Sample records for tandem mirror experiment

  1. Summary of results from the Tandem Mirror Experiment (TMX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonen, T.C.

    1981-02-26

    This report summarizes results from the successful experimental operation of the Tandem Mirror Experiment (TMX) over the period October 1978 through September 1980. The experimental program, summarized by the DOE milestones given in Table 1-1, had three basic phases: (1) an 8-month checkout period, October 1978 through May 1979; (2) a 6-month initial period of operation, June through November 1979, during which the basic principles of the tandem configuration were demonstrated (i.e., plasma confinement was improved over that of a single-cell mirror); and (3) a 10-month period, December 1979 through September 1980, during which the initial TMX results were corroboratedmore » by additional diagnostic measurements and many detailed physics investigations were carried out. This report summarizes the early results, presents results of recent data analysis, and outlines areas of ongoing research and data analysis which will be reported in future journal publications.« less

  2. Kinetically Stabilized Axisymmetric Tandem Mirrors: Summary of Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R F

    2005-02-08

    The path to practical fusion power through plasma confinement in magnetic fields, if it is solely based on the present front-runner, the tokamak, is clearly long, expensive, and arduous. The root causes for this situation lie in the effects of endemic plasma turbulence and in the complexity the tokamak's ''closed'' field geometry. The studies carried out in the investigations described in the attached reports are aimed at finding an approach that does not suffer from these problems. This goal is to be achieved by employing an axisymmetric ''open'' magnetic field geometry, i.e. one generated by a linear array of circularmore » magnet coils, and employing the magnetic mirror effect in accomplishing the plugging of end leakage. More specifically, the studies were aimed at utilizing the tandem-mirror concept in an axisymmetric configuration to achieve performance superior to the tokamak, and in a far simpler system, one for which the cost and development time could be much lower than that for the tokamak, as exemplified by ITER and its follow-ons. An important stimulus for investigating axisymmetric versions of the tandem mirror is the fact that, beginning from early days in fusion research there have been examples of axisymmetric mirror experiments where the plasma exhibited crossfield transport far below the turbulence-enhanced rates characteristic of tokamaks, in specific cases approaching the ''classical'' rate. From the standpoint of theory, axisymmetric mirror-based systems have special characteristics that help explain the low levels of turbulence that have been observed. Among these are the facts that there are no parallel currents in the equilibrium state, and that the drift surfaces of all of the trapped particles are closed surfaces, as shown early on by Teller and Northrop. In addition, in such systems it is possible to arrange that the radial boundary of the confined plasma terminates without contact with the chamber wall. This possibility reduces the

  3. Alpha particle confinement in tandem mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devoto, R.S.; Ohnishi, M.; Kerns, J.

    1980-10-10

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.

  4. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrorsmore » and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.« less

  5. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Chang-Diaz, F. R.

    1988-01-01

    This paper discusses a novel concept in electrodeless plasma propulsion, in which the materials problems are ameliorated by an electrodeless magnetic confinement scheme borrowed from the tandem mirror approach to controlled thermonuclear fusion. The concept also features a two-stage magnetic nozzle with an annular hypersonic coaxial gas injector near the throat. The nozzle produces hybrid plume by the coaxial injection of hypersonic neutral gas, and the gas layer thus formed protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The tandem mirror plasma propulsion facility is capable of delivering a variable I(sp). The results of numerical simulation of this concept are presented together with those from an experimental tandem-mirror plasma propulsion device.

  6. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R.F.; Fowler, T.K.; Bulmer, R.

    2005-01-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employedmore » a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the

  7. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R F; Fowler, T K; Bulmer, R

    2004-07-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies havemore » employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions

  8. Instabilities excited by an energetic ion beam and electron temperature anisotropy in tandem mirrors

    NASA Technical Reports Server (NTRS)

    Da Jornada, E. H.; Gaffey, J. D., Jr.; Winske, D.

    1985-01-01

    Tandem mirrors are magnetic confinement devices, which have the objective to prevent a leaking out of ions in a central (solenoidal) cell at the end. This is accomplished by making use of an electrostatic potential, which is maintained by a denser plasma in mirror end cells. In the Tandem Mirror Experiment (TMX), Correll et al. (1982) have successfully verified the basic concepts involved in the design of the considered device. However, it was also found that the simple tandem mirror could not be easily scaled to a reactor-size device. Approaches for solving the arising problems were studied, taking into account also the utilization of a thermal barrier. In this connection, Winske et al. (1985) studied the nonlinear development of the instability in a finite beta plasma with isotropic electrons. The present investigation is concerned with an extension of the calculations conducted by Winske et al., giving attention to the parameter regime of the TMX. It is found that three instabilities can occur.

  9. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  10. A high fusion power gain tandem mirror

    NASA Astrophysics Data System (ADS)

    Fowler, T. K.; Moir, R. W.; Simonen, T. C.

    2017-10-01

    Utilizing advances in high field superconducting magnet technology and microwave gyrotrons we illustrate the possibility of a high power gain (Q = 10-20) tandem mirror fusion reactor. Inspired by recent Gas Dynamic Trap (GDT) achievements we employ a simple axisymmetric mirror magnet configuration. We consider both DT and cat. DD fuel options that utilize existing as well as future technology development. We identify subjects requiring further study such as hot electron physics, trapped particle modes and plasma startup.

  11. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    DOEpatents

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  12. A new simpler way to obtain high fusion power gain in tandem mirrors

    NASA Astrophysics Data System (ADS)

    Fowler, T. K.; Moir, R. W.; Simonen, T. C.

    2017-05-01

    From the earliest days of fusion research, Richard F. Post and other advocates of magnetic mirror confinement recognized that mirrors favor high ion temperatures where nuclear reaction rates < σ v> begin to peak for all fusion fuels. In this paper we review why high ion temperatures are favored, using Post’s axisymmetric Kinetically Stabilized Tandem Mirror as the example; and we offer a new idea that appears to greatly improve reactor prospects at high ion temperatures. The idea is, first, to take advantage of recent advances in superconducting magnet technology to minimize the size and cost of End Plugs; and secondly, to utilize parallel advances in gyrotrons that would enable intense electron cyclotron heating (ECH) in these high field End Plugs. The yin-yang magnets and thermal barriers that complicated earlier tandem mirror designs are not required. We find that, concerning end losses, intense ECH in symmetric End Plugs could increase the fusion power gain Q, for both DT and Catalyzed DD fuel cycles, to levels competitive with steady-state tokamaks burning DT fuel. Radial losses remain an issue that will ultimately determine reactor viability.

  13. Steady state whistler turbulence and stability of thermal barriers in tandem mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Sudan, R.N.

    The effect of the whistler turbulence on anisotropic electrons in a thermal barrier is examined. The electron distribution function is derived self-consistently by solving the steady state quasilinear diffusion equation. Saturated amplitudes are computed using the resonance broadening theory or convective stabilization. Estimated power levels necessary for sustaining the steady state of a strongly anisotropic electron population are found to exceed by orders of magnitude the estimates based on Fokker--Planck calculations for the range of parameters of tandem mirror (TMX-U and MFTF-B) experiments (Nucl. Fusion 25, 1205 (1985)). Upper limits on the allowed degree of anisotropy for existing power densitiesmore » are calculated.« less

  14. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, F. R.; Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Yao, X.; Griffin, D.

    1988-01-01

    A concept in electrodeless plasma propulsion, which is also capable of delivering a variable Isp, is presented. The concept involves a three-stage system of plasma injection, heating, and subsequent ejection through a magnetic nozzle. The nozzle produces the hybrid plume by the coaxial injection of hypersonic neutral gas. The gas layer, thus formed, protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The physics of this concept is evaluated numerically through full spatial and temporal simulations; these explore the operating characteristics of such a device over a wide region of parameter space. An experimental facility to study the plasma dynamics in the hybrid plume was built. The device consists of a tandem mirror operating in an asymmetric mode. A later upgrade of this system will incorporate a cold plasma injector at one end of the machine. Initial experiments involve the full characterization of the operating envelope, as well as extensive measurements of plasma properties at the exhaust. The results of the numerical simulations are described.

  15. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, David E.; Logan, B. Grant

    1981-01-01

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequency of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technological state of the art required, and the capital cost are all greatly lowered.

  16. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, D.E.; Logan, B.G.

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.

  17. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  18. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  19. Development of plasma sources for ICRF heating experiment in KMAX mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Liu, Ming; Yi, Hongshen; Lin, Munan; Shi, Peiyun

    2016-10-01

    KMAX, Keda Mirror with AXisymmeticity, is a tandem mirror machine with a length of 10 meters and diameters of 1.2 meters in the central cell and 0.3 meters in the mirror throat. In the past experiments, the plasma was generated by helicon wave launched from the west end. We obtained the blue core mode in argon discharge, however, it cannot provide sufficient plasma for hydrogen discharge, which is at least 1012 cm-3 required for effective ICRF heating. Several attempts have thus been tried or under design to increase the central cell's plasma density: (1) a washer gun with aperture of 1cm has been successfully tested, and a plasma density of 1013 cm-3 was achieved in the west cell near the gun, however, the plasma is only 1011 cm-3 in the central cell possible due to the mirror trapping and/or neutral quenching effect (2) a larger washer gun with aperture of 2.5 cm and a higher power capacitor bank are being assembled in order to generate more plasmas. In addition, how to mitigate the neutrals is under consideration (3) A hot cathode is been designed and will be tested in combination with plasma gun or alone. Preliminary results from those plasma sources will be presented and discussed.

  20. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, R.W.

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  1. Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, M.; Morimoto, M.; Shima, Y.

    2012-10-15

    In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TSmore » system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.« less

  2. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  3. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  4. Mirror plasma apparatus

    DOEpatents

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  5. Network activity of mirror neurons depends on experience.

    PubMed

    Ushakov, Vadim L; Kartashov, Sergey I; Zavyalova, Victoria V; Bezverhiy, Denis D; Posichanyuk, Vladimir I; Terentev, Vasliliy N; Anokhin, Konstantin V

    2013-03-01

    In this work, the investigation of network activity of mirror neurons systems in animal brains depending on experience (existence or absence performance of the shown actions) was carried out. It carried out the research of mirror neurons network in the C57/BL6 line mice in the supervision task of swimming mice-demonstrators in Morris water maze. It showed the presence of mirror neurons systems in the motor cortex M1, M2, cingular cortex, hippocampus in mice groups, having experience of the swimming and without it. The conclusion is drawn about the possibility of the new functional network systems formation by means of mirror neurons systems and the acquisition of new knowledge through supervision by the animals in non-specific tasks.

  6. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  7. A tandem mirror plasma source for a hybrid plume plasma propulsion concept

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.

    1985-01-01

    This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.

  8. Technician checks the mirrors of the Starshine-2 experiment

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Technician checks the mirrors of the Starshine-2 experiment KSC-01PD-1715 KENNEDY SPACE CENTER, Fla. -- A technician checks the mirrors on the Starshine-2 experiment inside a canister in the payload bay of Space Shuttle Endeavour. The deployable experiment is being carried on mission STS-108. Starshine-2's 800 aluminum mirrors were polished by more than 25,000 students from 26 countries. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews, bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello, and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff of Endeavour on mission STS-108 is scheduled for 7:41 p.m. EST.

  9. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation

    PubMed Central

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey

    2014-01-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. PMID:23709352

  10. Mirror-touch and ticker tape experiences in synesthesia

    PubMed Central

    Chun, Charlotte A.; Hupé, Jean-Michel

    2013-01-01

    A fundamental question in the field of synesthesia is whether it is associated with other cognitive phenomena. The current study examined synesthesia's connections with phenomenal traits of mirror-touch and ticker tape experiences, as well as the representation of the three phenomena in the population, across gender and domain of work/study. Mirror-touch is the automatic, involuntary experience of tactile sensation on one's own body when others are being touched. For example, seeing another person's arm being stroked can evoke physical touch sensation on one's own arm. Ticker tape is the automatic visualization of spoken words or thoughts, such as a teleprompter. For example, when spoken to, a ticker taper might see mentally the spoken words displayed in front of his face or as coming out of the speaker's mouth. To explore synesthesia's associations with these phenomena, a diverse group (n = 3743) was systematically recruited from eight universities and one public museum in France to complete an online screening. Of the 1017 eligible respondents, synesthetes (across all subtypes) reported higher rates of mirror-touch and ticker tape than non-synesthetes, suggesting that synesthesia is associated with these phenomenal traits. However, effect sizes were small and we could not rule out that response bias influenced these associations. Mirror-touch and ticker tape were independent. No differences were found across gender or domain of work and study in prevalence of synesthesia, mirror-touch or ticker tape. The prevalence of ticker tape, unknown so far, was estimated at about 7%, an intermediate rate between estimates of grapheme-color (2–4%) and sequence-space synesthesia (9–14%). Within synesthesia, grapheme-personification, also called ordinal-linguistic personification (OLP) was the most common subtype and was estimated around 12%. Co-occurences of the different types of synesthesia were higher than chance, though at the level of small effect sizes. PMID

  11. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.

  12. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.

    PubMed

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline

    2014-08-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. A Study of the Amputee Experience of Viewing Self in the Mirror

    PubMed Central

    Freysteinson, Wyona; Thomas, Lisa; Sebastian-Deutsch, Amy; Douglas, Denika; Melton, Danielle; Celia, Tania; Reeves, Kristin; Bowyer, Patricia

    2017-01-01

    Abstract Purpose To describe the trajectory of viewing self in a mirror after an ampu-tation and participants’ perceptions of what health care professionals should know about mirrors. Design Hermeneutic phenomenology Methods Focus groups were conducted to collect the research data. Findings The mirror experience had three key moments: decision, seeing, and consent. The trajectory of viewing self in a mirror had four key themes: mirror shock, mirror anguish, recognizing self, and acceptance: a new normal. Participants’ recommendations for introducing the mirror after an amputation and using a mirror to avoid skin breakdown and infection, and correct gait and balance are described. Conclusions This study provides a unique viewpoint into the world of those who have suffered amputation of a limb. Clinical Relevance Rehabilitation nurses and other health care professionals are encouraged through these participants to consider the effect and value of mirrors when caring for those who have had an amputation. PMID:26879100

  14. High-concentration mirror-based Kohler integrating system for tandem solar cells

    NASA Astrophysics Data System (ADS)

    Winston, R.; Benitez, P.; Cvetkovic, A.

    2006-06-01

    A novel two-mirror high concentration nonimaging optic has been designed that shares the advantages of present two mirror aplanatic imaging concentrators but also overcomes their main limitation of trade-off between acceptance angle and irradiance uniformity. A system concept has been defined, and a first prototype in under development.

