Sample records for tamara arkovskaja maarika

  1. Astronaut Tamara Jernigan during WETF training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Tamara E. Jernigan, STS-52 mission specialist, waves to her training staff prior to being submerged in a 25-feet deep pool in the JSC Weightless Environment Training Facility (WETF). Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit and assisted by several JSC SCUBA-equipped divers, Jernigan joined another STS-52 crew member in using the pool to rehearse contingency space walk chores. She was later named payload commander for the STS-67 mission aboard the Space Shuttle Endeavour.

  2. Astronaut Tamara Jernigan in the CCT during a training session

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Tamara E. Jernigan, STS-67 payload commander, is shown here in the Shuttle Training Facility at JSC participating in a training session. Jernigan is training with the RMS controls in the Crew Compartment Trainer (CCT) of JSC's Shuttle mockup and integration laboratory.

  3. Astronaut Tamara Jernigan deploys life raft during WETF training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Tamara E. Jernigan, STS-67 payload commander, deploys a life raft during a session of emergency bailout training. The training took place in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Jernigan was joined by her crew mates for the training session. Several SCUBA-equipped divers who assisted in the training can be seen in this photograph.

  4. STS-96 EVA view of Tamara Jernigan

    NASA Image and Video Library

    1999-05-30

    STS096-330-004 (30 May 1999) --- Astronaut Tamara E. Jernigan, mission specialist, is backdropped over the Aegean Sea as she handles the American-built crane which she helped to install on the International Space Station (ISS) during the May 30th space walk. Jernigan's feet are anchored to a mobile foot restraint connected to the Space Shuttle Discovery's Canadian-built Remote Manipulator System (RMS). Jernigan was joined by astronaut Daniel T. Barry, mission specialist, for the lengthy extravehicular activity (EVA). Parts of Greece, Turkey and the Dardenelles are visible some 171 nautical miles below the docked tandem of Discovery and the ISS.

  5. Julie Payette and Tamara Jernigan in FGB/Zarya module

    NASA Image and Video Library

    2017-04-20

    S96-E-5161 (2 June 1999) --- Astronauts Jule Payette (left) and Tamara E. Jernigan, mission specialists, participate in the final hours of tasks designed to prepare the International Space Station (ISS) for business. Here, on the Russian-built Zarya module, the two are seen with a small part of the supplies brought up by the Space Shuttle Discovery. The photo was taken with an electronic still camera (ESC) at 05:58:37 GMT, June 2, 1999.

  6. Rick Husband and Tamara Jernigan perform IFM on Node 1/Unity aft hatch

    NASA Image and Video Library

    2016-08-30

    STS096-383-021 (27 May - 6 June 1999) -- Astronauts Rick D. Husband and Tamara E. Jernigan adjust the hatch for the U.S.-built Unity node. The task was part of the overall effort by the seven-member STS-96 crew to prepare the existing portion of the International Space Station (ISS).

  7. Co-combustion of E+E waste plastics in the TAMARA test plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J.; Wanke, T.; Bergfeldt, B.

    1997-12-01

    The co-combustion of different amounts of various plastic fractions of electrical and electronic (E+E) waste together with municipal solid waste has been tested in the Karlsruhe test incinerator TAMARA. The tests revealed no negative influences upon the combustion process. In general the increased heating value of the fuel causes an improved burnout in all residue streams. The halogens Cl and Br added with the plastics are mainly transferred as HCl or HBr into the flue gas. An influence upon the formation of chlorinated dioxins and furans could not be observed. With increasing Br feed bromine containing homologues were detected inmore » the raw gas. The furans formed easier than the dioxins and those homologues carrying one Br atom were by far prevailing. Even at high Br input the total amount of mixed halogenated species was limited to approximately 30% of the total load of such compounds which did not leave the typical operation window for PCDD/PCDF in TAMARA. The co-combustion tests demonstrated that MSW combustion is an ecologically acceptable and economically sound disposal route for limited amounts of specific E+E waste.« less

  8. Tamara Shapiro Ledley Receives 2013 Excellence in Geophysical Education Award: Citation

    NASA Astrophysics Data System (ADS)

    Reiff, Patricia

    2014-01-01

    It gives me great pleasure to cite Tamara Shapiro Ledley for the AGU Excellence in Geophysical Education Award "for her outstanding sustained leadership in Earth systems and climate change education." Tamara has shown an ongoing commitment to bridging the scientific and educational communities to make geophysical science knowledge and data accessible and usable to teachers and students and by extension to all citizens. She works extensively with both the scientific and educational communities. She began her educational work in 1990 as the leader for weather and climate in my Teacher Research program at Rice University. She continued as the lead for atmospheric sciences in our projects Earth Today and Museums Teaching Planet Earth, which introduced her to the Earth Science Information Partners (ESIP Federation). She has served many roles at ESIP, including creating the Standing Committee for Education and serving as vice president. ESIP recognized her many accomplishments with its President's Award in 2012. At TERC her education and outreach efforts have blossomed. She was the lead author of the "Earth as a System" investigation of the GLOBE Teacher's Guide. She was a member of the original Digital Library for Earth System Education (DLESE) Data Access Working Group in 2001, where the idea for a cookbook-like resource to facilitate the use of Earth science data by teachers and students resulted in her leading the development of the "Earth Exploration Toolbook" (EET), which allows teachers to easily access and use real scientific data in the classroom. Her efforts were recognized with the EET being awarded Science Magazine's Science Prize for Online Research in Education in 2011.

  9. Tamara Jernigan, Valeri Tokarev and Julie Payette pose for photo in Node 1/Unity module

    NASA Image and Video Library

    2017-04-20

    S96-E-5078 (31 May 1999) --- Flight Day 5 activity called for some of Discovery's crew members to work in the Unity node, part of the International Space Station (ISS). From the left are astronauts Tamara Jernigan and Julie Payette, along with cosmonaut Valery I. Tokarev. Payette represents the Canadian Space Agency (CSA) and Tokarev is with the Russian Space Agency (RSA). The photo was taken at 01:50:38, May 31, 1999.

  10. Young, Black, Mathematically Gifted, and Stereotyped

    ERIC Educational Resources Information Center

    McGee, Ebony

    2013-01-01

    In this paper, I describe the academic dilemma experienced by Tamara (pseudonym), a mathematically high-achieving high school sophomore. Raised in an economically strapped neighborhood, Tamara had the opportunity to attend a prestigious private high school, tuition free. Confronted by being viewed as an affirmative action student Tamara uses this…

  11. Finding Support Online: Parents are Finding Comfort and Support in Virtual Hugs

    ERIC Educational Resources Information Center

    Miller, Janice

    2006-01-01

    When Tamara learned that she and her husband were expecting a baby girl, Tamara remembers the doctor telling her "the odds were high" her daughter would inherit her bipolar disorder. As it turned out, her daughter, Lindsay was also formally diagnosed with bipolar disorder after her 11th birthday. Tamara turned to Internet to find someone who…

  12. MIT CSAIL and Lincoln Laboratory Task Force Report

    DTIC Science & Technology

    2016-06-09

    Regina Barzilay • Tommi Jaakkola • Stephanie Jagelka • Tamara Broderick • Leslie Kaelbling • Olga Simek • Danelle Shah • Charlie Dagli • Develop...Jagelka • Tamara Broderick • Leslie Kaelbling • Arjun Majumdar • Mike Hurley • Ben Smith • Generalized object detection/ classification and

  13. A Dark Asteroid Family in the Phocaea Region

    NASA Astrophysics Data System (ADS)

    Novaković, Bojan; Tsirvoulis, Georgios; Granvik, Mikael; Todović, Ana

    2017-06-01

    We report the discovery of a new asteroid family among the dark asteroids residing in the Phocaea region the Tamara family. We make use of available physical data to separate asteroids in the region according to their surface reflectance properties, and establish the membership of the family. We determine the slope of the cumulative magnitude distribution of the family, and find it to be significantly steeper than the corresponding slope of all the asteroids in the Phocaea region. This implies that subkilometer dark Phocaeas are comparable in number to bright S-type objects, shedding light on an entirely new aspect of the composition of small Phocaea asteroids. We then use the Yarkovsky V-shape based method and estimate the age of the family to be 264 ± 43 Myr. Finally, we carry out numerical simulations of the dynamical evolution of the Tamara family. The results suggest that up to 50 Tamara members with absolute magnitude H< 19.4 may currently be found in the near-Earth region. Despite their relatively small number in the near-Earth space, the rate of Earth impacts by small, dark Phocaeas is non-negligible.

  14. Brain model of text animation as a data mining strategy.

    PubMed

    Astakhova, Tamara; Astakhov, Vadim

    2009-01-01

    Imagination is the critical point in developing of realistic intelligence (AI) systems. One way to approach imagination would be simulation of its properties and operations. We developed two models "Brain Network Hierarchy of Languages," and "Semantical Holographic Calculus" and simulation system ScriptWriter that emulate the process of imagination through an automatic animation of English texts. The purpose of this paper is to demonstrate the model and present "ScriptWriter" system http://nvo.sdsc.edu/NVO/JCSG/get_SRB_mime_file2.cgi//home/tamara.sdsc/test/demo.zip?F=/home/tamara.sdsc/test/demo.zip&M=application/x-gtar for simulation of the imagination.

  15. Annual North Dakota Elevator Marketing Report, 2005-06

    DOT National Transportation Integrated Search

    2006-12-01

    The Annual North Dakota Elevator Marketing Report for 2005-06 was prepared by Kimberly Vachal and Tamara : VanWechel, Upper Great Plains Transportation Institute. The authors gratefully acknowledge the assistance of the North : Dakota Grain Dealers A...

  16. Annual North Dakota Elevator Marketing Report, 2004-05

    DOT National Transportation Integrated Search

    2005-10-01

    The Annual North Dakota Elevator Marketing Report for 2004-05 was prepared by Kimberly Vachal and Tamara : VanWechel,Upper Great Plains Transportation Institute. The authors gratefully acknowledge the assistance of theNorth : Dakota Grain Dealers Ass...

  17. Annual North Dakota Elevator Marketing Report, 2006-07

    DOT National Transportation Integrated Search

    2007-12-01

    The Annual North Dakota Elevator Marketing Report for 2006-07 was prepared by Kimberly Vachal and Tamara : VanWechel, Upper Great Plains Transportation Institute. The authors gratefully acknowledge the assistance of theNorth : Dakota Grain Dealers As...

  18. Annual North Dakota Elevator Marketing Report, 2003-04

    DOT National Transportation Integrated Search

    2004-12-01

    The Annual North Dakota Elevator Marketing Report for 2003-04 was prepared by Kimberly Vachal and Tamara : VanWechel, Upper Great Plains Transportation Institute. The authors gratefully acknowledge the assistance of the North : Dakota Grain Dealers A...

  19. Annual North Dakota Elevator Marketing Report, 2002-03

    DOT National Transportation Integrated Search

    2003-10-01

    The Annual North Dakota Elevator Marketing Report for 2002-03 was prepared by Kimberly Vachal and Tamara : VanWechel, Upper Great Plains Transportation Institute. The author gratefully acknowledges the assistance of the North : Dakota Grain Dealers A...

  20. Identifying developmental vascular disruptor compounds using a predictive signature and alternative toxicity models

    EPA Science Inventory

    Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...

  1. 75 FR 30098 - Reports, Forms and RecordKeeping Requirements; Agency Information Collection Activity Under OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Reports, Forms and... Highway Traffic Safety Administration, DOT. ACTION: Notice. SUMMARY: In compliance with the Paperwork... INFORMATION CONTACT: Tamara Webster at the National Highway Traffic Safety Administration, Office of Regional...

  2. Microgravity

    NASA Image and Video Library

    1995-01-01

    Liquid nitrogen dewar loading at Kennedy Space Center for STS-71 flight with Stan Koszelak (right), University of California at Riverside, adn Tamara Chinareva (left), Russian Spacecraft Coporation-Energia. The picture shows Koszelak removing the insert from the transportation dewar.

  3. Liquid Nitrogen Dewar Loading at KSC for STS-71 Flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Liquid nitrogen dewar loading at Kennedy Space Center for STS-71 flight with Stan Koszelak (right), University of California at Riverside, adn Tamara Chinareva (left), Russian Spacecraft Coporation-Energia. The picture shows Koszelak removing the insert from the transportation dewar.

  4. Irish Studies Today.

    ERIC Educational Resources Information Center

    Gregor, Keith, Ed.

