-A and MAO-B inhibition are reversible since dialysis of enzyme–inhibitor mixtures almost completely restores enzyme activity. On the basis of the selectivity profiles and potent action, it may be concluded that the 3-coumaranone derivatives are suitable leads for the development of selective MAO-B inhibitors as potential treatment for disorders such as Parkinson’s disease and Alzheimer’s disease. PMID:26491258

  2. Differential gene expression of CYP3A isoforms in equine liver and intestines.

    PubMed

    Tydén, E; Löfgren, M; Pegolo, S; Capolongo, F; Tjälve, H; Larsson, P

    2012-12-01

    Recently, seven CYP3A isoforms - CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP129 - have been isolated from the horse genome. In this study, we have examined the hepatic and intestinal gene expression of these CYP3A isoforms using TaqMan probes. We have also studied the enzyme activity using luciferin-isopropyl acetal (LIPA) as a substrate. The results show a differential gene expression of the CYP3A isoforms in the liver and intestines in horses. In the liver, CYP3A89, CYP3A94, CYP3A96 and CYP3A97 were highly expressed, while in the intestine there were only two dominating isoforms, CYP3A93 and CYP3A96. The isoform CYP3A129 was not detected in the liver or the intestine, although this gene consists of a complete set of exons and should therefore code for a functional protein. It is possible that this gene is expressed in tissues other than the liver and intestines. In the intestine, both CYP3A96 and CYP3A93 showed the highest gene expression in the duodenum and the proximal parts of the jejunum. This correlated with a high protein expression in these tissues. Studies of the enzyme activity showed the same K(m) for the LIPA substrate in the liver and the intestine, while the maximum velocity (V(max)) in the liver was higher than in the intestine. Our finding of a differential gene expression of the CYP3A isoforms in the liver and the intestines contributes to a better understanding of drug metabolism in horses. © 2012 Blackwell Publishing Ltd.

  3. Rapidly Evolving Toll-3/4 Genes Encode Male-Specific Toll-Like Receptors in Drosophila.

    PubMed

    Levin, Tera C; Malik, Harmit S

    2017-09-01

    Animal Toll-like receptors (TLRs) have evolved through a pattern of duplication and divergence. Whereas mammalian TLRs directly recognize microbial ligands, Drosophila Tolls bind endogenous ligands downstream of both developmental and immune signaling cascades. Here, we find that most Toll genes in Drosophila evolve slowly with little gene turnover (gains/losses), consistent with their important roles in development and indirect roles in microbial recognition. In contrast, we find that the Toll-3/4 genes have experienced an unusually rapid rate of gene gains and losses, resulting in lineage-specific Toll-3/4s and vastly different gene repertoires among Drosophila species, from zero copies (e.g., D. mojavensis) to nineteen copies (e.g., D. willistoni). In D. willistoni, we find strong evidence for positive selection in Toll-3/4 genes, localized specifically to an extracellular region predicted to overlap with the binding site of Spätzle, the only known ligand of insect Tolls. However, because Spätzle genes are not experiencing similar selective pressures, we hypothesize that Toll-3/4s may be rapidly evolving because they bind to a different ligand, akin to TLRs outside of insects. We further find that most Drosophila Toll-3/4 genes are either weakly expressed or expressed exclusively in males, specifically in the germline. Unlike other Toll genes in D. melanogaster, Toll-3, and Toll-4 have apparently escaped from essential developmental roles, as knockdowns have no substantial effects on viability or male fertility. Based on these findings, we propose that the Toll-3/4 genes represent an exceptionally rapidly evolving lineage of Drosophila Toll genes, which play an unusual, as-yet-undiscovered role in the male germline. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Rapidly Evolving Toll-3/4 Genes Encode Male-Specific Toll-Like Receptors in Drosophila

    PubMed Central

    Levin, Tera C.; Malik, Harmit S.

    2017-01-01

    Abstract Animal Toll-like receptors (TLRs) have evolved through a pattern of duplication and divergence. Whereas mammalian TLRs directly recognize microbial ligands, Drosophila Tolls bind endogenous ligands downstream of both developmental and immune signaling cascades. Here, we find that most Toll genes in Drosophila evolve slowly with little gene turnover (gains/losses), consistent with their important roles in development and indirect roles in microbial recognition. In contrast, we find that the Toll-3/4 genes have experienced an unusually rapid rate of gene gains and losses, resulting in lineage-specific Toll-3/4s and vastly different gene repertoires among Drosophila species, from zero copies (e.g., D. mojavensis) to nineteen copies (e.g., D. willistoni). In D. willistoni, we find strong evidence for positive selection in Toll-3/4 genes, localized specifically to an extracellular region predicted to overlap with the binding site of Spätzle, the only known ligand of insect Tolls. However, because Spätzle genes are not experiencing similar selective pressures, we hypothesize that Toll-3/4s may be rapidly evolving because they bind to a different ligand, akin to TLRs outside of insects. We further find that most Drosophila Toll-3/4 genes are either weakly expressed or expressed exclusively in males, specifically in the germline. Unlike other Toll genes in D. melanogaster, Toll-3, and Toll-4 have apparently escaped from essential developmental roles, as knockdowns have no substantial effects on viability or male fertility. Based on these findings, we propose that the Toll-3/4 genes represent an exceptionally rapidly evolving lineage of Drosophila Toll genes, which play an unusual, as-yet-undiscovered role in the male germline. PMID:28541576

  5. Interleukin-10-induced gene expression and suppressive function are selectively modulated by the PI3K-Akt-GSK3 pathway

    PubMed Central

    Antoniv, Taras T; Ivashkiv, Lionel B

    2011-01-01

    Interleukin-10 (IL-10) is an immunosuppressive cytokine that inhibits inflammatory gene expression. Phosphatidylinositol 3-kinase (PI3K) -mediated signalling regulates inflammatory responses and can induce IL-10 production, but a role for PI3K signalling in cellular responses to IL-10 is not known. In this study we investigated the involvement of the PI3K-Akt-GSK3 signalling pathway in IL-10-induced gene expression and IL-10-mediated suppression of Toll-like receptor-induced gene expression in primary human macrophages. A combination of loss and gain of function approaches using kinase inhibitors, expression of constitutively active Akt, and RNA interference in primary human macrophages showed that expression of a subset of IL-10-inducible genes was dependent on PI3K-Akt signalling. The effects of PI3K-Akt signalling on IL-10 responses were mediated at least in part by glycogen synthase kinase 3 (GSK3). In accordance with a functional role for PI3K pathways in contributing to the suppressive actions of IL-10, PI3K signalling augmented IL-10-mediated inhibition of lipopolysaccharide-induced IL-1, IL-8 and cyclo-oxygenase-2 expression. The PI3K signalling selectively modulated IL-10 responses, as it was not required for inhibition of tumour necrosis factor expression or for induction of certain IL-10-inducible genes such as SOCS3. These findings identify a new mechanism by which PI3K-mediated signalling can suppress inflammation by regulating IL-10-mediated gene induction and anti-inflammatory function. PMID:21255011

  6. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi.

    PubMed

    Zhang, De-Huai; Jiang, Lu-Xi; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-06-14

    The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.

  7. Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations

    PubMed Central

    2010-01-01

    Background In a recent study, two-dimensional (2D) network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D) network layouts, displayed through 2D and 3D viewing methods. Findings The 3D network layout (displayed through the 3D viewing method) revealed that genes implicated in many diseases (non-specific genes) tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes) tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network. Conclusions The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks. PMID:21070623

  8. Tumor Secreted Autocrine Motility Factor (AMF): Causal Role in an Animal Model of Cachexia

    DTIC Science & Technology

    2005-08-01

    AD Award Number: DAMD17-02-1-0586 TITLE: Tumor Secreted Autocrine Motility Factor ( AMF ): Causal Role in an Animal Model of Cachexia PRINCIPAL...5a. CONTRACT NUMBER Tumor Secreted Autocrine Motility Factor ( AMF ): Causal Role in an Animal Model of Cachexia 5b. GRANT NUMBER DAM D1 7-02-1-0586 5c...quality of life and postpone mortality. We proposed that autocrine motility factor ( AMF ) is released into the bloodstream from cancer sites and

  9. RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes

    PubMed Central

    Recouvreux, María Sol; Grasso, Esteban Nicolás; Echeverria, Pablo Christian; Rocha-Viegas, Luciana; Castilla, Lucio Hernán; Schere-Levy, Carolina; Tocci, Johanna Melisa; Kordon, Edith Claudia; Rubinstein, Natalia

    2016-01-01

    Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability. PMID:26735887

  10. RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes.

    PubMed

    Recouvreux, María Sol; Grasso, Esteban Nicolás; Echeverria, Pablo Christian; Rocha-Viegas, Luciana; Castilla, Lucio Hernán; Schere-Levy, Carolina; Tocci, Johanna Melisa; Kordon, Edith Claudia; Rubinstein, Natalia

    2016-02-09

    Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability.

  11. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes.

    PubMed

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-07-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Inflammatory macrophage-associated 3-gene signature predicts subclinical allograft injury and graft survival.

    PubMed

    Azad, Tej D; Donato, Michele; Heylen, Line; Liu, Andrew B; Shen-Orr, Shai S; Sweeney, Timothy E; Maltzman, Jonathan Scott; Naesens, Maarten; Khatri, Purvesh

    2018-01-25

    Late allograft failure is characterized by cumulative subclinical insults manifesting over many years. Although immunomodulatory therapies targeting host T cells have improved short-term survival rates, rates of chronic allograft loss remain high. We hypothesized that other immune cell types may drive subclinical injury, ultimately leading to graft failure. We collected whole-genome transcriptome profiles from 15 independent cohorts composed of 1,697 biopsy samples to assess the association of an inflammatory macrophage polarization-specific gene signature with subclinical injury. We applied penalized regression to a subset of the data sets and identified a 3-gene inflammatory macrophage-derived signature. We validated discriminatory power of the 3-gene signature in 3 independent renal transplant data sets with mean AUC of 0.91. In a longitudinal cohort, the 3-gene signature strongly correlated with extent of injury and accurately predicted progression of subclinical injury 18 months before clinical manifestation. The 3-gene signature also stratified patients at high risk of graft failure as soon as 15 days after biopsy. We found that the 3-gene signature also distinguished acute rejection (AR) accurately in 3 heart transplant data sets but not in lung transplant. Overall, we identified a parsimonious signature capable of diagnosing AR, recognizing subclinical injury, and risk-stratifying renal transplant patients. Our results strongly suggest that inflammatory macrophages may be a viable therapeutic target to improve long-term outcomes for organ transplantation patients.

  13. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset

    PubMed Central

    Meyer, Corinna; Kaufmann, Maren; Zaborski, Margarete; MacLeod, Roderick A. F.; Drexler, Hans G.

    2018-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen. PMID:29746601

  14. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset.

    PubMed

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Zaborski, Margarete; MacLeod, Roderick A F; Drexler, Hans G

    2018-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen.

  15. Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec.

    PubMed

    Lister, James A; Lane, Brandon M; Nguyen, Anhthu; Lunney, Katherine

    2011-11-01

    The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution. Copyright © 2011 Wiley-Liss, Inc.

  16. Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription.

    PubMed

    Clancy, Kathleen W; Russell, Anna-Maria; Subramanian, Venkataraman; Nguyen, Hannah; Qian, Yuewei; Campbell, Robert M; Thompson, Paul R

    2017-06-16

    Posttranslational modifications of histone tails are a key contributor to epigenetic regulation. Histone H3 Arg26 and Lys27 are both modified by multiple enzymes, and their modifications have profound effects on gene expression. Citrullination of H3R26 by PAD2 and methylation of H3K27 by PRC2 have opposing downstream impacts on gene regulation; H3R26 citrullination activates gene expression, and H3K27 methylation represses gene expression. Both of these modifications are drivers of a variety of cancers, and their writer enzymes, PAD2 and EZH2, are the targets of drug therapies. After biochemical and cell-based analysis of these modifications, a negative crosstalk interaction is observed. Methylation of H3K27 slows citrullination of H3R26 30-fold, whereas citrullination of H3R26 slows methylation 30,000-fold. Examination of the mechanism of this crosstalk interaction uncovered a change in structure of the histone tail upon citrullination which prevents methylation by the PRC2 complex. This mechanism of crosstalk is reiterated in cell lines using knockdowns and inhibitors of both enzymes. Based our data, we propose a model in which, after H3 Cit26 formation, H3K27 demethylases are recruited to the chromatin to activate transcription. In total, our studies support the existence of crosstalk between citrullination of H3R26 and methylation of H3K27.

  17. Xp11.2 translocation renal cell carcinoma with NONO-TFE3 gene fusion: morphology, prognosis, and potential pitfall in detecting TFE3 gene rearrangement.

    PubMed

    Xia, Qiu-Yuan; Wang, Zhe; Chen, Ni; Gan, Hua-Lei; Teng, Xiao-Dong; Shi, Shan-Shan; Wang, Xuan; Wei, Xue; Ye, Sheng-Bing; Li, Rui; Ma, Heng-Hui; Lu, Zhen-Feng; Zhou, Xiao-Jun; Rao, Qiu

    2017-03-01

    Xp11 translocation renal cell carcinomas are characterized by several different translocations involving the TFE3 gene. Tumors with different specific gene fusions may have different clinicopathological manifestations. Fewer than 10 renal cell carcinoma cases with NONO-TFE3 have been described. Here we examined eight additional cases of this rare tumor using clinicopathological, immunohistochemical, and molecular analyses. The male-to-female ratio of our study cohort was 1:1, and the median age was 30 years. The most distinctive feature of the tumors was that they exhibited glandular/tubular or papillary architecture that was lined with small-to-medium cuboidal to high columnar cells with indistinct cell borders and an abundantly clear or flocculent eosinophilic cytoplasm. The nuclei were oriented toward the luminal surface and were round and uniform in shape, which resulted in the appearance of secretory endometrioid subnuclear vacuolization. The distinct glandular/tubular or papillary architecture was often accompanied by sheets of epithelial cells that presented a biphasic pattern. Immunohistochemically, all eight cases demonstrated moderate (2+) or strong (3+) positive staining for TFE3, CD10, RCC marker, and PAX-8. None of the tumors were immunoreactive for CK7, Cathepsin K, Melan-A, HMB45, Ksp-cadherin, Vimentin, CA9, 34βE12 or CD117. NONO-TFE3 fusion transcripts were identified in six cases by RT-PCR. All eight cases showed equivocal split signals with a distance of nearly 2 signal diameters and sometimes had false-negative results. Furthermore, we developed a fluorescence in situ hybridization (FISH) assay to serve as an adjunct diagnostic tool for the detection of the NONO-TFE3 fusion gene and used this method to detect the fusion gene in all eight cases. Long-term follow-up (range, 10-102 months) was available for 7 patients. All 7 patients were alive with no evidence of recurrent disease or disease progression after their initial resection. This report

  18. Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

    PubMed

    Abdallah, Joseph F; Okoth, Sheila Akinyi; Fontecha, Gustavo A; Torres, Rosa Elena Mejia; Banegas, Engels I; Matute, María Luisa; Bucheli, Sandra Tamara Mancero; Goldman, Ira F; de Oliveira, Alexandre Macedo; Barnwell, John W; Udhayakumar, Venkatachalam

    2015-01-21

    Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however

  19. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data.

    PubMed

    Huynh-Thu, Vân Anh; Geurts, Pierre

    2018-02-21

    The elucidation of gene regulatory networks is one of the major challenges of systems biology. Measurements about genes that are exploited by network inference methods are typically available either in the form of steady-state expression vectors or time series expression data. In our previous work, we proposed the GENIE3 method that exploits variable importance scores derived from Random forests to identify the regulators of each target gene. This method provided state-of-the-art performance on several benchmark datasets, but it could however not specifically be applied to time series expression data. We propose here an adaptation of the GENIE3 method, called dynamical GENIE3 (dynGENIE3), for handling both time series and steady-state expression data. The proposed method is evaluated extensively on the artificial DREAM4 benchmarks and on three real time series expression datasets. Although dynGENIE3 does not systematically yield the best performance on each and every network, it is competitive with diverse methods from the literature, while preserving the main advantages of GENIE3 in terms of scalability.

  20. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family

  1. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE PAGES

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; ...

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family

  2. CLAVATA3-like genes are differentially expressed in grape vine (Vitis vinifera) tissues.

    PubMed

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Wada, Takuji; Sawa, Shinichiro; Tetsumura, Takuya

    2013-10-15

    The CLAVATA3 (CLV3)/endosperm surrounding region [(ESR) CLE] peptides function as intercellular signaling molecules that regulate various physiological and developmental processes in diverse plant species. We identified five CLV3-like genes from grape vine (Vitis vinifera var. Pinot Noir): VvCLE 6, VvCLE 25-1, VvCLE 25-2, VvCLE 43 and VvCLE TDIF. These CLV3-like genes encode short proteins containing 43-128 amino acids. Except VvCLE TDIF, grape vine CLV3-like proteins possess a consensus amino acid sequence known as the CLE domain. Phylogenic analysis suggests that the VvCLE 6, VvCLE25-1, VvCLE25-2 and VvCLE43 genes have evolved from a single common ancestor to the Arabidopsis CLV3 gene. Expression analyses showed that the five grape CLV3-like genes are expressed in leaves, stems, roots and axillary buds with significant differences in their levels of expression. For example, while all of them were strongly expressed in axillary buds, VvCLE6 and VvCLE43 expression prevailed in roots, and VvCLE25-1, VvCLE25-2 and VvCLE TDIF expression in stems. The differential expression of the five grape CLV3-like peptides suggests that they play different roles in different organs and developmental stages. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Co-circulation of Soricid- and Talpid-borne Hantaviruses in Poland

    PubMed Central

    Gu, Se Hun; Hejduk, Janusz; Markowski, Janusz; Kang, Hae Ji; Markowski, Marcin; Połatyńska, Małgorzata; Sikorska, Beata; Liberski, Paweł P.; Yanagihara, Richard

    2014-01-01

    Previously, we reported the discovery of a genetically distinct hantavirus, designated Boginia virus (BOGV), in the Eurasian water shrew (Neomys fodiens), as well as the detection of Seewis virus (SWSV) in the Eurasian common shrew (Sorex araneus), in central Poland. In this expanded study of 133 shrews and 69 moles captured during 2010–2013 in central and southeastern Poland, we demonstrate the co-circulation of BOGV in the Eurasian water shrew and SWSV in the Eurasian common shrew, Eurasian pygmy shrew (Sorex minutus) and Mediterranean water shrew (Neomys anomalus). In addition, we found high prevalence of Nova virus (NVAV) infection in the European mole (Talpa europaea), with evidence of NVAV RNA in heart, lung, liver, kidney, spleen and intestine. The nucleotide and amino acid sequence variation of the L segment among the SWSV strains was 0–18.8% and 0–5.4%, respectively. And for the 38 NVAV strains from European moles captured in Huta Dłutowska, the L-segment genetic similarity ranged from 94.1–100% at the nucleotide level and 96.3–100% at the amino acid level. Phylogenetic analyses showed geographic-specific lineages of SWSV and NVAV in Poland, not unlike that of rodent-borne hantaviruses, suggesting long-standing host-specific adaptation. The co-circulation and distribution of BOGV, SWSV and NVAV in Poland parallels findings of multiple hantavirus species coexisting in their respective rodent reservoir species elsewhere in Europe. Also, the detection of SWSV in three syntopic shrew species resembles spill over events observed among some rodent-borne hantaviruses. PMID:25445646

  4. Co-circulation of soricid- and talpid-borne hantaviruses in Poland.

    PubMed

    Gu, Se Hun; Hejduk, Janusz; Markowski, Janusz; Kang, Hae Ji; Markowski, Marcin; Połatyńska, Małgorzata; Sikorska, Beata; Liberski, Paweł P; Yanagihara, Richard

    2014-12-01

    Previously, we reported the discovery of a genetically distinct hantavirus, designated Boginia virus (BOGV), in the Eurasian water shrew (Neomys fodiens), as well as the detection of Seewis virus (SWSV) in the Eurasian common shrew (Sorex araneus), in central Poland. In this expanded study of 133 shrews and 69 moles captured during 2010-2013 in central and southeastern Poland, we demonstrate the co-circulation of BOGV in the Eurasian water shrew and SWSV in the Eurasian common shrew, Eurasian pygmy shrew (Sorex minutus) and Mediterranean water shrew (Neomys anomalus). In addition, we found high prevalence of Nova virus (NVAV) infection in the European mole (Talpa europaea), with evidence of NVAV RNA in heart, lung, liver, kidney, spleen and intestine. The nucleotide and amino acid sequence variation of the L segment among the SWSV strains was 0-18.8% and 0-5.4%, respectively. And for the 38 NVAV strains from European moles captured in Huta Dłutowska, the L-segment genetic similarity ranged from 94.1%-100% at the nucleotide level and 96.3%-100% at the amino acid level. Phylogenetic analyses showed geographic-specific lineages of SWSV and NVAV in Poland, not unlike that of rodent-borne hantaviruses, suggesting long-standing host-specific adaptation. The co-circulation and distribution of BOGV, SWSV and NVAV in Poland parallels findings of multiple hantavirus species co-existing in their respective rodent reservoir species elsewhere in Europe. Also, the detection of SWSV in three syntopic shrew species resembles spill over events observed among some rodent-borne hantaviruses. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. No3CoGP: non-conserved and conserved coexpressed gene pairs.

    PubMed

    Mal, Chittabrata; Aftabuddin, Md; Kundu, Sudip

    2014-12-08

    Analyzing the microarray data of different conditions, one can identify the conserved and condition-specific genes and gene modules, and thus can infer the underlying cellular activities. All the available tools based on Bioconductor and R packages differ in how they extract differential coexpression and at what level they study. There is a need for a user-friendly, flexible tool which can start analysis using raw or preprocessed microarray data and can report different levels of useful information. We present a GUI software, No3CoGP: Non-Conserved and Conserved Coexpressed Gene Pairs which takes Affymetrix microarray data (.CEL files or log2 normalized.txt files) along with annotation file (.csv file), Chip Definition File (CDF file) and probe file as inputs, utilizes the concept of network density cut-off and Fisher's z-test to extract biologically relevant information. It can identify four possible types of gene pairs based on their coexpression relationships. These are (i) gene pair showing coexpression in one condition but not in the other, (ii) gene pair which is positively coexpressed in one condition but negatively coexpressed in the other condition, (iii) positively and (iv) negatively coexpressed in both the conditions. Further, it can generate modules of coexpressed genes. Easy-to-use GUI interface enables researchers without knowledge in R language to use No3CoGP. Utilization of one or more CPU cores, depending on the availability, speeds up the program. The output files stored in the respective directories under the user-defined project offer the researchers to unravel condition-specific functionalities of gene, gene sets or modules.

  6. Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression

    PubMed Central

    Xue, Yufei; Chen, Baojun; Win, Aung Naing; Fu, Chun; Lian, Jianping; Liu, Xue; Wang, Rui; Zhang, Xingcui

    2018-01-01

    Omega-3 fatty acid desaturase (ω-3 FAD, D15D) is a key enzyme for α-linolenic acid (ALA) biosynthesis. Both chia (Salvia hispanica) and perilla (Perilla frutescens) contain high levels of ALA in seeds. In this study, the ω-3 FAD gene family was systematically and comparatively cloned from chia and perilla. Perilla FAD3, FAD7, FAD8 and chia FAD7 are encoded by single-copy (but heterozygous) genes, while chia FAD3 is encoded by 2 distinct genes. Only 1 chia FAD8 sequence was isolated. In these genes, there are 1 to 6 transcription start sites, 1 to 8 poly(A) tailing sites, and 7 introns. The 5’UTRs of PfFAD8a/b contain 1 to 2 purine-stretches and 2 pyrimidine-stretches. An alternative splice variant of ShFAD7a/b comprises a 5’UTR intron. Their encoded proteins harbor an FA_desaturase conserved domain together with 4 trans-membrane helices and 3 histidine boxes. Phylogenetic analysis validated their identity of dicot microsomal or plastidial ω-3 FAD proteins, and revealed some important evolutionary features of plant ω-3 FAD genes such as convergent evolution across different phylums, single-copy status in algae, and duplication events in certain taxa. The qRT-PCR assay showed that the ω-3 FAD genes of two species were expressed at different levels in various organs, and they also responded to multiple stress treatments. The functionality of the ShFAD3 and PfFAD3 enzymes was confirmed by yeast expression. The systemic molecular and functional features of the ω-3 FAD gene family from chia and perilla revealed in this study will facilitate their use in future studies on genetic improvement of ALA traits in oilseed crops. PMID:29351555

  7. FOXO3 Modulates Endothelial Gene Expression and Function by Classical and Alternative Mechanisms*

    PubMed Central

    Czymai, Tobias; Viemann, Dorothee; Sticht, Carsten; Molema, Grietje; Goebeler, Matthias; Schmidt, Marc

    2010-01-01

    FOXO transcription factors represent targets of the phosphatidylinositol 3-kinase/protein kinase B survival pathway controlling important biological processes, such as cell cycle progression, apoptosis, vascular remodeling, stress responses, and metabolism. Recent studies suggested the existence of alternative mechanisms of FOXO-dependent gene expression beyond classical binding to a FOXO-responsive DNA-binding element (FRE). Here we analyzed the relative contribution of those mechanisms to vascular function by comparing the transcriptional and cellular responses to conditional activation of FOXO3 and a corresponding FRE-binding mutant in human primary endothelial cells. We demonstrate that FOXO3 controls expression of vascular remodeling genes in an FRE-dependent manner. In contrast, FOXO3-induced cell cycle arrest and apoptosis occurs independently of FRE binding, albeit FRE-dependent gene expression augments the proapoptotic response. These findings are supported by bioinformatical analysis, which revealed a statistical overrepresentation of cell cycle regulators and apoptosis-related genes in the group of co-regulated genes. Molecular analysis of FOXO3-induced endothelial apoptosis excluded modulators of the extrinsic death receptor pathway and demonstrated important roles for the BCL-2 family members BIM and NOXA in this process. Although NOXA essentially contributed to FRE-dependent apoptosis, BIM was effectively induced in the absence of FRE-binding, and small interfering RNA-mediated BIM depletion could rescue apoptosis induced by both FOXO3 mutants. These data suggest BIM as a critical cell type-specific mediator of FOXO3-induced endothelial apoptosis, whereas NOXA functions as an amplifying factor. Our study provides the first comprehensive analysis of alternatively regulated FOXO3 targets in relevant primary cells and underscores the importance of such genes for endothelial function and integrity. PMID:20123982

  8. Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression

    PubMed Central

    Linne, Hannah; Yasaei, Hemad; Marriott, Alison; Harvey, Amanda; Mokbel, Kefah; Newbold, Robert; Roberts, Terry

    2017-01-01

    Narrowing the search for the critical hTERT repressor sequence(s) has identified three regions on chromosome 3p (3p12-p21.1, 3p21.2 and 3p21.3-p22). However, the precise location and identity of the sequence(s) responsible for hTERT transcriptional repression remains elusive. In order to identify critical hTERT repressor sequences located within human chromosome 3p12-p22, we investigated hTERT transcriptional activity within 21NT microcell hybrid clones containing chromosome 3 fragments. Mapping of chromosome 3 structure in a single hTERT-repressed 21NT-#3fragment hybrid clone, revealed a 490kb region of deletion localised to 3p21.3 and encompassing the histone H3, lysine 36 (H3K36) trimethyltransferase enzyme SETD2; a putative tumour suppressor gene in breast cancer. Three additional genes, BAP1, PARP-3 and PBRM1, were also selected for further investigation based on their location within the 3p21.1-p21.3 region, together with their documented role in the epigenetic regulation of target gene expression or hTERT regulation. All four genes (SETD2, BAP1, PARP-3 and PBRM1) were found to be expressed at low levels in 21NT. Gene copy number variation (CNV) analysis of SETD2, BAP1, PARP-3 and PBRM1 within a panel of nine breast cancer cell lines demonstrated single copy number loss of all candidate genes within five (56%) cell lines (including 21NT cells). Stable, forced overexpression of BAP1, but not PARP2, SETD2 or PBRM1, within 21NT cells was associated with a significant reduction in hTERT expression levels relative to wild-type controls. We propose that at least two sequences exist on human chromosome 3p, that function to regulate hTERT transcription within human breast cancer cells. PMID:28977912

  9. Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression.

    PubMed

    Linne, Hannah; Yasaei, Hemad; Marriott, Alison; Harvey, Amanda; Mokbel, Kefah; Newbold, Robert; Roberts, Terry

    2017-09-22

    Narrowing the search for the critical hTERT repressor sequence(s) has identified three regions on chromosome 3p (3p12-p21.1, 3p21.2 and 3p21.3-p22). However, the precise location and identity of the sequence(s) responsible for hTERT transcriptional repression remains elusive. In order to identify critical hTERT repressor sequences located within human chromosome 3p12-p22, we investigated hTERT transcriptional activity within 21NT microcell hybrid clones containing chromosome 3 fragments. Mapping of chromosome 3 structure in a single hTERT- repressed 21NT-#3fragment hybrid clone, revealed a 490kb region of deletion localised to 3p21.3 and encompassing the histone H3, lysine 36 (H3K36) trimethyltransferase enzyme SETD2; a putative tumour suppressor gene in breast cancer. Three additional genes, BAP1, PARP-3 and PBRM1, were also selected for further investigation based on their location within the 3p21.1-p21.3 region, together with their documented role in the epigenetic regulation of target gene expression or hTERT regulation. All four genes (SETD2, BAP1, PARP-3 and PBRM1) were found to be expressed at low levels in 21NT. Gene copy number variation (CNV) analysis of SETD2, BAP1, PARP-3 and PBRM1 within a panel of nine breast cancer cell lines demonstrated single copy number loss of all candidate genes within five (56%) cell lines (including 21NT cells). Stable, forced overexpression of BAP1, but not PARP2, SETD2 or PBRM1, within 21NT cells was associated with a significant reduction in hTERT expression levels relative to wild-type controls. We propose that at least two sequences exist on human chromosome 3p, that function to regulate hTERT transcription within human breast cancer cells.

  10. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks

    PubMed Central

    2018-01-01

    Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525

  11. Deletion Analysis of the Tumorous-Head (tuh–3) Gene in DROSOPHILA MELANOGASTER

    PubMed Central

    Kuhn, David T.; Woods, Daniel F.; Andrew, Deborah J.

    1981-01-01

    In the presence of the naturally occurring maternal-effect alleles tuh-1h or tuh-1g, the tuh-3 mutant gene can cause the tumorous-head trait or the sac-testis trait. The tuh-3 gene functions as a semidominant in the presence of the tuh-1h maternal effect. Eye-antennal structures are replaced by posterior abdominal tergites and genital structures. If tuh-1h is replaced by its naturally occurring allele tuh-1g, tuh-3 functions as a recessive hypomorph and the defect switches from anterior to posterior structures, with a male genital-disc defect appearing with variable penetrance. Function and regulation of tuh-3+ may better be understood in light of the cytological localization of tuh-3 either adjacent to or as part of the bithorax complex. The tuh-3+ gene product appears to be essential for normal development, at least in the posterior end of the embryo. PMID:6804305

  12. Mutational Analysis of TAC3 and TACR3 Genes in Patients with Idiopathic Central Pubertal Disorders

    PubMed Central

    Tusset, Cintia; Noel, Sekoni D.; Trarbach, Ericka B.; Silveira, Letícia F. G.; Jorge, Alexander A. L.; Brito, Vinicius N.; Cukier, Priscila; Seminara, Stephanie B.; de Mendonça, Berenice B.; Kaiser, Ursula B.; Latronico, Ana Claudia

    2013-01-01

    Aim To investigate the presence of variants in the TAC3 and TACR3 genes, which encode NKB and its receptor (NK3R), respectively, in a large cohort of patients with idiopathic central pubertal disorders. Patients and Methods Two hundred and thirty seven patients were studied: 114 with central precocious puberty (CPP), 73 with normosmic isolated hypogonadotropic hypogonadism (IHH) and 50 with constitutional delay of growth and puberty (CDGP). The control group consisted of 150 Brazilian individuals with normal pubertal development. Genomic DNA was extracted from peripheral blood and the entire coding region of both TAC3 and TACR3 genes were amplified and automatically sequenced. Results We identified one variant (p.A63P) in NKB and four variants, p.G18D, p.L58L (c.172C>T), p.W275* and p.A449S in NK3R, which were absent in the control group. The p.A63P variant was identified in a girl with CPP, and p.A449S in a girl with CDGP. The known p.G18D, p.L58L and p.W275* variants were identified in three unrelated males with normosmic IHH. Conclusion Rare variants in the TAC3 and TACR3 genes were identified in patients with central pubertal disorders. Loss-of-function variants of TACR3 were associated with the normosmic IHH phenotype. PMID:23329188

  13. HnRNP A3 genes and pseudogenes in the vertebrate genomes.

    PubMed

    Makeyev, Aleksandr V; Kim, Chang Bae; Ruddle, Frank H; Enkhmandakh, Badam; Erdenechimeg, Lkhamsuren; Bayarsaihan, Dashzeveg

    2005-04-01

    The hnRNP A/B type proteins are abundant nuclear factors that bind to Pol II transcripts and are involved in numerous RNA-related activities. To date most data on the hnRNP A/B family have been obtained with recombinant proteins and cell cultures. Further characterization can result from an examination of the impact of various modifications in intact functional loci; however, such characterization is hampered by the presence of numerous and widely dispersed hnRNP A/B-related sequences in the mammalian genome. We have found hnRNP A3, a poorly recognized member of the hnRNP A/B family, among candidate transcription factors that interact with the regulatory region of the Hoxc8 gene and screened the human and mouse genomes for genes that encode hnRNP A3. We demonstrate that the sequence reported previously as the human hnRNP A3 gene (Accession number S63912) and located on 10p11.1 belongs to a processed pseudogene of the functional intron-containing locus HNRPA3, which we have identified on 2q31.2. We have also identified its murine orthologs on mouse chromosome 2D and rat chromosome 3q23. Alternative splices were revealed at the N-terminus and in the middle of hnRNP A3. 14 and 28 additional loci in the human and mouse genome, respectively, were mapped and identified as hnRNP A3 processed pseudogenes. In addition, we have found and compared hnRNP A3 orthologous genes in Gallus gallus, Xenopus tropicalis, and Danio rerio. The present in silico analysis serves as a necessary step toward a further functional characterization of hnRNP A3. (c) 2005 Wiley-Liss, Inc.

  14. The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis

    PubMed Central

    Dreijerink, Koen; Braga, Eleonora; Kuzmin, Igor; Geil, Laura; Duh, Fuh-Mei; Angeloni, Debora; Zbar, Berton; Lerman, Michael I.; Stanbridge, Eric J.; Minna, John D.; Protopopov, Alexei; Li, Jingfeng; Kashuba, Vladimir; Klein, George; Zabarovsky, Eugene R.

    2001-01-01

    Clear cell-type renal cell carcinomas (clear RCC) are characterized almost universally by loss of heterozygosity on chromosome 3p, which usually involves any combination of three regions: 3p25-p26 (harboring the VHL gene), 3p12-p14.2 (containing the FHIT gene), and 3p21-p22, implying inactivation of the resident tumor-suppressor genes (TSGs). For the 3p21-p22 region, the affected TSGs remain, at present, unknown. Recently, the RAS association family 1 gene (isoform RASSF1A), located at 3p21.3, has been identified as a candidate lung and breast TSG. In this report, we demonstrate aberrant silencing by hypermethylation of RASSF1A in both VHL-caused clear RCC tumors and clear RCC without VHL inactivation. We found hypermethylation of RASSF1A's GC-rich putative promoter region in most of analyzed samples, including 39 of 43 primary tumors (91%). The promoter was methylated partially or completely in all 18 RCC cell lines analyzed. Methylation of the GC-rich putative RASSF1A promoter region and loss of transcription of the corresponding mRNA were related causally. RASSF1A expression was reactivated after treatment with 5-aza-2′-deoxycytidine. Forced expression of RASSF1A transcripts in KRC/Y, a renal carcinoma cell line containing a normal and expressed VHL gene, suppressed growth on plastic dishes and anchorage-independent colony formation in soft agar. Mutant RASSF1A had reduced growth suppression activity significantly. These data suggest that RASSF1A is the candidate renal TSG gene for the 3p21.3 region. PMID:11390984

  15. MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes.

    PubMed

    Dhar, Shilpa S; Zhao, Dongyu; Lin, Tao; Gu, Bingnan; Pal, Khusboo; Wu, Sarah J; Alam, Hunain; Lv, Jie; Yun, Kyuson; Gopalakrishnan, Vidya; Flores, Elsa R; Northcott, Paul A; Rajaram, Veena; Li, Wei; Shilatifard, Ali; Sillitoe, Roy V; Chen, Kaifu; Lee, Min Gyu

    2018-06-07

    Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Hox genes, digit identities and the theropod/bird transition.

    PubMed

    Galis, Frietson; Kundrát, Martin; Metz, Johan A J

    2005-05-15

    Vargas and Fallon (2005. J Exp Zool (Mol Dev Evol) 304B:86-90) propose that Hox gene expression patterns indicate that the most anterior digit in bird wings is homologous to digit 1 rather than to digit 2 in other amniotes. This interpretation is based on the presence of Hoxd13 expression in combination with the absence of Hoxd12 expression in the second digit condensation from which this digit develops (the first condensation is transiently present). This is a pattern that is similar to that in the developing digit 1 of the chicken foot and the mouse hand and foot. They have tested this new hypothesis by analysing Hoxd12 and Hoxd13 expression patterns in two polydactylous chicken mutants, Silkie and talpid2. They conclude that the data support the notion that the most anterior remaining digit of the bird wing is homologous to digit 1 in other amniotes either in a standard phylogenetic sense, or alternatively in a (limited) developmental sense in agreement with the Frameshift Hypothesis of Wagner and Gautier (1999, i.e., that the developmental pathway is homologous to the one that leads to a digit 1 identity in other amniotes, although it occurs in the second instead of the first digit condensation). We argue that the Hoxd12 and Hoxd13 expression patterns found for these and other limb mutants do not allow distinguishing between the hypothesis of Vargas and Fallon (2005. J Exp Zool (Mol Dev Evol) 304B:86-90) and the alternative one, i.e., the most anterior digit in bird wings is homologous to digit 2 in other amniotes, in a phylogenetic or developmental sense. Therefore, at the moment the data on limb mutants does not present a challenge to the hypothesis, based on other developmental data (Holmgren, 1955. Acta Zool 36:243-328; Hinchliffe, 1984. In: Hecht M, Ostrom JH, Viohl G, Wellnhofer P, editors. The beginnings of birds. Eichstätt: Freunde des Jura-Museum. p 141-147; Burke and Feduccia, 1997. Science 278:666-668; Kundrát et al., 2002. J Exp Zool (Mol Dev Evol

  17. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours

    PubMed Central

    Murai, M; Toyota, M; Satoh, A; Suzuki, H; Akino, K; Mita, H; Sasaki, Y; Ishida, T; Shen, L; Garcia-Manero, G; Issa, J-P J; Hinoda, Y; Tokino, T; Imai, K

    2005-01-01

    Hypoxia is a key factor contributing to the progression of human neoplasias and to the development of resistance to chemotherapy. BNIP3 is a proapoptotic member of the Bcl-2 protein family involved in hypoxia-induced cell death. We evaluated the expression and methylation status of BNIP3 gene to better understand the role of epigenetic alteration of its expression in haematopoietic tumours. Methylation of the region around the BNIP3 transcription start site was detected in four acute lymphocytic leukaemia, one multiple myeloma and one Burkitt lymphoma cell lines, and was closely associated with silencing the gene. That expression of BNIP3 was restored by treatment with 5-aza2′-deoxycytidine (5-aza-dC), a methyltransferase inhibitor, which confirmed the gene to be epigenetically inactivated by methylation. Notably, re-expression of BNIP3 using 5-aza2-dC also restored hypoxia-mediated cell death in methylated cell lines. Acetylation of histone H3 in the 5′ region of the gene, which was assessed using chromatin immunoprecipitation assays, correlated directly with gene expression and inversely with DNA methylation. Among primary tumours, methylation of BNIP3 was detected in five of 34 (15%) acute lymphocytic leukaemias, six of 35 (17%) acute myelogenous leukaemias and three of 14 (21%) multiple myelomas. These results suggest that aberrant DNA methylation of the 5′ CpG island and histone deacetylation play key roles in silencing BNIP3 expression in haematopoietic tumours. PMID:15756280

  18. Suppression of p53-inducible gene 3 is significant for glioblastoma progression and predicts poor patient prognosis.

    PubMed

    Quan, Jishu; Li, Yong; Jin, Meihua; Chen, Dunfu; Yin, Xuezhe; Jin, Ming

    2017-03-01

    Glioblastoma is the most malignant and invasive brain tumor with extremely poor prognosis. p53-inducible gene 3, a downstream molecule of the tumor suppressor p53, has been found involved in apoptosis and oxidative stress response. However, the functions of p53-inducible gene 3(PIG3) in cancer are far from clear including glioblastoma. In this study, we found that p53-inducible gene 3 expression was suppressed in glioblastoma tissues compared with normal tissues. And the expression of p53-inducible gene 3 was significantly associated with the World Health Organization grade. Patients with high p53-inducible gene 3 expression have a significantly longer median survival time (15 months) than those with low p53-inducible gene 3 expression (8 months). According to Cox regression analysis, p53-inducible gene 3 was an independent prognostic factor with multivariate hazard ratio of 0.578 (95% confidence interval, 0.352-0.947; p = 0.030) for overall survival. Additionally, gain and loss of function experiments showed that knockdown of p53-inducible gene 3 significantly increased the proliferation and invasion ability of glioblastoma cells while overexpression of p53-inducible gene 3 inhibited the proliferation and invasion ability. The results of in vivo glioblastoma models further confirmed that p53-inducible gene 3 suppression promoted glioblastoma progression. Altogether, our data suggest that high expression of p53-inducible gene 3 is significant for glioblastoma inhibition and p53-inducible gene 3 independently indicates good prognosis in patients, which might be a novel prognostic biomarker or potential therapeutic target in glioblastoma.

  19. Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia

    PubMed Central

    LI, CHENGLONG; ZHU, BIAO; CHEN, JIAO; HUANG, XIAOBING

    2016-01-01

    In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation-positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the micro-array data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML. PMID:27177049

  20. Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia.

    PubMed

    Li, Chenglong; Zhu, Biao; Chen, Jiao; Huang, Xiaobing

    2016-07-01

    In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation‑positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the microarray data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML.

  1. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes.

    PubMed

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2015-10-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs and our experimental data from clinical samples, we discovered broad peaks for trimethylation of histone H3 at lysine 4 (H3K4me3; wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity, which together lead to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Genes with broad H3K4me3 peaks conserved across normal cells may represent pan-cancer tumor suppressors, such as TP53 and PTEN, whereas genes with cell type-specific broad H3K4me3 peaks may represent cell identity genes and cell type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 peaks in cancers is associated with repression of tumor suppressors. Thus, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of new tumor suppressors.

