Science.gov

Sample records for tandem kappab enhancer

  1. Crystal Structure of NFAT Bound to the HIV-1 LTR Tandem κB Enhancer Element

    SciTech Connect

    Bates, Darren L.; Barthel, Kristen K.B.; Wu, Yongqing; Kalhor, Reza; Stroud, James C.; Giffin, Michael J.; Chen, Lin

    2008-05-27

    Here, we have determined the crystal structure of the DNA binding domain of NFAT bound to the HIV-1 long terminal repeat (LTR) tandem {kappa}B enhancer element of 3.05 {angstrom} resolution. NFAT binds as a dimer to the upstream {kappa}B site (Core II), but as a monomer to the 3' end of the downstream {kappa}B site (Core I). The DNA shows a significant bend near the 5' end of Core I, where a lysine residue from NFAT bound to the 3' end of Core II inserts into the minor groove and seems to cause DNA bases to flip out. Consistent with this structural feature, the 5' end of Core I become hypersensitive to dimethylsulfate in the in vivo footprinting upon transcriptional activation of the HIV-1 LTR. Our studies provide a basis for futher investigating the functional mechanism of NFAT in HIV-1 transcription and replication.

  2. Improved micromorph tandem cell performance through enhanced top cell currents

    SciTech Connect

    Platz, R.; Vaucher, N.P.; Fischer, D.; Meier, J.; Shah, A.

    1997-12-31

    Two approaches to increasing the current in the amorphous silicon top cell of an amorphous silicon/microcrystalline silicon (a-Si:H/{micro}c-Si:H) tandem cell are presented. The goal is to raise the stabilized efficiency of such cells. The deposition of the amorphous top cell at higher than standard substrate temperature is shown to reduce the optical gap of the i-layer and to increase the current which is generated with a given i-layer thickness. Furthermore, a selectively reflecting ZnO interface layer between the component cells is presented as a viable tool for enhancing the current generation in the top cell by selective reflection of light. The authors present a micromorph tandem cell containing the amorphous top cell deposited at high substrate temperature, and additionally the ZnO mirror layer. A top cell thickness of 150 nm is shown to be sufficient to provide a current density of 13mA/cm{sup 2} in the top cell. Finally, the influence of such thin top cells on the stabilized efficiency of the tandem cell is investigated by experiment and by means of semi-empirical modeling. Model and experiment confirm that such reduced-gap top cells, together with current enhancement due to the mirror layer, have a high potential for improving the stabilized efficiency of micromorph tandem cells.

  3. Tandem shock waves to enhance genetic transformation of Aspergillus niger.

    PubMed

    Loske, Achim M; Fernández, Francisco; Magaña-Ortíz, Denis; Coconi-Linares, Nancy; Ortíz-Vázquez, Elizabeth; Gómez-Lim, Miguel A

    2014-08-01

    Filamentous fungi are used in several industries and in academia to produce antibiotics, metabolites, proteins and pharmaceutical compounds. The development of valuable strains usually requires the insertion of recombinant deoxyribonucleic acid; however, the protocols to transfer DNA to fungal cells are highly inefficient. Recently, underwater shock waves were successfully used to genetically transform filamentous fungi. The purpose of this research was to demonstrate that the efficiency of transformation can be improved significantly by enhancing acoustic cavitation using tandem (dual-pulse) shock waves. Results revealed that tandem pressure pulses, generated at a delay of 300 μs, increased the transformation efficiency of Aspergillus niger up to 84% in comparison with conventional (single-pulse) shock waves. This methodology may also be useful to obtain new strains required in basic research and biotechnology. PMID:24680880

  4. Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cai, Boyuan; Li, Xiangping; Zhang, Yinan; Jia, Baohua

    2016-05-01

    Enhancing the light absorption in microcrystalline silicon bottom cell of a silicon-based tandem solar cell for photocurrent matching holds the key to achieving the overall solar cell performance breakthroughs. Here, we present a concept for significantly improving the absorption of both subcells simultaneously by simply applying tailored metallic nanoparticles both on the top and at the rear surfaces of the solar cells. Significant light absorption enhancement as large as 56% has been achieved in the bottom subcells. More importantly the thickness of the microcrystalline layer can be reduced by 57% without compromising the optical performance of the tandem solar cell, providing a cost-effective strategy for high performance tandem solar cells.

  5. Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles.

    PubMed

    Cai, Boyuan; Li, Xiangping; Zhang, Yinan; Jia, Baohua

    2016-05-13

    Enhancing the light absorption in microcrystalline silicon bottom cell of a silicon-based tandem solar cell for photocurrent matching holds the key to achieving the overall solar cell performance breakthroughs. Here, we present a concept for significantly improving the absorption of both subcells simultaneously by simply applying tailored metallic nanoparticles both on the top and at the rear surfaces of the solar cells. Significant light absorption enhancement as large as 56% has been achieved in the bottom subcells. More importantly the thickness of the microcrystalline layer can be reduced by 57% without compromising the optical performance of the tandem solar cell, providing a cost-effective strategy for high performance tandem solar cells. PMID:27040376

  6. Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode.

    PubMed

    Zhang, Xuanru; Huang, Qiuping; Hu, Jigang; Knize, Randy J; Lu, Yalin

    2014-10-20

    A metallic hole-array structure was inserted into a tandem solar cell structure as an intermediate electrode, which allows a further fabrication of a novel and efficient hybrid organic-inorganic tandem solar cell. The inserted hole-array layer reflects the higher-energy photons back to the top cell, and transmits lower-energy photons to the bottom cell via the extraordinary optical transmission (EOT) effect. In this case light absorption in both top and bottom subcells can be simultaneously enhanced via both structural and material optimizations. Importantly, this new design could remove the constraints of requiring lattice-matching and current-matching between the used two cascaded subcells in a conventional tandem cell structure, and therefore, the tunnel junction could be no longer required. As an example, a novel PCBM/CIGS tandem cell was designed and investigated. A systematic modeling study was made on the structural parameter tuning, with the period ranging from a few hundreds nanometers to over one micrometer. Surface plasmon polaritons, magnetic plasmon polaritons, localized surface plasmons, and optical waveguide modes were found to participate in the EOT and the light absorption enhancement. Impressively, more than 40% integrated power enhancement can be achieved in a variable structural parameter range. PMID:25607297

  7. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy.

    PubMed

    Loske, Achim M; Prieto, Fernando E; Fernandez, Francisco; van Cauwelaert, Javier

    2002-11-21

    Extracorporeal shock wave lithotripsy (ESWL) has been successful for more than twenty years in treating patients with kidney stones. Hundreds of underwater shock waves are generated outside the patient's body and focused on the kidney stone. Stones fracture mainly due to spalling, cavitation and layer separation. Cavitation bubbles are produced in the vicinity of the stone by the tensile phase of each shock wave. Bubbles expand, stabilize and finally collapse violently, creating stone-damaging secondary shock waves and microjets. Bubble collapse can be intensified by sending a second shock wave a few hundred microseconds after the first. A novel method of generating two piezoelectrically generated shock waves with an adjustable time delay between 50 and 950 micros is described and tested. The objective is to enhance cavitation-induced damage to kidney stones during ESWL in order to reduce treatment time. In vitro kidney stone model fragmentation efficiency and pressure measurements were compared with those for a standard ESWL system. Results indicate that fragmentation efficiency was significantly enhanced at a shock wave delay of about 400 and 250 micros using rectangular and spherical stone phantoms, respectively. The system presented here could be installed in clinical devices at relatively low cost, without the need for a second shock wave generator. PMID:12476975

  8. Ozone enhances diesel exhaust particles (DEP)-induced interleukin-8 (IL-8) gene expression in human airway epithelial cells through activation of nuclear factors- kappaB (NF-kappaB) and IL-6 (NF-IL6).

    PubMed

    Kafoury, Ramzi M; Kelley, James

    2005-12-01

    Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals. Furthermore, epidemiological evidence has indicated that exposure to particulate matter (PM[2.5-10]), including diesel exhaust particles (DEP) has been correlated with increased acute and chronic respiratory morbidity and exacerbation of asthma. Previously, exposure to ozone or particulate matter and their effect on the lung have been addressed as separate environmental problems. Ozone and particulate matter may be chemically coupled in the ambient air. In the present study we determined whether ozone exposure enhances DEP effect on interleukin-8 (IL-8) gene expression in human airway epithelial cells. We report that ozone exposure (0.5 ppm x 1 hr) significantly increased DEP-induced IL-8 gene expression in A549 cells (117 +/- 19 pg/ml, n = 6, p < 0.05) as compared to cultures treated with DEP (100 microg/ml x 4 hr) alone (31 +/- 3 pg/ml, n = 6), or cultures exposed to purified air (24 +/- 6 pg/ml, n = 6). The increased DEP-induced IL-8 gene expression following ozone exposure was attributed to ozone-induced increase in the activity of the transcription factors NF-kappaB and NF-IL6. The results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung. PMID:16819095

  9. Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells.

    PubMed

    Bielawny, Andreas; Rockstuhl, Carsten; Lederer, Falk; Wehrspohn, Ralf B

    2009-05-11

    We have investigated the impact of three types of intermediate reflectors on the absorption enhancement in the top cell of micromorph tandem solar cells using rigorous diffraction theory. As intermediate reflectors we consider homogenous dielectric thin-films and 1D and 3D photonic crystals. Besides the expected absorption enhancements in cases where photonic band gaps are matched to the absorption edge of the semiconductor, our results distinguish between the impact of zero order Bragg-resonances and diffraction-based enhancement at larger lattice constants of the 3D photonic crystal. Our full-spectrum analysis permits for a quantitative prediction of the photovoltaic conversion efficiency increase of the a-Si:H top cell. PMID:19434178

  10. Thrust Enhancement of Flapping Wings in Tandem and Biplane Configurations by Pure Plunging Motion

    NASA Astrophysics Data System (ADS)

    Yilmaz, S. Banu; Sahin, Mehmet; Unal, M. Fevzi

    2012-11-01

    The propulsion performance of flapping NACA0012 airfoils undergoing harmonic plunging motion in tandem and biplane wing configurations is investigated numerically. An unstructured finite volume solver based on Arbitrary Lagrangian-Eulerian formulation is utilized in order to solve the incompressible unsteady Navier-Stokes equations. Four different tandem and four different biplane wing combinations are considered. Various instantaneous and time-averaged aerodynamic parameters including lift and drag coefficients, vorticity contours and streamlines are calculated for each case and compared with each other. As a reference the single wing case corresponding to the deflected jet phenomenon in Jones and Platzer (Exp. Fluids 46:799-810, 2009) is also studied. In these simulations, the Reynolds number is chosen as 252, the reduced frequency of plunging motion (k = 2 πf /U∞) is 12.3 and the plunge amplitude non-dimensionalized with respect to chord is 0.12. The solutions of the single wing case indicate dependence on the location of start-up vortices. Meanwhile the multiple wing configurations indicate that the highest thrust enhancement is obtained in one of the biplane cases where the two wings closely moving towards each other namely biplane asynchronous-closer case.

  11. Two structurally distinct {kappa}B sequence motifs cooperatively control LPS-induced KC gene transcription in mouse macrophages

    SciTech Connect

    Ohmori, Y.; Fukumoto, S.; Hamilton, T.A.

    1995-10-01

    The mouse KC gene is an {alpha}-chemokine gene whose transcription is induced in mononuclear phagocytes by LPS. DNA sequences necessary for transcriptional control of KC by LPS were identified in the region flanking the transcription start site. Transient transfection analysis in macrophages using deletion mutants of a 1.5-kb sequence placed in front of the chloramphenicol acetyl transferase (CAT) gene identified an LPS-responsive region between residues -104 and +30. This region contained two {kappa}B sequence motifs. The first motif (position -70 to -59, {kappa}B1) is highly conserved in all three human GRO genes and in the mouse macrophage inflammatory protein-2 (MIP-2) gene. The second {kappa}B motif (position -89 to -78, {kappa}B2) was conserved only between the mouse and the rat KC genes. Consistent with previous reports, the highly conserved {kappa}B site ({kappa}B1) was essential for LPS inducibility. Surprisingly, the distal {kappa}B site ({kappa}B2) was also necessary for optimal response; mutation of either {kappa}B site markedly reduced sensitivity to LPS in RAW264.7 cells and to TNF-{alpha} in NIH 3T3 fibroblasts. Although both {kappa}B1 and {kappa}B2 sequences were able to bind members of the Rel homology family, including NF{kappa}B1 (P50), RelA (65), and c-Rel, the {kappa}B1 site bound these factors with higher affinity and functioned more effectively than the {kappa}B2 site in a heterologous promoter. These findings demonstrate that transcriptional control of the KC gene requires cooperation between two {kappa}B sites and is thus distinct from that of the three human GRO genes and the mouse MIP-2 gene. 71 refs., 8 figs.

  12. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    SciTech Connect

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  13. Performance enhancement of existing two-stage sounding rocket vehicles through the use of tandem booster systems

    NASA Technical Reports Server (NTRS)

    Flores, C. C.; Gurkin, L. W.

    1982-01-01

    The three-stage Taurus-Nike-Tomahawk launch vehicle is being considered for performance enhancement of the existing Taurus-Tomahawk flight system. In addition, performance enhancement of other existing two-stage launch vehicles is being considered through the use of tandem booster systems. Aeroballistic characteristics of the proposed Taurus-Nike-Tomahawk vehicle are presented, as are overall performance capabilities of other potential three-stage flight systems.

  14. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells.

    PubMed

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-01-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells. PMID:27453530

  15. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    PubMed Central

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-01-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells. PMID:27453530

  16. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    NASA Astrophysics Data System (ADS)

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-07-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells.

  17. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  18. Design of a tandem distributed Bragg reflectors specialized for enhancing the efficiency of GaN-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Ji, Qingbin; Zong, Hua; Yan, Tongxing; Li, Junchao; Wei, Tiantian; Hu, Xiaodong

    2016-09-01

    We design a type of "tandem distributed Bragg reflector (DBR)" that shows advantages over normal DBR in ultraviolet region. We apply a tandem DBR centered at 390 nm to a resonant cavity light emitting diodes model, consequently enhancing the extraction efficiency without detuning the cavity while narrowing the spectral width of the emitted light. The extraction efficiency into a numerical aperture exhibits a 36% increase compared to that of the normal structure. We further demonstrate the potential that the tandem DBRs (centered at 343 nm and 246 nm respectively) have for enhancing the efficiency in GaN-based deep UV device.

  19. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R

  20. Performance enhancement in a-Si:H/μc-Si:H tandem solar cells with periodic microstructured surfaces.

    PubMed

    Shen, Xiangqian; Wang, Qingkang; Wangyang, Peihua; Huang, Kun; Chen, Le; Liu, Daiming

    2015-04-01

    Here we report on an efficient light-coupling scheme with a periodic microstructured surface to enhance the performance of thin film silicon solar cells. The centerpiece of the surface structure is the hemispherical pit arrays (HPAs), which are fabricated using an inexpensive and scalable process. The integration of HPAs into micromorph tandem thin film silicon solar cells leads to superior broadband reflection suppression properties. With this design, the reflection losses of the tandem cell are reduced to only 1.5%. We demonstrate an efficiency increase from 11.67% to 12.23% compared to a conventional cell with a flat surface, with a 4.6% increase in short circuit current density. The surface microstructures reported here can be applied to a variety of photovoltaic devices to further improve their performance. PMID:25831315

  1. Engineering tandem single-chain Fv as cell surface reporters with enhanced properties of fluorescence detection.

    PubMed

    Gallo, Eugenio; Snyder, Avin C; Jarvik, Jonathan W

    2015-10-01

    A recently described fluorescence biosensor platform utilizes single-chain Fv (scFvs) that selectively bind and activate fluorogen molecules. In this report we investigated the display of tandem scFv biosensors at the surface of mammalian cells with the aim of advancing current fluorescence detection strategies. We initially screened different peptide linkers to separate each scFv unit, and discovered that tandem proteins joined by either flexible or α-helical linkers properly fold and display at the surface of mammalian cells. Accordingly, we performed a combinatorial scFv-dimer study and identified that fluorescence activation correlated with the cellular location (membrane distal versus proximal) and selections of the different scFvs. Furthermore, in vitro measurements showed that the stability of each scFv monomer unit influenced the folding and cell surface activities of tandem scFvs. Additionally, we investigated the absence or poor signals from some scFv-dimer combinations and discovered that intramolecular and intermolecular scFv chain mispairings led to protein misfolding and/or secretory-pathway-mediated degradation. Furthermore, when tandem scFvs were utilized as fluorescence reporter tags with surface receptors, the biosensor unit and target protein showed independent activities. Thus, the live cell application of tandem scFvs permitted advanced detection of target proteins via fluorescence signal amplification, Förster resonance energy transfer resulting in the increase of Stokes shift and multi-color vesicular traffic of surface receptors. PMID:25843939

  2. Ion mobility tandem mass spectrometry enhances performance of bottom-up proteomics.

    PubMed

    Helm, Dominic; Vissers, Johannes P C; Hughes, Christopher J; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I; Kuster, Bernhard

    2014-12-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A. PMID:25106551

  3. Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up Proteomics

    PubMed Central

    Helm, Dominic; Vissers, Johannes P. C.; Hughes, Christopher J.; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K.; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I.; Kuster, Bernhard

    2014-01-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A. PMID:25106551

  4. Enhanced absorption in tandem solar cells by applying hydrogenated In2O3 as electrode

    NASA Astrophysics Data System (ADS)

    Yin, Guanchao; Steigert, Alexander; Manley, Phillip; Klenk, Reiner; Schmid, Martina

    2015-11-01

    To realize the high efficiency potential of perovskite/chalcopyrite tandem solar cells in modules, hydrogenated In2O3 (IO:H) as electrode is investigated. IO:H with an electron mobility of 100 cm2 V-1 s-1 is demonstrated. Compared to the conventional Sn doped In2O3 (ITO), IO:H exhibits a decreased electron concentration and leads to almost no sub-bandgap absorption up to the wavelength of 1200 nm. Without a trade-off between transparency and lateral resistance in the IO:H electrode, the tandem cell keeps increasing in efficiency as the IO:H thickness increases and efficiencies above 22% are calculated. In contrast, the cells with ITO as electrode perform much worse due to the severe parasitic absorption in ITO. This indicates that IO:H has the potential to lead to high efficiencies, which is otherwise constrained by the parasitic absorption in conventional transparent conductive oxide electrode for tandem solar cells in modules.

  5. Tandem repeated application of organic solvents and sodium lauryl sulphate enhances cumulative skin irritation.

    PubMed

    Schliemann, Sibylle; Schmidt, Christina; Elsner, Peter

    2014-01-01

    The objective of our study was to investigate the tandem irritation potential of two organic solvents with concurrent exposure to the hydrophilic detergent irritant sodium lauryl sulphate (SLS). A tandem repeated irritation test was performed with two undiluted organic solvents, cumene (C) and octane (O), with either alternating application with SLS 0.5% or twice daily application of each irritant alone in 27 volunteers on the skin of the back. The cumulative irritation induced over 4 days was quantified using visual scoring and non-invasive bioengineering measurements (skin colour reflectance, skin hydration and transepidermal water loss). Repeated application of C/SLS and O/SLS induced more decline of stratum corneum hydration and higher degrees of clinical irritation and erythema compared to each irritant alone. Our results demonstrate a further example of additive harmful skin effects induced by particular skin irritants and indicate that exposure to organic solvents together with detergents may increase the risk of acquiring occupational contact dermatitis. PMID:24457469

  6. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode

    NASA Astrophysics Data System (ADS)

    Abdi, Fatwa F.; Han, Lihao; Smets, Arno H. M.; Zeman, Miro; Dam, Bernard; van de Krol, Roel

    2013-07-01

    Metal oxides are generally very stable in aqueous solutions and cheap, but their photochemical activity is usually limited by poor charge carrier separation. Here we show that this problem can be solved by introducing a gradient dopant concentration in the metal oxide film, thereby creating a distributed n+-n homojunction. This concept is demonstrated with a low-cost, spray-deposited and non-porous tungsten-doped bismuth vanadate photoanode in which carrier-separation efficiencies of up to 80% are achieved. By combining this state-of-the-art photoanode with an earth-abundant cobalt phosphate water-oxidation catalyst and a double- or single-junction amorphous Si solar cell in a tandem configuration, stable short-circuit water-splitting photocurrents of ~4 and 3 mA cm-2, respectively, are achieved under 1 sun illumination. The 4 mA cm-2 photocurrent corresponds to a solar-to-hydrogen efficiency of 4.9%, which is the highest efficiency yet reported for a stand-alone water-splitting device based on a metal oxide photoanode.

  7. Enhanced Purification of Ubiquitinated Proteins by Engineered Tandem Hybrid Ubiquitin-binding Domains (ThUBDs).

    PubMed

    Gao, Yuan; Li, Yanchang; Zhang, Chengpu; Zhao, Mingzhi; Deng, Chen; Lan, Qiuyan; Liu, Zexian; Su, Na; Wang, Jingwei; Xu, Feng; Xu, Yongru; Ping, Lingyan; Chang, Lei; Gao, Huiying; Wu, Junzhu; Xue, Yu; Deng, Zixin; Peng, Junmin; Xu, Ping

    2016-04-01

    Ubiquitination is one of the most common post-translational modifications, regulating protein stability and function. However, the proteome-wide profiling of ubiquitinated proteins remains challenging due to their low abundance in cells. In this study, we systematically evaluated the affinity of ubiquitin-binding domains (UBDs) to different types of ubiquitin chains. By selecting UBDs with high affinity and evaluating various UBD combinations with different lengths and types, we constructed two artificial tandem hybrid UBDs (ThUBDs), including four UBDs made of DSK2p-derived ubiquitin-associated (UBA) and ubiquilin 2-derived UBA (ThUDQ2) and of DSK2p-derived UBA and RABGEF1-derived A20-ZnF (ThUDA20). ThUBD binds to ubiquitinated proteins, with markedly higher affinity than naturally occurring UBDs. Furthermore, it displays almost unbiased high affinity to all seven lysine-linked chains. Using ThUBD-based profiling with mass spectrometry, we identified 1092 and 7487 putative ubiquitinated proteins from yeast and mammalian cells, respectively, of which 362 and 1125 proteins had ubiquitin-modified sites. These results demonstrate that ThUBD is a refined and promising approach for enriching the ubiquitinated proteome while circumventing the need to overexpress tagged ubiquitin variants and use antibodies to recognize ubiquitin remnants, thus providing a readily accessible tool for the protein ubiquitination research community. PMID:27037361

  8. Pulsed Multiple Reaction Monitoring Approach to Enhancing Sensitivity of a Tandem Quadrupole Mass Spectrometer

    PubMed Central

    Belov, Mikhail E.; Prasad, Satendra; Prior, David C.; Danielson, William F.; Weitz, Karl; Ibrahim, Yehia M.; Smith, Richard D.

    2011-01-01

    Liquid chromatography (LC)–triple quadrupole mass spectrometers operating in a multiple reaction monitoring (MRM) mode are increasingly used for quantitative analysis of low-abundance analytes in highly complex biochemical matrixes. After development and selection of optimum MRM transitions, sensitivity and data quality limitations are largely related to mass spectral peak interferences from sample or matrix constituents and statistical limitations at low number of ions reaching the detector. Herein, we report on a new approach to enhancing MRM sensitivity by converting the continuous stream of ions from the ion source into a pulsed ion beam through the use of an ion funnel trap (IFT). Evaluation of the pulsed MRM approach was performed with a tryptic digest of Shewanella oneidensis strain MR-1 spiked with several model peptides. The sensitivity improvement observed with the IFT coupled in to the triple quadrupole instrument is based on several unique features. First, ion accumulation radio frequency (rf) ion trap facilitates improved droplet desolvation, which is manifested in the reduced background ion noise at the detector. Second, signal amplitude for a given transition is enhanced because of an order-of-magnitude increase in the ion charge density compared to a continuous mode of operation. Third, signal detection at the full duty cycle is obtained, as the trap use eliminates dead times between transitions, which are inevitable with continuous ion streams. In comparison with the conventional approach, the pulsed MRM signals showed 5-fold enhanced peak amplitude and 2–3-fold reduced chemical background, resulting in an improvement in the limit of detection (LOD) by a factor of ~4–8. PMID:21344863

  9. Derivatization of estrogens enhances specificity and sensitivity of analysis of human plasma and serum by liquid chromatography tandem mass spectrometry.

    PubMed

    Faqehi, Abdullah M M; Cobice, Diego F; Naredo, Gregorio; Mak, Tracy C S; Upreti, Rita; Gibb, Fraser W; Beckett, Geoffrey J; Walker, Brian R; Homer, Natalie Z M; Andrew, Ruth

    2016-05-01

    Estrogens circulate at concentrations less than 20pg/mL in men and postmenopausal women, presenting analytical challenges. Quantitation by immunoassay is unreliable at these low concentrations. Liquid chromatography tandem mass spectrometry (LC-MS/MS) offers greater specificity and sometimes greater sensitivity, but ionization of estrogens is inefficient. Introduction of charged moieties may enhance ionization, but many such derivatives of estrogens generate non-specific product ions originating from the "reagent" group. Therefore an approach generating derivatives with product ions specific to individual estrogens was sought. Estrogens were extracted from human plasma and serum using solid phase extraction and derivatized using 2-fluoro-1-methylpyridinium-p-toluenesulfonate (FMP-TS). Electrospray in positive mode with multiple reaction monitoring using a QTrap 5500 mass spectrometer was used to quantify "FMP" derivatives of estrogens, following LC separation. Transitions for the FMP derivatives of estrone (E1) and estradiol (E2) were compound specific (m/z 362→238 and m/z 364→128, respectively). The limits of detection and quantitation were 0.2pg on-column and the method was linear from 1-400pg/sample. Measures of intra- and inter-assay variability, precision and accuracy were acceptable (<20%). The derivatives were stable over 24h at 10°C (7-9% degradation). Using this approach, E1 and E2, respectively were detected in human plasma and serum: pre-menopausal female serum (0.5mL) 135-473, 193-722pmol/L; male plasma (1mL) 25-111, 60-180pmol/L and post-menopausal female plasma (2mL), 22-78, 29-50pmol/L. Thus FMP derivatization, in conjunction with LC-MS/MS, is suitable for quantitative analysis of estrogens in low abundance in plasma and serum, offering advantages in specificity over immunoassay and existing MS techniques. PMID:26946022

  10. Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes.