    2002-01-01

    This collection of papers includes the following: "Preface" (Keith Gregor); "Cultural Nationalism and the Irish Literary Revival" (David Pierce); "Transitions in Irish Miscellanies between 1923 and 1940" (Malcom Ballin); "Born into the Troubles: Deirdre Madden's 'Hidden Symptoms'" (Tamara Benito de la…

  5. [Book Review] Waterfowl ecology and management by Guy A. Baldassarre and Eric G. Bolen

    USGS Publications Warehouse

    Olsen, Glenn H.

    2007-01-01

    A review of: Waterfowl Ecology and Management. Second Edition. By Guy A Baldassarre and , Eric G Bolen; illustrated by , Tamara R Sayre. Malabar (Florida): Krieger Publishing. $112.50. xii + 567 p; ill.; index. ISBN: 1‐57524‐260‐5. 2006

  6. 75 FR 80977 - Disclosure of Payments by Resource Extraction Issuers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ...: Tamara Brightwell, Senior Special Counsel, Division of Corporation Finance, or Elliot Staffin, Special Counsel in the Office of International Corporate Finance, Division of Corporation Finance, at (202) 551... issuers would be required to disclose taxes on corporate profits, corporate income, and production and...

  7. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  8. AOP Knowledge Base/Wiki Tool Set

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin Is...

  9. Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals.

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...

  10. Astronauts Jernigan and Durrance with Rolodex-type collection of data

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Tamara Jernigan, STS-67 payload commander, and payload specialist Samuel T. Durrance use the absence of gravity for a perusal of Astro-2 targets in a loose-leaf, Rolodex-type collection of data. The two are in the middeck of the Earth-orbiting Space Shuttle Endeavour.

  11. Characterization and remediation of Soil Contaminated with Explosives: Development of Practical Technologies

    DTIC Science & Technology

    2001-07-06

    Chemistry Agnes Renoux, Ph.D. Ecotoxicology Bernard Lachance, Ph. D. Ecotoxicology Ping Gong, Ph. D. Ecotoxicology Pierre-Yves Robidoux, Ph.D... Ecotoxicology Tamara Sheremata, Ph. D. Env. Engineering Diane Fournier, Ph.D. Microbiology Annamaria Halasz, M.Sc. Chemistry Louise Paquet, B.Sc...12 Chapter 4: Applied Ecotoxicology

  12. Oil City PREP: Putting Positive Principles into Practice

    ERIC Educational Resources Information Center

    Eisenman, Jessica; Barnhill, Rachelle; Riley, Ben

    2013-01-01

    Tamara Shepard from Southwest Behavioral Health Management (SBHM) proposed a plan to schools in Venango County, Pennsylvania. School districts would collaborate with mental health agencies to create a school-based integrated classroom model that would combine education and behavioral health interventions in one setting. When she initially…

  13. Microgravity

    NASA Image and Video Library

    1995-03-02

    Astronaut Tamara Jernigan, STS-67 payload commander, and payload specialist Samuel T. Durrance use the absence of gravity for a perusal of Astro-2 targets in a loose-leaf, Rolodex-type collection of data. The two are in the mid-deck of the Earth-orbiting Space Shuttle Endeavour.

  14. Rominger and Jernigan during LiOH canister changeout

    NASA Image and Video Library

    1996-12-26

    STS080-331-030 (19 Nov.-7 Dec. 1996) --- Astronauts Kent V. Rominger, STS-80 pilot, and Tamara E. Jernigan, mission specialist, perform a routine housekeeping chore during the space shuttle Columbia's record stay in Earth-orbit. The two are changing out the lithium hydroxide canisters beneath the middeck.

  15. 77 FR 30518 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-403] Grand River Dam.... Project No.: 1494-403. c. Date Filed: April 11, 2012. d. Applicant: Grand River Dam Authority. e. Name of.... Tamara E. Jahnke, Assistant General Counsel, Grand River Dam Authority, P.O. Box 409, Vinita, Oklahoma...

  16. 76 FR 9341 - Grand River Dam Authority; Notice of Application Accepted for Filing, Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-391] Grand River Dam.... Project No.: 1494-391. c. Date Filed: January 7, 2011. d. Applicant: Grand River Dam Authority (GRDA). e... Contact: Tamara E. Jahnke, Assistant General Counsel, Grand River Dam Authority, P.O. Box 409, Vinita, OK...

  17. Jernigan and Wolf in Neutral Buoyancy Simulator (NBS)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronauts Tamara Jernigan (#1) and David Wolf (#2) are training in the Neutral Buoyancy Simulator (NBS) at Marshall Space Flight center with an exercise for International Space Station Alpha. The NBS provided the weightless environment encountered in space needed for testing and the practices of Extravehicular Activities (EVA).

  18. Department of Defense Public Key Infrastructure Token Protection Profile. Version 2.0

    DTIC Science & Technology

    2001-03-12

    Profile Authors: Tamara Cleveland, Booz·Allen & Hamilton Inc. Michael Alexander, Booz·Allen & Hamilton Inc. Asok Ganguly, Booz·Allen & Hamilton Inc...testing, and electron beam testing. • Other attacks, such as UV or X- rays or high temperatures, could cause erasure of memory. However, erasure of selected

  19. 77 FR 15450 - Tier 1 Environmental Impact Statement for the Chicago, Illinois, to Omaha, Nebraska, Regional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... routes as well as a combination of the Rock Island and Burlington routes to provide a different approach... possible route alternatives to be considered in the preparation of the Tier 1 EIS. To ensure all... up to thirty (30) days following the publication of this Notice, by writing Ms. Tamara Nicholson...

  20. A Culturally Responsive Counter-Narrative of Effective Teaching

    ERIC Educational Resources Information Center

    Gist, Conra D.

    2014-01-01

    How do you recognize an effective teacher's sociocultural consciousness? Tamara Wallace's and Brenda Brand's argument that sociocultural consciousness is the "brain" of effective culturally responsive instruction for students of color comes at a time when the system of teacher evaluation is being overhauled nationwide.…

  1. IFLA General Conference, 1991. Division of Management and Technology: Section of Conservation; Section of Information Technology; Section of Library Buildings and Equipment; Section of Statistics; Management of Library Associations. Booklet 6.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    The eight papers in this collection were presented at five sections of the Division of Management and Technology: (1) "The State Conservation Programme (Concept Approach)" (Tamara Burtseva and Zinaida Dvoriashina, USSR); (2) "La communication a distance de banques d'images pour le grand public (Public Access to Image Databases via…

  2. 75 FR 60126 - Performance Review Board Members

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Daulaire Beverly W. Davis Jeffrey S. Davis L'Tonya J. Davis Lori E. Davis Diann Dawson Molly P. Dawson.... Miller Tamara L. Miller George G. Mills Jr. Samuel P. Mitchell Madeline Mocko John W. Molina John T... William D. Saunders David W. Sayen James V. Scanlon Donald L. Schneider Lawrence N. Self James D. Seligman...

  3. STS-52 Mission Specialist (MS) Jernigan during food planning session at JSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Tamara E. Jernigan sips a beverage from a plastic container using a straw. She appears to be pondering what beverages she would like to have on her 10-day flight this coming autumn. Other crewmembers joined Jernigan for this food planning session conducted by JSC's Man-Systems Division.

  4. Malaria Genome Sequencing Project

    DTIC Science & Technology

    2004-01-01

    BEHNAM JOANA JENKINS, CHELTON CARTY, HEATHER JENKINS, JENNIFER CHAUDHARY, ABHILASHA JIANG, LINGXIA CHEN, DAN JONES, KRISTINE CHEN, MINGHUA KALB, ERICA... JENNIFER SILVA, JOANA MOAZZEZ, AZITA SITZ, JEFF MOFFAT, KELLY SKOVORODNEV, NELSON, KEITH ALEXANDER NENE, VISHVANATH SMIRNOVA, TATYANA NORCUTT, KARA...Shallom*, Susan E. van Aken*, Steven B. Riedmuller*, Tamara V. Feldblyum*, Jennifer L Cho*t, John Quackenbush*, Martha Sedegah§, Azadeh Shoalbl*, Leda M

  5. STS-40 MS Jernigan, working at SLS-1 Rack 1, examines Pilot Gutierrez's ear

    NASA Image and Video Library

    1991-06-14

    STS040-206-002 (5-14 June 1991) --- Held in place by the Spacelab Life Sciences (SLS-1) Medical Restraint System (MRS), astronaut Sidney M. Gutierrez, pilot, gets his ears checked by astronaut Tamara E. Jernigan, mission specialist. The two are in the SLS-1 module, onboard the Space Shuttle Columbia. The scene was photographed with a 35mm camera.

  6. Dramatic Differences in Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes

    DTIC Science & Technology

    2009-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Dramatic Differences in Organophosphorus Hydrolase Activity between Human and 5a... activity , V-agents, VX, bioscavenger, medical countermeasures 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes† Tamara C. Otto,‡ Christina K. Harsch,§ David T

  7. Command Home Page

    Science.gov Websites

    call by the Maltese Government. U.S. Navy photo (Released) 131017-N-ZZ999-007 Distressed persons wave to a call by the Maltese Government. U.S. Navy photo (Released) 131017-N-ZZ999-011 Sailors aboard the Class Tamara Vaughn (Released) 131010-N-RJ834-066 Operations Specialist 3rd Class Phillip Leak, right

  8. High frequency Analysis of Stream Chemistry to Establish Elemental Cycling Regimes of High latitude Catchments

    DTIC Science & Technology

    2017-02-13

    NUMBER 6. AUTHOR(S) Tamara Harms 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME... ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Strategic Environmental... organic matter, temperature, turbidity, conductivity, and optical properties of organic matter were deployed in two streams draining the US Army’s

  9. 50 (Fifty) Years of Research on Man in Flight

    DTIC Science & Technology

    1985-06-01

    h td ~il lcild FlightI IR’c’urch1)71.AI . .. 0 . . . . . . Advanced Flight Research 1970&1984 0 bo a I .41~ CII1(f’(l k/i h t Iu’raru/i l~)7(~-15’.~I I...Hazel, Mrs Branch Secretary BBD BIODYNAMIC EFFECTS BRANCH Bekele, Tamara, Ms Jonopulos, Michael, 9Sgt Kazarian. Leon, Dr Branch Chief Natvig

  10. Astronauts Parise and Jernigan check helmets prior to training session

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Attired in training versions of the Shuttle partial-pressure launch and entry suits, payload specialist Dr. Ronald A Parise (left) and astronaut Tamara E. Jernigan, payload commander, check over their helmets prior to a training session. Holding the helmets is suit expert Alan M. Rochford, of NASA. The two were about to join their crew mates in a session of emergency bailout training at JSC's Weightless Environment Training Facility (WETF).

  11. STS-40 MS Jernigan works at SLS-1 Rack 1 workstation with intravenous system

    NASA Image and Video Library

    1991-06-14

    STS040-30-008 (5-14 June 1991) --- Astronaut Tamara E. Jernigan, after applying a blood pressure cuff to an experiment, watches it in operation. The experiment is the intravenous infusion pump. The device is being considered for use on Space Station Freedom's Health Maintenance Facility. Dr. Jernigan is one of seven crew members supporting the nine-day Spacelab Life Sciences (SLS-1) mission aboard the Earth-orbiting Space Shuttle Columbia.

  12. Nadir (+ZA/Plane I) side of Node 1/Unity and FGB/Zarya

    NASA Image and Video Library

    1999-06-04

    STS096-712-034 (3 June 1999) --- A STS-96 crew member aboard Discovery handling a 70mm camera recorded this image of the International Space Station (ISS) during a fly-around following separation of the two spacecraft. A portion of the work performed on the May 30 space walk by astronauts Tamara E. Jernigan and Daniel T. Barry is evident in the photo, including the installation of the Russian-built crane (called Strela).

  13. STS-52 MS Jemison, in LES/LEH, during JSC WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Tamara E. Jernigan, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing about water landings during an emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Jernigan waits her turn to be dropped into the WETF's 25-ft deep pool which will simulate the ocean during of her water landing.

  14. STS-96 Astronauts Adjust Unity Hatch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aboard the International Space Station (ISS), astronauts Rick D. Husband and Tamara E. Jernigan adjust the hatch for the U.S. built Unity node. The task was part of an overall effort of seven crew members to prepare the existing portion of the International Space Station (ISS). Launched on May 27, 1999, aboard the Orbiter Discovery, the STS-96 mission was the second ISS assembly flight and the first shuttle mission to dock with the station.