  2. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening.

  3. Genetic variation in the paraoxonase-3 (PON3) gene is associated with serum PON1 activity.

    PubMed

    Sanghera, Dharambir K; Manzi, Susan; Minster, Ryan L; Shaw, Penny; Kao, Amy; Bontempo, Franklin; Kamboh, M Ilyas

    2008-01-01

    Low serum paraoxonase1 (PON1) activity determined by paraoxon substrate is associated with coronary heart disease (CHD), diabetes and systemic lupus erythematosus (SLE) risk. In this investigation, we have examined the role of genetic variation in the PON3 gene in relation to PON1 activity and SLE risk in a biracial sample comprising 377 SLE patients and 482 controls from US whites and blacks. We genotyped six PON3 tagging single nucleotide polymorphisms (tagSNPs) and examined their associations with PON1 activity, SLE risk, antiphopholipid autoantibodies (APA), lupus nephritis, carotid vascular disease, and inflammation. With the exception of PON1 activity, no other significant associations were found with PON3 SNPs. Multiple regression analysis including all six PON3 tagSNPs and PON1/Q192R and L55M SNPs revealed significant association of PON1 activity with 4 SNPs: PON3/A10340C (p < 0.0001), PON3/A2115T (p = 0.002), PON1/L55M (p < 0.0001) and PON1/Q192R (p < 0.0001). These four SNPs explained 2%, 1%, 8% and 19% of the variation in PON1 activity, respectively. In summary, our new data indicate that genetic variation in the PON3 gene influences serum PON1 activity independently of the known effect of PON1 genetic variation. To our knowledge, this is the first study reporting the association of the PON3 gene variants with PON1 activity.

  4. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    PubMed

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  5. Transcriptional Factor DLX3 Promotes the Gene Expression of Enamel Matrix Proteins during Amelogenesis

    PubMed Central

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease. PMID:25815730

  6. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis

    PubMed Central

    Blanchard, Carine; Wang, Ning; Stringer, Keith F.; Mishra, Anil; Fulkerson, Patricia C.; Abonia, J. Pablo; Jameson, Sean C.; Kirby, Cassie; Konikoff, Michael R.; Collins, Margaret H.; Cohen, Mitchell B.; Akers, Rachel; Hogan, Simon P.; Assa’ad, Amal H.; Putnam, Philip E.; Aronow, Bruce J.; Rothenberg, Marc E.

    2006-01-01

    Eosinophilic esophagitis (EE) is an emerging disorder with a poorly understood pathogenesis. In order to define disease mechanisms, we took an empirical approach analyzing esophageal tissue by a genome-wide microarray expression analysis. EE patients had a striking transcript signature involving 1% of the human genome that was remarkably conserved across sex, age, and allergic status and was distinct from that associated with non-EE chronic esophagitis. Notably, the gene encoding the eosinophil-specific chemoattractant eotaxin-3 (also known as CCL26) was the most highly induced gene in EE patients compared with its expression level in healthy individuals. Esophageal eotaxin-3 mRNA and protein levels strongly correlated with tissue eosinophilia and mastocytosis. Furthermore, a single-nucleotide polymorphism in the human eotaxin-3 gene was associated with disease susceptibility. Finally, mice deficient in the eotaxin receptor (also known as CCR3) were protected from experimental EE. These results implicate eotaxin-3 as a critical effector molecule for EE and provide insight into disease pathogenesis. PMID:16453027

  7. Tumor suppression function of the Big-h3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Piao, C.; Hei, T.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we show here that expression of Big-h3 gene, a secreted adhesion molecule induced by transforming growth factor- beta (TGF-beta ), is markedly decreased in independently generated, high LET radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Expression of this gene was restored to control level in fusion cell lines between the tumorigenic and parental BEP2D cells that were no longer tumorigenic in nude mice. Transfection of Big-h3 gene into tumor cells resulted in a significant reduction of tumor growth. While integrin receptor alpha 5/beta 1 was overexpressed in tumor cells, its expression was corrected to the level of control BEP2D cells after Big-h3 transfection. These data suggest that Big-h3 is involved in tumor progression by regulating integrin receptor alpha 5/beta 1. . WWee We further show that down regulation of Big-h3 results from loss of expression of TGFbeta1 in tumor cells. The findings provide strong evidence that the Big-h3 gene has tumor suppressor function in radiation induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  8. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    PubMed

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression

    PubMed Central

    Wolfram, Verena; Southall, Tony D.; Günay, Cengiz; Prinz, Astrid A.; Brand, Andrea H.

    2014-01-01

    Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K+ channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca2+, the fast K+ current is carried solely by Sh channels (unlike neurons in which a second fast K+ current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression. PMID:24523544

  10. Prevalence of Pathogenic Copy Number Variation in Adults With Pediatric-Onset Epilepsy and Intellectual Disability.

    PubMed

    Borlot, Felippe; Regan, Brigid M; Bassett, Anne S; Stavropoulos, D James; Andrade, Danielle M

    2017-11-01

    23.1 deletion, 9p24.3-p23 deletion, 10q11.22-q11.23 duplication, 12p13.33-13.2 duplication, 13q34 deletion, and 16p13.2 duplication. Five genes are of particular interest given their potential pathogenicity in the corresponding phenotypes and least tolerability to variation: ABAT, KIAA2022, COL4A1, CACNA1C, and SMARCA2. ABAT duplication was associated with Lennox-Gastaut syndrome and KIAA2022 deletion with Jeavons syndrome. The high prevalence of pathogenic CNVs in this study highlights the importance of microarray analysis in adults with unexplained childhood-onset epilepsy and intellectual disability. Additional studies and comparison with similar cases are required to evaluate the effects of deletions and duplications that overlap specific genes.

  11. Effects of Nickel Treatment on H3K4 Trimethylation and Gene Expression

    PubMed Central

    Tchou-Wong, Kam-Meng; Kluz, Thomas; Arita, Adriana; Smith, Phillip R.; Brown, Stuart; Costa, Max

    2011-01-01

    Occupational exposure to nickel compounds has been associated with lung and nasal cancers. We have previously shown that exposure of the human lung adenocarcinoma A549 cells to NiCl2 for 24 hr significantly increased global levels of trimethylated H3K4 (H3K4me3), a transcriptional activating mark that maps to the promoters of transcribed genes. To further understand the potential epigenetic mechanism(s) underlying nickel carcinogenesis, we performed genome-wide mapping of H3K4me3 by chromatin immunoprecipitation and direct genome sequencing (ChIP-seq) and correlated with transcriptome genome-wide mapping of RNA transcripts by massive parallel sequencing of cDNA (RNA-seq). The effect of NiCl2 treatment on H3K4me3 peaks within 5,000 bp of transcription start sites (TSSs) on a set of genes highly induced by nickel in both A549 cells and human peripheral blood mononuclear cells were analyzed. Nickel exposure increased the level of H3K4 trimethylation in both the promoters and coding regions of several genes including CA9 and NDRG1 that were increased in expression in A549 cells. We have also compared the extent of the H3K4 trimethylation in the absence and presence of formaldehyde crosslinking and observed that crosslinking of chromatin was required to observe H3K4 trimethylation in the coding regions immediately downstream of TSSs of some nickel-induced genes including ADM and IGFBP3. This is the first genome-wide mapping of trimethylated H3K4 in the promoter and coding regions of genes induced after exposure to NiCl2. This study may provide insights into the epigenetic mechanism(s) underlying the carcinogenicity of nickel compounds. PMID:21455298

  12. Exploring Plant Co-Expression and Gene-Gene Interactions with CORNET 3.0.

    PubMed

    Van Bel, Michiel; Coppens, Frederik

    2017-01-01

    Selecting and filtering a reference expression and interaction dataset when studying specific pathways and regulatory interactions can be a very time-consuming and error-prone task. In order to reduce the duplicated efforts required to amass such datasets, we have created the CORNET (CORrelation NETworks) platform which allows for easy access to a wide variety of data types: coexpression data, protein-protein interactions, regulatory interactions, and functional annotations. The CORNET platform outputs its results in either text format or through the Cytoscape framework, which is automatically launched by the CORNET website.CORNET 3.0 is the third iteration of the web platform designed for the user exploration of the coexpression space of plant genomes, with a focus on the model species Arabidopsis thaliana. Here we describe the platform: the tools, data, and best practices when using the platform. We indicate how the platform can be used to infer networks from a set of input genes, such as upregulated genes from an expression experiment. By exploring the network, new target and regulator genes can be discovered, allowing for follow-up experiments and more in-depth study. We also indicate how to avoid common pitfalls when evaluating the networks and how to avoid over interpretation of the results.All CORNET versions are available at http://bioinformatics.psb.ugent.be/cornet/ .

  13. Flatworms have lost the right open reading frame kinase 3 gene during evolution

    PubMed Central

    Breugelmans, Bert; Ansell, Brendan R. E.; Young, Neil D.; Amani, Parisa; Stroehlein, Andreas J.; Sternberg, Paul W.; Jex, Aaron R.; Boag, Peter R.; Hofmann, Andreas; Gasser, Robin B.

    2015-01-01

    All multicellular organisms studied to date have three right open reading frame kinase genes (designated riok-1, riok-2 and riok-3). Current evidence indicates that riok-1 and riok-2 have essential roles in ribosome biosynthesis, and that the riok-3 gene assists this process. In the present study, we conducted a detailed bioinformatic analysis of the riok gene family in 25 parasitic flatworms (platyhelminths) for which extensive genomic and transcriptomic data sets are available. We found that none of the flatworms studied have a riok-3 gene, which is unprecedented for multicellular organisms. We propose that, unlike in other eukaryotes, the loss of RIOK-3 from flatworms does not result in an evolutionary disadvantage due to the unique biology and physiology of this phylum. We show that the loss of RIOK-3 coincides with a loss of particular proteins associated with essential cellular pathways linked to cell growth and apoptosis. These findings indicate multiple, key regulatory functions of RIOK-3 in other metazoan species. Taking advantage of a known partial crystal structure of human RIOK-1, molecular modelling revealed variability in nucleotide binding sites between flatworm and human RIOK proteins. PMID:25976756

  14. Flatworms have lost the right open reading frame kinase 3 gene during evolution.

    PubMed

    Breugelmans, Bert; Ansell, Brendan R E; Young, Neil D; Amani, Parisa; Stroehlein, Andreas J; Sternberg, Paul W; Jex, Aaron R; Boag, Peter R; Hofmann, Andreas; Gasser, Robin B

    2015-05-15

    All multicellular organisms studied to date have three right open reading frame kinase genes (designated riok-1, riok-2 and riok-3). Current evidence indicates that riok-1 and riok-2 have essential roles in ribosome biosynthesis, and that the riok-3 gene assists this process. In the present study, we conducted a detailed bioinformatic analysis of the riok gene family in 25 parasitic flatworms (platyhelminths) for which extensive genomic and transcriptomic data sets are available. We found that none of the flatworms studied have a riok-3 gene, which is unprecedented for multicellular organisms. We propose that, unlike in other eukaryotes, the loss of RIOK-3 from flatworms does not result in an evolutionary disadvantage due to the unique biology and physiology of this phylum. We show that the loss of RIOK-3 coincides with a loss of particular proteins associated with essential cellular pathways linked to cell growth and apoptosis. These findings indicate multiple, key regulatory functions of RIOK-3 in other metazoan species. Taking advantage of a known partial crystal structure of human RIOK-1, molecular modelling revealed variability in nucleotide binding sites between flatworm and human RIOK proteins.

  15. 3D-QSAR and molecular docking studies on HIV protease inhibitors

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Wu, Yingji; Bai, Min; Zhan, Pei

    2017-02-01

    In order to well understand the chemical-biological interactions governing their activities toward HIV protease activity, QSAR models of 34 cyclic-urea derivatives with inhibitory HIV were developed. The quantitative structure activity relationship (QSAR) model was built by using comparative molecular similarity indices analysis (CoMSIA) technique. And the best CoMSIA model has rcv2, rncv2 values of 0.586 and 0.931 for cross-validated and non-cross-validated. The predictive ability of CoMSIA model was further validated by a test set of 7 compounds, giving rpred2 value of 0.973. Docking studies were used to find the actual conformations of chemicals in active site of HIV protease, as well as the binding mode pattern to the binding site in protease enzyme. The information provided by 3D-QSAR model and molecular docking may lead to a better understanding of the structural requirements of 34 cyclic-urea derivatives and help to design potential anti-HIV protease molecules.

  16. Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects.

    PubMed

    Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne; Lachke, Salil A

    2018-04-01

    Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases. © 2018 Wiley Periodicals, Inc.

  17. Three genes in the human MHC class III region near the junction with the class II: Gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugaya, K.; Fukagawa, T.; Matsumoto, K.

    Cosmid walking of about 250 kb from MHC class III gene CYP21 to class II was conducted. The gene for receptor of advanced glycosylation end products of proteins (RAGE, a member of immunoglobulin super-family molecules), the PBX2 homeobox gene designated HOX12, and the human counterpart of the mouse mammary tumor gene int-3 were found. The contiguous RAGE and HOX12 genes were completely sequenced, and the human int-3 counterpart was partially sequenced and assigned to a Notch homolog. This human Notch homolog, designated NOTCH3, showed both the intracellular portion present in the mouse int-3 sequence and the extracellular portion absent inmore » the int-3. It thus corresponds to the intact form of a Notch-type transmembrane protein. About 20 kb of dense Alu clustering was found just centromeric to the NOTCH3. 48 refs., 9 figs., 2 tabs.« less

  18. Super-Enhancers and Broad H3K4me3 Domains Form Complex Gene Regulatory Circuits Involving Chromatin Interactions.

    PubMed

    Cao, Fan; Fang, Yiwen; Tan, Hong Kee; Goh, Yufen; Choy, Jocelyn Yeen Hui; Koh, Bryan Thean Howe; Hao Tan, Jiong; Bertin, Nicolas; Ramadass, Aroul; Hunter, Ewan; Green, Jayne; Salter, Matthew; Akoulitchev, Alexandre; Wang, Wilson; Chng, Wee Joo; Tenen, Daniel G; Fullwood, Melissa J

    2017-05-19

    Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.

  19. Gene-gene interaction between PPAR gamma 2 and ADR beta 3 increases obesity risk in children and adolescents.

    PubMed

    Ochoa, M C; Marti, A; Azcona, C; Chueca, M; Oyarzábal, M; Pelach, R; Patiño, A; Moreno-Aliaga, M J; Martínez-González, M A; Martínez, J A

    2004-11-01

    Multiple genes are likely to be involved in obesity and these genes may interact with environmental factors to influence obesity risk. Our aim was to explore the synergistic contribution of the two polymorphisms: Pro12Ala of the PPAR gamma 2 gene and Trp64Arg of the ADR beta 3 gene to obesity risk in a Spanish children and adolescent population. We designed a sex- and age-matched case-control study. Participants were 185 obese and 185 control children (aged 5-18 y) from the Navarra region, recruited through Departments of Pediatrics (Hospital Virgen del Camino, Navarra University Clinic and several Primary Health Centers). The obesity criterion (case definition) was BMI above the 97th percentile according to Spanish BMI reference data for age and gender. Anthropometric parameters were measured by standard protocols. The genotype was assessed by PCR-RFLP after digestion with BstUI for PPAR gamma 2 mutation and BstNI for ADR beta 3 variants. Face-to-face interviews were conducted to assess the physical activity. Using a validated physical activity questionnaire, we computed an activity metabolic equivalent index (METs h/week), which represents the physical exercise during the week for each participant. Statistical analysis was performed by conditional logistic regression, taking into account the matching between cases and controls. Carriers of the polymorphism Pro12Ala of the PPAR gamma 2 gene had a significantly higher obesity risk than noncarriers (odds ratio (OR)=2.18, 95% CI=1.09-4.36) when we adjusted for sex, age and physical activity. Moreover, the risk of obesity was higher (OR=2.59, 95% CI=1.17-5.34) when family history of obesity was also taken into account in the model. The OR for obesity linked to both polymorphisms (PPAR gamma 2 and ADR beta 3) was 5.30 (95% CI=1.08-25.97) when we adjusted for sex, age and physical activity. After adjustment for family history of obesity, the OR for carriers of both polymorphisms was 19.5 (95% CI=2.43-146.8). A

  20. CrMAPK3 regulates the expression of iron-deficiency-responsive genes in Chlamydomonas reinhardtii.

    PubMed

    Fei, Xiaowen; Yu, Junmei; Li, Yajun; Deng, Xiaodong

    2017-05-16

    Under iron-deficient conditions, Chlamydomonas exhibits high affinity for iron absorption. Nevertheless, the response, transmission, and regulation of downstream gene expression in algae cells have not to be investigated. Considering that the MAPK pathway is essential for abiotic stress responses, we determined whether this pathway is involved in iron deficiency signal transduction in Chlamydomonas. Arabidopsis MAPK gene sequences were used as entry data to search for homologous genes in Chlamydomonas reinhardtii genome database to investigate the functions of mitogen-activated protein kinase (MAPK) gene family in C. reinhardtii under iron-free conditions. Results revealed 16 C. reinhardtii MAPK genes labeled CrMAPK2-CrMAPK17 with TXY conserved domains and low homology to MAPK in yeast, Arabidopsis, and humans. The expression levels of these genes were then analyzed through qRT-PCR and exposure to high salt (150 mM NaCl), low nitrogen, or iron-free conditions. The expression levels of these genes were also subjected to adverse stress conditions. The mRNA levels of CrMAPK2, CrMAPK3, CrMAPK4, CrMAPK5, CrMAPK6, CrMAPK8, CrMAPK9, and CrMAPK11 were remarkably upregulated under iron-deficient stress. The increase in CrMAPK3 expression was 43-fold greater than that in the control. An RNA interference vector was constructed and transformed into C. reinhardtii 2A38, an algal strain with an exogenous FOX1:ARS chimeric gene, to silence CrMAPK3. After this gene was silenced, the mRNA levels and ARS activities of FOX1:ARS chimeric gene and endogenous CrFOX1 were decreased. The mRNA levels of iron-responsive genes, such as CrNRAMP2, CrATX1, CrFTR1, and CrFEA1, were also remarkably reduced. CrMAPK3 regulates the expression of iron-deficiency-responsive genes in C. reinhardtii.

  1. Decoy receptor 3 regulates the expression of various genes in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Fukuda, Koji; Miura, Yasushi; Maeda, Toshihisa; Takahashi, Masayasu; Hayashi, Shinya; Kurosaka, Masahiro

    2013-10-01

    Decoy receptor 3 (DcR3), a member of the tumor necrosis factor (TNF) receptor (TNFR) superfamily, lacks the transmembrane domain of conventional TNFRs in order to be a secreted protein. DcR3 competitively binds and inhibits members of the TNF family, including Fas ligand (FasL), LIGHT and TNF-like ligand 1A (TL1A). We previously reported that TNFα-induced DcR3 overexpression in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) protects cells from Fas-induced apoptosis. Previous studies have suggested that DcR3 acting as a ligand directly induces the differentiation of macrophages into osteoclasts. Furthermore, we reported that DcR3 induces very late antigen-4 (VLA--4) expression in THP-1 macrophages, inhibiting cycloheximide-induced apoptosis and that DcR3 binds to membrane-bound TL1A expressed on RA-FLS, resulting in the negative regulation of cell proliferation induced by inflammatory cytokines. In the current study, we used cDNA microarray to search for genes in RA-FLS whose expression was regulated by the ligation of DcR3. The experiments revealed the expression profiles of genes in RA-FLS regulated by DcR3. The profiles showed that among the 100 genes most significantly regulated by DcR3, 45 were upregulated and 55 were downregulated. The upregulated genes were associated with protein complex assembly, cell motility, regulation of transcription, cellular protein catabolic processes, cell membrane, nucleotide binding and glycosylation. The downregulated genes were associated with transcription regulator activity, RNA biosynthetic processes, cytoskeleton, zinc finger region, protein complex assembly, phosphate metabolic processes, mitochondrion, ion transport, nucleotide binding and cell fractionation. Further study of the genes detected in the current study may provide insight into the pathogenesis and treatment of rheumatoid arthritis by DcR3-TL1A signaling.

  2. [Clinical and genetic analysis for activated PI3K-δ syndrome by PIK3CD gene mutation].

    PubMed

    Liu, H; Tang, X L; Liu, J R; Li, H M; Zhao, S Y

    2016-09-01

    To analyze clinical and genetic features of activated PI3K-δ syndrome (APDS), a new form of immunodeficiency disease caused by PIK3CD gene mutation. Data of two patients diagnosed as APDS at Second Department of Respiratory Medicine of Beijing Children's Hospital Affiliated to Capital Medical University in 2015 were retrospectively reviewed. Pathogenetic genes were screened by whole exome sequencing, and identified by first generation sequencing. The identified pathogenetic genes were further verified in patients' parents. Then the gene sequencing results were analyzed. Both patients were females, aged 2 years and 4 months and 5 years respectively. The main clinical features of both cases were recurrent respiratory infections, enlargement of lymph node, hepatosplenomegaly, cytomegalovirus (CMV) or Epstein-Barr virus (EBV) viremia, decreased number of native CD4(+) T cell, inverted CD4(+) /CD8(+) T cell ratio and increased IgM. Patient 1 has decreased IgA and IgG. Patient 2 showed wide follicular hyperplasia of the airway mucosa. Both patients had de novo mutation in c. 3061G>A(E1021K)of PIK3CD gene, which was homozygous in patient 1 and heterozygous in patient 2. Both were treated with 500 mg/kg dose of gamma globulin intravenously at 4-weeks interval. Patient 1 started oral rapamycin therapy at the dose of 1 mg/(m(2)·d) and discontinued the treatment after 2 weeks. Patient 2 was given low dose of oral prednisone. The two patients were followed up for 2 months. The number of respiratory infection in both patients was decreased. Hepatosplenomegaly was subsided, while respiratory tract damage was not improved in patient 2. The clinical manifestations of APDS include recurrent respiratory tract infection, enlargement of lymph nodes, hepatosplenomegaly, and CMV or EBV infection. The immunophenotype is decreased native CD4(+) T cell, inverted CD4(+) /CD8(+) T cell ratio, increased IgM and decreased IgA/IgG for some patients. c. 3061G>A(E1021K)of PIK3CD gene is a

  3. Genetic Diversity among Clostridium botulinum Strains Harboring bont/A2 and bont/A3 Genes

    PubMed Central

    Raphael, Brian H.; Joseph, Lavin A.; Meno, Sarah R.; Fernández, Rafael A.; Maslanka, Susan E.

    2012-01-01

    Clostridium botulinum type A strains are known to be genetically diverse and widespread throughout the world. Genetic diversity studies have focused mainly on strains harboring one type A botulinum toxin gene, bont/A1, although all reported bont/A gene variants have been associated with botulism cases. Our study provides insight into the genetic diversity of C. botulinum type A strains, which contain bont/A2 (n = 42) and bont/A3 (n = 4) genes, isolated from diverse samples and geographic origins. Genetic diversity was assessed by using bont nucleotide sequencing, content analysis of the bont gene clusters, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Sequences of bont genes obtained in this study showed 99.9 to 100% identity with other bont/A2 or bont/A3 gene sequences available in public databases. The neurotoxin gene clusters of the subtype A2 and A3 strains analyzed in this study were similar in gene content. C. botulinum strains harboring bont/A2 and bont/A3 genes were divided into six and two MLST profiles, respectively. Four groups of strains shared a similarity of at least 95% by PFGE; the largest group included 21 out of 46 strains. The strains analyzed in this study showed relatively limited genetic diversity using either MLST or PFGE. PMID:23042179

  4. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.

    PubMed

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes.

  5. Evolutionary and polymorphism analyses reveal the central role of BTN3A2 in the concerted evolution of the BTN3 gene family.

    PubMed

    Afrache, Hassnae; Pontarotti, Pierre; Abi-Rached, Laurent; Olive, Daniel

    2017-06-01

    The butyrophilin 3 (BTN3) receptors are implicated in the T lymphocytes regulation and present a wide plasticity in mammals. In order to understand how these genes have been diversified, we studied their evolution and show that the three human BTN3 are the result of two successive duplications in Primates and that the three genes are present in Hominoids and the Old World Monkey groups. A thorough phylogenetic analysis reveals a concerted evolution of BTN3 characterized by a strong and recurrent homogenization of the region encoding the signal peptide and the immunoglobulin variable (IgV) domain in Hominoids, where the sequences of BTN3A1 or BTN3A3 are replaced by BTN3A2 sequence. In human, the analysis of the diversity of these genes in 1683 individuals representing 26 worldwide populations shows that the three genes are polymorphic, with more than 46 alleles for each gene, and marked by extreme homogenization of the IgV sequences. The same analysis performed for the BTN2 genes shows also a concerted evolution; however, it is not as strong and recurrent as for BTN3. This study shows that BTN3 receptors are marked by extreme concerted evolution at the IgV domain and that BTN3A2 plays a central role in this evolution.

  6. A renal epithelioid angiomyolipoma/perivascular epithelioid cell tumor with TFE3 gene break visualized by FISH.

    PubMed

    Ohe, Chisato; Kuroda, Naoto; Hes, Ondrej; Michal, Michal; Vanecek, Tomas; Grossmann, Petr; Tanaka, Yukichi; Tanaka, Mio; Inui, Hidekazu; Komai, Yoshihiro; Matsuda, Tadashi; Uemura, Yoshiko

    2012-12-01

    We present a case of renal epithelioid angiomyolipoma (eAML)/perivascular epithelioid cell tumor (PEComa) with a TFE3 gene break visible by fluorescence in situ hybridization (FISH). Histologically, the tumor was composed of mainly epithelioid cells forming solid arrangements with small foci of spindle cells. In a small portion of the tumor, neoplastic cells displayed nuclear pleomorphism, such as polygonal and enlarged vesicular nuclei with prominent nucleoli. Marked vascularity was noticeable in the background, and perivascular hyaline sclerosis was also seen. Immunohistochemically, neoplastic cells were diffusely positive for α-smooth muscle actin and melanosome in the cytoplasm. Nuclei of many neoplastic cells were positive for TFE3. FISH analysis of the TFE3 gene break using the Poseidon TFE3 (Xp11) Break probe revealed positive results. Reverse transcriptase-polymerase chain reactions (RT-PCR) for ASPL/TFE3, PRCC/TFE3, CLTC/TFE3, PSF/TFE3, and NonO/TFE3 gene fusions all revealed negative results. This is the first reported case of renal eAML/PEComa with a TFE3 gene break, and it has unique histological findings as compared to previously reported TFE3 gene fusion-positive PEComas. Pathologists should recognize that PEComa with TFE3 gene fusion can arise even in the kidney.

  7. Effects of MicroRNA-23a on Differentiation and Gene Expression Profiles in 3T3-L1 Adipocytes

    PubMed Central

    Huang, Yong; Huang, Jinxiu; Qi, Renli; Wang, Qi; Wu, Yongjiang; Wang, Jing

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate growth, development, and programmed death of cells. A newly-published study has shown that miRNA-23a could regulate 3T3-L1 adipocyte differentiation. Here, we identified miRNA-23a as a negative regulator of 3T3-L1 adipocyte differentiation again. Over-expression of miRNA-23a inhibited differentiation and decreased lipogenesis as well as down-regulated mRNA and protein expression of both peroxisome proliferator-activated receptor (PPAR) γ and fatty acid binding protein (FABP) 4, whereas knock down of miRNA-23a showed the opposite effects on differentiation as well as increasing the number of apoptotic cells. Additionally, digital gene expression profiling sequencing (DGE-Seq) was used to assay changes in gene expression profiles following alterations in the level of miR-23a. In total, over-expression or knock down of miRNA-23a significantly changed the expression of 313 and 425 genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these genes were mainly involved in the stress response, immune system, metabolism, cell cycle, among other pathways. Additionally, the signal transducer and activator of transcription 1 (Stat1) was shown to be a target of miRNA-23a by computational and dual-luciferase reporter assays that indicated Janus Kinase (Jak)-Stat signal pathway was implicated in regulating adipogenesis mediated by miRNA-23a in adipocytes. PMID:27783036

  8. Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin β gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Keiji; Oda, Kasumi; Mizuta, Shumpei

    2013-10-11

    Highlights: •MED1 is a bona fide T3-dependent coactivator on TSHB promoter. •Mice with LxxLL-mutant MED1 have attenuated TSHβ mRNA and thyroid hormone levels. •MED1 activates TSHB promoter T3-dependently in cultured cells. •T3-dependent MED1 action is enhanced when SRC1/SRC2 or HDAC2 is downregulated. •MED1 is also a T3-independent GATA2/Pit1 coactivator on TSHB promoter. -- Abstract: The MED1 subunit of the Mediator transcriptional coregulator complex is a nuclear receptor-specific coactivator. A negative feedback mechanism of thyroid-stimulating hormone (TSH, or thyrotropin) expression in the thyrotroph in the presence of triiodothyronine (T3) is employed by liganded thyroid hormone receptor β (TRβ) on the TSHβmore » gene promoter, where conventional histone-modifying coactivators act as corepressors. We now provide evidence that MED1 is a ligand-dependent positive cofactor on this promoter. TSHβ gene transcription was attenuated in MED1 mutant mice in which the nuclear receptor-binding ability of MED1 was specifically disrupted. MED1 stimulated GATA2- and Pit1-mediated TSHβ gene promoter activity in a ligand-independent manner in cultured cells. MED1 also stimulated transcription from the TSHβ gene promoter in a T3-dependent manner. The transcription was further enhanced when the T3-dependent corepressors SRC1, SRC2, and HDAC2 were downregulated. Hence, MED1 is a T3-dependent and -independent coactivator on the TSHβ gene promoter.« less

  9. Three copies of a single protein II-encoding sequence in the genome of Neisseria gonorrhoeae JS3: evidence for gene conversion and gene duplication.

    PubMed

    van der Ley, P

    1988-11-01

    Gonococci express a family of related outer membrane proteins designated protein II (P.II). These surface proteins are subject to both phase variation and antigenic variation. The P.II gene repertoire of Neisseria gonorrhoeae strain JS3 was found to consist of at least ten genes, eight of which were cloned. Sequence analysis and DNA hybridization studies revealed that one particular P.II-encoding sequence is present in three distinct, but almost identical, copies in the JS3 genome. These genes encode the P.II protein that was previously identified as P.IIc. Comparison of their sequences shows that the multiple copies of this P.IIc-encoding gene might have been generated by both gene conversion and gene duplication.

  10. Frequency of 3' VNTR Polymorphism in the Dopamine Transporter Gene SLC6A3 in Humans Predisposed to Antisocial Behavior.

    PubMed

    Cherepkova, E V; Aftanas, L I; Maksimov, N; Menshanov, P N

    2016-11-01

    Predisposition to antisocial behavior can be related to the presence of certain polymorphic variants of genes encoding dopaminergic system proteins. We studied the frequencies of allele variants and genotypes of variable number tandem repeat polymorphism in 3' untranslated region (3' VTNR) of the dopaminergic transporter SLC6A3 gene in Caucasian men committed socially dangerous violent and non-violent crimes. Alleles with 9 and 10 repeats were most frequent in both the control group and group of men predisposed to antisocial behavior. At the same time, the 10/10 genotype was more frequently observed in the group of men prone to antisocial non-violent behavior. Hence, the presence of certain variants of 3' VTNR polymorphism of SLC6A3 gene in men is associated with predisposition to certain forms of antisocial behavior.

  11. Assignment of xeroderma pigmentosum group C(XPC) gene to chromosome 3p25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legerski, R.J.; Liu, P.; Li, L.

    1994-05-01

    The human gene XPC (formerly designated XPCC), which corrects the repair deficiency of xeroderma pigmentosum (XP) group C cells, was mapped to 3p25. A cDNA probe for Southern blot hybridization and diagnostic PCR analyses of hybrid clone panels informative for human chromosomes in general and portions of chromosome 3 in particular produced the initial results. Fluorescence in situ hybridization utilizing both a yeast artificial chromosome DNA containing the gene and XPC cDNA as probes provided verification and specific regional assignment. A conflicting assignment of XPC to chromosome 5 is discussed in light of inadequacies in the exclusive use of microcell-mediatedmore » chromosome transfer for gene mapping. 12 refs., 3 figs.« less

  12. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.)

    PubMed Central

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  13. The ASP3 locus in Saccharomyces cerevisiae originated by horizontal gene transfer from Wickerhamomyces.

    PubMed

    League, Garrett P; Slot, Jason C; Rokas, Antonis

    2012-11-01

    The asparagine degradation pathway in the S288c laboratory strain of Saccharomyces cerevisiae is comprised of genes located at two separate loci. ASP1 is located on chromosome IV and encodes for cytosolic l-asparaginase I, whereas ASP3 contains a gene cluster located on chromosome XII comprised of four identical genes, ASP3-1, ASP3-2, ASP3-3, and ASP3-4, which encode for cell wall-associated l-asparaginase II. Interestingly, the ASP3 locus appears to be only present, in variable copy number, in S. cerevisiae strains isolated from laboratory or industrial environments and is completely absent from the genomes of 128 diverse fungal species. Investigation of the evolutionary history of ASP3 across these 128 genomes as well as across the genomes of 43 S. cerevisiae strains shows that ASP3 likely arose in a S. cerevisiae strain via horizontal gene transfer (HGT) from, or a close relative of, the wine yeast Wickerhamomyces anomalus, which co-occurs with S. cerevisiae in several biotechnological processes. Thus, because the ASP3 present in the S288c laboratory strain of S. cerevisiae is induced in response to nitrogen starvation, its acquisition may have aided yeast adaptation to artificial environments. Our finding that the ASP3 locus in S. cerevisiae originated via HGT further highlights the importance of gene sharing between yeasts in the evolution of their remarkable metabolic diversity. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Role of HCV Core gene of genotype 1a and 3a and host gene Cox-2 in HCV-induced pathogenesis

    PubMed Central

    2011-01-01

    Background Hepatitis C virus (HCV) Core protein is thought to trigger activation of multiple signaling pathways and play a significant role in the alteration of cellular gene expression responsible for HCV pathogenesis leading to hepatocellular carcinoma (HCC). However, the exact molecular mechanism of HCV genome specific pathogenesis remains unclear. We examined the in vitro effects of HCV Core protein of HCV genotype 3a and 1a on the cellular genes involved in oxidative stress and angiogenesis. We also studied the ability of HCV Core and Cox-2 siRNA either alone or in combination to inhibit viral replication and cell proliferation in HCV serum infected Huh-7 cells. Results Over expression of Core gene of HCV 3a genotype showed stronger effect in regulating RNA and protein levels of Cox-2, iNOS, VEGF, p-Akt as compared to HCV-1a Core in hepatocellular carcinoma cell line Huh-7 accompanied by enhanced PGE2 release and cell proliferation. We also observed higher expression levels of above genes in HCV 3a patient's blood and biopsy samples. Interestingly, the Core and Cox-2-specific siRNAs down regulated the Core 3a-enhanced expression of Cox-2, iNOS, VEGF, p-Akt. Furthermore, the combined siRNA treatment also showed a dramatic reduction in viral titer and expression of these genes in HCV serum-infected Huh-7 cells. Taken together, these results demonstrated a differential response by HCV 3a genotype in HCV-induced pathogenesis, which may be due to Core and host factor Cox-2 individually or in combination. Conclusions Collectively, these studies not only suggest a genotype-specific interaction between key players of HCV pathogenesis but also may represent combined viral and host gene silencing as a potential therapeutic strategy. PMID:21457561

  15. Gene cloning and characterization of two NADH-dependent 3-quinuclidinone reductases from Microbacterium luteolum JCM 9174.

    PubMed

    Isotani, Kentaro; Kurokawa, Junji; Suzuki, Fumiko; Nomoto, Syunsuke; Negishi, Takashi; Matsuda, Michiko; Itoh, Nobuya

    2013-02-01

    We used the resting-cell reaction to screen approximately 200 microorganisms for biocatalysts which reduce 3-quinuclidinone to optically pure (R)-(-)-3-quinuclidinol. Microbacterium luteolum JCM 9174 was selected as the most suitable organism. The genes encoding the protein products that reduced 3-quinuclidinone were isolated from M. luteolum JCM 9174. The bacC gene, which consists of 768 nucleotides corresponding to 255 amino acid residues and is a constituent of the bacilysin synthetic gene cluster, was amplified by PCR based on homology to known genes. The qnr gene consisted of 759 nucleotides corresponding to 252 amino acid residues. Both enzymes belong to the short-chain alcohol dehydrogenase/reductase (SDR) family. The genes were expressed in Escherichia coli as proteins which were His tagged at the N terminus, and the recombinant enzymes were purified and characterized. Both enzymes showed narrow substrate specificity and high stereoselectivity for the reduction of 3-quinuclidinone to (R)-(-)-3-quinuclidinol.

  16. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family.

    PubMed

    Simard, Jacques; Ricketts, Marie-Louise; Gingras, Sébastien; Soucy, Penny; Feltus, F Alex; Melner, Michael H

    2005-06-01

    The 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase (3beta-HSD) isoenzymes are responsible for the oxidation and isomerization of Delta(5)-3beta-hydroxysteroid precursors into Delta(4)-ketosteroids, thus catalyzing an essential step in the formation of all classes of active steroid hormones. In humans, expression of the type I isoenzyme accounts for the 3beta-HSD activity found in placenta and peripheral tissues, whereas the type II 3beta-HSD isoenzyme is predominantly expressed in the adrenal gland, ovary, and testis, and its deficiency is responsible for a rare form of congenital adrenal hyperplasia. Phylogeny analyses of the 3beta-HSD gene family strongly suggest that the need for different 3beta-HSD genes occurred very late in mammals, with subsequent evolution in a similar manner in other lineages. Therefore, to a large extent, the 3beta-HSD gene family should have evolved to facilitate differential patterns of tissue- and cell-specific expression and regulation involving multiple signal transduction pathways, which are activated by several growth factors, steroids, and cytokines. Recent studies indicate that HSD3B2 gene regulation involves the orphan nuclear receptors steroidogenic factor-1 and dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome gene 1 (DAX-1). Other findings suggest a potential regulatory role for STAT5 and STAT6 in transcriptional activation of HSD3B2 promoter. It was shown that epidermal growth factor (EGF) requires intact STAT5; on the other hand IL-4 induces HSD3B1 gene expression, along with IL-13, through STAT 6 activation. However, evidence suggests that multiple signal transduction pathways are involved in IL-4 mediated HSD3B1 gene expression. Indeed, a better understanding of the transcriptional factors responsible for the fine control of 3beta-HSD gene expression may provide insight into mechanisms involved in the functional cooperation between STATs and nuclear receptors as

  17. Towards isolation of the gene for X-linked retinitis pigmentosa (RP3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dry, K.L.; Aldred, M.A.; Hardwick, L.J.

    1994-09-01

    Until recently the region of interest containing the gene for X-linked retinitis pigmentosa (RP3) was thought to lie between CYBB (Xp21.1) and the proximal end of the deletion in patient BB (JBBprox). This region was thought to span 100-150 kb. Here we present new mapping data to show that the distance between the 5{prime} (most proximal) end of CYBB and JBBprox is only 50 kb. Recently Roux et al. (1994) have described the isolation of a gene within this region but this showed no disease-associated changes. Further evidence from mapping the deletion in patient NF (who suffered from McLead`s syndromemore » and CGD but not RP) and from linkage analysis of our RP3 families with a new dinucleotide repeat suggests that the gene must extend proximally from JBBprox. In order to extend the region of search we have constructed a YAC contig spanning 800 kb to OTC. We are continuing our search for the RP3 gene using a variety of strategies including exon trapping and cDNA enrichment as well as direct screening of cDNA libraries with subclones from this region.« less

  18. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes.

    PubMed

    Wang, Changhu; Guo, Weili; Cai, Xingzhe; Li, Ruyu; Ow, David W

    2018-04-21

    Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression. Copyright © 2018. Published by Elsevier B.V.

  19. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    PubMed

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  20. The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis

    PubMed Central

    Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  1. Adaptation of video game UVW mapping to 3D visualization of gene expression patterns

    NASA Astrophysics Data System (ADS)

    Vize, Peter D.; Gerth, Victor E.

    2007-01-01

    Analysis of gene expression patterns within an organism plays a critical role in associating genes with biological processes in both health and disease. During embryonic development the analysis and comparison of different gene expression patterns allows biologists to identify candidate genes that may regulate the formation of normal tissues and organs and to search for genes associated with congenital diseases. No two individual embryos, or organs, are exactly the same shape or size so comparing spatial gene expression in one embryo to that in another is difficult. We will present our efforts in comparing gene expression data collected using both volumetric and projection approaches. Volumetric data is highly accurate but difficult to process and compare. Projection methods use UV mapping to align texture maps to standardized spatial frameworks. This approach is less accurate but is very rapid and requires very little processing. We have built a database of over 180 3D models depicting gene expression patterns mapped onto the surface of spline based embryo models. Gene expression data in different models can easily be compared to determine common regions of activity. Visualization software, both Java and OpenGL optimized for viewing 3D gene expression data will also be demonstrated.

  2. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    PubMed

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  3. ICE1 promotes the link between splicing and nonsense-mediated mRNA decay

    PubMed Central

    Baird, Thomas D; Cheng, Ken Chih-Chien; Chen, Yu-Chi; Buehler, Eugen; Martin, Scott E; Inglese, James

    2018-01-01

    The nonsense-mediated mRNA decay (NMD) pathway detects aberrant transcripts containing premature termination codons (PTCs) and regulates expression of 5–10% of non-aberrant human mRNAs. To date, most proteins involved in NMD have been identified by genetic screens in model organisms; however, the increased complexity of gene expression regulation in human cells suggests that additional proteins may participate in the human NMD pathway. To identify proteins required for NMD, we performed a genome-wide RNAi screen against >21,000 genes. Canonical members of the NMD pathway were highly enriched as top hits in the siRNA screen, along with numerous candidate NMD factors, including the conserved ICE1/KIAA0947 protein. RNAseq studies reveal that depletion of ICE1 globally enhances accumulation and stability of NMD-target mRNAs. Further, our data suggest that ICE1 uses a putative MIF4G domain to interact with exon junction complex (EJC) proteins and promotes the association of the NMD protein UPF3B with the EJC. PMID:29528287

  4. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirtz, M.K.; Samples, J.R.; Kramer, P.L.

    1997-02-01

    Glaucoma is the third-leading cause of blindness in the world, affecting >13.5 million people. Adult-on-set primary open-angle glaucoma (POAG) is the most common form of glaucoma in the United States. We present a family in which adult-onset POAG is inherited as an autosomal dominant trait. Twelve affected family members were identified from 44 at-risk individuals. The disease-causing gene was mapped to chromosome 3q21-24, with analysis of recombinant haplotypes suggesting a total inclusion region of 11.1 cM between markers D3S3637 and D3S1744. This is the first report of mapping of an adult-onset POAG gene to chromosome 3q, gene symbol GLC1C. 57more » refs., 3 figs., 3 tabs.« less

  5. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in themore » cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.« less

  6. Branching in Pea (Action of Genes Rms3 and Rms4).

    PubMed Central

    Beveridge, C. A.; Ross, J. J.; Murfet, I. C.