    PubMed

    Zhu, Luchang; Olsen, Randall J; Horstmann, Nicola; Shelburne, Samuel A; Fan, Jia; Hu, Ye; Musser, James M

    2016-07-01

    Variable-number tandem-repeat (VNTR) polymorphisms are ubiquitous in bacteria. However, only a small fraction of them has been functionally studied. Here, we report an intergenic VNTR polymorphism that confers an altered level of toxin production and increased virulence in Streptococcus pyogenes The nature of the polymorphism is a one-unit deletion in a three-tandem-repeat locus upstream of the rocA gene encoding a sensor kinase. S. pyogenes strains with this type of polymorphism cause human infection and produce significantly larger amounts of the secreted cytotoxins S. pyogenes NADase (SPN) and streptolysin O (SLO). Using isogenic mutant strains, we demonstrate that deleting one or more units of the tandem repeats abolished RocA production, reduced CovR phosphorylation, derepressed multiple CovR-regulated virulence factors (such as SPN and SLO), and increased virulence in a mouse model of necrotizing fasciitis. The phenotypic effect of the VNTR polymorphism was nearly the same as that of inactivating the rocA gene. In summary, we identified and characterized an intergenic VNTR polymorphism in S. pyogenes that affects toxin production and virulence. These new findings enhance understanding of rocA biology and the function of VNTR polymorphisms in S. pyogenes. PMID:27141081

  11. Derivatization of estrogens enhances specificity and sensitivity of analysis of human plasma and serum by liquid chromatography tandem mass spectrometry

    PubMed Central

    Faqehi, Abdullah M.M.; Cobice, Diego F.; Naredo, Gregorio; Mak, Tracy C.S.; Upreti, Rita; Gibb, Fraser W.; Beckett, Geoffrey J.; Walker, Brian R.; Homer, Natalie Z.M.; Andrew, Ruth

    2016-01-01

    Estrogens circulate at concentrations less than 20 pg/mL in men and postmenopausal women, presenting analytical challenges. Quantitation by immunoassay is unreliable at these low concentrations. Liquid chromatography tandem mass spectrometry (LC–MS/MS) offers greater specificity and sometimes greater sensitivity, but ionization of estrogens is inefficient. Introduction of charged moieties may enhance ionization, but many such derivatives of estrogens generate non-specific product ions originating from the “reagent” group. Therefore an approach generating derivatives with product ions specific to individual estrogens was sought. Estrogens were extracted from human plasma and serum using solid phase extraction and derivatized using 2-fluoro-1-methylpyridinium-p-toluenesulfonate (FMP-TS). Electrospray in positive mode with multiple reaction monitoring using a QTrap 5500 mass spectrometer was used to quantify “FMP” derivatives of estrogens, following LC separation. Transitions for the FMP derivatives of estrone (E1) and estradiol (E2) were compound specific (m/z 362→238 and m/z 364→128, respectively). The limits of detection and quantitation were 0.2 pg on-column and the method was linear from 1–400 pg/sample. Measures of intra- and inter-assay variability, precision and accuracy were acceptable (<20%). The derivatives were stable over 24 h at 10 °C (7–9% degradation). Using this approach, E1 and E2, respectively were detected in human plasma and serum: pre-menopausal female serum (0.5 mL) 135–473, 193–722 pmol/L; male plasma (1 mL) 25–111, 60–180 pmol/L and post-menopausal female plasma (2 mL), 22–78, 29–50 pmol/L. Thus FMP derivatization, in conjunction with LC–MS/MS, is suitable for quantitative analysis of estrogens in low abundance in plasma and serum, offering advantages in specificity over immunoassay and existing MS techniques. PMID:26946022

  12. Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Ren, Feng; Shen, Shaohua; Fu, Yanming; Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong

    2015-03-01

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu2O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu2O/ZnO photoelectrode comparing to that of the Cu2O film. The high performance of the Ag/Cu2O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  13. Enhanced absorption in tandem solar cells by applying hydrogenated In{sub 2}O{sub 3} as electrode

    SciTech Connect

    Yin, Guanchao Manley, Phillip; Steigert, Alexander; Klenk, Reiner; Schmid, Martina

    2015-11-23

    To realize the high efficiency potential of perovskite/chalcopyrite tandem solar cells in modules, hydrogenated In{sub 2}O{sub 3} (IO:H) as electrode is investigated. IO:H with an electron mobility of 100 cm{sup 2} V{sup −1} s{sup −1} is demonstrated. Compared to the conventional Sn doped In{sub 2}O{sub 3} (ITO), IO:H exhibits a decreased electron concentration and leads to almost no sub-bandgap absorption up to the wavelength of 1200 nm. Without a trade-off between transparency and lateral resistance in the IO:H electrode, the tandem cell keeps increasing in efficiency as the IO:H thickness increases and efficiencies above 22% are calculated. In contrast, the cells with ITO as electrode perform much worse due to the severe parasitic absorption in ITO. This indicates that IO:H has the potential to lead to high efficiencies, which is otherwise constrained by the parasitic absorption in conventional transparent conductive oxide electrode for tandem solar cells in modules.

  14. Enhanced antimicrobial peptide-induced activity in the mollusc Toll-2 family through evolution via tandem Toll/interleukin-1 receptor

    PubMed Central

    Cao, Jun; Chen, Yihong; Jin, Min; Ren, Qian

    2016-01-01

    Toll receptors play an important role in the innate immunity of invertebrates. All reported Tolls have only one Toll/interleukin-1 receptor (TIR) domain at the C-terminal. In this study, numerous Tolls with tandem TIRs at the C-terminal were found in molluscs. Such Tolls presented an extra TIR (TIR-1) compared with Toll-I. Thus, Toll-I might be the ancestor of tandem TIRs containing Toll. To test this hypothesis, 83 Toll-I and Toll-2 (most have two TIRs, but others seem to be the evolutionary intermediates) genes from 29 shellfish species were identified. These Tolls were divided into nine groups based on phylogenetic analyses. A strong correlation between phylogeny and motif composition was found. All Toll proteins contained the TIR-2 domain, whereas the TIR-1 domain only existed in some Toll-2 protein, suggesting that TIR-1 domain insertion may play an important role in Toll protein evolution. Further analyses of functional divergence and adaptive evolution showed that some of the critical sites responsible for functional divergence may have been under positive selection. An additional intragenic recombination played an important role in the evolution of the Toll-I and Toll-2 genes. To investigate the functional difference of Toll-I and Toll-2, over expression of Hcu_Toll-I or Hcu_Toll-2-2 in Drosophila S2 cells was performed. Results showed that Hcu_Toll-2-2 had stronger antimicrobial peptide (AMP) activity than Hcu_Toll-I. Therefore, enhanced AMP-induced activity resulted from tandem TIRs in Toll-2s of molluscs during evolution history. PMID:27429771

  15. Enhanced antimicrobial peptide-induced activity in the mollusc Toll-2 family through evolution via tandem Toll/interleukin-1 receptor.

    PubMed

    Cao, Jun; Chen, Yihong; Jin, Min; Ren, Qian

    2016-06-01

    Toll receptors play an important role in the innate immunity of invertebrates. All reported Tolls have only one Toll/interleukin-1 receptor (TIR) domain at the C-terminal. In this study, numerous Tolls with tandem TIRs at the C-terminal were found in molluscs. Such Tolls presented an extra TIR (TIR-1) compared with Toll-I. Thus, Toll-I might be the ancestor of tandem TIRs containing Toll. To test this hypothesis, 83 Toll-I and Toll-2 (most have two TIRs, but others seem to be the evolutionary intermediates) genes from 29 shellfish species were identified. These Tolls were divided into nine groups based on phylogenetic analyses. A strong correlation between phylogeny and motif composition was found. All Toll proteins contained the TIR-2 domain, whereas the TIR-1 domain only existed in some Toll-2 protein, suggesting that TIR-1 domain insertion may play an important role in Toll protein evolution. Further analyses of functional divergence and adaptive evolution showed that some of the critical sites responsible for functional divergence may have been under positive selection. An additional intragenic recombination played an important role in the evolution of the Toll-I and Toll-2 genes. To investigate the functional difference of Toll-I and Toll-2, over expression of Hcu_Toll-I or Hcu_Toll-2-2 in Drosophila S2 cells was performed. Results showed that Hcu_Toll-2-2 had stronger antimicrobial peptide (AMP) activity than Hcu_Toll-I. Therefore, enhanced AMP-induced activity resulted from tandem TIRs in Toll-2s of molluscs during evolution history. PMID:27429771

  16. NF kappaB expression increases and CFTR and MUC1 expression decreases in the endometrium of infertile patients with hydrosalpinx: a comparative study

    PubMed Central

    2012-01-01

    Background Hydrosalpinx are associated with infertility, due to reduced rates of implantation and increased abortion rates. The aims of this study were to investigate the expression of cystic fibrosis transmembrane conductance regulator (CFTR), nuclear factor kappa B (NF KappaB) and mucin-1 (MUC-1), and analyze the correlation between the expression of CFTR and NF KappaB or MUC1, in the endometrium of infertile women with and without hydrosalpinx. Methods Thirty-one infertile women with laparoscopy-confirmed unilateral or bilateral hydrosalpinx and 20 infertile women without hydrosalpinx or pelvic inflammatory disease (control group) were recruited. Endometrial biopsy samples were collected and the expression of CFTR, NF KappaB and MUC1 were analyzed using immunohistochemistry and quantitative real-time PCR. Results CFTR, NF KappaB and MUC1 mRNA and protein expression tended to increase in the secretory phase compared to the proliferative phase in both groups; however, these differences were not significantly different. The endometrium of infertile patients with hydrosalpinx had significantly higher NF KappaB mRNA and protein expression, and significantly lower CFTR and MUC1 mRNA and protein expression, compared to control infertile patients. A positive correlation was observed between CFTR and MUC1 mRNA expression (r = 0.65, P < 0.05); a negative correlation was observed between CFTR mRNA and NF KappaB mRNA expression (r = −0.59, P < 0.05). Conclusions Increased NF KappaB expression and decreased CFTR and MUC1 expression in the endometrium of infertile patients with hydrosalpinx reinforce the involvement of a molecular mechanism in the regulation of endometrial receptivity. PMID:23061681

  17. Increased expression of nuclear factor kappa-B p65 subunit in adenomyosis

    PubMed Central

    Park, Hana; Cho, Yoo Mi; Ihm, Hyo Jin; Oh, Young Sang; Hong, Seung Hwa; Chae, Hee Dong; Kim, Chung-Hoon; Kang, Byung Moon

    2016-01-01

    Objective Nuclear factor kappa-B (NF-κB) is a critical proinflammatory regulator that has been suggested to play a pivotal role in the pathogenesis and pathophysiology of endometriosis. In the present study, we aimed to evaluate whether the expression of NF-κB p65 subunit is increased in the eutopic endometrium and/or in the adenomyosis nodule of women with adenomyosis. Methods Thirty-three women with histologically confirmed adenomyosis after laparoscopic or transabdominal hysterectomy were recruited. Women with carcinoma in situ of uterine cervix without evidence of adenomyosis or endometriosis (n=32) served as controls. Formalin-fixed, paraffin-embedded archival tissues were sectioned and immunostained utilizing a monoclonal anti-human NF-κB p65 subunit antibody, and the immunoreactivity of NF-κB p65 subunit was compared between women with and without adenomyosis. Results The immunoreactivities of both the nuclear and the cytoplasmic NF-κB p65 subunit were significantly increased in the stromal cells in the eutopic endometrium as well as in the adenomyosis nodule of women with adenomyosis compared with controls, respectively. The nuclear expression of NF-κB p65 subunit was significantly higher in the glandular cells in the eutopic endometrium as well as the adenomyosis nodule of women with adenomyosis compared with controls, respectively. Conclusion The expression of NF-κB p65 is increased in the eutopic endometrium and adenomyosis nodule of women with adenomyosis, which strongly suggest that NF-κB plays a critical role in the pathogenesis and/or pathophysiology of adenomyosis. PMID:27004203

  18. The Impact of Dosing Interval in a Novel Tandem Oral Dosing Strategy: Enhancing the Exposure of Low Solubility Drug Candidates in a Preclinical Setting

    PubMed Central

    Chiang, Po-Chang; South, Sarah A.; Wene, Steve P.

    2011-01-01

    In drug discovery, time and resource constraints necessitate increasingly early decision making to accelerate or stop preclinical programs. Early discovery drug candidates may be potent inhibitors of new targets, but all too often exhibit poor pharmaceutical or pharmacokinetic properties that limit the in vivo exposure. Low solubility of a drug candidate often leads to poor oral bioavailability and poor dose linearity. This issue is more significant for efficacy and target safety studies where high drug exposures are desired. When solubility issues are confronted, enabling formulations are often required to improve the exposure. However, this approach often requires a substantial and lengthy investment to develop the formulation. Previously, we introduced a gastrointestinal (GI) transit time-based novel oral tandem dosing strategy that enhanced in vivo exposures in rats. In this study, a refined time interval versus dose theory was tested. The resulting in vivo exposures based on altering frequency and doses were compared, and significant impacts were found. PMID:21490753

  19. Vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction for the determination of carbamates in juices by micellar electrokinetic chromatography tandem mass spectrometry.

    PubMed

    Moreno-González, David; Huertas-Pérez, José F; García-Campaña, Ana M; Gámiz-Gracia, Laura

    2015-07-01

    A new method based on vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction has been developed for the extraction of carbamate pesticides in juice samples prior to their determination by micellar electrokinetic chromatography coupled to tandem mass spectrometry. This sample treatment allowed the satisfactory extraction and the extract clean-up of 25 carbamates from different fruit and vegetal juices (banana, tomato, and peach). In this study, the addition of ammonium perfluorooctanoate in the aqueous sample in combination with vortex agitation, provided very clean extracts with short extraction times. Under optimized conditions, recoveries of the proposed method for these pesticides from fortified juice samples ranged from 81% to 104%, with relative standard deviations lower than 15%. Limits of quantification were between 2.3µgkg(-)(1) and 4.7µgkg(-)(1), showing the high sensitivity of this fast and simple method. PMID:25882424

  20. Tandemization of a Subregion of the Enhancer Sequences from SRS 19-6 Murine Leukemia Virus Associated with T-Lymphoid but Not Other Leukemias

    PubMed Central

    Granger, Steven W.; Bundy, Linda M.; Fan, Hung

    1999-01-01

    Most simple retroviruses induce tumors of a single cell type when infected into susceptible hosts. The SRS 19-6 murine leukemia virus (MuLV), which originated in mainland China, induces leukemias of multiple cellular origins. Indeed, infected mice often harbor more than one tumor type. Since the enhancers of many MuLVs are major determinants of tumor specificity, we tested the role of the SRS 19-6 MuLV enhancers in its broad disease specificity. The enhancer elements of the Moloney MuLV (M-MuLV) were replaced by the 170-bp enhancers of SRS 19-6 MuLV, yielding the recombinants ΔMo+SRS+ and ΔMo+SRS− M-MuLV. M-MuLV normally induces T-lymphoid tumors in all infected mice. Surprisingly, when neonatal mice were inoculated with ΔMo+SRS+ or ΔMo+SRS− M-MuLV, all tumors were of T-lymphoid origin, typical of M-MuLV rather than SRS 19-6 MuLV. Thus, the SRS 19-6 MuLV enhancers did not confer the broad disease specificity of SRS 19-6 MuLV to M-MuLV. However, all tumors contained ΔMo+SRS M-MuLV proviruses with common enhancer alterations. These alterations consisted of tandem multimerization of a subregion of the SRS 19-6 enhancers, encompassing the conserved LVb and core sites and adjacent sequences. Moreover, when tumors induced by the parental SRS 19-6 MuLV were analyzed, most of the T-lymphoid tumors had similar enhancer alterations in the same region whereas tumors of other lineages retained the parental SRS 19-6 MuLV enhancers. These results emphasize the importance of a subregion of the SRS 19-6 MuLV enhancer in induction of T-cell lymphoma. The relevant sequences were consistent with crucial sequences for T-cell lymphomagenesis identified for other MuLVs such as M-MuLV and SL3-3 MuLV. These results also suggest that other regions of the SRS 19-6 MuLV genome contribute to its broad leukemogenic spectrum. PMID:10438804

  1. Fluoroquinolone residues in compost by green enhanced microwave-assisted extraction followed by ultra performance liquid chromatography tandem mass spectrometry.

    PubMed

    Speltini, Andrea; Sturini, Michela; Maraschi, Federica; Viti, Simona; Sbarbada, Davide; Profumo, Antonella

    2015-09-01

    A novel, simple and straightforward method for determination of fluoroquinolones (FQs) in compost has been developed. The procedure entails a low-pressurized microwave-assisted extraction (MAE) carried out by a high performance instrument, in alkaline aqueous solution containing magnesium ions as FQs complexing agent, followed by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS). Ciprofloxacin (CIP), Enrofloxacin (ENR), Levofloxacin (LEV) and Norfloxacin (NOR), four widely used FQ antibiotics, were simultaneously extracted from compost by a single MAE cycle (20min, 135°C). The method was validated in terms of linearity, selectivity, sensitivity and accuracy. Quantitative absolute recovery (70-112%, n=3) and suitable precision (RSD<15%, n=3) were observed, at concentration levels ranging from 25 ng g(-1) to 2500 ng g(-1). Analytes were separated in a 10min chromatographic run and quantified/confirmed in single reaction monitoring (SRM) mode. UPLC coupled to SRM-MS detection allowed to achieve improved sensitivity, and selective detection. Method detection and quantification limits, MDLs and MQLs, were in the range 2.2-3.0 ng g(-1) and 6.6-9.0 ng g(-1), respectively. The high-performance microwave system here used strongly improved the extraction efficiency with respect to a conventional apparatus. The procedure proved to be simpler, less expensive, faster, and more green with respect to the few methods currently described in literature, providing at the same time suitable recovery and reproducibility. The analytical method has been applied to the analysis of actual compost samples, wherein FQs have been quantified at concentrations up to 88 ng g(-1). PMID:26250963

  2. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K.

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  3. Determination of Androgen Receptor Degradation Enhancer ASC-J9® in Mouse Sera and Organs with Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Soh, Shu Fang; Huang, Chiung-Kuei; Lee, Soo Ok; Xu, Defeng; Yeh, Shuyuan; Li, Jun; Yong, Eu Leong; Gong, Yinhan; Chang, Chawnshang

    2013-01-01

    A novel androgen receptor (AR) degradation enhancer ASC-J9® has displayed beneficial effects during the in vitro and in vivo studies for treatment of prostate cancer, liver cancer, bladder cancer and spinal and bulbar muscular atrophy (SBMA). It works mainly by inducing the degradation of AR with minimal side effects on the tested mice. Here we developed a fast, robust and more sensitive method for the quantification of ASC-J9® in 100 μL of mouse serum by using liquid chromatography tandem mass spectrometry (LC-MS/MS). The limit of quantification (LOQ) was found to be 5nM for ASCJ9®. This method was successfully applied to investigate the pharmacokinetics of ASC-J9® in mice serum samples and also the distribution of the drug in various mice organs after single dose injection with results showing that ASC-J9® could be quickly absorbed in vivo and had a relatively slow elimination half-life of 5.45 h. The ASC-J9® also exhibited a higher tendency to accumulate in organs such as liver, testes and prostate. PMID:24042123

  4. Tandem Couture

    PubMed Central

    Ericksen, Spencer S.; Boileau, Andrew J.

    2008-01-01

    Receptor subunits in the Cys-loop superfamily assemble to form channels as homopentamers or heteropentamers, expanding functional diversity through modularity. Expression of two or more compatible subunit types can lead to various receptor assemblies or subtypes. However, what may be good for diversity in vivo may be undesirable for the bench scientist, because we often wish to reduce our analyses to a single receptor subtype. By linking two or more subunits, creating tandems or concatamers, we can control stoichiometry and limit expression to exactly one receptor subtype. In this fashion, receptors with mixed subunit subtypes and heterozygous mutations can be separated from a mixture and can be described in detail. However, several recent studies have shown that this may be more easily conceived than accomplished, because several unforeseen problems have arisen. Concatamers can degrade, linkers can sometimes be clipped after or during translation, and one subunit may “loop out” or even become part of a second (now linked) pentamer with different characteristics. Some strategies have been developed to overcome these drawbacks, and the resultant new information that has begun to emerge has revitalized the study of these receptors in heterologous expression systems. PMID:17519509

  5. Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-Like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins

    PubMed Central

    Peyret, Hadrien; Gehin, Annick; Thuenemann, Eva C.; Blond, Donatienne; El Turabi, Aadil; Beales, Lucy; Clarke, Dean; Gilbert, Robert J. C.; Fry, Elizabeth E.; Stuart, David I.; Holmes, Kris; Stonehouse, Nicola J.; Whelan, Mike; Rosenberg, William; Lomonossoff, George P.; Rowlands, David J.

    2015-01-01

    The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody. PMID:25830365

  6. Enhanced Methamphetamine Metabolism in Rhesus Macaque as Compared with Human: An Analysis Using a Novel Method of Liquid Chromatography with Tandem Mass Spectrometry, Kinetic Study, and Substrate Docking

    PubMed Central

    Wang, Lei; Bosinger, Steven; Li, Junhao; Shah, Ankit; Gangwani, Mohitkumar; Nookala, Anantha; Liu, Xun; Cao, Lu; Jackson, Austin; Silverstein, Peter S.; Fox, Howard S.; Li, Weihua; Kumar, Anil

    2014-01-01

    Methamphetamine (MA), which remains one of the widely used drugs of abuse, is metabolized by the cytochrome P450 (P450) family of enzymes in humans. However, metabolism of methamphetamine in macaques is poorly understood. Therefore, we first developed and validated a very sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) method using solid phase extraction of rhesus plasma with a lower limit of quantitation at 1.09 ng/ml for MA and its metabolites, 4-hydroxy methamphetamine (4-OH MA), amphetamine (AM), 4-OH amphetamine (4-OH AM), and norephedrine. We then analyzed plasma samples of MA-treated rhesus, which showed >10-fold higher concentrations of AM (∼29 ng/ml) and 4-OH AM (∼28 ng/ml) than MA (∼2 ng/ml). Because the plasma levels of MA metabolites in rhesus were much higher than in human samples, we examined MA metabolism in human and rhesus microsomes. Interestingly, the results showed that AM and 4-OH AM were formed more rapidly and that the catalytic efficiency (Vmax/Km) for the formation of AM was ∼8-fold higher in rhesus than in human microsomes. We further examined the differences in these kinetic characteristics using three selective inhibitors of each human CYP2D6 and CYP3A4 enzymes. The results showed that each of these inhibitors inhibited both d- and l-MA metabolism by 20%–60% in human microsomes but not in rhesus microsomes. The differences between human and rhesus CYP2D6 and CYP3A4 enzymes were further assessed by docking studies for both d and l-MA. In conclusion, our results demonstrated an enhanced MA metabolism in rhesus compared with humans, which is likely to be caused by differences in MA-metabolizing P450 enzymes between these species. PMID:25301936

  7. Fingerprint enhancement revisited and the effects of blood enhancement chemicals on subsequent profiler Plus fluorescent short tandem repeat DNA analysis of fresh and aged bloody fingerprints.

    PubMed

    Frégeau, C J; Germain, O; Fourney, R M

    2000-03-01

    This study was aimed at determining the effect of seven blood enhancement reagents on the subsequent Profiler Plus fluorescent STR DNA analysis of fresh or aged bloody fingerprints deposited on various porous and nonporous surfaces. Amido Black, Crowle's Double Stain. 1,8-diazafluoren-9-one (DFO), Hungarian Red, leucomalachite green, luminol and ninhydrin were tested on linoleum, glass, metal, wood (pine, painted white), clothing (85% polyester/15% cotton, 65% polyester/35% cotton, and blue denim) and paper (Scott 2-ply and Xerox-grade). Preliminary experiments were designed to determine the optimal blood dilutions to use to ensure a DNA typing result following chemical enhancement. A 1:200 blood dilution deposited on linoleum and enhanced with Crowle's Double Stain generated enough DNA for one to two rounds of Profiler Plus PCR amplification. A comparative study of the DNA yields before and after treatment indicated that the quantity of DNA recovered from bloody fingerprints following enhancement was reduced by a factor of 2 to 12. Such a reduction in the DNA yields could potentially compromise DNA typing analysis in the case of small stains. The blood enhancement chemicals selected were also evaluated for their capability to reveal bloodmarks on the various porous and nonporous surfaces chosen in this study. Luminol. Amido Black and Crowle's Double Stain showed the highest sensitivity of all seven chemicals tested and revealed highly diluted (1:200) bloody fingerprints. Both luminol and Amido Black produced excellent results on both porous and nonporous surfaces, but Crowle's Double Stain failed to produce any results on porous substrates. Hungarian Red, DFO, leucomalachite green and ninhydrin showed lower sensitivities. Enhancement of bloodmarks using any of the chemicals selected, and short-term exposure to these same chemicals (i.e., less than 54 days), had no adverse effects on the PCR amplification of the nine STR systems surveyed (D3S 1358, HumvWA, Hum

  8. Differential activation of nuclear transcription factor kappaB, gene expression, and proteins by amifostine's free thiol in human microvascular endothelial and glioma cells.