  15. Validation of Biomarkers for Prostate Cancer Prognosis

    DTIC Science & Technology

    2014-12-01

    and Muc1. We have also completed a project in image analysis of H & E slides with Gustavo Ayala at University of Texas. Finally, we have completed...Groups using the resource include Dr. Jeremy Squire, Dr. Gustavo Ayala, Tamara Lotan and Dr. Lidong Liu. • Porting final clinical data that will be...with a manuscript near completion. • Ongoing analysis of AZGP1 with a manuscript expected soon. • Ongoing analysis of image analysis with Gustavo Ayala

  16. Simulation and Micro-Fabrication of Optically Switchable Split Ring Resonators

    DTIC Science & Technology

    2007-01-01

    Simulation and micro-fabrication of optically switchable split ring resonators T.F. Gundogdu a,*, Mutlu Gökkavas b, Kaan Güven b, M. Kafesaki a...mail address: tamara@iesl.forth.gr (T.F. Gundogdu ). 1569-4410/$ – see front matter # 2007 Published by Elsevier B.V. doi:10.1016/j.photonics...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 T.F. Gundogdu et al. / Photonics and

  17. STS-52 Columbia, Orbiter Vehicle (OV) 102, official crew portrait

    NASA Image and Video Library

    1992-11-01

    STS052-S-002 (August 1992) --- These five NASA astronauts and a Canadian payload specialist are assigned to the flight, scheduled for later this year. Pictured on the back row are, left to right, astronauts Michael A. Baker, pilot; James D. Wetherbee, mission commander; and Steven G. MacLean, payload specialist representing the Canadian Space Agency (CSA). In front are, left to right, astronauts Charles L. (Lacy) Veach, Tamara E. Jernigan and William M. Shepherd, all mission specialists.

  18. STS-67 in-flight crew portrait

    NASA Image and Video Library

    1995-03-03

    The STS-67/ASTRO-2 crew members pose for their traditional inflight portrait on the aft flight deck of the Earth orbiting Space Shuttle Endeavour. Left to right in the front are astronauts Tamara E. Jernigan, payload commander; Steven S. Oswald, mission commander; and William G. Gregory, pilot. Left to right on the back row are astronaut Wendy B. Lawrence, flight engineer; payload specialists Ronald A. Parise and Samuel T. Durrance; and John M. Grunsfeld, mission specialist.

  19. Environmental Assessment 819th Red Horse Five Year Plan, Malmstrom Air Force Base, Montana

    DTIC Science & Technology

    2007-08-07

    1 FINDING OF NO SIGNIFICANT IMPACT 2 ENVIRONMENTAL ASSESSMENT 3 819TU RED HORSE FIVE YEAR PLAN 4 MALMSTROM AIR FORCE BASE, MONTANA 5 AGENCY...7 BACKGROUND: The 819th RHS was activated on 8 August 1997 at Malmstrom AFB. The 8 RED HORSE mission requires rapid deployment of personnel and... HORSE SQ 5-year Plan 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jonathan Anstey; Heidi Brothers; Tamara Carroll; Pete Feigley; Sarah

  20. Period Determination of Asteroid Targets Observed at Hunters Hill Observatory: May 2009 - September 2010

    NASA Astrophysics Data System (ADS)

    Higgins, David

    2011-01-01

    Lightcurves for 27 asteroids were obtained at the Hunters Hill Observatory (HHO) from 2009 May through 2010 September: 308 Polyxo, 326 Tamara, 369 Aeria, 504 Cora, 822 Lalage, 1164 Kobolda, 1619 Ueta, 1625 The NORC, 1685 Toro, 2189 Zaragoza, 2287 Kalmykia, 2639 Planman, 3695 Fiaia, 4786 Tatianina, 5333 Kanaya, (5452) 1937 NN, 6170 Levasseur, 7741 Fedoseev, 14815 Rutberg, 15724 Zille, 16525 Shumarinaiko, (21996) 1993 XP31, (29729) 1999 BY1, (35404) 1997 YV5, (39087) 2000 VN50, (66146) 1998 TU3, and (101769) 1999 FF52.

  1. Spacelab

    NASA Image and Video Library

    1991-06-05

    Launched aboard the Space Shuttle Columbia on June 5, 1991 at 9:24; am (EDT), the STS-40 mission was the fifth dedicated Spacelab Mission, Spacelab Life Sciences-1 (SLS-1), and the first mission dedicated solely to life sciences. The STS-40 crew included 7 astronauts: Bryan D. O’Connor, commander; Sidney M. Gutierrez, pilot; F. Drew Gaffney, payload specialist 1; Milli-Hughes Fulford, payload specialist 2; James P. Bagian, mission specialist 1; Tamara E. Jernigan, mission specialist 2; and M. Rhea Seddon, mission specialist 3.

  2. STS-96 crew plays cards in the Node 1/Unity module

    NASA Image and Video Library

    2017-04-20

    S96-E-5173 (2 June 1999) --- A pre-set electronic still camera (ESC) recorded this image of the STS-96 crewmembers playing cards on a break aboard the International Space Station (ISS). From the left are cosmonaut Valery I. Tokarev, Daniel T. Barry, Tamara E. Jernigan, Rick D. Husband, Ellen Ochoa, Julie Payette and Kent V. Rominger. Tokarev represents the Russian Space Agency (RSA) and Payette represents the Canadian Space Agency (CSA). The photograph was taken at 11:13:59 GMT, June 2, 1999.

  3. A culturally responsive counter-narrative of effective teaching

    NASA Astrophysics Data System (ADS)

    Gist, Conra D.

    2014-12-01

    How do you recognize an effective teacher's sociocultural consciousness? Tamara Wallace's and Brenda Brand's argument that sociocultural consciousness is the "brain" of effective culturally responsive instruction for students of color comes at a time when the system of teacher evaluation is being overhauled nationwide. Teacher observation tools are being piloted to develop a common language of effective instruction but often there is little attention given to sociocultural consciousness in these frameworks. This article develops a culturally responsive counter-narrative to explore the complexity of a teacher's racial consciousness during a teaching episode.

  4. COLUMBIA'S HATCH IS INSPECTED IN OPF BAY 1 AFTER STS-80 LANDING

    NASA Technical Reports Server (NTRS)

    1996-01-01

    United Space Alliance (USA) technicians in Orbiter Processing Facility Bay 1 troubleshoot the orbiter Columbia's outer hatch of the airlock, which failed to open during the recent STS-80 Space Shuttle mission. Mission Specialists Tamara E. Jernigan and Thomas D. Jones did not perform the mission's planned two extravehicular activities (EVAs) or spacewalks because the hatch would not open on orbit. The spacewalks were to be part of the continuing series of EVA Development Flight Tests to evaluate equipment and procedures and to build spacewalking experience in preparation for the International Space Station.

  5. President Bill Clinton visits JSC

    NASA Image and Video Library

    1998-04-14

    S98-05025 (14 April 1998) --- President Bill Clinton tours a laboratory mockup used for training purposes by astronauts assigned to fly aboard the International Space Station (ISS). Astronaut William Shepherd (right), mission commander for the first ISS expedition crew, briefs the Chief Executive. Looking on are astronauts C. Michael Foale and Tamara C. Jernigan. Foale spent four months last year aboard Russia's Mir space station. President Clinton toured several mockups and other training components before speaking to a crowd of JSC employees. Photo Credit: Joe McNally, National Geographic, for NASA

  6. Crewmember activity in the flight deck and middeck

    NASA Image and Video Library

    1996-12-30

    STS080-375-023 (19 Nov.-7 Dec. 1996) --- Astronauts Kenneth D. Cockrell, STS-80 mission commander, and Tamara E. Jernigan, payload commander, share a moment of off-duty time with astronaut Story Musgrave on the middeck of the Earth-orbiting space shuttle Columbia. Musgrave was making his sixth flight aboard the Space Shuttle as a mission specialist. His fellow crewmembers presented him with a patch that reads, "Master of Space." Before and during his 30 years with NASA, Musgrave obtained several academic degrees, including several Masters, a medical doctorate and several Ph.D.

  7. COLUMBIA'S HATCH IS INSPECTED IN OPF BAY 1 AFTER STS-80 LANDING

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In Orbiter Processing Facility Bay 1, United Space Alliance (USA) technicians Dave Lawrence, at left, and James Cullop troubleshoot the orbiter Columbia's outer hatch of the airlock, which failed to open during the recent STS-80 Space Shuttle mission. Mission Specialists Tamara E. Jernigan and Thomas D. Jones did not perform the mission's planned two extravehicular activities (EVAs) or spacewalks because the hatch would not open on orbit. The spacewalks were to be part of the continuing series of EVA Development Flight Tests to evaluate equipment and procedures and to build spacewalking experience in preparation for the International Space Station.

  8. Space Shuttle Projects

    NASA Image and Video Library

    1992-08-01

    Five NASA astronauts and one Canadian payload specialist composed the STS-52 crew. Pictured on the back row, left to right, are Michael A. Baker, pilot; James B. Wetherbee, commander; and Steven G. Maclean, payload specialist. On the front row, left to right, are mission specialists Charles (Lacy) Veach, Tamara Jernigan, and William Shepherd. Launched aboard the Space Shuttle Columbia on October 22, 1992 at 1:09:39 p.m. (EDT), the crew’s primary objectives were the deployment of the Laser Geodynamic Satellite (LAGEOS II) and operation of the U.S. Microgravity Payload-1 (USMP-1).

  9. STS-96 Crew Training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The training for the crew members of the STS-96 Discovery Shuttle is presented. Crew members are Kent Rominger, Commander; Rick Husband, Pilot; Mission Specialists, Tamara Jernigan, Ellen Ochoa, and Daniel Barry; Julie Payette, Mission Specialist (CSA); and Valery Ivanovich Tokarev, Mission Specialist (RSA). Scenes show the crew sitting and talking about the Electrical Power System; actively taking part in virtual training in the EVA Training VR (Virtual Reality) Lab; using the Orbit Space Vision Training System; being dropped in water as a part of the Bail-Out Training Program; and taking part in the crew photo session.

  10. STS-96 In-flight crew portrait in the Node 1/Unity module

    NASA Image and Video Library

    2016-08-30

    STS096-380-019 (27 May - 6 June 1999) --- The seven crew members for the STS-96 mission pose for the traditional inflight crew portrait in the hatch way of the U.S.-built Unity node for the International Space Station (ISS). From to left to right, bottom, are astronauts Daniel T. Barry, Julie Payette and Ellen Ochoa. On top are cosmonaut Valery I. Tokarev, along with astronauts Tamara E. Jernigan and Kent V. Rominger. Astronaut Rick D. Husband is between Rominger and Ochoa. Payette represents the Canadian Space Agency (CSA) and Tokarev is with the Russian Space Agency (RSA).

  11. Official STS-67 preflight crew portrait

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Official STS-67 preflight crew portrait. In front are astronauts (left to right) Stephen S. Oswald, mission commander; Tamara E. Jernigan, payload commander; and William G. Gregory, pilot. In the back are (left to right) Ronald A. Parise, payload specialist; astronauts Wendy B. Lawrence, and John Grunsfeld, both mission specialists; and Samuel T. Durrance, payload specialist. Dr. Durrance is a research scientist in the Department of Physics and Astronomy at Johns Hopkins University, Baltimore, Maryland. Dr. Parise is a senior scientist in the Space Observatories Department, Computer Sciences Corporation, Silver Spring, Maryland. Both payload specialists flew aboard the Space Shuttle Columbia for STS-35/ASTRO-1 mission in December 1990.

  12. T-38 AT SLF DURING STS-80 CREW ARRIVAL

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A T-38 parked at KSC's Shuttle Landing Facility is profiled against the brilliant twilight sky. The five astronauts assigned to Space Shuttle Mission STS-80 arrived from Houston at around 6:30 p.m.: Mission Commander Kenneth D. Cockrell; Pilot Kent V. Rominger; and Mission Specialists Tamara E. Jernigan, Thomas D. Jones and Story Musgrave headed for the crew quarters in the Operations and Checkout Building. Tomorrow, Nov. 12, the launch countdown will begin at 1 p.m. with the countdown clock set at T- 43 hours. The Space Shuttle Columbia is scheduled for liftoff from Launch Pad 39B at 2:50 p.m. EST, Nov. 15.