    1996-01-01

    The nonallelic ramosus mutations rms3-2 and rms4 of pea (Pisum sativum L.) cause extensive release of vegetative axillary buds and lateral growth in comparison with wild-type (cv Torsdag) plants, in which axillary buds are not normally released under the conditions utilized. Grafting studies showed that the expression of the rms4 mutation in the shoot is independent of the genotype of the root-stock. In contrast, the length of the branches at certain nodes of rms3-2 plants was reduced by grafting to wild-type stocks, indicating that the wild-type Rms3 gene may control the level of a mobile substance produced in the root. This substance also appears to be produced in the shoot because Rms3 shoots did not branch when grafted to mutant rms3-2 rootstocks. However, the end product of the Rms3 gene appears to differ from that of the Rms2 gene (C.A. Beveridge, J.J. Ross, and I.C. Murfet [1994] Plant Physiol 104: 953-959) because reciprocal grafts between rms3-2 and rms2 seedlings produced mature shoots with apical dominance similar to that of rms3-2 and rms2 shoots grafted to wild-type stocks. Indole-3-acetic acid levels were not reduced in apical or nodal portions of rms4 plants and were actually elevated (up to 2-fold) in rms3-2 plants. It is suggested that further studies with these branching mutants may enable significant progress in understanding the normal control of apical dominance and the related communication between the root and shoot. PMID:12226224

  7. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction.

    PubMed

    Lamontagne, Maxime; Timens, Wim; Hao, Ke; Bossé, Yohan; Laviolette, Michel; Steiling, Katrina; Campbell, Joshua D; Couture, Christian; Conti, Massimo; Sherwood, Karen; Hogg, James C; Brandsma, Corry-Anke; van den Berge, Maarten; Sandford, Andrew; Lam, Stephen; Lenburg, Marc E; Spira, Avrum; Paré, Peter D; Nickle, David; Sin, Don D; Postma, Dirkje S

    2014-11-01

    COPD is a complex chronic disease with poorly understood pathogenesis. Integrative genomic approaches have the potential to elucidate the biological networks underlying COPD and lung function. We recently combined genome-wide genotyping and gene expression in 1111 human lung specimens to map expression quantitative trait loci (eQTL). To determine causal associations between COPD and lung function-associated single nucleotide polymorphisms (SNPs) and lung tissue gene expression changes in our lung eQTL dataset. We evaluated causality between SNPs and gene expression for three COPD phenotypes: FEV(1)% predicted, FEV(1)/FVC and COPD as a categorical variable. Different models were assessed in the three cohorts independently and in a meta-analysis. SNPs associated with a COPD phenotype and gene expression were subjected to causal pathway modelling and manual curation. In silico analyses evaluated functional enrichment of biological pathways among newly identified causal genes. Biologically relevant causal genes were validated in two separate gene expression datasets of lung tissues and bronchial airway brushings. High reliability causal relations were found in SNP-mRNA-phenotype triplets for FEV(1)% predicted (n=169) and FEV(1)/FVC (n=80). Several genes of potential biological relevance for COPD were revealed. eQTL-SNPs upregulating cystatin C (CST3) and CD22 were associated with worse lung function. Signalling pathways enriched with causal genes included xenobiotic metabolism, apoptosis, protease-antiprotease and oxidant-antioxidant balance. By using integrative genomics and analysing the relationships of COPD phenotypes with SNPs and gene expression in lung tissue, we identified CST3 and CD22 as potential causal genes for airflow obstruction. This study also augmented the understanding of previously described COPD pathways. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma.

    PubMed

    Riquelme, Erick; Tang, Moying; Baez, Sergio; Diaz, Alfonso; Pruyas, Martha; Wistuba, Ignacio I; Corvalan, Alejandro

    2007-05-18

    Gallbladder carcinoma (GBC) is a highly malignant neoplasm that represents the leading cause of death for cancer in Chilean females. There is limited information about the molecular abnormalities involved in its pathogenesis. We have identified a number of molecular changes in GBC, including frequent allelic losses at chromosome 3p regions. Four distinct 3p sites (3p12, 3p14.2, 3p21.3 and 3p22-24) with frequent and early allelic losses in the sequential pathogenesis of this neoplasm have been detected. We investigated epigenetic and genetic abnormalities in GBC affecting 6 candidate tumor suppressor genes (TSG) located in chromosome 3p, including DUTT1 (3p12), FHIT (3p14.2), BLU, RASSF1A, SEMA3B and hMLH1 (3p21.3). DNA extracted from frozen tissue obtained from 50 surgical resected GBCs was examined for gene promoter methylation using MSP (methylation-specific PCR) technique after bisulfite treatment in all 6 genes. In addition, we performed PCR-based mutation examination using SSCP in FHIT and RASSF1A genes and loss of heterozygosity (LOH) analysis using microdissected tissue in a subset of tumors for the 3p21.3 region with 8 microsatellite markers. A very high frequency of GBC methylation was detected in SEMA3B (46/50, 92%) and FHIT (33/50, 66%), intermediate incidences in BLU (13/50, 26%) and DUTT1 (11/50, 22%) and very low frequencies in RASSF1A (4/50, 8%) and hMLH1 (2/50, 4%). Allelic loss at 3p21.3 was found in nearly half of the GBCs examined. We conclude that epigenetic inactivation by abnormal promoter methylation is a frequent event in chromosome 3p candidate TSGs in GBC pathogenesis, especially affecting genes SEMA3B (3p21.3) and FHIT (3p14.2).

  9. An enhancer located in a CpG-island 3' to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter.

    PubMed Central

    Clevers, H; Lonberg, N; Dunlap, S; Lacy, E; Terhorst, C

    1989-01-01

    The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive. Images PMID:2583122

  10. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  11. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database.

    PubMed

    Cotto, Kelsy C; Wagner, Alex H; Feng, Yang-Yang; Kiwala, Susanna; Coffman, Adam C; Spies, Gregory; Wollam, Alex; Spies, Nicholas C; Griffith, Obi L; Griffith, Malachi

    2018-01-04

    The drug-gene interaction database (DGIdb, www.dgidb.org) consolidates, organizes and presents drug-gene interactions and gene druggability information from papers, databases and web resources. DGIdb normalizes content from 30 disparate sources and allows for user-friendly advanced browsing, searching and filtering for ease of access through an intuitive web user interface, application programming interface (API) and public cloud-based server image. DGIdb v3.0 represents a major update of the database. Nine of the previously included 24 sources were updated. Six new resources were added, bringing the total number of sources to 30. These updates and additions of sources have cumulatively resulted in 56 309 interaction claims. This has also substantially expanded the comprehensive catalogue of druggable genes and anti-neoplastic drug-gene interactions included in the DGIdb. Along with these content updates, v3.0 has received a major overhaul of its codebase, including an updated user interface, preset interaction search filters, consolidation of interaction information into interaction groups, greatly improved search response times and upgrading the underlying web application framework. In addition, the expanded API features new endpoints which allow users to extract more detailed information about queried drugs, genes and drug-gene interactions, including listings of PubMed IDs, interaction type and other interaction metadata.

  12. APOBEC3B cytidine deaminase targets the non-transcribed strand of tRNA genes in yeast.

    PubMed

    Saini, Natalie; Roberts, Steven A; Sterling, Joan F; Malc, Ewa P; Mieczkowski, Piotr A; Gordenin, Dmitry A

    2017-05-01

    Variations in mutation rates across the genome have been demonstrated both in model organisms and in cancers. This phenomenon is largely driven by the damage specificity of diverse mutagens and the differences in DNA repair efficiency in given genomic contexts. Here, we demonstrate that the single-strand DNA-specific cytidine deaminase APOBEC3B (A3B) damages tRNA genes at a 1000-fold higher efficiency than other non-tRNA genomic regions in budding yeast. We found that A3B-induced lesions in tRNA genes were predominantly located on the non-transcribed strand, while no transcriptional strand bias was observed in protein coding genes. Furthermore, tRNA gene mutations were exacerbated in cells where RNaseH expression was completely abolished (Δrnh1Δrnh35). These data suggest a transcription-dependent mechanism for A3B-induced tRNA gene hypermutation. Interestingly, in strains proficient in DNA repair, only 1% of the abasic sites formed upon excision of A3B-deaminated cytosines were not repaired leading to mutations in tRNA genes, while 18% of these lesions failed to be repaired in the remainder of the genome. A3B-induced mutagenesis in tRNA genes was found to be efficiently suppressed by the redundant activities of both base excision repair (BER) and the error-free DNA damage bypass pathway. On the other hand, deficiencies in BER did not have a profound effect on A3B-induced mutations in CAN1, the reporter for protein coding genes. We hypothesize that differences in the mechanisms underlying ssDNA formation at tRNA genes and other genomic loci are the key determinants of the choice of the repair pathways and consequently the efficiency of DNA damage repair in these regions. Overall, our results indicate that tRNA genes are highly susceptible to ssDNA-specific DNA damaging agents. However, increased DNA repair efficacy in tRNA genes can prevent their hypermutation and maintain both genome and proteome homeostasis. Published by Elsevier B.V.

  13. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.

    PubMed

    Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W

    2016-05-01

    To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.

  14. The evaluation of angiotensin-converting enzyme (ACE) gene I/D and IL-4 gene intron 3 VNTR polymorphisms in coronary artery disease.

    PubMed

    Basol, Nursah; Celik, Atac; Karakus, Nevin; Ozturk, Sibel Demir; Ozsoy, Sibel Demir; Yigit, Serbulent

    2014-01-01

    Genetic polymorphism is a strong risk factor for coronary artery disease (CAD). In the present study, our aim was to evaluate angiotensin-converting enzyme (ACE) gene I/D polymorphism and interleukin-4 (IL-4) gene Intron 3 variable number of tandem repeat (VNTR) polymorphism in CAD. One hundred and twenty-four CAD patients and one hundred and twenty-three controls were enrolled. Genomic DNA was isolated and genotyped using polymerase chain reaction (PCR) analyses. The risk associated with inheriting the combined genotypes for the two polymorphisms were evaluated and it was found that the individuals who were P2P2-homozygous at IL-4 gene intron 3 VNTR and DD-homozygous at ACE gene I/D have a higher risk of developing CAD. Although, there is no correlation between IL4 VNTR polymorphism and ACE gene polymorphism and CAD, there is a strong association between CAD and co-existence of IL-4 VNTR and ACE gene polymorphisms in the Turkish population. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription

    PubMed Central

    Faura Tellez, Grissel; Vandepoele, Karl; Brouwer, Uilke; Koning, Henk; Elderman, Robin M.; Hackett, Tillie-Louise; Willemse, Brigitte W. M.; Holloway, John; Van Roy, Frans; Koppelman, Gerard H.

    2015-01-01

    Genetic studies have identified Protocadherin-1 (PCDH1) and Mothers against decapentaplegic homolog-3 (SMAD3) as susceptibility genes for asthma. PCDH1 is expressed in bronchial epithelial cells and has been found to interact with SMAD3 in yeast two-hybrid (Y2H) overexpression assays. Here, we test whether PCDH1 and SMAD3 interact at endogenous protein levels in bronchial epithelial cells and evaluate the consequences thereof for transforming growth factor-β1 (TGF-β1)-induced gene transcription. We performed Y2H screens and coimmunoprecipitation (co-IP) experiments of PCDH1 and SMAD3 in HEK293T and 16HBE14o− (16HBE) cell lines. Activity of a SMAD3-driven luciferase reporter gene in response to TGF-β1 was measured in BEAS-2B cells transfected with PCDH1 and in 16HBE cells transfected with PCDH1-small-interfering RNA (siRNA). TGF-β1-induced gene expression was quantified in BEAS-2B clones overexpressing PCDH1 and in human primary bronchial epithelial cells (PBECs) transfected with PCDH1-siRNA. We confirm PCDH1 and SMAD3 interactions by Y2H and by co-IP in HEK293T cells overexpressing both proteins, and at endogenous protein levels in 16HBE cells. TGF-β-induced activation of a SMAD3-driven reporter was reduced by exogenous PCDH1 in BEAS2B cells, whereas it was increased by siRNA-mediated knockdown of endogenous PCDH1 in 16HBE cells. Overexpression of PCDH1 suppressed expression of TGF-β target genes in BEAS-2B cells, whereas knockdown of PCDH1 in human PBECs increased TGF-β-induced gene expression. In conclusion, we demonstrate that PCDH1 binds to SMAD3 and regulates its activation by TGF-β signaling in bronchial epithelial cells. We propose that PCDH1 and SMAD3 act in a single pathway in asthma susceptibility that affects sensitivity of the airway epithelium to TGF-β. PMID:26209277

  16. Positive relationship between p42.3 gene and inflammation in chronic non-atrophic gastritis.

    PubMed

    Chen, Ping; Cui, Yun; Fu, Qing Yan; Lu, You Yong; Fang, Jing Yuan; Chen, Xiao Yu

    2015-10-01

    Gastric cancer (GC) is a typical type of inflammation-related tumor. The p42.3 gene is shown to be highly expressed in GC, but its association with gastritis remains unknown. We aimed to explore the relationship between gastric inflammation and p42.3 gene in vitro and in vivo. Normal gastric epithelial cells (GES-1) were treated with Helicobacter pylori (H. pylori) and tumor necrosis factor (TNF)-α. Total cell mRNA and protein were extracted and collected, and polymerase chain reaction and Western blot were performed to determine the relative expression of p42.3 gene. In total, 291 biopsy samples from patients with chronic non-atrophic gastritis were collected and immunohistochemistry was used to measure the p42.3 protein expression. The association between p42.3 protein expression and the clinicopathological characteristics of these patients were analyzed. Both H. pylori and TNF-α significantly enhanced the p42.3 protein expression in GES-1 cells in a time and dose-dependent manner. In addition, p42.3 gene expression was positively associated with the severity of gastric mucosal inflammation and H. pylori infection (P = 0.000). Its expression was significantly more common in severe gastric inflammation and in H. pylori-infected cases. p42.3 gene expression is associated with gastric mucosal inflammation that can be upregulated by TNF-α and H. pylori infection. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  17. 3D confocal reconstruction of gene expression in mouse.

    PubMed

    Hecksher-Sørensen, J; Sharpe, J

    2001-01-01

    Three-dimensional computer reconstructions of gene expression data will become a valuable tool in biomedical research in the near future. However, at present the process of converting in situ expression data into 3D models is a highly specialized and time-consuming procedure. Here we present a method which allows rapid reconstruction of whole-mount in situ data from mouse embryos. Mid-gestation embryos were stained with the alkaline phosphotase substrate Fast Red, which can be detected using confocal laser scanning microscopy (CLSM), and cut into 70 microm sections. Each section was then scanned and digitally reconstructed. Using this method it took two days to section, digitize and reconstruct the full expression pattern of Shh in an E9.5 embryo (a 3D model of this embryo can be seen at genex.hgu.mrc.ac.uk). Additionally we demonstrate that this technique allows gene expression to be studied at the single cell level in intact tissue.

  18. [Polymorphism of CD209 and TLR3 genes in populations of North Eurasia].

    PubMed

    Barkhash, A V; Babenko, V N; Voevoda, M I; Romaschenko, A G

    2016-06-01

    The DC-SIGN (dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin) and TLR3 (toll-like receptor 3) proteins are key effectors of the innate immunity and particularly play an important role in the organism’s antiviral defense as pattern-recognition receptors. Previously, we demonstrated that certain genotypes and alleles of single nucleotide polymorphisms (SNPs) rs2287886 (G/A) in the promoter region of the CD209 gene (encoding DC-SIGN) and rs3775291 (G/A, Leu412Phe) in the exon 4 of the TLR3 gene are associated with human predisposition to tick-borne encephalitis in the Russian population. In the present work, the distribution of genotype and allele frequencies for these SNPs was studied in seven populations of North Eurasia, including Caucasians (Russians and Germans (from Altai region)), Central Asian Mongoloids (Altaians, Khakass, Tuvinians, and Shorians), and Arctic Mongoloids (Chukchi). It was found that the CD209 gene rs2287886 SNP A/A genotype and A allele, as well as the TLR3 gene rs3775291 SNP G/G genotype and G allele (the frequencies of which in our previous studies were increased in tick-borne encephalitis patients as compared with the population control (Russian citizens of Novosibirsk)), are preserved with a high frequency in Central Asian Mongoloids (who for a long time regularly came in contact with tick-borne encephalitis virus in places of their habitation). We suggested that predisposition to tick-borne encephalitis in Central Asian Mongoloid populations can be predetermined by a different set of genes and their polymorphisms than in the Russian population.

  19. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  20. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  1. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae)

    PubMed Central

    Zhang, Rui; Guo, Chunce; Zhang, Wengen; Wang, Peipei; Li, Lin; Duan, Xiaoshan; Zhao, Liang; Shan, Hongyan; Hodges, Scott A.; Kramer, Elena M.; Ren, Yi; Kong, Hongzhi

    2013-01-01

    Absence of petals, or being apetalous, is usually one of the most important features that characterizes a group of flowering plants at high taxonomic ranks (i.e., family and above). The apetalous condition, however, appears to be the result of parallel or convergent evolution with unknown genetic causes. Here we show that within the buttercup family (Ranunculaceae), apetalous genera in at least seven different lineages were all derived from petalous ancestors, indicative of parallel petal losses. We also show that independent petal losses within this family were strongly associated with decreased or eliminated expression of a single floral organ identity gene, APETALA3-3 (AP3-3), apparently owing to species-specific molecular lesions. In an apetalous mutant of Nigella, insertion of a transposable element into the second intron has led to silencing of the gene and transformation of petals into sepals. In several naturally occurring apetalous genera, such as Thalictrum, Beesia, and Enemion, the gene has either been lost altogether or disrupted by deletions in coding or regulatory regions. In Clematis, a large genus in which petalous species evolved secondarily from apetalous ones, the gene exhibits hallmarks of a pseudogene. These results suggest that, as a petal identity gene, AP3-3 has been silenced or down-regulated by different mechanisms in different evolutionary lineages. This also suggests that petal identity did not evolve many times independently across the Ranunculaceae but was lost in numerous instances. The genetic mechanisms underlying the independent petal losses, however, may be complex, with disruption of AP3-3 being either cause or effect. PMID:23479615

  2. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae).

    PubMed

    Zhang, Rui; Guo, Chunce; Zhang, Wengen; Wang, Peipei; Li, Lin; Duan, Xiaoshan; Du, Qinggao; Zhao, Liang; Shan, Hongyan; Hodges, Scott A; Kramer, Elena M; Ren, Yi; Kong, Hongzhi

    2013-03-26

    Absence of petals, or being apetalous, is usually one of the most important features that characterizes a group of flowering plants at high taxonomic ranks (i.e., family and above). The apetalous condition, however, appears to be the result of parallel or convergent evolution with unknown genetic causes. Here we show that within the buttercup family (Ranunculaceae), apetalous genera in at least seven different lineages were all derived from petalous ancestors, indicative of parallel petal losses. We also show that independent petal losses within this family were strongly associated with decreased or eliminated expression of a single floral organ identity gene, APETALA3-3 (AP3-3), apparently owing to species-specific molecular lesions. In an apetalous mutant of Nigella, insertion of a transposable element into the second intron has led to silencing of the gene and transformation of petals into sepals. In several naturally occurring apetalous genera, such as Thalictrum, Beesia, and Enemion, the gene has either been lost altogether or disrupted by deletions in coding or regulatory regions. In Clematis, a large genus in which petalous species evolved secondarily from apetalous ones, the gene exhibits hallmarks of a pseudogene. These results suggest that, as a petal identity gene, AP3-3 has been silenced or down-regulated by different mechanisms in different evolutionary lineages. This also suggests that petal identity did not evolve many times independently across the Ranunculaceae but was lost in numerous instances. The genetic mechanisms underlying the independent petal losses, however, may be complex, with disruption of AP3-3 being either cause or effect.

  3. Identification and Functional Analysis of Pheromone and Receptor Genes in the B3 Mating Locus of Pleurotus eryngii

    PubMed Central

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency. PMID:25133513

  4. Determination of the core promoter regions of the Saccharomyces cerevisiae RPS3 gene.

    PubMed

    Joo, Yoo Jin; Kim, Jin-Ha; Baek, Joung Hee; Seong, Ki Moon; Lee, Jae Yung; Kim, Joon

    2009-01-01

    Ribosomal protein genes (RPG), which are scattered throughout the genomes of all eukaryotes, are subjected to coordinated expression. In yeast, the expression of RPGs is highly regulated, mainly at the transcriptional level. Recent research has found that many ribosomal proteins (RPs) function in multiple processes in addition to protein synthesis. Therefore, detailed knowledge of promoter architecture as well as gene regulation is important in understanding the multiple cellular processes mediated by RPGs. In this study, we investigated the functional architecture of the yeast RPS3 promoter and identified many putative cis-elements. Using beta-galactosidase reporter analysis and EMSA, the core promoter of RPS3 containing UASrpg and T-rich regions was corroborated. Moreover, the promoter occupancy of RPS3 by three transcription factors was confirmed. Taken together, our results further the current understanding of the promoter architecture and trans-elements of the Saccharomyces cerevisiae RPS3 gene.

  5. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Data Analysis and Visualization; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii)more » evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.« less

  6. The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer.

    PubMed

    Shaw, Greg L; Whitaker, Hayley; Corcoran, Marie; Dunning, Mark J; Luxton, Hayley; Kay, Jonathan; Massie, Charlie E; Miller, Jodi L; Lamb, Alastair D; Ross-Adams, Helen; Russell, Roslin; Nelson, Adam W; Eldridge, Matthew D; Lynch, Andrew G; Ramos-Montoya, Antonio; Mills, Ian G; Taylor, Angela E; Arlt, Wiebke; Shah, Nimish; Warren, Anne Y; Neal, David E

    2016-08-01

    The androgen receptor (AR) is the dominant growth factor in prostate cancer (PCa). Therefore, understanding how ARs regulate the human transcriptome is of paramount importance. The early effects of castration on human PCa have not previously been studied 27 patients medically castrated with degarelix 7 d before radical prostatectomy. We used mass spectrometry, immunohistochemistry, and gene expression array (validated by reverse transcription-polymerase chain reaction) to compare resected tumour with matched, controlled, untreated PCa tissue. All patients had levels of serum androgen, with reduced levels of intraprostatic androgen at prostatectomy. We observed differential expression of known androgen-regulated genes (TMPRSS2, KLK3, CAMKK2, FKBP5). We identified 749 genes downregulated and 908 genes upregulated following castration. AR regulation of α-methylacyl-CoA racemase expression and three other genes (FAM129A, RAB27A, and KIAA0101) was confirmed. Upregulation of oestrogen receptor 1 (ESR1) expression was observed in malignant epithelia and was associated with differential expression of ESR1-regulated genes and correlated with proliferation (Ki-67 expression). This first-in-man study defines the rapid gene expression changes taking place in prostate cancer (PCa) following castration. Expression levels of the genes that the androgen receptor regulates are predictive of treatment outcome. Upregulation of oestrogen receptor 1 is a mechanism by which PCa cells may survive despite castration. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  7. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    PubMed

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  8. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    PubMed Central

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  9. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelini, S.; Urbanek, M.; Goldman, D.

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two allelesmore » occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.« less

  10. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development

    PubMed Central

    José-Edwards, Diana S.; Oda-Ishii, Izumi; Nibu, Yutaka; Di Gregorio, Anna

    2013-01-01

    T-box genes are potent regulators of mesoderm development in many metazoans. In chordate embryos, the T-box transcription factor Brachyury (Bra) is required for specification and differentiation of the notochord. In some chordates, including the ascidian Ciona, members of the Tbx2 subfamily of T-box genes are also expressed in this tissue; however, their regulatory relationships with Bra and their contributions to the development of the notochord remain uncharacterized. We determined that the notochord expression of Ciona Tbx2/3 (Ci-Tbx2/3) requires Ci-Bra, and identified a Ci-Tbx2/3 notochord CRM that necessitates multiple Ci-Bra binding sites for its activity. Expression of mutant forms of Ci-Tbx2/3 in the developing notochord revealed a role for this transcription factor primarily in convergent extension. Through microarray screens, we uncovered numerous Ci-Tbx2/3 targets, some of which overlap with known Ci-Bra-downstream notochord genes. Among the Ci-Tbx2/3 notochord targets are evolutionarily conserved genes, including caspases, lineage-specific genes, such as Noto4, and newly identified genes, such as MLKL. This work sheds light on a large section of the notochord regulatory circuitry controlled by T-box factors, and reveals new components of the complement of genes required for the proper formation of this structure. PMID:23674602

  11. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development.

    PubMed

    José-Edwards, Diana S; Oda-Ishii, Izumi; Nibu, Yutaka; Di Gregorio, Anna

    2013-06-01

    T-box genes are potent regulators of mesoderm development in many metazoans. In chordate embryos, the T-box transcription factor Brachyury (Bra) is required for specification and differentiation of the notochord. In some chordates, including the ascidian Ciona, members of the Tbx2 subfamily of T-box genes are also expressed in this tissue; however, their regulatory relationships with Bra and their contributions to the development of the notochord remain uncharacterized. We determined that the notochord expression of Ciona Tbx2/3 (Ci-Tbx2/3) requires Ci-Bra, and identified a Ci-Tbx2/3 notochord CRM that necessitates multiple Ci-Bra binding sites for its activity. Expression of mutant forms of Ci-Tbx2/3 in the developing notochord revealed a role for this transcription factor primarily in convergent extension. Through microarray screens, we uncovered numerous Ci-Tbx2/3 targets, some of which overlap with known Ci-Bra-downstream notochord genes. Among the Ci-Tbx2/3 notochord targets are evolutionarily conserved genes, including caspases, lineage-specific genes, such as Noto4, and newly identified genes, such as MLKL. This work sheds light on a large section of the notochord regulatory circuitry controlled by T-box factors, and reveals new components of the complement of genes required for the proper formation of this structure.

  12. Targeted disruption of a novel gene contiguous to both glucocerebrodisidase (GC) and thrombospondin 3 (TSP3), results in an embryonic lethal phenotype in the mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornstein, P.; Shingu, T.; LaMarca, M.E.

    1994-09-01

    We have identified a new murine gene, termed gene X, that spans the 6 kb interval separating GC from TSP3. Mutations in GC result in Gaucher disease, the most common lysosomal storage disorder. Gene X and GC are transcribed convergently; their major polyadenylation sites are separated by only 431 bp. On the other hand, gene X and TSP3 are transcribed divergently and share a bidirectional promoter. The cDNA for gene X encodes a 317 amino acid protein, without either a signal sequence or N-linked glycosylation. Gene X is expressed ubiquitously in tissues of the young adult mouse, but no closemore » homologues have been found in the DNA or protein data bases. A targeted point mutation was introduced into the GC gene (Asn to Ser in exon 9) by homologous recombination in embryonic stem cells to establish a mouse model for a mild form of Gaucher disease. In the process, a PGK-neomycin gene cassette was inserted in the 3{prime} flanking region of GC as a selectable marker, in a sequence that was subsequently identified as exon 8 of gene X. Mice homozygous for the combined mutation die early in gestation. Since the amino acid mutation in humans is associated with milder type 1 Gaucher disease, we conclude that gene X is essential for embryonic development in mice. The locations of human and murine GC, gene X and TSP3 are similar, but the human genome includes a duplication that has produced GC and gene X pseudogenes. We are currently studying the possible functional interactions of GC, gene X and TSP3 in both mice and humans.« less

  13. The myotonic dystrophy kinase 3{prime}-untranslated region and its effect on gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, C.W.Y.; Sabourin, L.A.; Narang, M.A.

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease involving the expansion of an unstable CTG repeat in the 3{prime}-untranslated (3{prime}-UTR) region of the DM kinase (DMK) gene. Increased levels of mRNA in congenital compared to normal tissue have been shown, suggesting elevated DMK levels may be responsible for the disease phenotype. To study the effect of the DMK 3{prime}UTR on gene expression, a reporter gene system was constructed using the constitutive CMV promoter with the chloramphenicol acetyl transferase (CAT) open reading frame and the DMK 3{prime}UTR containing from 5 repeats up to 90 repeats. Transient transfection into a rhabdomyosarcomamore » cell line shows a three-fold increase in CAT activity from constructs containing a wildtype 3{prime}UTR (5 and 20 repeats) compared to a control construct containing only a poly(A) signal. Reporter constructs with repeats in the protomutation (50 repeats) and mutation (90 repeats) range show a greater than 10-fold increase over control CAT activity. These results suggest the presence of elements in the DMK 3{prime}UTR capable of conferring increased gene expression. We are currently investigating cell-specific activity of the constructs and conducting deletion mapping to identify regulatory elements in the 3{prime}-UTR.« less

  14. Association of MC3R gene polymorphisms with body weight in the red fox and comparative gene organization in four canids.

    PubMed

    Skorczyk, A; Flisikowski, K; Szydlowski, M; Cieslak, J; Fries, R; Switonski, M

    2011-02-01

    There are five genes encoding melanocortin receptors. Among canids, the genes have mainly been studied in the dog (MC1R, MC2R and MC4R). The MC4R gene has also been analysed in the red fox. In this report, we present a study of chromosome localization, comparative sequence analysis and polymorphism of the MC3R gene in the dog, red fox, arctic fox and Chinese raccoon dog. The gene was localized by FISH to the following chromosome: 24q24-25 in the dog, 14p16 in the red fox, 18q13 in the arctic fox and NPP4p15 in the Chinese raccoon dog. A high identity level of the MC3R gene sequences was observed among the species, ranging from 96.0% (red fox--Chinese raccoon dog) to 99.5% (red fox--arctic fox). Altogether, eight polymorphic sites were found in the red fox, six in the Chinese raccoon dog and two in the dog, while the arctic fox appeared to be monomorphic. In addition, association of several polymorphisms with body weight was analysed in red foxes (the number of genotyped animals ranged from 319 to 379). Two polymorphisms in the red fox, i.e. a silent substitution c.957A>C and c.*185C>T in the 3'-flanking sequence, showed a significant association (P < 0.01) with body weight. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.

  15. Perivascular epithelioid cell tumor (PEComa) with TFE3 gene rearrangement: clinicopathological, immunohistochemical, and molecular features.

    PubMed

    Shen, Qin; Rao, Qiu; Xia, Qiu-Yuan; Yu, Bo; Shi, Qun-Li; Zhang, Ru-Song; Zhou, Xiao-Jun

    2014-11-01

    Perivascular epithelioid cell tumors (PEComas) have been increasingly associated with gene rearrangement of the transcription factor E3 (TFE3). We present three cases of PEComa with a TFE3 gene abnormality detected by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Their clinical features, pathological morphology, and prognosis were investigated. Histologically, the tumors in these three cases showed predominantly epithelioid cells arranged in nests or sheets separated by a delicate vascular network, within two of the three cases nuclear atypia, mitotic figures, and necrosis. All three cases showed strong TFE3 and cathepsin K immunoreactivity and weak to strong reactivity for HMB45. One case of PEComa with TFE3 gene fusion exhibited a benign course. The other two cases of PEComa with both TFE3 translocation and X-chromosome polysomy were histologically malignant and showed aggressive growth. In summary, unusual cases of PEComa with TFE3 gene rearrangement might present malignant histological features and aggressive clinical behavior. Our results add cases to the literature and describe an association of polysomy with aggressive behavior.

  16. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    PubMed

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  17. Ancestor of land plants acquired the DNA-3-methyladenine glycosylase (MAG) gene from bacteria through horizontal gene transfer.

    PubMed

    Fang, Huimin; Huangfu, Liexiang; Chen, Rujia; Li, Pengcheng; Xu, Shuhui; Zhang, Enying; Cao, Wei; Liu, Li; Yao, Youli; Liang, Guohua; Xu, Chenwu; Zhou, Yong; Yang, Zefeng

    2017-08-24

    The origin and evolution of land plants was an important event in the history of life and initiated the establishment of modern terrestrial ecosystems. From water to terrestrial environments, plants needed to overcome the enhanced ultraviolet (UV) radiation and many other DNA-damaging agents. Evolving new genes with the function of DNA repair is critical for the origin and radiation of land plants. In bacteria, the DNA-3-methyladenine glycosylase (MAG) recognizes of a variety of base lesions and initiates the process of the base excision repair for damaged DNA. The homologs of MAG gene are present in all major lineages of streptophytes, and both the phylogenic and sequence similarity analyses revealed that green plant MAG gene originated through an ancient horizontal gene transfer (HGT) event from bacteria. Experimental evidence demonstrated that the expression of the maize ZmMAG gene was induced by UV and zeocin, both of which are known as DNA-damaging agents. Further investigation revealed that Streptophyta MAG genes had undergone positive selection during the initial evolutionary period in the ancestor of land plants. Our findings demonstrated that the ancient HGT of MAG to the ancestor of land plants probably played an important role in preadaptation to DNA-damaging agents in terrestrial environments.

  18. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar

    PubMed Central

    González, Ana M.; Godoy, Luís

    2017-01-01

    Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F2 populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype. PMID:29168746

  19. [PAX3 gene mutation analysis for two Waardenburg syndrome type Ⅰ families and their prenatal diagnosis].

    PubMed

    Bai, Y; Liu, N; Kong, X D; Yan, J; Qin, Z B; Wang, B

    2016-12-07

    Objective: To analyze the mutations of PAX3 gene in two Waardenburg syndrome type Ⅰ (WS1) pedigrees and make prenatal diagnosis for the high-risk 18-week-old fetus. Methods: PAX3 gene was first analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification(MLPA) for detecting pathogenic mutation of the probands of the two pedigrees. The mutations were confirmed by MLPA and Sanger in parents and unrelated healthy individuals.Prenatal genetic diagnosis for the high-risk fetus was performed by amniotic fluid cell after genotyping. Results: A heterozygous PAX3 gene gross deletion (E7 deletion) was identified in all patients from WS1-01 family, and not found in 20 healthy individuals.Prenatal diagnosis in WS1-01 family indicated that the fetus was normal. Molecular studies identified a novel deletion mutation c. 1385_1386delCT within the PAX3 gene in all affected WS1-02 family members, but in none of the unaffected relatives and 200 healthy individuals. Conclusions: PAX3 gene mutation is etiological for two WS1 families. Sanger sequencing plus MLPA is effective and accurate for making gene diagnosis and prenatal diagnosis.

  20. Nucleotide sequence and expression of a novel pectate lyase gene (pel-3) and a closely linked endopolygalacturonase gene (peh-1) of Erwinia carotovora subsp. carotovora 71.

    PubMed Central

    Liu, Y; Chatterjee, A; Chatterjee, A K

    1994-01-01

    Our previous genetic analysis (J. W. Willis, J. K. Engwall, and A. K. Chatterjee, Phytopathology 77:1199-1205, 1987) had revealed a tight linkage between pel-3 (pel, pectate lyase gene) and peh-1 (peh, polygalacturonase gene) within the chromosome of Erwinia carotovora subsp. carotovora 71. Nucleotide sequencing, transcript assays, and expression of enzymatic activities in Escherichia coli have now confirmed that a 3,500-bp segment contains the open reading frames (ORFs) for Pel-3 and Peh-1. The 1,041-bp pel-3 ORF and the 1,206-bp peh-1 ORF are separated by a 579-bp sequence. The genes are transcribed divergently from their own promoters. In E. coli and E. carotovora subsp. carotovora 71, peh-1 is better expressed than pel-3. However, plant signals activate the expression of both the genes in E. carotovora subsp. carotovora. A consensus integration host factor (IHF)-binding sequence upstream of pel-3 appears physiologically significant, since pel-3 promoter activity is higher in an E. coli IHF+ strain than in an IHF- strain. While peh-1 has extensive homology with plant and bacterial peh genes, pel-3 appears not to have significant homology with the pel genes belonging to the pelBC, pelADE, or periplasmic pel families. Pel-3 also is unusual in that it is predicted to contain an ATP- and GTP-binding site motif A (P-loop) not found in the other Pels. Images PMID:8074530

  1. Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis.

    PubMed

    Chen, Wen-Huei; Hsu, Chi-Yin; Cheng, Hao-Yun; Chang, Hsiang; Chen, Hong-Hwa; Ger, Mang-Jye

    2011-06-01

    Anthocyanin is the primary pigment contributing to red, violet, and blue flower color formation. The solubility of anthocyanins is enhanced by UDP glucose: flavonoid 3-O-glucosyltransferase (UFGT) through transfer of the glucosyl moiety from UDP-glucose to 3-hydroxyl group to produce the first stable pigments. To assess the possibility that UFGT is involved in the flower color formation in Phalaenopsis, the transcriptional activities of PeUFGT3, and other flower color-related genes in developing red or white flower buds were examined using RT-PCR analysis. In contrast with chalcone synthase, chalcone isomerase, and anthocyanidin synthase genes, PeUFGT3 transcriptional activity was higher expressed in the red color of Phalaenopsis cultivars. In the red labellum of Phalaenopsis 'Luchia Lady', PeUFGT3 also showed higher expression levels than that in the white perianth. PeUFGT3 was predominantly expressed in the red region of flower among various Phalaenopsis cultivars. To investigate the role of PeUFGT3 in red flower color formation, PeUFGT3 was specifically knocked down using RNA interference technology via virus inducing gene silencing in Phalaenopsis. The PeUFGT3-suppressed Phalaenopsis exhibited various levels of flower color fading that was well correlated with the extent of reduced level of PeUFGT3 transcriptional activity. Furthermore, there was a significant decrease in anthocyanin content in the PeUFGT3-suppressed Phalaenopsis flowers. The decrease of anthocyanin content due to PeUFGT3 gene silencing possibly caused the faded flower color in PeUFGT3-suppressed Phalaenopsis. Consequently, these results suggested that the glycosylation-related gene PeUFGT3 plays a critical role in red color formation in Phalaenopsis.

  2. [Variation of insulin receptor substrate-2 gene 3'-untranslated region in patients with type 2 diabetes mellitus].

    PubMed

    Zeng, Wei-Min; Chen, Shu-Hua; Xie, Ping; Liu, Mei-Lian; Song, Hui-Ping

    2003-08-01

    Insulin receptor substrate-2(IRS-2) belongs to a family of cytoplasmic adaptor proteins, which link insulin, insulin-like growth factor-1(IGF-1), and cytokine receptor tyrosine kinases to signaling pathways regulating metabolism, growth, differentiation, reproduction, and homestasis. Deficiency of IRS-2 in mice causes type 2 diabetes mellitus (T2DM), suggesting that abnormal structure and dysfunction of the IRS-2 gene may contribute to the pathogenesis of T2DM. Variations in the open reading frame (ORF) and promoter region of IRS-2 gene in patients with T2DM have been reported over the past few years. These genetic variations are from ethnically different patients, confounding any analysis of the contribution of IRS-2 gene variations to the development of T2DM. The 3'-untranslated region(3'-UTR) of IRS-2 gene variation may be contribute to the T2DM. So far, the relationship between 3'-UTR of IRS-2 gene variations and T2DM have not been investigated. Based on the 3'-UTR of eukaryotic gene plays an important role in the eukaryotic gene regulation, we investigated abnormalities of IRS-2 gene 3'-UTR and their relation with T2DM in the Chinese population. Genomic DNA was extracted from leukocyte of 128 patients with T2DM and 125 control subjects in Hunan, China. A segment of IRS-2 gene 3'-UTR was scanned by polymerase chain reaction (PCR)-denaturing high-performance liquid chromatography (DHPLC). All PCR products with abnormal DHPLC pattern were submitted to DNA sequence analysis. A T-->C mutation at 4064 bp of IRS-2 gene 3'-UTR was found in 18 patients with T2DM, while it was only found in 5 control subjects. The incidence of the mutation in patients with T2DM were much higher than that in contol subjects (14.1% vs 4.0%, x2 = 7.748, P = 0.005). These results indicate that the T4064-->C in IRS-2 gene 3'-UTR may be related to Chinese patients with T2DM.

  3. The 2p21 deletion syndrome: characterization of the transcription content.

    PubMed

    Parvari, Ruti; Gonen, Yael; Alshafee, Ismael; Buriakovsky, Sophia; Regev, Kfir; Hershkovitz, Eli

    2005-08-01

    The vast majority of small-deletion syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We have previously identified a homozygous deletion of 179,311 bp on chromosome 2p21 as the cause of a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria. We now present the transcription content of this region: Multiple splicing variants of the genes protein phosphatase 1B (formerly 2C) magnesium-dependent, beta isoform (PPM1B), SLC3A1, and KIAA0436 (approved gene symbol PREPL) were identified and their patterns of expression analyzed. The spliced variants are predicted to have additional functions compared to the known variants and their patterns of expression fit the tissues affected by the syndrome. The first exon of an additional gene (C2orf34) is encoded in the deleted region and the gene is not expressed in the patients. In addition several transcripts with very short open reading frames are also encoded in the deletion. The identification of all transcripts encoded in the region deleted in the patients is the first step in the study of the genotype-phenotype correlation of the 2p21 patients.

  4. The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration

    PubMed Central

    Dugas, Jason C.; Ibrahim, Adiljan; Barres, Ben A.

    2015-01-01

    Hypothyroidism is a well-described cause of hypomyelination. In addition, thyroid hormone (T3) has recently been shown to enhance remyelination in various animal models of CNS demyelination. What are the ways in which T3 promotes the development and regeneration of healthy myelin? To begin to understand the mechanisms by which T3 drives myelination, we have identified genes regulated specifically by T3 in purified oligodendrocyte precursor cells (OPCs). Among the genes identified by genomic expression analyses were four transcription factors, Kruppel-like factor 9 (KLF9), basic helix-loop-helix family member e22 (BHLHe22), Hairless (Hr), and Albumin D box-binding protein (DBP), all of which were induced in OPCs by both brief and long term exposure to T3. To begin to investigate the role of these genes in myelination, we focused on the most rapidly and robustly induced of these, KLF9, and found it is both necessary and sufficient to promote oligodendrocyte differentiation in vitro. Surprisingly, we found that loss of KLF9 in vivo negligibly affects the formation of CNS myelin during development, but does significantly delay remyelination in cuprizone-induced demyelinated lesions. These experiments indicate that KLF9 is likely a novel integral component of the T3-driven signaling cascade that promotes the regeneration of lost myelin. Future analyses of the roles of KLF9 and other identified T3-induced genes in myelination may lead to novel insights into how to enhance the regeneration of myelin in demyelinating diseases such as multiple sclerosis. PMID:22472204

  5. Rat prostatic steroid binding protein: DNA sequence and transcript maps of the two C3 genes.

    PubMed Central

    Hurst, H C; Parker, M G

    1983-01-01

    In the rat there are two non-allelic genes C3(1) and C3(2) for the C3 polypeptide of prostatic steroid binding protein. We have cloned and sequenced both genes and show that only C3(1) is responsible for the production of authentic C3. Although there is a marked difference in their transcriptional activity, the two genes share extensive DNA sequence homology there being only one base difference from nucleotide - 235 to within the first intron. Transcript mapping has shown that there are two distinct C3 transcripts which share a unique 3' terminus but have 5' termini 38 bases apart each preceded by a 'TATA' box homology. Interestingly, an identical repetitive element is present just upstream of both genes. Both families of transcripts, which are produced in a ratio of 18:1, are coordinately regulated by testosterone. Images Fig. 3. Fig. 4. Fig. 5. PMID:6685625

  6. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution

    PubMed Central

    Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M.; Imumorin, Ikhide G.; Peters, Sunday O.; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats’ populations. Fu and Li tests were significantly positive but Tajima’s D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat

  7. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    PubMed

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  8. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.