  15. Note: Tandem Kirkpatrick-Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Wang, Zhanshan; Wei, Lai; Liu, Dongxiao; Cao, Leifeng; Gu, Yuqiu

    2018-03-01

    Multi-channel Kirkpatrick-Baez (KB) microscopes, which have better resolution and collection efficiency than pinhole cameras, have been widely used in laser inertial confinement fusion to diagnose time evolution of the target implosion. In this study, a tandem multi-channel KB microscope was developed to have sixteen imaging channels with the precise control of spatial resolution and image intervals. This precise control was created using a coarse assembly of mirror pairs with high-accuracy optical prisms, followed by precise adjustment in real-time x-ray imaging experiments. The multilayers coated on the KB mirrors were designed to have substantially the same reflectivity to obtain a uniform brightness of different images for laser-plasma temperature analysis. The study provides a practicable method to achieve the optimum performance of the microscope for future high-resolution applications in inertial confinement fusion experiments.

  16. Experiments and PIC simulations on liquid crystal plasma mirrors for pulse contrast enhancement

    NASA Astrophysics Data System (ADS)

    Cochran, G. E.; Poole, P. L.; Krygier, A.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Heery, R.; Purcell, J.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-10-01

    High pulse contrast is crucial for performing many experiments on high intensity lasers in order to minimize modification of the target surface by pre-pulse. This is often achieved through the use of solid dielectric plasma mirrors which can limit laser shot rates. Liquid crystal films, originally developed as variable thickness ion acceleration targets, have been demonstrated as effective plasma mirrors for pulse cleaning, reaching peak reflectivities over 70%. These films were used as plasma mirrors in an ion acceleration experiment on the Scarlet laser and the resultant increase in peak proton energy and change in acceleration direction will be discussed. Also presented here are novel 2D3V, LSP particle-in-cell simulations of dielectric plasma mirror operation. By including multiphoton ionization and dimensionality corrections, an excellent match to experiment is obtained over 4 decades in intensity. Analysis of pulse shortening and plasma critical surface behavior in these simulations will be discussed. Formation of thin films at 1.5 Hz will also be presented. Performed with support from the DARPA PULSE program through AMRDEC, from NNSA, and from OSC.

  17. Mirror Neurons and Mirror-Touch Synesthesia.

    PubMed

    Linkovski, Omer; Katzin, Naama; Salti, Moti

    2016-05-30

    Since mirror neurons were introduced to the neuroscientific community more than 20 years ago, they have become an elegant and intuitive account for different cognitive mechanisms (e.g., empathy, goal understanding) and conditions (e.g., autism spectrum disorders). Recently, mirror neurons were suggested to be the mechanism underlying a specific type of synesthesia. Mirror-touch synesthesia is a phenomenon in which individuals experience somatosensory sensations when seeing someone else being touched. Appealing as it is, careful delineation is required when applying this mechanism. Using the mirror-touch synesthesia case, we put forward theoretical and methodological issues that should be addressed before relying on the mirror-neurons account. © The Author(s) 2016.

  18. The role of handedness-dependent sensorimotor experience in the development of mirroring.

    PubMed

    Mori, Hirotaka; Yamamoto, Shinji; Aihara, Tsuyoshi; Uehara, Shintaro

    2015-01-01

    In daily life, we often try to learn motor actions by imitating others' actions. Motor imitation requires us to simultaneously map an observed action onto a motor program used to perform that action. This sensorimotor associative experience can plastically modulate the mirror property of the human mirror system, which has a role in matching observed actions directly with the observer's motor programs, to enhance the association between observed and performed actions. In the present study, we investigated the effects of handedness on the mirror property. Healthy left- and right-handed individuals performed a motor imitation task. They were required to imitate hand actions with their dominant hand as quickly and accurately as possible in response to pictures of a left and right hand. Reaction times (RTs) for imitating the hand actions were evaluated. Under the condition where the hand pictures were presented as if facing the participant, we found that, in left-handed participants, RTs for imitating right-handed actions were significantly shorter than those for imitating left-handed actions. Under the same conditions in right-handers, similar differences in RTs when presented left- and right-handed actions were not observed. These findings demonstrate that the imitative responses for left- and right-handed actions are differently facilitated depending on the handedness of the observer, indicating an effect of handedness on the development of mirror systems. The mirror property in left- and right-handers is likely modulated in a different manner by different sensorimotor associative experiences throughout their daily lives. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Development of a three-mirror anastigmat telescope for the GERB experiment

    NASA Astrophysics Data System (ADS)

    Gloesener, Pierre; Quertemont, Eric; Flebus, Carlo

    2017-11-01

    The GERB experiment, on-board Meteosat Second Generation, aims at monitoring the Earth radiation budget within a broad spectral range (0.32 -30 ‡m). This paper outlines the development of the GERB imaging subsystem, a f/2 three-mirror anastigmat telescope with a 18° x 0,28° rectangular field-of-view. The telescope is an all-aluminium design, comprising a primary off-axis elliptical mirror and two spherical ones, with a largest size of 100 mm. After integration and environmental testing, its global on-axis imaging performance reached 0,45 ‡ rms at 633 nm for an optical design value of 0,27 ‡ rms. The global opto-mechanical tolerance analysis of the design phase defined an integration sequence able to keep the individual alignment of each mirror within the accuracy needed to ascertain the whole telescope quality.

  20. Study on optical polishing experiment of zerodur mirror

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Li, Hang; Wang, Peng; Guo, Wen; Wang, Yonggang; Du, Yan; Dong, Huiwen

    2014-08-01

    A zerodur mirror whose aperture is 900mm is chosen to be the primary mirror of an optical system. The mirror is polished by rapid polishing and precision polishing methods relatively. The final surface figures of the mirror are as follows: the peak-to-valley value (P-V value) is 0.204λ (λ=632.8nm), and the root-mean-square value (RMS value) is 0.016λ, which meet the requirement of the optical system. The results show that the polishing process is feasible.

  1. Current Status of the Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2002-01-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). An experimental GDM device has been constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. An initial shakedown of the device is currently underway with initial experiments slated to occur in late 2001. This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. The high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. The high plasma density results in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with 'loss cone' microinstabilities. The device has been constructed to allow a considerable degree of flexibility in its configuration thus permitting the experiment to grow over time without necessitating a great deal of additional fabrication.

  2. Mirror and (absence of) counter-mirror responses to action sounds measured with TMS.

    PubMed

    Ticini, Luca F; Schütz-Bosbach, Simone; Waszak, Florian

    2017-11-01

    To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed 'mirror' and 'counter-mirror' trainings (a 'mirror' training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition. © The Author (2017). Published by Oxford University Press.

  3. The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual illusions in patients with stroke.

    PubMed

    Michielsen, Marian E; Smits, Marion; Ribbers, Gerard M; Stam, Henk J; van der Geest, Jos N; Bussmann, Johannes B J; Selles, Ruud W

    2011-04-01

    To investigate the neuronal basis for the effects of mirror therapy in patients with stroke. 22 patients with stroke participated in this study. The authors used functional MRI to investigate neuronal activation patterns in two experiments. In the unimanual experiment, patients moved their unaffected hand, either while observing it directly (no-mirror condition) or while observing its mirror reflection (mirror condition). In the bimanual experiment, patients moved both hands, either while observing the affected hand directly (no-mirror condition) or while observing the mirror reflection of the unaffected hand in place of the affected hand (mirror condition). A two-factorial analysis with movement (activity vs rest) and mirror (mirror vs no mirror) as main factors was performed to assess neuronal activity resultant of the mirror illusion. Data on 18 participants were suitable for analysis. Results showed a significant interaction effect of movement×mirror during the bimanual experiment. Activated regions were the precuneus and the posterior cingulate cortex (p<0.05 false discovery rate). In this first study on the neuronal correlates of the mirror illusion in patients with stroke, the authors showed that during bimanual movement, the mirror illusion increases activity in the precuneus and the posterior cingulate cortex, areas associated with awareness of the self and spatial attention. By increasing awareness of the affected limb, the mirror illusion might reduce learnt non-use. The fact that the authors did not observe mirror-related activity in areas of the motor or mirror neuron system questions popular theories that attribute the clinical effects of mirror therapy to these systems.

  4. The ontogenetic origins of mirror neurons: evidence from 'tool-use' and 'audiovisual' mirror neurons.

    PubMed

    Cook, Richard

    2012-10-23

    Since their discovery, mirror neurons--units in the macaque brain that discharge both during action observation and execution--have attracted considerable interest. Whether mirror neurons are an innate endowment or acquire their sensorimotor matching properties ontogenetically has been the subject of intense debate. It is widely believed that these units are an innate trait; that we are born with a set of mature mirror neurons because their matching properties conveyed upon our ancestors an evolutionary advantage. However, an alternative view is that mirror neurons acquire their matching properties during ontogeny, through correlated experience of observing and performing actions. The present article re-examines frequently overlooked neurophysiological reports of 'tool-use' and 'audiovisual' mirror neurons within the context of this debate. It is argued that these findings represent compelling evidence that mirror neurons are a product of sensorimotor experience, and not an innate endowment.

  5. Mirror and (absence of) counter-mirror responses to action sounds measured with TMS

    PubMed Central

    Schütz-Bosbach, Simone; Waszak, Florian

    2017-01-01

    Abstract To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed ‘mirror’ and ‘counter-mirror’ trainings (a ‘mirror’ training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition. PMID:29036454

  6. Study of lobster eye optics with iridium coated x-ray mirrors for a rocket experiment

    NASA Astrophysics Data System (ADS)

    Stehlikova, Veronika; Urban, Martin; Nentvich, Ondrej; Inneman, Adolf; Döhring, Thorsten; Probst, Anne-Catherine

    2017-05-01

    In the field of astronomical X-ray telescopes, different types of optics based on grazing incidence mirrors can be used. This contribution describes the special design of a lobster-eye optics in Schmidt's arrangement, which uses dual reflection to increase the collecting area. The individual mirrors of this wide-field telescope are made of at silicon wafers coated with reflecting iridium layers. This iridium coatings have some advantages compared to more common gold layers as is shown in corresponding simulations. The iridium coating process for the X-ray mirrors was developed within a cooperation of the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague. Different mirror parameters essential for a proper function of the X-ray optics, like the surface microroughness and the problematic of a good adhesion quality of the coatings were studied. After integration of the individual mirrors into the final lobster-eye optics and the corresponding space qualification testing it is planned to fly the telescope in a recently proposed NASA rocket experiment.

  7. Negotiating Multiple Identities through eTandem Learning Experiences

    ERIC Educational Resources Information Center

    Yang, Se Jeong; Yi, Youngjoo

    2017-01-01

    Much of eTandem research has investigated either linguistic or cross-cultural aspects of second language (L2) learning, but relatively little is known about issues of identity construction in an eTandem context. Situating the study within theories and research of language learner identity, we examined ways in which two adult L2 learners (a Korean…

  8. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  9. The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.

    PubMed

    Grainger, William F; North, Chris E; Ade, Peter A R

    2011-06-01

    We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. © 2011 American Institute of Physics

  10. A plane mirror experiment inspired by a comic strip

    NASA Astrophysics Data System (ADS)

    Lúcio Prados Ribeiro, Jair

    2016-01-01

    A comic strip about a plane mirror was used in a high school optics test, and it was perceived that a large portion of the students believed that the mirror should be larger than the object so the virtual image could be entirely visible. Inspired on the comic strip, an experimental demonstration with flat mirrors was developed, in order to readdress this topic learning. Students were encouraged to create their own investigation of the phenomenon with a simple instrumental apparatus and also suggest different experimental approaches.

  11. Associative sequence learning: the role of experience in the development of imitation and the mirror system

    PubMed Central

    Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia

    2009-01-01

    A core requirement for imitation is a capacity to solve the correspondence problem; to map observed onto executed actions, even when observation and execution yield sensory inputs in different modalities and coordinate frames. Until recently, it was assumed that the human capacity to solve the correspondence problem is innate. However, it is now becoming apparent that, as predicted by the associative sequence learning model, experience, and especially sensorimotor experience, plays a critical role in the development of imitation. We review evidence from studies of non-human animals, children and adults, focusing on research in cognitive neuroscience that uses training and naturally occurring variations in expertise to examine the role of experience in the formation of the mirror system. The relevance of this research depends on the widely held assumption that the mirror system plays a causal role in generating imitative behaviour. We also report original data supporting this assumption. These data show that theta-burst transcranial magnetic stimulation of the inferior frontal gyrus, a classical mirror system area, disrupts automatic imitation of finger movements. We discuss the implications of the evidence reviewed for the evolution, development and intentional control of imitation. PMID:19620108

  12. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport transmission..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based...

  13. Where do mirror neurons come from?

    PubMed

    Heyes, Cecilia

    2010-03-01

    Debates about the evolution of the 'mirror neuron system' imply that it is an adaptation for action understanding. Alternatively, mirror neurons may be a byproduct of associative learning. Here I argue that the adaptation and associative hypotheses both offer plausible accounts of the origin of mirror neurons, but the associative hypothesis has three advantages. First, it provides a straightforward, testable explanation for the differences between monkeys and humans that have led some researchers to question the existence of a mirror neuron system. Second, it is consistent with emerging evidence that mirror neurons contribute to a range of social cognitive functions, but do not play a dominant, specialised role in action understanding. Finally, the associative hypothesis is supported by recent data showing that, even in adulthood, the mirror neuron system can be transformed by sensorimotor learning. The associative account implies that mirror neurons come from sensorimotor experience, and that much of this experience is obtained through interaction with others. Therefore, if the associative account is correct, the mirror neuron system is a product, as well as a process, of social interaction. (c) 2009 Elsevier Ltd. All rights reserved.

  14. Design and verification for front mirror-body structure of on-axis three mirror anastigmatic space camera

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Guo, Chongling; Hu, Yongli; He, Hongyan

    2017-11-01

    The primary and secondary mirrors of onaxis three mirror anastigmatic (TMA) space camera are connected and supported by its front mirror-body structure, which affects both imaging performance and stability of the camera. In this paper, the carbon fiber reinforced plastics (CFRP) thin-walled cylinder and titanium alloy connecting rod have been used for the front mirror-body opto-mechanical structure of the long-focus on-axis and TMA space camera optical system. The front mirror-body component structure has then been optimized by finite element analysis (FEA) computing. Each performance of the front mirror-body structure has been tested by mechanics and vacuum experiments in order to verify the validity of such structure engineering design.