  13. STS-80 Flight Day 2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this second day of the STS-80 mission, the flight crew, Cmdr. Kenneth D. Cockrell, Pilot Kent V. Rominger, Mission Specialists, Tamara E. Jernigan, Thomas D. Jones, and F. Story Musgrave, complete the first major objective of the mission with the deployment of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) on the reusable Shuttle Pallet Satellite. Release of ORFEUS from Columbia's robot arm came at 8 hours 15 minutes mission elapsed time. Three hours after the release, ground controllers inform the crew that the instrument package appears to be working properly. This begins two weeks of gathering data on the origin and makeup of stars.

  14. Spacelab

    NASA Image and Video Library

    1991-01-28

    The STS-40 crew portrait includes 7 astronauts. Pictured on the front row from left to right are F. Drew Gaffney, payload specialist 1; Milli-Hughes Fulford, payload specialist 2; M. Rhea Seddon, mission specialist 3; and James P. Bagian, mission specialist 1. Standing in the rear, left to right, are Bryan D. O’Connor, commander; Tamara E. Jernigan, mission specialist 2; and Sidney M. Gutierrez, pilot. Launched aboard the Space Shuttle Columbia on June 5, 1991 at 9:24; am (EDT), the STS-40 mission was the fifth dedicated Spacelab Mission, Spacelab Life Sciences-1 (SLS-1), and the first mission dedicated solely to life sciences.

  15. STS-40 crewmembers pose for onboard (in space) portrait on OV-102's middeck

    NASA Image and Video Library

    1991-06-14

    STS040-605-009 (5-14 June 1991) --- The seven crew members for STS-40 pose for an in-space portrait on the Space Shuttle Columbia's mid-deck. Left to right, in front are F. Andrew Gaffney, Sidney M. Gutierrez, Rhea Seddon and James P. Bagian; in back, Bryan D. O'Connor, Tamara E. Jernigan and Millie Hughes-Fulford. The five astronauts and two payload specialists are spending nine days in space in support of the Spacelab Life Sciences (SLS-1) mission. The image was one of 25 visuals used by the STS-40 crew at its Post Flight Press Conference (PFPC) on June 28, 1991.

  16. STS-96 FD Highlights and Crew Activities Report: Flight Day 01

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this first day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  17. STS-80 Columbia, OV 102, liftoff from KSC Launch Pad 39B

    NASA Image and Video Library

    1996-11-19

    STS080-S-007 (19 Nov. 1996) --- One of the nearest remote camera stations to Launch Pad B captured this profile image of space shuttle Columbia's liftoff from the Kennedy Space Center's (KSC) Launch Complex 39 at 2:55:47 p.m. (EST), November 19, 1996. Onboard are astronauts Kenneth D. Cockrell, mission commander; Kent V. Rominger, pilot; along with Story Musgrave, Tamara E. Jernigan and Thomas D. Jones, all mission specialists. The two primary payloads for STS-80 stowed in Columbia?s cargo bay for later deployment and testing are the Wake Shield Facility (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) with its associated Shuttle Pallet Satellite (SPAS).

  18. STS-52 Columbia, OV-102, soars into the sky after liftoff from KSC LC Pad 39B

    NASA Image and Video Library

    1992-10-22

    STS052-S-053 (22 Oct. 1992) --- This low-angle 35mm image shows the space shuttle Columbia on its way toward a ten-day Earth-orbital mission with a crew of five NASA astronauts and a Canadian payload specialist. Liftoff occurred at 1:09:39 p.m. (EDT), Oct. 22, from Kennedy Space Center?s (KSC) Launch Pad 39B. Crew members onboard are astronauts James D. Wetherbee, Michael A. Baker, Tamara E. Jernigan, Charles L. (Lacy) Veach and William M. Shepherd, along with payload specialist Steven G. MacLean. Payloads onboard include the Laser Geodynamic Satellite II (LAGEOS II), which will be deployed early in the mission, a series of Canadian experiments, and the United States Microgravity Payload-1 (USMP-1). Photo credit: NASA

  19. STS-96 Crew Interview: Dan Barry

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage of a preflight interview with Mission Specialist Daniel T. Barry is seen. The interview addresses many different questions including why Barry became an astronaut, and the events that led to his interest. Other interesting information that this one-on-one interview discusses is the logistics and supply mission, why it is important to send equipment to the International Space Station (ISS), and the Integrated Cargo Carrier (ICC). Barry mentions Discovery's anticipated docking with the ISS, his scheduled space walk with Tamara E. Jernigan, plans for the supply and equipment transfers, and his responsibility during this transfer. A fly-around maneuver to take pictures of the ISS, and the deployment of the Student Tracked Atmospheric Research Satellite for Heuristic International Networking Equipment (STARSHINE) are also discussed.

  20. STS-96 FD Highlights and Crew Activities Report: Flight Day 05

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this fifth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing logistics transfer activities within the Discovery/International Space Station orbiting complex. The crew transfers supplies, equipment, and water. Payette and Tokarev perform maintenance activities on the storage batteries in the Zarya module. Barry and Tokarev install acoustic insulation around some of the fans inside Zarya. Jernigan and Husband install shelving in 2 soft stowage racks. Husband and Barry troubleshoot and perform maintenance activities on the Early Communications System. At the end of the workday, Rominger, Jernigan, and Barry discussed the progress of the mission with NBC's "Today," CBS "This Morning," and CNN.

  1. STS-96 FD Highlights and Crew Activities Report: Flight Day 04

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this fourth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing final preparations for their space walk. Views of the crew helping Barry and Jernigan suit up for their mission is also presented. Ochoa uses the robot arm to maneuver Jernigan up to the space station module. During the space walk Barry and Jernigan move two cranes, and three bags containing handrails and tools to the outside of the Unity module. They also install a thermal cover on a Unity trunnion pin, inspect peeling paint on Zarya and one of the two Early Communications System antennas on Unity.

  2. STS096-S-002

    NASA Image and Video Library

    1999-04-01

    STS096-S-002 (April 1999) --- Six NASA astronauts and a Russian cosmonaut take a break from training to pose for the crew portrait. Astronaut Kent V. Rominger, mission commander, is at left on the front row. Astronaut Rick D. Husband, pilot, is right. The remaining astronauts are Ellen Ochoa (front center) and, from the left on the back row, Daniel T. Barry, Julie Payette, Valeriy I. Tokarev, and Tamara Jernigan, all mission specialists. Payette represents the Canadian Space Agency (CSA) and Tokarev is with the Russian Space Agency (RSA). The crew will perform the first station docking and will become the first visitors to the new International Space Station (ISS) since its launch and start of orbital assembly last year. Space Shuttle Discovery's launch date is now scheduled for May 20.

  3. KSC-99pp0641

    NASA Image and Video Library

    1999-06-07

    At the Cape Canaveral Air Station Skid Strip, STS-96 crew members and their families board a plane to return to the Johnson Space Center in Houston, Texas. From left are the son, Ivan, and wife, Irina, of Mission Specialist Valery Ivanovich Tokarev (carrying a duffel bag); and Mission Specialist Ellen Ochoa, holding her son, Wilson Miles-Ochoa. Other crew members also returning are Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.) and Julie Payette (with the Canadian Space Agency). After a successful 10-day mission to the International Space Station aboard Space Shuttle Discovery, the crew landed June 6 at 2:02:43 a.m. EDT, in the 11th night landing at KSC

  4. The SPACEHAB double module is moved into the payload changeout room at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This fish-eye view shows the SPACEHAB Double module being moved into the payload changeout room at Launch Pad 39B before being transferred to Space Shuttle Discovery's payload bay for mission STS-96. The second flight supporting construction of the International Space Station, STS-96 is a logistics and resupply mission, carrying more than 5,000 pounds of supplies, a Russian- built crane and a U.S.-built crane, plus experiments such as STARSHINE, which was developed by and for students. Comprising the crew are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Liftoff is scheduled for May 20 at 9:32 a.m. EDT.

  5. STS-96 FD Highlights and Crew Activities Report: Flight Day 06

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this sixth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing logistics transfer activities within the Discovery/International Space Station orbiting complex. Ochoa, Jernigan, Husband and Barry devote a significant part of their day to the transfer of bags of different sizes and shapes from the SPACEHAB module in Discovery's cargo bay to resting places inside the International Space Station. Payette and Tokarev complete the maintenance on the storage batteries. Barry and Tokarev complete installation of the remaining sound mufflers over the fans in Zarya. Barry then measures the sound levels at different positions inside the module. Rominger and Tokarev conduct a news conference with Russian reporters from the Mission Control Center in Moscow.

  6. KSC-99pp0585

    NASA Image and Video Library

    1999-05-27

    In the Operations and Checkout Building, STS-96 Mission Specialist Tamara E. Jernigan waves after donning her launch and entry suit during final launch preparations. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction.. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT

  7. Official STS-67 preflight crew portrait

    NASA Image and Video Library

    1994-12-01

    STS067-S-002 (December 1994) --- Five NASA astronauts and two payload specialists from the private sector have been named to fly aboard the Space Shuttle Endeavour for the STS-67/ASTRO-2 mission, scheduled for March 1995. In front are astronauts (left to right) Stephen S. Oswald, mission commander; Tamara E. Jernigan, payload commander; and William G. Gregory, pilot. In the back are (left to right) Ronald A. Parise, payload specialist; astronauts Wendy B. Lawrence, and John M. Grunsfeld, both mission specialists; and Samuel T. Durrance, payload specialist. Dr. Durrance is a research scientist in the Department of Physics and Astronomy at Johns Hopkins University, Baltimore, Maryland. Dr. Parise is a senior scientist in the Space Observatories Department, Computer Sciences Corporation, Silver Spring, Maryland. Both payload specialist's flew aboard the Space Shuttle Columbia for the STS-35/ASTRO-1 mission in December 1990.

  8. STS-96 Crew Training, Mission Animation, Crew Interviews, STARSHINE, Discovery Rollout and Repair of Hail Damage

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage shows the crewmembers of STS-96, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette and Valery Ivanovich Tokarev during various training activities. Scenes include astronaut suit-up, EVA training in the Virtual Reality Lab, Orbiter space vision training, bailout training, and crew photo session. Footage also shows individual crew interviews, repair activities to the external fuel tank, and Discovery's return to the launch pad. The engineers are seen sanding, bending, and painting the foam used in repairing the tank. An animation of the deployment of the STARSHINE satellite, International Space Station, and the STS-96 Mission is presented. Footage shows the students from Edgar Allen Poe Middle School sanding, polishing, and inspecting the mirrors for the STARSHINE satellite. Live footage also includes students from St. Michael the Archangel School wearing bunny suits and entering the clean room at Goddard Space Flight Center.

  9. STS-96 M.S. Payette and Pilot Husband try on gas masks as part of a TCDT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 39B, STS-96 Mission Specialist Julie Payette, with the Canadian Space Agency, and Pilot Rick Douglas Husband practice putting on oxygen gas masks as part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress traiing, simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Ellen Ochoa (Ph.D.) and Valery Ivanovich Tokarev, with the Russian Space Agency. Scheduled for liftoff on May 20 at 9:32 a.m., STS- 96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- led experiment.

  10. STS-96 M.S. Tokarev tries gas mask as part of a TCDT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-96 Mission Specialist Valery Ivanovich Tokarev, with the Russian Space Agency, tries on an oxygen gas mask during Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39B. The TCDT provides the crew with simulated countdown exercises, emergency egress training and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. Scheduled for liftoff on May 20 at 9:32 a.m., STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

  11. The STS-96 crew takes part in a Crew Equipment Interface Test at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, STS-96 Mission Specialists Daniel Barry (M.D., Ph.D.), Valery Ivanovich Tokarev and Tamara E. Jernigan (Ph.D.) look into the payload bay of the orbiter Discovery. The STS-96 crew is at KSC for a Crew Equipment Interface Test. Other crew members participating are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  12. KSC-99pp0477

    NASA Image and Video Library

    1999-04-29

    The STS-96 crew pose for a group photo after emergency egress training at Launch Pad 39B. From left are Mission Specialist Ellen Ochoa (Ph.D.); Pilot Rick Douglas Husband; Mission Specialists Julie Payette, Daniel Barry (M.D., Ph.D.), and Tamara E. Jernigan (Ph.D.); Commander Kent V. Rominger; and Mission Specialist Valery Ivanovich Tokarev. Payette is with the Canadian Space Agency, and Ivanovich Tokarev with the Russian Space Agency. Behind them is the tip of the external tank, which is 153.8 feet high. The external tank provides fuel to the three space shuttle main engines in the orbiter during liftoff and ascent. It is eventually jettisoned, entering the Earth's atmosphere, breaking up and impacting a remote ocean area. STS-96, scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  13. KSC-99pp0451

    NASA Image and Video Library

    1999-04-27

    During emergency egress training at Launch Pad 39B, members of the STS-96 crew ride inside a small armored personnel carrier. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. From left are Pilot Rick Douglas Husband; Mission Specialists Daniel Barry (partly hidden), Tamara E. Jernigan, Julie Payette, and Valery Ivanovich Tokarev; and Commander Kent V. Rominger. Not shown is Mission Specialist Ellen Ochoa. The crew are at KSC for Terminal Countdown Demonstration Test (TCDT) activities, which also include simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  14. White House and agencies focus on space weather concerns

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-06-01

    "Space weather is a serious matter that can affect human economies around the world," Tamara Dickinson, a senior policy analyst with the White House Office of Science and Technology Policy (OSTP), told attendees at the 2012 Space Weather Enterprise Forum, held 5 June in Washington, D. C. With the 2013 solar maximum nearing, researchers and government agencies are focusing on how the greater solar activity could affect our increasingly technological society and what measures can be taken to help prevent or mitigate any threats to the electricity grid, GPS, and other potentially vulnerable technologies. Dickenson said that there has been an increased awareness about space weather in the White House and that President Barack Obama recently has requested briefing memos on the topic. She highlighted several efforts the administration is taking related to space weather, including a forthcoming national Earth observation strategy, which could be released in July and will include an assessment of space weather. She explained that the strategy document will be part of the fiscal year 2014 presidential budget request and that it will be updated every 3 years.