    PubMed

    Finta, C; Zaphiropoulos, P G

    2000-12-30

    Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.

  9. Association between trefoil factor 3 gene variants and idiopathic recurrent spontaneous abortion.

    PubMed

    Haroun, Sally; Altmäe, Signe; Karypidis, Helena; Kuningas, Maris; Landgren, Britt-Marie; Akerud, Helena; Skjöldebrand-Sparre, Lottie; Hosseini, Frida; Bremme, Katarina; Sundström-Poromaa, Inger; Stavreus-Evers, Anneli

    2014-12-01

    Trefoil factor 3 (TFF3) gene is an inflammatory mediator expressed in human endometrium during the window of implantation. The aim of this study was to evaluate the possible genetic association of TFF3 variants in recurrent spontaneous abortion. Women with a history of recurrent spontaneous abortion (n = 164) and healthy pregnant women (n = 143) were genotyped for five TFF3 polymorphisms (rs225439 G/A, rs533093 C/T, rs225361 A/G, rs11701143 T/C and rs77436142 G/C). In addition, haplotypes formed within the gene were analysed. Within the recurrent spontaneous abortion group, women who at some point had given birth and childless women had 4.19 ± 1.75 and 5.34 ± 3.42 consecutive spontaneous abortions, respectively. Women who had experience recurrent spontaneous abortions had a lower allele frequency of the rs11701143 promoter region minor C allele compared with fertile women (0.02 versus 0.05, P = 0.015). Patients with rs225361 AG genotype had significantly more successful pregnancies before spontaneous abortion than those with homozygous AA and GG genotypes (P = 0.014). No significant differences in haplotype frequencies between patients and controls were detected. Possible genetic risk factors identified that might contribute to the pathogenesis of idiopathic recurrent spontaneous abortion were TFF3 gene variants. Copyright © 2014. Published by Elsevier Ltd.

  10. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    PubMed

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia.

    PubMed

    Stoilov, I; Kilpatrick, M W; Tsipouras, P

    1995-01-02

    Achondroplasia is the most common type of genetic dwarfism. It is characterized by disproportionate short stature and other skeletal anomalies resulting from a defect in the maturation of the chondrocytes in the growth plate of the cartilage. Recent studies mapped the achondroplasia gene on chromosome region 4p16.3 and identified a common mutation in the gene encoding the fibroblast growth factor receptor 3 (FGFR3). In an analysis of 19 achondroplasia families from a variety of ethnic backgrounds we confirmed the presence of the G380R mutation in 21 of 23 achondroplasia chromosomes studied. In contrast, the G380R mutation was not found in any of the 8 hypochondroplasia chromosomes studied. Furthermore, linkage studies in a 3-generation family with hypochondroplasia show discordant segregation with markers in the 4p16.3 region suggesting that at least some cases of hypochondroplasia are caused by mutations in a gene other than FGFR3.

  12. Novel mutations in the genes TGM1 and ALOXE3 underlying autosomal recessive congenital ichthyosis

    PubMed Central

    Ullah, Rahim; Ansar, Muhammad; Durrani, Zaka Ullah; Lee, Kwanghyuk; Santos-Cortez, Regie Lyn P.; Muhammad, Dost; Ali, Mahboob; Zia, Muhammad; Ayub, Muhammad; Khan, Suliman; Smith, Josh D.; Nickerson, Deborah A.; Shendure, Jay; Bamshad, Michael; Leal, Suzanne M.; Ahmad, Wasim

    2016-01-01

    Background Ichthyoses are clinically characterized by scaling or hyperkeratosis of the skin or both. It can be an isolated condition limited to the skin or appear secondarily with involvement of other cutaneous or systemic abnormalities. Methods The present study investigated clinical and molecular characterization of three consanguineous families (A, B, C) segregating two different forms of autosomal recessive congenital ichthyosis (ARCI). Linkage in three consanguineous families (A, B, C) segregating two different forms of ARCI was searched by typing microsatellite and single nucleotide polymorphism marker analysis. Sequencing of the two genes TGM1 and ALOXE3 was performed by the dideoxy chain termination method. Results Genome-wide linkage analysis established linkage in family A to TGM1 gene on chromosome 14q11 and in families B and C to ALOXE3 gene on chromosome 17p13. Subsequently, sequencing of these genes using samples from affected family members led to the identification of three novel mutations: a missense variant p.Trp455Arg in TGM1 (family A); a nonsense variant p.Arg140* in ALOXE3 (family B); and a complex rearrangement in ALOXE3 (family C). Conclusion The present study further extends the spectrum of mutations in the two genes involved in causing ARCI. Characterizing the clinical spectrum resulting from mutations in the TGM1 and ALOXE3 genes will improve diagnosis and may direct clinical care of the family members. PMID:26578203

  13. A candidate gene study in low HDL-cholesterol families provides evidence for the involvement of the APOA2 gene and the APOA1C3A4 gene cluster.

    PubMed

    Lilja, Heidi E; Soro, Aino; Ylitalo, Kati; Nuotio, Ilpo; Viikari, Jorma S A; Salomaa, Veikko; Vartiainen, Erkki; Taskinen, Marja-Riitta; Peltonen, Leena; Pajukanta, Päivi

    2002-09-01

    In patients with premature coronary heart disease, the most common lipoprotein abnormality is high-density lipoprotein (HDL) deficiency. To assess the genetic background of the low HDL-cholesterol trait, we performed a candidate gene study in 25 families with low HDL, collected from the genetically isolated population of Finland. We studied 21 genes encoding essential proteins involved in the HDL metabolism by genotyping intragenic and flanking markers for these genes. We found suggestive evidence for linkage in two candidate regions: Marker D1S2844, in the apolipoprotein A-II (APOA2) region, yielded a LOD score of 2.14 and marker D11S939 flanking the apolipoprotein A-I/C-III/A-IV gene cluster (APOA1C3A4) produced a LOD score of 1.69. Interestingly, we identified potential shared haplotypes in these two regions in a subset of low HDL families. These families also contributed to the obtained positive LOD scores, whereas the rest of the families produced negative LOD scores. None of the remaining candidate regions provided any evidence for linkage. Since only a limited number of loci were tested in this candidate gene study, these LOD scores suggest significant involvement of the APOA2 gene and the APOA1C3A4 gene cluster, or loci in their immediate vicinity, in the pathogenesis of low HDL.

  14. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    PubMed

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate. © 2016 MRC Laboratory of Molecular Biology. Published under the terms of the CC BY 4.0 license.

  15. Genome-wide STAT3 binding analysis after histone deacetylase inhibition reveals novel target genes in dendritic cells

    PubMed Central

    Sun, Yaping; Iyer, Matthew; McEachin, Richard; Zhao, Meng; Wu, Yi-Mi; Cao, Xuhong; Oravecz-Wilson, Katherine; Zajac, Cynthia; Mathewson, Nathan; Wu, Shin-Rong Julia; Rossi, Corinne; Toubai, Tomomi; Qin, Zhaohui S.; Chinnaiya, Arul M.; Reddy, Pavan

    2016-01-01

    STAT3 is a master transcriptional regulator that plays an important role in the induction of both immune activation and immune tolerance in dendritic cells (DCs). The transcriptional targets of STAT3 in promoting DC activation are becoming increasingly understood; however, the mechanisms underpinning its role in causing DC suppression remain largely unknown. To determine the functional gene targets of STAT3, we compared the genome-wide binding of STAT3 using ChIP-seq coupled with gene expression microarrays to determine STAT3-dependent gene regulation in DCs after histone deacetylase (HDAC) inhibition. HDAC inhibition boosted the ability of STAT3 to bind to distinct DNA targets and regulate gene expression. Among the top 500 STAT3 binding sites, the frequency of canonical motifs was significantly higher than that of non-canonical motifs. Functional analysis revealed that after treatment with an HDAC inhibitor, the upregulated STAT3 target genes were those that were primarily the negative regulators of pro-inflammatory cytokines and those in the IL-10 signaling pathway. The downregulated STAT3-dependent targets were those involved in immune effector processes and antigen processing/presentation. The expression and functional relevance of these genes were validated. Specifically, functional studies confirmed that the upregulation of IL-10Ra by STAT3 contributed to the suppressive function of DCs following HDAC inhibition. PMID:27866206

  16. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity

    PubMed Central

    Lee, Karen J. I.; Calder, Grant M.; Hindle, Christopher R.; Newman, Jacob L.; Robinson, Simon N.; Avondo, Jerome J. H. Y.

    2017-01-01

    Abstract Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale. PMID:28025317

  17. A candidate gene analysis of canine hypoadrenocorticism in 3 dog breeds.

    PubMed

    Short, Andrea D; Boag, Alisdair; Catchpole, Brian; Kennedy, Lorna J; Massey, Jonathan; Rothwell, Simon; Husebye, Eystein; Ollier, Bill

    2013-01-01

    Canine hypoadrenocorticism is believed to be an immune-related condition. It is rare in the overall dog population but shows a breed-related predisposition with Standard poodles and Portuguese water dogs having a greater prevalence of the condition. It shares many similarities with human primary adrenal insufficiency and is believed to be a naturally occurring, spontaneous model for the human condition. Short haplotype blocks and low levels of linkage disequilibrium in the human genome mean that the identification of genetic contributors to the condition requires large sample numbers. Pedigree dogs have high linkage disequilibrium and long haplotypes within a breed, increasing the potential of identifying novel genes that contribute to canine genetic disease. We investigated 222 SNPs from 42 genes that have been associated or may be implicated in human Addison's disease. We conducted case-control analyses in 3 pedigree dog breeds (Labrador retriever: affected n = 30, unaffected = 76; Cocker Spaniel: affected n = 19, unaffected = 53; Springer spaniel: affected n = 26, unaffected = 46) and identified 8 associated alleles in genes COL4A4, OSBPL9, CTLA4, PTPN22, and STXBP5 in 3 pedigree breeds. Association with immune response genes PTPN22 and CTLA4 in certain breeds suggests an underlying immunopathogenesis of the disease. These results suggest that canine hypoadrenocorticism could be a useful model for studying comparative genetics relevant to human Addison's disease.

  18. Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes.

    PubMed

    Sharma, Shraddha; Patnaik, Santosh K; Kemer, Zeynep; Baysal, Bora E

    2017-05-04

    APOBEC3A cytidine deaminase induces site-specific C-to-U RNA editing of hundreds of genes in monocytes exposed to hypoxia and/or interferons and in pro-inflammatory macrophages. To examine the impact of APOBEC3A overexpression, we transiently expressed APOBEC3A in HEK293T cell line and performed RNA sequencing. APOBEC3A overexpression induces C-to-U editing at more than 4,200 sites in transcripts of 3,078 genes resulting in protein recoding of 1,110 genes. We validate recoding RNA editing of genes associated with breast cancer, hematologic neoplasms, amyotrophic lateral sclerosis, Alzheimer disease and primary pulmonary hypertension. These results highlight the fundamental impact of APOBEC3A overexpression on human transcriptome by widespread RNA editing.

  19. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma.

    PubMed

    Oda, Katsutoshi; Stokoe, David; Taketani, Yuji; McCormick, Frank

    2005-12-01

    The phosphatidylinositol 3'-kinase (PI3K) pathway is activated in many human cancers. In addition to inactivation of the PTEN tumor suppressor gene, mutations or amplifications of the catalytic subunit alpha of PI3K (PIK3CA) have been reported. However, the coexistence of mutations in these two genes seems exceedingly rare. As PTEN mutations occur at high frequency in endometrial carcinoma, we screened 66 primary endometrial carcinomas for mutations in the helical and catalytic domains of PIK3CA. We identified a total of 24 (36%) mutations in this gene and coexistence of PIK3CA/PTEN mutations at high frequency (26%). PIK3CA mutations were more common in tumors with PTEN mutations (17 of 37, 46%) compared with those without PTEN mutations (7 of 29, 24%). Array comparative genomic hybridization detected 3q24-qter amplification, which covers the PIK3CA gene (3q26.3), in one of nine tumors. Knocking down PTEN expression in the HEC-1B cell line, which possesses both K-Ras and PIK3CA mutations, further enhances phosphorylation of Akt (Ser473), indicating that double mutation of PIK3CA and PTEN has an additive effect on PI3K activation. Our data suggest that the PI3K pathway is extensively activated in endometrial carcinomas, and that combination of PIK3CA/PTEN alterations might play an important role in development of these tumors.

  20. Nucleotide sequence and structural organization of the human vasopressin pituitary receptor (V3) gene.

    PubMed

    René, P; Lenne, F; Ventura, M A; Bertagna, X; de Keyzer, Y

    2000-01-04

    In the pituitary, vasopressin triggers ACTH release through a specific receptor subtype, termed V3 or V1b. We cloned the V3 cDNA and showed that its expression was almost exclusive to pituitary corticotrophs and some corticotroph tumors. To study the determinants of this tissue specificity, we have now cloned the gene for the human (h) V3 receptor and characterized its structure. It is composed of two exons, spanning 10kb, with the coding region interrupted between transmembrane domains 6 and 7. We established that the transcription initiation site is located 498 nucleotides upstream of the initiator codon and showed that two polyadenylation sites may be used, while the most frequent is the most downstream. Sequence analysis of the promoter region showed no TATA box but identified consensus binding motifs for Sp1, CREB, and half sites of the estrogen receptor binding site. However comparison with another corticotroph-specific gene, proopiomelanocortin, did not identify common regulatory elements in the two promoters except for a short GC-rich region. Unexpectedly, hV3 gene analysis revealed that a formerly cloned 'artifactual' hV3 cDNA indeed corresponded to a spliced antisense transcript, overlapping the 5' part of the coding sequence in exon 1 and the promoter region. This transcript, hV3rev, was detected in normal pituitary and in many corticotroph tumors expressing hV3 sense mRNA and may therefore play a role in hV3 gene expression.

  1. A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.

    PubMed

    Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P

    2005-10-01

    We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.

  2. Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder.

    PubMed

    Dikeos, D G; Papadimitriou, G N; Avramopoulos, D; Karadima, G; Daskalopoulou, E G; Souery, D; Mendlewicz, J; Vassilopoulos, D; Stefanis, C N

    1999-12-01

    Dopamine neurotransmission has been implicated in the pathophysiology of schizophrenia and, more recently, affective disorders. Among the dopamine receptors, D3 can be considered as particularly related to affective disorders due to its neuroanatomical localization in the limbic region of the brain and its relation to the serotoninergic activity of the CNS. The possible involvement of dopamine receptor D3 in unipolar (UP) major depression was investigated by a genetic association study of the D3 receptor gene locus (DRD3) on 36 UP patients and 38 ethnically matched controls. An allelic association of DRD3 (Bal I polymorphism) and UP illness was observed, with the Gly-9 allele (allele '2', 206/98 base-pairs long) being more frequent in patients than in controls (49% vs 29%, P < 0.02). The genotypes containing this allele (1-2 and 2-2) were found in 75% of patients vs 50% of controls (P < 0.03, odds ratio = 3.00, 95% CI = 1.12-8.05). The effect of the genotype remained significant (P < 0.02) after sex and family history were controlled by a multiple linear regression analysis. These results further support the hypothesis that dopaminergic mechanisms may be implicated in the pathogenesis of affective disorder. More specifically, the '2' allele of the dopamine receptor D3 gene seems to be associated with unipolar depression and can be considered as a 'phenotypic modifier' for major psychiatric disorders.

  3. Methylation analysis of p16, SLIT2, SCARA5, and Runx3 genes in hepatocellular carcinoma

    PubMed Central

    Sun, Gaofeng; Zhang, Chen; Feng, Min; Liu, Wensheng; Xie, Huifang; Qin, Qin; Zhao, E.; Wan, Li

    2017-01-01

    Abstract This study is to investigate the methylation status of multiple tumor suppressor 1 (p16), secreted glycoprotein 2 (SLIT2), scavenger receptor class A, member 5 putative (SCARA5), and human runt-related transcription factor 3 (Runx3) genes in the peripheral blood of hepatocellular carcinoma (HCC). This is a case–control study. The peripheral blood samples were collected from 25 HCC patients, 25 patients with high risk of HCC (defined as “internal control group”), and 25 healthy individuals (defined as “external control group”), respectively. Then the methylation status of p16, SLIT2, SCARA5, and Runx3 genes in the blood samples were analyzed by pyrosequencing. The relationship between the methylation and the clinical features of HCC patients were evaluated. The methylation levels in the 7 CpG loci of p16 gene in HCC patients were low and without statistically significant difference (P > .05) compared to the control groups. Although the methylation levels of CpG3 and CpG4 in SLIT2 gene loci were higher than those of the control groups, there was no statistically significant difference (P > .05). However, the methylation rate of CpG2 locus in SCARA5 gene in HCC patients was significantly higher (P < .05). And the methylation rates of CpG1, CpG2, CpG3, CpG4, CpG5, and CpG8 in Runx3 gene in HCC patients were significantly different to that of control groups (P < .05). We also have analyzed the correlations between the CpG islands methylation of Runx3 or SCARA5 genes and the age, gender, hepatitis B, liver cirrhosis, alpha fetal protein, or hepatitis B surface antigen (HBsAg) of the HCC patients, which all showed no significant correlations (P > .05). The methylation status of SCARA5 and Runx3 genes are abnormal in HCC patients, which may further be used as molecular markers for early auxiliary diagnosis of liver cancer. PMID:29019900

  4. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine).

    PubMed

    Mbéguié-A-Mbéguié, Didier; Hubert, Olivier; Fils-Lycaon, Bernard; Chillet, Marc; Baurens, Franc-Christophe

    2008-06-01

    Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.

  5. Significant association of APOA5 and APOC3 gene polymorphisms with meat quality traits in Kele pigs.

    PubMed

    Hui, Y T; Yang, Y Q; Liu, R Y; Zhang, Y Y; Xiang, C J; Liu, Z Z; Ding, Y H; Zhang, Y L; Wang, B R

    2013-09-13

    Apolipoprotein A5 (APOA5) and C3 (APOC3) genes are involved in the PPAR lipid metabolism pathway and thus associated with elevated triglyceride levels. However, whether APOA5 and APOC3 genetic polymorphisms affect intramuscular fat deposition and other meat quality traits remains unknown in pigs. One hundred and seventy-one Kele pigs were sampled to investigate genetic variants in the APOA5 and APOC3 genes and their association with seven pork quality traits. We identified 5 single nucleotide polymorphisms (SNPs) in the promoter region of the APOA5 gene and 17 SNPs in the APOC3 gene. Linkage disequilibrium analysis revealed 5 complete linkage disequilibria among these 22 SNPs. We found that 10 SNPs were significantly correlated with meat quality traits, including the mutation A5/-769 in the APOA5 gene, which was significantly associated with cooked weight percentage, and 9 SNPs in the APOC3 gene that were significantly associated with drip loss rate, meat color value of longissimus dorsi muscle and shear force. Therefore, these SNP markers will be useful for marker-assisted selection for improved pork quality.

  6. X Linkage of AP3A, a Homolog of the Y-Linked MADS-Box Gene AP3Y in Silene latifolia and S. dioica

    PubMed Central

    Penny, Rebecca H.; Montgomery, Benjamin R.; Delph, Lynda F.

    2011-01-01

    Background The duplication of autosomal genes onto the Y chromosome may be an important element in the evolution of sexual dimorphism.A previous cytological study reported on a putative example of such a duplication event in a dioecious tribe of Silene (Caryophyllaceae): it was inferred that the Y-linked MADS-box gene AP3Y originated from a duplication of the reportedly autosomal orthologAP3A. However, a recent study, also using cytological methods, indicated that AP3A is X-linked in Silenelatifolia. Methodology/Principal Findings In this study, we hybridized S. latifolia and S. dioicato investigate whether the pattern of X linkage is consistent among distinct populations, occurs in both species, and is robust to genetic methods. We found inheritance patterns indicative of X linkage of AP3A in widely distributed populations of both species. Conclusions/Significance X linkage ofAP3A and Y linkage of AP3Yin both species indicates that the genes' ancestral progenitor resided on the autosomes that gave rise to the sex chromosomesand that neither gene has moved between chromosomes since species divergence.Consequently, our results do not support the contention that inter-chromosomal gene transfer occurred in the evolution of SlAP3Y from SlAP3A. PMID:21533056

  7. Cell-Specific Actions of a Human LHX3 Gene Enhancer During Pituitary and Spinal Cord Development

    PubMed Central

    Park, Soyoung; Mullen, Rachel D.

    2013-01-01

    The LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system. PMID:24100213

  8. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome

    PubMed Central

    Pauler, Florian M.; Sloane, Mathew A.; Huang, Ru; Regha, Kakkad; Koerner, Martha V.; Tamir, Ido; Sommer, Andreas; Aszodi, Andras; Jenuwein, Thomas; Barlow, Denise P.

    2009-01-01

    In mammals, genome-wide chromatin maps and immunofluorescence studies show that broad domains of repressive histone modifications are present on pericentromeric and telomeric repeats and on the inactive X chromosome. However, only a few autosomal loci such as silent Hox gene clusters have been shown to lie in broad domains of repressive histone modifications. Here we present a ChIP-chip analysis of the repressive H3K27me3 histone modification along chr 17 in mouse embryonic fibroblast cells using an algorithm named broad local enrichments (BLOCs), which allows the identification of broad regions of histone modifications. Our results, confirmed by BLOC analysis of a whole genome ChIP-seq data set, show that the majority of H3K27me3 modifications form BLOCs rather than focal peaks. H3K27me3 BLOCs modify silent genes of all types, plus flanking intergenic regions and their distribution indicates a negative correlation between H3K27me3 and transcription. However, we also found that some nontranscribed gene-poor regions lack H3K27me3. We therefore performed a low-resolution analysis of whole mouse chr 17, which revealed that H3K27me3 is enriched in mega-base-pair-sized domains that are also enriched for genes, short interspersed elements (SINEs) and active histone modifications. These genic H3K27me3 domains alternate with similar-sized gene-poor domains. These are deficient in active histone modifications, as well as H3K27me3, but are enriched for long interspersed elements (LINEs) and long-terminal repeat (LTR) transposons and H3K9me3 and H4K20me3. Thus, an autosome can be seen to contain alternating chromatin bands that predominantly separate genes from one retrotransposon class, which could offer unique domains for the specific regulation of genes or the silencing of autonomous retrotransposons. PMID:19047520

  9. PP128. Placental Caspase-3 gene polymorphisms is associated with preeclampsia.

    PubMed

    Hsu, C-D; Polavarapu, S; Parton, L

    2012-07-01

    Increased placental trophoblastic apoptosis (programmed cell death) was previously reported in pregnancies complicated by preeclampsia. Caspase-3 is one of the key executioners of apoptosis. Caspase are expressed in many tissues including human placental trophoblast and other tissues. Variations in the promoter area of the Caspase genes may modulate apoptotic signaling, contributing to an increased risk of preeclampsia To determine if gene polymorphisms of Caspase 3 proteins differ between patient with and without preeclampsia. Forty-three singleton placentas were studied. Twenty-two placentas were with preeclampsia and 21 were normotensive controls. DNA was extracted from placentas using QIAAmp DNA Minikit. Genotyping of Caspase 3 +567 was determined by real-time PCR using the Applied Biosystems Prism 7900 HT SDS machine. Chi-square and Fisher's exact tests were used for statistical analysis. There were no significant differences in maternal age, parity or race between the two groups. Preeclamptic placentas had higher frequency of wild type TT of Caspase-3 SNP (+567) as compared with normotensive controls (59% versus 28.5%). Preeclamptic placentas expressed significantly more genotype of TT of Caspase-3 SNP (+567) than normotensive patients when compared to CC (p=0.02). The alle frequencies of the Caspase SNP (+567) in preeclampstic placentas were 0.77 and 0.23 for T and C, respectively, as compared to 0.52 and 0.48, respectively, in placentas from normotensive pregnancies. Immune intolerance of maternal and placental interaction plays an important role in the pathogenesis of preeclampsia. Increased of placental apoptosis was reported in pregnancy complicated with preeclamsia. Our findings indicate placental Caspase 3 (+567) gene polymorphisms is associated with preeclampsia. Altered placental alle frequencies and caspase-3 SNP (+567) in preeclampsia further suggests preeclampsia is a trophoblastic disorder. Copyright © 2012. Published by Elsevier B.V.

  10. Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes

    PubMed Central

    Angiolilli, Chiara; Kabala, Pawel A; Van Baarsen, Iris M; Ferguson, Bradley S; García, Samuel; Malvar Fernandez, Beatriz; McKinsey, Timothy A; Tak, Paul P; Fossati, Gianluca; Mascagni, Paolo; Baeten, Dominique L; Reedquist, Kris A

    2017-01-01

    Objectives Non-selective histone deacetylase (HDAC) inhibitors (HDACi) have demonstrated anti-inflammatory properties in both in vitro and in vivo models of rheumatoid arthritis (RA). Here, we investigated the potential contribution of specific class I and class IIb HDACs to inflammatory gene expression in RA fibroblast-like synoviocytes (FLS). Methods RA FLS were incubated with pan-HDACi (ITF2357, givinostat) or selective HDAC1/2i, HDAC3/6i, HDAC6i and HDAC8i. Alternatively, FLS were transfected with HDAC3, HDAC6 or interferon (IFN)-α/β receptor alpha chain (IFNAR1) siRNA. mRNA expression of interleukin (IL)-1β-inducible genes was measured by quantitative PCR (qPCR) array and signalling pathway activation by immunoblotting and DNA-binding assays. Results HDAC3/6i, but not HDAC1/2i and HDAC8i, significantly suppressed the majority of IL-1β-inducible genes targeted by pan-HDACi in RA FLS. Silencing of HDAC3 expression reproduced the effects of HDAC3/6i on gene regulation, contrary to HDAC6-specific inhibition and HDAC6 silencing. Screening of the candidate signal transducers and activators of transcription (STAT)1 transcription factor revealed that HDAC3/6i abrogated STAT1 Tyr701 phosphorylation and DNA binding, but did not affect STAT1 acetylation. HDAC3 activity was required for type I IFN production and subsequent STAT1 activation in FLS. Suppression of type I IFN release by HDAC3/6i resulted in reduced expression of a subset of IFN-dependent genes, including the chemokines CXCL9 and CXCL11. Conclusions Inhibition of HDAC3 in RA FLS largely recapitulates the effects of pan-HDACi in suppressing inflammatory gene expression, including type I IFN production in RA FLS. Our results identify HDAC3 as a potential therapeutic target in the treatment of RA and type I IFN-driven autoimmune diseases. PMID:27457515

  11. Isolation, sequence identification and tissue expression profiles of 3 novel porcine genes: ASPA, NAGA, and HEXA.

    PubMed

    Shu, Xianghua; Liu, Yonggang; Yang, Liangyu; Song, Chunlian; Hou, Jiafa

    2008-01-01

    The complete coding sequences of 3 porcine genes - ASPA, NAGA, and HEXA - were amplified by the reverse transcriptase polymerase chain reaction (RT-PCR) based on the conserved sequence information of the mouse or other mammals and referenced pig ESTs. These 3 novel porcine genes were then deposited in the NCBI database and assigned GeneIDs: 100142661, 100142664 and 100142667. The phylogenetic tree analysis revealed that the porcine ASPA, NAGA, and HEXA all have closer genetic relationships with the ASPA, NAGA, and HEXA of cattle. Tissue expression profile analysis was also carried out and results revealed that swine ASPA, NAGA, and HEXA genes were differentially expressed in various organs, including skeletal muscle, the heart, liver, fat, kidney, lung, and small and large intestines. Our experiment is the first one to establish the foundation for further research on these 3 swine genes.

  12. Characterization and evaluation of apoptotic potential of double gene construct pVIVO.VP3.NS1.

    PubMed

    Saxena, Shikha; Desai, G S; Kumar, G Ravi; Sahoo, A P; Santra, Lakshman; Singh, Lakshya Veer

    2015-05-01

    Viral gene oncotherapy, targeted killing of cancer cells by viral genes, is an emerging non-infectious therapeutic cancer treatment modality. Chemo and radiotherapy in cancer treatment is limited due to their genotoxic side effects on healthy cells and need of functional p53, which is mutated in most of the cancers. VP3 (apoptin) of chicken infectious anaemia (CIA) and NS1 (Non structural protein 1) of Canine Parvovirus-2 (CPV-2) have been proven to have oncolytic potential in our laboratory. To evaluate oncolytic potential of VP3 and NS1 together these genes needed to be cloned in a bicistronic vector. In this study, both these genes were cloned and characterized for expression of their gene products and its apoptotic potential. The expression of VP3 and NS1 was studied by confocal microscopy and flowcytometry. Expression of VP3 and NS1 in pVIVO.VP3.NS1 transfected HeLa cells in comparison to mock transfected cells indicated that the double gene construct expresses both the products. This was further confirmed by flowcytometry where there was increase in cells expressing VP3 and NS1 in pVIVO.VP3.NS1 transfected group in comparison with the mock control group. The apoptotic inducing potential of this characterized pVIVO.VP3.NS1 was evaluated in human cervical cancer cell line (HeLa) by DNA fragmentation assay, TUNEL assay and Hoechst staning. This double construct was observed to induce apoptosis in HeLa cells.

  13. Transcription of PR3 and Related Myelopoiesis Genes in Peripheral Blood Mononuclear Cells in Active Wegener's Granulomatosis

    PubMed Central

    Cheadle, Chris; Berger, Alan E.; Andrade, Felipe; James, Regina; Johnson, Kristen; Watkins, Tonya; Park, Jin Kyun; Chen, Yu-Chi; Ehrlich, Eva; Mullins, Marissa; Chrest, Francis; Barnes, Kathleen C.; Levine, Stuart M.

    2010-01-01

    Objective Wegener's granulomatosis (WG) is a systemic inflammatory disease causing substantial morbidity. This study seeks to understand the biology underlying WG, and to discover markers of disease activity useful in prognosis and treatment guidance. Methods Gene expression profiling was performed using total RNA from PBMC and granulocyte fractions from 41 WG patients and 23 healthy controls. Gene set enrichment analysis (GSEA) was performed to search for candidate WG-associated molecular pathways and disease activity biomarkers. Principal component analysis (PCA) was used to visualize relationships between subgroups of WG patients and controls. Longitudinal changes in PR3 expression were evaluated using RT-PCR, and clinical outcomes including remission status and disease activity were determined using the BVAS-WG. Results We identified 86 genes significantly up-regulated in WG PBMCs and 40 in WG PMNs relative to controls. Genes up-regulated in WG PBMCs were involved in myeloid differentiation, and included the WG autoantigen, PR3. The coordinated regulation of myeloid differentiation genes was confirmed by gene set analysis. Median expression values of the 86 WG PBMC genes were associated with disease activity (p=1.3 × 10−4), and patients expressing these genes at a lower level were only modestly different from healthy controls (p=0.07). PR3 transcription was significantly up-regulated in the PBMCs (p=1.3 ×10−5, FDR=0.002), but not in the PMNs (p=0.03, FDR=0.28) of WG patients, and changes in BVAS-WG tracked with PBMC PR3 RNA levels in a preliminary longitudinal analysis. Conclusion Transcription of PR3 and related myeloid differentiation genes in PBMCs may represent novel markers of disease activity in WG. PMID:20155833

  14. [Molecular mechanism of AtGA3OX1 and AtGA3OX2 genes affecting secondary wall thickening in stems in Arabidopsis].

    PubMed

    Wang, Zeng-Guang; Chai, Guo-Hua; Wang, Zhi-Yao; Tang, Xian-Feng; Sun, Chang-Jiang; Zhou, Gong-Ke; Ma, San-Mei

    2013-05-01

    Bioactive gibberellins (GAs) are a type of important plant growth regulators, which play the key roles in multiple processes, such as seed germination, leaf expansion, flowering, fruit bearing, and stem development. Its biosynthesis is regulated by a variety of enzymes including gibberellin 3-oxidase that is a key rate-limiting enzyme. In Arabidopsis, gibberellin 3-oxidase consists of four members, of which AtGA3OX1 and AtGA3OX2 are highly expressed in stems, suggesting the potential roles in the stem development played by the two genes. To date, there are few studies on AtGA3OX1 and AtGA3OX2 regulating secondary wall thickening in stems. In this study, we used the atga3ox1atga3ox2 double mutant as the materials to study the effects of AtGA3OX1 and AtGA3OX2 genes on secondary wall thickening in stems. The results indicated that simulations repression of AtGA3OX1 and AtGA3OX2 genes resulted in significantly reduction of secondary wall thickening of fiber cells, but not that of vessel cells. Three main components (cellulose, hemicelluloses, and lignin) were also dramatically suppressed in the double mutants. qRT-PCR analysis demonstrated that the expressions of secondary wall biosynthetic genes and the associated transcription factors were obviously affected in AtGA3OX1 and AtGA3OX2 double mutant. Therefore, we presume that Arabidopsis AtGA3OX1 and AtGA3OX2 genes might activate the expression of these transcription factors, thus regulate secondary wall thickening in stems. Together, our results provide a theoretical basis for enhancing the lodging resistance of food crops and improving the biomass of energy plants by genetically engineering Arabidopsis AtGA3OX homologs.

  15. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation.

    PubMed

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira; Kim, Seong-Jin

    2018-03-01

    Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2 , SNAI1 , and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B , CTGF , and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B , CTGF , and JUNB genes in various cancers.

  16. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea.

    PubMed

    He, Peiqing; Li, Li; Liu, Jihua; Bai, Yazhi; Fang, Xisheng

    2016-05-01

    Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity

    PubMed Central

    Hayward, Joshua A; Tachedjian, Mary; Cui, Jie; Cheng, Adam Z; Johnson, Adam; Baker, Michelle L; Harris, Reuben S; Wang, Lin-Fa

    2018-01-01

    Abstract Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here, we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals. PMID:29617834

  18. Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity.

    PubMed

    Hayward, Joshua A; Tachedjian, Mary; Cui, Jie; Cheng, Adam Z; Johnson, Adam; Baker, Michelle L; Harris, Reuben S; Wang, Lin-Fa; Tachedjian, Gilda

    2018-07-01

    Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here, we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals.

  19. HOGA1 Gene Mutations of Primary Hyperoxaluria Type 3 in Tunisian Patients.

    PubMed

    M'dimegh, Saoussen; Aquaviva-Bourdain, Cécile; Omezzine, Asma; Souche, Geneviéve; M'barek, Ibtihel; Abidi, Kamel; Gargah, Tahar; Abroug, Saoussen; Bouslama, Ali

    2017-05-01

    Primary hyperoxaluria type 3 (PH3) is due to mutations in the recently identified 4-hydroxy-2-oxoglutarate aldolase (HOGA1) gene. PH3 might be the least severe form with a milder phenotype with good preservation of kidney function in most patients. The aim of this study was to report three PH3 cases carrying mutations in HOGA1. Genetic analysis of HOGA1 was performed in patients with a high clinical suspicion of PH after sequencing of AGXT and GRHPR genes, which was negative. Also, a complete AGXT/GRHPR MLPA was performed in these patients in order to detect large deletions/insertions. Two different HOGA1 gene mutations were identified: the p.Pro190Leu in a homozygous state and the p.Gly287Val in two patients in homozygous and heterozygous carriers. The median age at onset of clinical symptoms was 3.93 years. Most of the patients had a positive family history for recurrent urolithiasis. The p.Pro190Leu mutation was reported with impaired renal function at follow-up; however, the p.Gly287Val was presented with normal renal function. All patients were presented with urolithiasis, but only one had a nephrocalcinosis. This study expanded the number of PH3 patients from 63 to 66 cases. The p.Pro190Leu and the p.Gly287Val mutations found in this study can provide a first-line investigation in Tunisian PH1 patients. © 2016 Wiley Periodicals, Inc.

  20. Association study of NDST3 gene for schizophrenia, bipolar disorder, major depressive disorder in the Han Chinese population.

    PubMed

    Wang, Lin; Chen, Jianhua; Li, Zhiqiang; Sun, Weiming; Chen, Boyu; Li, Sining; Li, Weidong; Lu, Dajiang; Wang, Yonggang; Shi, Yongyong

    2018-01-01

    The NDST3 gene at 4q26 was a functional candidate gene for mental disorders. Recently, a novel genome-wide significant risk locus at chromosome 4q26 was identified and the top single nucleotide polymorphism rs11098403 in the vicinity of NDST3 gene was reported to confer risk of schizophrenia in Caucasian. Nevertheless, association between NDST3 gene polymorphisms and schizophrenia, bipolar disorder, or major depressive disorders has not been well studied in the Han Chinese population. To further investigate whether NDST3 is a risk gene for these mental disorders, we genotyped and analyzed eight tag SNPs (rs11098403, rs10857057, rs2389521, rs4833564, rs6837896, rs7689157, rs3817274, rs609512) covering NDST3 gene in 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls of Chinese origin. However, there was no significant difference in allelic or genotypic frequency observed between each case group and healthy controls. Accordingly, our study does not support that the NDST3 gene plays a major role in schizophrenia, bipolar disorder, and major depressive disorder in the Han Chinese population. © 2017 Wiley Periodicals, Inc.

  1. Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes.

    PubMed

    De Feyter, R; Yang, Y; Gabriel, D W

    1993-01-01

    Six plasmid-borne avirulence (avr) genes were previously cloned from strain XcmH of the cotton pathogen, Xanthomonas campestris pv. malvacearum. We have now localized all six avr genes on the cloned fragments by subcloning and Tn5-gusA insertional mutagenesis. None of these avr genes appeared to exhibit exclusively gene-for-gene patterns of interactions with cotton R genes, and avrB4 was demonstrated to confer avr gene-for-R genes (plural) avirulence to X. c. pv. malvacearum on congenic cotton lines carrying either of two different resistance loci, B1 or B4. Furthermore, the B1 locus appeared to confer R gene-for-avr genes resistance to cotton against isogenic X. c. pv. malvacearum strains carrying any one of three avr genes: avrB4, avrb6, or avrB102. Restriction enzyme, Southern blot hybridization, and DNA sequence analyses showed that the XcmH avr genes are all highly similar to each other, to avrBs3 and avrBsP from the pepper pathogen X. c. pv. vesicatoria, and to the host-specific virulence gene pthA from the citrus pathogen X. citri. The XcmH avr genes differed primarily in the multiplicity of a tandemly repeated 102-base pair motif within the central portions of the genes, repeated from 14 to 23 times in members of this gene family. The complete nucleotide sequence of avrb6 revealed that it is 97% identical in DNA sequence to avrB4, avrBs3, avrBsP, and pthA and that 62-bp inverted terminal repeats mark the boundaries of homology between avrb6 and all members of this Xanthomonas virulence/avirulence gene family sequenced to date. The terminal 38 bp of both inverted repeats are highly similar to the 38-bp consensus terminal sequence of the Tn3 family of transposons. Up to 11 members of the avr gene family appear to be present in North American strains of X. c. pv. malvacearum, including XcmH. The high level of homology observed among these avr genes and their presence in multiple copies may explain the gene-for-genes interactions and also the observed high

  2. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    PubMed Central

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  3. Wheat beta-expansin (EXPB11) genes: Identification of the expressed gene on chromosome 3BS carrying a pollen allergen domain

    PubMed Central

    2010-01-01

    Background Expansins form a large multi-gene family found in wheat and other cereal genomes that are involved in the expansion of cell walls as a tissue grows. The expansin family can be divided up into two main groups, namely, alpha-expansin (EXPA) and beta-expansin proteins (EXPB), with the EXPB group being of particular interest as group 1-pollen allergens. Results In this study, three beta-expansin genes were identified and characterized from a newly sequenced region of the Triticum aestivum cv. Chinese Spring chromosome 3B physical map at the Sr2 locus (FPC contig ctg11). The analysis of a 357 kb sub-sequence of FPC contig ctg11 identified one beta-expansin genes to be TaEXPB11, originally identified as a cDNA from the wheat cv Wyuna. Through the analysis of intron sequences of the three wheat cv. Chinese Spring genes, we propose that two of these beta-expansin genes are duplications of the TaEXPB11 gene. Comparative sequence analysis with two other wheat cultivars (cv. Westonia and cv. Hope) and a Triticum aestivum var. spelta line validated the identification of the Chinese Spring variant of TaEXPB11. The expression in maternal and grain tissues was confirmed by examining EST databases and carrying out RT-PCR experiments. Detailed examination of the position of TaEXPB11 relative to the locus encoding Sr2 disease resistance ruled out the possibility of this gene directly contributing to the resistance phenotype. Conclusions Through 3-D structural protein comparisons with Zea mays EXPB1, we proposed that variations within the coding sequence of TaEXPB11 in wheats may produce a functional change within features such as domain 1 related to possible involvement in cell wall structure and domain 2 defining the pollen allergen domain and binding to IgE protein. The variation established in this gene suggests it is a clearly identifiable member of a gene family and reflects the dynamic features of the wheat genome as it adapted to a range of different environments

  4. SH3BP4, a novel pigmentation gene, is inversely regulated by miR-125b and MITF

    PubMed Central

    Kim, Kyu-Han; Lee, Tae Ryong; Cho, Eun-Gyung

    2017-01-01

    Our previous work has identified miR-125b as a negative regulator of melanogenesis. However, the specific melanogenesis-related genes targeted by this miRNA had not been identified. In this study, we established a screening strategy involving three consecutive analytical approaches—analysis of target genes of miR-125b, expression correlation analysis between each target gene and representative pigmentary genes, and functional analysis of candidate genes related to melanogenesis—to discover melanogenesis-related genes targeted by miR-125b. Through these analyses, we identified SRC homology 3 domain-binding protein 4 (SH3BP4) as a novel pigmentation gene. In addition, by combining bioinformatics analysis and experimental validation, we demonstrated that SH3BP4 is a direct target of miR-125b. Finally, we found that SH3BP4 is transcriptionally regulated by microphthalmia-associated transcription factor as its direct target. These findings provide important insights into the roles of miRNAs and their targets in melanogenesis. PMID:28819321

  5. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta.