  15. SOFIA lightweight primary mirror

    NASA Astrophysics Data System (ADS)

    Espiard, Jean; Tarreau, Michel; Bernier, Joel; Billet, Jacques; Paseri, Jacques

    1998-08-01

    Thanks to its experience in lightweighting ceramic glass mirrors by machining, R.E.O.S.C. won the contract for designing and manufacturing the primary mirror and its lateral fixations of the 2.7 m. SOFIA telescope which will be installed aboard a 747 SP Boeing aircraft to constitute the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  16. A new technique for high performance tandem time-of- flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Katz, Daniel Louis

    2001-08-01

    The main result of this written dissertation is a mathematical solution to the problem of multiplex recording for high performance tandem time-of-flight mass spectrometry. The prescription is to use a time-lag accelerator in the second stage to match the ion optical properties of the decay fragments to the requirements of the electrostatic ion mirror. With this technique the ion mirror is able to focus the full mass range of fragment ions at a single voltage setting, permitting acquisition of the entire mass spectrum from a single ionization event. This work was performed in support of a joint project carried out by researchers at Oregon State University and The University of Uppsala, Sweden, to design, build and test a tandem instrument featuring precision selection of the precursor species in the first stage of the spectrometer, a means of fragmenting the precursor species, and multiplex recording of the resulting fragment spectrum in the second stage. A patent application has been filed on the complete instrument with the United States Patent Office, a copy of which has been included as an appendix, and a prototype of that instrument has been constructed and awaits testing at Oregon State University.

  17. Sensorimotor learning and the ontogeny of the mirror neuron system.

    PubMed

    Catmur, Caroline

    2013-04-12

    Mirror neurons, which have now been found in the human and songbird as well as the macaque, respond to both the observation and the performance of the same action. It has been suggested that their matching response properties have evolved as an adaptation for action understanding; alternatively, these properties may arise through sensorimotor experience. Here I review mirror neuron response characteristics from the perspective of ontogeny; I discuss the limited evidence for mirror neurons in early development; and I describe the growing body of evidence suggesting that mirror neuron responses can be modified through experience, and that sensorimotor experience is the critical type of experience for producing mirror neuron responses. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. The 'not-so-strange' body in the mirror: A principal components analysis of direct and mirror self-observation.

    PubMed

    Jenkinson, Paul M; Preston, Catherine

    2017-02-01

    In this study we adopted a psychometric approach to examine how the body is subjectively experienced in a mirror. One hundred and twenty-four healthy participants viewed their body for five minutes directly or via a mirror, and then completed a 20-item questionnaire designed to capture subjective experiences of the body. PCA revealed a two-component structure for both direct and mirror conditions, comprising body evaluations (and alienation) and unusual feelings and perceptions. The relationship between these components and pre-existing tendencies for appearance anxiety, body dysmorphic-type beliefs, dissociative symptomatology, self-objectification and delusion ideation further supported the similarity between direct and mirror conditions; however, the occurrence of strange experiences like those reported to occur during prolonged face viewing was not confirmed. These results suggest that, despite obvious differences in visual feedback, observing the body via a mirror (as an outside observer) is subjectively equivalent to observing the body directly (from our own viewpoint). Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Measuring a Precise Ultra-Lightweight Spaceflight Mirror on Earth: The Analysis of the SHARPI PM Mirror Figure Data during Mirror Processing at GSFC

    NASA Technical Reports Server (NTRS)

    Antonille, Scott; Content, David; Rabin, Douglas; Wallace, Thomas; Wake, Shane

    2007-01-01

    The SHARPI (Solar High Angular Resolution Photometric Imager) primary mirror is a 5kg, 0.5m paraboloid, diffraction limited at FUV wavelengths when placed in a 0-G environment. The ULE sandwich honeycomb mirror and the attached mount pads were delivered by ITT (then Kodak) in 2003 to NASA s Goddard Space Flight Center (GSFC). At GSFC, we accepted, coated, mounted, and vibration tested this mirror in preparation for flight on the PICTURES (Planet Imaging Concept Testbed Using a Rocket Experiment) mission. At each step, the integrated analysis of interferometer data and FEA models was essential to quantify the 0-G mirror figure. This task required separating nanometer sized variations from hundreds of nanometers of gravity induced distortion. The ability to isolate such features allowed in-situ monitoring of mirror figure, diagnosis of perturbations, and remediation of process errors. In this paper, we describe the technical approach used to achieve these measurements and overcome the various difficulties maintaining UV diffraction-limited performance with this aggressively lightweighted mirror.

  20. Bronze rainbow hologram mirrors

    NASA Astrophysics Data System (ADS)

    Dawson, P.

    2006-02-01

    This project draws on holographic embossing techniques, ancient artistic conventions of bronze mirror design and modelling and casting processes to accomplish portraiture of reflection. Laser scanning, 3D computer graphics and holographic imaging are employed to enable a permanent 3D static holographic image to appear integrated with the real-time moving reflection of a viewer's face in a polished bronze disc. The disc and the figure which holds it (caryatid) are cast in bronze from a lost wax model, a technique which has been used for millennia to make personal mirrors. The Caryatid form of bronze mirror which went through many permutations in ancient Egyptian, Greece and Rome shows a plethora of expressive figure poses ranging from sleek nudes to highly embellished multifigure arrangements. The prototype of this series was made for Australian choreographer Graeme Murphy, Artistic Director of the Sydney Dance Company. Each subsequent mirror will be unique in figure and holographic imagery as arranged between artist and subject. Conceptually this project references both the modern experience of viewing mirrors retrieved from ancient tombs, which due to deterioration of the surface no longer reflect, and the functioning of Chinese Magic mirrors, which have the ability to project a predetermined image. Inspired by the metaphorical potential of these mirrors, which do not reflect the immediate reality of the viewer, this bronze hologram mirror series enables each viewer to reflect upon himself or herself observing simultaneously the holographic image and their own partially obliterated reflection.

  1. Flow quality experiment in a tandem nozzle wind tunnel at Mach 3

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Zamre, Pradip; Radespiel, Rolf

    2015-01-01

    In this study, the disturbance characterization and flow quality improvement of a newly designed Tandem Nozzle Mach 3 Wind Tunnel are presented. Firstly, a combined modal analysis is conducted to characterize the freestream disturbances with initial set-up of the settling chamber by using a Pitot probe and a hot-wire anemometry. Then, disturbance reduction in the supersonic wind tunnel is investigated by inserting various damping materials into the settling chamber, while a Pitot probe instrumented with Kulite sensor is employed to monitor the variation of the Pitot pressure fluctuation in the test section. Eventually, an optimized configuration of the settling chamber is determined by a combination of certain damping materials. Afterward, the freestream disturbances are re-characterized with the optimized set-up of the settling chamber, and the disturbance level is found to be significantly reduced. Through this study, valuable experience has been acquired for the disturbance reduction in tandem nozzle type supersonic wind tunnel for the first time, which enhances the feasibility of extending the operation range of conventional hypersonic Ludwieg tubes.

  2. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    PubMed

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  3. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments

    PubMed Central

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.

    2013-01-01

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments. PMID

  4. Acoustic Models of Optical Mirrors

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2014-01-01

    Students form a more exact idea of the action of optical mirrors if they can observe the wave field being formed during reflection. For this purpose it is possible to organize model experiments with flexural waves propagating in thin elastic plates. The direct and round edges of the plates are used as models of plane, convex and concave mirrors.…

  5. FAME: freeform active mirror experiment

    NASA Astrophysics Data System (ADS)

    Aitink-Kroes, Gabby; Agócs, Tibor; Miller, Chris; Black, Martin; Farkas, Szigfrid; Lemared, Sabri; Bettonvil, Felix; Montgomery, David; Marcos, Michel; Jaskó, Attila; van Duffelen, Farian; Challita, Zalpha; Fok, Sandy; Kiaeerad, Fatemeh; Hugot, Emmanuel; Schnetler, Hermine; Venema, Lars

    2016-07-01

    FAME is a four-year project and part of the OPTICON/FP7 program that is aimed at providing a breakthrough component for future compact, wide field, high resolution imagers or spectrographs, based on both Freeform technology, and the flexibility and versatility of active systems. Due to the opening of a new parameter space in optical design, Freeform Optics are a revolution in imaging systems for a broad range of applications from high tech cameras to astronomy, via earth observation systems, drones and defense. Freeform mirrors are defined by a non-rotational symmetry of the surface shape, and the fact that the surface shape cannot be simply described by conicoids extensions, or off-axis conicoids. An extreme freeform surface is a significantly challenging optical surface, especially for UV/VIS/NIR diffraction limited instruments. The aim of the FAME effort is to use an extreme freeform mirror with standard optics in order to propose an integrated system solution for use in future instruments. The work done so far concentrated on identification of compact, fast, widefield optical designs working in the visible, with diffraction limited performance; optimization of the number of required actuators and their layout; the design of an active array to manipulate the face sheet, as well as the actuator design. In this paper we present the status of the demonstrator development, with focus on the different building blocks: an extreme freeform thin face sheet, the active array, a highly controllable thermal actuator array, and the metrology and control system.

  6. Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation

    NASA Astrophysics Data System (ADS)

    Mohapatra, Rabindra N.; Nussinov, Shmuel

    2018-01-01

    The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n -n‧ mixing parameter δ and n -n‧ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ ≤ 2 ×10-27 GeV and Δ ≤10-24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.

  7. The use of mirrors in critical care nursing.

    PubMed

    Freysteinson, Wyona M

    2009-01-01

    There is no known literature to guide the critical care nurse in the use of mirrors in patient care. This article explores how the author came to believe that mirrors were essential to nursing practice. Misconceptions and assumptions concerning mirrors are explored. A framework that conceptually explores the experience of viewing self in the mirror from the perspective of a person is presented. Five situations in which the mirror may be used in critical care are discussed. This article does not present an authoritative view on mirrors in nursing; rather, it is an invitation to dialogue about a unique element in the environment that may be used to enhance nursing care.

  8. Lightweight deformable mirrors for future space telescopes

    NASA Astrophysics Data System (ADS)

    Patterson, Keith

    This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m2 have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications. The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during

  9. Manufacture of large glass honeycomb mirrors. [for astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Hill, J. M.

    1982-01-01

    The problem of making very large glass mirrors for astronomical telescopes is examined, and the advantages of honeycomb mirrors made of borosilicate glass are discussed. Thermal gradients in the glass that degrade the figure of thick borosilicate mirrors during use can be largely eliminated in a honeycomb structure by internal ventilation (in air) or careful control of the radiation environment (in space). It is expected that ground-based telescopes with honeycomb mirrors will give better images than those with solid mirrors. Materials, techniques, and the experience that has been gained making trial mirrors and test castings as part of a program to develop 8-10-m-diameter lightweight mirrors are discussed.

  10. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal

    PubMed Central

    Corballis, Michael C.

    2018-01-01

    Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia. PMID:29706878

  11. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal.

    PubMed

    Corballis, Michael C

    2018-01-01

    Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d ) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.

  12. Rollable Thin Shell Composite-Material Paraboloidal Mirrors

    NASA Technical Reports Server (NTRS)

    Meinel, Aden; Meinel, Marjorie; Romeo, Robert

    2003-01-01

    An experiment and calculation have demonstrated the feasibility of a technique of compact storage of paraboloidal mirrors made of thin composite-material (multiple layers of carbon fiber mats in a polymeric matrix) shells coated with metal for reflectivity. Such mirrors are under consideration as simple, lightweight alternatives to the heavier, more complex mirrors now used in space telescopes. They could also be used on Earth in applications in which gravitational sag of the thin shells can be tolerated. The present technique is essentially the same as that used to store large maps, posters, tapestries, and similar objects: One simply rolls up the mirror to a radius small enough to enable the insertion of the mirror in a protective cylindrical case. Provided that the stress associated with rolling the mirror is not so large as to introduce an appreciable amount of hysteresis, the mirror can be expected to spring back to its original shape, with sufficient precision to perform its intended optical function, when unrolled from storage.

  13. Effect of teaching with or without mirror on balance in young female ballet students

    PubMed Central

    2014-01-01

    Background In literature there is a general consensus that the use of the mirror improves proprioception. During rehabilitation the mirror is an important instrument to improve stability. In some sports, such as dancing, mirrors are widely used during training. The purpose of this study is to evaluate the effectiveness of the use of a mirror on balance in young dancers. Sixty-four young dancers (ranging from 9–10 years) were included in this study. Thirty-two attending lessons with a mirror (mirror- group) were compared to 32 young dancers that attended the same lessons without a mirror (non-mirror group). Balance was evaluated by BESS (Balance Error Scoring System), which consists of three stances (double limb, single limb, and tandem) on two surfaces (firm and foam). The errors were assessed at each stance and summed to create the two subtotal scores (firm and foam surface) and the final total score (BESS). The BESS was performed at recruitment (T0) and after 6 months of dance lessons (T1). Results The repeated measures ANOVA analysis showed that for the BESS total score there is a difference due to the time (F = 3.86; p < 0.05). No other differences due to the group or to the time of measurement were found (p > 0.05). The analysis of the multiple regression model showed the influence of the values at T0 for every BESS items and the dominance of limb for stability on an unstable surface standing on one or two legs. Conclusions These preliminary results suggest that the use of a mirror in a ballet classroom does not improve balance acquisition of the dancer. On the other hand, improvement found after 6 months confirms that at the age of the dancers studied motor skills and balance can easily be trained and improved. PMID:24996519

  14. Effect of teaching with or without mirror on balance in young female ballet students.

    PubMed

    Notarnicola, Angela; Maccagnano, Giuseppe; Pesce, Vito; Di Pierro, Silvia; Tafuri, Silvio; Moretti, Biagio

    2014-07-04

    In literature there is a general consensus that the use of the mirror improves proprioception. During rehabilitation the mirror is an important instrument to improve stability. In some sports, such as dancing, mirrors are widely used during training. The purpose of this study is to evaluate the effectiveness of the use of a mirror on balance in young dancers. Sixty-four young dancers (ranging from 9-10 years) were included in this study. Thirty-two attending lessons with a mirror (mirror- group) were compared to 32 young dancers that attended the same lessons without a mirror (non-mirror group). Balance was evaluated by BESS (Balance Error Scoring System), which consists of three stances (double limb, single limb, and tandem) on two surfaces (firm and foam). The errors were assessed at each stance and summed to create the two subtotal scores (firm and foam surface) and the final total score (BESS). The BESS was performed at recruitment (T0) and after 6 months of dance lessons (T1). The repeated measures ANOVA analysis showed that for the BESS total score there is a difference due to the time (F = 3.86; p < 0.05). No other differences due to the group or to the time of measurement were found (p > 0.05). The analysis of the multiple regression model showed the influence of the values at T0 for every BESS items and the dominance of limb for stability on an unstable surface standing on one or two legs. These preliminary results suggest that the use of a mirror in a ballet classroom does not improve balance acquisition of the dancer. On the other hand, improvement found after 6 months confirms that at the age of the dancers studied motor skills and balance can easily be trained and improved.