  15. The U.S. Department of Energy Office of Indian Energy Policy and Programs Las Vegas, Nevada, Roundtable Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-03-16

    LAS VEGAS EXECUTIVE SUMMARY The Las Vegas, Nevada DOE Tribal Roundtable convened on March 16th, at the Las Vegas Hilton. The meeting was hosted by the Department of Energy (DOE) Office of Indian Policy and Programs (DOE Office of Indian Energy) and facilitated by JR Bluehouse, Program Manager, Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute). Mr. Bluehouse was assisted by Tamara, Underwood, Program Assistant, U.S. Institute.  Tribal leaders and representatives from multiple tribal governments and communities attended the roundtable. Tracey LeBeau, newly appointed Director of the Office of Indian Energy attended.    LaMont Jackson from DOE’s Office of Electricitymore » attended. Also attending from the administration and federal agencies were Kim Teehee, Senior Policy Advisor for Native American Affairs, The White House; Charlie Galbraith, Associate Director of the Office of Public Engagement and Deputy Associate Director of the Office of Intergovernmental Affairs, The White House; Jodi Gillette, Deputy Assistant Secretary for Policy and Economic Development, the Bureau of Indian Affairs.« less

  16. Featured Image: Mixing Chemicals in Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    How do stars mix chemicals in their interiors, leading to the abundances we measure at their surfaces? Two scientists from the Planetary Science Institute in Arizona, Tamara Rogers (Newcastle University, UK) and Jim McElwaine (Durham University, UK), have investigated the role that internal gravity waves have in chemical mixing in stellar interiors. Internal gravity waves not to be confused with the currently topical gravitational waves are waves that oscillate within a fluid that has a density gradient. Rogers and McElwaine used simulations to explore how these waves can cause particles in a stars interior to move around, gradually mixing the different chemical elements. Snapshots from four different times in their simulation can be seen below, with the white dots marking tracer particles and the colors indicating vorticity. You can see how the particles move in response to wave motion after the first panel. For more information, check out the paper below!CitationT. M. Rogers and J. N. McElwaine 2017 ApJL 848 L1. doi:10.3847/2041-8213/aa8d13

  17. STS-96 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Crew of STS-96 Discovery Shuttle, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev, are shown narrating the mission highlights. Scenes include walk out to the transfer vehicle, and launch of the shuttle. Also presented are scenes of the start of the main engine, ignition of the solid rocket boosters, and the separation of the solid rocket boosters. Footage of Payette preparing the on-board camera equipment, while Barry and Jernigan perform routine checks of the equipment is seen. Also presented are various pictures of the shuttle in its orbit, the docking of the shuttle with the Mir International Space Station, and crewmembers during their space walk. Beautiful panoramic views of the Great Lake, Houston, and a combined view of Italy and Turkey are seen. The crew of Discovery is shown performing a juice ball experiment, tumbling, undocking, performing transfer operations, and deploying the STARSHINE educational satellite. The film ends with the reentry of the Discovery Space Shuttle into the Earth's atmosphere.

  18. The STS-96 crew takes part in a Crew Equipment Interface Test at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, STS-96 Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.) and Valery Ivanovich Tokarev pose inside the orbiter Discovery. The STS-96 crew is at KSC to take part in a Crew Equipment Interface Test. Other members participating are Pilot Rick Douglas Husband and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.) and Julie Payette, who is with the Canadian Space Agency. Tokarev represents the Russian Space Agency. The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  19. KSC-99pp0341

    NASA Image and Video Library

    1999-03-25

    Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, and Pilot Rick Douglas Husband; plus STS-101 Mission Specialists Edward Tsang Lu and Jeffrey N. Williams. They are looking at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace of Bremen and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  20. KSC-99pp0314

    NASA Image and Video Library

    1999-03-24

    In the Orbiter Processing Facility bay 1, STS-96 Mission Specialist Daniel Barry, M.D., Ph.D., looks at one of the foot restraints used for extravehicular activity, or space walks. The STS-96 crew is at KSC to take part in a Crew Equipment Interface Test. The other crew members are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B

  1. KSC-99pp0347

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., STS-96 Mission Speciaists Daniel T. Barry (left), Julie Payette (center, with camera), and Tamara E. Jernigan (right, pointing) get a close look at one of the payloads on their upcoming mission. Other crew members are Commander Kent V. Rominger, and Mission Specialists Ellen Ochoa and Valery Ivanovich Tokarev, with the Russian Space Agency. Payette is with the Canadian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS); the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  2. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger pause during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  3. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Posing on the platform next to the SPACEHAB Logistics Double Module in the SPACEHAB Facility are the STS-96 crew (from left) Mission Specialists Dan Barry, Tamara Jernigan, Valery Tokarev of Russia, and Julie Payette; Pilot Rick Husband; Mission Specialist Ellen Ochoa; and Commander Kent Rominger. The crew is at KSC for a payload Interface Verification Test for their upcoming mission to the International Space Station. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  4. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger smile for the camera during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  5. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for the upcoming mission to the International Space Station , Chris Jaskolka of Boeing points out a piece of equipment in the SPACEHAB module to STS-96 Commander Kent Rominger, Mission Specialist Ellen Ochoa and Pilot Rick Husband. Other crew members visiting KSC for the IVT are Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  6. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialists Dan Barry and Tamara Jernigan discuss procedures during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  7. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, James Behling, with Boeing, talks about equipment for mission STS-96 during a payload Interface Verification Test (IVT). Watching are (from left) Mission Specialists Ellen Ochoa, Julie Payette and Dan Berry, and Pilot Rick Husband. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  8. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station, STS-96 Mission Specialists Julie Payette, Dan Barry, and Valery Tokarev of Russia, look at a Sequential Shunt Unit in the SPACEHAB Facility. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  9. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  10. KSC-99pp0449

    NASA Image and Video Library

    1999-04-27

    STS-96 Mission Specialist Julie Payette (right) practices driving a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. At left are Mission Specialist Valery Ivanovich Tokarev, with the Russian Space Agency, and Pilot Rick Douglas Husband. Payette is with the Canadian Space Agency. Riding on the front of the carrier is Capt. Steve Kelly, with Space Gateway Support, who is assisting the crew with their training. Other crew members are Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), and Daniel Barry (M.D., Ph.D.). Mission STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  11. STS-96 Discovery Night Landing with Drag chute

    NASA Technical Reports Server (NTRS)

    1999-01-01

    With its drag chute fully deployed, Space Shuttle Discovery lands on KSC's brightly lighted Shuttle Landing Facility runway 15, completing the 9-day, 19-hour, 13-minute and 1-second long STS-96 mission. Main gear touchdown was at 2:02:43 EDT June 6 , landing on orbit 154 of the mission. Nose gear touchdown was at 2:02:59 a.m. EDT, and the wheels stopped at 2:03:39 a.m. EDT. At the controls were Commander Kent V. Rominger and Pilot Rick D. Husband. Also onboard the orbiter were Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel S. Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The crew returned from the second flight to the International Space Station on a logistics and resupply mission. This was the 94th flight in the Space Shuttle program and the 26th for Discovery, also marking the 47th landing at KSC, the 24th in the last 25 missions, 11th at night, and the 18th consecutive landing in Florida.

  12. STS-96 Discovery night landing side view

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Beneath a bright moon, the landing of Space Shuttle Discovery at KSC's Shuttle Landing Facility runway 15 is reflected in the nearby canal. This 47th Shuttle landing at KSC completes the 9- day, 19-hour, 13-minute and 1-second long STS-96 mission. It is the 94th flight in the Space Shuttle program, the 26th for Discovery, the 11th night landing, and the 18th consecutive landing in Florida. Main gear touchdown was at 2:02:43 EDT June 6 , landing on orbit 154 of the mission. Nose gear touchdown was at 2:02:59 a.m. EDT, and the wheels stopped at 2:03:39 a.m. EDT. At the controls were Commander Kent V. Rominger and Pilot Rick D. Husband. Also onboard the orbiter were Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel S. Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The crew returned from the second flight to the International Space Station on a logistics and resupply mission.

  13. STS-96 Discovery night landing front view

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Bright lights at KSC's Shuttle Landing Facility runway 15 illuminate the landing of Space Shuttle Discovery, which completes the 9-day, 19-hour, 13-minute and 1-second long STS-96 mission. A contrail streams from the wing. Main gear touchdown was at 2:02:43 EDT June 6 , landing on orbit 154 of the mission. Nose gear touchdown was at 2:02:59 a.m. EDT, and the wheels stopped at 2:03:39 a.m. EDT. At the controls were Commander Kent V. Rominger and Pilot Rick D. Husband. Also onboard the orbiter were Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel S. Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The crew returned from the second flight to the International Space Station on a logistics and resupply mission. This was the 94th flight in the Space Shuttle program and the 26th for Discovery, also marking the 47th at KSC, the 24th in the last 25 missions, 11th at night, and the 18th consecutive landing in Florida.

  14. KSC-99pp0208

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  15. KSC-96PC1289

    NASA Image and Video Library

    1996-11-19

    KENNEDY SPACE CENTER, FLA. -- Vividly framed by a tranquil Florida landscape, the Space Shuttle Columbia lifts off from Launch Pad 39B at 2:55:47 p.m. EST, Nov. 19, 1996. Leading the veteran crew of Mission STS-80 is Commander Kenneth D. Cockrell; Kent V. Rominger is the pilot and the three mission specialists are Tamara E. Jernigan, Story Musgrave and Thomas D. Jones. At age 61, Musgrave becomes the oldest person ever to fly in space; he also ties astronaut John Young’s record for most number of spaceflights by a human being, and in embarking on his sixth Shuttle flight Musgrave has logged the most flights ever aboard NASA’s reusable space vehicle. The two primary payloads for STS-80 are the Wake Shield Facility-3 (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II). Two spacewalks also will be performed during the nearly 16-day mission. Mission STS-80 closes out the Shuttle flight schedule for 1996; it marks the 21st flight for Columbia and the 80th in Shuttle program history.

  16. KSC-96pc1287

    NASA Image and Video Library

    1996-11-19

    KENNEDY SPACE CENTER, FLA. -- A diversified mission of astronomy, commercial space research and International Space Station preparation gets under way as the Space Shuttle Columbia climbs skyward from Launch Pad 39B at 2:55:47 p.m. EST, Nov. 19, 1996. Leading the veteran crew of Mission STS-80 is Commander Kenneth D. Cockrell; Kent V. Rominger is the pilot and the three mission specialists are Tamara E. Jernigan, Story Musgrave and Thomas D. Jones. At age 61, Musgrave becomes the oldest person ever to fly in space; he also ties astronaut John Young’s record for most number of spaceflights by a human being, and in embarking on his sixth Shuttle flight Musgrave has logged the most flights ever aboard NASA’s reusable space vehicle. The two primary payloads for STS-80 are the Wake Shield Facility-3 (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II). Two spacewalks also will be performed during the nearly 16-day mission. Mission STS-80 closes out the Shuttle flight schedule for 1996; it marks the 21st flight for Columbia and the 80th in Shuttle program history.