    PubMed

    Peng, Maoxiao; Niu, Donghong; Wang, Fei; Chen, Zhiyi; Li, Jiale

    2016-08-01

    Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci

    PubMed Central

    Noordermeer, Daan; Leleu, Marion; Schorderet, Patrick; Joye, Elisabeth; Chabaud, Fabienne; Duboule, Denis

    2014-01-01

    Hox genes are essential regulators of embryonic development. Their step-wise transcriptional activation follows their genomic topology and the various states of activation are subsequently memorized into domains of progressively overlapping gene products. We have analyzed the 3D chromatin organization of Hox clusters during their early activation in vivo, using high-resolution circular chromosome conformation capture. Initially, Hox clusters are organized as single chromatin compartments containing all genes and bivalent chromatin marks. Transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch autonomously from an inactive to an active compartment. These local 3D dynamics occur within a framework of constitutive interactions within the surrounding Topological Associated Domains, indicating that this regulation process is mostly cluster intrinsic. The step-wise progression in time is fixed at various body levels and thus can account for the chromatin architectures previously described at a later stage for different anterior to posterior levels. DOI: http://dx.doi.org/10.7554/eLife.02557.001 PMID:24843030

  7. Gene Augmentation Therapy for a Missense Substitution in the cGMP-Binding Domain of Ovine CNGA3 Gene Restores Vision in Day-Blind Sheep

    PubMed Central

    Gootwine, Elisha; Abu-Siam, Mazen; Obolensky, Alexey; Rosov, Alex; Honig, Hen; Nitzan, Tali; Shirak, Andrey; Ezra-Elia, Raaya; Yamin, Esther; Banin, Eyal; Averbukh, Edward; Hauswirth, William W.; Ofri, Ron; Seroussi, Eyal

    2017-01-01

    Purpose Applying CNGA3 gene augmentation therapy to cure a novel causative mutation underlying achromatopsia (ACHM) in sheep. Methods Impaired vision that spontaneously appeared in newborn lambs was characterized by behavioral, electroretinographic (ERG), and histologic techniques. Deep-sequencing reads of an affected lamb and an unaffected lamb were compared within conserved genomic regions orthologous to human genes involved in similar visual impairment. Observed nonsynonymous amino acid substitutions were classified by their deleteriousness score. The putative causative mutation was assessed by producing compound CNGA3 heterozygotes and applying gene augmentation therapy using the orthologous human cDNA. Results Behavioral assessment revealed day blindness, and subsequent ERG examination showed attenuated photopic responses. Histologic and immunohistochemical examination of affected sheep eyes did not reveal degeneration, and cone photoreceptors expressing CNGA3 were present. Bioinformatics and sequencing analyses suggested a c.1618G>A, p.Gly540Ser substitution in the GMP-binding domain of CNGA3 as the causative mutation. This was confirmed by genetic concordance test and by genetic complementation experiment: All five compound CNGA3 heterozygotes, carrying both p.Arg236* and p.Gly540Ser mutations in CNGA3, were day-blind. Furthermore, subretinal delivery of the intact human CNGA3 gene using an adeno-associated viral vector (AAV) restored photopic vision in two affected p.Gly540Ser homozygous rams. Conclusions The c.1618G>A, p.Gly540Ser substitution in CNGA3 was identified as the causative mutation for a novel form of ACHM in Awassi sheep. Gene augmentation therapy restored vision in the affected sheep. This novel mutation provides a large-animal model that is valid for most human CNGA3 ACHM patients; the majority of them carry missense rather than premature-termination mutations. PMID:28282490

  8. Gene Augmentation Therapy for a Missense Substitution in the cGMP-Binding Domain of Ovine CNGA3 Gene Restores Vision in Day-Blind Sheep.

    PubMed

    Gootwine, Elisha; Abu-Siam, Mazen; Obolensky, Alexey; Rosov, Alex; Honig, Hen; Nitzan, Tali; Shirak, Andrey; Ezra-Elia, Raaya; Yamin, Esther; Banin, Eyal; Averbukh, Edward; Hauswirth, William W; Ofri, Ron; Seroussi, Eyal

    2017-03-01

    Applying CNGA3 gene augmentation therapy to cure a novel causative mutation underlying achromatopsia (ACHM) in sheep. Impaired vision that spontaneously appeared in newborn lambs was characterized by behavioral, electroretinographic (ERG), and histologic techniques. Deep-sequencing reads of an affected lamb and an unaffected lamb were compared within conserved genomic regions orthologous to human genes involved in similar visual impairment. Observed nonsynonymous amino acid substitutions were classified by their deleteriousness score. The putative causative mutation was assessed by producing compound CNGA3 heterozygotes and applying gene augmentation therapy using the orthologous human cDNA. Behavioral assessment revealed day blindness, and subsequent ERG examination showed attenuated photopic responses. Histologic and immunohistochemical examination of affected sheep eyes did not reveal degeneration, and cone photoreceptors expressing CNGA3 were present. Bioinformatics and sequencing analyses suggested a c.1618G>A, p.Gly540Ser substitution in the GMP-binding domain of CNGA3 as the causative mutation. This was confirmed by genetic concordance test and by genetic complementation experiment: All five compound CNGA3 heterozygotes, carrying both p.Arg236* and p.Gly540Ser mutations in CNGA3, were day-blind. Furthermore, subretinal delivery of the intact human CNGA3 gene using an adeno-associated viral vector (AAV) restored photopic vision in two affected p.Gly540Ser homozygous rams. The c.1618G>A, p.Gly540Ser substitution in CNGA3 was identified as the causative mutation for a novel form of ACHM in Awassi sheep. Gene augmentation therapy restored vision in the affected sheep. This novel mutation provides a large-animal model that is valid for most human CNGA3 ACHM patients; the majority of them carry missense rather than premature-termination mutations.

  9. Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression.

    PubMed

    Schiro, Michelle M; Stauber, Sara E; Peterson, Tami L; Krueger, Chateen; Darnell, Steven J; Satyshur, Kenneth A; Drinkwater, Norman R; Newton, Michael A; Hoffmann, F Michael

    2011-01-01

    Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for

  10. Alteration of the SETBP1 gene and splicing pathway genes SF3B1, U2AF1, and SRSF2 in childhood acute myeloid leukemia.

    PubMed

    Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2015-01-01

    Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.

  11. [CCR5, CCR2, apoe, p53, ITGB3 and HFE gene polymorphism in Western Siberia long-livers].

    PubMed

    Ivanoshchuk, D E; Mikhaĭlova, S V; Kulikov, I V; Maksimov, V N; Voevoda, M I; Romashchenko, A G

    2012-01-01

    In order to estimate the distribution of some polymorphisms for the CCR5, CCR2, apoE, p53, ITGB3, and HFE genes in Russian long-livers from Western Siberia, a sample of 271 individuals (range 90-105 years) was examined. It was demonstrated that carriage of the delta32 polymorphism for the CCR5 gene, V64/polymorphism for the CCR2 gene, e2/e3/e4 for the apoE gene, L33P for the ITGB3 gene, as well as H63D and S65C polymorphisms for the HFE gene does not influence on predisposition to the longevity; carriage of the 282 Y allele for the HFE gene negatively influences on the longevity; carriage of the heterozygous genotype for the R72P polymorphism for the p53 gene correlates with the longevity of elderly people.

  12. CHARACTERIZATION OF INFLAMMATORY GENE EXPRESSION AND GALECTIN-3 FUNCTION AFTER SPINAL CORD INJURY IN MICE

    PubMed Central

    Pajoohesh-Ganji, Ahdeah; Knoblach, Susan M.; Faden, Alan I.; Byrnes, Kimberly R.

    2012-01-01

    Inflammation has long been implicated in secondary tissue damage after spinal cord injury (SCI). Our previous studies of inflammatory gene expression in rats after SCI revealed two temporally correlated clusters: the first was expressed early after injury and the second was up-regulated later, with peak expression at 1–2 weeks and persistent up-regulation through 6 months. To further address the role of inflammation after SCI, we examined inflammatory genes in a second species, mice, through 28 days after SCI. Using anchor gene clustering analysis, we found similar expression patterns for both the acute and chronic gene clusters previously identified after rat SCI. The acute group returned to normal expression levels by 7 days post-injury. The chronic group, which included C1qB, p22phox and galectin-3, showed peak expression at 7 days and remained up-regulated through 28 days. Immunohistochemistry and western blot analysis showed that the protein expression of these genes was consistent with the mRNA expression. Further exploration of the role of one of these genes, galectin-3, suggests that galectin-3 may contribute to secondary injury. In summary, our findings extend our prior gene profiling data by demonstrating the chronic expression of a cluster of microglial associated inflammatory genes after SCI in mice. Moreover, by demonstrating that inhibition of one such factor improves recovery, the findings suggest that such chronic up-regulation of inflammatory processes may contribute to secondary tissue damage after SCI, and that there may be a broader therapeutic window for neuroprotection than generally accepted. PMID:22884909

  13. The Norrie disease gene maps to a 150 kb region on chromosome Xp11.3.

    PubMed

    Sims, K B; Lebo, R V; Benson, G; Shalish, C; Schuback, D; Chen, Z Y; Bruns, G; Craig, I W; Golbus, M S; Breakefield, X O

    1992-05-01

    Norrie disease is a human X-linked recessive disorder of unknown etiology characterized by congenital blindness, sensory neural deafness and mental retardation. This disease gene was previously linked to the DXS7 (L1.28) locus and the MAO genes in band Xp11.3. We report here fine physical mapping of the obligate region containing the Norrie disease gene (NDP) defined by a recombination and by the smallest submicroscopic chromosomal deletion associated with Norrie disease identified to date. Analysis, using in addition two overlapping YAC clones from this region, allowed orientation of the MAOA and MAOB genes in a 5'-3'-3'-5' configuration. A recombination event between a (GT)n polymorphism in intron 2 of the MAOB gene and the NDP locus, in a family previously reported to have a recombination between DXS7 and NDP, delineates a flanking marker telomeric to this disease gene. An anonymous DNA probe, dc12, present in one of the YACs and in a patient with a submicroscopic deletion which includes MAOA and MAOB but not L1.28, serves as a flanking marker centromeric to the disease gene. An Alu-PCR fragment from the right arm of the MAO YAC (YMAO.AluR) is not deleted in this patient and also delineates the centromeric extent of the obligate disease region. The apparent order of these loci is telomere ... DXS7-MAOA-MAOB-NDP-dc12-YMAO.AluR ... centromere. Together these data define the obligate region containing the NDP gene to a chromosomal segment less than 150 kb.

  14. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation.

    PubMed

    Homma, Kohei; Usui, Sumiko; Kaneda, Makoto

    2017-03-01

    Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  15. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    PubMed

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  16. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    PubMed

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A possible regulatory link between Twist 1 and PPARγ gene regulation in 3T3-L1 adipocytes.

    PubMed

    Ren, Rui; Chen, Zhufeng; Zhao, Xia; Sun, Tao; Zhang, Yuchao; Chen, Jie; Lu, Sumei; Ma, Wanshan

    2016-11-08

    Peroxisome proliferator-activated receptor γ (PPARγ) is a critical gene that regulates the function of adipocytes. Therefore, studies on the molecular regulation mechanism of PPARγ are important to understand the function of adipose tissue. Twist 1 is another important functional gene in adipose tissue, and hundreds of genes are regulated by Twist 1. The aim of this study was to investigate the regulation of Twist 1 and PPARγ expression in 3T3-L1 mature adipocytes. We induced differentiation in 3T3-L1 preadipocytes and examined alterations in Twist 1 and PPARγ expression. We used the PPARγ agonist pioglitazone and the PPARγ antagonist T0070907 to investigate the effect of PPARγ on Twist 1 expression. In addition, we utilized retroviral interference and overexpression of Twist 1 to determine the effects of Twist 1 on PPARγ expression. The expression levels of Twist 1 and PPARγ were induced during differentiation in 3T3-L1 adipocytes. Application of either a PPARγ agonist (pioglitazone) or antagonist (T0070907) influenced Twist 1 expression, with up-regulation of Twist 1 under pioglitazone (1 μM, 24 h) and down-regulation of Twist 1 under T0070907 (100 μM, 24 h) exposure. Furthermore, the retroviral interference of Twist 1 decreased the protein and mRNA expression of PPARγ, while Twist 1 overexpression had the opposite effect. There was a possible regulatory link between Twist 1 and PPARγ in 3T3-L1 mature adipocytes. This regulatory link enhanced the regulation of PPARγ and may be a functional mechanism of Twist 1 regulation of adipocyte physiology and pathology.

  18. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.

    PubMed

    Gorman, Matthew J; Poddar, Subhajit; Farzan, Michael; Diamond, Michael S

    2016-09-15

    The interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance of Ifitm3 in vivo in restricting viral pathogenesis, we investigated its significance as an antiviral gene against West Nile virus (WNV), an encephalitic flavivirus, in cells and mice. Ifitm3(-/-) mice were more vulnerable to lethal WNV infection, and this was associated with greater virus accumulation in peripheral organs and central nervous system tissues. As no difference in viral burden in the brain or spinal cord was observed after direct intracranial inoculation, Ifitm3 likely functions as an antiviral protein in nonneuronal cells. Consistent with this, Ifitm3(-/-) fibroblasts but not dendritic cells resulted in higher yields of WNV in multistep growth analyses. Moreover, transcomplementation experiments showed that Ifitm3 inhibited WNV infection independently of Ifitm1, Ifitm2, Ifitm5, and Ifitm6. Beyond a direct effect on viral infection in cells, analysis of the immune response in WNV-infected Ifitm3(-/-) mice showed decreases in the total number of B cells, CD4(+) T cells, and antigen-specific CD8(+) T cells. Finally, bone marrow chimera experiments demonstrated that Ifitm3 functioned in both radioresistant and radiosensitive cells, as higher levels of WNV were observed in the brain only when Ifitm3 was absent from both compartments. Our analyses suggest that Ifitm3 restricts WNV pathogenesis likely through multiple mechanisms, including the direct control of infection in subsets of cells. As part of the mammalian host response to viral infections, hundreds of interferon-stimulated genes (ISGs) are induced. The inhibitory activity of individual ISGs varies depending on the specific cell type and viral pathogen. Among ISGs, the genes encoding interferon-induced transmembrane protein (IFITM

  19. N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide decreases triglyceride levels by downregulation of Apoc3 gene expression in acute hyperlipidemic rat model.

    PubMed

    Hamadneh, Lama; Al-Essa, Luay; Hikmat, Suhair; Al-Qirim, Tariq; Abu Sheikha, Ghassan; Al-Hiari, Yusuf; Azmy, Nisrin; Shattat, Ghassan

    2017-07-01

    Hyperlipidemia is a known cause of coronary vascular diseases, which is a major cause of death in many parts of the world. Targeting several pathways that lead to increase in lipid profiles is of great potential to control diseases. 1H-indole-2-carboxamide derivatives were tested for their hypolipidemic activity at the molecular level in comparison with bezafibrate. The gene expression profiles of lipoprotein signaling and cholesterol metabolism and fatty acid metabolism PCR arrays were determined in rats with acute hyperlipidemia induced by Triton WR1339. Lipid profiles of serum from treated rats showed significant hypolipidemic effect by the compounds. Several genes of potential interest were reported to be overexpressed by Triton WR1339 including Apoc3, Apob, Hmgcs2, Apoa1, Apoe, Apof, acsl1, and Decr1. Most of the overexpressed genes were downregulated by N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide with significant decreases in Apoc3, Apob, Acaa2, Acsl1, and Slc247a5 gene expression levels. N-(4-Benzoylphenyl)-1H-Indole-2-Carboxamide and bezafibrate did not significantly affect the gene expression levels which were increased with acute hyperlipidemia induced by Triton WR1339. In conclusion, gene expression profiling identified the possible mechanism in which Triton WR1339 induces its acute hyperlipidemic effect which was reversed by the use of N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide.

  20. Cytoskeletal actin genes function downstream of HNF-3beta in ascidian notochord development.

    PubMed

    Jeffery, W R; Ewing, N; Machula, J; Olsen, C L; Swalla, B J

    1998-11-01

    We have examined the expression and regulation of cytoskeletal actin genes in ascidians with tailed (Molgula oculata) and tailless larvae (Molgula occulta). Four cDNA clones were isolated representing two pairs of orthologous cytoskeletal actin genes (CA1 and CA2), which encode proteins differing by five amino acids in the tailed and tailless species. The CA1 and CA2 genes are present in one or two copies, although several related genes may also be present in both species. Maternal CA1 and CA2 mRNA is present in small oocytes but transcript levels later decline, suggesting a role in early oogenesis. In the tailed species, embryonic CA1 and CA2 mRNAs first appear in the presumptive mesenchyme and muscle cells during gastrulation, subsequently accumulate in the presumptive notochord cells, and can be detected in these tissues through the tadpole stage. CA1 mRNAs accumulate initially in the same tissues in the tailless species but subsequently disappear, in concert with the arrest of notochord and tail development. In contrast, CA2 mRNAs were not detected in embryos of the tailless species. Fertilization of eggs of the tailless species with sperm of the tailed species, which restores the notochord and the tail, also results in the upregulation of CA1 and CA2 gene expression in hybrid embryos. Antisense oligodeoxynucleotide experiments suggest that CA1 and CA2 expression in the notochord, but not in the muscle cells, is dependent on prior expression of Mocc FHI, an ascidian HNF-3beta-like gene. The expression of the CA1 and CA2 genes in the notochord in the tailed species, downregulation in the tailless species, upregulation in interspecific hybrids, and dependence on HNF-3beta activity is consistent with a role of these genes in development of the ascidian notochord.

  1. Differential gene expression by 1,25(OH)2D3 in an endometriosis stromal cell line.

    PubMed

    Ingles, Sue Ann; Wu, Liang; Liu, Benjamin T; Chen, Yibu; Wang, Chun-Yeh; Templeman, Claire; Brueggmann, Doerthe

    2017-10-01

    Endometriosis is a common female reproductive disease characterized by invasion of endometrial cells into other organs, frequently causing pelvic pain and infertility. Alterations of the vitamin D system have been linked to endometriosis incidence and severity. To shed light on the potential mechanism for these associations, we examined the effects of 1,25(OH) 2 D 3 on gene expression in endometriosis cells. Stromal cell lines derived from endometriosis tissue were treated with 1,25(OH) 2 D 3 , and RNA-seq was used to identify genes differentially expressed between treated and untreated cells. Gene ontology and pathway analyses were carried out using Partek Flow and Ingenuity software suites, respectively. We identified 1627 genes that were differentially expressed (886 down-regulated and 741 up-regulated) by 1,25(OH) 2 D 3 . Only one gene, CYP24A1, was strongly up-regulated (369-fold). Many genes were strongly down-regulated. 1,25(OH) 2 D 3 treatment down-regulated several genetic pathways related to neuroangiogenesis, cellular motility, and invasion, including pathways for axonal guidance, Rho GDP signaling, and matrix metalloprotease inhibition. These findings support a role for vitamin D in the pathophysiology of endometriosis, and provide new targets for investigation into possible causes and treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment

    PubMed Central

    Chowdhury, Asif H.; Hasson, Dan; Dyer, Michael A.

    2016-01-01

    ABSTRACT ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through the regulation of repetitive sequences, such as rDNA, retrotransposons, and pericentromeric and telomeric repeats. However, few direct ATRX target genes have been identified and high-throughput genomic approaches are currently lacking for ATRX. Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human cell lines, in which we identify the 3′ exons of zinc finger genes (ZNFs) as a new class of ATRX targets. These 3′ exonic regions encode the zinc finger motifs, which can range from 1–40 copies per ZNF gene and share large stretches of sequence similarity. These regions often contain an atypical chromatin signature: they are transcriptionally active, contain high levels of H3K36me3, and are paradoxically enriched in H3K9me3. We find that these ZNF 3′ exons are co-occupied by SETDB1, TRIM28, and ZNF274, which form a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) a reduction of H3K9me3 at the ZNF 3′ exons in the absence of ATRX and ZNF274 and, (ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, suggesting that ATRX binds to the 3′ exons of ZNFs to maintain their genomic stability through preservation of H3K9me3. PMID:27029610

  3. IDENTIFICATION OF NOVEL FIBROBLAST GROWTH FACTOR RECEPTOR 3 GENE MUTATIONS IN ACTINIC CHEILITIS

    PubMed Central

    Chou, Annie; Dekker, Nusi; Jordan, Richard C.K.

    2009-01-01

    Objective Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are responsible for several craniosynostosis and chondrodysplasia syndromes as well as some human cancers including bladder and cervical carcinoma. Despite a high frequency in some benign skin disorders, FGFR3 mutations have not been reported in cutaneous malignancies. Actinic cheilitis (AC) is a sun-induced premalignancy affecting the lower lip that frequently progresses to squamous cell carcinoma (SCC). The objective of this study was to determine if FGFR3 gene mutations are present in AC and SCC of the lip. Study Design DNA was extracted and purified from micro-dissected, formalin-fixed, paraffin-embedded tissue sections of 20 cases of AC and SCC arising in AC. Exons 7, 15, and 17 were PCR amplified and direct sequenced. Results Four novel somatic mutations in the FGFR3 gene were identified: exon 7 mutation 742C→T (amino acid change R248C), exon 15 mutations 1850A→G (D617G) and 1888G→A (V630M), and exon 17 mutation 2056G→A (E686K). Grade of dysplasia did not correlate with presence of mutations. Conclusion The frequency of FGFR3 receptor mutations suggests a functional role for the FGFR3 receptor in the development of epithelial disorders and perhaps a change may contribute to the pathogenesis of some AC and SCC. PMID:19327639

  4. The genetic architecture of 3'untranslated region of the MICA gene: polymorphisms and haplotypes.

    PubMed

    Luo, Jia; Tian, Wei; Liu, Xue Xiang; Yu, JunLong; Li, LiXin; Pan, FengHua

    2013-10-01

    In this study, the 3'untranslated region (3'UTR) of MHC class I chain-related gene A (MICA) were investigated in 104 healthy, unrelated Han individuals recruited from northern China, using PCR-sequencing method. Nine polymorphic sites were detected, which were in very strong linkage disequilibrium with each other .Seven different MICA 3'UTR alleles were identified, among which UTR1 predominated (0.6971),followed by UTR2 (0.2356). Twenty-one extended haplotypes incorporating the 3'UTR and MICA exons 2-5 were observed in this population. Phylogenetic analysis revealed the existence of two MICA lineages, each with multiple subsets. The 2 lineages were primarily linked to UTR1 and UTR2 in the 3'UTR, respectively. Ewens-Watterson homozygosity statistics at MICA coding and 3'UTR regions were consistent with neutral expectations. Our data provided for the first time the data of genetic variation in the 3'UTR of MICA gene in human populations. The findings are valuable for future studies of the mechanisms underlying MICA post-transcriptional regulation, and will inform studies of evolution of the MHC gene complex. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  5. Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas

    PubMed Central

    Specht, Katja; Zhang, Lei; Sung, Yun-Shao; Nucci, Marisa; Dry, Sarah; Vaiyapuri, Sumathi; Richter, Gunther HS; Fletcher, Christopher DM; Antonescu, Cristina R

    2015-01-01

    Small blue round cell tumors (SBRCTs) are a heterogenous group of tumors that are difficult to diagnose due to overlapping morphologic, immunohistochemical and clinical features. About two-thirds of EWSR1-negative SBRCTs are associated with CIC-DUX4 related fusions, while another small subset shows BCOR-CCNB3 X-chromosomal paracentric inversion. Applying paired-end RNA sequencing to an SBRCT index case of a 44 year-old male, we identified a novel BCOR-MAML3 chimeric fusion, which was validated by RT-PCR and FISH techniques. We then screened a total of 75 SBRCTs lacking EWSR1, FUS, SYT, CIC and BCOR-CCNB3 abnormalities, for BCOR break-apart probes by FISH to detect potential recurrent BCOR gene rearrangements, outside the typical X-chromosomal inversion. Indeed, 8/75 (11%) SBRCTs showed distinct BCOR gene rearrangements, with 2 cases each showing either a BCOR-MAML3 or the alternative ZC3H7B-BCOR fusion, while no fusion partner was detected in the remaining 4 cases. Gene expression of the BCOR-MAML3 positive index case showed a distinct transcriptional profile with upregulation of HOX-gene signature, compared to classic Ewing sarcoma or CIC-DUX4-positive SBRCTs. The clinicopathologic features of the SRBCTs with alternative BCOR rearrangements were also compared with a group of BCOR-CCNB3 inversion positive cases, combining 11 from our files with a meta-analysis of 42 published cases. The BCOR-CCNB3-positive tumors occurred preferentially in children and in bone, in contrast to alternative BCOR-rearranged SBRCTs which presented in young adults, with a variable anatomic distribution. Furthermore BCOR-rearranged tumors often displayed spindle cell areas, either well-defined in intersecting fascicles or blending with the round cell component, which appears distinct from most other fusion-positive SBRCTs and shares histologic overlap with poorly differentiated synovial sarcoma. PMID:26752546

  6. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation

    PubMed Central

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira

    2018-01-01

    Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers. PMID:29629343

  7. [Hereditary hypomelanocytoses: the role of PAX3, SOX10, MITF, SNAI2, KIT, EDN3 and EDNRB genes].

    PubMed

    Otręba, Michał; Miliński, Maciej; Buszman, Ewa; Wrześniok, Dorota; Beberok, Artur

    2013-11-26

    Hypo- and hyperpigmentation disorders are the most severe dermatological diseases observed in patients from all over the world. These disorders can be divided into melanoses connected with disorders of melanocyte function and melanocytoses connected with melanocyte development. The article presents some hereditary hypomelanocytoses, which are caused by abnormal melanoblast development, migration and proliferation as well as by abnormal melanocyte viability and proliferation. These disorders are represented by Waardenburg syndrome, piebaldism and Tietz syndrome, and are caused by different mutations of various or the same genes. The types of mutations comprise missense and nonsense mutations, frameshifts (in-frame insertions or deletions), truncating variations, splice alterations and non-stop mutations. It has been demonstrated that mutations of the same gene may cause different hypopigmentation syndromes that may have similar phenotypes. For example, mutations of the MITF gene cause Waardenburg syndrome type 2A as well as Tietz syndrome. It has also been demonstrated that mutations of different genes may cause an identical syndrome. For example, mutations of MITF, SNAI2 and SOX10 genes are observed in Waardenburg syndrome type II and mutations of EDNRB, EDN3 and SOX10 genes are responsible for Waardenburg syndrome type IV. In turn, mutation of the KIT gene and/or heterozygous deletion of the SNAI2 gene result in piebaldism disease. The knowledge of the exact mechanisms of pigmentary disorders may be useful in the development of new therapeutic approaches to their treatment.

  8. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    PubMed

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. Copyright © 2013 Wiley Periodicals, Inc.

  9. Molecular characterization and expression profiling of BMP 3 gene in broiler and layer chicken.

    PubMed

    Divya, Devara; Bhattacharya, Tarun Kumar; Gnana Prakash, Manthani; Chatterjee, R N; Shukla, Renu; Guru Vishnu, Pothana Boyina; Vinoth, Amirthalingam; Dushyanth, Kotha

    2018-04-10

    A study was carried out to characterize and explore the expression profile of BMP 3 gene in control broiler and control layer chicken. The total open reading frame of BMP 3 (1389 bp) was cloned and sequenced. The control broiler and control layer chicken showed variation at nucleotide and amino acid level with reference gene (Gallus gallus, NCBI Acc. No. NM_001034819). When compared to reference gene, the control broiler showed four nucleotide differences (c.192A>G, c.519C>T, 903G>A and 960C>G), while, control layer showed variation at c.33G>C, 192A>G, 858G>A, 904G>A, 960C>G and 1257C>T making six differences in total. However, between control broiler and control layer lines, nucleotide differences was observed at c.33G>C, 519T>C, 858G>A, 903A>G, 904G>A and 1257C>T. The change at amino acid level between reference and control broiler was p.D320N and with control layer chicken, it was p.D302N and p.D320N. On the other hand, a single amino acid difference (p.D302N) was observed between the control broiler and control layer chicken lines. The phylogenetic study displayed a close relationship between broiler and layer lines and reference gene and also with other avian species resulting in a cluster formation. These cluster in turn displayed a distant link with the mammalian species. The expression profile of BMP 3 gene exhibited a variation at different stages of embryonic development and also at post embryonic period among the lines with control layer showing higher expression than that of broiler chicken. The protein was also detected in bone marrow tissue of broiler and layer lines by western blotting. It is concluded that the BMP 3 gene sequence differed at nucleotide and amino acid level among the lines and the gene expressed differentially at different periods of embryonic development and also at post hatch period.

  10. Genome-wide analysis and expression profiling suggest diverse roles of GH3 genes during development and abiotic stress responses in legumes

    PubMed Central

    Singh, Vikash K.; Jain, Mukesh; Garg, Rohini

    2014-01-01

    Growth hormone auxin regulates various cellular processes by altering the expression of diverse genes in plants. Among various auxin-responsive genes, GH3 genes maintain endogenous auxin homeostasis by conjugating excess of auxin with amino acids. GH3 genes have been characterized in many plant species, but not in legumes. In the present work, we identified members of GH3 gene family and analyzed their chromosomal distribution, gene structure, gene duplication and phylogenetic analysis in different legumes, including chickpea, soybean, Medicago, and Lotus. A comprehensive expression analysis in different vegetative and reproductive tissues/stages revealed that many of GH3 genes were expressed in a tissue-specific manner. Notably, chickpea CaGH3-3, soybean GmGH3-8 and -25, and Lotus LjGH3-4, -5, -9 and -18 genes were up-regulated in root, indicating their putative role in root development. In addition, chickpea CaGH3-1 and -7, and Medicago MtGH3-7, -8, and -9 were found to be highly induced under drought and/or salt stresses, suggesting their role in abiotic stress responses. We also observed the examples of differential expression pattern of duplicated GH3 genes in soybean, indicating their functional diversification. Furthermore, analyses of three-dimensional structures, active site residues and ligand preferences provided molecular insights into function of GH3 genes in legumes. The analysis presented here would help in investigation of precise function of GH3 genes in legumes during development and stress conditions. PMID:25642236

  11. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation.

    PubMed

    Garshasbi, Masoud; Hadavi, Valeh; Habibi, Haleh; Kahrizi, Kimia; Kariminejad, Roxana; Behjati, Farkhondeh; Tzschach, Andreas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas Walter

    2008-05-01

    Recent studies have shown that autosomal recessive mental retardation (ARMR) is extremely heterogeneous, and there is reason to believe that the number of underlying gene defects goes into the thousands. To date, however, only four genes have been implicated in nonsyndromic ARMR (NS-ARMR): PRSS12 (neurotrypsin), CRBN (cereblon), CC2D1A, and GRIK2. As part of an ongoing systematic study aiming to identify ARMR genes, we investigated a large consanguineous family comprising seven patients with nonsyndromic ARMR in four sibships. Genome-wide SNP typing enabled us to map the relevant genetic defect to a 4.6 Mbp interval on chromosome 8. Haplotype analyses and copy-number studies led to the identification of a homozygous deletion partly removing TUSC3 (N33) in all patients. All obligate carriers of this family were heterozygous, but none of 192 unrelated healthy individuals from the same population carried this deletion. We excluded other disease-causing mutations in the coding regions of all genes within the linkage interval by sequencing; moreover, we verified the complete absence of a functional TUSC3 transcript in all patients through RT-PCR. TUSC3 is thought to encode a subunit of the endoplasmic reticulum-bound oligosaccharyltransferase complex that catalyzes a pivotal step in the protein N-glycosylation process. Our data suggest that in contrast to other genetic defects of glycosylation, inactivation of TUSC3 causes nonsyndromic MR, a conclusion that is supported by a separate report in this issue of AJHG. TUSC3 is only the fifth gene implicated in NS-ARMR and the first for which mutations have been reported in more than one family.

  12. A Defect in the TUSC3 Gene Is Associated with Autosomal Recessive Mental Retardation

    PubMed Central

    Garshasbi, Masoud; Hadavi, Valeh; Habibi, Haleh; Kahrizi, Kimia; Kariminejad, Roxana; Behjati, Farkhondeh; Tzschach, Andreas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas Walter

    2008-01-01

    Recent studies have shown that autosomal recessive mental retardation (ARMR) is extremely heterogeneous, and there is reason to believe that the number of underlying gene defects goes into the thousands. To date, however, only four genes have been implicated in nonsyndromic ARMR (NS-ARMR): PRSS12 (neurotrypsin), CRBN (cereblon), CC2D1A, and GRIK2. As part of an ongoing systematic study aiming to identify ARMR genes, we investigated a large consanguineous family comprising seven patients with nonsyndromic ARMR in four sibships. Genome-wide SNP typing enabled us to map the relevant genetic defect to a 4.6 Mbp interval on chromosome 8. Haplotype analyses and copy-number studies led to the identification of a homozygous deletion partly removing TUSC3 (N33) in all patients. All obligate carriers of this family were heterozygous, but none of 192 unrelated healthy individuals from the same population carried this deletion. We excluded other disease-causing mutations in the coding regions of all genes within the linkage interval by sequencing; moreover, we verified the complete absence of a functional TUSC3 transcript in all patients through RT-PCR. TUSC3 is thought to encode a subunit of the endoplasmic reticulum-bound oligosaccharyltransferase complex that catalyzes a pivotal step in the protein N-glycosylation process. Our data suggest that in contrast to other genetic defects of glycosylation, inactivation of TUSC3 causes nonsyndromic MR, a conclusion that is supported by a separate report in this issue of AJHG. TUSC3 is only the fifth gene implicated in NS-ARMR and the first for which mutations have been reported in more than one family. PMID:18452889

  13. Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism.

    PubMed

    Engström, Karin; Vahter, Marie; Mlakar, Simona Jurkovic; Concha, Gabriela; Nermell, Barbro; Raqib, Rubhana; Cardozo, Alejandro; Broberg, Karin

    2011-02-01

    Arsenic (As) occurs as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in humans, and the methylation pattern demonstrates large interindividual differences. The fraction of urinary MMA is a marker for susceptibility to As-related diseases. We evaluated the impact of polymorphisms in five methyltransferase genes on As metabolism in two populations, one in South America and one in Southeast Asia. The methyltransferase genes were arsenic(+III oxidation state) methyltransferase (AS3MT), DNA-methyltransferase 1a and 3b (DNMT1a and DNMT3b, respectively), phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine methyltransferase (BHMT). AS3MT expression was analyzed in peripheral blood. Subjects were women exposed to As in drinking water in the Argentinean Andes [n = 172; median total urinary As (U-As), 200 µg/L] and in rural Bangladesh (n = 361; U-As, 100 µg/L; all in early pregnancy). Urinary As metabolites were measured by high-pressure liquid chromatography/inductively coupled plasma mass spectrometry. Polymorphisms (n = 22) were genotyped with Sequenom, and AS3MT expression was measured by quantitative real-time polymerase chain reaction using TaqMan expression assays. Six AS3MT polymorphisms were significantly associated with As metabolite patterns in both populations (p ≤ 0.01). The most frequent AS3MT haplotype in Bangladesh was associated with a higher percentage of MMA (%MMA), and the most frequent haplotype in Argentina was associated with a lower %MMA and a higher percentage of DMA. Four polymorphisms in the DNMT genes were associated with metabolite patterns in Bangladesh. Noncoding AS3MT polymorphisms affected gene expression of AS3MT in peripheral blood, demonstrating that one functional impact of AS3MT polymorphisms may be altered levels of gene expression. Polymorphisms in AS3MT significantly predicted As metabolism across these two very different populations, suggesting that AS3MT may have an impact on As metabolite

  14. Polymorphisms in Arsenic(+III Oxidation State) Methyltransferase (AS3MT) Predict Gene Expression of AS3MT as Well as Arsenic Metabolism

    PubMed Central

    Engström, Karin; Vahter, Marie; Mlakar, Simona Jurkovic; Concha, Gabriela; Nermell, Barbro; Raqib, Rubhana; Cardozo, Alejandro; Broberg, Karin

    2011-01-01

    Background Arsenic (As) occurs as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in humans, and the methylation pattern demonstrates large interindividual differences. The fraction of urinary MMA is a marker for susceptibility to As-related diseases. Objectives We evaluated the impact of polymorphisms in five methyltransferase genes on As metabolism in two populations, one in South America and one in Southeast Asia. The methyltransferase genes were arsenic(+III oxidation state) methyltransferase (AS3MT), DNA-methyltransferase 1a and 3b (DNMT1a and DNMT3b, respectively), phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine methyltransferase (BHMT). AS3MT expression was analyzed in peripheral blood. Methods Subjects were women exposed to As in drinking water in the Argentinean Andes [n = 172; median total urinary As (U-As), 200 μg/L] and in rural Bangladesh (n = 361; U-As, 100 μg/L; all in early pregnancy). Urinary As metabolites were measured by high-pressure liquid chromatography/inductively coupled plasma mass spectrometry. Polymorphisms (n = 22) were genotyped with Sequenom, and AS3MT expression was measured by quantitative real-time polymerase chain reaction using TaqMan expression assays. Results Six AS3MT polymorphisms were significantly associated with As metabolite patterns in both populations (p ≤ 0.01). The most frequent AS3MT haplotype in Bangladesh was associated with a higher percentage of MMA (%MMA), and the most frequent haplotype in Argentina was associated with a lower %MMA and a higher percentage of DMA. Four polymorphisms in the DNMT genes were associated with metabolite patterns in Bangladesh. Noncoding AS3MT polymorphisms affected gene expression of AS3MT in peripheral blood, demonstrating that one functional impact of AS3MT polymorphisms may be altered levels of gene expression. Conclusions Polymorphisms in AS3MT significantly predicted As metabolism across these two very different populations

  15. Comparative genomic analysis of the Lipase3 gene family in five plant species reveals distinct evolutionary origins.

    PubMed

    Wang, Dan; Zhang, Lin; Hu, JunFeng; Gao, Dianshuai; Liu, Xin; Sha, Yan

    2018-04-01

    Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.

  16. Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus.

    PubMed

    Sánchez-Navarro, J A; Reusken, C B; Bol, J F; Pallás, V

    1997-12-01

    Alfalfa mosaic virus (AMV) and Prunus necrotic ringspot virus (PNRSV) are tripartite positive-strand RNA plant viruses that encode functionally similar translation products. Although the two viruses are phylogenetically closely related, they infect a very different range of natural hosts. The coat protein (CP) gene, the movement protein (MP) gene or both genes in AMV RNA 3 were replaced by the corresponding genes of PNRSV. The chimeric viruses were tested for heterologous encapsidation, replication in protoplasts from plants transformed with AMV replicase genes P1 and P2 (P12 plants) and for cell-to-cell transport in P12 plants. The chimeric viruses exhibited basic competence for encapsidation and replication in P12 protoplasts and for a low level of cell-to-cell movement in P12 plants. The potential involvement of the MP gene in determining host specificity in ilarviruses is discussed.

  17. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    PubMed Central

    Han, Jee Eun; Kim, Ji Hyung; Renault, Tristan; Choresca, Casiano; Shin, Sang Phil; Jun, Jin Woo; Park, Se Chang

    2013-01-01

    Cyprinid herpes virus 3 (CyHV-3) diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio). Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116) of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116). In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies. PMID:23435236

  18. Identifying the viral genes encoding envelope glycoproteins for differentiation of Cyprinid herpesvirus 3 isolates.

    PubMed

    Han, Jee Eun; Kim, Ji Hyung; Renault, Tristan; Choresca, Casiano; Shin, Sang Phil; Jun, Jin Woo; Park, Se Chang

    2013-01-31

    Cyprinid herpes virus 3 (CyHV-3) diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio). Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116) of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116). In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies.

  19. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1

    PubMed Central

    Krishnan, Vaishnav; Stoppel, David C.; Nong, Yi; Johnson, Mark A.; Nadler, Monica J.S.; Ozkaynak, Ekim; Teng, Brian L.; Nagakura, Ikue; Mohammad, Fahim; Silva, Michael A.; Peterson, Sally; Cruz, Tristan J.; Kasper, Ekkehard M.; Arnaout, Ramy; Anderson, Matthew P.

    2017-01-01

    Summary Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant autism linked to increased gene dosages of UBE3A, which both possesses ubiquitin-ligase and transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus down-regulates glutamatergic synapse organizer cerebellin-1 (Cbln1) that is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases of UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA) where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activations of, or Cbln1 restorations in VTA glutamatergic neurons rescues sociability deficits induced by Ube3a and/or seizures. Our results suggest a gene × seizure interaction in VTA glutamatergic neurons that impairs sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes. PMID:28297715

  20. Lack of Association between NLGN3, NLGN4, SHANK2 and SHANK3 Gene Variants and Autism Spectrum Disorder in a Chinese Population

    PubMed Central

    Liu, Wenwen; Yang, Caohua; Liu, Yan; Wang, Hongyan; Gong, Xiaohong

    2013-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication, absence or delay in language development, and stereotyped or repetitive behaviors. Genetic studies show that neurexin-neuroligin (NRXN-NLGN) pathway genes contribute susceptibility to ASD, which include cell adhesion molecules NLGN3, NLGN4 and scaffolding proteins SHANK2 and SHANK3. Neuroligin proteins play an important role in synaptic function and trans-synaptic signaling by interacting with presynaptic neurexins. Shank proteins are scaffolding molecules of excitatory synapses, which function as central organizers of the postsynaptic density. Sequence level mutations and structural variations in these genes have been identified in ASD cases, while few studies were performed in Chinese population. In this study, we examined the copy numbers of four genes NLGN4, NLGN3, SHANK2, and SHANK3 in 285 ASD cases using multiplex fluorescence competitive polymerase chain reaction (PCR). We also screened the regulatory region including the promoter region and 5′/3′ untranslated regions (UTR) and the entire coding region of NLGN4 in a cohort of 285 ASD patients and 384 controls by direct sequencing of genomic DNA using the Sanger method. DNA copy number calculation in four genes showed no deletion or duplication in our cases. No missense mutations in NLGN4 were identified in our cohort. Association analysis of 6 common SNPs in NLGN4 did not find significant difference between ASD cases and controls. These findings showed that these genes may not be major disease genes in Chinese ASD cases. PMID:23468870

  1. Lack of association between NLGN3, NLGN4, SHANK2 and SHANK3 gene variants and autism spectrum disorder in a Chinese population.

    PubMed

    Liu, Yanyan; Du, Yasong; Liu, Wenwen; Yang, Caohua; Liu, Yan; Wang, Hongyan; Gong, Xiaohong

    2013-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication, absence or delay in language development, and stereotyped or repetitive behaviors. Genetic studies show that neurexin-neuroligin (NRXN-NLGN) pathway genes contribute susceptibility to ASD, which include cell adhesion molecules NLGN3, NLGN4 and scaffolding proteins SHANK2 and SHANK3. Neuroligin proteins play an important role in synaptic function and trans-synaptic signaling by interacting with presynaptic neurexins. Shank proteins are scaffolding molecules of excitatory synapses, which function as central organizers of the postsynaptic density. Sequence level mutations and structural variations in these genes have been identified in ASD cases, while few studies were performed in Chinese population. In this study, we examined the copy numbers of four genes NLGN4, NLGN3, SHANK2, and SHANK3 in 285 ASD cases using multiplex fluorescence competitive polymerase chain reaction (PCR). We also screened the regulatory region including the promoter region and 5'/3' untranslated regions (UTR) and the entire coding region of NLGN4 in a cohort of 285 ASD patients and 384 controls by direct sequencing of genomic DNA using the Sanger method. DNA copy number calculation in four genes showed no deletion or duplication in our cases. No missense mutations in NLGN4 were identified in our cohort. Association analysis of 6 common SNPs in NLGN4 did not find significant difference between ASD cases and controls. These findings showed that these genes may not be major disease genes in Chinese ASD cases.