    PubMed

    Grdina, David J; Murley, Jeffrey S; Kataoka, Yasushi; Calvin, Douglas P

    2002-01-01

    The effects of WR1065 (SH), the free thiol form of amifostine, on nuclear transcription factor kappaB (NFkappaB) activation, manganese superoxide dismutase (MnSOD) gene expression, and secretion of human vascular endothelial cell growth factor (hVEGF), basic fibroblast growth factor (bFGF), tumor necrosis factor-alpha (TNF-alpha), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), E-selectin, P-selectin, and interleukins IL-1alpha, IL-6, and IL-8 were investigated and compared in human microvascular endothelial (HMEC) and human glioma cells. WR1065 was evaluated at 2 concentrations, 4 mmol/L, ie, its most effective cytoprotective dose, and 40 micromol/L, a noncytoprotective but highly effective dose capable of preventing radiation and chemotherapeutic drug-induced mutations in exposed cells. A 30-minute exposure of HMEC and glioma cell lines U87 and U251 to WR1065 at either of the concentrations resulted in a marked activation of NFkappaB as determined by a gel shift assay, with the maximum effect observed between 30 minutes and 1 hour after treatment. Using a supershift assay, WR1065 exposure was observed to affect only the p50-p65 heterodimer, and not the homodimers or heterodimers containing p52 or c-Rel subunits of NFkappaB. WR1065 was also found to enhance MnSOD gene expression in both HMEC and glioma cells. Gene expression was enhanced 1.8-fold over control levels in HMEC over a period ranging from 12 to 24 hours after the time of maximum activation of NFkappaB. In contrast, MnSOD gene expression in U87 cells rose 3.5 times above control levels over this same period. WR1065 had no effect on the levels of adhesion molecules, cytokines, and growth factors secreted by cells exposed for up to 24 hours as measured by enzyme-linked immunosorbent assay. PMID:11917294

  9. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes

    PubMed Central

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P.

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  10. Nuphar lutea thioalkaloids inhibit the nuclear factor kappaB pathway, potentiate apoptosis and are synergistic with cisplatin and etoposide.

    PubMed

    Ozer, Janet; Eisner, Nadav; Ostrozhenkova, Elena; Bacher, Adelbert; Eisenreich, Wolfgang; Benharroch, Daniel; Golan-Goldhirsh, Avi; Gopas, Jacob

    2009-10-01

    We screened thirty-four methanolic plant extracts for inhibition of the constitutive nuclear factor kappaB (NFkappaB) activity by a NFkappaB-luciferase reporter gene assay. Strong inhibition of NFkappaB activity was found in extracts of leaf and rhizome from Nuphar lutea L. SM. (Nuphar). The inhibitory action was narrowed down to a mixture of thionupharidines and/or thionuphlutidines that were identified in chromatography fractions by one- and two-dimensional NMR analysis. Dimeric sesquiterpene thioalkaloids were identified as the major components of the mixture. The Nuphar alkaloids mixture (NUP) showed a dose dependent inhibition of NFkappaB activity in a luciferase reporter gene assay as well as reduction of nuclear NFkappaB subunits expression as tested by western blots and immunohistochemistry. Decreased DNA binding was demonstrated in electro mobility shift assays. NUP inhibited both inducible and constitutive NFkappaB activation and affected the canonical and alternative pathways. Suppression of NFkappaB was not cell type specific. Induction of apoptosis by the alkaloid mixture was demonstrated by time-dependent and dose-dependent cleavage of procaspase-9 and PARP. Synergistic cytotoxicity of the active mixture with cisplatin and etoposide was demonstrated. Overall, our results show that NUP inhibits the NFkappaB pathway and acts as a sensitizer to conventional chemotherapy, enabling the search for its specific target and application against cancer and inflammation. PMID:19713755

  11. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes.

    PubMed

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  12. Enhanced immunogenicity of peptide P277 by heat shock protein HSP65 vector carrying tandem repeats of P277 to prevent type 1 diabetes in NOD mice.

    PubMed

    Liang, J; Aihua, Z; Yu, W; Jingjing, L

    2008-10-01

    The peptide P277 contains a target epitope for diabetogenic T cells and it has been used as an ideal target antigen to develop vaccines against type 1 diabetes. A major problem in developing P277 vaccine is its low immunogenicity. Recent applications involving multiple copies of self-peptide in linear alignment and conjugation with carrier proteins appear to increase the immune response. In this study, we designed a method based on isocaudamer technique to repeat tandemly the 24-residue sequence P277, then 6 tandemly repeated copies of the peptide P277 were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-6xP277 as an immunogen. We examined the effect of the tandem repeats of the peptide P277 in eliciting an immune response by comparing the immunogenicity of the three immunogens: P277, HSP65-P277 and HSP65-6xP277. Immunization of mice with the fusion protein HSP65-6xP277 elicited much higher levels of specific anti-P277 antibodies than with P277 and HSP65-P277, which should suggest that multiple tandem repeats of a certain epitope is an efficient method to overcome the low immunogenicity of self-peptide antigens and the immunogen HSP65-6xP277 might be further developed to a vaccine against type 1 diabetes. PMID:18473288

  13. Efficient enhancement of hydrogen production by Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrochemical cell

    SciTech Connect

    Liu, Ying; Ren, Feng Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong; Shen, Shaohua; Fu, Yanming

    2015-03-23

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu{sub 2}O/ZnO photoelectrode comparing to that of the Cu{sub 2}O film. The high performance of the Ag/Cu{sub 2}O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  14. Receptor-Activator of Nuclear KappaB Ligand Expression as a New Therapeutic Target in Primary Bone Tumors

    PubMed Central

    Yamagishi, Tetsuro; Kawashima, Hiroyuki; Ogose, Akira; Ariizumi, Takashi; Sasaki, Taro; Hatano, Hiroshi; Hotta, Tetsuo; Endo, Naoto

    2016-01-01

    The receptor-activator of nuclear kappaB ligand (RANKL) signaling pathway plays an important role in the regulation of bone growth and mediates the formation and activation of osteoclasts. Osteoclasts are involved in significant bone resorption and destruction. Denosumab is a fully human monoclonal antibody against RANKL that specifically inhibits osteoclast differentiation and bone resorption. It has been approved for use for multiple myeloma and bone metastases, as well as for giant cell tumor of bone. However, there is no previous report quantitatively, comparing RANKL expression in histologically varied bone tumors. Therefore, we analyzed the mRNA level of various bone tumors and investigated the possibility of these tumors as a new therapeutic target for denosumab. We examined RANKL mRNA expression in 135 clinical specimens of primary and metastatic bone tumors using real-time PCR. The relative quantification of mRNA expression levels was performed via normalization with RPMI8226, a human multiple myeloma cell line that is recognized to express RANKL. Of 135 cases, 64 were also evaluated for RANKL expression by using immunohistochemistry. Among all of the tumors investigated, RANKL expression and the RANKL/osteoprotegerin ratio were highest in giant cell tumor of bone. High RANKL mRNA expression was observed in cases of aneurysmal bone cyst, fibrous dysplasia, osteosarcoma, chondrosarcoma, and enchondroma, as compared to cases of multiple myeloma and bone lesions from metastatic carcinoma. RANKL-positive stromal cells were detected in six cases: five cases of GCTB and one case of fibrous dysplasia. The current study findings indicate that some primary bone tumors present new therapeutic targets for denosumab, particularly those tumors expressing RANKL and those involving bone resorption by osteoclasts. PMID:27163152

  15. Thermal-barrier production and indentification in a tandem mirror

    SciTech Connect

    Grubb, D.P.; Allen, S.L.; Casper, T.A.; Clauser, J.F.; Coensgen, F.H.; Correll, D.L.; Cummins, W.F.; Damm, C.C.; Foote, J.H.; Goodman, R.K.; Hill, D.N.; Hooper,Jr., E.B.; Hornady, R.S.; Hunt, A.L.; Kerr, R.G.; Leppelmeier, G.W.; Marilleau, J.; Moller, J.M.; Molvik, A.W.; Nexsen, W.E.; Pickles, W.L.; Porter, G.D.; Poulsen, P.; Silver, E.H.; Simonen, T.C.; Stallard, B.W.; Turner, W.C.; Hsu, W.L.; Yu, T.L.; Barter, J.D.; Christensen, T.; Dimonte, G.; Romesser, T.W.; Ellis, R.F.; James, R.A.; Lasnier, C.J.; Berzins, L.V.; Carter, M.R.; Clower, C.A.; Failor, B.H.; Falabella, S.; Flammer, M.; Nash, T.

    1984-08-20

    In thermal-barrier experiments in the tandem mirror experiment upgrade axial confinement times of 50 to 100 ms have been achieved. During enhanced confinement we measured the thermal-barrier potential profile using a neutral-particle-beam probe. The experimental data agree qualitatively and quantitatively with the theory of thermal-barrier formation in a tandem mirror.

  16. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  17. The kappaB and V(D)J recombination signal sequence binding protein KRC regulates transcription of the mouse metastasis-associated gene S100A4/mts1.

    PubMed

    Hjelmsoe, I; Allen, C E; Cohn, M A; Tulchinsky, E M; Wu, L C

    2000-01-14

    A kappaB-like sequence, Sb, is integral to the composite enhancer located in the first intron of the metastasis-associated gene, S100A4/mts1. Oligonucleotides containing this sequence form three specific complexes with nuclear proteins prepared from S100A4/mts1-expressing CSML100 adenocarcinoma cells. Protein studies show the Sb-interacting complexes include NF-kappaB/Rel proteins, p50.p50 and p50.p65 dimers. Additionally, the Sb sequence was bound by an unrelated approximately 200-kDa protein, p200. Site-directed mutagenesis in conjunction with transient transfections indicate that p200, but not the NF-kappaB/Rel proteins, transactivates S100A4/mts1. To identify candidate genes for p200, double-stranded DNA probes containing multiple copies of Sb were used to screen a randomly primed lambdagt11 cDNA expression library made from CSML100 poly(A)(+) RNA. Two clones corresponding to the DNA-binding proteins KRC and Alf1 were identified. KRC encodes a large zinc finger protein that binds to the kappaB motif and to the signal sequences of V(D)J recombination. In vitro DNA binding assays using bacterially expressed KRC fusion proteins, demonstrate specific binding of KRC to the Sb sequence. In addition, introduction of KRC expression vectors into mammalian cells induces expression of S100A4/mts1 and reporter genes driven by S100A4/mts1 gene regulatory sequences. These data indicate that KRC positively regulates transcription of S100A4/mts1. PMID:10625627

  18. Tandem Air Propellers - II

    NASA Technical Reports Server (NTRS)

    Lesley, E. P.

    1939-01-01

    Tests of three-blade, adjustable-pitch counterrotating tandem model propellers, adjusted to absorb equal power at maximum efficiency of the combination, were made at Stanford University. The aerodynamic characteristics, for blade-angle settings of 15, 25, 35, 45, 55, and 65 degrees at 0.75R of the forward propeller and for diameters spacings of 8-1/2, 15 and 30% were compared with those of three-blade and six-blade propellers of the same blade form. It was found that, in order to realize the condition of equal power at maximum efficiency, the blade angles for the rear propeller must be generally less than for the forward propeller, the difference increasing the blade angle. The tests showed that, at maximum efficiency, the tandem propellers absorb about double the power of three-blade propellers and about 8% more power than six-blade propellers having the pitch of the forward propeller of the tandem combination. The maximum efficiency of the tandem propellers was found to be from 2-15% greater than for six-blade propellers, the difference varying directly with blade angle. It was also found that the maximum efficiency of the tandem propellers was greater than that of a three-blade propeller for blade angles at 0.75R of 25 degrees or more. The difference in maximum efficiency again varied directly with blade angle, being about 9% for 65 degrees at 0.75R.

  19. Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity.

    PubMed

    Pirhashemi, Mahsa; Habibi-Yangjeh, Aziz

    2016-07-15

    Facile ultrasonic-irradiation method was applied for photosensitization of ZnO by combining with AgBr and Ag2CO3 particles through preparation of novel ternary nanocomposites. The prepared samples were characterized by XRD, SEM, TEM, EDX, UV-Vis DRS, FT-IR, BET, and PL techniques. Photocatalytic activity was investigated by degradation of rhodamine B under visible-light irradiation. It was found that photocatalytic activity of the ZnO was greatly enhanced by coupling with AgBr and Ag2CO3 particles, as narrow band gap semiconductors, through formation of tandem n-n heterojunctions. The nanocomposite with 20% of Ag2CO3 displayed the highest photocatalytic activity with the degradation rate constants which are nearly 122, 31, and 25 times higher than those of the ZnO, ZnO/AgBr, and ZnO/Ag2CO3 samples, respectively. Moreover, the trapping experiments confirmed that superoxide ion radicals and holes are the main active species responsible for the degradation reaction. Finally, it was also demonstrated that the ternary ZnO/AgBr/Ag2CO3 (20%) nanocomposite has enhanced activity in degradation of methylene blue and methyl orange. Hence, this work shows a great potential of the ternary photocatalyst for purification of contaminated water from organic pollutants. PMID:27111379

  20. Propanil inhibits tumor necrosis factor-alpha production by reducing nuclear levels of the transcription factor nuclear factor-kappab in the macrophage cell line ic-21.

    PubMed

    Frost, L L; Neeley, Y X; Schafer, R; Gibson, L F; Barnett, J B

    2001-05-01

    Tumor necrosis factor-alpha (TNF-alpha) is an essential proinflammatory cytokine whose production is normally stimulated by bacterial cell wall components, such as lipopolysaccharide (LPS), during an infection. Macrophages stimulated with LPS in vitro produce several cytokines, including TNF-alpha. LPS-stimulated primary mouse macrophages produced less TNF-alpha protein and message after treatment with the herbicide propanil (Xie et al., Toxicol. Appl. Pharmacol. 145, 184-191, 1997). Nuclear factor-kappaB (NF-kappaB) tightly regulates TNF-alpha transcription. Therefore, as a step toward understanding the mechanism of the effect of propanil on TNF-alpha transcription, IC-21 cells were transfected with a TNF-alpha promoter-luciferase construct, and the effect of propanil on luciferase activity was measured. Cells transfected with promoter constructs containing a kappaB site showed decreased luciferase activity relative to controls after propanil treatment. These observations implicated NF-kappaB binding as an intracellular target of propanil. Further studies demonstrated a marked reduction in the nuclear levels of the stimulatory p65 subunit of NF-kappaB after propanil treatment, as measured by fluorescence confocal microscopy and Western blot analysis. The p50 subunit of NF-kappaB was not found to be reduced after propanil exposure by Western blot. Electrophoretic mobility gel shift assays showed decreased DNA binding of both p65/p50 heterodimers and p50/p50 homodimers to the kappaB3 site of the TNF-alpha promoter of propanil-treated cells. The marked reduction in nuclear p65/p50 NF-kappaB levels and diminished binding to the TNF-alpha promoter in propanil-treated cells are consistent with reduced TNF-alpha levels induced by LPS. PMID:11312646

  1. Characterization of the inhibitor of kappaB kinase (IKK) complex in granulosa cell tumors of the ovary and granulosa cell tumor-derived cell lines.

    PubMed

    Jamieson, Stacey; Fuller, Peter J

    2013-10-01

    Granulosa cell tumors of the ovary (GCT) are a distinct, hormonally active subset of ovarian cancers. Although it has recently been shown that ∼97 % of all adult GCT harbor a novel somatic missense mutation in the FOXL2 gene, given its almost universal presence, it does not explain differences in tumor stage and/or recurrence. The nuclear factor kappaB (NFκB) transcription factor is constitutively active in two human GCT-derived cell lines, COV434 and KGN, which are useful in vitro models to investigate juvenile and adult GCT, respectively. This study aimed to determine the molecular basis and pathogenetic significance of this aberrant NFκB activity. Selective chemical inhibitors were used to target candidate components of the pathway. The constitutive activity was blocked by two independent inhibitors of IκBα phosphorylation, suggesting that aberrant activation occurs upstream of this point. NFκB inhibition resulted in a dose-dependent decrease in cell proliferation and viability and a dose-dependent increase in apoptosis. Inhibitors of earlier components of the pathway were without effect. Two independent inhibitors of inhibitor of kappaB kinase (IKK)β, a catalytic subunit of the NFκB activation complex, were unable to inhibit the constitutive activity, but surprisingly also ligand-induced activity. These findings suggest a central role for IKKβ; however, no mutations or altered expression of the IKKβ, IKKα, or IKKγ genes was observed in the cell lines or in a panel of human GCT samples. This study highlights unresolved issues in understanding the pathogenesis of GCT and in the use of the COV434 and KGN cells lines as model systems. PMID:23674259

  2. Tandem mirror fusion research

    SciTech Connect

    Baldwin, D.E.

    1983-12-02

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program, culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s.

  3. Tandem BRCT Domains

    PubMed Central

    Mesquita, Rafael D.; Woods, Nicholas T.; Seabra-Junior, Eloy S.; Monteiro, Alvaro N.A.

    2010-01-01

    The cell’s ability to sense and respond to specific stimuli is a complex system derived from precisely regulated protein-protein interactions. Some of these protein-protein interactions are mediated by the recognition of linear peptide motifs by protein modular domains. BRCT (BRCA1 C-terminal) domains and their linear motif counterparts, which contain phosphoserines, are one such pair-wise interaction system that seems to have evolved to serve as a surveillance system to monitor threats to the cell’s genetic integrity. Evidence indicates that BRCT domains found in tandem can cooperate to provide sequence-specific binding of phosphorylated peptides as is the case for the breast and ovarian cancer susceptibility gene BRCA1 and the PAX transcription factor–interacting protein PAXIP1. Particular interest has been paid to tandem BRCT domains as “readers” of signaling events in the form of phosphorylated serine moieties induced by the activation of DNA damage response kinases ATM, ATR, and DNA-PK. However, given the diversity of tandem BRCT-containing proteins, questions remain as to the origin and evolution of this domain. Here, we discuss emerging views of the origin and evolving roles of tandem BRCT domain repeats in the DNA damage response. PMID:21533002

  4. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers.

    PubMed

    Yan, Ziying; Sun, Xingshen; Feng, Zehua; Li, Guiying; Fisher, John T; Stewart, Zoe A; Engelhardt, John F

    2015-06-01

    The packaging capacity of recombinant adeno-associated viral (rAAV) vectors limits the size of the promoter that can be used to express the 4.43-kb cystic fibrosis transmembrane conductance regulator (CFTR) cDNA. To circumvent this limitation, we screened a set of 100-mer synthetic enhancer elements, composed of ten 10-bp repeats, for their ability to augment CFTR transgene expression from a short 83-bp synthetic promoter in the context of an rAAV vector designed for use in the cystic fibrosis (CF) ferret model. Our initial studies assessing transcriptional activity in monolayer (nonpolarized) cultures of human airway cell lines and primary ferret airway cells revealed that three of these synthetic enhancers (F1, F5, and F10) significantly promoted transcription of a luciferase transgene in the context of plasmid transfection. Further analysis in polarized cultures of human and ferret airway epithelia at an air-liquid interface (ALI), as well as in the ferret airway in vivo, demonstrated that the F5 enhancer produced the highest level of transgene expression in the context of an AAV vector. Furthermore, we demonstrated that increasing the size of the viral genome from 4.94 to 5.04 kb did not significantly affect particle yield of the vectors, but dramatically reduced the functionality of rAAV-CFTR vectors because of small terminal deletions that extended into the CFTR expression cassette of the 5.04-kb oversized genome. Because rAAV-CFTR vectors greater than 5 kb in size are dramatically impaired with respect to vector efficacy, we used a shortened ferret CFTR minigene with a 159-bp deletion in the R domain to construct an rAAV vector (AV2/2.F5tg83-fCFTRΔR). This vector yielded an ∼17-fold increase in expression of CFTR and significantly improved Cl(-) currents in CF ALI cultures. Our study has identified a small enhancer/promoter combination that may have broad usefulness for rAAV-mediated CF gene therapy to the airway. PMID:25763813

  5. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  6. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  7. Tandem betatron accelerator

    NASA Astrophysics Data System (ADS)

    Keinigs, Rhon K.

    1991-04-01

    1407_50The tandem betatron is a compact, high-current induction accelerator that has the capability to accelerate electrons to an energy of order one gigavolt. Based upon the operating principle of a conventional betatron, the tandem betatron employs two synchronized induction cores operating 180 degrees out of phase. Embedded within the cores are the vacuum chambers, and these are connected by linear transport sections to allow for moving the beam back and forth between the two betatrons. The 180 degree phase shift between the core fluxes permits the circumvention of the flux swing constraint that limits the maximum energy gain of a conventional betatron. By transporting the beam between the synchronized cores, an electron can access more than one acceleration cycle, and thereby continue to gain energy. This added degree of freedom also permits a significant decrease in the size of the magnet system. Biasing coils provide independent control of the confining magnetic field. Provided that efficient beam switching can be performed, it appears feasible that a one gigavolt electron beam can be generated and confined. At this energy, a high current electron beam circulating in a one meter radius orbit could provide a very intense source of short wavelength ((lambda) < 10 nm) synchrotron radiation. This has direct application to the emerging field of x-ray lithography. At more modest energies (10 MeV-30 MeV) a compact tandem betatron could be employed in the fields of medical radiation therapy, industrial radiography, and materials processing.

  8. Tandem Dye-Sensitized Solar Cells Based on TCO-less Back Contact Bottom Electrodes

    NASA Astrophysics Data System (ADS)

    Baranwal, Ajay K.; Fujikawa, Naotaka; Nishimura, Terumi; Ogomi, Yuhei; Pandey, Shyam S.; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Mechanically stacked and series connected tandem dye sensitized solar cells (T-DSSCs) are fabricated in novel architectures. The architecture consist of TCO tandem DSSCs stacked with TCO-less back contact DSSCs as bottom electrodes (TCO-less tandem DSSCs). Resulting TCO-less tandem DSSCs architecture finds its usefulness in efficient photon harvesting due to improved light transmission and enhanced photons reaching to the bottom electrodes. The fabricated tandem performance was verified with visible light harvesting model dyes D131 and N719 as a proof of concept and provided the photoconversion efficiency (PCE) of 6.06% under simulated condition. Introduction of panchromatic photon harvesting by utilizing near infrared light absorbing Si-phthalocyanine dye in combination with the modified tandem DSSC architecture led to enhancement in the PCE up to 7.19%.

  9. Nuclear factor {kappa}B (NF{kappa}B) and cyclooxygenase-2 (Cox-2) expression in the irradiated colorectum is associated with subsequent histopathological changes

    SciTech Connect

    Yeoh, Ann S.J. . E-mail: ann.yeoh@imvs.sa.gov.au; Bowen, Joanne M.; Gibson, Rachel J.; Keefe, Dorothy M.K.

    2005-12-01

    Purpose: Recent studies have proposed that mucositis development is the same throughout the gastrointestinal tract (GIT), as it is formed from one structure embryologically. Radiation-induced oral mucositis studies have outlined the key involvement of nuclear factor {kappa}B (NF{kappa}B) and cyclooxygenase-2 (Cox-2) in its pathobiology. The purpose of this study was therefore to investigate the expression of NF{kappa}B and Cox-2 in the irradiated colorectum and to correlate these with the associated histopathologic changes. Methods and Materials: Colorectal tissues from 28 colorectal cancer patients treated with preoperative radiotherapy were analyzed for histopathologic changes using a variety of tissue staining methods. The expression of NF{kappa}B and Cox-2 in these tissues was investigated using immunohistochemistry. Changes in expression of these proteins were then correlated with the histopathologic changes. Results: Radiation therapy caused injury to the normal colorectal tissue surrounding tumor site, particularly around the blood vessels. These changes were reflected in changes in NF{kappa}B and Cox-2 expression. Conclusions: We conclude that different regions of the GIT, the colorectum, and oral cavity have similar underlying mechanisms of radiation-induced mucositis. Understanding these mechanisms will allow new approaches to be developed to specifically target steps in the evolution of alimentary mucositis.

  10. Isoliquiritigenin Inhibits Metastatic Breast Cancer Cell-induced Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Human Osteoblastic Cells.

    PubMed

    Lee, Sun Kyoung; Park, Kwang-Kyun; Kim, Ki Rim; Kim, Hyun-Jeong; Chung, Won-Yoon

    2015-12-01

    Bone destruction induced by the metastasis of breast cancer cells is a frequent complication that is caused by the interaction between cancer cells and bone cells. Receptor activator of nuclear factor kappa-B ligand (RANKL) and the endogenous soluble RANKL inhibitor, osteoprotegerin (OPG), directly play critical roles in the differentiation, activity, and survival of osteoclasts. In patients with bone metastases, osteoclastic bone resorption promotes the majority of skeletal-related events and propagates bone metastases. Therefore, blocking osteoclast activity and differentiation via RANKL inhibition can be a promising therapeutic approach for cancer-associated bone diseases. We investigated the potential of isoliquiritigenin (ISL), which has anti-proliferative, anti-angiogenic, and anti-invasive effects, as a preventive and therapeutic agent for breast cancer cell-induced bone destruction. ISL at non-toxicity concentrations significantly inhibited the RANKL/OPG ratio by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimulated with conditioned medium (CM) of MDA-MB-231 cells. In addition, ISL reduced the expression of cyclooxygenase-2 in hFOB1.19 cells stimulated by CM of MDA-MB-231 cells. Therefore, ISL may have inhibitory potential on breast cancer-induced bone destruction. PMID:26734591

  11. Effect of fluoride on calcium ion concentration and expression of nuclear transcription factor kappa-B ρ65 in rat hippocampus.

    PubMed

    Zhang, Jing; Zhu, Wen-Jing; Xu, Xiao-Hong; Zhang, Zi-Gui

    2011-07-01

    The study investigated the neurotoxicity of drinking water fluorosis in rat hippocampus. Just weaning male Sprague-Dawley (SD) rats were given 15, 30, 60 mg/L NaF solution and tap water for 9 months. The calcium ion concentration ([Ca(2+)]) in synaptosomes was measured by double wavelength fluorescence spectrophotometer and the expression level of nuclear transcription factor kappa-B ρ65 (NF-κB ρ65) in hippocampal CA3 region was measured by immunohistochemistry. The results showed that [Ca(2+)] significantly increased (F = 33.218, P < 0.01) in moderate fluoride group compared with the control group, and the expression level of NF-κB ρ65 in CA3 region presented an increasing trend as fluoride concentration increased. These results indicate that increase of synaptosomes [Ca(2+)] and NF-κB ρ65 expression level may be the molecular basis of central nervous system damage caused by chronic fluoride intoxication. NF-κB ρ65 in CA3 region is probably a target molecule for fluorosis. PMID:20304620

  12. Isoliquiritigenin Inhibits Metastatic Breast Cancer Cell-induced Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Human Osteoblastic Cells

    PubMed Central

    Lee, Sun Kyoung; Park, Kwang-Kyun; Kim, Ki Rim; Kim, Hyun-Jeong; Chung, Won-Yoon

    2015-01-01

    Bone destruction induced by the metastasis of breast cancer cells is a frequent complication that is caused by the interaction between cancer cells and bone cells. Receptor activator of nuclear factor kappa-B ligand (RANKL) and the endogenous soluble RANKL inhibitor, osteoprotegerin (OPG), directly play critical roles in the differentiation, activity, and survival of osteoclasts. In patients with bone metastases, osteoclastic bone resorption promotes the majority of skeletal-related events and propagates bone metastases. Therefore, blocking osteoclast activity and differentiation via RANKL inhibition can be a promising therapeutic approach for cancer-associated bone diseases. We investigated the potential of isoliquiritigenin (ISL), which has anti-proliferative, anti-angiogenic, and anti-invasive effects, as a preventive and therapeutic agent for breast cancer cell-induced bone destruction. ISL at non-toxicity concentrations significantly inhibited the RANKL/OPG ratio by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimulated with conditioned medium (CM) of MDA-MB-231 cells. In addition, ISL reduced the expression of cyclooxygenase-2 in hFOB1.19 cells stimulated by CM of MDA-MB-231 cells. Therefore, ISL may have inhibitory potential on breast cancer-induced bone destruction. PMID:26734591

  13. Decision Analysis of Postremission Therapy in Cytogenetically Intermediate-Risk Acute Myeloid Leukemia: The Impact of FLT3 Internal Tandem Duplication, Nucleophosmin, and CCAAT/Enhancer Binding Protein Alpha.