  17. KSC-96pc1286

    NASA Image and Video Library

    1996-11-19

    KENNEDY SPACE CENTER, FLA. -- A diversified mission of astronomy, commercial space research and International Space Station preparation gets under way as the Space Shuttle Columbia climbs skyward from Launch Pad 39B at 2:55:47 p.m. EST, Nov. 19, 1996. Leading the veteran crew of Mission STS-80 is Commander Kenneth D. Cockrell; Kent V. Rominger is the pilot and the three mission specialists are Tamara E. Jernigan, Story Musgrave and Thomas D. Jones. At age 61, Musgrave becomes the oldest person ever to fly in space; he also ties astronaut John Young’s record for most number of spaceflights by a human being, and in embarking on his sixth Shuttle flight Musgrave has logged the most flights ever aboard NASA’s reusable space vehicle. The two primary payloads for STS-80 are the Wake Shield Facility-3 (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II). Two spacewalks also will be performed during the nearly 16-day mission. Mission STS-80 closes out the Shuttle flight schedule for 1996; it marks the 21st flight for Columbia and the 80th in Shuttle program history.

  18. STS-96 Crew Breakfast in O&C Building before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-96 crew gathers in the early morning for a snack in the Operations and Checkout Building before suiting up for launch. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Seated from left are Mission Specialists Daniel T. Barry and Ellen Ochoa, Pilot Rick D. Husband, Mission Commander Kent V. Rominger, and Mission Specialists Julie Payette, Valery Ivanovich Tokarev, and Tamara E. Jernigan. Tokarev represents the Russian Space Agency and Payette the Canadian Space Agency. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  19. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., STS-96 Mission Speciaists Daniel T. Barry (left), Julie Payette (center, with camera), and Tamara E. Jernigan (right, pointing) get a close look at one of the payloads on their upcoming mission. Other crew members are Commander Kent V. Rominger, and Mission Specialists Ellen Ochoa and Valery Ivanovich Tokarev, with the Russian Space Agency. Payette is with the Canadian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS); the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  20. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, and Pilot Rick Douglas Husband; plus STS-101 Mission Specialists Edward Tsang Lu and Jeffrey N. Williams. They are looking at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace of Bremen and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  1. STS-96 M.S. Dan Barry checks equipment during a CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, STS-96 Mission Specialist Daniel Barry, M.D., Ph.D., looks at one of the foot restraints used for extravehicular activity, or space walks. The STS-96 crew is at KSC to take part in a Crew Equipment Interface Test. The other crew members are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The primary payload of STS- 96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  2. The STS-96 crew takes part in a Crew Equipment Interface Test at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, STS-96 crew members look at the Canadian arm in the payload bay of the orbiter Discovery. Standing in a bucket controlled by a KSC worker, are (from left) Mission Specialist Tamara E. Jernigan (Ph.D), Daniel Barry (M.D., Ph.D.), and Valery Ivanovich Tokarev, who represents the Russian Space Agency. The STS-96 crew is at KSC to take part in a Crew Equipment Interface Test. The other crew members are Commander Kent V. Rominger, Pilot Rick Douglas Husband and Mission Specialists Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  3. KSC-99pp0344

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., members of two Shuttle crews get a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). At left are STS-96 Mission Specialist Daniel T. Barry and Pilot Rick Douglas Husband. At center, STS-96 Mission Specialist Tamara E. Jernigan gives her attention to a technician with DaimlerChrysler while STS-101 Mission Specialist Edward Tsang Lu looks on. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  4. KSC-99pp0345

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, Pilot Rick Douglas Husband, and Mission Specialist Julie Payette; next to them is STS-101 Mission Specialist Yuri Ivanovich Malenchenko, with the Russian Space Agency. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  5. KSC-99pp0348

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., STS-96 Mission Specialists Tamara E. Jernigan and Daniel T. Barry take turns working with a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Technicians around the table observe. The STS-96 crew is taking part in a Crew Equipment Interface Test. Other members participating are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  6. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 crew members look over equipment during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. From left are Khristal Parker, with Boeing; Mission Specialist Dan Barry, Pilot Rick Husband, Mission Specialist Tamara Jernigan, and at the far right, Mission Specialist Julie Payette. An unidentified worker is in the background. Also at KSC for the IVT are Commander Kent Rominger and Mission Specialists Ellen Ochoa and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  7. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Julie Payette closes a container, part of the equipment to be carried on the SPACEHAB and mission STS-96. She and other crew members Commander Kent Rominger, Pilot Rick Husband, and Mission Speciaists Ellen Ochoa, Tamara Jernigan, Dan Barry and Valery Tokarev of Russia are at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station . Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  8. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (left) and Commander Kent Rominger (second from right) listen to Lynn Ashby (far right), with JSC, talking about the SPACEHAB equipment in front of them during a payload Interface Verification Test (IVT). In the background behind Tokarev is TTI interpreter Valentina Maydell. Other STS-96 crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Dan Barry, Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  9. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev (in foreground) of the Russian Space Agency closes a container, part of the equipment that will be in the SPACEHAB module on mission STS-96. Behind Tokarev are Pilot Rick Husband (left) and Mission Specialist Dan Barry (right). Other crew members at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station are Commander Kent Rominger and Mission Specialists Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  10. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Pilot Rick Husband and Mission Specialist Ellen Ochoa (on the left) and Mission Specialist Julie Payette (on the far right) listen to Khristal Parker (second from right), with Boeing, explain about the equipment in front of them. Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  11. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks over equipment during a payload Interface Verification Test for the upcoming mission to the International Space Station. From left are Commander Kent Rominger, Mission Specialists Tamara Jernigan and Valery Tokarev of Russia, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Julie Payette (backs to the camera). They are listening to Chris Jaskolka of Boeing talk about the equipment. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  12. KSC-99pp0453

    NASA Image and Video Library

    1999-04-27

    Under the eye of Capt. Steve Kelly (left), with Space Gateway Support, Commander Kent V. Rominger gets ready to practice driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At the rear is Douglas Hamilton, a Canadian flight surgeon. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  13. KSC-99pp0457

    NASA Image and Video Library

    1999-04-27

    STS-96 Mission Specialist Valery Ivanovich Tokarev practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Riding the front of the carrier is Capt. Steve Kelly (left), with Space Gateway Support, who is assisting with the training. Behind them are Pilot Rick Douglas Husband (waving), and Mission Specialists Daniel Barry (M.D., Ph.D.) and Tamara E. Jernigan (Ph.D.) (waving). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. Tokarev is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  14. KSC-99pp0458

    NASA Image and Video Library

    1999-04-27

    While Capt. Steve Kelly, with Space Gateway Support, keeps watch from the top of the vehicle, STS-96 Pilot Rick Douglas Husband practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind them are (from left) Mission Specialist Daniel Barry (M.D., Ph.D.), Commander Kent V. Rominger and Mission Specialist Tamara E. Jernigan (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Mission Specialists Ellen Ochoa (Ph.D.), Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  15. KSC-99pp0454

    NASA Image and Video Library

    1999-04-27

    At right, STS-96 Mission Specialist Tamara E. Jernigan (Ph.D.) practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At left is Capt. Steve Kelly, with Space Gateway Support, who is assisting with the training. At the rear of the carrier are (left) Mission Specialist Julie Payette, with the Canadian Space Agency, and Commander Kent V. Rominger (right). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Daniel Barry (M.D., Ph.D.), and Valery Ivanovich Tokarev, who is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  16. KSC-99pp0455

    NASA Image and Video Library

    1999-04-27

    Under the guidance of Capt. Steve Kelly (left), with Space Gateway Support, STS-96 Mission Specialist Daniel Barry (right) practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At the rear of the carrier are Pilot Rick Douglas Husband and Mission Specialists Tamara E. Jernigan (Ph.D.) and Ellen Ochoa (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  17. KSC-99pp0456

    NASA Image and Video Library

    1999-04-27

    Capt. Steve Kelly (left), with Space Gateway Support, explains to STS-96 Mission Specialist Valery Ivanovich Tokarev the use of the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him are Commander Kent V. Rominger and Mission Specialist Ellen Ochoa (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), and Julie Payette, with the Canadian Space Agency. Tokarev is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  18. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., members of two Shuttle crews get a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). At left are STS-96 Mission Specialist Daniel T. Barry and Pilot Rick Douglas Husband. At center, STS-96 Mission Specialist Tamara E. Jernigan gives her attention to a technician with DaimlerChrysler while STS-101 Mission Specialist Edward Tsang Lu looks on. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  19. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., STS-96 Mission Specialists Tamara E. Jernigan and Daniel T. Barry take turns working with a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Technicians around the table observe. The STS-96 crew is taking part in a Crew Equipment Interface Test. Other members participating are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  20. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, Pilot Rick Douglas Husband, and Mission Specialist Julie Payette; next to them is STS-101 Mission Specialist Yuri Ivanovich Malenchenko, with the Russian Space Agency. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  1. Demographic modelling approach for assessment of environmental conditions which control the population of the invasive Ctenophore Mnemiopsis leidyi in the Mediterranean Seas.

    NASA Astrophysics Data System (ADS)

    Shiganova, Tamara; Nival, Paul; Carlotti, Francois; Alekseenko, Elena

    2017-04-01

    , demographic model (MBd) was validated for the Black Sea ecosystem basing on the unique database of long-term field data of ctenophores (including M.l. and B.o.), mesozooplankton, ichtyoplankton, bacteria in the Black Sea (1992-present). Then comparative analysis of the ecosystem conditions for the productive Black Sea and oligrotrophic areas of the north-western Mediterranean Sea favorable for M.l. blooms have been performed using the developed modelling approach. References : Ghabooli Sara, Shiganova Tamara A., Elizabeta Briski, Stefano Piraino, Veronica Fuentes, Delphine Thibault-Botha, Dror L. Angel, Melania E. Cristescu, Hugh J. MacIsaac (2013) Invasion pathway of the ctenophore Mnemiopsis leidyi in the Mediterranean Sea. PLOS ONE. Open Access PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e81067: DOI: 10.1371/journal.pone.0081067 Impact factor 3,534 Shiganova Tamara A., Louis Legendre, Alexander S. Kazmin, Paul Nival 2014. Interactions between invasive ctenophores in the Black Sea: assessment of control mechanisms based on long-term observations. Marine ecology Prog.Ser. Vol. 507: 111-123 doi: 10.3354/meps10806.

  2. The STS-96 crew takes part in a Crew Equipment Interface Test at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, the STS-96 crew (foreground) looks into the payload bay of the orbiter Discovery. Standing in the bucket in the foreground are (left to right) Mission Specialists Daniel Barry (M.D., Ph.D.), Valery Ivanovich Tokarev, and Tamara E. Jernigan (Ph.D.), with a KSC worker at the controls of the bucket. In the background (center) pointing is Mission Specialist Julie Payette. Tokarev represents the Russian Space Agency and Payette the Canadian Space Agency. They are at KSC for a Crew Equipment Interface Test. The other crew members participating in the test are Commander Kent V. Rominger, Pilot Rick Douglas Husband and Mission Specialist Ellen Ochoa (Ph.D.). The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  3. KSC-99pp0342

    NASA Image and Video Library

    1999-03-25

    Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-101 Mission Specialist Jeffrey N. Williams and Yuri Ivanovich Malenchenko, with the Russian Space Agency; STS-96 Mission Specialist Tamara E. Jernigan; STS-101 Mission Specialist Edward Tsang Lu (leaning over); a technician with RSC Energia of Korolev, Russia; Manfred Nordhoff, with DaimlerChrysler Aerospace; STS-96 Mission Specialist Daniel T. Barry; and another technician with RSC Energia. They are looking at components of the Russian cargo crane, Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace of Bremen and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  4. KSC-99pp0343

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., members of two Shuttle crews look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left are STS-96 Mission Specialist Julie Payette and Daniel T. Barry, Commander Kent V. Rominger and Mission Specialist Tamara E. Jernigan; three technicians from DaimlerChrysler Aerospace; (in the background, facing right) STS-101 Commander James Donald Halsell Jr.; STS-101 Mission Specialists Yuri Ivanovich Malenchenko, with the Russian Space Agency, and Edward Tsang Lu; and two more technicians from DaimlerChrysler. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  5. Infant feeding experiences of women who were sexually abused in childhood.