  2. Heat Increases the Editing Efficiency of Human Papillomavirus E2 Gene by Inducing Upregulation of APOBEC3A and 3G.

    PubMed

    Yang, Yang; Wang, Hexiao; Zhang, Xinrui; Huo, Wei; Qi, Ruiqun; Gao, Yali; Zhang, Gaofeng; Song, Bing; Chen, Hongduo; Gao, Xinghua

    2017-04-01

    Apolipoprotein B mRNA-editing catalytic polypeptide (APOBEC) 3 proteins have been identified as potent viral DNA mutators and have broad antiviral activity. In this study, we demonstrated that apolipoprotein B mRNA-editing catalytic polypeptide 3A (A3A) and A3G expression levels were significantly upregulated in human papillomavirus (HPV)-infected cell lines and tissues. Heat treatment resulted in elevated expression of A3A and A3G in a temperature-dependent manner in HPV-infected cells. Correspondingly, HPV-infected cells heat-treated at 44 °C showed accumulated G-to-A or C-to-T mutation in HPV E2 gene. Knockdown of A3A or A3G could promote cell viability, along with the lower frequency of A/T in HPV E2 gene. In addition, regressing genital viral warts also harbored high G-to-A or C-to-T mutation in HPV E2 gene. Taken together, we demonstrate that apolipoprotein B mRNA-editing catalytic polypeptide 3 expression and editing function was heat sensitive to a certain degree, partly explaining the mechanism of action of local hyperthermia to treat viral warts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. PNPLA3 gene in liver diseases.

    PubMed

    Trépo, Eric; Romeo, Stefano; Zucman-Rossi, Jessica; Nahon, Pierre

    2016-08-01

    Genome-wide association studies (GWAS) in the field of liver diseases have revealed previously unknown pathogenic loci and generated new biological hypotheses. In 2008, a GWAS performed in a population-based sample study, where hepatic liver fat content was measured by magnetic spectroscopy, showed a strong association between a variant (rs738409 C>G p.I148M) in the patatin-like phospholipase domain containing 3 (PNPLA3) gene and nonalcoholic fatty liver disease. Further replication studies have shown robust associations between PNPLA3 and steatosis, fibrosis/cirrhosis, and hepatocellular carcinoma on a background of metabolic, alcoholic, and viral insults. The PNPLA3 protein has lipase activity towards triglycerides in hepatocytes and retinyl esters in hepatic stellate cells. The I148M substitution leads to a loss of function promoting triglyceride accumulation in hepatocytes. Although PNPLA3 function has been extensively studied, the molecular mechanisms leading to hepatic fibrosis and carcinogenesis remain unclear. This unsuspected association has highlighted the fact that liver fat metabolism may have a major impact on the pathophysiology of liver diseases. Conversely, alone, this locus may have limited predictive value with regard to liver disease outcomes in clinical practice. Additional studies at the genome-wide level will be required to identify new variants associated with liver damage and cancer to explain a greater proportion of the heritability of these phenotypes. Thus, incorporating PNPLA3 and other genetic variants in combination with clinical data will allow for the development of tailored predictive models. This attractive approach should be evaluated in prospective cohorts. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  4. The gene for spinal cerebellar ataxia 3 (SCA3) is located in a region of approximately 3 cM on chromosome 14q24.3-q32.2.

    PubMed Central

    Stevanin, G; Cancel, G; Dürr, A; Chneiweiss, H; Dubourg, O; Weissenbach, J; Cann, H M; Agid, Y; Brice, A

    1995-01-01

    SCA3, the gene for spinal cerebellar ataxia 3, was recently mapped to a 15-cM interval between D14S67 and D14S81 on chromosome 14q, by linkage analysis in two families of French ancestry. The SCA3 candidate region has now been refined by linkage analysis with four new microsatellite markers (D14S256, D14S291, D14S280, and AFM343vf1) in the same two families, in which 19 additional individuals were genotyped, and in a third French family. Combined two-point linkage analyses show that the new markers, D14S280 and AFM343vf1, are tightly linked to the SCA3 locus, with maximal lod scores, at recombination fraction, (theta) = .00, of 7.05 and 13.70, respectively. Combined multipoint and recombinant haplotype analyses localize the SCA3 locus to a 3-cM interval flanked by D14S291 and D14S81. The same allele for D14S280 segregates with the disease locus in the three kindreds. This allele is frequent in the French population, however, and linkage disequilibrium is not clearly established. The SCA3 locus remains within the 29-cM region on 14q24.3-q32.2 containing the gene for the Machado-Joseph disease, which is clinically related to the phenotype determined by SCA3, but it cannot yet be concluded that both diseases result from alterations of the same gene. PMID:7825578

  5. Genetic characterization of the non-structural protein-3 gene of bluetongue virus serotype-2 isolate from India.

    PubMed

    Pudupakam, Raghavendra Sumanth; Raghunath, Shobana; Pudupakam, Meghanath; Daggupati, Sreenivasulu

    2017-03-01

    Sequence analysis and phylogenetic studies based on non-structural protein-3 (NS3) gene are important in understanding the evolution and epidemiology of bluetongue virus (BTV). This study was aimed at characterizing the NS3 gene sequence of Indian BTV serotype-2 (BTV2) to elucidate its genetic relationship to global BTV isolates. The NS3 gene of BTV2 was amplified from infected BHK-21 cell cultures, cloned and subjected to sequence analysis. The generated NS3 gene sequence was compared with the corresponding sequences of different BTV serotypes across the world, and a phylogenetic relationship was established. The NS3 gene of BTV2 showed moderate levels of variability in comparison to different BTV serotypes, with nucleotide sequence identities ranging from 81% to 98%. The region showed high sequence homology of 93-99% at amino acid level with various BTV serotypes. The PPXY/PTAP late domain motifs, glycosylation sites, hydrophobic domains, and the amino acid residues critical for virus-host interactions were conserved in NS3 protein. Phylogenetic analysis revealed that BTV isolates segregate into four topotypes and that the Indian BTV2 in subclade IA is closely related to Asian and Australian origin strains. Analysis of the NS3 gene indicated that Indian BTV2 isolate is closely related to strains from Asia and Australia, suggesting a common origin of infection. Although the pattern of evolution of BTV2 isolate is different from other global isolates, the deduced amino acid sequence of NS3 protein demonstrated high molecular stability.

  6. Genetic characterization of the non-structural protein-3 gene of bluetongue virus serotype-2 isolate from India

    PubMed Central

    Pudupakam, Raghavendra Sumanth; Raghunath, Shobana; Pudupakam, Meghanath; Daggupati, Sreenivasulu

    2017-01-01

    Aim: Sequence analysis and phylogenetic studies based on non-structural protein-3 (NS3) gene are important in understanding the evolution and epidemiology of bluetongue virus (BTV). This study was aimed at characterizing the NS3 gene sequence of Indian BTV serotype-2 (BTV2) to elucidate its genetic relationship to global BTV isolates. Materials and Methods: The NS3 gene of BTV2 was amplified from infected BHK-21 cell cultures, cloned and subjected to sequence analysis. The generated NS3 gene sequence was compared with the corresponding sequences of different BTV serotypes across the world, and a phylogenetic relationship was established. Results: The NS3 gene of BTV2 showed moderate levels of variability in comparison to different BTV serotypes, with nucleotide sequence identities ranging from 81% to 98%. The region showed high sequence homology of 93-99% at amino acid level with various BTV serotypes. The PPXY/PTAP late domain motifs, glycosylation sites, hydrophobic domains, and the amino acid residues critical for virus-host interactions were conserved in NS3 protein. Phylogenetic analysis revealed that BTV isolates segregate into four topotypes and that the Indian BTV2 in subclade IA is closely related to Asian and Australian origin strains. Conclusion: Analysis of the NS3 gene indicated that Indian BTV2 isolate is closely related to strains from Asia and Australia, suggesting a common origin of infection. Although the pattern of evolution of BTV2 isolate is different from other global isolates, the deduced amino acid sequence of NS3 protein demonstrated high molecular stability. PMID:28435199

  7. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  8. β3 Integrin Haplotype Influences Gene Regulation and Plasma von Willebrand Factor Activity

    PubMed Central

    Payne, Katie E; Bray, Paul F; Grant, Peter J; Carter, Angela M

    2008-01-01

    The Leu33Pro polymorphism of the gene encoding β3 integrin (ITGB3) is associated with acute coronary syndromes and influences platelet aggregation. Three common promoter polymorphisms have also been identified. The aims of this study were to (1) investigate the influence of the ITGB3 −400C/A, −425A/C and −468G/A promoter polymorphisms on reporter gene expression and nuclear protein binding and (2) determine genotype and haplotype associations with platelet αIIbβ3 receptor density. Promoter haplotypes were introduced into an ITGB3 promoter-pGL3 construct by site directed mutagenesis and luciferase reporter gene expression analysed in HEL and HMEC-1 cells. Binding of nuclear proteins was assessed by electrophoretic mobility shift assay. The association of ITGB3 haplotype with platelet αIIbβ3 receptor density was determined in 223 subjects. Species conserved motifs were identified in the ITGB3 promoter in the vicinity of the 3 polymorphisms. The GAA, GCC, AAC, AAA and ACC constructs induced ~50% increased luciferase expression relative to the GAC construct in both cell types. Haplotype analysis including Leu33Pro indicated 5 common haplotypes; no associations between ITGB3 haplotypes and receptor density were found. However, the GCC-Pro33 haplotype was associated with significantly higher vWF activity (128.6 [112.1–145.1]%) compared with all other haplotypes (107.1 [101.2–113.0]%, p=0.02). In conclusion, the GCC-Pro33 haplotype was associated with increased vWF activity but not with platelet αIIbβ3 receptor density, which may indicate ITGB3 haplotype influences endothelial function. PMID:18045606

  9. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset.

    PubMed

    Yuan, Haiming; Huang, Linhuan; Hu, Xizi; Li, Qian; Sun, Xiaofang; Xie, Yingjun; Kong, Shu; Wang, Xiaoman

    2016-07-02

    Achondroplasia is a well-defined and common bone dysplasia. Genotype- and phenotype-level correlations have been found between the clinical symptoms of achondroplasia and achondroplasia-specific FGFR3 mutations. A 2-year-old boy with clinical features consistent with achondroplasia and Silver-Russell syndrome-like symptoms was found to carry a mutation in the fibroblast growth factor receptor-3 (FGFR3) gene at c.1138G > A (p.Gly380Arg) and a de novo 574 kb duplication at chromosome 7p12.1 that involved the entire growth-factor receptor bound protein 10 (GRB10) gene. Using quantitative real-time PCR analysis, GRB10 was over-expressed, and, using enzyme-linked immunosorbent assays for IGF1 and IGF-binding protein-3 (IGFBP3), we found that IGF1 and IGFBP3 were low-expressed in this patient. We demonstrate that a combination of uncommon, rare and exceptional molecular defects related to the molecular bases of particular birth defects can be analyzed and diagnosed to potentially explain the observed variability in the combination of molecular defects.

  10. Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge

    NASA Astrophysics Data System (ADS)

    Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng

    2013-03-01

    In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.

  11. Mutations in Protein-Binding Hot-Spots on the Hub Protein Smad3 Differentially Affect Its Protein Interactions and Smad3-Regulated Gene Expression

    PubMed Central

    Schiro, Michelle M.; Stauber, Sara E.; Peterson, Tami L.; Krueger, Chateen; Darnell, Steven J.; Satyshur, Kenneth A.; Drinkwater, Norman R.; Newton, Michael A.; Hoffmann, F. Michael

    2011-01-01

    Background Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. Methodology/Principal Findings We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Conclusions/Significance Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful

  12. Fine mapping of RYMV3: a new resistance gene to Rice yellow mottle virus from Oryza glaberrima.

    PubMed

    Pidon, Hélène; Ghesquière, Alain; Chéron, Sophie; Issaka, Souley; Hébrard, Eugénie; Sabot, François; Kolade, Olufisayo; Silué, Drissa; Albar, Laurence

    2017-04-01

    A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene. Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.

  13. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.

    PubMed

    Feng, Shangguo; Yue, Runqing; Tao, Sun; Yang, Yanjun; Zhang, Lei; Xu, Mingfeng; Wang, Huizhong; Shen, Chenjia

    2015-09-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses. © 2014 Institute of Botany, Chinese Academy of Sciences.

  14. Gene 2 of the sigma rhabdovirus genome encodes the P protein, and gene 3 encodes a protein related to the reverse transcriptase of retroelements.

    PubMed

    Landès-Devauchelle, C; Bras, F; Dezélée, S; Teninges, D

    1995-11-10

    The nucleotide sequence of the genes 2 and 3 of the Drosophila rhabdovirus sigma was determined from cDNAs to viral genome and poly(A)+ mRNAs. Gene 2 comprises 1032 nucleotides and contains a long ORF encoding a molecular weight 35,208 polypeptide present in infected cells and in virions which migrates in SDS-PAGE as a doublet of M(r) about 60 kDa. The distribution of acidic charges as well as the electrophoretic properties of the protein are characteristic of the rhabdovirus P proteins. Gene 3 comprises 923 nucleotides and contains a long ORF capable of coding a polypeptide of 298 amino acids of MW 33,790. The putative protein (PP3) is similar in size to a minor component of the virions. Computer analysis shows that the sequence of PP3 contains three motifs related to the conserved motifs of reverse transcriptases.

  15. Phylogenetics and evolution of Su(var)3-9 SET genes in land plants: rapid diversification in structure and function.

    PubMed

    Zhu, Xinyu; Ma, Hong; Chen, Zhiduan

    2011-03-09

    Plants contain numerous Su(var)3-9 homologues (SUVH) and related (SUVR) genes, some of which await functional characterization. Although there have been studies on the evolution of plant Su(var)3-9 SET genes, a systematic evolutionary study including major land plant groups has not been reported. Large-scale phylogenetic and evolutionary analyses can help to elucidate the underlying molecular mechanisms and contribute to improve genome annotation. Putative orthologs of plant Su(var)3-9 SET protein sequences were retrieved from major representatives of land plants. A novel clustering that included most members analyzed, henceforth referred to as core Su(var)3-9 homologues and related (cSUVHR) gene clade, was identified as well as all orthologous groups previously identified. Our analysis showed that plant Su(var)3-9 SET proteins possessed a variety of domain organizations, and can be classified into five types and ten subtypes. Plant Su(var)3-9 SET genes also exhibit a wide range of gene structures among different paralogs within a family, even in the regions encoding conserved PreSET and SET domains. We also found that the majority of SUVH members were intronless and formed three subclades within the SUVH clade. A detailed phylogenetic analysis of the plant Su(var)3-9 SET genes was performed. A novel deep phylogenetic relationship including most plant Su(var)3-9 SET genes was identified. Additional domains such as SAR, ZnF_C2H2 and WIYLD were early integrated into primordial PreSET/SET/PostSET domain organization. At least three classes of gene structures had been formed before the divergence of Physcomitrella patens (moss) from other land plants. One or multiple retroposition events might have occurred among SUVH genes with the donor genes leading to the V-2 orthologous group. The structural differences among evolutionary groups of plant Su(var)3-9 SET genes with different functions were described, contributing to the design of further experimental studies.

  16. Extreme Mutation Tolerance: Nearly Half of the Archaeal Fusellovirus Sulfolobus Spindle-Shaped Virus 1 Genes Are Not Required for Virus Function, Including the Minor Capsid Protein Gene vp3

    PubMed Central

    Iverson, Eric A.; Goodman, David A.; Gorchels, Madeline E.

    2017-01-01

    ABSTRACT Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae, where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae. The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3, allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure

  17. Extreme Mutation Tolerance: Nearly Half of the Archaeal Fusellovirus Sulfolobus Spindle-Shaped Virus 1 Genes Are Not Required for Virus Function, Including the Minor Capsid Protein Gene vp3.

    PubMed

    Iverson, Eric A; Goodman, David A; Gorchels, Madeline E; Stedman, Kenneth M

    2017-05-15

    Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae , where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3 , allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of

  18. Analysis of Claviceps africana and C. sorghi from India using AFLPs, EF-1alpha gene intron 4, and beta-tubulin gene intron 3.

    PubMed

    Tooley, Paul W; Bandyopadhyay, Ranajit; Carras, Marie M; Pazoutová, Sylvie

    2006-04-01

    Isolates of Claviceps causing ergot on sorghum in India were analysed by AFLP analysis, and by analysis of DNA sequences of the EF-1alpha gene intron 4 and beta-tubulin gene intron 3 region. Of 89 isolates assayed from six states in India, four were determined to be C. sorghi, and the rest C. africana. A relatively low level of genetic diversity was observed within the Indian C. africana population. No evidence of genetic exchange between C. africana and C. sorghi was observed in either AFLP or DNA sequence analysis. Phylogenetic analysis was conducted using DNA sequences from 14 different Claviceps species. A multigene phylogeny based on the EF-1alpha gene intron 4, the beta-tubulin gene intron 3 region, and rDNA showed that C. sorghi grouped most closely with C. gigantea and C. africana. Although the Claviceps species we analysed were closely related, they colonize hosts that are taxonomically very distinct suggesting that there is no direct coevolution of Claviceps with its hosts.

  19. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors.

    PubMed

    Dueñas, Marta; Martínez-Fernández, Mónica; García-Escudero, Ramón; Villacampa, Felipe; Marqués, Miriam; Saiz-Ladera, Cristina; Duarte, José; Martínez, Victor; Gómez, M José; Martín, M Luisa; Fernández, Manoli; Castellano, Daniel; Real, Francisco X; Rodriguez-Peralto, Jose L; De La Rosa, Federico; Paramio, Jesús M

    2015-07-01

    Bladder cancer (BC) is the fifth most common cancer in the world, being the non-muscle invasive tumors (NMIBC) the most frequent. NMIBC shows a very high frequency of recurrence and, in certain cases, tumor progression. The phosphatidylinositol 3-kinase (PI3K) pathway, which controls cell growth, tumorigenesis, cell invasion and drug response, is frequently activated in numerous human cancers, including BC, in part through alterations of PIK3CA gene. However, the significance of PIK3CA gene alterations with respect to clinicopathological characteristics, and in particular tumor recurrence and progression, remains elusive. Here, we analyzed the presence of mutations in FGFR3 and PIK3CA genes and copy number alterations of PIK3CA gene in bladder tumor and their correspondent paired normal samples from 87 patients. We observed an extremely high frequency of PIK3CA gene alterations (mutations, copy gains, or both) in tumor samples, affecting primarily T1 and T2 tumors. A significant number of normal tissues also showed mutations and copy gains, being coincident with those found in the corresponding tumor sample. In low-grade tumors PIK3CA mutations associated with FGFR3 mutations. Alterations in PIK3CA gene resulted in increased Akt activity in tumors. Interestingly, the presence of PIK3CA gene alterations, and in particular gene mutations, is significantly associated with reduced recurrence of NMIBC patients. Importantly, the presence of FGFR3 mutations may influence the clinical outcome of patients bearing alterations in PIK3CA gene, and increased recurrence was associated to FGFR3 mutated, PIK3CA wt tumors. These findings may have high relevance in terms of using PI3K-targeted therapies for BC treatment. © 2013 Wiley Periodicals, Inc.

  20. MiR-339 and especially miR-766 reactivate the expression of tumor suppressor genes in colorectal cancer cell lines through DNA methyltransferase 3B gene inhibition.

    PubMed

    Afgar, Ali; Fard-Esfahani, Pezhman; Mehrtash, Amirhosein; Azadmanesh, Kayhan; Khodarahmi, Farnaz; Ghadir, Mahdis; Teimoori-Toolabi, Ladan

    2016-11-01

    It is observed that upregulation of DNMT3B enzyme in some cancers, including colon cancer, could lead to silencing of tumor suppressor genes. MiR-339 and miR-766 have been predicted to target 3'UTR of DNMT3B gene. Luciferase reporter assay validated that individual and co-transfection of miR-766 and miR-339 into the HEK293T cell reduced luciferase activity to 26% ± 0.41%, 43% ± 0.42 and 64% ± 0.52%, respectively, compared to the control (P < 0.05). Furthermore, transduction of miR-339 and miR-766 expressing viruses into colon cancer cell lines (SW480 and HCT116) decreased DNMT3B expression (1.5, 3-fold) and (3, 4-fold), respectively. In addition, DNA methylation of some tumor suppressor genes decreased. Expression of these genes such as SFRP1 (2 and 1.6-fold), SFRP2 (0.07 and 4-fold), WIF1 (0.05 and 4-fold), and DKK2 (2 and 4-fold) increased in SW-339 and SW-766 cell lines; besides, expression increments for these genes in HCT-339 and HCT-766 cell lines were (2.8, 4-fold), (0.005, 1.5-fold), (1.7 and 3-fold) and (0.04, 1.7-fold), respectively. Also, while in SW-766, cell proliferation reduced to 2.8% and 21.7% after 24 and 48 hours, respectively, SW-339 showed no reduced proliferation. Meanwhile, HCT-766 and HCT-339 showed (3.5%, 12.8%) and (18.8%, 33.9%) reduced proliferation after 24 and 48 hours, respectively. Finally, targeting DNMT3B by these miRs, decreased methylation of tumor suppressor genes such as SFRP1, SFRP2, WIF1 and DKK2 in the mentioned cell lines, and returned the expression of these tumor suppressor genes which can contribute to lethal effect on colon cancer cells and reducing tumorigenicity of these cells.

  1. Linkage mapping, molecular cloning and functional analysis of soybean gene Fg3 encoding flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase.

    PubMed

    Di, Shaokang; Yan, Fan; Rodas, Felipe Rojas; Rodriguez, Tito O; Murai, Yoshinori; Iwashina, Tsukasa; Sugawara, Satoko; Mori, Tetsuya; Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Saito, Kazuki; Takahashi, Ryoji

    2015-05-23

    Flavonol glycosides (FGs) are major components of soybean leaves and there are substantial differences in FG composition among genotypes. The first objective of this study was to identify genes responsible for FG biosynthesis and to locate them in the soybean genome. The second objective was to clone the candidate genes and to verify their function. Recombinant inbred lines (RILs) were developed from a cross between cultivars Nezumisaya and Harosoy. HPLC comparison with authentic samples suggested that FGs having glucose at the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol were present in Nezumisaya, whereas FGs of Harosoy were devoid of 2″-glucose. Conversely, FGs having glucose at the 6″-position of glucose or galactose that is bound to the 3-position of kaempferol were present in Harosoy, whereas these FGs were absent in Nezumisaya. Genetic analysis suggested that two genes control the pattern of attachment of these sugar moieties in FGs. One of the genes may be responsible for attachment of glucose to the 2″-position, probably encoding for a flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase. Nezumisaya may have a dominant whereas Harosoy may have a recessive allele of the gene. Based on SSR analysis, linkage mapping and genome database survey, we cloned a candidate gene designated as GmF3G2″Gt in the molecular linkage group C2 (chromosome 6). The open reading frame of GmF3G2″Gt is 1380 bp long encoding 459 amino acids with four amino acid substitutions among the cultivars. The GmF3G2″Gt recombinant protein converted kaempferol 3-O-glucoside to kaempferol 3-O-sophoroside. GmF3G2″Gt of Nezumisaya showed a broad activity for kaempferol/quercetin 3-O-glucoside/galactoside derivatives but it did not glucosylate kaempferol 3-O-rhamnosyl-(1 → 4)-[rhamnosyl-(1 → 6)-glucoside] and 3-O-rhamnosyl-(1 → 4)-[glucosyl-(1 → 6)-glucoside]. GmF3G2″Gt encodes a flavonol 3-O

  2. Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes.

    PubMed

    De Meyer, Sofie E; Briscoe, Leah; Martínez-Hidalgo, Pilar; Agapakis, Christina M; de-Los Santos, Paulina Estrada; Seshadri, Rekha; Reeve, Wayne; Weinstock, George; O'Hara, Graham; Howieson, John G; Hirsch, Ann M

    2016-08-01

    Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.

  3. Prolonged activation of innate antiviral gene signature after childbirth is determined by IFNL3 genotype.

    PubMed

    Price, Aryn A; Tedesco, Dana; Prasad, Mona R; Workowski, Kimberly A; Walker, Christopher M; Suthar, Mehul S; Honegger, Jonathan R; Grakoui, Arash

    2016-09-20

    Maternal innate and adaptive immune responses are modulated during pregnancy to concurrently defend against infection and tolerate the semiallogeneic fetus. The restoration of these systems after childbirth is poorly understood. We reasoned that enhanced innate immune activation may extend beyond gestation while adaptive immunity recovers. To test this hypothesis, the transcriptional profiles of total peripheral blood mononuclear cells following delivery in healthy women were compared with those of nonpregnant control subjects. Interestingly, interferon-stimulated genes (ISGs) encoding proteins such as IFIT1, IFIT2, and IFIT3, as well as signaling proteins such as STAT1, STAT2, and MAVS, were enriched postpartum. Antiviral genes were primarily expressed in CD14(+) cells and could be stratified according to genetic variation at the interferon-λ3 gene (IFNL3, also named IL28B) SNP rs12979860. Antiviral gene expression was sustained beyond 6 mo following delivery in mothers with a CT or TT genotype, but resembled baseline nonpregnant control levels following delivery in mothers with a CC genotype. CT and TT IFNL3 genotypes have been associated with persistent elevated ISG expression in individuals chronically infected with hepatitis C virus. Together, these data suggest that postpartum, the normalization of the physiological rheostat controlling IFN signaling depends on IFNL3 genotype.

  4. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene

    PubMed Central

    Ellis, Hillary T.

    2013-01-01

    The BTBR T+ tf/J (BTBR) mouse strain is indifferent to exemplars of sweet, Polycose, umami, bitter, and calcium tastes, which share in common transduction by G protein-coupled receptors (GPCRs). To investigate the genetic basis for this taste dysfunction, we screened 610 BTBR × NZW/LacJ F2 hybrids, identified a potent QTL on chromosome 17, and isolated this in a congenic strain. Mice carrying the BTBR/BTBR haplotype in the 0.8-Mb (21-gene) congenic region were indifferent to sweet, Polycose, umami, bitter, and calcium tastes. To assess the contribution of a likely causative culprit, Itpr3, the inositol triphosphate receptor 3 gene, we produced and tested Itpr3 knockout mice. These were also indifferent to GPCR-mediated taste compounds. Sequencing the BTBR form of Itpr3 revealed a unique 12 bp deletion in Exon 23 (Chr 17: 27238069; Build 37). We conclude that a spontaneous mutation of Itpr3 in a progenitor of the BTBR strain produced a heretofore unrecognized dysfunction of GPCR-mediated taste transduction. PMID:23859941

  5. Cationized pullulan 3D matrices as new materials for gene transfer.

    PubMed

    San Juan, Aurélie; Hlawaty, Hanna; Chaubet, Frédéric; Letourneur, Didier; Feldman, Laurent J

    2007-08-01

    This study deals with the development of a novel biocompatible cationized pullulan three-dimensional matrix for gene delivery. A water-soluble cationic polysaccharide, diethylaminoethyl-pullulan (DEAE-pullulan), was first synthesized and characterized. Fluorescence quenching and gel retardation assays evidenced the complexation in solution of DNA with DEAE-pullulan, but not with neutral pullulan. On cultured smooth muscle cells (SMCs) incubated with DEAE-pullulan and a plasmid vector expressing a secreted form of alkaline phosphatase (pSEAP), SEAP activity was 150-fold higher than with pSEAP alone or pSEAP with neutral pullulan. DEAE-pullulan was then chemically crosslinked using phosphorus oxychloride. The resulting matrices were obtained in less than a minute and molded as discs of 12 mm diameter and 2 mm thickness. Such DEAE-pullulan 3D matrices were loaded with up to 50 microg of plasmid DNA, with a homogeneous plasmid loading observed with YOYO-1 fluorescence staining. Moreover, the DEAE-pullulan matrix was shown to protect pSEAP from DNase I degradation. Incubation of cultured SMCs with pSEAP-loaded DEAE-pullulan matrices resulted in significant gene transfer without cell toxicity. This study suggests that these cationized pullulan 3D matrices could be useful biomaterials for local gene transfer.

  6. Avirulence Genes in Cereal Powdery Mildews: The Gene-for-Gene Hypothesis 2.0.

    PubMed

    Bourras, Salim; McNally, Kaitlin E; Müller, Marion C; Wicker, Thomas; Keller, Beat

    2016-01-01

    The gene-for-gene hypothesis states that for each gene controlling resistance in the host, there is a corresponding, specific gene controlling avirulence in the pathogen. Allelic series of the cereal mildew resistance genes Pm3 and Mla provide an excellent system for genetic and molecular analysis of resistance specificity. Despite this opportunity for molecular research, avirulence genes in mildews remain underexplored. Earlier work in barley powdery mildew (B.g. hordei) has shown that the reaction to some Mla resistance alleles is controlled by multiple genes. Similarly, several genes are involved in the specific interaction of wheat mildew (B.g. tritici) with the Pm3 allelic series. We found that two mildew genes control avirulence on Pm3f: one gene is involved in recognition by the resistance protein as demonstrated by functional studies in wheat and the heterologous host Nicotiana benthamiana. A second gene is a suppressor, and resistance is only observed in mildew genotypes combining the inactive suppressor and the recognized Avr. We propose that such suppressor/avirulence gene combinations provide the basis of specificity in mildews. Depending on the particular gene combinations in a mildew race, different genes will be genetically identified as the "avirulence" gene. Additionally, the observation of two LINE retrotransposon-encoded avirulence genes in B.g. hordei further suggests that the control of avirulence in mildew is more complex than a canonical gene-for-gene interaction. To fully understand the mildew-cereal interactions, more knowledge on avirulence determinants is needed and we propose ways how this can be achieved based on recent advances in the field.

  7. Screening for rare variants in the PNPLA3 gene in obese liver biopsy patients.

    PubMed

    Zegers, Doreen; Verrijken, An; Francque, Sven; de Freitas, Fenna; Beckers, Sigri; Aerts, Evi; Ruppert, Martin; Hubens, Guy; Michielsen, Peter; Van Hul, Wim; Van Gaal, Luc F

    2016-12-01

    Previous research has clearly implicated the PNPLA3 gene in the etiology of nonalcoholic fatty liver disease as a polymorphism in the gene was found to be robustly associated to the disease. However, data on the involvement of rare PNPLA3 variants in the development of nonalcoholic fatty liver disease (NAFLD) is currently limited. Therefore, we performed an extensive mutation analysis study on a cohort of obese liver biopsy patients to determine PNPLA3 variation and its correlation with fatty liver disease. We screened the entire coding region of the PNPLA3 gene in DNA samples of 393 obese liver biopsy patients with varying degrees of fatty liver disease. Mutation analysis was performed by high-resolution melting curve analysis in combination with direct sequencing. We identified several common polymorphisms as well as one rare synonymous variant (c.867G>A rs139896256), one rare intronic variant (c.979+13C>T) and 3 nonsynonymous coding variants (p.A76T, p.A104V and p.T200M) in the PNPLA3 gene. In silico analysis indicated that the p.A104V variant will probably have no functional effect, whereas for the p.A76T and p.T200M variant a possible pathogenic effect is suggested. Overall, we showed that novel variants in PNPLA3 are very rare in our liver biopsy cohort, thereby indicating that their impact on the etiology of NAFLD is probably limited. Nevertheless, for the three rare coding variants that were identified in patients with advanced liver disease, further functional characterization will be essential to verify their potential disease causality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Polymorphisms of the TRPV2 and TRPV3 genes associated with fibromyalgia in a Korean population.

    PubMed

    Park, Dong-Jin; Kim, Seong-Ho; Nah, Seong-Su; Lee, Ji Hyun; Kim, Seong-Kyu; Lee, Yeon-Ah; Hong, Seung-Jae; Kim, Hyun-Sook; Lee, Hye-Soon; Kim, Hyoun Ah; Joung, Chung-Il; Kim, Sang-Hyon; Lee, Shin-Seok

    2016-08-01

    Researchers continue to gather evidence that transient receptor potential vanilloid (TRPV) channels contribute towards pain signalling pathways. However, it is unknown whether polymorphisms of the TRPV gene are associated with FM. For the first time, we investigated the association between the polymorphisms of the TRPV2 and TRPV3 genes, FM susceptibility and the severity of the symptoms. A total of 409 patients with FM and 423 controls were enrolled from 10 medical centres that participated in the Korean nationwide FM survey. The alleles and genotypes at three positions [rs3813768(C > G), rs8121(C > T) and rs1129235(C > A)] in the TRPV2 gene and two positions [rs7216486 (G > A) and rs395357(C > T)] in the TRPV3 gene were genotyped. The frequencies of the alleles and genotypes of individual TRPV2 and TRPV3 genes were not significantly associated with FM susceptibility. However, the GTA haplotype of TRPV2 showed a defence against FM susceptibility (P = 0.035). In addition, polymorphisms of TRPV3 were associated with symptom severity in FM patients. The single nucleotide polymorphism rs395357 of TRPV3 was associated with the scores of the Brief Fatigue Inventory (P = 0.017) in FM patients. Furthermore, haplotypes of TRPV3 were associated with the Brief Fatigue Inventory and the 36-item Short-Form Health Survey mental health summary scores (P = 0.036). This study was the first to evaluate the associations of TRPV gene polymorphisms with FM. Our results suggest that certain TRPV2 haplotypes may have a protective role against FM and that some genotypes and haplotypes of TRPV3 contribute towards the symptoms of FM. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. [NOTCH3 gene mutations in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy].

    PubMed

    Sun, Qiying; Li, Wenwen; Zhou, Yafang; Yi, Fang; Wang, Jianfeng; Hu, Yacen; Yao, Lingyan; Zhou, Lin; Xu, Hongwei

    2017-12-10

    To analyze potential mutations of the NOTCH3 gene in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy (CADASIL). The two probands and related family members and 100 healthy controls were recruited. Potential mutations of the NOTCH3 gene were screened by PCR and direct sequencing. PolyPhen-2 and SIFT software were used to predict the protein function. The conditions of both probands were adult-onset, with main clinical features including recurrent transient ischemic attacks and/or strokes, cognitive impairment. MRI findings suggested multiple cerebral infarcts and severe leukoencephalopathy. A heterozygous mutation c.328C>T (p.Arg110Cys), which was located in exon 3 of the NOTCH3 gene and known as a causative mutation, was identified in proband 1. A novel heterozygous mutation c.1013 G>C (p.Cys338Ser) located in exon 6 of the NOTCH3 gene was identified in the proband 2, which was not reported previously. The same mutations were not detected among the 100 unrelated healthy controls. Function analysis suggested that heterozygous mutation c.1013G>C can severely affect the functions of NOTCH3 protein. Two heterozygous missense mutations in the NOTCH3 gene have been identified in two families affected with CADASIL. The novel heterozygous Cys338Ser mutation in exon 6 of the NOTCH3 gene probably underlies the CADASIL.

  10. Opposite GC skews at the 5' and 3' ends of genes in unicellular fungi

    PubMed Central

    2011-01-01

    Background GC-skews have previously been linked to transcription in some eukaryotes. They have been associated with transcription start sites, with the coding strand G-biased in mammals and C-biased in fungi and invertebrates. Results We show a consistent and highly significant pattern of GC-skew within genes of almost all unicellular fungi. The pattern of GC-skew is asymmetrical: the coding strand of genes is typically C-biased at the 5' ends but G-biased at the 3' ends, with intermediate skews at the middle of genes. Thus, the initiation, elongation, and termination phases of transcription are associated with different skews. This pattern influences the encoded proteins by generating differential usage of amino acids at the 5' and 3' ends of genes. These biases also affect fourfold-degenerate positions and extend into promoters and 3' UTRs, indicating that skews cannot be accounted by selection for protein function or translation. Conclusions We propose two explanations, the mutational pressure hypothesis, and the adaptive hypothesis. The mutational pressure hypothesis is that different co-factors bind to RNA pol II at different phases of transcription, producing different mutational regimes. The adaptive hypothesis is that cytidine triphosphate deficiency may lead to C-avoidance at the 3' ends of transcripts to control the flow of RNA pol II molecules and reduce their frequency of collisions. PMID:22208287

  11. TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model.

    PubMed

    Ti, Yun; Xie, Guo-lu; Wang, Zhi-hao; Bi, Xiao-lei; Ding, Wen-yuan; Wang, Jia; Jiang, Gui-Hua; Bu, Pei-Li; Zhang, Yun; Zhong, Ming; Zhang, Wei

    2011-11-01

    Tribbles 3 (TRB3) is associated with insulin resistance, an important trigger in the development of diabetic cardiomyopathy (DCM). We sought to determine whether TRB3 plays a major role in modulating DCM and the mechanisms involved. The type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated the characteristics of type 2 DCM by serial echocardiography and metabolite tests, Western blot analysis for TRB3 expression, and histopathologic analyses of cardiomyocyte density, lipids accumulation, cardiac inflammation, and fibrosis area. We then used gene silencing to investigate the role of TRB3 in the pathophysiologic features of DCM. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, aberrant lipids deposition, cardiac inflammation, fibrosis, and TRB3 overexpression. We found that the silencing of TRB3 ameliorated metabolic disturbance and insulin resistance; myocardial hypertrophy, lipids accumulation, inflammation, fibrosis, and elevated collagen I-to-III content ratio in DCM rats were significantly decreased. These anatomic findings were accompanied by significant improvements in cardiac function. Furthermore, with TRB3 gene silencing, the inhibited phosphorylation of Akt was restored and the increased phosphorylation of extracellular signal-regulated kinase 1/2 and Jun NH(2)-terminal kinase in DCM was significantly decreased. TRB3 gene silencing may exert a protective effect on DCM by improving selective insulin resistance, implicating its potential role for treatment of human DCM.

  12. Identification of single gene deletions at 15q13.3: further evidence that CHRNA7 causes the 15q13.3 microdeletion syndrome phenotype.

    PubMed

    Hoppman-Chaney, N; Wain, K; Seger, P R; Superneau, D W; Hodge, J C

    2013-04-01

    The 15q13.3 microdeletion syndrome (OMIM #612001) is characterized by a wide range of phenotypic features, including intellectual disability, seizures, autism, and psychiatric conditions. This deletion is inherited in approximately 75% of cases and has been found in mildly affected and normal parents, consistent with variable expressivity and incomplete penetrance. The common deletion is approximately 2 Mb and contains several genes; however, the gene(s) responsible for the resulting clinical features have not been clearly defined. Recently, four probands were reported with small deletions including only the CHRNA7 gene. These patients showed a wide range of phenotypic features similar to those associated with the larger 15q13.3 microdeletion. To further correlate genotype and phenotype, we queried our database of >15,000 patients tested in the Mayo Clinic Cytogenetics Laboratory from 2008 to 2011 and identified 19 individuals (10 probands and 9 family members) with isolated heterozygous CHRNA7 gene deletions. All but two infants displayed multiple features consistent with 15q13.3 microdeletion syndrome. We also identified the first de novo deletion confined to CHRNA7 as well as the second known case with homozygous deletion of CHRNA7 only. These results provide further evidence implicating CHRNA7 as the gene responsible for the clinical findings associated with 15q13.3 microdeletion. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  13. 3’UTR Shortening Potentiates MicroRNA-Based Repression of Pro-differentiation Genes in Proliferating Human Cells

    PubMed Central

    Hoffman, Yonit; Bublik, Debora Rosa; P. Ugalde, Alejandro; Elkon, Ran; Biniashvili, Tammy; Agami, Reuven; Oren, Moshe; Pilpel, Yitzhak

    2016-01-01

    Most mammalian genes often feature alternative polyadenylation (APA) sites and hence diverse 3’UTR lengths. Proliferating cells were reported to favor APA sites that result in shorter 3’UTRs. One consequence of such shortening is escape of mRNAs from targeting by microRNAs (miRNAs) whose binding sites are eliminated. Such a mechanism might provide proliferation-related genes with an expression gain during normal or cancerous proliferation. Notably, miRNA sites tend to be more active when located near both ends of the 3’UTR compared to those located more centrally. Accordingly, miRNA sites located near the center of the full 3’UTR might become more active upon 3'UTR shortening. To address this conjecture we performed 3' sequencing to determine the 3' ends of all human UTRs in several cell lines. Remarkably, we found that conserved miRNA binding sites are preferentially enriched immediately upstream to APA sites, and this enrichment is more prominent in pro-differentiation/anti-proliferative genes. Binding sites of the miR17-92 cluster, upregulated in rapidly proliferating cells, are particularly enriched just upstream to APA sites, presumably conferring stronger inhibitory activity upon shortening. Thus 3’UTR shortening appears not only to enable escape from inhibition of growth promoting genes but also to potentiate repression of anti-proliferative genes. PMID:26908102

  14. A novel 3p22.3 gene CMTM7 represses oncogenic EGFR signaling and inhibits cancer cell growth.

    PubMed

    Li, H; Li, J; Su, Y; Fan, Y; Guo, X; Li, L; Su, X; Rong, R; Ying, J; Mo, X; Liu, K; Zhang, Z; Yang, F; Jiang, G; Wang, J; Zhang, Y; Ma, D; Tao, Q; Han, W

    2014-06-12

    Deletion of 3p12-22 is frequent in multiple cancer types, indicating the presence of critical tumor-suppressor genes (TSGs) at this region. We studied a novel candidate TSG, CMTM7, located at the 3p22.3 CMTM-gene cluster, for its tumor-suppressive functions and related mechanisms. The three CMTM genes, CMTM6, 7 and 8, are broadly expressed in human normal adult tissues and normal epithelial cell lines. Only CMTM7 is frequently silenced or downregulated in esophageal and nasopharyngeal cell lines, but uncommon in other carcinoma cell lines. Immunostaining of tissue microarrays for CMTM7 protein showed its downregulation or absence in esophageal, gastric, pancreatic, liver, lung and cervix tumor tissues. Promoter CpG methylation and loss of heterozygosity were both found contributing to CMTM7 downregulation. Ectopic expression of CMTM7 in carcinoma cells inhibits cell proliferation, motility and tumor formation in nude mice, but not in immortalized normal cells, suggesting a tumor inhibitory role of CMTM7. The tumor-suppressive function of CMTM7 is associated with its role in G1/S cell cycle arrest, through upregulating p27 and downregulating cyclin-dependent kinase 2 (CDK2) and 6 (CDK6). Moreover, CMTM7 could promote epidermal growth factor receptor (EGFR) internalization, and further suppress AKT signaling pathway. Thus, our findings suggest that CMTM7 is a novel 3p22 tumor suppressor regulating G1/S transition and EGFR/AKT signaling during tumor pathogenesis.

  15. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland.

    PubMed

    Perreten, Vincent; Boerlin, Patrick

    2003-03-01

    A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Delta/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland.