  15. Demonstration of Flying Mirror with Improved Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirozhkov, Alexander S.; Kando, Masaki; Fukuda, Yuji

    2009-07-25

    A strongly nonlinear wake wave driven by an intense laser pulse can act as a partially reflecting relativistic mirror (the flying mirror)[S. V. Bulanov, et al., Bulletin of the Lebedev Physics Institute, No. 6, 9 (1991); S. V. Bulanov, et al., Phys. Rev. Lett. 91, 085001 (2003)]. Upon reflection from such mirror, a counter-propagating optical-frequency laser pulse is directly converted into high-frequency radiation, with a frequency multiplication factor approx4gamma{sup 2}(the double Doppler effect). We present the results of recent experiment in which the photon number in the reflected radiation was at least several thousand times larger than in our proof-of-principlemore » experiment [M. Kando, et al., Phys. Rev. Lett. 99, 135001 (2007); A. S. Pirozhkov, et al., Phys. Plasmas 14, 123106 (2007)]. The flying mirror holds promise of generating intense coherent ultrashort XUV and x-ray pulses that inherit their temporal shape and polarization from the original optical-frequency (laser) pulses. Furthermore, the reflected radiation bears important information about the reflecting wake wave itself, which can be used for its diagnostics.« less

  16. Opto-Mechanics of the Constellation-X SXT Mirrors: Challenges in Mounting and Assembling the Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, WIlliam W.; Saha, Timo; Lehan, John P.; Mazzarella, James; Lozipone, Lawrence; Hong, Melinda; Byron, Glenn

    2008-01-01

    The Constellation-X Spectroscopy X-Ray Telescopes consists of segmented glass mirrors with an axial length of 200 mm, a width of up to 400 mm, and a thickness of 0.4 mm. To meet the requirement of less than 15 arc-second half-power diameter with the small thickness and relatively large size is a tremendous challenge in opto-mechanics. How shall we limit distortion of the mirrors due to gravity in ground tests, that arises from thermal stress, and that occurs in the process of mounting, affixing and assembling of these mirrors? In this paper, we will describe our current opto-mechanical approach to these problems. We will discuss, in particular, the approach and experiment where the mirrors are mounted vertically by first suspending it at two points.

  17. Evaluation of microfabricated deformable mirror systems

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Lee, Max K.; Bright, Victor M.; Welsh, Byron M.

    1998-09-01

    This paper presents recent result for aberration correction and beam steering experiments using polysilicon surface micromachined piston micromirror arrays. Microfabricated deformable mirrors offer a substantial cost reduction for adaptive optic systems. In addition to the reduced mirror cost, microfabricated mirrors typically require low control voltages, thus eliminating high voltage amplifiers. The greatly reduced cost per channel of adaptive optic systems employing microfabricated deformable mirrors promise high order aberration correction at low cost. Arrays of piston micromirrors with 128 active elements were tested. Mirror elements are on a 203 micrometers 12 by 12 square grid. The overall array size is 2.4 mm square. The arrays were fabricated in the commercially available DARPA supported MUMPs surface micromachining foundry process. The cost per mirror array in this prototyping process is less than 200 dollars. Experimental results are presented for a hybrid correcting element comprised of a lenslet array and piston micromirror array, and for a piston micromirror array only. Also presented is a novel digital deflection micromirror which requires no digital to analog converters, further reducing the cost of adaptive optics system.

  18. Minimal mirror twin Higgs

    DOE PAGES

    Barbieri, Riccardo; Hall, Lawrence J.; Harigaya, Keisuke

    2016-11-29

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z 2 parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z 2 breaking, can generate the Z 2 breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals i n Higgs decays, direct Dark Matter Detection andmore » Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z 2 breaking from the vacuum expectation values of B-L breaking fields are also discussed.« less

  19. Advanced astigmatism-corrected tandem Wadsworth mounting for small-scale spectral broadband imaging spectrometer.

    PubMed

    Lei, Yu; Lin, Guan-yu

    2013-01-01

    Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband.

  20. Precision experiments on mirror transitions at Notre Dame

    NASA Astrophysics Data System (ADS)

    Brodeur, Maxime; TwinSol Collaboration

    2016-09-01

    Thanks to extensive experimental efforts that led to a precise determination of important experimental quantities of superallowed pure Fermi transitions, we now have a very precise value for Vud that leads to a stringent test of the CKM matrix unitarity. Despite this achievement, measurements in other systems remain relevant as conflicting results could uncover unknown systematic effects or even new physics. One such system is the superallowed mixed transition, which can help refine theoretical corrections used for pure Fermi transitions and improve the accuracy of Vud. However, as a corrected Ft-value determination from these systems requires the more challenging determination of the Fermi Gamow-Teller mixing ratio, only five transitions, spreading from 19Ne to 37Ar, are currently fully characterized. To rectify the situation, an experimental program on precision experiment of mirror transitions that includes precision half-life measurements, and in the future, the determination of the Fermi Gamow-Teller mixing ratio, has started at the University of Notre Dame. This work is supported in part by the National Science Foundation.

  1. Mirror neurons: from origin to function.

    PubMed

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  2. The mirror system and its role in social cognition.

    PubMed

    Rizzolatti, Giacomo; Fabbri-Destro, Maddalena

    2008-04-01

    Experiments in monkeys have shown that coding the goal of the motor acts is a fundamental property of the cortical motor system. In area F5, goal-coding motor neurons are also activated by observing motor acts done by others (the 'classical' mirror mechanism); in area F2 and area F1, some motor neurons are activated by the mere observation of goal-directed movements of a cursor displayed on a computer screen (a 'mirror-like' mechanism). Experiments in humans and monkeys have shown that the mirror mechanism enables the observer to understand the intention behind an observed motor act, in addition to the goal of it. Growing evidence shows that a deficit in the mirror mechanism underlies some aspects of autism.

  3. Owning the body in the mirror: The effect of visual perspective and mirror view on the full-body illusion

    PubMed Central

    Preston, Catherine; Kuper-Smith, Benjamin J.; Henrik Ehrsson, H.

    2015-01-01

    Mirrors allow us to view our own body from a third-person (observer) perspective. However, how viewing ourselves through a mirror affects central body representations compared with true third-person perspective is not fully understood. Across a series of experiments, multisensory full-body illusions were used to modulate feelings of ownership over a mannequin body that was viewed from a third-person perspective through a mirror, from a third-person perspective without a mirror, and from a first-person perspective. In contrast to non-mirror third-person perspective, synchronously touching the participant’s actual body and the mannequin body viewed in the mirror elicited strong feelings of ownership over the mannequin and increased physiological responses to the mannequin being threatened compared to the equivalent asynchronous (non-ownership) control condition. Subjective reports of ownership viewing the mannequin through a mirror were also statistically equivalent to those following the first-person perspective illusion. These findings suggest that mirrors have a special role for viewing the self. The results also support the importance of egocentric reference frames for body ownership and suggest that mirror reflections of one’s own body are related to peripersonal space, which enables updating of central body representations. PMID:26678091

  4. [Mirror therapy for inflammatory rheumatic pain: Potentials and limitations].

    PubMed

    Bekrater-Bodmann, R

    2015-11-01

    Mirror therapy reduces chronic pain and might also be suitable for the treatment of inflammatory rheumatic pain. On the basis of the relevant literature this article a) characterizes the universal alterations in body perception and body representation in chronic pain, b) describes the potential mechanisms underlying mirror therapy and c) discusses the chances of success of mirror therapy for the treatment of inflammatory rheumatic pain. Literature search on the effectiveness and mechanisms of mirror therapy and derived procedures for the potential treatment of pain in inflammatory rheumatic disorders. There is evidence that mirror therapy can alleviate chronic pain experiences by correcting the accompanying distorted body perception as well as body representation by multimodal sensory stimulation. As there is probably a similar distortion in persons with chronic pain related to inflammatory rheumatic disorders, mirror therapy might also have positive effects in this field; however, the accompanying characteristics of these disorders, such as motor impairment and motor-evoked pain, may complicate the implementation of this kind of treatment. Mirror therapy represents an intervention with few side effects and might have positive effects on the experience of chronic pain in patients with inflammatory rheumatic disorders. Further clinical research is required in order to evaluate the potential of mirror therapy and associated interventional methods for the treatment of inflammatory rheumatic pain.

  5. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Tandem-switched transport and tandem charge. 69... SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.111 Tandem-switched transport and tandem...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge...

  6. Mirror neurons, procedural learning, and the positive new experience: a developmental systems self psychology approach.

    PubMed

    Wolf, N S; Gales, M; Shane, E; Shane, M

    2000-01-01

    In summary, we are impressed with the existence of a mirror neuron system in the prefrontal cortex that serves as part of a complex neural network, including afferent and efferent connections to the limbic system, in particular the amygdala, in addition to the premotor and motor cortex. We think it is possible to arrive at an integration that postulates the mirror neuron system and its many types of associated multimodal neurons as contributing significantly to implicit procedural learning, a process that underlies a range of complex nonconscious, unconscious, preconscious and conscious cognitive activities, from playing musical instruments to character formation and traumatic configurations. This type of brain circuitry may establish an external coherence with developmental systems self psychology which implies that positive new experience is meliorative and that the intentional revival of old-old traumatic relational configurations might enhance maladaptive procedural patterns that would lead to the opposite of the intended beneficial change. When analysts revive traumatic transference patterns for the purpose of clarification and interpretation, they may fail to appreciate that such traumatic transference patterns make interpretation ineffective because, as we have stated above, the patient lacks self-reflection under such traumatic conditions. The continued plasticity and immediacy of the mirror neuron system can contribute to positive new experiences that promote the formation of new, adaptive, implicit-procedural patterns. Perhaps this broadened repertoire in the patient of ways of understanding interrelational events through the psychoanalytic process allows the less adaptive patterns ultimately to become vestigial and the newer, more adaptive patterns to emerge as dominant. Finally, as we have stated, we believe that the intentional transferential revival of trauma (i.e., the old-old relational configuration) may not contribute to therapeutic benefit. In

  7. The neuronal correlates of mirror therapy: A functional magnetic resonance imaging study on mirror-induced visual illusions of ankle movements.

    PubMed

    Guo, Feng; Xu, Qun; Abo Salem, Hassan M; Yao, Yihao; Lou, Jicheng; Huang, Xiaolin

    2016-05-15

    Recovery in stroke is mediated by neural plasticity. Mirror therapy is an effective method in the rehabilitation of stroke patients, but the mechanism is still obscure. To identify the neural networks associated with the effect of lower-limbs mirror therapy, we investigated a functional magnetic resonance imaging (fMRI) study of mirror-induced visual illusion of ankle movements. Five healthy controls and five left hemiplegic stroke patients performed tasks related to mirror therapy in the fMRI study. Neural activation was compared in a no-mirror condition and a mirror condition. All subjects in the experiment performed the task of flexing and extending the right ankle. In a mirror condition, movement of the left ankle was simulated by mirror reflection of right ankle movement. Changes in neural activation in response to mirror therapy were assessed both in healthy controls and stroke patients. We found strong activation of the motor cortex bilaterally in healthy controls, as well as significant activation of the ipsilateral sensorimotor cortex, the occipital gyrus, and the anterior prefrontal gyrus in stroke patients with respect to the non-mirror condition. We concluded that mirror therapy of ankle movements may induce neural activation of the ipsilesional sensorimotor cortex, and that cortical reorganization may be useful for motor rehabilitation in stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Flight solar calibrations using the Mirror Attenuator Mosaic (MAM): Low scattering mirror

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    Measurements of solar radiances reflected from the mirror attenuator mosaic (MAM) were used to calibrate the shortwave portions of the Earth Radiation Budget Experiment (ERBE) thermistor bolometer scanning radiometers. The MAM is basically a low scattering mirror which has been used to attenuate and reflect solar radiation into the fields of view for the broadband shortwave (0.2 to 5 micrometers) and total (0.2 to 50.0+ micrometers) ERBE scanning radiometers. The MAM assembly consists of a tightly packed array of aluminum, 0.3175-cm diameter concave spherical mirrors and field of view limiting baffles. The spherical mirrors are masked by a copper plate, electro-plated with black chrome. Perforations (0.14 centimeter in diameter) in the copper plate serve as apertures for the mirrors. Black anodized aluminum baffles limit the MAM clear field of view to 7.1 degrees. The MAM assemblies are located on the Earth Radiation Budget Satellite (ERBS) and on the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft. The 1984-1985 ERBS and 1985-1986 NOAA-9 solar calibration datasets are presented. Analyses of the calibrations indicate that the MAM exhibited no detectable degradation in its reflectance properties and that the gains of the shortwave scanners did not change. The stability of the shortwave radiometers indicates that the transmission of the Suprasil W1 filters did not degrade detectably when exposed to Earth/atmosphere-reflected solar radiation.

  9. Mirror Me: Imitative Responses in Adults with Autism

    ERIC Educational Resources Information Center

    Schunke, Odette; Schöttle, Daniel; Vettorazzi, Eik; Brandt, Valerie; Kahl, Ursula; Bäumer, Tobias; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K; Brass, Marcel; Münchau, Alexander

    2016-01-01

    Dysfunctions of the human mirror neuron system have been postulated to underlie some deficits in autism spectrum disorders including poor imitative performance and impaired social skills. Using three reaction time experiments addressing mirror neuron system functions under simple and complex conditions, we examined 20 adult autism spectrum…

  10. Mirror agnosia and the mirrored-self misidentification delusion: a hypnotic analogue.

    PubMed

    Connors, Michael H; Cox, Rochelle E; Barnier, Amanda J; Langdon, Robyn; Coltheart, Max

    2012-05-01

    Mirrored-self misidentification is the delusional belief that one's reflection in the mirror is a stranger. Current theories suggest that one pathway to the delusion is mirror agnosia (a deficit in which patients are unable to use mirror knowledge when interacting with mirrors). This study examined whether a hypnotic suggestion for mirror agnosia can recreate features of the delusion. Ten high hypnotisable participants were given either a suggestion to not understand mirrors or to see the mirror as a window. Participants were asked to look into a mirror and describe what they saw. Participants were tested on their understanding of mirrors and received a series of challenges. Participants then received a detailed postexperimental inquiry. Three of five participants given the suggestion to not understand mirrors reported seeing a stranger and maintained this belief when challenged. These participants also showed signs of mirror agnosia. No participants given the suggestion to see a window reported seeing a stranger. Results indicate that a hypnotic suggestion for mirror agnosia can be used to recreate the mirrored-self misidentification delusion. Factors influencing the effectiveness of hypnotic analogues of psychopathology, such as participants' expectations and interpretations, are discussed.