    PubMed

    Wood, Karen; Van Esterik, Penny

    2010-04-01

    To explore the effects of childhood sexual abuse (CSA) on women's breastfeeding and infant feeding decisions and experiences. Qualitative, participatory study using semistructured in-depth interviews. Tamara's House, a healing centre for women who were sexually abused in childhood, located in Saskatoon, Sask. Six mothers who were sexually abused in childhood. In-depth interviews were conducted and transcribed verbatim. Thematic analysis was iterative and participatory. The emerging themes that resulted from initial analysis by the researchers were presented at a meeting held jointly with academics, survivors, and professionals in the field to achieve consensus. Throughout the process, findings were considered in relation to related literature on breasts, breastfeeding, and CSA. History of CSA complicated the women's infant feeding decisions and experiences. For 2 women, birthing and breastfeeding facilitated healing from the effects of the abuse. Shame, touch, breasts, dissociation, medical care, and healing emerged as analytic themes. A history of CSA can affect a woman's experience of breastfeeding, including acting as a trigger for remembering or reexperiencing the abuse. Women who were sexually abused as children need to experience a sense of safety, acceptance, sensitivity, and understanding. Physicians need to be aware of the effects of CSA on infant feeding and women's health, and might need to be trained in a sensitive-practice approach to working with patients who were sexually abused as children.

  6. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  7. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (from left) STS-96 Mission Specialist Julie Payette, Pilot Rick Husband and Mission Specialist Ellen Ochoa learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  8. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (left to right) STS-96 Pilot Rick Husband and Mission Specialists Julie Payette and Ellen Ochoa work the straps on the Sequential Shunt Unit (SSU) in front of them. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for its upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  9. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (second from left) and Commander Kent Rominger learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. At the far left looking on is TTI interpreter Valentina Maydell. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Ellen Ochoa, Tamara Jernigan, Dan Barry and Julie Payette. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  10. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Tamara Jernigan checks over instructions while Mission Specialist Dan Barry looks up from the Sequential Shunt Unit (SSU) in front of him to other equipment Lynn Ashby (right), with Johnson Space Center, is pointing at. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  11. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (kneeling) STS-96 Mission Specialists Julie Payette and Ellen Ochoa, Pilot Rick Husband, and (standing at right) Mission Specialist Dan Barry. At the left is James Behling, with Boeing, explaining some of the equipment that will be on board STS-96. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  12. KSC-99pd0209

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  13. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-101 Mission Specialist Jeffrey N. Williams and Yuri Ivanovich Malenchenko, with the Russian Space Agency; STS-96 Mission Specialist Tamara E. Jernigan; STS-101 Mission Specialist Edward Tsang Lu (leaning over); a technician with RSC Energia of Korolev, Russia; Manfred Nordhoff, with DaimlerChrysler Aerospace; STS-96 Mission Specialist Daniel T. Barry; and another technician with RSC Energia. They are looking at components of the Russian cargo crane, Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace of Bremen and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  14. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., members of two Shuttle crews look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left are STS-96 Mission Specialist Julie Payette and Daniel T. Barry, Commander Kent V. Rominger and Mission Specialist Tamara E. Jernigan; three technicians from DaimlerChrysler Aerospace; (in the background, facing right) STS-101 Commander James Donald Halsell Jr.; STS-101 Mission Specialists Yuri Ivanovich Malenchenko, with the Russian Space Agency, and Edward Tsang Lu; and two more technicians from DaimlerChrysler. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  15. KSC-99pp0201

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (left) and Commander Kent Rominger (second from right) listen to Lynn Ashby (far right), with JSC, talking about the SPACEHAB equipment in front of them during a payload Interface Verification Test (IVT). In the background behind Tokarev is TTI interpreter Valentina Maydell. Other STS-96 crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Dan Barry, Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  16. KSC-99pd0214

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (second from left) and Commander Kent Rominger learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. At the far left looking on is TTI interpreter Valentina Maydell. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Ellen Ochoa, Tamara Jernigan, Dan Barry and Julie Payette. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  17. STS-80 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of STS-80, Cmdr. Kenneth D. Cockrell, Pilot Kent V. Rominger, Mission Specialists, Tamara E. Jernigan, Thomas D. Jones, and F. Story Musgrave are seen performing pre-launch activities such as eating the traditional breakfast, being suited-up, and riding out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including the countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters (SRB) from the shuttle. The crew completes the first major objective of the mission with the deployment of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) on the reusable Shuttle Pallet Satellite. The crew than begins final preparations for the release of Wake Shield. Jones powers up the shuttle's Canadian-built robot arm and grapples the satellite, while Jernigan powers up the Orbiter Space Vision System, which will be used to track precisely the Wake Shield's location. Cockrell places Columbia in a gravity gradient attitude to minimize disturbances during the release. Jones uses the robot arm to hold Wake Shield in position for a two-and-a-half hour cleansing by atomic oxygen molecules before moving the arm to the deploy position. The failure of the hatch to properly open causes the cancellation of all EVA's planned for this mission by Jernigan and Jones. The mission ends with the shuttle landing at the Kennedy Space Center.

  18. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  19. Prototype Development: Context-Driven Dynamic XML Ophthalmologic Data Capture Application.

    PubMed

    Peissig, Peggy; Schwei, Kelsey M; Kadolph, Christopher; Finamore, Joseph; Cancel, Efrain; McCarty, Catherine A; Okorie, Asha; Thomas, Kate L; Allen Pacheco, Jennifer; Pathak, Jyotishman; Ellis, Stephen B; Denny, Joshua C; Rasmussen, Luke V; Tromp, Gerard; Williams, Marc S; Vrabec, Tamara R; Brilliant, Murray H

    2017-09-13

    The capture and integration of structured ophthalmologic data into electronic health records (EHRs) has historically been a challenge. However, the importance of this activity for patient care and research is critical. The purpose of this study was to develop a prototype of a context-driven dynamic extensible markup language (XML) ophthalmologic data capture application for research and clinical care that could be easily integrated into an EHR system. Stakeholders in the medical, research, and informatics fields were interviewed and surveyed to determine data and system requirements for ophthalmologic data capture. On the basis of these requirements, an ophthalmology data capture application was developed to collect and store discrete data elements with important graphical information. The context-driven data entry application supports several features, including ink-over drawing capability for documenting eye abnormalities, context-based Web controls that guide data entry based on preestablished dependencies, and an adaptable database or XML schema that stores Web form specifications and allows for immediate changes in form layout or content. The application utilizes Web services to enable data integration with a variety of EHRs for retrieval and storage of patient data. This paper describes the development process used to create a context-driven dynamic XML data capture application for optometry and ophthalmology. The list of ophthalmologic data elements identified as important for care and research can be used as a baseline list for future ophthalmologic data collection activities. ©Peggy Peissig, Kelsey M Schwei, Christopher Kadolph, Joseph Finamore, Efrain Cancel, Catherine A McCarty, Asha Okorie, Kate L Thomas, Jennifer Allen Pacheco, Jyotishman Pathak, Stephen B Ellis, Joshua C Denny, Luke V Rasmussen, Gerard Tromp, Marc S Williams, Tamara R Vrabec, Murray H Brilliant. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.09.2017.

  20. DRIHM Project: Floods in Serbia in May 2014

    NASA Astrophysics Data System (ADS)

    Ivkovic, Marija; Dimitrijevic, Vladimir; Dekic, Ljiljana; Mihalovic, Ana; Pejanovic, Goran

    2015-04-01

    The central parts of Balkans were affected with very deep cyclone named "Tamara" form 13th until 16th of May. Stations in western parts of Serbia recorded precipitation four times greater than average precipitation sums. Two third of that amount has felt in three days. Devastating floods occurred on Sava, Kolubara and Jadar river basins causing damage of 1.7 billion Euros, and loss of 24 human lives. Three days before the event, a first warning was issued pointing that the precipitation amounts will exceed 40 mm of rain for 12 hours, accompanied with the hydrological information that the water level on Sava and Kolubara rivers will significantly rise. Within the DRIHM project and its e-infrastructure it was possible to test a combination of different Numerical Weather Prediction models together with stochastic downscaling algorithms to enable the production of more effective quantitative rainfall predictions for this severe meteorological event. Hydrometeorological models in DRIHM are building blocks that can be easily linked together in a form of hydrometeorological chain. For this case the HBV model, distributed hydrological model, was used as the hydrological component in the model chain and RainFARM as stochastic downscaling tool. Results obtained with these models are shown and compared with Hyprom, one of the hydrological models also used in RHMSS with the aim of scoping the current capabilities for the early warning of the extreme events. The information where and when the High Impact Weather Event (HIWE) can occur is very important for the proper overview of the possible overall influence. Different precipitation distribution both in space and in time is allowing us to estimate the future state of the system but also to see the range of the possible outcomes.

  1. Reliability of Self-Reported Mobile Phone Ownership in Rural North-Central Nigeria: Cross-Sectional Study.

    PubMed

    Menson, William Nii Ayitey; Olawepo, John Olajide; Bruno, Tamara; Gbadamosi, Semiu Olatunde; Nalda, Nannim Fazing; Anyebe, Victor; Ogidi, Amaka; Onoka, Chima; Oko, John Okpanachi; Ezeanolue, Echezona Edozie

    2018-03-01

    mHealth practitioners seek to leverage the ubiquity of the mobile phone to increase the impact and robustness of their interventions, particularly in resource-limited settings. However, data on the reliability of self-reported mobile phone access is minimal. We sought to ascertain the reliability of self-reported ownership of and access to mobile phones among a population of rural dwellers in north-central Nigeria. We contacted participants in a community-based HIV testing program by phone to determine actual as opposed to self-reported mobile phone access. A phone script was designed to conduct these calls and descriptive analyses conducted on the findings. We dialed 349 numbers: 110 (31.5%) were answered by participants who self-reported ownership of the mobile phone; 123 (35.2%) of the phone numbers did not ring at all; 28 (8.0%) rang but were not answered; and 88 (25.2%) were answered by someone other than the participant. We reached a higher proportion of male participants (68/133, 51.1%) than female participants (42/216, 19.4%; P<.001). Self-reported access to mobile phones in rural and low-income areas in north-central Nigeria is higher than actual access. This has implications for mHealth programming, particularly for women's health. mHealth program implementers and researchers need to be cognizant of the low reliability of self-reported mobile phone access. These observations should therefore affect sample-size calculations and, where possible, alternative means of reaching research participants and program beneficiaries should be established. ©William Nii Ayitey Menson, John Olajide Olawepo, Tamara Bruno, Semiu Olatunde Gbadamosi, Nannim Fazing Nalda, Victor Anyebe, Amaka Ogidi, Chima Onoka, John Okpanachi Oko, Echezona Edozie Ezeanolue. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 01.03.2018.

  2. Breast Cancer Screening in Morocco: Performance Indicators During Two Years of an Organized Programme.

    PubMed

    El Fakir, Samira; Najdi, Adil; Khazraji, Youssef Chami; Bennani, Maria; Belakhel, Latifa; Abousselham, Loubna; Lyoussi, Badiaa; Bekkali, Rachid; Nejjari, Chakib

    2015-01-01

    Breast cancer is commonly diagnosed at late stages in countries with limited resources. In Morocco, breast cancer is ranked the first female cancer (36.1%) and screening methods could reduce the proportion presenting with a late diagnosis. Morocco is currently adopting a breast cancer screening program based on clinical examination at primary health facilities, diagnosis at secondary level and treatment at tertiary level. So far, there is no systematic information on the performance of the screening program for breast cancer in Morocco. The aim of this study was to analyze early performance indicators. A retrospective evaluative study conducted in Temara city. The target population was the entire female population aged between 45-70 years. The study was based on process and performance indicators collected at the individual level from the various health structures in Tamara between 2009 and 2011. A total of 2,350 women participated in the screening program; the participation rate was 35.7%. Of these, 76.8% (1,806) were married and 5.2% (106) of this group had a family history of breast cancer. Of the women who attended screening, 9.3% (190) were found to have an abnormal physical examination findings. A total of 260 (12.7%) were referred for a specialist consultation. The positive predictive value of clinical breast examination versus mammography was 23.0%. Forty four (35.5%) of the lesions found on the mammograms were classified as BI-RADs 3; 4 or 5 category. Cancer was found in 4 (1.95%) of the total number of screened women and benign cases represented 0.58%. These first results of the programme are very encouraging, but there is a need to closely monitor performance and to improve programme procedures with the aim of increasing both the participation rate and the proportion of women eligible to attend screening.

  3. Are Strong Zonal Winds in Giant Planets Caused by Density-Stratification?

    NASA Astrophysics Data System (ADS)

    Verhoeven, J.; Stellmach, S.