  16. Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice

    PubMed Central

    Hanatani, Satoko; Motoshima, Hiroyuki; Takaki, Yuki; Kawasaki, Shuji; Igata, Motoyuki; Matsumura, Takeshi; Kondo, Tatsuya; Senokuchi, Takafumi; Ishii, Norio; Kawashima, Junji; Kukidome, Daisuke; Shimoda, Seiya; Nishikawa, Takeshi; Araki, Eiichi

    2016-01-01

    The induction of beige adipogenesis within white adipose tissue, known as “browning”, has received attention as a novel potential anti-obesity strategy. The expression of some characteristic genes including PR domain containing 16 is induced during the browning process. Although acetate has been reported to suppress weight gain in both rodents and humans, its potential effects on beige adipogenesis in white adipose tissue have not been fully characterized. We examined the effects of acetate treatment on 3T3-L1 cells and in obese diabetic KK-Ay mice. The mRNA expression levels of genes involved in beige adipocyte differentiation and genes selectively expressed in beige adipocytes were significantly elevated in both 3T3-L1 cells incubated with 1.0 mM acetate and the visceral white adipose tissue from mice treated with 0.6% acetate for 16 weeks. In KK-Ay mice, acetate reduced the food efficiency ratio and increased the whole-body oxygen consumption rate. Additionally, reduction of adipocyte size and uncoupling protein 1-positive adipocytes and interstitial areas with multilocular adipocytes appeared in the visceral white adipose tissue of acetate-treated mice, suggesting that acetate induced initial changes of “browning”. In conclusion, acetate alters the expression of genes involved in beige adipogenesis and might represent a potential therapeutic agent to combat obesity. PMID:27895388

  17. Characterization and gene cloning of the rice (Oryza sativa L.) dwarf and narrow-leaf mutant dnl3.

    PubMed

    Shi, L; Wei, X J; Adedze, Y M N; Sheng, Z H; Tang, S Q; Hu, P S; Wang, J L

    2016-09-16

    The dwarf and narrow-leaf rice (Oryza sativa L.) mutant dnl3 was isolated from the Japonica cultivar Zhonghua 11 (wild-type). dnl3 exhibited pleiotropic developmental defects. The narrow-leaf phenotype resulted from a marked reduction in the number of vascular bundles, while the dwarf stature was caused by the formation of foreshortened internodes and a reduced number of parenchyma cells. The suggestion that cell division is impaired in the mutant was consistent with the transcriptional behavior of various genes associated with cell division. The mutant was less responsive to exogenously supplied gibberellic acid than the wild-type, and profiling the transcription of genes involved in gibberellin synthesis and response revealed that a lesion in the mutant affected gibberellin signal transduction. The dnl3 phenotype was inherited as a single-dominant gene, mapping within a 19.1-kb region of chromosome 12, which was found to harbor three open reading frames. Resequencing the open reading frames revealed that the mutant carried an allele at one of the three genes that differed from the wild-type sequence by 2-bp deletions; this gene encoded a cellulose synthase-like D4 (CSLD4) protein. Therefore, OsCSLD4 is a candidate gene for DNL3. DNL3 was expressed in all of the rice organs tested at the heading stage, particularly in the leaves, roots, and culms. These results suggest that DNL3 plays important roles in rice leaf morphogenesis and vegetative development.

  18. Effect of 3,5,3'-Triiodothyronine (T3) administration on dio1 gene expression and T3 metabolism in normal and type 1 deiodinase-deficient mice.

    PubMed

    Maia, A L; Kieffer, J D; Harney, J W; Larsen, P R

    1995-11-01

    The type 1 deiodinase (D1) catalyzes the monodeiodination of T4 to produce T3, the active thyroid hormone. In the C3H mouse, hepatic D1 and the dio1 messenger RNA (mRNA) are only 10% that in the C57 strain, the common phenotype. Low activity cosegregated with a series of five GCT repeats located in the 5'-flanking region of the C3H dio1 gene that impaired C3H promoter potency and provided a partial explanation for the lower D1. The present studies were performed to search for additional explanations for low D1 activity in C3H mice. Previous studies have shown that T3 up-regulates the dio1 gene. Therefore, loss of the capacity to respond to endogenous T3 is a possible additional cause of the lower D1 levels in the C3H mice. The hepatic C3H dio1 mRNA increases 10- to 20 fold after T3 administration. The t3 effect occurs at a transplantation level and T3 does not alter the dio1 mRNA half-life. Despite the transcriptional response to T3, no functional thyroid response elements were identified in the 1.5-kilobase 5'-flanking region of either the C57 or C3H dio1 gene. After the same dose of exogenous T3, both dio1 mRNA and D1 of the C3H mouse respond to a greater extent than those of the C57 strain. This can be explained in part by the reduction in T3 clearance due to the lower D1 levels in C3H mice in which higher concentrations of circulating T3 are maintained. The decrease in serum T3 levels and T3 production observed in fasting and systemic illness in both human and experimental animals has been attributed in part to a decrease in hepatic D1. In contrast, despite markedly lower hepatic and renal D1 levels, serum T3 concentrations remain normal in C3H mice. The present studies suggest that the absence of stress-induced hypothalamic-pituitary suppression that allows T4 production to be maintained together with the reduced clearance of T3 and T4 via inner ring deiodination compensate for the D1 deficiency.

  19. Novel Mutation of the NOTCH3 Gene in a Chinese Pedigree with CADASIL.

    PubMed

    Hou, Xiaoxia; He, Chuan; Jin, Qingwen; Niu, Qi; Ren, Guang; Cheng, Hong

    2017-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) results from NOTCH3 gene mutations, which lead to the degeneration of vascular smooth muscle cells (VSMCs). The clinical presentation of CADASIL patients is dependent on the impact of other vascular risk factors and the type of NOTCH3 mutation present. Here, we report a rare pathogenic mutation on exon 14 of the NOTCH3 gene in a Chinese family affected by CADASIL with phenotypic peculiarities. We performed genetic testing, clinical and neuropsychological examination, brain magnetic resonance images (MRI), and electron microscopy (EM) in skin biopsies. NOTCH3 gene analysis revealed a c.2182CT substitution on exon 14, which is the first example of this mutation in a Chinese individual from the Han ancestry. Granular osmiophilic material (GOM) was found in the proband, and all patients had migraine, subcortical ischemic events, and mood disturbances, without progressive cognitive impairment. Cranial MRI further showed white matter hyperintensity, involving bilateral basal ganglia and multiple microbleeds (MBs), in the thalamus and brain stem. This study suggests that different missense mutations in NOTCH3 might contribute to atypical clinical features of CADASIL. This report also indicates that for individuals with a positive family history having clinical and neuroradiological findings suggestive of CADASIL, genetic testing and GOM detection should be performed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3

    PubMed Central

    Zhou, Gaofeng; Ryan, Peter R.

    2014-01-01

    Malate and citrate efflux from root apices is a mechanism of Al3+ tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al3+-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al3+ tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al3+-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al3+-activated citrate efflux from root apices and greater tolerance to Al3+ toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al3+ tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al3+ tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al3+ tolerance of an important crop species. PMID:24692647

  1. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication.

    PubMed

    Moalem, Sharon; Babul-Hirji, Riyana; Stavropolous, Dmitri J; Wherrett, Diane; Bägli, Darius J; Thomas, Paul; Chitayat, David

    2012-07-01

    Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY. Copyright © 2012 Wiley Periodicals, Inc.

  2. Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting.

    PubMed

    Masuda, Junko; Kawamoto, Hiroshi; Strober, Warren; Takayama, Eiji; Mizutani, Akifumi; Murakami, Hiroshi; Ikawa, Tomokatsu; Kitani, Atsushi; Maeno, Narumi; Shigehiro, Tsukasa; Satoh, Ayano; Seno, Akimasa; Arun, Vaidyanath; Kasai, Tomonari; Fuss, Ivan J; Katsura, Yoshimoto; Seno, Masaharu

    2016-12-01

    Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.

  3. A multifaceted computational report on the variants effect on KIR2DL3 and IFNL3 candidate gene in HCV clearance.

    PubMed

    Singh, Pratichi; Dass, J Febin Prabhu

    2016-10-01

    HCV infection causes acute and chronic liver diseases including, cirrhosis and hepatocellular carcinoma. Following HCV infection, spontaneous clearance occurs in approximately 20 % of the population dependant upon HCV genotype. In this study, functional and non-functional variant analysis was executed for the classical and the latest HCV clearance candidate genes namely, KIR2DL3 and IFNL3. Initially, the functional effects of non-synonymous SNPs were assigned on exposing to homology based tools, SIFT, PolyPhen-2 and PROVEAN. Further, UTR and splice sites variants were scanned for the gene expression and regulation changes. Subsequently, the haplotype and CNV were also identified. The mutation H77Y of KIR2DL3 and R157Q, H156Y, S63L, R157W, F179V, H128R, T101M, R180C, and F176I of IFNL3 results in conservation, RMSD, total energy, stability, and secondary structures revealed a negative impact on the structural fitness. UTRscan and the splice site result indicate functional change, which may affect gene regulation and expression. The graphical display of selected population shows alleles like rs270779, rs2296370, rs10423751, rs12982559, rs9797797, and rs35987710 of KIR2DL3 and rs12972991, rs12980275, rs4803217, rs8109886, and rs8099917 of IFNL3 are in high LD with a measure of [Formula: see text] broadcasting its protective effect in HCV clearance. Similarly, CNV report suggests major DNA fragment loss that could have a profound impact on the gene expression affecting the overall phenotype. This roundup report specifies the effect of NK cell receptor, KIR2DL3 and IFNL3 variants that can have a better prospect in GWAS and immunogenetic studies leading to better understanding of HCV clearance and progression.

  4. Conservation of the structure and organization of lupin mitochondrial nad3 and rps12 genes.

    PubMed

    Rurek, M; Oczkowski, M; Augustyniak, H

    1998-01-01

    A high level of the nucleotide sequence conservation of mitochondrial nad3 and rps12 genes was found in four lupin species. The only differences concern three nucleotides in the Lupinus albus rps12 gene and three nucleotides insertion in the L. mutabilis spacer. Northern blot analysis as well as RT-PCR confirmed cotranscription of the L. luteus genes because the transcripts detected were long enough.

  5. oPOSSUM-3: Advanced Analysis of Regulatory Motif Over-Representation Across Genes or ChIP-Seq Datasets

    PubMed Central

    Kwon, Andrew T.; Arenillas, David J.; Hunt, Rebecca Worsley; Wasserman, Wyeth W.

    2012-01-01

    oPOSSUM-3 is a web-accessible software system for identification of over-represented transcription factor binding sites (TFBS) and TFBS families in either DNA sequences of co-expressed genes or sequences generated from high-throughput methods, such as ChIP-Seq. Validation of the system with known sets of co-regulated genes and published ChIP-Seq data demonstrates the capacity for oPOSSUM-3 to identify mediating transcription factors (TF) for co-regulated genes or co-recovered sequences. oPOSSUM-3 is available at http://opossum.cisreg.ca. PMID:22973536

  6. oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets.

    PubMed

    Kwon, Andrew T; Arenillas, David J; Worsley Hunt, Rebecca; Wasserman, Wyeth W

    2012-09-01

    oPOSSUM-3 is a web-accessible software system for identification of over-represented transcription factor binding sites (TFBS) and TFBS families in either DNA sequences of co-expressed genes or sequences generated from high-throughput methods, such as ChIP-Seq. Validation of the system with known sets of co-regulated genes and published ChIP-Seq data demonstrates the capacity for oPOSSUM-3 to identify mediating transcription factors (TF) for co-regulated genes or co-recovered sequences. oPOSSUM-3 is available at http://opossum.cisreg.ca.

  7. NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population.

    PubMed

    Gauthier, Julie; Bonnel, Anna; St-Onge, Judith; Karemera, Liliane; Laurent, Sandra; Mottron, Laurent; Fombonne, Eric; Joober, Ridha; Rouleau, Guy A

    2005-01-05

    Jamain [2003: Nat Genet 34:27-29] recently reported mutations in two neuroligin genes in sib-pairs affected with autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 96 individuals affected with autism. We found no mutations in these X-linked genes. These results indicate that mutations in NLGN3 and NLGN4 genes are responsible for at most a small fraction of autism cases and additional screenings in other autistic populations are needed to better determine the frequency with which mutations in NLGN3 and NLGN4 occur in autism. Copyright 2004 Wiley-Liss, Inc.

  8. Accelerated Evolution of PAK3- and PIM1-like Kinase Gene Families in the Zebra Finch, Taeniopygia guttata

    PubMed Central

    Kong, Lesheng; Lovell, Peter V.; Heger, Andreas; Mello, Claudio V.; Ponting, Chris P.

    2010-01-01

    Genes encoding protein kinases tend to evolve slowly over evolutionary time, and only rarely do they appear as recent duplications in sequenced vertebrate genomes. Consequently, it was a surprise to find two families of kinase genes that have greatly and recently expanded in the zebra finch (Taeniopygia guttata) lineage. In contrast to other amniotic genomes (including chicken) that harbor only single copies of p21-activated serine/threonine kinase 3 (PAK3) and proviral integration site 1 (PIM1) genes, the zebra finch genome appeared at first to additionally contain 67 PAK3-like (PAK3L) and 51 PIM1-like (PIM1L) protein kinase genes. An exhaustive analysis of these gene models, however, revealed most to be incomplete, owing to the absence of terminal exons. After reprediction, 31 PAK3L genes and 10 PIM1L genes remain, and all but three are predicted, from the retention of functional sites and open reading frames, to be enzymatically active. PAK3L, but not PIM1L, gene sequences show evidence of recurrent episodes of positive selection, concentrated within structures spatially adjacent to N- and C-terminal protein regions that have been discarded from zebra finch PAK3L genes. At least seven zebra finch PAK3L genes were observed to be expressed in testis, whereas two sequences were found transcribed in the brain, one broadly including the song nuclei and the other in the ventricular zone and in cells resembling Bergmann's glia in the cerebellar Purkinje cell layer. Two PIM1L sequences were also observed to be expressed with broad distributions in the zebra finch brain, one in both the ventricular zone and the cerebellum and apparently associated with glial cells and the other showing neuronal cell expression and marked enrichment in midbrain/thalamic nuclei. These expression patterns do not correlate with zebra finch-specific features such as vocal learning. Nevertheless, our results show how ancient and conserved intracellular signaling molecules can be co

  9. Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas.

    PubMed

    Specht, Katja; Zhang, Lei; Sung, Yun-Shao; Nucci, Marisa; Dry, Sarah; Vaiyapuri, Sumathi; Richter, Gunther H S; Fletcher, Christopher D M; Antonescu, Cristina R

    2016-04-01

    Small blue round cell tumors (SBRCTs) are a heterogenous group of tumors that are difficult to diagnose because of overlapping morphologic, immunohistochemical, and clinical features. About two-thirds of EWSR1-negative SBRCTs are associated with CIC-DUX4-related fusions, whereas another small subset shows BCOR-CCNB3 X-chromosomal paracentric inversion. Applying paired-end RNA sequencing to an SBRCT index case of a 44-year-old man, we identified a novel BCOR-MAML3 chimeric fusion, which was validated by reverse transcription polymerase chain reaction and fluorescence in situ hybridization techniques. We then screened a total of 75 SBRCTs lacking EWSR1, FUS, SYT, CIC, and BCOR-CCNB3 abnormalities for BCOR break-apart probes by fluorescence in situ hybridization to detect potential recurrent BCOR gene rearrangements outside the typical X-chromosomal inversion. Indeed, 8/75 (11%) SBRCTs showed distinct BCOR gene rearrangements, with 2 cases each showing either a BCOR-MAML3 or the alternative ZC3H7B-BCOR fusion, whereas no fusion partner was detected in the remaining 4 cases. Gene expression of the BCOR-MAML3-positive index case showed a distinct transcriptional profile with upregulation of HOX-gene signature, compared with classic Ewing's sarcoma or CIC-DUX4-positive SBRCTs. The clinicopathologic features of the SBRCTs with alternative BCOR rearrangements were also compared with a group of BCOR-CCNB3 inversion-positive cases, combining 11 from our files with a meta-analysis of 42 published cases. The BCOR-CCNB3-positive tumors occurred preferentially in children and in bone, in contrast to alternative BCOR-rearranged SBRCTs, which presented in young adults, with a variable anatomic distribution. Furthermore, BCOR-rearranged tumors often displayed spindle cell areas, either well defined in intersecting fascicles or blending with the round cell component, which appears distinct from most other fusion-positive SBRCTs and shares histologic overlap with poorly

  10. Mutation analysis of the chromosome 14q24.3 dihydrolipoyl succinyltransferase (DLST) gene in patients with early-onset Alzheimer disease.

    PubMed

    Cruts, M; Backhovens, H; Van Gassen, G; Theuns, J; Wang, S Y; Wehnert, A; van Duijn, C M; Karlsson, T; Hofman, A; Adolfsson, R

    1995-10-13

    Linkage analysis studies have indicated that the chromosome band 14q24.3 harbours a major gene for familial early-onset Alzheimer's disease (AD). Recently we localized the chromosome 14 AD gene (AD3) in the 6.4 cM interval between the markers D14S289 and D14S61. We mapped the gene encoding dihydrolipoyl succinyltransferase (DLST), the E2k component of human alpha-ketoglutarate dehydrogenase complex (KGDHC), in the AD3 candidate region using yeast artificial chromosomes (YACs). The DLST gene is a candidate for the AD3 gene since deficiencies in KGDHC activity have been observed in brain tissue and fibroblasts of AD patients. The 15 exons and the promoter region of the DLST gene were analysed for mutations in chromosome 14 linked AD cases and in two series of unrelated early-onset AD cases (onset age < 55 years). Sequence variations in intronic sequences (introns 3, 5 and 10) or silent mutations in exonic sequences (exons 8 and 14) were identified. However, no AD related mutations were observed, suggesting that the DLST gene is not the chromosome 14 AD3 gene.

  11. A New Sulfonamide Resistance Gene (sul3) in Escherichia coli Is Widespread in the Pig Population of Switzerland

    PubMed Central

    Perreten, Vincent; Boerlin, Patrick

    2003-01-01

    A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Δ/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland. PMID:12604565

  12. Avirulence Genes in Cereal Powdery Mildews: The Gene-for-Gene Hypothesis 2.0

    PubMed Central

    Bourras, Salim; McNally, Kaitlin E.; Müller, Marion C.; Wicker, Thomas; Keller, Beat

    2016-01-01

    The gene-for-gene hypothesis states that for each gene controlling resistance in the host, there is a corresponding, specific gene controlling avirulence in the pathogen. Allelic series of the cereal mildew resistance genes Pm3 and Mla provide an excellent system for genetic and molecular analysis of resistance specificity. Despite this opportunity for molecular research, avirulence genes in mildews remain underexplored. Earlier work in barley powdery mildew (B.g. hordei) has shown that the reaction to some Mla resistance alleles is controlled by multiple genes. Similarly, several genes are involved in the specific interaction of wheat mildew (B.g. tritici) with the Pm3 allelic series. We found that two mildew genes control avirulence on Pm3f: one gene is involved in recognition by the resistance protein as demonstrated by functional studies in wheat and the heterologous host Nicotiana benthamiana. A second gene is a suppressor, and resistance is only observed in mildew genotypes combining the inactive suppressor and the recognized Avr. We propose that such suppressor/avirulence gene combinations provide the basis of specificity in mildews. Depending on the particular gene combinations in a mildew race, different genes will be genetically identified as the “avirulence” gene. Additionally, the observation of two LINE retrotransposon-encoded avirulence genes in B.g. hordei further suggests that the control of avirulence in mildew is more complex than a canonical gene-for-gene interaction. To fully understand the mildew–cereal interactions, more knowledge on avirulence determinants is needed and we propose ways how this can be achieved based on recent advances in the field. PMID:26973683

  13. Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription.

    PubMed

    Long, Lin; He, Jian-Zhong; Chen, Ye; Xu, Xiu-E; Liao, Lian-Di; Xie, Yang-Min; Li, En-Min; Xu, Li-Yan

    2018-05-07

    Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with

  14. Genome-wide association uncovers shared genetic effects among personality traits and mood states.

    PubMed

    Luciano, Michelle; Huffman, Jennifer E; Arias-Vásquez, Alejandro; Vinkhuyzen, Anna A E; Middeldorp, Christel M; Giegling, Ina; Payton, Antony; Davies, Gail; Zgaga, Lina; Janzing, Joost; Ke, Xiayi; Galesloot, Tessel; Hartmann, Annette M; Ollier, William; Tenesa, Albert; Hayward, Caroline; Verhagen, Maaike; Montgomery, Grant W; Hottenga, Jouke-Jan; Konte, Bettina; Starr, John M; Vitart, Veronique; Vos, Pieter E; Madden, Pamela A F; Willemsen, Gonneke; Konnerth, Heike; Horan, Michael A; Porteous, David J; Campbell, Harry; Vermeulen, Sita H; Heath, Andrew C; Wright, Alan; Polasek, Ozren; Kovacevic, Sanja B; Hastie, Nicholas D; Franke, Barbara; Boomsma, Dorret I; Martin, Nicholas G; Rujescu, Dan; Wilson, James F; Buitelaar, Jan; Pendleton, Neil; Rudan, Igor; Deary, Ian J

    2012-09-01

    Measures of personality and psychological distress are correlated and exhibit genetic covariance. We conducted univariate genome-wide SNP (~2.5 million) and gene-based association analyses of these traits and examined the overlap in results across traits, including a prediction analysis of mood states using genetic polygenic scores for personality. Measures of neuroticism, extraversion, and symptoms of anxiety, depression, and general psychological distress were collected in eight European cohorts (n ranged 546-1,338; maximum total n = 6,268) whose mean age ranged from 55 to 79 years. Meta-analysis of the cohort results was performed, with follow-up associations of the top SNPs and genes investigated in independent cohorts (n = 527-6,032). Suggestive association (P = 8 × 10(-8)) of rs1079196 in the FHIT gene was observed with symptoms of anxiety. Other notable associations (P < 6.09 × 10(-6)) included SNPs in five genes for neuroticism (LCE3C, POLR3A, LMAN1L, ULK3, SCAMP2), KIAA0802 for extraversion, and NOS1 for general psychological distress. An association between symptoms of depression and rs7582472 (near to MGAT5 and NCKAP5) was replicated in two independent samples, but other replication findings were less consistent. Gene-based tests identified a significant locus on chromosome 15 (spanning five genes) associated with neuroticism which replicated (P < 0.05) in an independent cohort. Support for common genetic effects among personality and mood (particularly neuroticism and depressive symptoms) was found in terms of SNP association overlap and polygenic score prediction. The variance explained by individual SNPs was very small (up to 1%) confirming that there are no moderate/large effects of common SNPs on personality and related traits. Copyright © 2012 Wiley Periodicals, Inc.

  15. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    PubMed

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  16. Light response and potential interacting proteins of a grape flavonoid 3'-hydroxylase gene promoter.

    PubMed

    Sun, Run-Ze; Pan, Qiu-Hong; Duan, Chang-Qing; Wang, Jun

    2015-12-01

    Flavonoid 3'-hydroxylase (F3'H), a member of cytochrome P450 protein family, introduces B-ring hydroxyl group in the 3' position of the flavonoid. In this study, the cDNA sequence of a F3'H gene (VviF3'H), which contains an open reading frame of 1530 bp encoding a polypeptide of 509 amino acids, was cloned and characterized from Vitis vinifera L. cv. Cabernet Sauvignon. VviF3'H showed high homology to known F3'H genes, especially F3'Hs from the V. vinifera reference genome (Pinot Noir) and lotus. Expression profiling analysis using real-time PCR revealed that VviF3'H was ubiquitously expressed in all tested tissues including berries, leaves, flowers, roots, stems and tendrils, suggesting its important physiological role in plant growth and development. Moreover, the transcript level of VviF3'H gene in grape berries was relatively higher at early developmental stages and gradually decreased during véraison, and then increased in the mature phase. In addition, the promoter of VviF3'H was isolated by using TAIL-PCR. Yeast one-hybrid screening of the Cabernet Sauvignon cDNA library and subsequent in vivo/vitro validations revealed the interaction between VviF3'H promoter and several transcription factors, including members of HD-Zip, NAC, MYB and EIN families. A transcriptional regulation mechanism of VviF3'H expression is proposed for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.

    PubMed

    Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S

    2003-06-01

    The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.

  18. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta

    PubMed Central

    Huckert, Mathilde; Stoetzel, Corinne; Morkmued, Supawich; Laugel-Haushalter, Virginie; Geoffroy, Véronique; Muller, Jean; Clauss, François; Prasad, Megana K.; Obry, Frédéric; Raymond, Jean Louis; Switala, Marzena; Alembik, Yves; Soskin, Sylvie; Mathieu, Eric; Hemmerlé, Joseph; Weickert, Jean-Luc; Dabovic, Branka Brukner; Rifkin, Daniel B.; Dheedene, Annelies; Boudin, Eveline; Caluseriu, Oana; Cholette, Marie-Claude; Mcleod, Ross; Antequera, Reynaldo; Gellé, Marie-Paule; Coeuriot, Jean-Louis; Jacquelin, Louis-Frédéric; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Van Hul, Wim; Bertola, Debora; Dollé, Pascal; Verloes, Alain; Mortier, Geert; Dollfus, Hélène; Bloch-Zupan, Agnès

    2015-01-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder. PMID:25669657

  19. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis.

    PubMed

    Yoon, Ki-Hong; Lim, Byung-Lak

    2007-10-01

    A gene encoding the mannanase of Bacillus subtilis WL-3, which had been isolated from Korean soybean paste, was cloned into Escherichia coli and the nucleotide sequence of a 2.7-kb DNA fragment containing the mannanase gene was subsequently determined. The mannanase gene, designated manA, consisted of 1,080 nucleotides encoding polypeptide of 360 amino acid residues. The deduced amino acid sequence was highly homologous to those of mannanases belonging to glycosyl hydrolase family 26. The manA gene was strongly expressed in B. subtilis 168 by cloning the gene downstream of a strong B. subtilis promoter of plasmid pJ27Delta 88U. In flask cultures, the production of mannanase by recombinant B. subtilis 168 reached maximum levels of 300 units/ml and 450 units/ml in LB medium and LB medium containing 0.3% locust bean gum, respectively. Based on the zymogram of the mannanase, it was found that the mannanase produced by recombinant B. subtilis could be maintained stably without proteolytic degradation during the culture time.

  20. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3

    PubMed Central

    Rabbani, M. A. G.; Ribaudo, Michael; Guo, Ju-Tao

    2016-01-01

    ABSTRACT A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3. IMPORTANCE The innate immunity of the host, typified by interferon (IFN), is a major antiviral defense. IFN inhibits virus growth by inducing a large number of IFN-stimulated gene (ISG) proteins, several of which have been shown to have specific antiviral functions. Parainfluenza virus type 3 (PIV3) is major pathogen of children, and no reliable vaccine or specific antiviral against it currently exists. In this article, we report several ISG proteins that strongly inhibit PIV3 growth, the use of which may allow a better antiviral regimen targeting PIV3. PMID:27707917

  1. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation

    PubMed Central

    Grandy, Rodrigo A.; Whitfield, Troy W.; Wu, Hai; Fitzgerald, Mark P.; VanOudenhove, Jennifer J.; Zaidi, Sayyed K.; Montecino, Martin A.; Lian, Jane B.; van Wijnen, André J.; Stein, Janet L.

    2015-01-01

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. PMID:26644406

  2. PAX3 gene deletion detected by microarray analysis in a girl with hearing loss.

    PubMed

    Drozniewska, Malgorzata; Haus, Olga

    2014-01-01

    Deletions of the PAX3 gene have been rarely reported in the literature. Mutations of this gene are a common cause of Waardenburg syndrome type 1 and 3. We report a 16 year old female presenting hearing loss and normal intellectual development, without major features of Waardenburg syndrome type 1, and without family history of the syndrome. Her phenotype, however, overlaps with features of craniofacial-deafness-hand syndrome. Microarray analysis showed ~862 kb de novo deletion at 2q36.1 including PAX3. The above findings suggest that the rearrangement found in our patient appeared de novo and with high probability is a cause of her phenotype.

  3. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase.

    PubMed Central

    Hitzeman, R A; Hagie, F E; Hayflick, J S; Chen, C Y; Seeburg, P H; Derynck, R

    1982-01-01

    The DNA sequence of the gene for the yeast glycolytic enzyme, 3-phosphoglycerate kinase (PGK), has been obtained by sequencing part of a 3.1 kbp HindIII fragment obtained from the yeast genome. The structural gene sequence corresponds to a reading frame of 1251 bp coding for 416 amino acids with no intervening DNA sequences. The amino acid sequence is approximately 65 percent homologous with human and horse PGK protein sequences and is in general agreement with the published protein sequence for yeast PGK. As for other highly expressed structural genes in yeast, the coding sequence is highly codon biased with 95 percent of the amino acids coded for by a select 25 codons (out of 61 possible). Besides structural DNA sequence, 291 bp of 5'-flanking sequence and 286 bp of 3'-flanking sequence were determined. Transcription starts 36 nucleotides upstream from the translational start and stops 86-93 nucleotides downstream from the translational stop. These results suggest a non-polyadenylated mRNA length of 1373 to 1380 nucleotides, which is consistent with the observed length of 1500 nucleotides for polyadenylated PGK mRNA. A sequence TATATATAAA is found at 145 nucleotides upstream from the translational start. This sequence resembles the TATAAA box that is possibly associated with RNA polymerase II binding. Images PMID:6296791

  4. Characterization of hampin/MSL1 as a node in the nuclear interactome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitriev, Ruslan I.; Korneenko, Tatyana V.; Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, University of Toledo College of Medicine, Toledo, OH 43614

    2007-04-20

    Hampin, homolog of Drosophila MSL1, is a partner of histone acetyltransferase MYST1/MOF. Functions of these proteins remain poorly understood beyond their participation in chromatin remodeling complex MSL. In order to identify new proteins interacting with hampin, we screened a mouse cDNA library in yeast two-hybrid system with mouse hampin as bait and found five high-confidence interactors: MYST1, TPR proteins TTC4 and KIAA0103, NOP17 (homolog of a yeast nucleolar protein), and transcription factor GC BP. Subsequently, all these proteins were used as baits in library screenings and more new interactions were found: tumor suppressor RASSF1C and spliceosome component PRP3 for KIAA0103,more » ring finger RNF10 for RASSF1C, and RNA polymerase II regulator NELF-C for MYST1. The majority of the observed interactions was confirmed in vitro by pull-down of bacterially expressed proteins. Reconstruction of a fragment of mammalian interactome suggests that hampin may be linked to diverse regulatory processes in the nucleus.« less

  5. Patterns and effects of GC3 heterogeneity and parsimony informative sites on the phylogenetic tree of genes.

    PubMed

    Ma, Shuai; Wu, Qi; Hu, Yibo; Wei, Fuwen

    2018-05-20

    The explosive growth in genomic data has provided novel insights into the conflicting signals hidden in phylogenetic trees. Although some studies have explored the effects of the GC content and parsimony informative sites (PIS) on the phylogenetic tree, the effect of the heterogeneity of the GC content at the first/second/third codon position on parsimony informative sites (GC1/2/3 PIS ) among different species and the effect of PIS on phylogenetic tree construction remain largely unexplored. Here, we used two different mammal genomic datasets to explore the patterns of GC1/2/3 PIS heterogeneity and the effect of PIS on the phylogenetic tree of genes: (i) all GC1/2/3 PIS have obvious heterogeneity between different mammals, and the levels of heterogeneity are GC3 PIS  > GC2 PIS  > GC1 PIS ; (ii) the number of PIS is positively correlated with the metrics of "good" gene tree topologies, and excluding the third codon position (C3) decreases the quality of gene trees by removing too many PIS. These results provide novel insights into the heterogeneity pattern of GC1/2/3 PIS in mammals and the relationship between GC3/PIS and gene trees. Additionally, it is necessary to carefully consider whether to exclude C3 to improve the quality of gene trees, especially in the super-tree method. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. [Endoplasmic reticulum stress in INS-1-3 cell associated with the expression changes of MODY gene pathway].

    PubMed

    Liu, Y T; Li, S R; Wang, Z; Xiao, J Z

    2016-09-13

    Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.

  7. DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes.

    PubMed

    Drouin, Simon; Laramée, Louise; Jacques, Pierre-Étienne; Forest, Audrey; Bergeron, Maxime; Robert, François

    2010-10-28

    Histone deacetylase Rpd3 is part of two distinct complexes: the large (Rpd3L) and small (Rpd3S) complexes. While Rpd3L targets specific promoters for gene repression, Rpd3S is recruited to ORFs to deacetylate histones in the wake of RNA polymerase II, to prevent cryptic initiation within genes. Methylation of histone H3 at lysine 36 by the Set2 methyltransferase is thought to mediate the recruitment of Rpd3S. Here, we confirm by ChIP-Chip that Rpd3S binds active ORFs. Surprisingly, however, Rpd3S is not recruited to all active genes, and its recruitment is Set2-independent. However, Rpd3S complexes recruited in the absence of H3K36 methylation appear to be inactive. Finally, we present evidence implicating the yeast DSIF complex (Spt4/5) and RNA polymerase II phosphorylation by Kin28 and Ctk1 in the recruitment of Rpd3S to active genes. Taken together, our data support a model where Set2-dependent histone H3 methylation is required for the activation of Rpd3S following its recruitment to the RNA polymerase II C-terminal domain.

  8. Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3.

    PubMed Central

    Ferrando, A; Kron, S J; Rios, G; Fink, G R; Serrano, R

    1995-01-01

    Dynamic regulation of ion transport is essential for homeostasis as cells confront changes in their environment. The gene HAL3 encodes a novel component of this regulatory circuit in the yeast Saccharomyces cerevisiae. Overexpression of HAL3 improves growth of wild-type cells exposed to toxic concentrations of sodium and lithium and suppresses the salt sensitivity conferred by mutation of the calcium-dependent protein phosphatase calcineurin. Null mutants of HAL3 display salt sensitivity. The sequence of HAL3 gives little clue to its function. However, alterations in intracellular cation concentrations associated with changes in HAL3 expression suggest that HAL3 activity may directly increase cytoplasmic K+ and decrease Na+ and Li+. Cation efflux in S. cerevisiae is mediated by the P-type ATPase encoded by the ENA1/PMR24 gene, a putative plasma membrane Na+ pump whose expression is salt induced. Acting in concert with calcineurin, HAL3 is necessary for full activation of ENA1 expression. This functional complementarity is also reflected in the participation of both proteins in recovery from alpha-factor-induced growth arrest. Recently, HAL3 was isolated as a gene (named SIS2) which when overexpressed partially relieves loss of transcription of G1 cyclins in mutants lacking the protein phosphatase Sit4p. Therefore, HAL3 influences cell cycle control and ion homeostasis, acting in parallel to the protein phosphatases Sit4p and calcineurin. PMID:7565698

  9. Overexpression of vasopressin (V3) and corticotrophin-releasing hormone receptor genes in corticotroph tumours.

    PubMed

    de Keyzer, Y; René, P; Beldjord, C; Lenne, F; Bertagna, X

    1998-10-01

    The molecular mechanisms underlying ACTH-secreting tumour formation remain unknown. Transmembrane signalling pathways play an important role in several endocrine disorders including pituitary tumours. To investigate the role of the pituitary vasopressin (V3) receptor (R) in ACTH-secreting tumours we have qualitatively and quantitatively analysed its mRNA. RT-PCR, denaturing gradient gel electrophoresis and S1 nuclease protection experiments were used to analyse V3 mRNA structure in ACTH-secreting tumours. We also developed a competitive RT-PCR system to compare the levels of expression of POMC, V3 and CRH-R genes. This system used as competitor a single mutant template (termed multi-mutant) containing primers for the three genes flanking an unrelated core sequence allowing multiple quantifications from the same cDNA preparations. We analysed 12 normal pituitaries, 15 corticotroph pituitary adenomas and 6 ACTH-secreting bronchial carcinoids. The V3 mRNA structure and sequence were found to be identical in normal and tumoural pituitary indicating that the tumoural Vs mRNA codes for a normal receptor. POMC RT-PCR signals in the pituitary tumour group were approximately 7-fold higher than in the normal pituitary group. Similarly, V3 and CRH-R signal were increased in pituitary tumors (mean +/- SEM: 5.87 x 10(-6) +/- 1.73 x 10(-6), and 2.33 x 10(-4) +/- 1.4 x 10(-4), respectively), when compared to normal pituitaries (1.19 x 10(-7) +/- 2.39 x 10(-8), and 1.7 x 10(-6) +/- 4.65 x 10(-7), respectively) suggesting that these two genes are expressed at very high levels in corticotroph tumours. When expressed relative to the corresponding POMC signals, increases in V3 and CRH-R signals reached 49-fold and 137-fold, respectively, in pituitary tumours. In ACTH-secreting bronchial carcinoids V3 gene expression level was also higher than in normal pituitary, whereas CRH-R signals were detected in only 4 of the 6 tumours with wide variations. Our results show that both vasopressin

  10. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T₃in the mouse cerebral cortex.

    PubMed

    Hernandez, Arturo; Morte, Beatriz; Belinchón, Mónica M; Ceballos, Ainhoa; Bernal, Juan

    2012-06-01

    Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T(3) to nuclear receptors. Brain T(3) concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T(4) and T(3). We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T(3) led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T(3) treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T(3) action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T(3) concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.

  11. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3.

    PubMed

    Zhou, Gaofeng; Pereira, Jorge F; Delhaize, Emmanuel; Zhou, Meixue; Magalhaes, Jurandir V; Ryan, Peter R

    2014-06-01

    Malate and citrate efflux from root apices is a mechanism of Al(3+) tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al(3+)-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al(3+) tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al(3+)-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al(3+)-activated citrate efflux from root apices and greater tolerance to Al(3+) toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al(3+) tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al(3+) tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al(3+) tolerance of an important crop species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions

    PubMed Central

    Renau-Morata, Begoña; Molina, Rosa V.; Carrillo, Laura; Cebolla-Cornejo, Jaime; Sánchez-Perales, Manuel; Pollmann, Stephan; Domínguez-Figueroa, José; Corrales, Alba R.; Flexas, Jaume; Vicente-Carbajosa, Jesús; Medina, Joaquín; Nebauer, Sergio G.

    2017-01-01

    Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation of primary metabolism and abiotic stress responses, but its role in crop production under stress is still unknown. In this study, we characterized tomato plants overexpressing the CDF3 genes from Arabidopsis and tomato and analyzed their effects on growth and yield under salinity, additionally gaining deeper insights into the molecular function of these TFs. Our results provide evidence for higher biomass production and yield in the 35S::AtCDF3 and 35S::SlCDF3 plants, likely due to a higher photosynthetic capacity resulting in increased sucrose availability. Transcriptome analysis revealed that CDF3 genes regulate a set of genes involved in redox homeostasis, photosynthesis performance and primary metabolism that lead to enhanced biomass production. Consistently, metabolomic profiling revealed that CDF3 evokes changes in the primary metabolism triggering enhanced nitrogen assimilation, and disclosed that the amount of some protective metabolites including sucrose, GABA and asparagine were higher in vegetative tissues of CDF3 overexpressing plants. Altogether these changes improved performance of 35S::AtCDF3 and 35S::SlCDF3 plants under salinity conditions. Moreover, the overexpression of CDF3 genes modified organic acid and sugar content in fruits, improving variables related to flavor perception and fruit quality. Overall, our results associate the CDF3 TF with a role in the control of growth and C/N metabolism, and highlight that overexpression of CDF3 genes can substantially improve plant yield. PMID:28515731

  14. Differential effects of the mismatch repair genes MSH2 and MSH3 on homeologous recombination in Saccharomyces cerevisiae.

    PubMed

    Selva, E M; Maderazo, A B; Lahue, R S

    1997-12-01

    The products of the yeast mismatch repair genes MSH2 and MSH3 participate in the inhibition of genetic recombination between homeologous (divergent) DNA sequences. In strains deficient for these genes, homeologous recombination rates between repeated elements are elevated due to the loss of this inhibition. In this study, the effects of these mutations were further analyzed by quantitation of mitotic homeologous recombinants as crossovers, gene conversions or exceptional events in wild-type, msh2, msh3 and msh2 msh3 mutant strains. When homeologous sequences were present as a direct repeat in one orientation, crossovers and gene conversions were elevated in msh2, msh3 and msh2 msh3 strains. The increases were greater in the msh2 msh3 double mutant than in either single mutant. When the order of the homeologous sequences was reversed, the msh2 mutation again yielded increased rates of crossovers and gene conversions. However, in an msh3 strain, gene conversions occurred at higher levels but interchromosomal crossovers were not increased and intrachromosomal crossovers were reduced relative to wild type. The msh2 msh3 double mutant behaved like the msh2 single mutant in this orientation. Control strains harboring homologous duplications were largely but not entirely unaffected in mutant strains, suggesting specificity for the mismatched intermediates of homeologous recombination. In all strains, very few (< 10%) recombinants could be attributed to exceptional events. These results suggest that MSH2 and MSH3 can function differentially to control homeologous exchanges.

  15. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis

    PubMed Central

    Pham, Kieu Thi Minh; Inoue, Yoshihiro; Vu, Ba Van; Nguyen, Hanh Hieu; Nakayashiki, Toru; Ikeda, Ken-ichi; Nakayashiki, Hitoshi

    2015-01-01

    Here we report the genetic analyses of histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1) impaired in histone H3 lysine 4 methylation (H3K4me) showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di- and tri-methylation (H3K4me2/me3) and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1) Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or -me3 abundance during infection-related morphogenesis. 2) In general, H3K4-me2 and -me3 abundance was positively associated with active transcription. 3) Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes), and during infection-related morphogenesis (1,385 genes), indicating that MoSET1 has a role in gene repression either directly or more

  16. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes.

    PubMed

    Osuna-Cruz, Cristina M; Paytuvi-Gallart, Andreu; Di Donato, Antimo; Sundesha, Vicky; Andolfo, Giuseppe; Aiese Cigliano, Riccardo; Sanseverino, Walter; Ercolano, Maria R

    2018-01-04

    The Plant Resistance Genes database (PRGdb; http://prgdb.org) has been redesigned with a new user interface, new sections, new tools and new data for genetic improvement, allowing easy access not only to the plant science research community but also to breeders who want to improve plant disease resistance. The home page offers an overview of easy-to-read search boxes that streamline data queries and directly show plant species for which data from candidate or cloned genes have been collected. Bulk data files and curated resistance gene annotations are made available for each plant species hosted. The new Gene Model view offers detailed information on each cloned resistance gene structure to highlight shared attributes with other genes. PRGdb 3.0 offers 153 reference resistance genes and 177 072 annotated candidate Pathogen Receptor Genes (PRGs). Compared to the previous release, the number of putative genes has been increased from 106 to 177 K from 76 sequenced Viridiplantae and algae genomes. The DRAGO 2 tool, which automatically annotates and predicts (PRGs) from DNA and amino acid with high accuracy and sensitivity, has been added. BLAST search has been implemented to offer users the opportunity to annotate and compare their own sequences. The improved section on plant diseases displays useful information linked to genes and genomes to connect complementary data and better address specific needs. Through, a revised and enlarged collection of data, the development of new tools and a renewed portal, PRGdb 3.0 engages the plant science community in developing a consensus plan to improve knowledge and strategies to fight diseases that afflict main crops and other plants. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The Arabidopsis polyamine transporter LHR1/PUT3 modulates heat responsive gene expression by enhancing mRNA stability.