  11. An Undergraduate Experiment for the Measurement of Perfluorinated Surfactants in Fish Liver by Liquid Chromatography-Tandem Mass Spectrometry

    ERIC Educational Resources Information Center

    Stock, Naomi L.; Martin, Jonathan W.; Ye, Yun; Mabury, Scott A.

    2007-01-01

    A laboratory experiment that provides students a hands-on introduction to the specific techniques of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and electrospray ionization is presented. The students can thus practice the analytical principles of sample extraction, detection, quantification, and quality control using a fresh fish…

  12. Through the looking glass: counter-mirror activation following incompatible sensorimotor learning.

    PubMed

    Catmur, Caroline; Gillmeister, Helge; Bird, Geoffrey; Liepelt, Roman; Brass, Marcel; Heyes, Cecilia

    2008-09-01

    The mirror system, comprising cortical areas that allow the actions of others to be represented in the observer's own motor system, is thought to be crucial for the development of social cognition in humans. Despite the importance of the human mirror system, little is known about its origins. We investigated the role of sensorimotor experience in the development of the mirror system. Functional magnetic resonance imaging was used to measure neural responses to observed hand and foot actions following one of two types of training. During training, participants in the Compatible (control) group made mirror responses to observed actions (hand responses were made to hand stimuli and foot responses to foot stimuli), whereas the Incompatible group made counter-mirror responses (hand to foot and foot to hand). Comparison of these groups revealed that, after training to respond in a counter-mirror fashion, the relative action observation properties of the mirror system were reversed; areas that showed greater responses to observation of hand actions in the Compatible group responded more strongly to observation of foot actions in the Incompatible group. These results suggest that, rather than being innate or the product of unimodal visual or motor experience, the mirror properties of the mirror system are acquired through sensorimotor learning.

  13. Chiral mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk; Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk; The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spacedmore » by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.« less

  14. FMRI evidence of 'mirror' responses to geometric shapes.

    PubMed

    Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey

    2012-01-01

    Mirror neurons may be a genetic adaptation for social interaction. Alternatively, the associative hypothesis proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control.

  15. Virtual Mirrors

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90 degrees to each other and two parallel mirrors. Optical phenomena…

  16. [The optimizing design and experiment for a MOEMS micro-mirror spectrometer].

    PubMed

    Mo, Xiang-xia; Wen, Zhi-yu; Zhang, Zhi-hai; Guo, Yuan-jun

    2011-12-01

    A MOEMS micro-mirror spectrometer, which uses micro-mirror as a light switch so that spectrum can be detected by a single detector, has the advantages of transforming DC into AC, applying Hadamard transform optics without additional template, high pixel resolution and low cost. In this spectrometer, the vital problem is the conflict between the scales of slit and the light intensity. Hence, in order to improve the resolution of this spectrometer, the present paper gives the analysis of the new effects caused by micro structure, and optimal values of the key factors. Firstly, the effects of diffraction limitation, spatial sample rate and curved slit image on the resolution of the spectrum were proposed. Then, the results were simulated; the key values were tested on the micro mirror spectrometer. Finally, taking all these three effects into account, this micro system was optimized. With a scale of 70 mm x 130 mm, decreasing the height of the image at the plane of micro mirror can not diminish the influence of curved slit image in the spectrum; under the demand of spatial sample rate, the resolution must be twice over the pixel resolution; only if the width of the slit is 1.818 microm and the pixel resolution is 2.2786 microm can the spectrometer have the best performance.

  17. The LBT experience of adaptive secondary mirror operations for routine seeing- and diffraction-limited science operations

    NASA Astrophysics Data System (ADS)

    Guerra, J. C.; Brusa, G.; Christou, J.; Miller, D.; Ricardi, A.; Xompero, M.; Briguglio, R.; Wagner, M.; Lefebvre, M.; Sosa, R.

    2013-09-01

    The Large Binocular Telescope (LBT) is unique in that it is currently the only large telescope (2 x 8.4m primary mirrors) with permanently mounted adaptive secondary mirrors (ASMs). These ASMs have been used for regular observing since early 2010 on the right side and since late 2011 on the left side. They are currently regularly used for seeing-limited observing as well as for selective diffraction-limited observing and are required to be fully operational every observing night. By comparison the other telescopes using ASMs, the Multi Mirrot Telescope (MMT) and more recently Magellan, use fixed secondaries of seeing-limited observing and switch in the ASMs for diffraction-limited observing. We will discuss the night-to-night operational requirements for ASMs specifically for seeing-limited but also for diffraction-limited observations based on the LBT experience. These will include preparation procedures for observing (mirror flattening and resting as examples); hardware failure statistics and how to deal with them such as for the actuators; observing protocols for; and current limitations of use due to the ASM technology such as the minimum elevation limit (25 degrees) and the hysteresis of the gravity-vector induced astigmatism. We will also discuss the impact of ASM maintenance and preparation

  18. Dual actuation micro-mirrors

    NASA Astrophysics Data System (ADS)

    Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.

    2018-07-01

    This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of  ± out of a geometrically allowable range of  ± at a current amplitude i  =  3 mA and a magnetic field of B  =  30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.

  19. SIC mirrors polishing

    NASA Astrophysics Data System (ADS)

    Rodolfo, J.; Ruch, E.; Tarreau, M.; Merceron, J.-M.; Ferré, J.; Rousselet, N.; Leplan, H.; Geyl, R.; Harnisch, B.

    2017-11-01

    Silicon Carbide is a material of high interest in the design and manufacturing of space telescopes, thanks to its mechanical and thermal properties. Since many years, Reosc has gathered a large experience in the polishing, testing, integration and coating of large size Silicon Carbide mirrors as well as in the integration of full SiC TMAs.

  20. Integrated fiber-mirror ion trap for strong ion-cavity coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandstätter, B., E-mail: birgit.brandstaetter@uibk.ac.at; Schüppert, K.; Casabone, B.

    2013-12-15

    We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvaturemore » and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to

  1. Authors’ response: mirror neurons: tests and testability.

    PubMed

    Catmur, Caroline; Press, Clare; Cook, Richard; Bird, Geoffrey; Heyes, Cecilia

    2014-04-01

    Commentators have tended to focus on the conceptual framework of our article, the contrast between genetic and associative accounts of mirror neurons, and to challenge it with additional possibilities rather than empirical data. This makes the empirically focused comments especially valuable. The mirror neuron debate is replete with ideas; what it needs now are system-level theories and careful experiments – tests and testability.

  2. Mirror, Mirror on the Wall...?

    ERIC Educational Resources Information Center

    Pflaster, Gail

    1979-01-01

    The study determined the value of using a mirror for speech teaching by recording manner, place, voicing, and blend errors produced by 27 hearing-impaired children (5-13 years old) while imitating consonant-vowel syllables under three conditions (audition alone, audition plus direct vision, and audition plus vision using a mirror). (Author)

  3. Chinese "Magic" Mirrors.

    ERIC Educational Resources Information Center

    Swinson, Derek B.

    1992-01-01

    Chinese "magic" mirrors are made from bronze with the front side a mirror and the reverse side a molded image. When light is reflected from the mirror,the image on the reverse side appears. Discusses reflections of conventional mirrors, possible explanations for the magic mirror phenomenon, and applications of the phenomenon to…

  4. Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy.

    PubMed

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2017-01-01

    Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by "mirror therapy." Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one's own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one's own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain.

  5. LUTE primary mirror materials and design study report

    NASA Astrophysics Data System (ADS)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  6. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  7. Through the Looking Glass: The Facilitation of Mirroring in Group Process

    ERIC Educational Resources Information Center

    Gormley, Lane

    2008-01-01

    The mirror is often used as a metaphor in the therapeutic literature to explain how we see and experience ourselves through others. An examination of therapeutic mirrors, real and figurative, precedes a discussion of mirroring in group process. The reflections of self encountered by a group member in the group as a whole, in a fellow group member,…

  8. Do Students Share the Same Experience in an Online Language Exchange Programme?--The Chinese-French eTandem Case

    ERIC Educational Resources Information Center

    Szilas, Jue Wang; Zhang, Ling; Berger, Claudia

    2013-01-01

    This article presents the findings of an eTandem Chinese-French exchange course during two academic years, the year 2010-2011 when the course was not credited, and the year 2011-2012 when the course was credited in one university but not in the other. It focuses on the students' perspective about the language exchange experience. The participants…

  9. Challenging Cognitive Control by Mirrored Stimuli in Working Memory Matching

    PubMed Central

    Wirth, Maria; Gaschler, Robert

    2017-01-01

    Cognitive conflict has often been investigated by placing automatic processing originating from learned associations in competition with instructed task demands. Here we explore whether mirror generalization as a congenital mechanism can be employed to create cognitive conflict. Past research suggests that the visual system automatically generates an invariant representation of visual objects and their mirrored counterparts (i.e., mirror generalization), and especially so for lateral reversals (e.g., a cup seen from the left side vs. right side). Prior work suggests that mirror generalization can be reduced or even overcome by learning (i.e., for those visual objects for which it is not appropriate, such as letters d and b). We, therefore, minimized prior practice on resolving conflicts involving mirror generalization by using kanji stimuli as non-verbal and unfamiliar material. In a 1-back task, participants had to check a stream of kanji stimuli for identical repetitions and avoid miss-categorizing mirror reversed stimuli as exact repetitions. Consistent with previous work, lateral reversals led to profound slowing of reaction times and lower accuracy in Experiment 1. Yet, different from previous reports suggesting that lateral reversals lead to stronger conflict, similar slowing for vertical and horizontal mirror transformations was observed in Experiment 2. Taken together, the results suggest that transformations of visual stimuli can be employed to challenge cognitive control in the 1-back task. PMID:28503160

  10. Topological mirror superconductivity.

    PubMed

    Zhang, Fan; Kane, C L; Mele, E J

    2013-08-02

    We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2(D-1) independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z(2) index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.

  11. Cosmology in Mirror Twin Higgs and neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.

    We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In thesemore » $$\

  12. Cosmology in Mirror Twin Higgs and neutrino masses

    DOE PAGES

    Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.; ...

    2017-07-06

    We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In thesemore » $$\

  13. Mirror man: a case of skilled deliberate mirror writing.

    PubMed

    McIntosh, Robert D; De Lucia, Natascia; Della Sala, Sergio

    2014-01-01

    Mirror writing is a striking behaviour that is common in children and can reemerge in adults following brain damage. Skilled deliberate mirror writing has also been reported, but only anecdotally. We provide the first quantitative study of skilled deliberate mirror writing. K.B. can write forward or backward, vertically upright or inverted, with the hands acting alone or simultaneously. K.B. is predominantly left handed, but writes habitually with his right hand. Of his writing formats, his left hand mirror writing is by far the most similar in style to his normal handwriting. When writing bimanually, he performs better when his two hands make mirror-symmetrical movements to write opposite scripts than if they move in the same direction to write similar scripts. He has no special facility for reading mirrored text. These features are consistent with prior anecdotal cases and support a motor basis for K.B.'s ability, according to which his skilled mirror writing results from the left hand execution of a low-level motor program for a right hand abductive writing action. Our methods offer a novel framework for investigating the sharing of motor representations across effectors.

  14. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services.

    PubMed

    Pratt, Brian; Howbert, J Jeffry; Tasman, Natalie I; Nilsson, Erik J

    2012-01-01

    MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. brian.pratt@insilicos.com

  15. Intuitive optics: what great apes infer from mirrors and shadows.

    PubMed

    Völter, Christoph J; Call, Josep

    2018-05-02

    There is ongoing debate about the extent to which nonhuman animals, like humans, can go beyond first-order perceptual information to abstract structural information from their environment. To provide more empirical evidence regarding this question, we examined what type of information great apes (chimpanzees, bonobos, and orangutans) gain from optical effects such as shadows and mirror images. In an initial experiment, we investigated whether apes would use mirror images and shadows to locate hidden food. We found that all examined ape species used these cues to find the food. Follow-up experiments showed that apes neither confused these optical effects with the food rewards nor did they merely associate cues with food. First, naïve chimpanzees used the shadow of the hidden food to locate it but they did not learn within the same number of trials to use a perceptually similar rubber patch as indicator of the hidden food reward. Second, apes made use of the mirror images to estimate the distance of the hidden food from their own body. Depending on the distance, apes either pointed into the direction of the food or tried to access the hidden food directly. Third, apes showed some sensitivity to the geometrical relation between mirror orientation and mirrored objects when searching hidden food. Fourth, apes tended to interpret mirror images and pictures of these mirror images differently depending on their prior knowledge. Together, these findings suggest that apes are sensitive to the optical relation between mirror images and shadows and their physical referents.

  16. Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy

    PubMed Central

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2017-01-01

    Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by “mirror therapy.” Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one’s own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one’s own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain. PMID:29046630

  17. Blind readers break mirror invariance as sighted do.

    PubMed

    de Heering, Adélaïde; Collignon, Olivier; Kolinsky, Régine

    2018-04-01

    Mirror invariance refers to a predisposition of humans, including infants and animals, which urge them to consider mirrored images as corresponding to the same object. Yet in order to learn to read a written system that incorporates mirrored letters (e.g., vs. in the Latin alphabet), humans learn to break this perceptual bias. Here we examined the role visual experience and input modality play in the emergence of this bias. To this end, we tested congenital blind (CB) participants in two same-different tactile comparison tasks including pairs of mirrored and non-mirrored Braille letters as well as embossed unfamiliar geometric shapes and Latin letters, and compared their results to those of age-matched sighted participants involved in similar but visually-presented tasks. Sighted participants showed a classical pattern of results for their material of expertise, Latin letters. CB's results signed for their expertise with the Braille script compared to the other two materials that they processed according to an internal frame of reference. They also evidenced that they automatically break mirror invariance for different materials explored through the tactile modality, including Braille letters. Altogether, these results demonstrate that learning to read Braille through the tactile modality allows breaking mirror invariance in a comparable way to what is observed in sighted individuals for the mirrored letters of the Latin alphabet. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Research on automatic Hartmann test of membrane mirror

    NASA Astrophysics Data System (ADS)

    Zhong, Xing; Jin, Guang; Liu, Chunyu; Zhang, Peng

    2010-10-01

    Electrostatic membrane mirror is ultra-lightweight and easy to acquire a large diameter comparing with traditional optical elements, so its development and usage is the trend of future large mirrors. In order to research the control method of the static stretching membrane mirror, the surface configuration must be tested. However, membrane mirror's shape is always changed by variable voltages on the electrodes, and the optical properties of membrane materials using in our experiment are poor, so it is difficult to test membrane mirror by interferometer and null compensator method. To solve this problem, an automatic optical test procedure for membrane mirror is designed based on Hartmann screen method. The optical path includes point light source, CCD camera, splitter and diffuse transmittance screen. The spots' positions on the diffuse transmittance screen are pictured by CCD camera connected with computer, and image segmentation and centroid solving is auto processed. The CCD camera's lens distortion is measured, and fixing coefficients are given to eliminate the spots' positions recording error caused by lens distortion. To process the low sampling Hartmann test results, Zernike polynomial fitting method is applied to smooth the wave front. So low frequency error of the membrane mirror can be measured then. Errors affecting the test accuracy are also analyzed in this paper. The method proposed in this paper provides a reference for surface shape detection in membrane mirror research.