    PubMed

    Kurosawa, Saiko; Yamaguchi, Hiroki; Yamaguchi, Takuhiro; Fukunaga, Keiko; Yui, Shunsuke; Wakita, Satoshi; Kanamori, Heiwa; Usuki, Kensuke; Uoshima, Nobuhiko; Yanada, Masamitsu; Shono, Katsuhiro; Ueki, Toshimitsu; Mizuno, Ishikazu; Yano, Shingo; Takeuchi, Jin; Kanda, Junya; Okamura, Hiroshi; Inamoto, Yoshihiro; Inokuchi, Koiti; Fukuda, Takahiro

    2016-06-01

    We performed a decision analysis comparing allogeneic hematopoietic cell transplantation (allo-HCT) versus chemotherapy in first complete remission for patients with cytogenetically intermediate-risk acute myeloid leukemia, depending on the presence or absence of FLT3-internal tandem duplication (ITD), nucleophosmin (NPM1), and CCAAT/enhancer binding protein alpha (CEBPA) mutations. Adjusted means of the patient-reported EQ-5D index were used as quality-of-life (QOL) estimates. In 332 patients for which FLT3-ITD status was available, FLT3-ITD was present in 60. In 272 patients without FLT3-ITD, NPM1 mutations were present in 83. CEBPA biallelic mutations were detected in 53 patients. For patients harboring FLT3-ITD, allo-HCT improved life expectancy (LE) (52 versus 32 months during 10-year observation) and QOL-adjusted life expectancy (QALE, 36 versus 21). Monte-Carlo simulation identified allo-HCT as the favored strategy in 100% of simulations. In patients without FLT3-ITD, allo-HCT improved LE/QALE with or without NPM1 mutations. However, sensitivity analyses showed that the results were not robust enough. For patients harboring CEBPA biallelic mutations, chemotherapy was favored (LE, 53 versus 84; QALE, 37 versus 59), whereas, for patients with monoallelic mutations or wild-type CEBPA, allo-HCT was favored (LE, 68 versus 54; QALE, 48 versus 37). Sensitivity analyses did not change the results in either group. In conclusion, based on a Markov decision analysis, allo-HCT was a favored postremission strategy in patients with FLT3-ITD, and chemotherapy was favored in patients with biallelic CEBPA mutations. A prospective study is warranted to determine the value of allo-HCT, especially in FLT3-ITD-negative patients. PMID:27040395

  14. Organic Tandem Solar Cells: Design and Formation

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chao

    In the past decade, research on organic solar cells has gone through an important development stage leading to major enhancements in power conversion efficiency, from 4% to 9% in single-junction devices. During this period, there are many novel processing techniques and device designs that have been proposed and adapted in organic solar-cell devices. One well-known device architecture that helps maximize the solar cell efficiency is the multi-junction tandem solar-cell design. Given this design, multiple photoactive absorbers as subcells are stacked in a monolithic fashion and assembled via series connection into one complete device, known as the tandem solar cell. Since multiple absorbers with different optical energy bandgaps are being applied in one tandem solar-cell device, the corresponding solar cell efficiency is maximized through expanded absorption spectrum and reduced carrier thermalization loss. In Chapter 3, the architecture of solution-processible, visibly transparent solar cells is introduced. Unlike conventional organic solar-cell devices with opaque electrodes (such as silver, aluminum, gold and etc.), the semi-transparent solar cells rely on highly transparent electrodes and visibly transparent photoactive absorbers. Given these two criteria, we first demonstrated the visibly transparent single-junction solar cells via the polymer absorber with near-infrared absorption and the top electrode based on solution-processible silver nanowire conductor. The highest visible transparency (400 ˜ 700 nm) of 65% was achieved for the complete device structure. More importantly, power conversion efficiency of 4% was also demonstrated. In Chapter 4, we stacked two semi-transparent photoactive absorbers in the tandem architecture in order to realize the semi-transparent tandem solar cells. A noticeable performance improvement from 4% to 7% was observed. More importantly, we modified the interconnecting layers with the incorporation of a thin conjugated

  15. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  16. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  17. Collective Flow Enhancement by Tandem Flapping Wings.

    PubMed

    Gravish, Nick; Peters, Jacob M; Combes, Stacey A; Wood, Robert J

    2015-10-30

    We examine the fluid-mechanical interactions that occur between arrays of flapping wings when operating in close proximity at a moderate Reynolds number (Re≈100-1000). Pairs of flapping wings are oscillated sinusoidally at frequency f, amplitude θ_{M}, phase offset ϕ, and wing separation distance D^{*}, and outflow speed v^{*} is measured. At a fixed separation distance, v^{*} is sensitive to both f and ϕ, and we observe both constructive and destructive interference in airspeed. v^{*} is maximized at an optimum phase offset, ϕ_{max}, which varies with wing separation distance, D^{*}. We propose a model of collective flow interactions between flapping wings based on vortex advection, which reproduces our experimental data. PMID:26565499

  18. Collective Flow Enhancement by Tandem Flapping Wings

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Peters, Jacob M.; Combes, Stacey A.; Wood, Robert J.

    2015-10-01

    We examine the fluid-mechanical interactions that occur between arrays of flapping wings when operating in close proximity at a moderate Reynolds number (Re ≈100 - 1000 ). Pairs of flapping wings are oscillated sinusoidally at frequency f , amplitude θM, phase offset ϕ , and wing separation distance D*, and outflow speed v* is measured. At a fixed separation distance, v* is sensitive to both f and ϕ , and we observe both constructive and destructive interference in airspeed. v* is maximized at an optimum phase offset, ϕmax, which varies with wing separation distance, D*. We propose a model of collective flow interactions between flapping wings based on vortex advection, which reproduces our experimental data.

  19. Osteopontin is associated with nuclear factor {kappa}B gene expression during tail-suspension-induced bone loss

    SciTech Connect

    Ishijima, Muneaki; Ezura, Yoichi . E-mail: ezura.mph@mril.tmd.ac.jp; Tsuji, Kunikazu

    2006-10-01

    Osteoporosis due to unloading-induced bone loss is a critical issue in the modern aging society. Although the mechanisms underlying this phenomenon are largely unknown, osteopontin (OPN) is one of the critical mediators required for unloading-induced bone loss [M. Ishijima, S.R. Rittling, T. Yamashita, K. Tsuji, H. Kurosawa, A. Nifuji, D.T. Denhardt, and M. Noda, Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin, J Exp Med, 193 (2001) 399-404]. To clarify the molecular bases for OPN actions, we carried out microarray analyses on the genes expressed in the femoral bone marrow cells in wild type and OPN-/- mice. The removal of the mechanical load induced bone loss in wild type, but not in OPN-/- mice, as previously reported. Expression analysis of 9586 cDNAs on a microarray system revealed that OPN deficiency blocked tail-suspension-induced expression of ten genes (group A). This observation was confirmed based on semi-quantitative RT-PCR analyses. On the other hand, expression of four genes (group B) was not altered by tail suspension in wild type but was enhanced in OPN-deficient mice. NF-{kappa}B p105 subunit gene (Nfkb1) was found in group A and Bax in group B. p53 gene expression was upregulated by tail suspension in wild type mice, but it was no longer observed in OPN-/- mice. These data indicate that OPN acts to mediate mechanical stress signaling upstream to the genes encoding apoptosis-related molecules, and its action is associated with alteration of the genes.

  20. Characterization of osteoprotegerin binding to glycosaminoglycans by surface plasmon resonance: Role in the interactions with receptor activator of nuclear factor {kappa}B ligand (RANKL) and RANK

    SciTech Connect

    Theoleyre, S.; Kwan Tat, S.; Vusio, P.; Blanchard, F.; Gallagher, J.; Ricard-Blum, S.; Fortun, Y.; Padrines, M.; Redini, F.; Heymann, D. . E-mail: dominique.heymann@univ-nantes.fr

    2006-08-25

    Osteoprotegerin (OPG) is a decoy receptor for receptor activator of nuclear factor {kappa}B ligand (RANKL), a key inducer of osteoclastogenesis via its receptor RANK. We previously showed that RANK, RANKL, and OPG are able to form a tertiary complex and that OPG must be also considered as a direct effector of osteoclast functions. As OPG contains a heparin-binding domain, the present study investigated the interactions between OPG and glycosaminoglycans (GAGs) by surface plasmon resonance and their involvement in the OPG functions. Kinetic data demonstrated that OPG binds to heparin with a high-affinity (K {sub D}: 0.28 nM) and that the pre-incubation of OPG with heparin inhibits in a dose-dependent manner the OPG binding to the complex RANK-RANKL. GAGs from different structure/origin (heparan sulfate, dermatan sulfate, and chondroitin sulfate) exert similar activity on OPG binding. The contribution of the sulfation pattern and the size of the oligosaccharide were determined in this inhibitory mechanism. The results demonstrated that sulfation is essential in the OPG-blocking function of GAGs since a totally desulfated heparin loses its capacity to bind and to block OPG binding to RANKL. Moreover, a decasaccharide is the minimal structure that totally inhibits the OPG binding to the complex RANK-RANKL. Western blot analysis performed in 293 cells surexpressing RANKL revealed that the pre-incubation of OPG with these GAGs strongly inhibits the OPG-induced decrease of membrane RANKL half-life. These data support an essential function of the related glycosaminoglycans heparin and heparan sulfate in the activity of the triad RANK-RANKL-OPG.

  1. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB.

    PubMed Central

    Yu, Zhiyuan; Zhang, Wenzheng; Kone, Bruce C

    2002-01-01

    Prolific generation of NO by inducible nitric oxide synthase (iNOS) can cause unintended injury to host cells during glomerulonephritis and other inflammatory diseases. While much is known about the mechanisms of iNOS induction, few transcriptional repressors have been found. We explored the role of signal transducers and activators of transcription 3 (STAT3) proteins in interleukin (IL)-1beta- and lipopolysaccharide (LPS)+interferon (IFN)-gamma-mediated iNOS induction in murine mesangial cells. Both stimuli induced rapid phosphorylation of STAT3 and sequence-specific STAT3 DNA-binding activity. Supershift assays with a STAT3 element probe demonstrated that nuclear factor kappaB (NF-kappaB) p65 and p50 complexed with STAT3 in the DNA-protein complex. The direct interaction of STAT3 and NF-kappaB p65 was verified in vivo by co-immunoprecipitation and in vitro by pull-down assays with glutathione S-transferase-NF-kappaB p65 fusion protein and in vitro -translated STAT3alpha. Overexpression of STAT3 dramatically inhibited IL-1beta- or LPS+IFN-gamma-mediated induction of iNOS promoter-luciferase constructs that contained the wild-type iNOS promoter or ones harbouring mutated STAT-binding elements. In tests of indirect inhibitory effects of STAT3, overexpression of STAT3 dramatically inhibited the activity of an NF-kappaB-dependent promoter devoid of STAT-binding elements without affecting NF-kappaB DNA-binding activity. Thus STAT3, via direct interactions with NF-kappaB p65, serves as a dominant-negative inhibitor of NF-kappaB activity to suppress indirectly cytokine induction of the iNOS promoter in mesangial cells. These results provide a new model for the termination of NO production by activated iNOS following exposure to pro-inflammatory stimuli. PMID:12057007

  2. Hyperbaric Oxygen and Ginkgo Biloba Extract Ameliorate Cognitive and Memory Impairment via Nuclear Factor Kappa-B Pathway in Rat Model of Alzheimer's Disease

    PubMed Central

    Zhang, Li-Da; Ma, Li; Zhang, Li; Dai, Jian-Guo; Chang, Li-Gong; Huang, Pei-Lin; Tian, Xiao-Qiang

    2015-01-01

    Background: Hyperbaric oxygen (HBO) and Ginkgo biloba extract (e.g., EGB 761) were shown to ameliorate cognitive and memory impairment in Alzheimer's disease (AD). However, the exact mechanism remains elusive. The aim of the present study was to investigate the possible mechanisms of HBO and EGB 761 via the function of nuclear factor kappa-B (NF-κB) pathway. Methods: AD rats were induced by injecting β-amyloid 25–35 into the hippocampus. All animals were divided into six groups: Normal, sham, AD model, HBO (2 atmosphere absolute; 60 min/d), EGB 761 (20 mg·kg−1·d−1), and HBO/EGB 761 groups. Morris water maze tests were used to assess cognitive, and memory capacities of rats; TdT-mediated dUTP Nick-End Labeling staining and Western blotting were used to analyze apoptosis and NF-κB pathway-related proteins in hippocampus tissues. Results: Morris water maze tests revealed that EGB 761 and HBO significantly improved the cognitive and memory ability of AD rats. In addition, the protective effect of combinational therapy (HBO/EGB 761) was superior to either HBO or EGB 761 alone. In line, reduced apoptosis with NF-κB pathway activation was observed in hippocampus neurons treated by HBO and EGB 761. Conclusions: Our results suggested that HBO and EGB 761 improve cognitive and memory capacity in a rat model of AD. The protective effects are associated with the reduced apoptosis with NF-κB pathway activation in hippocampus neurons. PMID:26608991

  3. Fueling of tandem mirror reactors

    SciTech Connect

    Gorker, G.E.; Logan, B.G.

    1985-01-01

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design.

  4. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Tandem-switched transport and tandem charge. 69... SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.111 Tandem-switched transport and tandem...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching...

  5. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Tandem-switched transport and tandem charge. 69... SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.111 Tandem-switched transport and tandem...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching...

  6. Ten tandem repeats of {beta}-hCG 109-118 enhance immunogenicity and anti-tumor effects of {beta}-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65

    SciTech Connect

    Zhang Yankai; Yan Rong; He Yi; Liu Wentao; Cao Rongyue; Yan Ming; Li Taiming; Liu Jingjing; Wu Jie . E-mail: wu_jie97@yahoo.com.cn

    2006-07-14

    The {beta}-subunit of human chorionic gonadotropin ({beta}-hCG) is secreted by many kinds of tumors and it has been used as an ideal target antigen to develop vaccines against tumors. In view of the low immunogenicity of this self-peptide,we designed a method based on isocaudamer technique to repeat tandemly the 10-residue sequence X of {beta}-hCG (109-118), then 10 tandemly repeated copies of the 10-residue sequence combined with {beta}-hCG C-terminal 37 peptides were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-X10-{beta}hCGCTP37 as an immunogen. In this study, we examined the effect of the tandem repeats of this 10-residue sequence in eliciting an immune by comparing the immunogenicity and anti-tumor effects of the two immunogens, HSP65-X10-{beta}hCGCTP37 and HSP65-{beta}hCGCTP37 (without the 10 tandem repeats). Immunization of mice with the fusion protein HSP65-X10-{beta}hCGCTP37 elicited much higher levels of specific anti-{beta}-hCG antibodies and more effectively inhibited the growth of Lewis lung carcinoma (LLC) in vivo than with HSP65-{beta}hCGCTP37, which should suggest that HSP65-X10-{beta}hCGCTP37 may be an effective protein vaccine for the treatment of {beta}-hCG-dependent tumors and multiple tandem repeats of a certain epitope are an efficient method to overcome the low immunogenicity of self-peptide antigens.

  7. Sequence alignment with tandem duplication

    SciTech Connect

    Benson, G.

    1997-12-01

    Algorithm development for comparing and aligning biological sequences has, until recently, been based on the SI model of mutational events which assumes that modification of sequences proceeds through any of the operations of substitution, insertion or deletion (the latter two collectively termed indels). While this model has worked farily well, it has long been apparent that other mutational events occur. In this paper, we introduce a new model, the DSI model which includes another common mutational event, tandem duplication. Tandem duplication produces tandem repeats which are common in DNA, making up perhaps 10% of the human genome. They are responsible for some human diseases and may serve a multitude of functions in DNA regulation and evolution. Using the DSI model, we develop new exact and heuristic algorithms for comparing and aligning DNA sequences when they contain tandem repeats. 30 refs., 3 figs.

  8. Phytochemicals of Aristolochia tagala and Curcuma caesia exert anticancer effect by tumor necrosis factor-α-mediated decrease in nuclear factor kappaB binding activity

    PubMed Central

    Hadem, Khetbadei Lysinia Hynniewta; Sharan, Rajeshwar Nath; Kma, Lakhan

    2015-01-01

    Rationale: The active compounds or metabolites of herbal plants exert a definite physiological action on the human body and thus are widely used in human therapy for various diseases including cancer. Previous studies by our group have reported the anticarcinogenic properties of the two herbal plants extracts (HPE) of Aristolochia tagala (AT) Cham. and Curcuma caesia (CC) Roxb. in diethylnitrosamine-induced mouse liver cancer in vivo. The anticarcinogenic properties of these extracts may be due to the active compounds present in them. Objectives: Our objective was to analyze the phytochemical constituents present in AT and CC, to assay their antioxidant properties and to determine their role in a possible intervention on tumor progression. Materials and Methods: Qualitative and quantitative analysis of constituent with anticancer properties present in the crude methanol extract of the two plants CC and AT was carried out following standard methods. Separation of the phytochemical compounds was done by open column chromatography. The extracts were eluted out with gradients of chloroform-methanol solvents. Ultraviolet-visible spectra of individual fractions were recorded, and the fractions were combined based on their λmax. The free radical scavenging activity of crude extracts and fractions obtained was also determined; the radical scavenging activity was expressed as IC50. High-performance thin layer chromatography (HPTLC) analysis of fractionated compounds was carried out to identify partially the phytochemical compounds. The anti-inflammatory and anticancer activity of AT and CC extracts was studied in DEN induced BALB/c mice by analyzing the tumor necrosis factor-α (TNF-α) levels in serum and the nuclear factor kappaB (NF-κB) binding activity in nuclear extracts of the liver. Results: It was observed that both AT and CC contained compounds such as phenolics, tannins, flavonoids, terpenoids, etc., and both extracts exhibited antioxidant capacity. HPTLC

  9. High efficiency all-polymer tandem solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-05-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells.

  10. High efficiency all-polymer tandem solar cells.

    PubMed

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  11. High efficiency all-polymer tandem solar cells

    PubMed Central

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  12. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given. PMID:26266847

  13. Tandem Cylinder Noise Predictions

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  14. Landsat radiometric cross-calibration: extended analysis of tandem image data sets

    NASA Astrophysics Data System (ADS)

    Teillet, P. M.; Markham, Brian L.; Irish, Richard R.

    2005-10-01

    The paper presents the results of an extended analysis of image data sets acquired during the tandem-orbit configuration in 1999 for the purposes of radiometric cross-calibration of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-5 Thematic Mapper (TM) sensors. Earlier work focused on the tandem pair for the Railroad Valley Playa, Nevada (RVPN) site to tie down the Landsat-5 TM calibration based on the more accurate Landsat-7 ETM+ calibration. This paper describes new results based on as many as eight tandem image pairs. The additional tandem images are of vegetated areas for which little or no ground reference data were available. Increasing the number of tandem pairs yielded results for the Landsat 5 TM gain coefficients within approximately +/- 1 % of the RVPN-based results in spectral bands 1, 2, 3 and 7, and within -2 % and -4 % of the RVPN-based results for spectral bands 4 and 5, respectively.

  15. Titan and Enceladus mission (TANDEM)

    NASA Astrophysics Data System (ADS)

    Coustenis, A.

    2007-08-01

    Our understanding of Titan's atmosphere and surface has recently been enhanced by the data returned by the Cassini-Huygens mission. The Cassini orbiter will continue to be operational for about 3 more years during its extended mission. After this mission, any unanswered questions will forever remain unknown, unless we go back with an optimized orbital tour and advanced instrumentation. Considering the complementary nature of the geological, chemical and evolutionary history of Titan and Enceladus, we propose to carry out studies for a mission to perform an in situ exploration of these two objects in tandem. In our proposal we determine key science measurements, the types of samples that would be needed and the instrument suites for achieving the science goals. In particular, we develop conceptual designs for delivering the science payload, including orbiters, aerial platforms and probes, and define a launch/delivery/communication management architecture. This mission will require new technologies and capabilities so that the science goals can be achieved within the cost cap and acceptable risks. International participation will play a key role in achieving all the science goals of this mission. We will build this mission concept around a central core of single orbiter, a single Titan aerial probe and a core group of category 1 instruments. Aerobraking with Titan's atmosphere will be given serious consideration to minimize resource requirements and risk. This approach will allow a single orbiter to be used for both Enceladus science and Titan science with final orbit around Titan and later release of aerial probe(s) into Titan's atmosphere. The Titan aerial probe may be a Montgolfière balloon concept that will use the waster heat ~ 1000 watts from a single RTG power system. There will be a release of penetrator(s) on Enceladus also. This proposal addresses directly several of the scientific questions highlighted in the ESA Cosmic Vision 2015-2025 call, particularly

  16. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers

    PubMed Central

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-01-01

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%. PMID:24694838

  17. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    PubMed Central

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-01-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple. PMID:27489138

  18. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-08-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple.

  19. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    SciTech Connect

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-10-15

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V{sub OC} = 1.041 V, J{sub SC} = 2.97 mA/cm{sup 2}, FF = 32.3%) to 2.6% (V{sub OC} = 1.336 V, J{sub SC} = 4.65 mA/cm{sup 2}, FF = 41.98%) due to the eliminated interfacial series resistance.

  20. In vivo and in vitro analysis of the human tissue-type plasminogen activator gene promoter in neuroblastomal cell lines: evidence for a functional upstream kappaB element.

    PubMed

    Lux, W; Klobeck, H-G; Daniel, P B; Costa, M; Medcalf, R L; Schleuning, W-D

    2005-05-01

    Besides its well-established role in wound healing and fibrinolysis, tissue-type plasminogen activator (t-PA) has been shown to contribute to cognitive processes and memory formation within the central nervous system, and to promote glutamate receptor-mediated excitotoxicity. The t-PA gene is expressed and regulated in neuronal cells but the regulatory transcriptional processes directing this expression are still poorly characterized. We have used DNase I-hypersensitivity mapping and in vivo foot printing to identify putative regulatory elements and transcription factor binding sites in two human neuroblastomal (KELLY and SK-N-SH) and one human glioblastomal (SNB-19) cell lines. Hypersensitive sites were found in the proximal promoter region of all cell lines, and within the first exon for KELLY and SNB-19 cells. Mapping of methylation-protected residues in vivo detected a cluster of protected residues corresponding to a cAMP response element (CRE) and Sp1 sites in the proximal promoter previously shown to be essential for basal expression in other cell types. Protected residues were also found at other sites, notably a kappaB element at position bp -3081 to -3072 that was partly protected in KELLY and SNB-19 cells. Analysis of transfected reporter constructs in KELLY and SNB-19 cells confirmed that this particular element is functionally significant in the transactivation of the t-PA promoter in both cell types. This study defines, by in vivo and in vitro methods, a previously undescribed kappaB site in the t-PA gene promoter that influences t-PA expression in neuronal cells. PMID:15869598

  1. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  2. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  3. Tandem Filter Development for Thermophotovoltaic Energy Conversion from January 2003 to February 2006

    SciTech Connect

    Fourspring PM

    2007-03-19

    The intent of this report is to summarize the tandem filter development for spectral control of thermophotovoltaic energy conversion from January 2003 to the termination of the program in February 2006 and to closeout tandem filter development in order to capture the knowledge gained from the development effort. Over the last three years, the goals of the tandem filter development have been the following: (1) Study the limits of the design of the interference optical coatings component of a tandem filter in order to develop higher performance designs; (2) Enhance the fabrication process of the optical interference coatings to increase the fidelity with the intended design and allow more complex, higher performing designs; (3) Support TPV module testing by providing tandem filters and assembly assistance; (4) Identify and develop materials for optical interference coatings that are stable at higher temperatures than current materials; and (5) Improve the understanding of the directional and spectral reflectance and transmittance characterization of the completed tandem filters to insure the veracity of the characterization data and to provide useful feedback to the tandem filter development process. This development effort has been a collaboration between KAPL and its contracted development partner, Rugate Technologies Inc.

  4. Short Tandem Repeat DNA Internet Database

    National Institute of Standards and Technology Data Gateway

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  5. Detecting long tandem duplications in genomic sequences

    PubMed Central

    2012-01-01

    Background Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. Results In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,a we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS < 1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. Conclusions ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations. PMID:22568762

  6. The characterization of tandem and corrugated wings

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng; Broering, Timothy; Hord, Kyle; Prater, Russell

    2014-02-01

    Dragonfly wings have two distinct features: a tandem configuration and wing corrugation. Both features have been extensively studied with the aim to understand the superior flight performance of dragonflies. In this paper we review recent development of tandem and corrugated wing aerodynamics. With regards to the tandem configuration, this review will focus on wing/wing and wing/vortex interactions at different flapping modes and wing spacing. In addition, the aerodynamics of tandem wings under gusty conditions will be reviewed and compared with isolated wings to demonstrate the gust resistance characteristics of flapping wings. Regarding corrugated wings, we review their structural and aerodynamic characteristics.