    2012-12-01

    suggested mechanisms for driving differential rotation. Gary A. Glatzmaier, Martha Evonuk and Tamara M. Rogers (2009), Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophysical and Astrophysical Fluid Dynamics, Vol. 103, No. 1, 31-51.

  4. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling

    NASA Technical Reports Server (NTRS)

    Bilitza Dieter; Reinisch, Bodo

    2010-01-01

    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  5. STS-96 Mission Highlights. Part 2

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this second part of a three-part video mission-highlights set, on-orbit spacecrew activities performed on the STS-96 Space Shuttle Orbiter Discovery and the International Space Station are reviewed. The flight crew consists of Kent V. Rominger, Commander; Rick D. Husband, Pilot; and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette (Canadian), and Valery Ivanovich Tokarev (Russian). The primary goals of this mission were to work on logistics and resupply the International Space Station. This second part in the mission series features video from Flight Day 4-7 (FD 4-7). FD 4 of STS-96 presents astronauts Tammy Jernigan and Dan Barry completing the second longest space walk in shuttle history. Footage includes Jernigan and Barry transferring and installing two cranes from the shuttle's payload bay to locations on the outside of the station. The astronauts enter the International Space Station delivering supplies and prepare the outpost to receive its first resident crew, scheduled to arrive in early 2000 on FD 5. The video also captures the crew involved in logistics transfer activities within the Discovery/ISS orbiting complex. FD 6 includes footage of Valery Tokarev and Canadian astronaut Julie Payette charging out the final six battery recharge controller units for two of Zarya's power-producing batteries and all crew members' involvement in logistics transfer activities from the SPACEHAB module to designated locations in the International Space Station. With the transfer work of FD 6 all but complete, the astronauts conduct some additional work, installing parts of a wireless strain gauge system that will help engineers track the effects of adding modules to the station throughout its assembly. Moving the few remaining items from Discovery to the ISS, then closing a series of hatches within the station's modules leading back to the shuttle are the primary activities contained in FD 7. Final coverage features Discovery

  6. Development of a Web-Accessible Population Pharmacokinetic Service-Hemophilia (WAPPS-Hemo): Study Protocol.

    PubMed

    Iorio, Alfonso; Keepanasseril, Arun; Foster, Gary; Navarro-Ruan, Tamara; McEneny-King, Alanna; Edginton, Andrea N; Thabane, Lehana

    2016-12-15

    2.4), with core functionalities allowing hemophilia treaters to obtain individual pharmacokinetic estimates on sparse data points after 1 or more infusions of a factor concentrate, was launched for use within the research network in July 2015. The WAPPS-Hemo project and research network aims to make it easier to perform individual pharmacokinetic assessments on a reduced number of plasma samples by adoption of a population pharmacokinetics approach. The project will also gather data to substantially enhance the current knowledge about factor concentrate pharmacokinetics and sources of its variability in target populations. ClinicalTrials.gov NCT02061072; https://clinicaltrials.gov/ct2/show/NCT02061072 (Archived by WebCite at http://www.webcitation.org/6mRK9bKP6). ©Alfonso Iorio, Arun Keepanasseril, Gary Foster, Tamara Navarro-Ruan, Alanna McEneny-King, Andrea N Edginton, Lehana Thabane. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 15.12.2016.

  7. An mHealth Pain Coping Skills Training Intervention for Hematopoietic Stem Cell Transplantation Patients: Development and Pilot Randomized Controlled Trial.

    PubMed

    Somers, Tamara J; Kelleher, Sarah A; Dorfman, Caroline S; Shelby, Rebecca A; Fisher, Hannah M; Rowe Nichols, Krista; Sullivan, Keith M; Chao, Nelson J; Samsa, Gregory P; Abernethy, Amy P; Keefe, Francis J

    2018-03-19

    ) were randomized to receive the mPCST intervention or to proceed with the treatment as usual. Results revealed that the mPCST participants completed an average of 5 out of 6 sessions. The participants reported that the intervention was highly acceptable (mean 3/4), and they found the sessions to be helpful (mean 8/10) and easy to understand (mean 7/7). The mPCST participants demonstrated significant improvements in pre- to post-treatment pain, self-efficacy (P=.03, d=0.61), and on the 2MWT (P=.03, d=0.66), whereas the patients in the treatment-as-usual group did not report any such improvements. Significant changes in pain disability and fatigue were found in both groups (multiple P<.02); the magnitudes of the effect sizes were larger for the mPCST group than for the control group (pain disability: d=0.79 vs 0.69; fatigue: d=0.94 vs 0.81). There were no significant changes in pain severity in either group. Using focus groups and user testing, we developed an mPCST protocol that was feasible, acceptable, and beneficial for HCT patients with pain. ClinicalTrials.gov NCT01984671; https://clinicaltrials.gov/ct2/show/NCT01984671 (Archived by WebCite at http://www.webcitation.org/6xbpx3clZ). ©Tamara J Somers, Sarah A Kelleher, Caroline S Dorfman, Rebecca A Shelby, Hannah M Fisher, Krista Rowe Nichols, Keith M Sullivan, Nelson J Chao, Gregory P Samsa, Amy P Abernethy, Francis J Keefe. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 19.03.2018.

  8. St. Patrick's Day 2015 geomagnetic storm analysis based on Real Time Ionosphere Monitoring

    NASA Astrophysics Data System (ADS)

    García-Rigo, Alberto

    2017-04-01

    Alberto García-Rigo (1), David Roma-Dollase (2), Manuel Hernández-Pajares (1), Zishen Li (3), Michael Terkildsen (4), German Olivares (4), Reza Ghoddousi-Fard (5), Denise Dettmering (6), Eren Erdogan (6), Haris Haralambous (7), Yannick Béniguel (8), Jens Berdermann (9), Martin Kriegel (9), Anna Krypiak-Gregorczyk (10), Tamara Gulyaeva (11), Attila Komjathy (12), Panagiotis Vergados (12), Joachim Feltens (13,19), René Zandbergen (13), Tim Fuller-Rowell (14), David Altadill (15), Nicolas Bergeot (16), Andrzej Krankowski (17), Loukis Agrotis (18), Ivan Galkin (20), Raul Orus-Perez (21) 1. UPC-IonSAT research group, Technical University of Catalonia, Spain 2. Department of Engineering: Electronics, University of Barcelona (UB), Spain 3. Academy of Opto-Electronics, Chinese Academy of Sciences (CAS), China 4. Bureau of Meteorology, Space Weather Services, Australia 5. Canadian Geodetic Survey, Natural Resources Canada (NRCan) / Government of Canada, Canada 6. Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Germany 7. Frederick University Cyprus, Cyprus 8. IEEA, France 9. Institute of Communications and Navigation, DLR, Germany 10. Institute of Geodesy, UWM, Poland 11. Institute of Terrestrial Magnetism, ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Russia 12. NASA - Jet Propulsion Laboratory (JPL), California Institute of Technology, USA 13. Navigation Support Office, ESA-ESOC, Germany 14. NOAA affiliate, USA 15. Observatori de l'Ebre (OE), CSIC - Universitat Ramon Llull, 43520 Roquetes, Spain 16. Planetology and Reference Systems, Royal Observatory of Belgium (ROB), Belgium 17. Space Radio-Diagnostics Research Centre, UWM (SRRC/UWM), Poland 18. SYMBAN Limited, ESA-ESOC, Germany 19. Telespazio VEGA Deutschland GmbH c/o ESA-ESOC, Germany 20. University of Massachusetts Lowell, Space Science Lab, USA 21. Wave Interaction and Propagation Section (TEC-EEP), ESA-ESTEC, The Netherlands IAG's Real Time

  9. Verochka Zingan or recollections from the Physics Department of the Moscow University

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    The author recollects his studentship during 70-th years at the Physics Department of the Moscow University. He was graduated from the theoretical Physics Department in 1977. The Rectors of the University that times were I.G. Petrovskii, R.V. Khokhlov and A.A. Logunov. The dean of the Physics Department was V.S. Fursov. As a particular event a meet with the former prime-minister of the USSR A.N. Kosygin is reported. Between professors mentioned throughout the recollections are A.I.Kitaigorodskii, Ya. B. Zel'dovich, D.D. Ivanenko, A.A. Sokolov, A.A. Vlasov, V.B. Braginsky, I.M. Ternov, L.A. Artsimovich, E.P. Velikhov and other, including that which became University professors later. A great number of colleagues from the Physics, Chemistry, Phylological and Historical Departments of the Moscow University are mentioned. Particularly, the students which entered the group 113 in 1971 and finished the group 601 in 1977 are listed. The recollections include 5 parts. Persons cited throughout the paper: A.N. Kosygin, A.S. Golovin, V. Kostyukevich, I.M. Ternov, E.G. Pozdnyak, A. N. Matveev, V.P. Elyutin, V.V. Kerzhentsev, 113 academic group (1971), V. Topala, E.A. Marinchuk, P.Paduraru, A.I. Kitaygorodski, A. Leahu, S. Berzan, B. Ursu, I. Coanda (Koade), M. Stefanovici, O. Bulgaru, A. Iurie-Apostol, A.S. Davydov, M.I. Kaganov, I.M. Lifshitz, Ya. B. Zel'dovich, A.Zhukov, A.I. Buzdin, N.S. Perov, V. Dolgov, P. Vabishchevich, A.A. Samarskii, V. Makarov, Irina Kamenskih, A.A. Arsen'ev, L.A. Artsimovich, A.A. Tyapkin, B.M. Pontecorvo, D.I. Blokhintsev, I.G. Petrovskii, R.V. Khokhlov, V.N. Rudenko, A.A. Sokolov, D.D. Ivanenko (Iwanenko), A.A. Vlasov, V.N. Ponomarev, N.N. Bogolyubov, N.N. Bogolyubov (Jr), V.Ch. Zhukovskii, Tamara Tarasova, Zarina Radzhabova (Malovekova), V.Malovekov, Tatiana Shmeleva, Alexandra C.Nicolescu, Tatiana Nicolescu, Rano Mahkamova, Miriam Yandieva, Natalia Germaniuk (Grigor'eva), E. Grigor'ev, A. Putro, Elena Nikiforova, B. Kostrykin, Galia Laufer, K

  10. The Dark Side of Nature: the Crime was Almost Perfect

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Astrofisico di Arcetri, Italy), Guido Chincarini (INAF, Osservatorio Astronomico di Brera & Università degli Studi di Milano-Bicocca, Italy), Nino Panagia (Space Telescope Science Institute, USA), Gianpiero Tagliaferri, Dino Fugazza, Sergio Campana, Stefano Covino, and Paolo D'Avanzo (INAF, Osservatorio Astronomico di Brera, Italy), Daniele Malesani (SISSA/ISAS, Italy and Dark Cosmology Centre, Copenhagen), Vincenzo Testa, L. Angelo Antonelli, Silvia Piranomonte, and Luigi Stella (INAF, Osservatorio Astronomico di Roma, Italy), Vanessa Mangano (INAF/IASF Palermo, Italy), Kevin Hurley (University of California, Berkeley, USA), I. Felix Mirabel (ESO), and Leonardo J. Pellizza (Instituto de Astronomia y Fisica del Espacio). The Danish-led team is composed of Johan P. U. Fynbo, Darach Watson, Christina C. Thöne, Tamara M. Davis, Jens Hjorth, José Mará Castro Cerón, Brian L. Jensen, Maximilian D. Stritzinger, and Dong Xu (Dark Cosmology Centre, University of Copenhagen, Denmark), Jesper Sollerman (Dark Cosmology Centre and Department of Astronomy, Stockholm University, Sweden), Uffe G. Jørgensen, Tobias C. Hinse, and Kristian G. Woller (Niels Bohr Institute, University of Copenhagen), Joshua S. Bloom, Daniel Kocevski, Daniel Perley (Department of Astronomy, University of California at Berkeley, USA), Páll Jakobsson (Centre for Astrophysics Research, University of Hertfordshire, UK), John F. Graham and Andrew S. Fruchter (Space Telescope Science Institute, Baltimore, USA), David Bersier (Astrophysics Research Institute, Liverpool John Moores University, UK), Lisa Kewley (University of Hawaii, Institute of Astronomy, USA), Arnaud Cassan and Marta Zub (Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Germany), Suzanne Foley (School of Physics, University College Dublin, Ireland), Javier Gorosabel (Instituto de Astrofisica de Andalucia, Granada, Spain), Keith D. Horne (SUPA Physics/Astronomy, University of St Andrews, Scotland, UK), Sylvio