    PubMed

    Shen, Yun; Ruan, Qingxia; Chai, Haoxi; Yuan, Yongze; Yang, Wannian; Chen, Junping; Xin, Zhanguo; Shi, Huazhong

    2016-12-01

    Polyamines involve in gene regulation by interacting with and modulating the functions of various anionic macromolecules such as DNA, RNA and proteins. In this study, we identified an important function of the polyamine transporter LHR1 (LOWER EXPRESSION OF HEAT RESPONSIVE GENE1) in heat-inducible gene expression in Arabidopsis thaliana. The lhr1 mutant was isolated through a forward genetic screening for altered expression of the luciferase reporter gene driven by the promoter from the heat-inducible gene AtHSP18.2. The lhr1 mutant showed reduced induction of the luciferase gene in response to heat stress and was more sensitive to high temperature than the wild type. Map-based cloning identified that the LHR1 gene encodes the polyamine transporter PUT3 (POLYAMINE UPTAKE TRANSPORTER 3) localized in the plasma membrane. The LHR1/PUT3 is required for the uptake of extracellular polyamines and plays an important role in stabilizing the mRNAs of several crucial heat stress responsive genes under high temperature. Genome-wide gene expression analysis using RNA-seq identified an array of differentially expressed genes, among which the transcript levels of some of the heat shock protein genes significantly reduced in response to prolonged heat stress in the lhr1 mutant. Our findings revealed an important heat stress response and tolerance mechanism involving polyamine influx which modulates mRNA stability of heat-inducible genes under heat stress conditions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations.

    PubMed

    Jiang, WenZhi; Yang, Bing; Weeks, Donald P

    2014-01-01

    The newly developed CRISPR/Cas9 system for targeted gene knockout or editing has recently been shown to function in plants in both transient expression systems as well as in primary T1 transgenic plants. However, stable transmission of genes modified by the Cas9/single guide RNA (sgRNA) system to the T2 generation and beyond has not been demonstrated. Here we provide extensive data demonstrating the efficiency of Cas9/sgRNA in causing modification of a chromosomally integrated target reporter gene during early development of transgenic Arabidopsis plants and inheritance of the modified gene in T2 and T3 progeny. Efficient conversion of a nonfunctional, out-of-frame GFP gene to a functional GFP gene was confirmed in T1 plants by the observation of green fluorescent signals in leaf tissues as well as the presence of mutagenized DNA sequences at the sgRNA target site within the GFP gene. All GFP-positive T1 transgenic plants and nearly all GFP-negative plants examined contained mutagenized GFP genes. Analyses of 42 individual T2 generation plants derived from 6 different T1 progenitor plants showed that 50% of T2 plants inherited a single T-DNA insert. The efficiency of the Cas9/sgRNA system and stable inheritance of edited genes point to the promise of this system for facile editing of plant genes.

  19. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD genemore » region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.« less

  20. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling.

    PubMed

    Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N

    2004-02-06

    Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.

  1. The R148.3 Gene Modulates Caenorhabditis elegans Lifespan and Fat Metabolism

    PubMed Central

    Roy-Bellavance, Catherine; Grants, Jennifer M.; Miard, Stéphanie; Lee, Kayoung; Rondeau, Évelyne; Guillemette, Chantal; Simard, Martin J.; Taubert, Stefan; Picard, Frédéric

    2017-01-01

    Despite many advances, the molecular links between energy metabolism and longevity are not well understood. Here, we have used the nematode model Caenorhabditis elegans to study the role of the yet-uncharacterized gene R148.3 in fat accumulation and lifespan. In wild-type worms, a R148.3p::GFP reporter showed enhanced expression throughout life in the pharynx, in neurons, and in muscles. Functionally, a protein fusing a predicted 22 amino acid N-terminal signal sequence (SS) of R148.3 to mCherry displayed robust accumulation in coelomyocytes, indicating that R148.3 is a secreted protein. Systematic depletion of R148.3 by RNA interference (RNAi) at L1 but not at young-adult stage enhanced triglyceride accumulation, which was associated with increased food uptake and lower expression of genes involved in lipid oxidation. However, RNAi of R148.3 at both L1 and young-adult stages robustly diminished mean and maximal lifespan of wild-type worms, and also abolished the long-lived phenotypes of eat-2 and daf-2/InsR mutants. Based on these data, we propose that R148.3 is an SS that modulates fat mass and longevity in an independent manner. PMID:28620088

  2. FOXP3 Orchestrates H4K16 Acetylation and H3K4 Tri-Methylation for Activation of Multiple Genes through Recruiting MOF and Causing Displacement of PLU-1

    PubMed Central

    Katoh, Hiroto; Qin, Zhaohui S.; Liu, Runhua; Wang, Lizhong; Li, Weiquan; Li, Xiangzhi; Wu, Lipeng; Du, Zhanwen; Lyons, Robert; Liu, Chang-Gong; Liu, Xiuping; Dou, Yali; Zheng, Pan; Liu, Yang

    2011-01-01

    SUMMARY Both H4K16 acetylation and H3K4 tri-methylation are required for gene activation. However, it is still largely unclear how these modifications are orchestrated by transcriptional factors. Here we analyzed the mechanism of the transcriptional activation by FOXP3, an X-linked suppressor of autoimmune diseases and cancers. FOXP3 binds near transcriptional start sites of its target genes. By recruiting MOF and displacing histone H3K4 demethylase PLU-1, FOXP3 increases both H4K16 acetylation and H3K4 tri-methylation at the FOXP3-associated chromatins of multiple FOXP3-activated genes. RNAi-mediated silencing of MOF reduced both gene activation and tumor suppression by FOXP3, while both somatic mutations in clinical cancer samples and targeted mutation of FOXP3 in mouse prostate epithelial disrupted nuclear localization of MOF. Our data demonstrate a pull-push model in which a single transcription factor orchestrates two epigenetic alterations necessary for gene activation and provide a mechanism for somatic inactivation of the FOXP3 protein function in cancer cells. PMID:22152480

  3. The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene

    PubMed Central

    Barkess, Gráinne; Postnikov, Yuri; Campos, Chrisanne D.; Mishra, Shivam; Mohan, Gokula; Verma, Sakshi; Bustin, Michael; West, Katherine L.

    2013-01-01

    HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production. PMID:22150271

  4. Characterization and Promoter Analysis of a Cotton Ring-Type Ubiquitin Ligase (E3) Gene

    USDA-ARS?s Scientific Manuscript database

    A cotton fiber cDNA, GhRING1, and its corresponding gene have been cloned and characterized. The GhRING1 gene encodes a RING-type ubiquitin ligase (E3) containing 337 amino acids (aa). The GhRING1 protein contains a RING finger motif with conserved cysteine and histine residues at the C-terminus a...

  5. The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children.

    PubMed

    Ahmetov, Ildus I; Gavrilov, Dmitry N; Astratenkova, Irina V; Druzhevskaya, Anastasiya M; Malinin, Alexandr V; Romanova, Elena E; Rogozkin, Victor A

    2013-01-01

    The aim of the study was to determine the association between ACE I/D, ACTN3 R577X and PPARA intron 7 G/C gene polymorphisms and strength-related traits in 457 middle school-age children (219 boys and 238 girls; aged 11 ± 0.4 years). The assessment of different phenotypes was conducted with a number of performance tests. Gene polymorphisms were determined by PCR. The ACE D allele was associated with high results of standing long-jump test in boys [II 148.3 (16.3) cm, ID 152.6 (19.6) cm, DD 158.2 (19.1) cm; P = 0.037]. The ACTN3 R allele was associated with high results of performance tests in males only in combination with other genes (standing long-jump test: P = 0.021; handgrip strength test: P < 0.0001). Furthermore, the male carriers of the PPARA gene C allele demonstrated the best results of handgrip strength testing than GG homozygotes [GG 14.6 (4.0) kg, GC/CC 15.7 (4.3) kg; P = 0.048]. Thus, the ACE, ACTN3 and PPARA gene variants are associated with strength-related traits in physically active middle school-age boys.

  6. A frameshift mutation in MOCOS is associated with familial renal syndrome (xanthinuria) in Tyrolean Grey cattle.

    PubMed

    Murgiano, Leonardo; Jagannathan, Vidhya; Piffer, Christian; Diez-Prieto, Inmaculada; Bolcato, Marilena; Gentile, Arcangelo; Drögemüller, Cord

    2016-12-05

    Renal syndromes are occasionally reported in domestic animals. Two identical twin Tyrolean Grey calves exhibited weight loss, skeletal abnormalities and delayed development associated with kidney abnormalities and formation of uroliths. These signs resembled inherited renal tubular dysplasia found in Japanese Black cattle which is associated with mutations in the claudin 16 gene. Despite demonstrating striking phenotypic similarities, no obvious presence of pathogenic variants of this candidate gene were found. Therefore further analysis was required to decipher the genetic etiology of the condition. The family history of the cases suggested the possibility of an autosomal recessive inheritance. Homozygosity mapping combined with sequencing of the whole genome of one case detected two associated non-synonymous private coding variants: A homozygous missense variant in the uncharacterized KIAA2026 gene (g.39038055C > G; c.926C > G), located in a 15 Mb sized region of homozygosity on BTA 8; and a homozygous 1 bp deletion in the molybdenum cofactor sulfurase (MOCOS) gene (g.21222030delC; c.1881delG and c.1782delG), located in an 11 Mb region of homozygosity on BTA 24. Pathogenic variants in MOCOS have previously been associated with inherited metabolic syndromes and xanthinuria in different species including Japanese Black cattle. Genotyping of two additional clinically suspicious cases confirmed the association with the MOCOS variant, as both animals had a homozygous mutant genotype and did not show the variant KIAA2026 allele. The identified genomic deletion is predicted to be highly disruptive, creating a frameshift and premature termination of translation, resulting in severely truncated MOCOS proteins that lack two functionally essential domains. The variant MOCOS allele was absent from cattle of other breeds and approximately 4% carriers were detected among more than 1200 genotyped Tyrolean Grey cattle. Biochemical urolith analysis of one case revealed

  7. Cloning and characterization of soybean gene Fg1 encoding flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase.

    PubMed

    Rojas Rodas, Felipe; Di, Shaokang; Murai, Yoshinori; Iwashina, Tsukasa; Sugawara, Satoko; Mori, Tetsuya; Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Saito, Kazuki; Takahashi, Ryoji

    2016-11-01

    Flavonoids are important secondary metabolites in plants. Sugar-sugar glycosyltransferases are involved in the final step of flavonoid biosynthesis and contribute to the structural diversity of flavonoids. This manuscript describes the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. The results provide a glimpse on the possible evolution of sugar-sugar glycosyltransferase genes and identify putative amino acids responsible for the recognition of the hydroxyl group of the sugar moiety and specification of sugar. A scheme for the genetic control of flavonol glycoside biosynthesis is proposed. Flavonol glycosides (FGs) are predominant in soybean leaves and they show substantial differences among genotypes. In previous studies, we identified two flavonoid glycoside glycosyltransferase genes that segregated in recombinant inbred lines developed from a cross between cultivars Nezumisaya and Harosoy; one was responsible for the attachment of glucose to the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol and the other was involved in the attachment of glucose to the 6″-position. This study was conducted to clone and characterize the 6″-glucosyltransferase gene. Linkage mapping indicated that the gene was located in the molecular linkage group I (chromosome 20). Based on the genome sequence, we cloned a candidate cDNA, GmF3G6"Gt from Harosoy but the corresponding cDNA could not be amplified by PCR from Nezumisaya. The coding region of GmF3G6″Gt in Harosoy is 1386 bp long encoding 462 amino acids. This gene was not expressed in leaves of Nezumisaya. The GmF3G6″Gt recombinant protein converted UDP-glucose and kaempferol 3-O-glucoside or kaempferol 3-O-galactoside to kaempferol 3-O-glucosyl-(1→6)-glucoside or kaempferol 3-O-glucosyl-(1→6)-galactoside, respectively. These results indicate that GmF3G6″Gt encodes a flavonol 3-O

  8. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion

    PubMed Central

    Weaver, Cole A.; Miller, Steven F.; da Fontoura, Clarissa S. G.; Wehby, George L.; Amendt, Brad A.; Holton, Nathan E.; Allareddy, Veeratrishul; Southard, Thomas E.; Moreno Uribe, Lina M.

    2017-01-01

    Introduction Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes, DUSP6, ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (<1%) makes them unlikely to explain most malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Methods Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Results Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P < 0.05) were identified with PITX2, SNAI3, 11q22.2-q22.3, 4p16.1, ISL1, and FGF8. Principal component analysis for asymmetric variations identified 4 components that explained 51% of the total variations and captured left-to-right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1 AJUBA, SNAI3 SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant

  9. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor suppressor genes

    PubMed Central

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2016-01-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs, and our experimental data from clinical samples, we discovered broad H3K4me3 (wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity together leading to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Broad H3K4me3 conserved across normal cells may represent pan-cancer tumor suppressors, such as P53 and PTEN, whereas cell-type-specific broad H3K4me3 may indicate cell-identity genes and cell-type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 in cancers is associated with repression of tumor suppressors. Together, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of novel tumor suppressors. PMID:26301496

  10. Evidence from single nucleotide polymorphism analyses of ADVANCE study demonstrates EFNB3 as a hypertension risk gene.

    PubMed

    Tremblay, Johanne; Wang, Yujia; Raelson, John; Marois-Blanchet, Francois-Christophe; Wu, Zenghui; Luo, Hongyu; Bradley, Edward; Chalmers, John; Woodward, Mark; Harrap, Stephen; Hamet, Pavel; Wu, Jiangping

    2017-03-08

    EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions. We recently reported that Efnb3 gene deletion results in hypertension in female but not male mice. These data suggest that EFNB3 regulates blood pressure in a sex- and sex hormone-dependent way. In the present study, we conducted a human genetic study to assess the association of EFNB3 single nucleotide polymorphisms with human hypertension risks, using 3,448 patients with type 2 diabetes from the ADVANCE study (Action in Diabetes and Vascular Disease: Peterax and Diamicron MR Controlled Evaluation). We have observed significant association between 2 SNPs in the 3' untranslated region or within the adjacent region just 3' of the EFNB3 gene with hypertension, corroborating our findings from the mouse model. Thus, our investigation has shown that EFNB3 is a hypertension risk gene in certain individuals.

  11. Human Krüppel-related 3 (HKR3) Is a Novel Transcription Activator of Alternate Reading Frame (ARF) Gene*

    PubMed Central

    Yoon, Jae-Hyeon; Choi, Won-Il; Jeon, Bu-Nam; Koh, Dong-In; Kim, Min-Kyeong; Kim, Myung-Hwa; Kim, Jungho; Hur, Sujin Susanne; Kim, Kyung-Sup; Hur, Man-Wook

    2014-01-01

    HKR3 (Human Krüppel-related 3) is a novel POK (POZ-domain Krüppel-like zinc-finger) family transcription factor. Recently, some of the POK (POZ-domain Krüppel-like zinc finger) family proteins have been shown to play roles in cell cycle arrest, apoptosis, cell proliferation, and oncogenesis. We investigated whether HKR3, an inhibitor of cell proliferation and an uncharacterized POK family protein, could regulate the cell cycle by controlling expression of genes within the p53 pathway (ARF-MDM2-TP53-p21WAF/CDKN1A). HKR3 potently activated the transcription of the tumor suppressor gene ARF by acting on the proximal promoter region (bp, −149∼+53), which contains Sp1 and FBI-1 binding elements (FREs). HKR3 interacted with the co-activator p300 to activate ARF transcription, which increased the acetylation of histones H3 and H4 within the proximal promoter. Oligonucleotide pull-down assays and ChIP assays revealed that HKR3 interferes with the binding of the proto-oncogenic transcription repressor FBI-1 to proximal FREs, thus derepressing ARF transcription. PMID:24382891

  12. Cloning and Characterization of a Flavonoid 3′-Hydroxylase Gene from Tea Plant (Camellia sinensis)

    PubMed Central

    Zhou, Tian-Shan; Zhou, Rui; Yu, You-Ben; Xiao, Yao; Li, Dong-Hua; Xiao, Bin; Yu, Oliver; Yang, Ya-Jun

    2016-01-01

    Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3′-hydroxylase (F3′H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3′H, designated as CsF3′H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3′H was highly homologous with the characterized F3′Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3′H-specific conserved motifs were discovered in the protein sequence of CsF3′H. Enzymatic analysis of the heterologously expressed CsF3′H in yeast demonstrated that tea F3′H catalyzed the 3′-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min−1, respectively. Transcription level of CsF3′H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3′,4′-flavan-3-ols, 3′,4′,5′-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3′H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3′H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3′H in the biosynthesis of 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols in tea leaves. PMID:26907264

  13. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta.

    PubMed

    Huckert, Mathilde; Stoetzel, Corinne; Morkmued, Supawich; Laugel-Haushalter, Virginie; Geoffroy, Véronique; Muller, Jean; Clauss, François; Prasad, Megana K; Obry, Frédéric; Raymond, Jean Louis; Switala, Marzena; Alembik, Yves; Soskin, Sylvie; Mathieu, Eric; Hemmerlé, Joseph; Weickert, Jean-Luc; Dabovic, Branka Brukner; Rifkin, Daniel B; Dheedene, Annelies; Boudin, Eveline; Caluseriu, Oana; Cholette, Marie-Claude; Mcleod, Ross; Antequera, Reynaldo; Gellé, Marie-Paule; Coeuriot, Jean-Louis; Jacquelin, Louis-Frédéric; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Van Hul, Wim; Bertola, Debora; Dollé, Pascal; Verloes, Alain; Mortier, Geert; Dollfus, Hélène; Bloch-Zupan, Agnès

    2015-06-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder. © The Author 2015. Published by Oxford University Press.

  14. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells

    PubMed Central

    Lin, Zhuoheng; Feng, Xuyang; Jiang, Xue; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and

  15. Coordinated and sequential transcription of the cyprinid herpesvirus-3 annotated genes.

    PubMed

    Ilouze, Maya; Dishon, Arnon; Kotler, Moshe

    2012-10-01

    Cyprinid herpesvirus-3 (CyHV-3) is the cause of a fatal disease in carp and koi fish. The disease is seasonal and appears when water temperatures range from 18 to 28°C. CyHV-3 is a member of the Alloherpesviridae, a family in the Herpesvirales order that encompasses mammalian, avian and reptilian viruses. CyHV-3 is a large double-stranded DNA (dsDNA) herpesvirus with a genome of approximately 295kbp, divergent from other mammalian, avian and reptilian herpesviruses, but bearing several genes similar to cyprinid herpesvirus-1 (CyHV-1), CyHV-2, anguillid herpesvirus-1 (AngHV-1), ictalurid herpesvirus-1 (IcHV-1) and ranid herpes virus-1 (RaHV-1). Here we show that viral DNA synthesis commences 4-8h post-infection (p.i.), and is completely inhibited by pre-treatment with cytosine β-d-arabinofuranoside (Ara-C). Transcription of CyHV-3 genes initiates after infection as early as 1-2h p.i., and precedes viral DNA synthesis. All 156 annotated open reading frames (ORFs) of the CyHV-3 genome are transcribed into RNAs, most of which can be classified into immediate early (IE or α), early (E or β) and late (L or γ) classes, similar to all other herpesviruses. Several ORFs belonging to these groups are clustered along the viral genome. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Induction of Interferon-Stimulated Genes by IRF3 Promotes Replication of Toxoplasma gondii

    PubMed Central

    Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C.; Barik, Sailen

    2015-01-01

    Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell

  17. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii.

    PubMed

    Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C; Barik, Sailen

    2015-03-01

    Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell

  18. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation.

    PubMed

    Grandy, Rodrigo A; Whitfield, Troy W; Wu, Hai; Fitzgerald, Mark P; VanOudenhove, Jennifer J; Zaidi, Sayyed K; Montecino, Martin A; Lian, Jane B; van Wijnen, André J; Stein, Janet L; Stein, Gary S

    2016-02-15

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    PubMed

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted

  20. Cloning and sequence analysis of the meso-diaminopimelate decarboxylase gene from Bacillus methanolicus MGA3 and comparison to other decarboxylase genes.

    PubMed

    Mills, D A; Flickinger, M C

    1993-09-01

    The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis.

  1. Genome-Wide Analysis of Citrus R2R3MYB Genes and Their Spatiotemporal Expression under Stresses and Hormone Treatments

    PubMed Central

    He, Shaolan; Zheng, Yongqiang; Yi, Shilai; Lv, Qiang; Deng, Lie

    2014-01-01

    The R2R3MYB proteins represent one of the largest families of transcription factors, which play important roles in plant growth and development. Although genome-wide analysis of this family has been conducted in many species, little is known about R2R3MYB genes in citrus, In this study, 101 R2R3MYB genes has been identified in the citrus (Citrus sinesis and Citrus clementina) genomes, which are almost equal to the number of rice. Phylogenetic analysis revealed that they could be subdivided into 21 subgroups. The evolutionary relationships and the intro-exon organizations were also analyzed, revealing strong gene conservation but also the expansions of particular functional genes during the plant evolution. Tissue-specific expression profiles showed that 95 citrus R2R3MYB genes were expressed in at least one tissue and the other 6 genes showed very low expression in all tissues tested, suggesting that citrus R2R3MYB genes play important roles in the development of all citrus organs. The transcript abundance level analysis during abiotic conditions (NaCl, abscisic acid, jasmonic acid, drought and low temperature) identified a group of R2R3MYB genes that responded to one or multiple treatments, which showed a promising for improving citrus adaptation to stresses. Our results provided an essential foundation for the future selection of the citrus R2R3MYB genes for cloning and functional dissection with an aim of uncovering their roles in citrus growth and development. PMID:25473954

  2. The peripheral messenger RNA expression of glycogen synthase kinase-3β genes in Alzheimer's disease patients: a preliminary study.

    PubMed

    Sheng, Jian-Hua; Ng, Tze-Pin; Li, Chun-Bo; Lu, Guang-Hua; He, Wei; Qian, Yi-Ping; Wang, Jing-Hua; Yu, Shun-Ying

    2012-12-01

    To explore the peripheral leucocytic messenger RNA (mRNA) expression of glycogen synthase kinase-3β (GSK-3β) gene in Alzheimer's disease (AD) patients. Using TaqMan relative quantitative real-time polymerase chain reaction, we analyzed leucocytic gene expression of GSK-3β in 48 AD patients and 49 healthy controls. Clinical data of AD patients were also collected. The mRNA expression level of the GSK-3β gene was significantly higher in the AD group (3.13±0.62) than in the normal group (2.77±0.77). Correlational analyses showed that the mRNA expression level of GSK-3β gene in AD patients was associated with the age of onset (P=0.047), age (P=0.055), and Behavioral Pathology in Alzheimer's Disease Rating Scale total score (P=0.062) and subscores: aggressiveness score (P=0.073) and anxieties and phobias score (P=0.067). Through multivariate regression model, older age, higher anxieties and phobias score and aggressiveness score were associated with higher mRNA expression level of GSK-3β gene. In AD patients, the mRNA expression level of the GSK-3β gene is increased and may be related to age and behavioural pathology in AD. © 2012 The Authors. Psychogeriatrics © 2012 Japanese Psychogeriatric Society.

  3. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Liu, Xinyu; Wei, Chao; Xu, Zhichuan J.; Sim, Stanley Siong Wei; Liu, Linbo; Xu, Chenjie

    2015-10-01

    Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT.Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05459a

  4. Forkhead Transcription Factor Fd3F Cooperates with Rfx to Regulate a Gene Expression Program for Mechanosensory Cilia Specialization

    PubMed Central

    Newton, Fay G.; zur Lage, Petra I.; Karak, Somdatta; Moore, Daniel J.; Göpfert, Martin C.; Jarman, Andrew P.

    2012-01-01

    Summary Cilia have evolved hugely diverse structures and functions to participate in a wide variety of developmental and physiological processes. Ciliary specialization requires differences in gene expression, but few transcription factors are known to regulate this, and their molecular function is unclear. Here, we show that the Drosophila Forkhead box (Fox) gene, fd3F, is required for specialization of the mechanosensory cilium of chordotonal (Ch) neurons. fd3F regulates genes for Ch-specific axonemal dyneins and TRPV ion channels, which are required for sensory transduction, and retrograde transport genes, which are required to differentiate their distinct motile and sensory ciliary zones. fd3F is reminiscent of vertebrate Foxj1, a motile cilia regulator, but fd3F regulates motility genes as part of a broader sensory regulation program. Fd3F cooperates with the pan-ciliary transcription factor, Rfx, to regulate its targets directly. This illuminates pathways involved in ciliary specialization and the molecular mechanism of transcription factors that regulate them. PMID:22698283

  5. Tissue-Specific Autoregulation of the stat3 Gene and Its Role in Interleukin-6-Induced Survival Signals in T Cells

    PubMed Central

    Narimatsu, Masahiro; Maeda, Hisoka; Itoh, Shousaku; Atsumi, Toru; Ohtani, Takuya; Nishida, Keigo; Itoh, Motoyuki; Kamimura, Daisuke; Park, Sung-Joo; Mizuno, Katsunori; Miyazaki, Jun-ichi; Hibi, Masahiko; Ishihara, Katsuhiko; Nakajima, Koichi; Hirano, Toshio

    2001-01-01

    Signal transducer and activator of transcription 3 (STAT3) mediates signals of various growth factors and cytokines, including interleukin-6 (IL-6). In certain IL-6-responsive cell lines, the stat3 gene is autoregulated by STAT3 through a composite IL-6 response element in its promoter that contains a STAT3-binding element (SBE) and a cyclic AMP-responsive element. To reveal the nature and roles of the stat3 autoregulation in vivo, we generated mice that harbor a mutation in the SBE (stat3mSBE). The intact SBE was crucial for IL-6-induced stat3 gene activation in the spleen, especially in the red pulp region, the kidney, and both mature and immature T lymphocytes. The SBE was not required, however, for IL-6-induced stat3 gene activation in hepatocytes. T lymphocytes from the stat3mSBE/mSBE mice were more susceptible to apoptosis despite the presence of IL-6 than those from wild-type mice. Consistent with this, IL-6-dependent activation of the Pim-1 and junB genes, direct target genes for STAT3, was attenuated in T lymphocytes of the stat3mSBE/mSBE mice. Thus, the tissue-specific autoregulation of the stat3 gene operates in vivo and plays a role in IL-6-induced antiapoptotic signaling in T cells. PMID:11533249

  6. Evolution history of duplicated smad3 genes in teleost: insights from Japanese flounder, Paralichthys olivaceus

    PubMed Central

    Du, Xinxin; Liu, Yuezhong; Liu, Jinxiang; Zhang, Quanqi

    2016-01-01

    Following the two rounds of whole-genome duplication (WGD) during deuterosome evolution, a third genome duplication occurred in the ray-fined fish lineage and is considered to be responsible for the teleost-specific lineage diversification and regulation mechanisms. As a receptor-regulated SMAD (R-SMAD), the function of SMAD3 was widely studied in mammals. However, limited information of its role or putative paralogs is available in ray-finned fishes. In this study, two SMAD3 paralogs were first identified in the transcriptome and genome of Japanese flounder (Paralichthys olivaceus). We also explored SMAD3 duplication in other selected species. Following identification, genomic structure, phylogenetic reconstruction, and synteny analyses performed by MrBayes and online bioinformatic tools confirmed that smad3a/3b most likely originated from the teleost-specific WGD. Additionally, selection pressure analysis and expression pattern of the two genes performed by PAML and quantitative real-time PCR (qRT-PCR) revealed evidence of subfunctionalization of the two SMAD3 paralogs in teleost. Our results indicate that two SMAD3 genes originate from teleost-specific WGD, remain transcriptionally active, and may have likely undergone subfunctionalization. This study provides novel insights to the evolution fates of smad3a/3b and draws attentions to future function analysis of SMAD3 gene family. PMID:27703851

  7. Further evidence of no linkage between schizophrenia and the dopamine D{sub 3} receptor gene locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanko, S.; Fukuda, R.; Hattori, M.

    The dopamine hypothesis of schizophrenia proposed that dopaminergic pathways are involved in the etiology of the disease. In particular, interest among psychiatrists has focused on the D{sub 2} receptor because of its affinity to antipsychotic drugs. Recently a new dopamine receptor gene has been cloned and named the dopamine D{sub 3} receptor. The D{sub 3} receptor is a potential site for antipsychotic drug action and may be involved in the pathophysiology of schizophrenia. We have carried out a linkage study between the susceptibility gene for schizophrenia and polymorphism of the dopamine D{sub 3} receptor gene in two Japanese pedigrees. Themore » LOD scores were negative for all genetic models and for all affective status at a recombination fraction {theta} = 0. Linkage of DRD{sub 3} has been excluded for the model 1 (dominant model) and the model 3 (recessive model). The LOD score was -3.43 at {theta} = 0 for model 1 (dominant model) and broad definition of affected status. These results were consistent with previous studies. 19 refs., 2 figs., 3 tabs.« less

  8. Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand.

    PubMed

    Pattaradilokrat, Sittiporn; Sawaswong, Vorthon; Simpalipan, Phumin; Kaewthamasorn, Morakot; Siripoon, Napaporn; Harnyuttanakorn, Pongchai

    2016-10-21

    An effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7. A recent study revealed that both the K1 and 3D7 alleles co-circulated within P. falciparum populations in Thailand, but the extent of the sequence diversity and variation within each allelic type remains largely unknown. The msp-3 gene was sequenced from 59 P. falciparum samples collected from five endemic areas (Mae Hong Son, Kanchanaburi, Ranong, Trat and Ubon Ratchathani) in Thailand and analysed for nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity. The gene was also subject to population genetic analysis (F st ) and neutrality tests (Tajima's D, Fu and Li D* and Fu and Li' F* tests) to determine any signature of selection. The sequence analyses revealed eight unique DNA haplotypes and seven amino acid sequence variants, with a haplotype and nucleotide diversity of 0.828 and 0.049, respectively. Neutrality tests indicated that the polymorphism detected in the alanine heptad repeat region of MSP-3 was maintained by positive diversifying selection, suggesting its role as a potential target of protective immune responses and supporting its role as a vaccine candidate. Comparison of MSP-3 variants among parasite populations in Thailand, India and Nigeria also inferred a close genetic relationship between P. falciparum populations in Asia. This study revealed the extent of the msp-3 gene diversity in P. falciparum in Thailand, providing the fundamental basis for the better design of future blood stage malaria vaccines against P. falciparum.

  9. Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer.

    PubMed

    Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir

    2008-05-01

    The mismatch repair system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in MMR proteins have a 10(2) to 10(3)-fold increase in the mutation rate. Single nucleotide polymorphisms of mismatch repair genes have been shown to cause a decrease in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer and p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. DNA samples from 110 patients with prostate cancer and 110 healthy controls were analyzed by single strand conformational polymorphism and polymerase chain reaction-restriction fragment length polymorphism to determine the genotypic frequency of 5 polymorphic loci on 2 MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare genotype frequency between patients and controls. A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR 1.87, 95% CI 1.0-3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR 1.57, 95% CI 0.92-2.72). In p53 codon72 Arg/Pro + Pro/Pro carriers the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR 2.1, 95% CI 1.05-4.34). To our knowledge this is the first report of the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer.

  10. Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation

    PubMed Central

    Dykes, Iain M.; Tempest, Lynne; Lee, Su-In; Turner, Eric E.

    2011-01-01

    The combinatorial expression of transcription factors frequently marks cellular identity in the nervous system, yet how these factors interact to determine specific neuronal phenotypes is not well understood. Sensory neurons of the trigeminal (TG) and dorsal root ganglia (DRG) co-express the homeodomain transcription factors Brn3a and Islet1, and past work has revealed partially overlapping programs of gene expression downstream of these factors. Here we examine sensory development in Brn3a/Islet1 double knockout mice (DKO mice). Sensory neurogenesis and the formation of the TG and DRG occur in DKO embryos, but the DRG are dorsally displaced, and the peripheral projections of the ganglia are markedly disturbed. Sensory neurons in DKO embryos show a profound loss of all early markers of sensory subtypes, including the Ntrk neurotrophin receptors, and the runt-family transcription factors Runx1 and Runx3. Examination of global gene expression in the E12.5 DRG of single and double mutant embryos shows that Brn3a and Islet1 are together required for nearly all aspects of sensory-specific gene expression, including several newly identified sensory markers. On a majority of targets Brn3a and Islet1 exhibit negative epistasis, in which the effects of the individual knockout alleles are less than additive in the DKO. Smaller subsets of targets exhibit positive epistasis, or are regulated exclusively by one factor. Brn3a/Islet1 double mutants also fail to developmentally repress neurogenic bHLH genes, and in vivo chromatin immunoprecipitation shows that Islet1 binds to a known Brn3a -regulated enhancer in the neurod4 gene, suggesting a mechanism of interaction between these genes. PMID:21734270

  11. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.

    PubMed

    Seuter, Sabine; Pehkonen, Petri; Heikkinen, Sami; Carlberg, Carsten

    2013-12-01

    The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes. © 2013.

  12. The calcitonin/calcitonin gene related peptide-alpha gene is not required for 1alpha,25-dihydroxyvitamin D3-mediated suppression of experimental autoimmune encephalomyelitis.

    PubMed

    Becklund, Bryan R; James, Bradley J; Gagel, Robert F; DeLuca, Hector F

    2009-08-15

    The active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), can suppress disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Calcium appears to be a critical component of 1,25(OH)(2)D(3)-mediated suppression of EAE, as complete disease prevention only occurs with a concomitant increase in serum calcium levels. Calcitonin (CT) is a peptide hormone released in response to acute increases in serum calcium, which led us to explore its importance in 1,25(OH)(2)D(3)-mediated suppression of EAE. Previously, we discovered that co-administration of pharmacological doses of CT enhanced the suppressive effect of 1,25(OH)(2)D(3) on EAE, suggesting CT may play a role in 1,25(OH)(2)D(3)-mediated suppression of EAE. To determine the importance of CT in EAE we have utilized a mouse strain in which the gene encoding CT and its alternative splice product, calcitonin gene related peptide-alpha (CGRP), have been deleted. Deletion of the CT/CGRP gene had no effect on EAE progression. Furthermore, treatment with 1,25(OH)(2)D(3) suppressed EAE in CT/CGRP knock-out mice equal to that in wild type mice. Therefore, we conclude that CT is not necessary for 1,25(OH)(2)D(3)-mediated suppression of EAE.

  13. AMF/PGI transactivates the MMP-3 gene through the activation of Src-RhoA-phosphatidylinositol 3-kinase signaling to induce hepatoma cell migration.

    PubMed

    Shih, Wen-Ling; Liao, Ming-Huei; Yu, Feng-Ling; Lin, Ping-Yuan; Hsu, Hsue-Yin; Chiu, Shu-Jun

    2008-11-08

    We have previously shown that AMF/PGI induces hepatoma cell migration through the induction of MMP-3. This work investigates how AMF/PGI activates the MMP-3 gene. We demonstrated that AMF/PGI transactivates the MMP-3 gene promoter through AP-1. The transactivation and induction of cell migration effect of AMF/PGI directly correlates with its enzymatic activity. Various analyses showed that AMF/PGI stimulated the Src-RhoA-PI3-kinase signaling pathway, and these three signaling molecules could form a complex. Our results demonstrate a new mechanism of AMF/PGI-induced cell migration and a link between Src-RhoA-PI3-kinase, AP-1, MMP-3 and hepatoma cell migration.

  14. Dopamine D3 receptor gene locus: Association with schizophrenia, as well age of onset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimgsonkar, V.L.; Zhang, X.R.; Brar, J.S.

    Genetic factors are clearly involved in the etiology of schizophrenia, but their specific nature is unknown. If the genetic etiology is multifactorial or polygenic, the role of specific genes as susceptibility factors can be directly evaluated by examining allelic variation at these loci among cases in comparison with controls. Two studies have independently demonstrated an association of schizophrenia with homozygosity at the dopamine D3 receptor gene (D3RG) locus, using a biallelic polymorphism in the first exon of D3RG. These results are important because D3RG is a favored candidate gene. Three other studies have identified associations among sub-groups of patients, butmore » the majority were negative. The present study involved patients with schizophrenia (DSM-III-R criteria) of Caucasian or African-American ethnicity (n=130). Two groups of controls, matched for ethnicity, were used: adults screened for schizophrenia (n=128) and unselected neonates (n=160). Multivariate analysis revealed an association between allele no. 1 homozygosity and schizophrenia in comparison with adult, but not neonatal controls. The association was most marked among Caucasian patients with a family history of schizophrenia (odds ratio 13.7, C.I. 1.8, 104.3). An association of the D3RG locus with age of onset (AOO) was also noted. The discrepancies in earlier studies may due to variations in control groups, differencies in mean AOO among different cohorts, or ethnic variations in susceptibility attributable to D3RG.« less

  15. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    PubMed

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  16. A splice junction-targeted CRISPR approach (spJCRISPR) reveals human FOXO3B to be a protein-coding gene.

    PubMed

    Santo, Evan E; Paik, Jihye

    2018-06-17

    The rapid development of CRISPR technology is revolutionizing molecular approaches to the dissection of complex biological phenomena. Here we describe an alternative generally applicable implementation of the CRISPR-Cas9 system that allows for selective knockdown of extremely homologous genes. This strategy employs the lentiviral delivery of paired sgRNAs and nickase Cas9 (Cas9D10A) to achieve targeted deletion of splice junctions. This general strategy offers several advantages over standard single-guide exon-targeting CRISPR-Cas9 such as greatly reduced off-target effects, more restricted genomic editing, routine disruption of target gene mRNA expression and the ability to differentiate between closely related genes. Here we demonstrate the utility of this strategy by achieving selective knockdown of the highly homologous human genes FOXO3A and suspected pseudogene FOXO3B. We find the spJCRISPR strategy to efficiently and selectively disrupt FOXO3A and FOXO3B mRNA and protein expression; thus revealing that the human FOXO3B locus encodes a bona fide human gene. Unlike FOXO3A, we find the FOXO3B protein to be cytosolically localized in both the presence and absence of active Akt. The ability to selectively target and efficiently disrupt the expression of the closely-related FOXO3A and FOXO3B genes demonstrates the efficacy of the spJCRISPR approach. Copyright © 2018. Published by Elsevier B.V.

  17. Expression of Immune Genes on Chromosome 6p21.3-22.1 in Schizophrenia

    PubMed Central

    Sinkus, Melissa L.; Adams, Catherine E.; Logel, Judith; Freedman, Robert; Leonard, Sherry

    2013-01-01

    Schizophrenia is a common mental illness with a large genetic component. Three genome-wide association studies have implicated the major histocompatibility complex gene region on chromosome 6p21.3-22.1 in schizophrenia. In addition, nicotine, which is commonly abused in schizophrenia, affects the expression of central nervous system immune genes. Messenger RNA levels for genes in the 6p21.3-22.1 region were measured in human postmortem hippocampus of 89 subjects. The effects of schizophrenia diagnosis, smoking and systemic inflammatory illness were compared. Cell-specific expression patterns for the class I major histocompatibility complex gene HLA-A were explored utilizing in situ hybridization. Expression of five genes was altered in schizophrenic subjects. Messenger RNA levels for the class I major histocompatibility complex antigen HLA-B were increased in schizophrenic nonsmokers, while levels for smokers were indistinguishable from those of controls. β2 microglobulin, HLA-A and Notch4 were all expressed in a pattern where inflammatory illness was associated with increased expression in controls but not in subjects with schizophrenia. Schizophrenia was also associated with increased expression of Butyrophilin 2A2. HLA-A was expressed in glutamatergic and GABAergic neurons in the dentate gyrus, hilus, and the stratum pyramidale of the CA1-CA4 regions of the hippocampus, but not in astrocytes. In conclusion, the expression of genes from the major histocompatibility complex region of chromosome 6 with likely roles in synaptic development is altered in schizophrenia. There were also significant interactions between schizophrenia diagnosis and both inflammatory illness and smoking. PMID:23395714

  18. In children with autoimmune thyroiditis CTLA4 and FCRL3 genes--but not PTPN22--are overexpressed when compared to adults.

    PubMed

    Wojciechowska-Durczynska, Katarzyna; Krawczyk-Rusiecka, Kinga; Zygmunt, Arkadiusz; Stawerska, Renata; Lewinski, Andrzej

    2016-01-01

    Numerous genetic studies revealed several susceptibility genes of autoimmune thyroid diseases (AITD), including CTLA4, PTPN22 and FCRL3. These immune-modulating genes are involved in genetic background of AITD among children and adult patients. However, possible age-related differences in overexpression of these genes remain unclear. The goal of this single centre cohort study was evaluation of expression levels of three (3) genes CTLA4, PTPN22 and FCRL3 in adult patients and children with autoimmune thyroiditis. A total of 47 patients--24 adults (mean age--47.7 years) and 23 children (mean age--12.4 years) with autoimmune thyroiditis were assessed for the level of expression of CTLA4, PTPN22 and FCRL3 genes, utilizing ABI PRISM' 7500 Sequence Detection System (Applied Biosystem, Foster City, CA, USA). The overexpression of PTPN22 (mean RQ = 2.988) and FCRL3 (mean RQ = 2.544) genes were confirmed in adult patients with autoimmune thyroiditis, at the same time the expression level of CTLA4 gene was significantly decreased (mean RQ = 0.899) (p < 0.05). Similar discrepancies were not observed in children with autoimmune thyroiditis in whom overexpression of all three genes--CTLA4, PTPN22 and FCRL3--was observed. Differences in CTLA4 and FCRL3 genes expression levels in patients with autoimmune thyroiditis were found depending on the age, with increased expression levels of CTLA4 (mean RQ = 3.45 1) and FCRL3 (mean RQ = 7.410) in children when compared to adults (p < 0.05) (Mann-Whitney's U-test). There were moderate negative linear correlations between two genes in question (CTLA4 and FCRL3) expression level and patients' age [correlation coefficient (r) = -0.529 (p < 0.0002) and -0.423 (p < 0.0032), respectively; Spearman's rank correlation test]. Our results are consistent with the hypothesis that there are few age-dependent genetic differences as regards autoimmune thyroiditis in adults and children. Accordingly, CTLA4 and FCRL3 genes overexpression may play an

  19. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  20. Dissemination of Sulfonamide Resistance Genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica Strains and Relation with Integrons

    PubMed Central

    Antunes, Patrícia; Machado, Jorge; Sousa, João Carlos; Peixe, Luísa

    2005-01-01

    In 200 sulfonamide-resistant Portuguese Salmonella isolates, 152 sul1, 74 sul2, and 14 sul3 genes were detected. Class 1 integrons were always associated with sul genes, including sul3 alone in some isolates. The sul3 gene has been identified in isolates from different sources and serotypes, which also carried a class 1 integron with aadA and dfrA gene cassettes. PMID:15673783