  19. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services

    PubMed Central

    Pratt, Brian; Howbert, J. Jeffry; Tasman, Natalie I.; Nilsson, Erik J.

    2012-01-01

    Summary: MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. Availability and implementation: MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. Contact: brian.pratt@insilicos.com PMID:22072385

  20. Is that me in the mirror? Depersonalisation modulates tactile mirroring mechanisms.

    PubMed

    Adler, Julia; Schabinger, Nadine; Michal, Matthias; Beutel, Manfred E; Gillmeister, Helge

    2016-05-01

    Our sense of self is thought to develop through sensory-motor contingencies provided, not only by observing one's own body, but also by mirroring interactions with others. This suggests that there is a strong link between mirroring mechanisms and the bodily self. The present study tested whether this link is expressed at early, implicit stages of the mirroring process or at later, more cognitive stages. We also provide, to the best of our knowledge, the first demonstration of how inter-individual differences in our sense of bodily self may affect mirroring mechanisms. We used somatosensory event-related potentials (SEPs) to investigate the temporal dynamics of mirroring highly self-related information (viewed touch on one's own face) compared to other-related information (viewed touch on a stranger's face), in individuals with low and high levels of depersonalisation, a mental condition characterised by feeling detached or estranged from one's self and body. For the low-depersonalisation group, mirroring for self-related events (P45) preceded mirroring for other-related events (N80). At later stages (P200), mirroring was stronger for other-related than self-related events. This shows that early, implicit and later, more cognitive processes play different relative roles in mirroring self- and other-related bodily events. Critically, mirroring differed in the high-depersonalisation group, specifically for self-related events. An absence of early, implicit mirroring for self-related events over P45 suggests that the associated processes may be the neural correlates of the disembodiment experienced in depersonalisation. A lack of differential mirroring for self- and other-related events over P200 may reflect compensatory mechanisms that redress deficiencies in mirroring at earlier stages, which may break down to give rise to symptoms of depersonalisation. Alternatively, or in addition, they may represent an attenuation of processes related to self-other distinction

  1. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  2. Multilayer active shell mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy

    2016-07-01

    A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (< 1.0 mm), lightweight (2.7 kg/m2), and have large actuation capabilities. These capabilities, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).

  3. Preliminary Engineering Study of Long-Lead Time Equipment Required for Large Lightweight Mirror Manufacture

    DTIC Science & Technology

    1981-06-01

    numnber) Annealing Fusion Sealed Mirrors ULED Mirrors Boule Large Lightweight Mirror Core Low Expansion Glass Coremaker Mirror Blanks Forming Furnace...Experiments 34 4 10.6 Grinder Procurement 35 J 1 I GLOSSARY Alpha - Coef. of thermal expansion. Boule - The disc of glass formed in the furnace. Cell...turning over of large plates, cores or mirrors. Flowout - Method used to produce large diameter plates from small diameter boules. Glass - Used in the

  4. Maintenance and testing of anodized aluminum mirrors on the Whipple 10 m Whipple Telescope

    NASA Astrophysics Data System (ADS)

    Badran, H. M.; Weekes, T. C.

    2001-08-01

    Threshold energy sensitivity depends not only on the high reflectivity of the mirrors used in atmospheric Cherenkov telescopes but also on the maintenance of this reflectivity over months/years. The successful application of a mirror maintenance technique depends on the type of mirror coating and the contamination that must be removed. The uncovered mirrors in use on the 10-m Whipple gamma-ray telescope are anodized aluminum mirrors. A standard cleaning technique for such mirrors is not available. With the aim of extending the life of the aluminum coating exposed to the Mt ˙Hopkins environment, several cleaning procedures were tested on mirrors that had been exposed for three years. Evaluation of the most effective cleaners is presented. Preliminary results are also presented from a long-term experiment using newly coated mirrors at the proposed VERITAS site and at the current 10 m site. This experiment is designed to reveal the rates at which the reflectance degrades as a function of time, depth of anodization, storage direction, degree of covering, and maintenance procedures.

  5. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  6. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  7. Cosmological signals of a mirror twin Higgs

    DOE PAGES

    Craig, Nathaniel; Koren, Seth; Trott, Timothy

    2017-05-08

    We investigate the cosmology of the minimal model of neutral naturalness, the mirror Twin Higgs. The softly-broken mirror symmetry relating the Standard Model to its twin counterpart leads to significant dark radiation in tension with BBN and CMB observations. We quantify this tension and illustrate how it can be mitigated in several simple scenarios that alter the relative energy densities of the two sectors while respecting the softly-broken mirror symmetry. In particular, we consider both the out-of-equilibrium decay of a new scalar as well as reheating in a toy model of twinned inflation, Twinflation. In both cases the dilution ofmore » energy density in the twin sector does not merely reconcile the existence of a mirror Twin Higgs with cosmological constraints, but predicts contributions to cosmological observables that may be probed in current and future CMB experiments. This raises the prospect of discovering evidence of neutral naturalness through cosmology rather than colliders.« less

  8. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  9. Czechoslovak Replica X-Ray Mirrors for Astronomical Applications

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Valnicek, B.

    Imaging X-ray mirrors has been developed in Czechoslovakia since 1970 by a way of two different replica technologies based on galvanoplastics and reactoplastics as a natural part of Czechoslovak X-ray astronomy program. Until now about 30 mirros with diameters between 1.7 and 24 cm were manufactured. Seven mirrors were flown in space experiments. The new technology used since 1981 allows to produce light-weight X-ray mirrors at relatively very low cost. The technology offers interesting possibilities in construction of (1) large arrays of identical optical systems, (2) very small (microscopic) mirros and (3) lobster-eye type optics. Advantages and drawbacks of replica techology are discussed.

  10. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  11. Plasma cleaning of ITER first mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  12. Relating the "mirrorness" of mirror neurons to their origins.

    PubMed

    Kilner, James M; Friston, Karl J

    2014-04-01

    Ever since their discovery, mirror neurons have generated much interest and debate. A commonly held view of mirror neuron function is that they transform "visual information into knowledge," thus enabling action understanding and non-verbal social communication between con-specifics (Rizzolatti & Craighero 2004). This functionality is thought to be so important that it has been argued that mirror neurons must be a result of selective pressure.

  13. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    PubMed

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  14. Ion Cyclotron Resonant Heating (ICRH) system used on the Tandem Mirror Experiment-Upgrade (TMX-U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, S.W.; Maxwell, T.M.; Antelman, D.R.

    1985-11-11

    Ion Cyclotron Resonant Heating (ICRH) is part of the plasma heating system used on the TMX-U experiment. Radio frequency (RF) energy is injected into the TMX-U plasma at a frequency near the fundamental ion resonance (2 to 5 MHz). The RF fields impart high velocities to the ions in a direction perpendicular to the TMX-U magnetic field. Particle collision then converts this perpendicular heating to uniform plasma heating. This paper describes the various aspects of the ICRH system: antennas, power supplies, computer control, and data acquisition. 4 refs., 10 figs.

  15. Experiments on tandem diffusers with boundary-layer suction applied in between

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1979-01-01

    Experiments were performed on conical diffusers of various configurations with the same, but rather unusually large, 16:1 area ratio. Because available performance data on diffusers fall short of very large area ratio configurations, an unconventional design, consisting of two diffusers following each other in tandem, was proposed. Both diffusers had the same area ratio of 4:1, but had different taper angles. While for the first diffuser (called leading) the angle remained constant, for the second (called follower), the taper angle was stepped up to higher values. Boundary layer control, by way of suction, was applied between the diffusers, and a single slot suction ring was inserted between them. The leading diffuser had an enclosed nominal divergence angle 2 theta = 5 degrees, while the follower diffusers had either 10, 20, 30, or 40 degrees, respectively, giving 4 combinations. The experiments were performed at four different Reynolds numbers with various suction rates. The rates indicate a general improvement in the performance of all diffusers with boundary layer suction. It appears that the improvement of the pressure recovery depends on both the Reynolds number and the suction rate, and the largest increase, 0.075, was found at the lowest R sub e when the follower divergence was 2 theta = 40 degrees.

  16. Design and resolution analysis of parabolic mirror spectrometer

    NASA Astrophysics Data System (ADS)

    Wu, Su; Wang, Guodong; Xia, Guo; Sun, Yanchao; Hu, Mingyong

    2017-10-01

    In order to further eliminate aberration and improve resolution, the paper employs parabolic mirror as the collimating mirror and the focusing mirror to design "Z" configuration and "U" configuration optical structure of parabolic spectrometer with the F number 2.5 and the spectral range varying from 250 nm to 850 nm. We conduct experiments on ZEMAX to simulate and optimize the initial parameters of two structures with the root-mean-square (RMS) radius of spots along Y axis as the optimization goal. Through analyzing the spot diagram and the root-mean-square (RMS) of Y axis, we can see that the "U" configuration spectrometers can achieve much better spectral resolution than the "Z" configuration.

  17. Tandem internal models execute motor learning in the cerebellum.

    PubMed

    Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao

    2018-06-25

    In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.

  18. Mirrors, Mirrors on the Wall...The Ubiquitous Multiple Reflection Error

    ERIC Educational Resources Information Center

    Lawson, Rebecca

    2012-01-01

    Participants decided when somebody, Janine, could see their face in a horizontal row of adjacent mirrors mounted flat on the same wall. They saw real mirrors and a shop-dummy representing Janine. Such coplanar mirrors reflect different, non-overlapping areas of a scene. However, almost everybody made an unexpected error: they claimed that Janine…

  19. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  20. Axisymmetric MHD-stable Mirror as a Neutron Source and a Fusion Reactor

    ScienceCinema

    Dr. Dmitri Ryutov

    2018-04-17

    Dr. Ryutov discusses the concept of axisymmetric mirrors and presents an overview of current experiments and theories. Particular attention is paid to MHD stabilization and the advantages and disadvantages of using mirrors. Future work is identified and further discussed.

  1. Cleaning procedure for mirror coating at Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Yutani, Masami; Hayashi, Saeko S.; Kurakami, Tomio; Kanzawa, Tomio; Ohshima, Norio; Nakagiri, Masao

    2003-02-01

    We would like to present the procedure of how to prepare the primary mirror of Subaru Telescope for the realuminization. The equipment for the coating and its preparation are located at the ground floor of the telescope enclosure. There are two trolleys for carrying the mirror cell and the mirror itself, a mirror lifting jig, a washing facility for the primary mirror (PMWF), the water purification system, the coating chamber and the waste water pit. The PMWF can provide the tap water for initial rinsing, the chemical for stripping the old coating, and the deionized water for final cleaning. It has two pairs of arms that deploy horizontally above the mirror and have nozzles to spray. The arms spin around its center where the rotary joints are connected to the plumbing from storage tanks. Deck above the water arms serve as platform for personnel for the inspection or for scrubbing work. We use hydrochloric acid mixture to remove the old aluminum coating. For rinsing and final cleaning, we use the water through the purification system. The water supply from the nozzles and the rotation of the arms can be controlled from a panel separated from the washing machine itself. After several experiments and improvements in the washing, we have carried out the coating of the 8.3 m primary mirror in September last year. This was the third time, and the reflectivity of the new coating show satisfactory result.

  2. Treating Refractory Cardiogenic Shock With the TandemHeart and Impella Devices: A Single Center Experience

    PubMed Central

    Schwartz, Bryan G.; Ludeman, Daniel J.; Mayeda, Guy S.; Kloner, Robert A.; Economides, Christina; Burstein, Steven

    2012-01-01

    Background Patients with cardiogenic shock (CS) are routinely treated with intra-aortic balloon pumps (IABPs). The utility of 2 new percutaneous left ventricular assist devices (PLVADs), the Impella and TandemHeart, is unknown. The objective of this study was to describe the use of PLVADs for patients with CS at our institution. Methods All cases involving PLVADs in patients with CS between between January 1, 2008 and June 30, 2010 at a private, tertiary referral hospital were reviewed retrospectively. Results All 76 cases were identified (50 IABP only, 7 Impella, 19 TandemHeart). Most Impella (5/7) and TandemHeart (10/19) patients were initially treated with an IABP before "upgrading" for increased hemodynamic support. All 76 devices (100%) were initiated successfully. Percutaneous revascularization was attempted in 63 patients with angiographic success in 57 (90%). The incidences of major complications were similar between groups, except bleeding occurred less frequently with the IABP. Mean ejection fraction on presentation was 30.4±16.5% and increased by a mean of 6.6±11.4% (P < 0.001). With the institutional approach of treating patients with CS initially with vasopressors and IABPs, then upgrading to an Impella or TandemHeart device for patients refractory to IABP therapy, the overall mortality rate was 40%. Conclusion The Impella and TandemHeart devices can be initiated successfully in patients with CS, are associated with high rates of angiographic success during high risk percutaneous interventions and may benefit the myocardium during myocardial infarction. Randomized trials are warranted investigating use of the Impella and TandemHeart devices in patients with CS and in patients refractory to conventional IABP therapy. PMID:28348673

  3. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  4. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  5. Study Of Pre-Shaped Membrane Mirrors And Electrostatic Mirrors With Nonlinear-Optical Correction

    DTIC Science & Technology

    2002-01-01

    mirrors have been manufactured of glass-like material Zerodur with very low coefficient of linear expansion. They have a more light cellular construction...primary and flat secondary mirrors are both segmented ones. In the case of the primary mirror made of traditional materials such as Zerodur or fused...FINAL REPORT ISTC Project #2103p “Study of Pre-Shaped Membrane Mirrors and Electrostatic Mirrors with Nonlinear-Optical Correction” Manager

  6. Study on Surface Roughness of Modified Silicon Carbide Mirrors polished by Magnetorheological Finishing

    NASA Astrophysics Data System (ADS)

    Du, Hang; Song, Ci; Li, Shengyi

    2018-01-01

    In order to obtain high precision and high surface quality silicon carbide mirrors, the silicon carbide mirror substrate is subjected to surface modification treatment. In this paper, the problem of Silicon Carbide (SiC) mirror surface roughness deterioration by MRF is studied. The reasons of surface flaws of “Comet tail” are analyzed. Influence principle of MRF polishing depth and the surface roughness of modified SiC mirrors is obtained by experiments. On this basis, the united process of modified SiC mirrors is proposed which is combined MRF with the small grinding head CCOS. The united process makes improvement in the surface accuracy and surface roughness of modified SiC mirrors.