  7. Recent Activities at Tokai Tandem Accelerator

    SciTech Connect

    Ishii, Tetsuro

    2010-05-12

    Recent activities at the JAEA-Tokai tandem accelerator facility are presented. The terminal voltage of the tandem accelerator reached 19.1 MV by replacing acceleration tubes. The multi-charged positive-ion injector was installed in the terminal of the tandem accelerator, supplying high-current noble-gas ions. A superconducting cavity for low-velocity ions was developed. Radioactive nuclear beams of {sup 8,9}Li and fission products, produced by the tandem accelerator and separated by the ISOL, were supplied with experiment. Recent results of nuclear physics experiments are reported.

  8. Tandem mirror technology demonstration facility

    SciTech Connect

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  9. Improved monolithic tandem solar cell

    SciTech Connect

    Wanlass, M.W.

    1991-04-23

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  10. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  11. 33 CFR 401.41 - Tandem lockage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Tandem lockage. 401.41 Section 401.41 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.41 Tandem lockage. Where two...

  12. Micromorph silicon tandem solar cells with fully integrated 3D photonic crystal intermediate reflectors

    NASA Astrophysics Data System (ADS)

    Üpping, J.; Bielawny, A.; Fahr, S.; Rockstuhl, C.; Lederer, F.; Steidl, L.; Zentel, R.; Beckers, T.; Lambertz, A.; Carius, R.; Wehrspohn, R. B.

    2010-05-01

    A 3D photonic intermediate reflector for textured micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell providing an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally-selective intermediate reflective layer (IRL) is necessary. We present the first fully-integrated 3D photonic thin-film IRL device incorporated on a planar substrate. Using a ZnO inverted opal structure the external quantum efficiency of the top cell in the spectral region of interest could be enhanced. As an outlook we present the design and the preparation of a 3D self organized photonic crystal structure in a textured micromorph tandem solar cell.

  13. Superior radiation-resistant properties of InGaP/GaAs tandem solar cells

    SciTech Connect

    Yamaguchi, M.; Okuda, T.; Taylor, S.J.; Takamoto, T.; Ikeda, E.; Kurita, H.

    1997-03-01

    The observation of minority-carrier injection-enhanced annealing of radiation damage to InGa{sub 0.5}P{sub 0.5}/GaAs tandem solar cells is reported. Radiation resistance of InGaP/GaAs tandem solar cells as is similar with GaAs-on-Ge cells have been confirmed with 1 MeV electron irradiations. Moreover, minority-carrier injection under light illumination and forward bias conditions is shown to enhance defect annealing in InGaP and to result in the recovery of InGaP/GaAs tandem solar cell properties. These results suggest that the InGaP/GaAs(/Ge) multijunction solar cells and InGaP-based devices have great potential for space applications. {copyright} {ital 1997 American Institute of Physics.}

  14. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    NASA Astrophysics Data System (ADS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-06-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  15. Tandem mass spectrometry: analysis of complex mixtures

    SciTech Connect

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated.

  16. Software dependability in the Tandem GUARDIAN system

    NASA Technical Reports Server (NTRS)

    Lee, Inhwan; Iyer, Ravishankar K.

    1995-01-01

    Based on extensive field failure data for Tandem's GUARDIAN operating system this paper discusses evaluation of the dependability of operational software. Software faults considered are major defects that result in processor failures and invoke backup processes to take over. The paper categorizes the underlying causes of software failures and evaluates the effectiveness of the process pair technique in tolerating software faults. A model to describe the impact of software faults on the reliability of an overall system is proposed. The model is used to evaluate the significance of key factors that determine software dependability and to identify areas for improvement. An analysis of the data shows that about 77% of processor failures that are initially considered due to software are confirmed as software problems. The analysis shows that the use of process pairs to provide checkpointing and restart (originally intended for tolerating hardware faults) allows the system to tolerate about 75% of reported software faults that result in processor failures. The loose coupling between processors, which results in the backup execution (the processor state and the sequence of events) being different from the original execution, is a major reason for the measured software fault tolerance. Over two-thirds (72%) of measured software failures are recurrences of previously reported faults. Modeling, based on the data, shows that, in addition to reducing the number of software faults, software dependability can be enhanced by reducing the recurrence rate.

  17. Small GTPase Rho signaling is involved in {beta}1 integrin-mediated up-regulation of intercellular adhesion molecule 1 and receptor activator of nuclear factor {kappa}B ligand on osteoblasts and osteoclast maturation

    SciTech Connect

    Hirai, Fumihiko; Nakayamada, Shingo; Okada, Yosuke; Saito, Kazuyoshi; Kurose, Hitoshi; Mogami, Akira; Tanaka, Yoshiya . E-mail: tanaka@med.uoeh-u.ac.jp

    2007-04-27

    We assessed the characteristics of human osteoblasts, focusing on small GTPase Rho signaling. {beta}1 Integrin were highly expressed on osteoblasts. Engagement of {beta}1 integrins by type I collagen augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor {kappa}B ligand (RANKL) on osteoblasts. Rho was activated by {beta}1 stimulation in osteoblasts. {beta}1 Integrin-induced up-regulation of ICAM-1 and RANKL was inhibited by transfection with adenoviruses encoding C3 transferase or pretreated with Y-27632, specific Rho and Rho-kinase inhibitors. Engagement of {beta}1 integrin on osteoblasts induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) in a coculture system of osteoblasts and peripheral monocytes, but this action was completely abrogated by transfection of C3 transferase. Our results indicate the direct involvement of Rho-mediated signaling in {beta}1 integrin-induced up-regulation of ICAM-1 and RANKL and RANKL-dependent osteoclast maturation. Thus, Rho-mediated signaling in osteoblasts seems to introduce major biases to bone resorption.

  18. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  19. Tandem balloon catheter for coronary angioplasty.

    PubMed

    Finci, L; Meier, B; Steffenino, G; Rutishauser, W

    1986-01-01

    The Tandem balloon catheter is a triple lumen steerable catheter for coronary angioplasty with two separately inflatable balloons of different diameters. Indications and results of 26 consecutive patients treated with a Tandem balloon catheter are reviewed. Adequate distal pressure measurements were obtained in 71% of the cases. In ten patients, the Tandem balloon catheter was selected for two stenoses in different segments of the same coronary artery. Angioplasty was successful for all lesions in five and for at least the strategic lesions in five patients (in one only after changing to a single-balloon catheter). In the seven patients with stenoses in two different coronary arteries of various calibers, angioplasty was successful for both vessels in three and for one vessel in four patients. In the six patients with a very tight stenosis, where the Tandem balloon catheter was selected to predilate with the small balloon, the procedure was technically successful in all, but there was a myocardial infarction in one patient. In the three patients with a chronic total occlusion, where the stiffness of the Tandem balloon was the reason for selection, one recanalization was successful. The Tandem balloon catheter provides a handy tool for complex coronary angioplasty. It offers comparable ease in manipulation and pressure transmission and may save time, money, and radiation exposure by avoiding catheter exchanges. PMID:2949848

  20. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo

    PubMed Central

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis. PMID:27019631

  1. Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors.

    PubMed

    Lee, A H; Hong, J H; Seo, Y S

    2000-08-15

    Inflammatory cytokines such as tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) synergistically activate expression of the RANTES (regulated upon activation, normal T-cell expressed and secreted) gene, which plays a crucial role in the chemoattraction of leukocytes during the inflammatory response. To understand at the molecular level the mechanism by which the two cytokines activate RANTES gene expression, we determined the requirement of cis-acting elements in the RANTES promoter and trans-acting factors. The murine RANTES promoter contained one putative interferon regulatory factor, IRF, and three putative nuclear factor kappaB (NF-kappaB) binding sites. Specific destruction of the IRF binding site and one of the three NF-kappaB binding sites abolished the inducibility of promoter activity by IFN-gamma and TNF-alpha, respectively. In contrast, mutation of the other two putative NF-kappaB binding sites did not affect RANTES promoter activity significantly. In addition, the RANTES promoter was stimulated by co-transfection of plasmids that expressed either p65, an NF-kappaB family protein, or the IRF-1 transcription factor. RANTES promoters with mutations in the NF-kappaB or IRF binding sites were not stimulated by p65 or IRF-1 expression, respectively. In electrophoretic mobility-shift and immunologic assays, we showed that IRF-1 was induced after cells were treated with IFN-gamma and that NF-kappaB was activated by TNF-alpha treatment. These results demonstrate that both NF-kappaB and IRF-1 transcription factors mediate the induction of RANTES expression via their cognate cis-acting elements when cells are stimulated by TNF-alpha and IFN-gamma. PMID:10926836

  2. Zoledronate inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation via suppression of expression of nuclear factor of activated T-cell c1 and carbonic anhydrase 2.

    PubMed

    Nakagawa, Takayuki; Ohta, Kouji; Kubozono, Kazumi; Ishida, Yoko; Naruse, Takako; Takechi, Masaaki; Kamata, Nobuyuki

    2015-04-01

    Bisphosphonates (BPs) are widely used in the prevention of skeletal-related events (SRE), including osteoporosis, skeletal metastases of malignant tumours, and multiple myeloma. Osteonecrosis of the jaw (ONJ) is frequently reported as a major adverse effect induced by BP treatment. The receptor activator of the nuclear factor kappa-B ligand (RANKL) inhibitor, denosumab, has recently been used to prevent SRE, but the frequency of ONJ induced by denosumab is similar to that by BPs. This finding suggests that the inhibition of RANKL-mediated osteoclastogenesis may have a close relationship with the occurrence of ONJ. We therefore investigated the expression status of RANKL-inducible genes in zoledronate-treated mouse osteoclast precursor cells. The molecular targets of zoledronate in the RANKL signal pathway and additional factors associated with osteoclastogenesis were analysed by genome-wide screening. Microarray analysis identified that among 31 genes on 44 entities of RANKL-inducible genes, the mRNA expression level of two genes, i.e., nuclear factor of activated T-cells c1 (NFATc1) and carbonic anhydrase 2 (CAII), was decreased in zoledronate-treated cells. Subsequent analyses verified that these two genes were significantly silenced by zoledronate treatment and that their expression was restored following inhibition of zoledronate action by geranylgeraniol. Zoledronate inhibited RANKL-induced osteoclast differentiation by suppression of NFATc1 and CAII gene expression. Our results suggest that these genes might be common targets for zoledronate and denosumab in the mechanism underlying RANKL-induced osteoclast differentiation. A clear understanding of the common molecular mechanisms of bone-remodelling agents is thus essential for prevention of ONJ. PMID:25601046

  3. A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells.

    PubMed Central

    Shumway, Stuart D; Miyamoto, Shigeki

    2004-01-01

    Inducible activation of the transcription factor NF-kappaB (nuclear factor kappaB) is classically mediated by proteasomal degradation of its associated inhibitors, IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. However, certain B-lymphocytes maintain constitutively nuclear NF-kappaB activity (a p50-c-Rel heterodimer) which is resistant to inhibition by proteasome inhibitors. This activity in the WEHI-231 B-cell line is associated with continual and preferential degradation of IkappaBalpha, which is also unaffected by proteasome inhibitors. Pharmacological studies indicated that there was a correlation between inhibition of IkappaBalpha degradation and constitutive p50-c-Rel activity. Domain analysis of IkappaBalpha by deletion mutagenesis demonstrated that an N-terminal 36-amino-acid sequence of IkappaBalpha represented an instability determinant for constitutive degradation. Moreover, domain grafting studies indicated that this sequence was sufficient to cause IkappaBbeta, but not chloramphenicol acetyltransferase, to be rapidly degraded in WEHI-231 B-cells. However, this sequence was insufficient to target IkappaBbeta to the non-proteasome degradation pathway, suggesting that there was an additional cis-element(s) in IkappaBalpha that was required for complete targeting. Nevertheless, the NF-kappaB pool associated with IkappaBbeta now became constitutively active by virtue of IkappaBbeta instability in these cells. These findings further support the notion that IkappaB instability governs the maintenance of constitutive p50-c-Rel activity in certain B-cells via a unique degradation pathway. PMID:14763901

  4. Optimizing a tandem disk model

    SciTech Connect

    Healey, J.V.

    1983-07-01

    A very simple physicomathematical model, in which thin straight blades with zero drag skim across a plane rectangular disk, shows that the maximum power coefficient attains the classical maximum of 0.593 over a range of T and a zero or small negative value of alpha/sub 0/. This maximum appears independent of sigma and there are values of T and alpha/sub 0/ for which the speed through the disk becomes complex and the model breaks down. Extending this model to a tandem disk system leads to a difficulty in defining the power coefficient. Attempts to optimize the system output based on reference areas A/sub 1/, A/sub 2/, and A/sub 4/ prove futile and the sum of the coefficients is chosen for this purpose. For thin blades and zero drag the analytic solution is available and it shows that the maximum value of 2 X 0.593 is attained over a narrow range of slightly negative alpha/sub 0/ (blade nose in) and medium values of T. The maximum is independent of sigma. As T is increased, the model breaks down either after C /SUB psum/ becomes large and negative or after backflow through the downwind disk occurs. There appears to be no requirement on load distribution between the disks. By comparison, modeling a machine with NACA 0012 blades at Re = 1.34 X 10/sup 6/ shows that the maximum value of C /SUB psum/ depends on the solidity. For example, at sigma = 0.4, the maximum value of C /SUB psum/ is 83% of 2 X 0.593. At such high values of sigma, however, the ranges of alpha/sub 0/ and T over which solutions are available become very limited.

  5. Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You

    2015-03-01

    Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.

  6. Enhanced Interferon Signaling Pathway in Oral Cancer Revealed by Quantitative Proteome Analysis of Microdissected Specimens Using 16O/18O Labeling and Integrated Two-dimensional LC-ESI-MALDI Tandem MS*

    PubMed Central

    Chi, Lang-Ming; Lee, Chien-Wei; Chang, Kai-Ping; Hao, Sheng-Po; Lee, Hang-Mao; Liang, Ying; Hsueh, Chuen; Yu, Chia-Jung; Lee, I-Neng; Chang, Yin-Ju; Lee, Shih-Ying; Yeh, Yuan-Ming; Chang, Yu-Sun; Chien, Kun-Yi; Yu, Jau-Song

    2009-01-01

    Oral squamous cell carcinoma (OSCC) remains one of the most common cancers worldwide, and the mortality rate of this disease has increased in recent years. No molecular markers are available to assist with the early detection and therapeutic evaluation of OSCC; thus, identification of differentially expressed proteins may assist with the detection of potential disease markers and shed light on the molecular mechanisms of OSCC pathogenesis. We performed a multidimensional 16O/18O proteomics analysis using an integrated ESI-ion trap and MALDI-TOF/TOF MS system and a computational data analysis pipeline to identify proteins that are differentially expressed in microdissected OSCC tumor cells relative to adjacent non-tumor epithelia. We identified 1233 unique proteins in microdissected oral squamous epithelia obtained from three pairs of OSCC specimens with a false discovery rate of <3%. Among these, 977 proteins were quantified between tumor and non-tumor cells. Our data revealed 80 dysregulated proteins (53 up-regulated and 27 down-regulated) when a 2.5-fold change was used as the threshold. Immunohistochemical staining and Western blot analyses were performed to confirm the overexpression of 12 up-regulated proteins in OSCC tissues. When the biological roles of 80 differentially expressed proteins were assessed via MetaCore™ analysis, the interferon (IFN) signaling pathway emerged as one of the most significantly altered pathways in OSCC. As many as 20% (10 of 53) of the up-regulated proteins belonged to the IFN-stimulated gene (ISG) family, including ubiquitin cross-reactive protein (UCRP)/ISG15. Using head-and-neck cancer tissue microarrays, we determined that UCRP is overexpressed in the majority of cheek and tongue cancers and in several cases of larynx cancer. In addition, we found that IFN-β stimulates UCRP expression in oral cancer cells and enhances their motility in vitro. Our findings shed new light on OSCC pathogenesis and provide a basis for the

  7. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    PubMed

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. PMID:27203528

  8. Tandem constructs to mitigate transgene persistence: tobacco as a model.

    PubMed

    Al-Ahmad, Hani; Galili, Shmuel; Gressel, Jonathan

    2004-03-01

    Some transgenic crops can introgress genes into other varieties of the crop, to related weeds or themselves remain as 'volunteer' weeds, potentially enhancing the invasiveness or weediness of the resulting offspring. The presently suggested mechanisms for transgene containment allow low frequency of gene release (leakage), requiring the mitigation of continued spread. Transgenic mitigation (TM), where a desired primary gene is tandemly coupled with mitigating genes that are positive or neutral to the crop but deleterious to hybrids and their progeny, was tested as a mechanism to mitigate transgene introgression. Dwarfism, which typically increases crop yield while decreasing the ability to compete, was used as a mitigator. A construct of a dominant ahasR (acetohydroxy acid synthase) gene conferring herbicide resistance in tandem with the semidominant mitigator dwarfing Delta gai (gibberellic acid-insensitive) gene was transformed into tobacco (Nicotiana tabacum). The integration and the phenotypic stability of the tandemly linked ahasR and Delta gai genomic inserts in later generations were confirmed by polymerase chain reaction. The hemizygous semidwarf imazapyr-resistant TM T1 (= BC1) transgenic plants were weak competitors when cocultivated with wild type segregants under greenhouse conditions and without using the herbicide. The competition was most intense at close spacings typical of weed offspring. Most dwarf plants interspersed with wild type died at 1-cm, > 70% at 2.5-cm and 45% at 5-cm spacing, and the dwarf survivors formed no flowers. At 10-cm spacing, where few TM plants died, only those TM plants growing at the periphery of the large cultivation containers formed flowers, after the wild type plants terminated growth. The highest reproductive TM fitness relative to the wild type was 17%. The results demonstrate the suppression of crop-weed hybrids when competing with wild type weeds, or such crops as volunteer weeds, in seasons when the selector

  9. Alpha particle confinement in tandem mirrors

    SciTech Connect

    Devoto, R.S.; Ohnishi, M.; Kerns, J.; Woo, J.T.

    1980-10-10

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.

  10. High performance polymer tandem solar cell

    NASA Astrophysics Data System (ADS)

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2015-12-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells.

  11. Homicidal tandem bullet wound of the chest.

    PubMed

    Bentley, A J; Busuttil, A; Clifton, B; Sibbald, P

    1997-03-01

    An unusual case of a homicidal gunshot wound to the chest is reported in which two bullets were fired in unison as tandem bullets from a handgun. At autopsy, two intact bullets were retrieved from the body of the victim, yet there was only one entrance wound and a single bullet track across the chest wall and thoracic organs. An examination of the weapon and ammunition supported the likelihood of tandem bullets and suggested the probable mechanism for this event. Very few similar cases have been documented. PMID:9095302

  12. High performance polymer tandem solar cell

    PubMed Central

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  13. Tandem transformation of glycerol to esters.

    PubMed

    Sotenko, Maria V; Rebroš, Martin; Sans, Victor S; Loponov, Konstantin N; Davidson, Matthew G; Stephens, Gill; Lapkin, Alexei A

    2012-12-31

    Tandem transformation of glycerol via microbial fermentation and enzymatic esterification is presented. The reaction can be performed with purified waste glycerol from biodiesel production in a continuous mode, combining continuous fermentation with membrane-supported enzymatic esterification. Continuous anaerobic fermentation was optimized resulting in the productivity of 2.4 g L⁻¹ h⁻¹ of 1,3-propanediol. Biphasic esterification of 1,3-propanediol was optimized to achieve ester yield of up to 75%. A hollow fibre membrane contactor with immobilized Rhizomucor miehei lipase was demonstrated for the continuous tandem fermentation-esterification process. PMID:22796408

  14. Structural basis for tandem L27 domain-mediated polymerization

    SciTech Connect

    Yang, Xue; Xie, Xingqiao; Chen, Liu; Zhou, Hao; Wang, Zheng; Zhao, Weijing; Tian, Ran; Zhang, Rongguang; Tian, Changlin; Long, Jiafu; Shen, Yuequan

    2010-12-01

    The establishment of epithelial cell polarity requires the assembly of multiprotein complexes and is crucial during epithelial morphogenesis. Three scaffolding proteins, Dlg1, MPP7, and Mals3, can be assembled to form a complex that functions in the establishment and maintenance of apicobasal polarity in epithelial tissues through their L27 domains. Here we report the crystal structure of a 4-L27-domain complex derived from the human tripartite complex Dlg1-MPP7-Mals3 in combination with paramagnetic relaxation enhancement measurements. The heterotrimer consists of 2 pairs of heterodimeric L27 domains. These 2 dimers are asymmetric due to the large difference between the N- and C-terminal tandem L27 domain of MPP7. Structural analysis combined with biochemical experiments further reveals that the loop {alpha}A-{alpha}B and helix {alpha}B of the C-terminal L27 domain of MPP7 play a critical role in assembling the entire tripartite complex, suggesting a synergistic tandem L27-mediated assembling event.

  15. LLNL tandem mirror experiment (TMX) upgrade vacuum system

    SciTech Connect

    Pickles, W.L.; Chargin, A.K.; Drake, R.P.; Hunt, A.L.; Lang, D.D.; Murphy, J.J.; Poulsen, P.; Simonen, T.C.; Batzer, T.H.; Stack, T.P.; Wong, R.L.

    1982-04-01

    The tandem mirror experiment (TMX) upgrade is a large, tandem, magnetic-mirror fusion experiment with stringent requirements on base pressure (10/sup -8/ Torr), low H reflux from the first walls, and peak gas pressure (5 x 10/sup -7/ Torr) due to neutral beam gas during plasma operation. The 225 m/sup 3/ vacuum vessel is initially evacuated by turbopumps. Cryopumps provide a continuous sink for gases other than helium, deuterium, and hydrogen. The neutral beam system introduces up to 480 l/s of H or D. The hydrogen isotopes are pumped at very high speed by titanium sublimed onto two cylindrical radially separated stainless steel quilted liners with a total surface area of 540 m/sup 2/. These surfaces (when cooled to about 80 K) provide a pumping speed of 6 x 10/sup 7/ l/s for hydrogen. The titanium getter system is programmable and is used for heating as well as gettering. The inner plasma liner can be operated at elevated temperatures to enhance migration of gases away from the surfaces close to the plasma. Glow discharge cleaning is part of the pumpdown procedure. The design features are discussed in conjunction with the operating procedures developed to manage the dynamic vacuum conditions.

  16. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  17. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  18. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  19. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  20. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  1. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem...

  2. Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor kappaB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway

    PubMed Central

    Westhues, Daniel; Lassen, Jens; Bartsch, Sofia; Roider, Johann

    2013-01-01

    Purpose The retinal pigment epithelium (RPE) is a major source of vascular endothelial growth factor (VEGF) in the eye. Despite the role of VEGF in ocular pathology, VEGF is an important factor in maintaining the choroid and the RPE. Accordingly, the VEGF is constitutively expressed in RPE. In this study, the regulation of constitutive VEGF expression was investigated in an RPE/choroid organ culture. Methods To investigate VEGF regulation, RPE/choroid of porcine origin were used. VEGF content was evaluated with enzyme-linked immunosorbent assay. The influence of several molecular factors was assessed with commercially available inhibitors (SU1498, bisindolylmaleimide, LY294002, nuclear factor kappaB [NFkB] activation inhibitor, mithramycin, YC-1, Stattic, SB203580). For toxicity measurements of inhibitors, primary RPE cells of porcine origin were used, and toxicity was evaluated with methyl thiazolyl tetrazolium assay. Results VEGF secretion as measured in the RPE/choroid organ culture was diminished after long-term (48 h) inhibition of vascular endothelial growth factor receptor-2 by VEGFR-2-antagonist SU1498. VEGF secretion was also diminished after phosphatidylinositol 3 kinase was inhibited by LY294002 for 48 h. Coapplication of the substances did not show an additive effect, suggesting that they use the same pathway in an autocrine-positive VEGF regulation loop. Inhibition of protein kinase C by bisindolylmaleimide, on the other hand, did not influence VEGF secretion in organ culture. Inhibition of the transcription factor SP-1 by mithramycin displayed effects after 24 h and 48 h. Inhibiting hypoxia-inducible factor-1 (HIF-1) and Stat3 did not show any influence on constitutive VEGF secretion. Inhibition of the transcription factor NFkB diminished VEGF secretion after 6 h (earliest measured time point) and remained diminished at all measured time points (24 h, 48 h). The same pattern was found when the inhibitor of mitogen-activated kinase p38 was applied. A

  3. Oxygen-evoked changes in transcriptional activity of the 5'-flanking region of the human amiloride-sensitive sodium channel (alphaENaC) gene: role of nuclear factor kappaB.

    PubMed Central

    Baines, Deborah L; Janes, Mandy; Newman, David J; Best, Oliver G

    2002-01-01

    Expression of the alpha-subunit of the amiloride-sensitive sodium channel (alphaENaC) is regulated by a number of factors in the lung, including oxygen partial pressure (PO2). As transcriptional activation is a mechanism for raising cellular mRNA levels, we investigated the effect of physiological changes in PO2 on the activity of the redox-sensitive transcription factor nuclear factor kappaB (NF-kappaB) and transcriptional activity of 5'-flanking regions of the human alphaENaC gene using luciferase reporter-gene vectors transiently transfected into human adult alveolar carcinoma A549 cells. By Western blotting we confirmed the presence of NF-kappaB p65 but not p50 in these cells. Transiently increasing PO2 from 23 to 42 mmHg for 24 h evoked a significant increase in NF-kappaB DNA-binding activity and transactivation of a NF-kappaB-driven luciferase construct (pGLNF-kappaBpro), which was blocked by the NF-kappaB activation inhibitor sulphasalazine (5 mM). Transcriptional activity of alphaENaC-luciferase constructs containing 5'-flanking sequences (including the NF-kappaB consensus) were increased by raising PO2 from 23 to 142 mmHg if they contained transcriptional initiation sites (TIS) for exons 1A and 1B (pGL3E2.2) or the 3' TIS of exon 1B alone (pGL3E0.8). Sulphasalazine had no significant effect on the activity of these constructs, suggesting that the PO2-evoked rise in activity was not a direct consequence of NF-kappaB activation. Conversely, the relative luciferase activity of a construct that lacked the 3' TIS, a 3' intron and splice site but still retained the 5' TIS and NF-kappaB consensus sequence was suppressed significantly by raising PO2. This effect was reversed by sulphasalazine, suggesting that activation of NF-kappaB mediated PO2-evoked suppression of transcription from the exon 1A TIS of alphaENaC. PMID:12023897

  4. Tandem mirror fusion-fission hybrid studies

    NASA Astrophysics Data System (ADS)

    Lee, J. D.

    1980-04-01

    The concept of combining nuclear fusion and nuclear fission techniques is discussed. Initial tandem mirror hybrid studies predict the ability to produce large amounts of fissile fuel (2 to 7 tons U233 per year from a 4000 MW plant) at a cost that adds less than 25% to the cost of power from a light water reactor.

  5. Status of BINP proton tandem accelerator

    NASA Astrophysics Data System (ADS)

    Burdakov, A.; Davydenko, V.; Dolgushin, V.; Dranichnikov, A.; Ivanov, A.; Farrell, J. P.; Khilchenko, A.; Kobets, V.; Konstantinov, S.; Krivenko, A.; Kudryavtsev, A.; Tiunov, M.; Savkin, V.; Shirokov, V.; Sorokin, I.

    2007-08-01

    The status of a unique 2.0 MeV, 10 mA proton tandem accelerator with vacuum insulation is presented. The accelerator is intended to be used in facilities generating resonant gamma rays for explosives detection and epithermal neutrons for boron neutron-capture therapy of brain tumors. A magnetically coupled DC voltage multiplier derived from an industrial ELV-type electron accelerator is used as a high voltage source for the accelerator. A dc high current negative ion source has been developed for injection into the tandem. In the tandem accelerator there is set of nested potential electrodes with openings which form a channel for accelerating the negative hydrogen ion beam and subsequently accelerating the proton beam after stripping in the gas target. The electrodes are connected to a high voltage feedthrough insulator to which required potentials are applied from the high voltage power supply by means of a resistor voltage divider. In the paper the first experimental results obtained with the vacuum insulated tandem accelerator are also given.

  6. Tandem oligonucleotide synthesis using linker phosphoramidites

    PubMed Central

    Pon, Richard T.; Yu, Shuyuan

    2005-01-01

    Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated. PMID:15814811

  7. 25 MV tandem accelerator at Oak Ridge

    SciTech Connect

    Jones, C.M.

    1980-01-01

    A new heavy-ion accelerator facility is under construction at the Oak Ridge National Laboratory. A brief description of the scope and status of this project is presented with emphasis on the first operational experience with the 25 MV tandem accelerator.

  8. Modelling of tandem cell temperature coefficients

    SciTech Connect

    Friedman, D.J.

    1996-05-01

    This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.

  9. Technology for large tandem mirror experiments

    SciTech Connect

    Thomassen, K.I.

    1980-09-04

    Construction of a large tandem mirror (MFTF-B) will soon begin at Lawrence Livermore National Laboratory (LLNL). Designed to reach break-even plasma conditions, the facility will significantly advance the physics and technology of magnetic-mirror-based fusion reactors. This paper describes the objectives and the design of the facility.

  10. Advances in Tandem Mirror fusion power reactors

    SciTech Connect

    Perkins, L.J.; Logan, B.G.

    1986-05-20

    The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

  11. Tandem mirror next step conceptual design

    SciTech Connect

    Doggett, J.N.; Damm, C.C.; Bulmer, R.H.

    1980-10-14

    A study was made to define the features of the experimental mirror fusion device - The Tandem Mirror Next Step, or TMNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. We outline the project goals, describe some initial device parameters, and relate the technological requirements to ongoing development programs.

  12. Vortex interaction between two tandem flexible propulsors

    NASA Astrophysics Data System (ADS)

    Park, Sung Goon; Sung, Hyung Jin; Flow Control Laboratory Team

    2015-11-01

    Schooling behaviors of flying and swimming animals are widespread phenomena in nature. Inspired by schooling behaviors of swimming jellyfish, self-propelling flexible bodies with a paddling-based locomotion were modeled in a tandem configuration. The interactions between surrounding fluids and propulsors were considered by using the immersed boundary method. The hydrodynamic patterns generated by the interactions between tandem flexible propulsors were analyzed in the presen study. As a result of the flow-mediated interactions between them, stable configurations were formed spontaneously in which the gap distance between propulsors increased and decreased during the contraction and relaxation phases of the upstream propulsor. The stable configuration was not affected by the initial gap distance but influenced by the phase difference in the flapping frequency between them. Both tandem propulsors benefited from the tandem configuration in terms of the locomotion as compared with an isolated propulsor. This study was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP).

  13. Inverted Three-Junction Tandem Thermophotovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven

    2012-01-01

    An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.

  14. A review of clinical diagnostic applications of liquid chromatography-tandem mass spectrometry.

    PubMed

    Shushan, Bori

    2010-01-01

    Liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) technology is emerging as a complementary method to traditional methodology used for clinical applications. Enhanced specificity and high-throughput capabilities are providing significant benefits to clinical diagnostic laboratories conducting routine analyses. This technology is expected to expand rapidly as scientists focus on more complicated challenges that can be solved efficiently by adding LC/MS/MS to their arsenal of techniques. PMID:20949635

  15. Micromorph tandem solar cells: optimization of the microcrystalline silicon bottom cell in a single chamber system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Dan; Zheng, Xin-Xia; Xu, Sheng-Zhi; Lin, Quan; Wei, Chang-Chun; Sun, Jian; Geng, Xin-Hua; Zhao, Ying

    2011-10-01

    We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction structures on glass substrates coated with a transparent conductive oxide layer such as SnO2 or ZnO. By controlling boron and phosphorus contaminations, a single-junction microcrystalline silicon cell with a conversion efficiency of 7.47% is achieved with an i-layer thickness of 1.2 μm. In tandem devices, by thickness optimization of the microcrystalline silicon bottom solar cell, we obtained an initial conversion efficiency of 9.91% with an aluminum (Al) back reflector without a dielectric layer. In order to enhance the performance of the tandem solar cells, an improved light trapping structure with a ZnO/Al back reflector is used. As a result, a tandem solar cell with 11.04% of initial conversion efficiency has been obtained.

  16. Tandem autologous versus autologous/allogeneic transplantation for multiple myeloma: propensity score analysis.

    PubMed

    Kawamura, Koji; Ikeda, Takashi; Hagiwara, Shotaro; Mori, Takehiko; Shinagawa, Atsushi; Nishiwaki, Kaichi; Ohashi, Kazuteru; Kubonishi, Shiro; Fukuda, Takahiro; Ito, Toshiro; Tomita, Naoto; Ichinohe, Tatsuo; Kato, Koji; Morishima, Yasuo; Atsuta, Yoshiko; Sunami, Kazutaka; Kanda, Yoshinobu

    2016-09-01

    Autologous hematopoietic stem cell transplantation (auto-HCT) is considered a standard therapy for transplant-eligible patients with multiple myeloma, while allogeneic HCT (allo-HCT) is controversial. We retrospectively analyzed 765 patients with myeloma who underwent tandem transplantation between 1998 and 2012 using Japanese registry data. We evaluated the clinical outcomes of tandem auto-HCT (n = 676) and auto/allo-HCT (n = 89). To adjust for a selection bias, we compared overall survival (OS) between the two groups by a propensity score analysis. The probability of OS at six years was 58.5% for the tandem auto-HCT group and 54.4% for the tandem auto/allo-HCT group (p = 0.47). In a matched-pair analysis based on the propensity score, the difference in survival between the two groups was not statistically significant, although the survival curve appeared to reach a plateau beyond five years in the auto/allo group. Further strategies to reduce treatment-related mortality and enhance a graft-versus-myeloma effect are necessary to improve OS. PMID:26961137

  17. Hybrid dielectric light trapping designs for thin-film CdZnTe/Si tandem cells.

    PubMed

    Chung, H; Zhou, C; Tee, X T; Jung, K-Y; Bermel, P

    2016-07-11

    Tandem solar cells consisting of high bandgap cadmium telluride alloys atop crystalline silicon have potential for high efficiencies exceeding the Shockley-Queisser limit. However, experimental results have fallen well below this goal significantly because of non-ideal current matching and light trapping. In this work, we simulate cadmium zinc telluride (CZT) and crystalline silicon (c-Si) tandems as an exemplary system to show the role that a hybrid light trapping and bandgap engineering approach can play in improving performance and lowering materials costs for tandem solar cells incorporating crystalline silicon. This work consists of two steps. First, we optimize absorption in the crystalline silicon layer with front pyramidal texturing and asymmetric dielectric back gratings, which results in 121% absorption enhancement from a planar structure. Then, using this pre-optimized light trapping scheme, we model the dispersion of the CdxZn1-xTe alloys, and then adjust the bandgap to realize the best current matching for a range of CZT thicknesses. Using experimental parameters, the corresponding maximum efficiency is predicted to be 16.08 % for a total tandem cell thickness of only 2.2 μm. PMID:27410890

  18. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  19. Tritium measurements with a tandem accelerator

    NASA Astrophysics Data System (ADS)

    Middleton, R.; Klein, J.; Fink, D.

    1990-06-01

    Tritium concentrations ( 3H: 2H) of less than 10 -15 are readily measurable with almost any tandem accelerator and with an overall detection efficiency as high as 4.5%. The isobar, 3He, and other potential sources of interference (mainly 6Li, 2H and 1H) can all be removed by an absorber in front of the triton detector, so there is little need for analyzing elements other than the negative-and positive-ion magnets found on most tandems. The technique is particularly well suited for detecting tritium in deuterium absorbed in a metal and testing for cold fusion. We caution that tritium can occur in commercial deuterium and heavy water from sources other than cold fusion; one sample was observed to have a tritium-to-deuterium ratio of 10 -10.

  20. Locomotion by Tandem and Parallel Wings

    NASA Astrophysics Data System (ADS)

    Tanida, Yoshimichi

    A two-dimensional analysis was carried out on the locomotion by tandem and parallel wings in relation to the free flight of dragonflies and beetles, remarking the mutual interference between fore and hind wings. The results obtained are summarized as follows: In the case of tandem wings, (1)High thrust and propulsive efficiency can be achieved when the forewing oscillates with a definite phase lag behind the hindwing, as in the case of real dragonflies, (2)Somewhat smaller amplitude of hindwing leads to optimum condition for work sharing of two wings, (3)The hard forewing does not serve for the thrust and propulsive efficiency, whereas the hard hindwing does for the augmentation of them; In the case of parallel wings, (4)The hard wing placed near the soft wing acts nearly as an infinite plate, as for the ground effect, increasing both thrust and propulsive efficiency.

  1. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  2. Nucleic acid recognition by tandem helical repeats.

    PubMed

    Rubinson, Emily H; Eichman, Brandt F

    2012-02-01

    Protein domains constructed from tandem α-helical repeats have until recently been primarily associated with protein scaffolds or RNA recognition. Recent crystal structures of human mitochondrial termination factor MTERF1 and Bacillus cereus alkylpurine DNA glycosylase AlkD bound to DNA revealed two new superhelical tandem repeat architectures capable of wrapping around the double helix in unique ways. Unlike DNA sequence recognition motifs that rely mainly on major groove read-out, MTERF and ALK motifs locate target sequences and aberrant nucleotides within DNA by resculpting the double-helix through extensive backbone contacts. Comparisons between MTERF and ALK repeats, together with recent advances in ssRNA recognition by Pumilio/FBF (PUF) domains, provide new insights into the fundamental principles of protein-nucleic acid recognition. PMID:22154606

  3. Electron irradiation of tandem junction solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.; Scott-Monck, J. A.

    1979-01-01

    The electrical behavior of 100 micron thick tandem junction solar cells manufactured by Texas Instruments was studied as a function of 1 MeV electron fluence, photon irradiation, and 60 C annealing. These cells are found to degrade rapidly with radiation, the most serious loss occurring in the blue end of the cell's spectral response. No photon degradation was found to occur, but the cells did anneal a small amount at 60 C.

  4. Current and lattice matched tandem solar cell

    DOEpatents

    Olson, Jerry M.

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  5. DDES and IDDES of tandem cylinders.

    SciTech Connect

    Balakrishnan, R.; Garbaruk, A.; Shur, M.; Strelets, M.; Spalart, P.; New Technologies and Services - Russia; St.-Peterburg State Polytechnic Univ.; Boeing Commercial Airplanes

    2010-09-09

    The paper presents an overview of the authors contribution to the BANC-I Workshop on the flow past tandem cylinders (Category 2). It includes an outline of the simulation approaches, numerics, and grid used, the major results of the simulations, their comparison with available experimental data, and some preliminary conclusions. The effect of varying the spanwise period in the simulations is strong for some quantities, and not others.

  6. Cold Climate Heat Pumps Using Tandem Compressors

    SciTech Connect

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith; Baxter, Van D

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  7. Expression of tandem gene duplicates is often greater than twofold

    PubMed Central

    Loehlin, David W.; Carroll, Sean B.

    2016-01-01

    Tandem gene duplication is an important mutational process in evolutionary adaptation and human disease. Hypothetically, two tandem gene copies should produce twice the output of a single gene, but this expectation has not been rigorously investigated. Here, we show that tandem duplication often results in more than double the gene activity. A naturally occurring tandem duplication of the Alcohol dehydrogenase (Adh) gene exhibits 2.6-fold greater expression than the single-copy gene in transgenic Drosophila. This tandem duplication also exhibits greater activity than two copies of the gene in trans, demonstrating that it is the tandem arrangement and not copy number that is the cause of overactivity. We also show that tandem duplication of an unrelated synthetic reporter gene is overactive (2.3- to 5.1-fold) at all sites in the genome that we tested, suggesting that overactivity could be a general property of tandem gene duplicates. Overactivity occurs at the level of RNA transcription, and therefore tandem duplicate overactivity appears to be a previously unidentified form of position effect. The increment of surplus gene expression observed is comparable to many regulatory mutations fixed in nature and, if typical of other genomes, would shape the fate of tandem duplicates in evolution. PMID:27162370

  8. TandEM: Titan and Enceladus mission

    USGS Publications Warehouse

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C.D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfi??re) and possibly several landing probes to be delivered through the atmosphere. ?? Springer Science + Business Media B.V. 2008.

  9. Vortex shedding and acoustic resonance of single and tandem finned cylinders

    NASA Astrophysics Data System (ADS)

    Eid, M.; Ziada, S.

    2011-10-01

    The effect of fins on vortex shedding and acoustic resonance is investigated for isolated and two tandem cylinders exposed to cross-flow in a rectangular duct. Three spacing ratios between the tandem cylinders ( S/D e =1.5, 2 and 3) are tested for a Reynolds number range from 1.6×10 4 to 1.1×10 5 . Measurements of sound pressure as well as mean and fluctuating velocities are performed for bare and finned cylinders with three different fin densities. The effect of fins on the sound pressure generated before the onset of acoustic resonance as well as during the pre-coincidence and coincidence resonance is found to be rather complex and depends on the spacing ratio between cylinders, the fin density and the nature of the flow-sound interaction mechanism. For isolated cylinders, the fins reduce the strength of vortex shedding only slightly, but strongly attenuate the radiated sound before and during the occurrence of acoustic resonance. This suggests that the influence of the fins on correlation length is stronger than on velocity fluctuations. In contrast to isolated cylinders, the fins in the tandem cylinder case enhance the vortex shedding process at off-resonant conditions, except for the large spacing case which exhibits a reversed effect at high Reynolds numbers. Regarding the acoustic resonance of the tandem cylinders, the fins promote the onset of the coincidence resonance, but increasing the fin density drastically weakens the intensity of this resonance. The fins are also found to suppress the pre-coincidence resonance for the tandem cylinders with small spacing ratios ( S/D e =1.5, 2 and 2), but for the largest spacing case ( S/D e =3), they are found to have minor effects on the sound pressure and the lock-in range of the pre-coincidence resonance.

  10. Organic Light-Emitting Devices with Tandem Structure.

    PubMed

    Chiba, Takayuki; Pu, Yong-Jin; Kido, Junji

    2016-06-01

    Tandem organic light-emitting devices (OLEDs) have attracted considerable attention for solid-state lighting and flat panel displays because their tandem architecture enables high efficiency and long operational lifetime simultaneously. In the tandem OLED structure, plural light-emitting units (LEUs) are stacked in series through a charge generation layer (CGL) and an electron injection layer (EIL). In this chapter, we focus on the key features of tandem OLEDs for high efficiency and long operational lifetimes. We also demonstrate the effect of the CGL comprising a Lewis acid, an n-type semiconductor metal oxide, and an organic electron-accepting material. We discuss the two types of EILs in tandem OLEDs: alkali metals containing n-type compounds and ultra-thin metals. Finally, we focus on the recent progress of the state-of-the-art solution-processed tandem OLEDs. PMID:27573273

  11. [Tandem repeats in rodents genome and their mapping].

    PubMed

    Ostromyshenskii, D I; Kuznetsova, L S; Komissarov, A S; Kartavtseva, I V; Podgornaya, L

    2015-01-01

    Tandemly-repeated sequences represent a unique class of eukaryotic DNA. Their content in the genome of higher eukaryotes mounts to tens of percents. However, the evolution of this class of sequences is poorly-studied. In our paper, 62 families of Mus musculus tandem repeats are analyzed by bioinformatic methods, and 7 of them are analyzed by fluorescence in situ hybridization. It is shown that the same tandem repeat sets co-occure only in closely related species of mice. But even in such species we observe differences in localization on the chromosomes and the number of individual tandem repeats. With increasing evolutionary distance only some of the tandem repeat families remain common for different species. It is shown, that the use of a combination of bioinformatics and molecular biology techniques is very perspective for further studies of the evolution of tandem repeats. PMID:26035967

  12. n +-Microcrystalline-Silicon Tunnel Layer in Tandem Si-Based Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Lee, Hsin-Ying; Chen, Kuan-Hao

    2016-06-01

    In this study, the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell deposited using plasma-enhanced chemical vapor deposition were cascaded for forming the tandem Si-based thin film solar cells to absorb the wide solar spectrum. To further improve the performances of the tandem Si-based thin film solar cells, a 5-nm-thick n +-microcrystalline-Si (n +-μc-Si) tunnel layer deposited using the laser-assisted plasma-enhanced chemical vapor deposition was inserted between the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell. Since both the plasma and the CO2 laser were simultaneously utilized to efficiently decompose the reactant and doping gases, the carrier concentration and the carrier mobility of the n +-μc-Si tunnel layer were significantly improved. The ohmic contact formed between the p-SiC layer and the n +-μc-Si tunnel layer with low resistance was beneficial to the generated current transportation and the carrier recombination rate. Therefore, the conversion efficiency of the tandem solar cells was promoted from 8.57% and 8.82% to 9.91% compared to that without tunnel layer and with 5-nm-thick n +-amorphous-Si tunnel layer.

  13. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    PubMed

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies. PMID:26878670

  14. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  15. Flexible and fragmentable tandem photosensitive nanocrystal skins.

    PubMed

    Akhavan, S; Uran, C; Bozok, B; Gungor, K; Kelestemur, Y; Lesnyak, V; Gaponik, N; Eychmüller, A; Demir, H V

    2016-02-18

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm(-2) at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion. PMID:26498487

  16. Kinetically Stabilized Axisymmetric Tandem Mirrors: Summary of Studies

    SciTech Connect

    Post, R F

    2005-02-08

    The path to practical fusion power through plasma confinement in magnetic fields, if it is solely based on the present front-runner, the tokamak, is clearly long, expensive, and arduous. The root causes for this situation lie in the effects of endemic plasma turbulence and in the complexity the tokamak's ''closed'' field geometry. The studies carried out in the investigations described in the attached reports are aimed at finding an approach that does not suffer from these problems. This goal is to be achieved by employing an axisymmetric ''open'' magnetic field geometry, i.e. one generated by a linear array of circular magnet coils, and employing the magnetic mirror effect in accomplishing the plugging of end leakage. More specifically, the studies were aimed at utilizing the tandem-mirror concept in an axisymmetric configuration to achieve performance superior to the tokamak, and in a far simpler system, one for which the cost and development time could be much lower than that for the tokamak, as exemplified by ITER and its follow-ons. An important stimulus for investigating axisymmetric versions of the tandem mirror is the fact that, beginning from early days in fusion research there have been examples of axisymmetric mirror experiments where the plasma exhibited crossfield transport far below the turbulence-enhanced rates characteristic of tokamaks, in specific cases approaching the ''classical'' rate. From the standpoint of theory, axisymmetric mirror-based systems have special characteristics that help explain the low levels of turbulence that have been observed. Among these are the facts that there are no parallel currents in the equilibrium state, and that the drift surfaces of all of the trapped particles are closed surfaces, as shown early on by Teller and Northrop. In addition, in such systems it is possible to arrange that the radial boundary of the confined plasma terminates without contact with the chamber wall. This possibility reduces the

  17. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  18. The Naples University 3 MV tandem accelerator

    SciTech Connect

    Campajola, L.; Brondi, A.

    2013-07-18

    The 3 MV tandem accelerator of the Naples University is used for research activities and applications in many fields. At the beginning of operation (1977) the main utilization was in the field of nuclear physics. Later, the realization of new beam lines allowed the development of applied activities as radiocarbon dating, ion beam analysis, biophysics, ion implantation etc. At present, the availability of different ion sources and many improvements on the accelerator allow to run experiments in a wide range of subjects. An overview of the characteristics and major activities of the laboratory is presented.

  19. Reduction of radial losses in tandem mirrors

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Dippolito, D. A.; Catto, P. J.

    1982-07-01

    The conditions for omnigenous magnetic fields are generalized to determine the fields which give the smallest mean square neoclassical step size consistent with given boundary conditions and constraints. This transport minimization produces less restrictive field configurations than omnigenity, and a wider class of practical applications is possible. An explicit set of ordinary differential equations is obtained for the transport minimizing vacuum fields in long thin tandem mirror geometry. The constraint, for these configurations no parallel current flows into the center cell (due to the Stupakov effect), is imposed naturally.

  20. HRIBF Tandem Accelerator Radiation Safety System Upgrade

    SciTech Connect

    Blankenship, J.L.; Juras, R.C.

    1998-11-04

    The HRIBF Tandem Accelerator Radiation Safety System was designed to permit experimenters and operations staff controlled access to beam transport and experiment areas with accelerated beam present. Neutron-Gamma detectors are mounted in eaeh area at points of maximum dose rate and the resulting signals are integrated by redundan~ circuitry; beam is stopped if dose rate or integrated dose exceeds established limits. This paper will describe the system, in use for several vears at the HRIBF, and discuss changes recently made to modernize the system and to make the system compliant with DOE Order 5480.25 and related ORNL updated safety rules.

  1. A Hybrid Approach To Tandem Cylinder Noise

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Aeolian tone generation from tandem cylinders is predicted using a hybrid approach. A standard computational fluid dynamics (CFD) code is used to compute the unsteady flow around the cylinders, and the acoustics are calculated using the acoustic analogy. The CFD code is nominally second order in space and time and includes several turbulence models, but the SST k - omega model is used for most of the calculations. Significant variation is observed between laminar and turbulent cases, and with changes in the turbulence model. A two-dimensional implementation of the Ffowcs Williams-Hawkings (FW-H) equation is used to predict the far-field noise.

  2. Flute waves in a tandem mirror

    SciTech Connect

    Mikhailovskaya, L.V.

    1984-03-01

    Stability conditions are derived for flute waves in a short tandem mirror stabilized by end cells with a min B. The frequency spectrum of the flute waves is analyzed. Those conditions under which the resonant excitation of waves by ions and electrons must be taken into account are found. When end cells without a min B are added to a central mirror system, the system becomes destabilized as the result of resonant excitation of waves at a frequency near the precession frequency of ions having a finite energy distribution.

  3. Method of fabricating bifacial tandem solar cells

    SciTech Connect

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  4. HRIBF Tandem Accelerator Radiation Safety System Upgrade

    NASA Astrophysics Data System (ADS)

    Juras, R. C.; Blankenship, J. L.

    1999-06-01

    The HRIBF Tandem Accelerator Radiation Safety System was designed to permit experimenters and operations staff controlled access to beam transport and experiment areas with accelerated beam present. Neutron-Gamma detectors are mounted in each area at points of maximum dose rate and the resulting signals are integrated by redundant circuitry; beam is stopped if dose rate or integrated dose exceeds established limits. This paper will describe the system, in use for several years at the HRIBF, and discuss changes recently made to modernize the system and to make the system compliant with DOE Order 5480.25 and related ORNL updated safety rules.

  5. Progress in the tandem mirror program

    SciTech Connect

    Fowler, T.K.; Borchers, R.R.

    1981-09-13

    Experimental results in TMX have confirmed the basic principles of the tandem-mirror concept. A center-cell particle confinement parameter eta tau approx. 10/sup 11/ cm/sup -3/ s has been obtained at ion temperatures around 100 eV, which is a hundred-fold improvement over single mirrors at the same temperatures. For TMX these results have been obtained at peak beta values in the center cell in the range 10 to 40%, not yet limited by MHD activity; and ion-cyclotron resonant heating (ICRH) in the Phaedrus tandem-mirror experiment has produced beta values approx. 25%, which is several times the ideal MHD limit for that device. In addition, it has been demonstrated that the end fan chambers of TMX simultaneously isolate the hot electrons from the end walls, provide adequate pumping and conveniently dispose of the exhaust plasma energy either by thermal deposition on the end wall or by direct conversion to electricity (at 48% efficiency in agreement with calculations). Also, evidence was obtained for inherent divertor action in TMX, presumably in part responsible for the observed low impurity level (<0.5% low-Z ions in the center cell).

  6. Tandem mass spectrometry for sequencing proanthocyanidins.

    PubMed

    Li, Hui-Jing; Deinzer, Max L

    2007-02-15

    Proanthocyanidins (PAs) are a group of bioflavonoids consisting of oligomers based on catechin monomeric units. These polyphenolic compounds are widely distributed in higher plants and are an integral part of the human diet. A sensitive LC-tandem mass spectrometric (LC/ESI-MS(n)) method in the positive ion mode for sequencing these ubiquitous and highly beneficial antioxidants is described. The hydroxylation patterns and interflavanoid linkage for A- and B-type PAs were determined by fragment ions derived from a retro-Diels-Alder (RDA) fission, heterocyclic ring fission (HRF), a novel benzofuran-forming (BFF) fission described here for the first time, and a quinone methide (QM) fission. The subunit sequence of the PAs was determined by diagnostic ions derived from HRF/RDA fission, HRF/BFF fission, and RDA/HRF fission together with QM fission. A total of 26 PAs were reliably sequenced by the newly established tandem mass spectrometric protocol. It is shown that the protocol based on a combination of these different fragmentation patterns allows for uniquely identifying PA oligomers. PMID:17297981

  7. High-sensitivity mass spectrometry with a tandem accelerator

    SciTech Connect

    Henning, W.