  7. Scaling laws for light weight optics, studies of light weight mirrors mounting and dynamic mirror stress, and light weight mirror and mount designs

    NASA Technical Reports Server (NTRS)

    Vukobratovich, Daniel; Richard, Ralph M.; Valente, Tina M.; Cho, Myung K.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature was made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best curve for each case. A best fitting curve program tests nineteen different equations and ranks a goodness-to-fit for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  8. Experiments using a 200 kV implanter and a 5 MV tandem accelerator

    NASA Astrophysics Data System (ADS)

    Ishigami, Ryoya; Ito, Yoshifumi; Yasuda, Keisuke; Hatori, Satoshi

    2001-07-01

    N+ ions with an energy of 190 keV were implanted into an Al alloy (95% Al and 5% Mg) to a dose of 1.5×1019ions/cm2. A layer of AlN with 1.4 μm thickness was obtained. The amounts of InN deposited on GaAs or Al2O3 were measured by RBS using He2+ ions with an energy of 3.14 MeV generated by a tandem accelerator. The thickness was estimated to be 0.047 μm and 0.26 μm in each case. An experiment on transmission ERDA using He2+ ions with an energy of 15 MeV is proposed for the measurement of deuterons in thick Ti foil with good depth resolution.

  9. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  10. Visual Self-Recognition in Mirrors and Live Videos: Evidence for a Developmental Asynchrony

    ERIC Educational Resources Information Center

    Suddendorf, Thomas; Simcock, Gabrielle; Nielsen, Mark

    2007-01-01

    Three experiments (N = 123) investigated the development of live-video self-recognition using the traditional mark test. In Experiment 1, 24-, 30- and 36-month-old children saw a live video image of equal size and orientation as a control group saw in a mirror. The video version of the test was more difficult than the mirror version with only the…

  11. Hard X-ray mirrors for Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descalle, M. A.; Brejnholt, N.; Hill, R.

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a newmore » type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed

  12. The mirror neuron system.

    PubMed

    Cattaneo, Luigi; Rizzolatti, Giacomo

    2009-05-01

    Mirror neurons are a class of neurons, originally discovered in the premotor cortex of monkeys, that discharge both when individuals perform a given motor act and when they observe others perform that same motor act. Ample evidence demonstrates the existence of a cortical network with the properties of mirror neurons (mirror system) in humans. The human mirror system is involved in understanding others' actions and their intentions behind them, and it underlies mechanisms of observational learning. Herein, we will discuss the clinical implications of the mirror system.

  13. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    PubMed Central

    Poole, P. L.; Krygier, A.; Cochran, G. E.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-01-01

    We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors. PMID:27557592

  14. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    DOE PAGES

    Poole, P. L.; Krygier, A.; Cochran, G. E.; ...

    2016-08-25

    Here, we describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating.more » Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors.« less

  15. Water Cooled Mirror Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient coolingmore » of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.« less

  16. Cosmology with liquid mirror telescopes

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  17. Integration of Mirror Design with Suspension System Using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Bevan, Ryan M.; Stahl, H. Philip

    2013-01-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  18. Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold,William R., Sr.; Bevan, Ryan M.; Stahl, Philip

    2013-01-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  19. MSFC Test Results for Selected Mirrors: Brush-Wellman/Goodrich 0.5 meter Joined-Beryllium Mirror; IABG 0.5 meter C/SiC Mirror; Xinetics 0.5 meter SiC Mirror; and Kodak 0.23 meter SiO2 Mirror

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Blackwell, Lisa; Matthews, Gary; Eng, Ron; Stahl, Phil; Hraba, John; Thornton, Gary

    2002-01-01

    The results of cryo tests performed at the XRCF on the above mirrors will be presented. Each mirror was tested from room-temperature to around 30 K. The first three were tested together on a 3-mirror stand in the large chamber using the PhaseCam interferometer, while the Kodak mirror was tested in the small chamber using the EPI interferometer.

  20. [Mirror neurons: from anatomy to pathophysiological and therapeutic implications].

    PubMed

    Mathon, B

    2013-04-01

    Mirror neurons are a special class of neurons discovered in the 1990s. They respond when we perform an action and also when we see someone else perform that action. They play a role in the pathophysiology of some neuropsychiatric diseases. Mirror neurons have been identified in humans: in Broca's area and the inferior parietal cortex. Their responses are qualitative and selective depending on the observed action. Emotions (including disgust) and empathy seem to operate according to a mirror mechanism. Indeed, the mirror system allows us to encode the sensory experience and to simulate the emotional state of others. This results in our improved identification of the emotions in others. Additionally, mirror neurons can encode an observed action in motor stimuli and allow its reproduction; thus, they are involved in imitation and learning. Current studies are assessing the role of mirror neurons in the pathopysiology of social-behavior disorders, including autism and schizophrenia. Understanding this mirror system will allow us to develop psychotherapy practices based on empathic resonance between the patient and the therapist. Also, some authors report that a passive rehabilitation technique, based on stimulation of the mirror-neuron system, has a beneficial effect in the treatment of patients with post-stroke motor deficits. Mirror neurons are an anatomical entity that enables improved understanding of behavior and emotions, and serves as a base for developing new cognitive therapies. Additional studies are needed to clarify the exact role of this neuronal system in social cognition and its role in the development of some neuropsychiatric diseases. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Highly light-weighted ZERODUR mirror and fixation for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Lasic, Thierry; Viale, Roger; Ruch, Eric

    2017-11-01

    Space telescopes require large primary mirrors within a demanding thermal environment: observatories at L2 orbit provide a stable environment with a drawback of very low temperature. Besides, it is necessary to limit as far as possible the mirrors mass while withstanding launch loads and keeping image quality within a cryogenic environment. ZERODUR is a well-known material extensively used for large telescope. Alcatel Alenia Space and Sagem/REOSC have combined their respective skills to go further in the lightweighting ratio of large mirror (36 kg/m2 on 1.5 m2) through a detailed design, performance assessment and technology demonstration with breadboards. Beyond on a large mirror detailed design supported by analysis, a ZERODUR mock-up has been manufacturing by Sagem/REOSC to demonstrate the achievability of the demanding parameters offering this high lightweighting ratio. Through the ISO experience on mirror attachments, a detailed design of the mirror fixation has been done as well. A full size mock-up has been manufactured and successfully tested under thermal cycling and static loading. Eventually, the ZERODUR stability behavior within this large temperature range has been verified through thermal cycling and image quality cryotest on a flat mirror breadboard. These developments demonstrate that ZERODUR is a good candidate for large space cryogenic mirrors offering outstanding optical performances associated to matured and proven technology and manufacturing process.

  2. Experiments to increase the parameters of the vacuum insulation tandem accelerator for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D. A.; Kolesnikov, J. A.; Koshkarev, A. M.; Kuznetsov, A. S.; Makarov, A. N.; Sokolova, E. O.; Sorokin, I. N.; Sycheva, T. V.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-12-01

    An epithermal neutron source that is based on a vacuum insulation tandem accelerator (VITA) and lithium target was created in the Budker Institute of Nuclear Physics for the development of boron neutron capture therapy (BNCT). A stationary proton beam with 2 MeV energy and 1.6 mA current has been obtained. To carry out BNCT, it is necessary to increase the beam parameters up to 2.3 MeV and 3 mA. Ways to increase the parameters of the proton beam have been proposed and discussed in this paper. The results of the experiments are presented.

  3. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  4. Laser correcting mirror

    DOEpatents

    Sawicki, Richard H.

    1994-01-01

    An improved laser correction mirror (10) for correcting aberrations in a laser beam wavefront having a rectangular mirror body (12) with a plurality of legs (14, 16, 18, 20, 22, 24, 26, 28) arranged into opposing pairs (34, 36, 38, 40) along the long sides (30, 32) of the mirror body (12). Vector force pairs (49, 50, 52, 54) are applied by adjustment mechanisms (42, 44, 46, 48) between members of the opposing pairs (34, 36, 38, 40) for bending a reflective surface 13 of the mirror body 12 into a shape defining a function which can be used to correct for comatic aberrations.

  5. The mechanisms of the SAMS experiment flown on Nimbus 7 with particular reference to the 2 axis scanning mirror. [infrared radiometer for stratospheric and mesospheric investigations

    NASA Technical Reports Server (NTRS)

    Hadley, H.

    1980-01-01

    The stratospheric and mesospheric sounder (SAMS) experiment on Nimbus 7 includes a 2 axis scanning mirror and 7 pressure modulator cells. The SAMS experiment is a limb sounding instrument to measure the temperature profile and minor constituents of the atmosphere. The limb scan requires small mirror steps over a 3 deg range, while the scan in azimuth is in larger steps over a 15 deg range. The mirror is plane, 20 cm in diameter, and of zero expansion glass-ceramic. It is supported on two tilt tables, fitted one on the other, with the axes at right angles. The angle of tilt is adjusted by means of recirculating ball screws which are ion plated with lead for lubrication and driven by stepper motors. The seven gas filled cells are each pressure modulated by a 3 cm diameter, 0.3 cm stroke piston which is supported by diaphragm springs and driven electromagnetically at the system's mechanical resonant frequency. The mean pressure of the filling gas, which is the atmospheric constituent being measured, is changed by varying the temperature of a suitable molecular sieve.

  6. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  7. Scattering of magnetic mirror trapped electrons by an Alfven wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.; Karavaev, A. V.; Shao, X.; Sharma, A. S.

    2010-12-01

    Highly energetic particles from large solar flares or other events can be trapped in the Earth’s magnetic mirror field and pose a danger to intricate space satellites. Aiming for artificially de-trapping these particles, an experimental and theoretical study of the interactions of a shear Alfven wave with electrons trapped in a magnetic mirror was performed on the Large Plasma Device (LaPD) at UCLA, with critical parameter ratios matched in the lab plasma to those in space. The experiment was done in a quiescent afterglow plasma with ne≈5×1011cm-3, Te≈0.5eV, B0≈1000G, L=18m, and diameter=60cm. A magnetic mirror was established in LaPD (mirror ratio≈1.5, Lmirror≈3m). An electron population with large v⊥ (E⊥≈1keV) was introduced by microwave heating at upper-hybrid frequency with a 2.45GHz pulsed microwave source at up to 5kW. A shear Alfven wave with arbitrary polarization (fwave≈0.5fci , Bwave/B0≈0.5%) was launched by a Rotating Magnetic Field (RMF) antenna axially 2m away from the center of the mirror. It was observed that the Alfven wave effectively eliminated the trapped electrons. A diagnostic probe was developed for this experiment to measure electrons with large v⊥ in the background plasma. Plasma density and temperature perturbations from the Alfven wave were observed along with electron scattering. Computer simulations tracking single particle motion with wave field are ongoing. In these the Alfven wave’s effect on the electrons pitch angle distribution by a Monte-Carlo method is studied. Planned experiments include upgrading the microwave source for up to 100kW pulses to make electrons with higher transverse energy and longer mirror trapping time. This work is supported by The Office of Naval Research under a MURI award. Work was done at the Basic Plasma Science Facility which is supported by DOE and NSF.

  8. Durable solar mirror films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  9. Durable solar mirror films

    DOEpatents

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  10. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  11. Ageing under mechanical stress: first experiments for a silver based multilayer mirror

    NASA Astrophysics Data System (ADS)

    Lalo, Arnaud; Ravel, Guillaume; Ignat, Michel; Cousin, Bernard; Swain, Michael V.

    2017-11-01

    Improving materials and devices reliability is a major concern to the spatial industry. Results are reported for satellite mirrors-like specimens consisting in oxide-protected metal systems. Optical coatings were deposited by electron beam evaporation. Mechanical stress fields in multi-layered materials play an important role. The stress state can have far-reaching implications both in kinetics and thermodynamics. Therefore an integrated apparatus with four-point bending equipment was designed. The technique allowed us to exert stress into a film or a system of films on a substrate concurrently with thermal treatment. In order to achieve the first tests performed with the help of the apparatus, various preliminary characterizations were required. The article reports the preliminary micro-mechanical testing of the materials (ultra micro-indentation to evaluate the elastic modulus of the samples materials and wafer curvature technique to determine the specimen residual stress) and the first ageing experiment. Experimental evidence of accelerated ageing under stress is successfully reported.

  12. Focusing short-wavelength surface plasmons by a plasmonic mirror.

    PubMed

    Ogut, Erdem; Yanik, Cenk; Kaya, Ismet Inonu; Ow-Yang, Cleva; Sendur, Kursat

    2018-05-01

    Emerging applications in nanotechnology, such as superresolution imaging, ultra-sensitive biomedical detection, and heat-assisted magnetic recording, require plasmonic devices that can generate intense optical spots beyond the diffraction limit. One of the important drawbacks of surface plasmon focusing structures is their complex design, which is significant for ease of integration with other nanostructures and fabrication at low cost. In this study, a planar plasmonic mirror without any nanoscale features is investigated that can focus surface plasmons to produce intense optical spots having lateral and vertical dimensions of λ/9.7 and λ/80, respectively. Intense optical spots beyond the diffraction limit were produced from the plasmonic parabolic mirror by exciting short-wavelength surface plasmons. The refractive index and numerical aperture of the plasmonic parabolic mirror were varied to excite short-wavelength surface plasmons. Finite-element method simulations of the plasmonic mirror and scanning near-field optical microscopy experiments have shown very good agreement.

  13. Covalently Linked Tandem Lesions in DNA

    PubMed Central

    Patrzyc, Helen B.; Dawidzik, Jean B.; Budzinski, Edwin E.; Freund, Harold G.; Wilton, John H.; Box, Harold C.

    2013-01-01

    Reactive oxygen species (ROS) generate a type of DNA damage called tandem lesions, two adjacent nucleotides both modified. A subcategory of tandem lesions consists of adjacent nucleotides linked by a covalent bond. Covalently linked tandem lesions generate highly characteristic liquid chromotography-tandem mass spectrometry (LC-MS/MS) elution profiles. We have used this property to comprehensively survey X-irradiated DNA for covalently linked tandem lesions. A total of 15 tandem lesions were detected in DNA irradiated in deoxygenated aqueous solution, five tandem lesions were detected in DNA that was irradiated in oxygenated solution. PMID:23106212

  14. Structural design of a large deformable primary mirror for a space telescope

    NASA Astrophysics Data System (ADS)

    Hansen, J. G. R.