    1983-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems.

  8. A tandem-based compact dual-energy gamma generator

    SciTech Connect

    Persaud, A.; Kwan, J.W.; Leitner, M.; Leung, K.N.; Ludewigt, B.; Tanaka, N.; Waldron, W.; Wilde, S.; Antolak, A.J.; Morse, D.H.; Raber, T.

    2009-11-11

    A dual-energy tandem-type gamma generator has been developed at E.O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications.

  9. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Use of tandem parachute systems. 105.45... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES PARACHUTE OPERATIONS Parachute Equipment and Packing § 105.45 Use of tandem parachute systems. (a) No person may conduct a parachute operation using a...

  10. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Use of tandem parachute systems. 105.45... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES PARACHUTE OPERATIONS Parachute Equipment and Packing § 105.45 Use of tandem parachute systems. (a) No person may conduct a parachute operation using a...

  11. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Use of tandem parachute systems. 105.45... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES PARACHUTE OPERATIONS Parachute Equipment and Packing § 105.45 Use of tandem parachute systems. (a) No person may conduct a parachute operation using a...

  12. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Use of tandem parachute systems. 105.45... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES PARACHUTE OPERATIONS Parachute Equipment and Packing § 105.45 Use of tandem parachute systems. (a) No person may conduct a parachute operation using a...

  13. Tandem-type pulse tube refrigerator without reservoir

    NASA Astrophysics Data System (ADS)

    Ki, Taekyung; Jeong, Sangkwon; Ko, Junseok; Park, Jiho

    2015-12-01

    In this paper, a tandem-type pulse tube refrigerator without a reservoir is discussed and investigated. For its practical application a tandem-type compressor is designed to generate two pulsating pressure waves with opposite phases, simultaneously. A tandem-type pulse tube refrigerator consists of a tandem-type compressor and two identical pulse tube refrigerators. The two identical pulse tube refrigerators share the same heat exchangers and one can be connected with the other by an inertance tube without a reservoir. In this proposed configuration, the mechanical vibration and temperature oscillations in the cold-end heat exchanger can be internally suppressed due to its intrinsic opposite-characteristic operation. To examine the quantitative evaluation of the tandem feature which does not require a reservoir in the pulse tube, an evolutionary approach has been attempted. A general structure of a pulse tube refrigerator is modified into tandem Stirling-type and GM-type machines and the transformed configuration has been simulated for tandem operation. The simulation results clearly demonstrate that a properly designed tandem-type pulse tube refrigerator without a reservoir can function favorably.

  14. Potential of optical design in tandem micromorph silicon solar cells

    NASA Astrophysics Data System (ADS)

    Krc, J.; Campa, A.; Smole, F.; Topic, M.

    2006-04-01

    The potential of three advanced optical designs in tandem micromorph silicon solar cells are analysed by means of optical simulations: enhanced light scattering, intermediate reflector (interlayer) and antireflective coating (ARC) on glass. The effects on quantum efficiency, QE, and short circuit current density, J SC, of the top and bottom cell are investigated. In case of enhanced light scattering, the role of haze parameter and angular distribution function of scattered light is analysed separately. High haze parameter improves light trapping in top and bottom cell. However, the improvement in QE and J SC of the bottom cell is limited at higher haze parameters due to increased absorption in top cell and increased optical losses in realistic textured ZnO/Ag back contact. Broad ADF plays an important role for improving the performances of both, top and bottom cell. The role of refractive index of an interlayer between top and bottom cell is analysed. Significant increases in QE and J SC of the top cell are revealed for small refractive indexes of the interlayer (n < 2.0). At the same time noticeable decrease in the performance of the bottom cell is observed. Optimisation of thickness and refractive index of a single-layer ARC on glass is carried out in order to obtain maximal J SC either in top or in bottom cell. Moderate increases in J SC and QE are obtained for optimised ARC parameters. Among the three optical designs, the greatest potential, considering the improvements in both cells, is revealed for enhanced light scattering.

  15. The physiological effects of cycling on tandem and single bicycles

    PubMed Central

    Seifert, J; Bacharach, D; Burke, E; Langenfeld, M; Snyder, A

    2003-01-01

    Objective: The purpose of this field study was to compare the physiological responses from cycling on a tandem road bicycle to those from cycling on a single road bicycle. Methods: Nine pairs of experienced, recreational tandem cyclists rode a tandem or their single bicycle for 5 min at each velocity of 19.3, 22.5, 25.8, and 29.0 kph on a flat, paved surface. Heart rate (HR), rating of perceived exertion (RPE), and lactic acid (LA) data were collected after each interval. Results: Riding a tandem resulted in lower HR, RPE, and LA mean values across the four velocities compared to the single bicycle. Mean (SD) HR, RPE, and LA for tandem and single bicycles were 126 (20.7) v 142 (20.1) bpm, 10.1 (1.7) v 11.3 (2.6), and 1.46 (1.0) mM/L v 2.36 (1.7) mM/L, respectively. No position differences were observed between the captain and stoker (front and rear positions) when both were on the tandem. Stokers had significantly lower HR, LA, and RPE values when they rode a tandem compared to a single bicycle. No statistical differences were observed between bicycles for the captains. When on the single bicycle, captains exhibited significantly lower HR, RPE, and LA values than stokers. Conclusion: Cycling on a tandem resulted in lower physiological stress than when cycling at the same velocity on a single bicycle. Cyclists were able to ride from 4.8–8.0 kph faster on a tandem than on a single bicycle at similar physiological stress. Apparently, stokers can add to power output on a tandem without adding significantly to wind resistance. PMID:12547743

  16. Electronic Tandem Language Learning (eTandem): A Third Approach to Second Language Learning for the 21st Century

    ERIC Educational Resources Information Center

    Cziko, Gary A.

    2004-01-01

    Tandem language learning occurs when two learners of different native languages work together to help each other learn the other language. First used in face-to-face contexts, Tandem is now increasingly being used by language-learning partners located in different countries who are linked via various forms of electronic communication, a context…

  17. Numerical modeling of GaInP/GaAs monolithic tandem solar cells

    NASA Astrophysics Data System (ADS)

    Mahfoud, Abderrezak; Fathi, Mohamed; Belghachi, Abderrahmane; Djahli, Farid

    2016-07-01

    In this work, we present simulation of a monolithic tandem GaInP/GaAs solar cell made from a top GaInP cell and a bottom GaAs cell. For this purpose we used one dimensional simulation program tool called Solar Cell Capacitance Simulator in one Dimension (SCAPS-1D), the proposed methodology consists of simulating each cell separately. For enhanced electric characteristics of a tandem solar cell, the current-match condition between the top and bottom cells should be satisfied, which in turn requires careful design of the tandem parameters. To fulfill this condition, the top cell base thickness of (GaInP) is adjusted accordingly. The solar spectrum reaching the lower cell is computed by subtracting the top cell spectrum from the total solar spectrum. The optimal value of the short circuit current density corresponds to a top cell's base thickness of 0.7 μm; this results in an open circuit voltage of 2.397 V, a short circuit current density of 13.87 mA/cm2, an efficiency of 29.83 % and a fill factor of 89.74 % under the AM1.5G solar spectrum.

  18. Identification of GABAC Receptor Protein Homeostasis Network Components from Three Tandem Mass Spectrometry Proteomics Approaches

    PubMed Central

    Wang, Ya-Juan; Han, Dong-Yun; Tabib, Tracy; Yates, John R.; Mu, Ting-Wei

    2013-01-01

    Gamma-amino butyric acid type C (GABAC) receptors inhibit neuronal firing primarily in retina. Maintenance of GABAC receptor protein homeostasis in cells is essential for its function. However, a systematic study of GABAC receptor protein homeostasis (proteostasis) network components is absent. Here, co-immunoprecipitation of human GABAC-ρ1 receptor complexes was performed in HEK293 cells overexpressing ρ1 receptors. To enhance the coverage and reliability of identified proteins, immunoisolated ρ1 receptor complexes were subjected to three tandem mass spectrometry (MS)-based proteomic analyses: namely, gel-based tandem MS (GeLC-MS/MS), solution-based tandem MS (SoLC-MS/MS), and multidimensional protein identification technology (MudPIT). From the 107 identified proteins, we assembled GABAC-ρ1 receptor proteostasis network components, including proteins with protein folding, degradation, and trafficking functions. We studied representative individual ρ1 receptor interacting proteins, including calnexin, a lectin chaperone that facilitates glycoprotein folding, and LMAN1, a glycoprotein trafficking receptor, and global effectors that regulate protein folding in cells based on bioinformatics analysis, including HSF1, a master regulator of the heat shock response, and XBP1, a key transcription factor of the unfolded protein response. Manipulating selected GABAC receptor proteostasis network components is a promising strategy to regulate GABAC receptor folding, trafficking, degradation and thus function to ameliorate related retinal diseases. PMID:24079818

  19. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    SciTech Connect

    Post, R F; Fowler, T K; Bulmer, R; Byers, J; Hua, D; Tung, L

    2004-07-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K

  20. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    SciTech Connect

    Post, R.F.; Fowler, T.K.; Bulmer, R.; Byers, J.; Hua, D.; Tung, L.

    2005-01-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employed a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M.

  1. Negative deuterium ions for tandem mirror next step and tandem mirror reactors

    SciTech Connect

    Hamilton, G.W.

    1980-09-25

    Recent designs for mirror fusion reactors with good power balance include ambipolar potential plugs to reduce end losses and thermal barriers to maintain a difference in electron temperature between the large-volume central cell plasma and the confining end plugs. These designs led to several new requirements for D/sup 0/ neutral beams derived from negative ions at energies of 150 to 200 keV and possibly higher. Such beams are required for injection of fat ions into the plugs and the barrier and for charge-exchange pumping of thermal ions diffusing into the barrier. Negative ions are preferred for these purposes because of their relatively high efficiency of neutralization and their high purity of single-energy D/sup -/. Examples of injector designs for Tandem Mirror Next Step (TMNS) and Tandem Mirror Reactors (TMR) are presented.

  2. LLNL Tandem Mirror Experiment (TMX) upgrade vacuum system

    SciTech Connect

    Pickles, W.L.; Chargin, A.K.; Drake, R.P.

    1981-09-15

    TMX Upgrade is a large, tandem, magnetic-mirror fusion experiment with stringent requirements on base pressure (10/sup -8/ torr), low H reflux from the first walls, and peak gas pressure (5 x 10/sup -7/ torr) due to neutral beam gas during plasma operation. The 225 m/sup 3/ vacuum vessel is initially evacuated by turbopumps. Cryopumps provide a continuous sink for gases other than helium, deuterium, and hydrogen. The neutral beam system introduces up to 480 l/s of H or D. The hydrogen isotopes are pumped at very high speed by titanium sublimed onto two cylindrical radially separated stainless steel quilted liners with a total surface area of 540 m/sup 2/. These surfaces (when cooled to about 80/sup 0/K) provide a pumping speed of 6 x 10/sup 7/ l/s for hydrogen. The titanium getter system is programmable and is used for heating as well as gettering. The inner plasma liner can be operated at elevated temperatures to enhance migration of gases away from the surfaces close to the plasma. Glow discharge cleaning is part of the pumpdown procedure. The design features are discussed in conjunction with the operating procedures developed to manage the dynamic vacuum conditions.

  3. Poiseuille flow-induced vibrations of two cylinders in tandem

    NASA Astrophysics Data System (ADS)

    Lin, Jianzhong; Jiang, Renjie; Chen, Zhongli; Ku, Xiaoke

    2013-07-01

    Laminar flows past two tandem cylinders which are free to move transversely in a parallel-wall channel were studied numerically by the lattice Boltzmann method. With fixed Reynolds number Re=100, blockage ratio β=1/4 and structural damping ξ=0, the effect of streamwise separation between two cylinders at a range of S/D=[1.1, 10] on the motions of cylinders and fluids was studied for both mass ratios of m(*)=1 and m(*)=0.1. A variety of distinct vibration regimes involving periodic, quasi-periodic and non-periodic vibrations with corresponding flow patterns were observed. A detailed analysis of the vibration amplitudes, vibration frequencies and relative equilibrium positions for both mass ratios demonstrated that as S/D increases, the interaction of the two cylinders first enhances and then reduces. In the strong coupling regime, both cylinders oscillate periodically around the centerline of the channel with large vibration amplitudes and high vibration frequencies. By comparing with the case of an isolated cylinder, a further study indicated that the gap flow plays an important role in such a dynamic system, and the vortex cores formation behind the front cylinder causes the interaction of the cylinders decouple rapidly. Based on the present observations, such a dynamic model system can be considered as a novel type of vortex-induced vibrations (VIV) and is expected to find applications in fluid mixing and heat transfer.

  4. Recent Results from KMAX tandem mirror experiment

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Luo, M.; Zhang, Q.; Lin, M.; Shi, P.

    2015-11-01

    KMAX, Keda Mirror with AXisymmeticity, is a tandem mirror machine with a length of ~ 10 meters and diameters of 1.2 meters in the central cell and 0.3 meters in the mirror throat. As a versatile plasma experimental platform, KMAX is currently conducting experiments on the Alfven wave launching, electrode biasing, radio frequency heating and etc. The latest results will be presented. In the experiment of Alfven wave launching, we observed the shear Alfven waves decay into the forward and backward propagating compressional waves. And in the bias experiment we successfully extracted plasma current up to 0.5kA with biasing voltage of ~ 1kV. During biasing, the plasma density and temperature have siginificantly increasing. Preliminary results on the radio frequency heating will also be presented.

  5. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  6. Magnetic alignment of the Tara tandem mirror

    SciTech Connect

    Post, R.S.; Coleman, J.W.; Irby, J.H.; Olmstead, M.M.; Torti, R.P.

    1985-06-01

    Techniques developed for the alignment of high-energy accelerators have been applied to the alignment of the Tara tandem mirror magnetic confinement device. Tools used were: a transit/laser surveyor's system for establishing an invariant reference; optical scattering from ferromagnetic crystallites for establishing magnetic centers in the quadrupole anchor/transition modules; an electron-optical circle-generating wand for alignment of the solenoidal plug and central cell modules; and four differently configured electron emissive probes, including a 40-beam flux mapping e gun, for testing the alignment of the coils under vacuum. Procedures are outlined, and results are given which show that the magnetic axes of the individual coils in the Tara set have been made colinear with each other and with the reference to within +- 1.0 mm over the length of the machine between the anchor midplanes.

  7. Catalyzed deuterium fueled tandem mirror reactor assessment

    SciTech Connect

    Dobrott, D.

    1985-01-01

    This study was part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corp. The purpose of this portion of the study is to perform an assessment of a conceptual tandem mirror reactor (TMR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to the physics, technology, safety, and cost. Achievable stable betas and magnet configurations are found to be comparable for the Cat-d and d-t fueled TMR. A comparison with respect to cost, reactor performance, and technology requirements for a Cat-d fueled reactor and a comparable d-t fueled reactor such as MARS is also made.

  8. Electrospray and tandem mass spectrometry in biochemistry.

    PubMed Central

    Griffiths, W J; Jonsson, A P; Liu, S; Rai, D K; Wang, Y

    2001-01-01

    Over the last 20 years, biological MS has changed out of all recognition. This is primarily due to the development in the 1980s of 'soft ionization' methods that permit the ionization and vaporization of large, polar, and thermally labile biomolecules. These developments in ionization mode have driven the design and manufacture of smaller and cheaper mass analysers, making the mass spectrometer a routine instrument in the biochemistry laboratory today. In the present review the revolutionary 'soft ionization' methods will be discussed with particular reference to electrospray. The mass analysis of ions will be described, and the concept of tandem MS introduced. Where appropriate, examples of the application of MS in biochemistry will be provided. Although the present review will concentrate on the MS of peptides/proteins and lipids, all classes of biomolecules can be analysed, and much excellent work has been done in the fields of carbohydrate and nucleic acid biochemistry. PMID:11311115

  9. Protein Sequencing with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ziady, Assem G.; Kinter, Michael

    The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.

  10. Dual analyte detection using tandem flash luminescence.

    PubMed

    Adamczyk, Maciej; Moore, Jeffrey A; Shreder, Kevin

    2002-02-11

    A heterogeneous, dual analyte-binding assay which makes use of the flash luminescence from both aequorin and an acridinium-9-carboxamide label is presented. The signal generating species were triggered both differentially and sequentially using Ca(2+) followed by basic peroxide. Both signals were resolved readily using a single photomultiplier tube without the need for multiwavelength detection. To demonstrate the tandem luminescence concept in a model assay system, dose-response curves for two analytes, biotinylated BSA and myoglobin, were generated using a competitive binding format. Because of the relatively short assay time and the well-resolved signals, this format will be useful in the development of dual analyte high-throughput assays. PMID:11814805

  11. Cerivastatin enhances the cytotoxicity of 5-fluorouracil on chemosensitive and resistant colorectal cancer cell lines.

    PubMed

    Wang, Weiguang; Collie-Duguid, Elaina; Cassidy, James

    2002-11-20

    Cerivastatin is one of the synthetic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used for the treatment and prevention of hypercholesterolaemia. The observation that patients receiving this drug had a lower incidence at cancer led to our interest in using it as a putative anticancer agent. In this study, we tested the cytotoxicity of cerivastatin on a panel of 5-fluorouracil (5FU) sensitive and resistant cell lines in vitro. Cerivastatin was cytotoxic to both 5FU sensitive and resistant cells. Cerivastatin significantly augmented the cytotoxic effect of 5FU on drug sensitive (6-22-fold) and resistant (229-310-fold) cell lines. Cerivastatin and 5FU acted synergistically. Cerivastatin inhibited nuclear factor kappaB DNA binding activity. The enhancing effect of cerivastatin on 5FU was partially mevalonate pathway independent. Cerivastatin may allow successful 5FU therapy in chemoresistant patients. PMID:12435585

  12. Gyrotron scattering from non-thermal fluctuations in the Tara Tandem Mirror

    SciTech Connect

    Machuzak, J.S.; Myer, R.C.; Woskoboinikow, P.P.; Cohn, D.R.; Gerver, M.; Golovato, S.N.; Horne, S.; Kubota, S.; Mulligan, W.J.; Post, R.S.

    1987-09-01

    A 137 GHz, approx.0.4 kW, 75 ms pulsed gyrotron has been used for collective Thomson scattering in the Tara Tandem Mirror plug cell at MIT. Scattering from ion cyclotron waves during ion cyclotron resonance frequency (ICRF) heating, ion Bernstein wave harmonics, and plasma fluctuations possibly due to microinstabilities have been observed. The observed harmonic nature of the ion Bernstein waves may be due to an enhanced ion thermal frequency spectrum in an ICRF heated plasma. 6 refs., 1 fig.

  13. Operation of an E parallel B end-loss ion spectrometer on the Tara tandem mirror

    SciTech Connect

    Casey, J.A.; Horne, S.F.; Irby, J.H.; Post, R.S.; Sevillano, E.; Foote, J.H.

    1988-08-01

    An E parallel B end-loss ion spectrometer from the Livermore TMX-U tandem mirror experiment was installed on Tara for high-resolution ion spectroscopy. This diagnostic contains parallel electric and magnetic fields, separating the masses and energies of the ions over 128 collector plates. The ion energy distribution nominally yields confining potentials and parallel ion temperatures. Additional experiments have diagnosed the resonance position of the central cell ion cyclotron heating, rf enhanced losses of high-energy sloshing ions in the axicell (''plug''), and observation of MHD instabilities at higher time resolution (20 kHz).

  14. Recent Activities in Tandem, Booster and TRIAC at Tokai

    SciTech Connect

    Ishii, Tetsuro; Matsuda, Makoto; Kabumoto, Hiroshi; Osa, Akihiko

    2009-05-04

    Present status and recent developments of the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator TRIAC are presented. The terminal voltage of the tandem accelerator reached 19.1 MV by replacing acceleration tubes. The multi-charged positive-ion injector was installed in the terminal of the tandem accelerator, supplying noble-gas ions. A superconducting cavity for low-velocity ions was developed. Radioactive nuclear beams of {sup 8}Li, {sup 123}In, and {sup 143}Ba were accelerated. Recent experimental results of nuclear physics are also reported.

  15. Classroom Tandem--Outlining a Model for Language Learning and Instruction

    ERIC Educational Resources Information Center

    Karjalainen, Katri; Pörn, Michaela; Rusk, Fredrik; Björkskog, Linda

    2013-01-01

    The aim of this paper is to outline classroom tandem by comparing it with informal tandem learning contexts and other language instruction methods. Classroom tandem is used for second language instruction in mixed language groups in the subjects of Finnish and Swedish as L2. Tandem learning entails that two persons with different mother tongues…

  16. 47 CFR 36.124 - Tandem switching equipment-Category 2.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Tandem switching equipment-Category 2. 36.124... Central Office Equipment § 36.124 Tandem switching equipment—Category 2. (a) Tandem switching equipment is contained in Accounts 2210, 2211, and 2212. It includes all switching equipment in a tandem central...

  17. Routine approach to qualitatively screen for 300 pesticides and quantify those frequently detected in fruits and vegetables using liquid chromatography tandem mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes an efficient and effective analytical scheme to first screen for 300 pesticides in fruit and vegetables samples using liquid chromatography tandem mass spectrometry (LC-MS/MS) with a commercial enhanced product ion method. Then, the presumed positive extracts were analyzed using...

  18. Heavy-ion injection from tandems into an isochronous cyclotron

    SciTech Connect

    LeVine, M.J.; Chasman, C.

    1981-01-01

    A design has been realized for the injection of heavy ion beams generated by the BNL 3-stage tandem facility into a proposed isochronous cyclotron. The tandem beams are bunched into +- 1/sup 0/ R.F. phase (less than or equal to 0.5 nsec) in two stages. The beam is then injected into the cyclotron through a valley, past a hill, and into the next valley on to a stripper foil. Only a single steerer is required to make trajectory corrections for the different beams. Two achromats are used to regulate the tandem potential and to provide phase control. A final section of the injection optics provides matching of transverse phase space to the acceptance of the cyclotron. The calculations use realistic tandem emittances and magnetic fields for the cyclotron based on measurements with a model magnet.

  19. Plasma-wall interactions in tandem mirror machines

    SciTech Connect

    Allen, S.L.

    1984-11-01

    A description is presented of the plasma-surface interactions in thermal-barrier tandem-mirror machines. The thermal-barrier mode of axial confinement is an integral part of a tandem mirror, and it dictates the required plasma conditions, particularly at the surface of the plasma. For this reason, a qualitative discussion of the thermal barrier is presented first in Section 2. A brief description of the experimental configuration used in tandem mirrors to create the thermal barrier is then examined in detail in Section 3; the TMX-U and MFTF-B machines are used as specific examples. In Section 4, the relevant plasma-surface interaction issues are addressed, and experimental results from currently operating tandom mirror machines are included. Section 5 is both a summary and a discussion of future work concerned with plasma-surface interactions in tandem mirrors.

  20. Patterns of tandem repetition in plant whole genome assemblies.

    PubMed

    Navajas-Pérez, Rafael; Paterson, Andrew H

    2009-06-01

    Tandem repeats often confound large genome assemblies. A survey of tandemly arrayed repetitive sequences was carried out in whole genome sequences of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the monocots rice and sorghum, and the dicots Arabidopsis thaliana, poplar, grapevine, and papaya, in order to test how these assemblies deal with this fraction of DNA. Our results suggest that plant genome assemblies preferentially include tandem repeats composed of shorter monomeric units (especially dinucleotide and 9-30-bp repeats), while higher repetitive units pose more difficulties to assemble. Nevertheless, notwithstanding that currently available sequencing technologies struggle with higher arrays of repeated DNA, major well-known repetitive elements including centromeric and telomeric repeats as well as high copy-number genes, were found to be reasonably well represented. A database including all tandem repeat sequences characterized here was created to benefit future comparative genomic analyses. PMID:19242726

  1. 5. GENERAL VIEW OF UNITEDTOD TWIN TANDEM STEAM ENGINE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW OF UNITED-TOD TWIN TANDEM STEAM ENGINE. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  2. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    SciTech Connect

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.

  3. Argonne tandem as injector to a superconducting linac

    SciTech Connect

    Yntema, J.L.; Den Hartog, P.K.; Henning, W.; Kutschera, W.

    1980-01-01

    The Argonne Tandem uses Pelletron chains, NEC accelerator tubes, and a dual closed-corona system. Its main function is to be an injector for a superconducting linear accelerator. As long as the transverse and longitudinal emittances are within the acceptance of the linac, the output beam quality of the tandem-linac system is essentially determined by the tandem. The sensitivity of the linac to the longitudinal emittance ..delta..E..delta..t of the incident beam makes the output beam quality dependent on the negative-ion velocity distribution in the source, transit-time effects in the tandem, molecular-beam dissociation, and stripper-foil uniformity. This paper discusses these beam-degrading effects.

  4. D STAND DELIVERY END OF #44 TANDEM BREAKDOWN MILL WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    D STAND DELIVERY END OF #44 TANDEM BREAKDOWN MILL WITH UPCOILER. BACKUP ROLLS, 40 TONS. WORK ROLLS, 20 TONS., C. 1900. OPERATING SPEED, 600'/MINUTE. AUTOMATIC GAUGE CONTROL. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  5. NTRFinder: a software tool to find nested tandem repeats.

    PubMed

    Matroud, Atheer A; Hendy, M D; Tuffley, C P

    2012-02-01

    We introduce the software tool NTRFinder to search for a complex repetitive structure in DNA we call a nested tandem repeat (NTR). An NTR is a recurrence of two or more distinct tandem motifs interspersed with each other. We propose that NTRs can be used as phylogenetic and population markers. We have tested our algorithm on both real and simulated data, and present some real NTRs of interest. NTRFinder can be downloaded from http://www.maths.otago.ac.nz/~aamatroud/. PMID:22121222

  6. Intragenic tandem repeat variation between Legionella pneumophila strains

    PubMed Central

    Coil, David A; Vandersmissen, Liesbeth; Ginevra, Christophe; Jarraud, Sophie; Lammertyn, Elke; Anné, Jozef

    2008-01-01

    Background Bacterial genomes harbour a large number of tandem repeats, yet the possible phenotypic effects of those found within the coding region of genes are only beginning to be examined. Evidence exists from other organisms that these repeats can be involved in the evolution of new genes, gene regulation, adaptation, resistance to environmental stresses, and avoidance of the immune system. Results In this study, we have investigated the presence and variability in copy number of intragenic tandemly repeated sequences in the genome of Legionella pneumophila, the etiological agent of a severe pneumonia known as Legionnaires' disease. Within the genome of the Philadelphia strain, we have identified 26 intragenic tandem repeat sequences using conservative selection criteria. Of these, seven were "polymorphic" in terms of repeat copy number between a large number of L. pneumophila serogroup 1 strains. These strains were collected from a wide variety of environments and patients in several geographical regions. Within this panel of strains, all but one of these seven genes exhibited statistically different patterns in repeat copy number between samples from different origins (environmental, clinical, and hot springs). Conclusion These results support the hypothesis that intragenic tandem repeats could play a role in virulence and adaptation to different environments. While tandem repeats are an increasingly popular focus of molecular typing studies in prokaryotes, including in L. pneumophila, this study is the first examining the difference in tandem repeat distribution as a function of clinical or environmental origin. PMID:19077205

  7. Tandem-mirror technology demonstration facility

    SciTech Connect

    Fowler, T.K.; Logan, B.G.

    1981-09-18

    Preliminary calculations at LLNL indicate that a Technology Demonstration Facility (TDF) consisting of a tandem mirror machine about the size of TMX could begin providing fusion nuclear engineering data as early as 1988. With high density operation based on physics already demonstrated in TMX, this machine would produce 12 MW of DT neutrons in steady-state from a plasma column 0.08 m in radius and 8 m in length. Allowing space for neutral beam injectors at each end of the column, this would permit testing of blanket modules and components at 1 MW/m/sup 2/ neutron wall load over a cylindrical surface 8 m/sup 2/ in area at a radius of 0.25 m; or one could irradiate thousands of small samples at 2 MW/m/sup 2/ at r = 0.125 m (4 m/sup 2/ area). With improved end-plug physics to be tested in TMX-Upgrade in 1982-83, the wall load at 0.25 m could be increased to 2 MW/m/sup 2/ (4 MW/m/sup 2/ at r = 0.125 m). Construction of the TDF could begin in FY84 and be completed in 4 to 5 years, at a cost roughly estimated as $700M in '81 dollars including engineering and 30% contingency.

  8. Microcrystalline silicon and micromorph tandem solar cells

    NASA Astrophysics Data System (ADS)

    Keppner, H.; Meier, J.; Torres, P.; Fischer, D.; Shah, A.

    ``Micromorph'' tandem solar cells consisting of a microcrystalline silicon bottom cell and an amorphous silicon top cell are considered as one of the most promising new thin-film silicon solar-cell concepts. Their promise lies in the hope of simultaneously achieving high conversion efficiencies at relatively low manufacturing costs. The concept was introduced by IMT Neuchâtel, based on the VHF-GD (very high frequency glow discharge) deposition method. The key element of the micromorph cell is the hydrogenated microcrystalline silicon bottom cell that opens new perspectives for low-temperature thin-film crystalline silicon technology. According to our present physical understanding microcrystalline silicon can be considered to be much more complex and very different from an ideal isotropic semiconductor. So far, stabilized efficiencies of about 12% (10.7% independently confirmed) could be obtained with micromorph solar cells. The scope of this paper is to emphasize two aspects: the first one is the complexity and the variety of microcrystalline silicon. The second aspect is to point out that the deposition parameter space is very large and mainly unexploited. Nevertheless, the results obtained are very encouraging and confirm that the micromorph concept has the potential to come close to the required performance criteria concerning price and efficiency.

  9. Analysis of tandem mirror reactor performance

    SciTech Connect

    Wu, K.F.; Campbell, R.B.; Peng, Y.K.M.

    1984-11-01

    Parametric studies are performed using a tandem mirror plasma point model to evaluate the wall loading GAMMA and the physics figure of merit, Q (fusion power/injected power). We explore the relationship among several dominant parameters and determine the impact on the plasma performance of electron cyclotron resonance heating in the plug region. These global particle and energy balance studies were carried out under the constraints of magnetohydrodynamic (MHD) equilibrium and stability and constant magnetic flux, assuming a fixed end-cell geometry. We found that the higher the choke coil fields, the higher the Q, wall loading, and fusion power due to the combination of the increased central-cell field B/sub c/ and density n/sub c/ and the reduced central-cell beta ..beta../sub c/. The MHD stability requirement of constant B/sub c//sup 2/..beta../sub c/ causes the reduction in ..beta../sub c/. In addition, a higher value of fusion power can also be obtained, at a fixed central-cell length, by operating at a lower value of B/sub c/ and a higher value of ..beta../sub c/.

  10. Transcriptome annotation using tandem SAGE tags

    PubMed Central

    Rivals, Eric; Boureux, Anthony; Lejeune, Mireille; Ottones, Florence; Pecharromàn Pérez, Oscar; Tarhio, Jorma; Pierrat, Fabien; Ruffle, Florence; Commes, Thérèse; Marti, Jacques

    2007-01-01

    Analysis of several million expressed gene signatures (tags) revealed an increasing number of different sequences, largely exceeding that of annotated genes in mammalian genomes. Serial analysis of gene expression (SAGE) can reveal new Poly(A) RNAs transcribed from previously unrecognized chromosomal regions. However, conventional SAGE tags are too short to identify unambiguously unique sites in large genomes. Here, we design a novel strategy with tags anchored on two different restrictions sites of cDNAs. New transcripts are then tentatively defined by the two SAGE tags in tandem and by the spanning sequence read on the genome between these tagged sites. Having developed a new algorithm to locate these tag-delimited genomic sequences (TDGS), we first validated its capacity to recognize known genes and its ability to reveal new transcripts with two SAGE libraries built in parallel from a single RNA sample. Our algorithm proves fast enough to experiment this strategy at a large scale. We then collected and processed the complete sets of human SAGE tags to predict yet unknown transcripts. A cross-validation with tiling arrays data shows that 47% of these TDGS overlap transcriptional active regions. Our method provides a new and complementary approach for complex transcriptome annotation. PMID:17709346

  11. Light Signaling Mechanism of Two Tandem Bacteriophytochromes

    PubMed Central

    Yang, Xiaojing; Stojković, Emina A.; Ozarowski, Wesley B.; Kuk, Jane; Davydova, Erna; Moffat, Keith

    2015-01-01

    RpBphP2 and RpBphP3, two tandem bacteriophytochromes from the photosynthetic bacterium R. palustris, share high sequence identity but exhibit distinct photoconversion behavior. Unlike the canonical RpBphP2, RpBphP3 photoconverts to an unusual nearred-absorbing (Pnr) state; both are required for synthesis of light harvesting complexes under low-light conditions. Here we report the crystal structures of the photosensory core modules of RpBphP2 and RpBphP3. Despite different quaternary structures, RpBphP2 and RpBphP3 adopt nearly identical tertiary structures. The RpBphP3 structure reveals “tongue-and-groove” interactions at the interface between the GAF and PHY domains. A single mutation in the PRxSF motif at the GAF-PHY interface abolishes light-induced formation of the Pnr state in RpBphP3, possibly due to altered structural rigidity of the chromophore-binding pocket. Structural comparisons suggest that long-range signaling involves structural rearrangement of the helical spine at the dimer interface. These structures together with mutational studies provide insights into photoconversion and long-range signaling mechanism in phytochromes. PMID:26095026

  12. Engineering problems of tandem-mirror reactors

    SciTech Connect

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  13. Global design optimization for an axial-flow tandem pump based on surrogate method

    NASA Astrophysics Data System (ADS)

    Li, D. H.; Zhao, Y.; Y Wang, G.

    2013-12-01

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Better cavitation performance and significant reduction of the axial geometry scale is important for high-speed propulsion. This study presents a global design optimization method based on surrogated method for an axial-flow tandem pump to enhance trade-off performances: energy and cavitation performances. At the same time, interactions between impellers and impacts on the performances are analyzed. Fixed angle of blades in impellers and phase angle are performed as design variables. Efficiency and minimum average pressure coefficient (MAPC) on axial sectional surface in front impeller are the objective function, which can represent energy and cavitation performances well. Different surrogate models are constructed, and Global Sensitivity Analysis and Pareto Front method are used. The results show that, 1) Influence from phase angle on performances can be neglected compared with other two design variables, 2) Impact ratio of fixed angle of blades in two impellers on efficiency are the same as their designed loading distributions, which is 4:6, 3) The optimization results can enhance the trade-off performances well: efficiency is improved by 0.6%, and the MAPC is improved by 4.5%.

  14. Tandem shock waves in medicine and biology: a review of potential applications and successes

    NASA Astrophysics Data System (ADS)

    Lukes, P.; Fernández, F.; Gutiérrez-Aceves, J.; Fernández, E.; Alvarez, U. M.; Sunka, P.; Loske, A. M.

    2016-01-01

    Shock waves have been established as a safe and effective treatment for a wide range of diseases. Research groups worldwide are working on improving shock wave technology and developing new applications of shock waves to medicine and biology. The passage of a shock wave through soft tissue, fluids, and suspensions containing cells may result in acoustic cavitation i.e., the expansion and violent collapse of microbubbles, which generates secondary shock waves and the emission of microjets of fluid. Cavitation has been recognized as a significant phenomenon that produces both desirable and undesirable biomedical effects. Several studies have shown that cavitation can be controlled by emitting two shock waves that can be delayed by tenths or hundreds of microseconds. These dual-pulse pressure pulses, which are known as tandem shock waves, have been shown to enhance in vitro and in vivo urinary stone fragmentation, cause significant cytotoxic effects in tumor cells, delay tumor growth, enhance the bactericidal effect of shock waves and significantly increase the efficiency of genetic transformations in bacteria and fungi. This article provides an overview of the basic physical principles, methodologies, achievements and potential uses of tandem shock waves to improve biomedical applications.

  15. Flow past tandem cylinders under forced vibration

    NASA Astrophysics Data System (ADS)

    Yang, Yingchen; Aydin, Tayfun B.; Ekmekci, Alis

    2014-01-01

    Flow past two cylinders in tandem arrangement under forced vibration has been studied experimentally employing the hydrogen bubble visualization technique. The Reynolds number, based on the cylinder diameter, is fixed at Re=250. In stationary state of the two cylinders with P/D=2.0, dual vortex shedding frequencies fL (St=0.14) and fH (St=0.18) are identified. fL is associated with the shear layer reattachment behavior and fH is related to the single bluff body behavior. Under a variety of forced vibrations of the two cylinders at a fixed vibration amplitude A/D=0.25, diverse and highly-repetitive vortex patterns are yielded. They are classified into two typical modes—a low-frequency mode and a high-frequency mode. The two modes are represented by two vortex patterns yielded from in-phase vibration of the two cylinders with P/D=2.0 and at vibration frequencies fe≈fL and fe≈fH. The difference between the two modes is on the number of vortices formed per vibration cycle. For the low-frequency mode, the number is four; for the high-frequency model, it is two. In both modes, the vortex formation is phase-locked to the cylinder motion. For a specified mode with a fixed vortex number per cycle, the way the vortices evolve in the wake can be somewhat different by changing the vibration frequency, pitch ratio, as well as the vibration type. These affecting factors have been examined in this work, and the associated vortex patterns have been characterized and compared.

  16. Parallel Tandems of Dye Sensitized Solar Cells with CNT Collector

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Yuan, Chao-Chen; Zakhidov, Anvar

    2009-03-01

    In this presentation, we demonstrate the fabrication of monolithic parallel tandem dye sensitized solar cells using a semitransparent layer of carbon nanotubes. Each DSC sub-cell has titania photoelectrode with two different dyes: N 719 and N 749, which absorb light in different parts of solar spectrum. This layer of carbon nanotubes laminated on highly porous polymeric Millipore filter acts as both the collector of charge carrier and as the catalyst of the I/I3^- redox reaction that completes the function of the cell, overall allowing easier fabrication for tandem solar cell devices, with a potential for creating flexible devices in the future. The parallel tandem shows the total photocurrent which is nearly the sum of two Isc currents of constituent cells, and total Voc, which is average of two Voc, while conventional in-series DSC tandems show the lowest Voc and slightly increased Isc[1]. Thus the higher efficiency can be achieved in parallel DSC tandems, and we discuss the physical reasons for this effect. [1] Yanagida, et.al. J. of Photochemistry and Photobiology A: Chemistry Volume 164, Issues 1-3, 1 June 2004, Pages 33-39

  17. Cooperative cell motility during tandem locomotion of amoeboid cells

    PubMed Central

    Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.

    2016-01-01

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787

  18. Design of a new tandem wings hybrid airship

    NASA Astrophysics Data System (ADS)

    Li, Feng; Ye, ZhengYin; Gao, Chao

    2012-10-01

    It is scientifically important science value and engineering promising to develop the buoyancy-lift integrated hybrid airship for high attitude platform. Through the numerical method, a new tandem wings hybrid airship with both higher utility value and economy efficiency was obtained and its total performance and technical parameters were analyzed in detail. In order to further improve the lift-drag characteristics, we implemented the optimization design for aerodynamic configuration of tandem wings hybrid airship via the response surface method. The results indicate that the tandem wings hybrid airship has considerable volume efficiency and higher aerodynamic characteristics. After optimization, the lift-drag ratio of this hybrid airship was increased by 6.08%. In a given gross lift condition, tandem wings hybrid airship may provide more payload and specific productivity. Furthermore, the size of tandem airship is smaller so the demand for skin flexible materials can be reduced. Results of this study could serve as a new approach to designing buoyancy-lifting integrated hybrid airship.

  19. Test of the Tandem transmission at low terminal voltages

    SciTech Connect

    Rehm, K.E.; Blumenthal, D.; Gehring, J.

    1995-08-01

    For a planned experiment with {sup 18}F beams at energies below 1 MeV/u the transmission of the Tandem-Linac system was investigated. The energies required in the experiment are typically around 600 keV/u, which for the most abundant charge states for F(4{sup +}) corresponds to terminal voltages between 2-3 MV. We studied the transmission from the source to the tandem accelerator and to the spectrograph in area II with {sup 18}O and {sup 19}F beams using two different approaches. In the first method only the tandem accelerator was used producing a 14-MeV DC {sup 18}O beam. In the second method a pulsed beam was accelerated to 33 MeV with the tandem accelerator followed by deceleration to 14 MeV with the first 9 resonators of ATLAS. The total transmission from ion source to target was in both cases about 10%. Because of the smaller complexity we used the first method for the {sup 18}F experiment. In future runs we are planning to use the electrostatic lens in the terminal of the tandem to improve the overall transmission.

  20. The Tandem-ALPI-PIAVE accelerator complex of LNL

    SciTech Connect

    Ur, C. A.

    2013-07-18

    Heavy ion beams are delivered at the Laboratori Nazionali di Legnaro by the accelerator complex Tandem-ALPI-PIAVE. The Tandem XTU is a Van de Graaff accelerator normally operated at terminal voltages of up to about 15 MV. The Tandem accelerator can be operated in stand-alone mode or as an injector for the linac booster ALPI. The linear accelerator ALPI is built of superconducting resonant cavities and consists of a low-beta branch, particularly important for the acceleration of the heavier mass ions, a medium-beta branch, and a high-beta branch. ALPI can be operated also with the PIAVE injector that consists of a superconducting linac and an ECR source. The PIAVE source was mainly used for the acceleration of intense noble gas beams but most recently also a first metallic beam was delivered to the users. The accelerator complex delivers beams of ions from protons to gold in three experimental areas on 11 different beam lines. A rich scientific activity is ongoing at the Tandem-ALPI-PIAVE accelerator complex, beam time being shared between nuclear physics research and applied and interdisciplinary physics research. An overview of the present status and perspectives of the Tandem-ALPI-PIAVE complex and its physics program is given in the present paper.

  1. The effect of variable stator on performance of a highly loaded tandem axial flow compressor stage

    NASA Astrophysics Data System (ADS)

    Eshraghi, Hamzeh; Boroomand, Masoud; Tousi, Abolghasem M.; Fallah, Mohammad Toude; Mohammadi, Ali

    2016-06-01

    Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it is possible to obtain higher pressure ratios compared to conventional compressors. However, it must be noted that imposing higher aerodynamic loads results in higher loss coefficients and deteriorates the overall performance. To avoid the loss increase, the boundary layer quality must be studied carefully over the blade suction surface. Employment of advanced shaped airfoils (like CDAs), slotted blades or other boundary layer control methods has helped the designers to use higher aerodynamic loads on compressor blades. Tandem cascade is a passive boundary layer control method, which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads. In fact, the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side. Also, in comparison to the single blade stators, tandem variable stators have more degrees of freedom, and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance. In the current study, a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage. Following, this design is numerically investigated using a CFD code and the stage characteristic map is reported. Also, the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed. To validate the CFD method, another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results.

  2. N, N-Dimethyl Leucines as Novel Isobaric Tandem Mass Tags for Quantitative Proteomics and Peptidomics

    PubMed Central

    Xiang, Feng; Ye, Hui; Chen, Ruibing; Fu, Qiang; Li, Lingjun

    2010-01-01

    Herein we describe the development and application of a set of novel N, N-dimethyl leucine (DiLeu) 4-plex isobaric tandem mass (MS2) tagging reagents with high quantitation efficacy and greatly reduced cost for neuropeptide and protein analysis. DiLeu reagents serve as attractive alternatives for isobaric tag for relative and absolute quantitation (iTRAQ) and tandem mass tags (TMTs) due to their synthetic simplicity, labeling efficiency and improved fragmentation efficiency. DiLeu reagent resembles the general structure of a tandem mass tag in that it contains an amine reactive group (triazine ester) targeting the N-terminus and ε-amino group of the lysine side-chain of a peptide, a balance group, and a reporter group. A mass shift of m/z 145.1 is observed for each incorporated label. Intense a1 reporter ions at m/z 115.1, 116.1, 117.1, and 118.1 are observed for all pooled samples upon MS2. All labeling reagents are readily synthesized from commercially available chemicals with greatly reduced cost. Labels 117 and 118 can be synthesized in one step and labels 115 and 116 can be synthesized in two steps. Both DiLeu and iTRAQ reagents show comparable protein sequence coverage (~43%) and quantitation accuracy (<15%) for tryptically digested protein samples. Furthermore, enhanced fragmentation of DiLeu labeling reagents offers greater confidence in protein identification and neuropeptide sequencing from complex neuroendocrine tissue extracts from a marine model organism, Callinectes sapidus. PMID:20218596

  3. Development of a silver/polymer nanocomposite interconnection layer for organic tandem solar cells

    NASA Astrophysics Data System (ADS)

    Torabi, Naeimeh; Behjat, Abbas; Shahpari, Mahboobeh; Edalati, Shadi

    2015-01-01

    Interconnecting layers (ICL) play an important role in regulating the performance of tandem devices. We report the design of a solution-processed ICL that consists of a silver/polymer nanocomposite deposited on the top of a TiO2 layer. This nanocomposite contains modified poly (3,4-ethylenedioxythiophene) polystyrene sulfonic acid (PEDOT:PSS), and silver nanoparticles (Ag NPs) synthesized by the chemical reduction of silver nitrate in the presence of PEDOT:PSS. Formation of Ag NPs was confirmed by monitoring the plasmon absorption peak characteristics in the UV-visible spectrum of the synthesized nanocomposite. Transmission electron microscopy analysis indicated the presence of spherical silver NPs in a polymer matrix with a mean size of around 20 nm. The sheet resistance of PEDOT:PSS was found to be 2474±35 Ω/sq. It was changed to 445±28 Ω/sq after solvent modification and decreased to 53.31±3.59 Ω/sq after synthesizing silver NPs in the polymer medium. Meanwhile, the transparency of the nanocomposite film deposited on TiO2 was 89.6%, which is considered appropriate for an interconnecting electrode. We demonstrated that by incorporating a silver/polymer nanocomposite as a hole-transporting layer in contact with TiO2 as an electron-transporting layer, the ohmic behavior of ICL is enhanced with respect to pristine PEDOT:PSS. P3HT:PCBM-based tandem solar cells based on this solution-processed intermediate electrode represent significantly increased open-circuit voltage (Voc), reaching close to the sum of the single cells. By incorporating the nanocomposite in the tandem structure, a Voc of 1.1 V was obtained. This value was almost the sum of the Voc of two single cells, which was 1.18 V.

  4. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    SciTech Connect

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs.

  5. Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells

    PubMed Central

    2014-01-01

    Numerical simulations are conducted to study the current-matching effect and operation mechanisms in and to design the optimized device structure of InGaN/Si tandem cells. The characteristics of short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), and conversion efficiency (η) of InGaN/Si tandem cells are determined by the current-matching effect. The similar trend of η to that of Jsc shows that Jsc is a dominant factor in determining the performance of InGaN/Si tandem cells. In addition, the combined effects of the Jsc, Voc, and FF lead to an optimized η in the medium-indium, xpn-InGaNInGaN‒to‒Si, InGaN/Si tandem cell. At xpn-InGaNInGaN‒to‒Si, the Jsc of the InGaN subcell is equal to that of the Si subcell such that an InGaN/Si tandem cell reaches the current matching condition to operate at the maximum power point. Similar to the Jsc and FF, the η for low- xpn-InGaNxpn-InGaNInGaN‒to‒Si InGaN/Si tandem cells are InGaN- and Si subcell-limited, respectively. Furthermore, the p- and n-layer thicknesses, indium content, and position of depletion region of InGaN subcell should be adjusted to reapportion the light between the two subcells and to achieve the maximum conversion efficiency. With appropriate thicknesses of p- and n-InGaN, In0.5–0.6Ga0.5–0.4 N/Si tandem cells can exhibit as high as approximately 34% to 36.5% conversion efficiency, demonstrating that a medium-indium InGaN/Si tandem cell results in a high-efficiency solar cell. Simulation results determine that the current-matching effect and operation mechanisms of InGaN/Si tandem cells can be utilized for efficiency enhancement through the optimized device structures. PMID:25520599

  6. Dosimetric Comparison of Tandem and Ovoids vs. Tandem and Ring for Intracavitary Gynecologic Applications

    SciTech Connect

    Levin, Daphne Menhel, Janna; Rabin, Tanya; Pfeffer, M. Raphael; Symon, Zvi

    2008-01-01

    We evaluated dosimetric differences in tandem and ovoid (TO) and tandem and ring (TR) gynecologic brachytherapy applicators. Seventeen patients with cervical cancer (Stages II-IV) receiving 3 high-dose-rate (HDR) brachytherapy applications (both TO and TR) were studied. Patients underwent computed tomography (CT) scans with contrast in bladder, and were prescribed 8 Gy to ICRU points A, with additional optimization goals of maintaining the pear-shaped dose distribution and minimizing bladder and rectum doses. Bladder and rectum point doses, mean, and maximum doses were calculated. Total treatment time and volumes treated to 95%, 85%, 50%, and 20% or the prescription dose were compared. There were no significant differences between TO and TR applicators in doses to prescription points or critical organs. However, there were significant differences (p < 0.001) between the applicators in treated volumes and total treatment time. The TO treated larger volumes over a longer time. Within each patient, when the applicators were compared, treated volumes were also found to be significantly different (p < 0.01, {chi}{sup 2}). Our results demonstrate that the 2 applicators, while delivering the prescribed dose to points A and keeping critical organ doses below tolerance, treat significantly different volumes. It is unclear if this difference is clinically meaningful. TO applicators may be treating surrounding healthy tissue unnecessarily, or TR applicators may be underdosing tumor tissue. Further investigation with appropriate imaging modalities is required for accurate delineation of target volumes. Clearly, the TO and TR are not identical, and should not be used interchangeably without further study.

  7. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than

  8. Enantioselective tandem reaction over a site-isolated bifunctional catalyst.

    PubMed

    Xu, Jianyou; Cheng, Tanyu; Zhang, Kun; Wang, Ziyun; Liu, Guohua

    2016-05-21

    Construction of a site-isolated heterogeneous catalyst to realize the compatibility of bimetallic complexes for a feasible tandem reaction is a significant challenge in heterogeneous asymmetric catalysis. Herein, taking advantage of yolk-shell-structured mesoporous silica, we assemble an active site-isolated bifunctional catalyst through assembly of organopalladium-functionality into silicate channels as an outer shell and chiral organoruthenium-functionality onto silicate yolk as an inner core, realizing the one-pot enantioselective tandem reaction from Pd-catalyzed Sonogashira coupling to Ru-catalyzed asymmetric transfer hydrogenation. As presented in this study, this tandem Sonogashira coupling-asymmetric transfer hydrogenation of haloacetophenones and arylacetylenes affords various chiral conjugated alkynols with high yields and up to 99% enantioselectivity. Moreover, a catalyst can also be recovered easily and recycled repeatedly, making it an interesting feature in a practical organic transformation. PMID:27063335

  9. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  10. Advancing tandem solar cells by spectrally selective multilayer intermediate reflectors.

    PubMed

    Hoffmann, Andre; Paetzold, Ulrich W; Zhang, Chao; Merdzhanova, Tsvetelina; Lambertz, Andreas; Ulbrich, Carolin; Bittkau, Karsten; Rau, Uwe

    2014-08-25

    Thin-film silicon tandem solar cells are composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell, stacked and connected in series. In order to match the photocurrents of the top cell and the bottom cell, a proper photon management is required. Up to date, single-layer intermediate reflectors of limited spectral selectivity are applied to match the photocurrents of the top and the bottom cell. In this paper, we design and prototype multilayer intermediate reflectors based on aluminum doped zinc oxide and doped microcrystalline silicon oxide with a spectrally selective reflectance allowing for improved current matching and an overall increase of the charge carrier generation. The intermediate reflectors are successfully integrated into state-of-the-art tandem solar cells resulting in an increase of overall short-circuit current density by 0.7 mA/cm(2) in comparison to a tandem solar cell with the standard single-layer intermediate reflector. PMID:25322181