    A 4 meter aperture deformable primary mirror is designed with the mirror and its supports integrated into a single structure. The integrated active mirror's minimal weight makes it desirable for a space telescope as well as a terrestrial application. Utilizing displacement actuators, the active controls at the mirror's surface include position control and slope control in both the radial and tangential directions at each of the 40 control points. Influence functions for each of the controls are nearly independent, reducing the complexity of the control system. Experiments with breadboard models verify the structural concept and the techniques used in the finite element method of computer structural analysis. The majority of this paper is a description of finite element analysis results. Localization of influence functions is exhaustively treated. For gravity loads, a thermal gradient through the mirror thickness, and a uniform thermal soak, diffraction limited performance of the 4m design is evaluated. Loads are applied to defocus the mirror and to cause fourth-order astigmatism. Mirror scallop, instigated by a focus shift, has been virtually eliminated with the 40-actuator design. The structural concept is so effective that it should be considered for uncontrolled primary mirrors as well as active mirrors.

  15. Effective theory of flavor for Minimal Mirror Twin Higgs

    DOE PAGES

    Barbieri, Riccardo; Hall, Lawrence J.; Harigaya, Keisuke

    2017-10-03

    We consider two copies of the Standard Model, interchanged by an exact parity symmetry, P. The observed fermion mass hierarchy is described by suppression factors ϵ more » $$n_i$$ for charged fermion i, as can arise in Froggatt-Nielsen and extra-dimensional theories of flavor. The corresponding flavor factors in the mirror sector are ϵ' $$n_i$$, so that spontaneous breaking of the parity P arises from a single parameter ϵ'/ϵ, yielding a tightly constrained version of Minimal Mirror Twin Higgs, introduced in our previous paper. Models are studied for simple values of n i, including in particular one with SU(5)-compatibility, that describe the observed fermion mass hierarchy. The entire mirror quark and charged lepton spectrum is broadly predicted in terms of ϵ'/ϵ, as are the mirror QCD scale and the decoupling temperature between the two sectors. Helium-, hydrogen- and neutron-like mirror dark matter candidates are constrained by self-scattering and relic ionization. Lastly, in each case, the allowed parameter space can be fully probed by proposed direct detection experiments. Correlated predictions are made as well for the Higgs signal strength and the amount of dark radiation.« less

  16. Effective theory of flavor for Minimal Mirror Twin Higgs

    NASA Astrophysics Data System (ADS)

    Barbieri, Riccardo; Hall, Lawrence J.; Harigaya, Keisuke

    2017-10-01

    We consider two copies of the Standard Model, interchanged by an exact parity symmetry, P. The observed fermion mass hierarchy is described by suppression factors ɛ^{n_i} for charged fermion i, as can arise in Froggatt-Nielsen and extra-dimensional theories of flavor. The corresponding flavor factors in the mirror sector are ɛ^' {n}_i} , so that spontaneous breaking of the parity P arises from a single parameter ɛ'/ɛ, yielding a tightly constrained version of Minimal Mirror Twin Higgs, introduced in our previous paper. Models are studied for simple values of n i , including in particular one with SU(5)-compatibility, that describe the observed fermion mass hierarchy. The entire mirror quark and charged lepton spectrum is broadly predicted in terms of ɛ'/ɛ, as are the mirror QCD scale and the decoupling temperature between the two sectors. Helium-, hydrogen- and neutron-like mirror dark matter candidates are constrained by self-scattering and relic ionization. In each case, the allowed parameter space can be fully probed by proposed direct detection experiments. Correlated predictions are made as well for the Higgs signal strength and the amount of dark radiation.

  17. Figure correction of a metallic ellipsoidal neutron focusing mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jiang, E-mail: jiang.guo@riken.jp; Yamagata, Yutaka; Morita, Shin-ya

    2015-06-15

    An increasing number of neutron focusing mirrors is being adopted in neutron scattering experiments in order to provide high fluxes at sample positions, reduce measurement time, and/or increase statistical reliability. To realize a small focusing spot and high beam intensity, mirrors with both high form accuracy and low surface roughness are required. To achieve this, we propose a new figure correction technique to fabricate a two-dimensional neutron focusing mirror made with electroless nickel-phosphorus (NiP) by effectively combining ultraprecision shaper cutting and fine polishing. An arc envelope shaper cutting method is introduced to generate high form accuracy, while a fine polishingmore » method, in which the material is removed effectively without losing profile accuracy, is developed to reduce the surface roughness of the mirror. High form accuracy in the minor-axis and the major-axis is obtained through tool profile error compensation and corrective polishing, respectively, and low surface roughness is acquired under a low polishing load. As a result, an ellipsoidal neutron focusing mirror is successfully fabricated with high form accuracy of 0.5 μm peak-to-valley and low surface roughness of 0.2 nm root-mean-square.« less

  18. Lightweight Zerodur Mirror Technology

    DTIC Science & Technology

    1982-10-01

    17 September 1981 Contract Expiration Date: 15 May 1982 Short Title of Work: Lightweight Zerodur Mirror Technology Program Code Number: 1LIO Period of...iepRA LIGHTWEIGHT ZERODUR MIRROR TECHNOLOGY 21 Sep 81 - 21 May 82 1. PERFORMING 0,10. REPORT NUMWERn 15512 7: AUTHOR(*J S. CONTRACT OR GRANT NUMSER[JlII...1S. KIEV WORDS (Continue on reverse aide If necesery 1nd Identify b? block nwi nhm ) Zerodur Lightweight Mirrors Mirror Blank Fabrication Frit

  19. COI NMSD Hybrid Mirror

    NASA Technical Reports Server (NTRS)

    Mehle, Greg; Stahl, Phil (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of the 1.6 meter hybrid mirror demonstrator for the NGST Mirror System Demonstrator (NMSD) program. The COI design approach for the NGST program combines the optical performance of glass, with the high specific stiffness capabilities of composite materials The foundation technologies being exploited in the development of the hybrid mirror focus upon precision Composite Materials for cryogenic operation, and non-contact optical processing (ion figuring) of the lightweight mirror surface. The NGST Mirror System Demonstrator (NMSD) has been designed and built by Composite Optics, Inc. (COI) with optical processing performed by SAGEM (REOSC). The sponsors of these efforts are the NASA Marshall and Goddard Space Flight Centers.

  20. Percutaneous left ventricular assist device with TandemHeart for high-risk percutaneous coronary intervention: the Mayo Clinic experience.

    PubMed

    Alli, Oluseun O; Singh, Inder M; Holmes, David R; Pulido, Juan N; Park, Soon J; Rihal, Charanjit S

    2012-11-01

    In patients with poor left ventricular function and severe left main or multivessel coronary disease, coronary artery bypass grafting (CABG) surgery has been the preferred therapy. However, a number of these patients are either inoperable or poor surgical candidates due to comorbid conditions and previous cardiac surgical procedures. These patients are generally poor candidates for standard percutaneous coronary intervention (PCI) techniques. A hybrid PCI approach with hemodynamic support may be a viable strategy for these patients. We report our experience using the TandemHeart percutaneous left ventricular assist device during high-risk PCI. Retrospective cross-sectional analysis of prospectively collected data in 54 patients undergoing high-risk PCI using the TandemHeart device for support. Hemodynamic and clinical data were collected and analyzed. Baseline clinical characteristics were as follows: mean age 72 ± 1.7 years, males 78%, median ejection fraction 20%, mean serum creatinine 1.6 ± 0.3 2 mg/dL, recent myocardial infarction 52%, COPD 33%, previous CABG 50%, diabetes mellitus 41%, and hypertension 83%. The median SYNTAX score was 33, and the median Jeopardy score was 10. The predicted surgical revascularization mortality was 13% by the Society for Thoracic Surgery risk score and 33% by Euroscore. There was a significant decrease in right and left heart pressures (P < 0.05) with a concomitant increase in the cardiac output from 4.7 to 5.7 L/min (P = 0.03) during TandemHeart support. Left main and multivessel PCI was performed in 62% of patients, and rotablation was used in 48%. Procedural success rate was 97%, whereas 30-day and 6 month survival were 90% and 87%, respectively. Major vascular complications occurred in 13% of cases. None of our patients developed contrast induced nephropathy or needed dialysis. High-risk PCI with percutaneous left ventricular support using TandemHeart is a viable therapeutic strategy for a select subset of patients at very

  1. Clinical characteristics of mirror syndrome: a comparison of 10 cases of mirror syndrome with non-mirror syndrome fetal hydrops cases.

    PubMed

    Hirata, Go; Aoki, Shigeru; Sakamaki, Kentaro; Takahashi, Tsuneo; Hirahara, Fumiki; Ishikawa, Hiroshi

    2016-01-01

    To investigate clinical features of mirror syndrome. We retrospectively reviewed 71 cases of fetal hydrops with or without mirror syndrome, and compared with respect to maternal age, the body mass index, the primipara rate, the gestational age at delivery, the timing of fetal hydrops onset, the severity of fetal edema, placental swelling, the laboratory data and the fetal mortality. The data are expressed as the medians. Mirror syndrome developed in 29% (10/35) of the cases with fetal hydrops. In mirror group, the onset time of fetal hydrops was significantly earlier (29 weeks versus 31 weeks, p = 0.011), and the severity of fetal hydrops (fetal edema/biparietal diameter) was significantly higher than non-mirror group (0.23 versus 0.16, p < 0.001). There was significantly higher serum human chorionic gonadotropin (hCG) (453,000 IU/L versus 80,000 IU/L, p < 0.001) and lower hemoglobin (8.9 g/dL versus 10.1 g/dL, p =0.002), hypoalbuminemia (2.3 mg/dL versus 2.7 mg/dL, p = 0.007), hyperuricemia (6.4 mg/dL versus 5.0 mg/dL, p = 0.043) in mirror group. Mirror syndrome is occurred frequently in early and severe fetal hydrops and cause hemodilution and elevation of serum hCG.

  2. Algorithm for ion beam figuring of low-gradient mirrors.

    PubMed

    Jiao, Changjun; Li, Shengyi; Xie, Xuhui

    2009-07-20

    Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.

  3. Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William; Bevan Ryan M.; Stahl, Philip

    2013-01-01

    Advances in mirror fabrication is making very large space based telescopes possible. In the many applications, only monolithic mirrors meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass. Again, available and planned payload shroud size limits near term designs to 4 meter class mirror. Practical 8 meter and beyond designs could encourage planners to include larger shrouds if it can be proven that such mirrors can be manufactured. These two factors lower mass and larger mirrors, presents the classic optimization problem. There is a practical upper limit to how large a mirror can be supported by a purely kinematic mount system and be launched. This paper shows how the design of the suspension system and mirror blank needs to be designed simultaneously. We will also explore the concepts of auxiliary support systems, which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass. The AMTD project is developing and maturing the processes for future replacements for HUBBLE, creating the design tools, validating the methods and techniques necessary to manufacture, test and launch extremely large optical missions. This paper will use the AMTD 4 meter "design point" as an illustration of the typical use of the modeler in generating the multiple models of mirror and suspension systems used during the conceptual design phase of most projects. The influence of Hexapod geometry, mirror depth, cell size and construction techniques (Exelsis Deep Core Low Temperature Fusion (c) versus Corning Frit Bonded (c) versus Schott Pocket Milled Zerodur (c) in this particular study) are being evaluated. Due to space and time consideration we will only be able to present snippets of the study in this paper. The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low

  4. Mirror mechanism and dedicated circuits are the scaffold for mirroring processes.

    PubMed

    Fogassi, Leonardo

    2014-04-01

    In the past decade many studies have demonstrated the existence of a mirror mechanism that matches the sensory representation of a biological stimulus with its somatomotor and visceromotor representation. This mechanism, likely phylogenetically very old, explains several types of mirroring behaviours, at different levels of complexity. The presence in primates of dedicated neuroanatomical pathways for specific sensorimotor integrations processes implies, at least in the primate lineage, a hard-wired mirror mechanism for social cognitive functions.

  5. CLASSICAL AREAS OF PHENOMENOLOGY: Study on the design and Zernike aberrations of a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen-Yu; Li, Lin; Huang, Yi-Fan

    2009-07-01

    The segmented mirror telescope is widely used. The aberrations of segmented mirror systems are different from single mirror systems. This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmented mirror systems. It concludes that the Zernike aberrations of segmented mirror systems obey the linearity theorem. The design of a segmented space telescope and segmented schemes are discussed, and its optical model is constructed. The computer simulation experiment is performed with this optical model to verify the suppositions. The experimental results confirm the correctness of the model.

  6. Mirror Metrology Using Nano-Probe Supports

    NASA Technical Reports Server (NTRS)

    Robinson, David; Hong, Maoling; Byron, Glenn; McClelland, Ryan; Chan, Kai-Wing

    2012-01-01

    Thin, lightweight mirrors are needed for future x-ray space telescopes in order to increase x-ray collecting area while maintaining a reduced mass and volume capable of being launched on existing rockets. However, it is very difficult to determine the undistorted shape of such thin mirrors because the mounting of the mirror during measurement causes distortion. Traditional kinematic mounts have insufficient supports to control the distortion to measurable levels and prevent the mirror from vibrating during measurement. Over-constrained mounts (non-kinematic) result in an unknown force state causing mirror distortion that cannot be determined or analytically removed. In order to measure flexible mirrors, it is necessary to over-constrain the mirror. Over-constraint causes unknown distortions to be applied to the mirror. Even if a kinematic constraint system can be used, necessary imperfections in the kinematic assumption can lead to an unknown force state capable of distorting the mirror. Previously, thicker, stiffer, and heavier mirrors were used to achieve low optical figure distortion. These mirrors could be measured to an acceptable level of precision using traditional kinematic mounts. As lighter weight precision optics have developed, systems such as the whiffle tree or hydraulic supports have been used to provide additional mounting supports while maintaining the kinematic assumption. The purpose of this invention is to over-constrain a mirror for optical measurement without causing unacceptable or unknown distortions. The invention uses force gauges capable of measuring 1/10,000 of a Newton attached to nano-actuators to support a thin x-ray optic with known and controlled forces to allow for figure measurement and knowledge of the undeformed mirror figure. The mirror is hung from strings such that it is minimally distorted and in a known force state. However, the hanging mirror cannot be measured because it is both swinging and vibrating. In order to

  7. Status of Mirror Technology for the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Jacobson, D. N.

    2000-10-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at < 15 kg/m2, operational at ~ 40K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2-2.0m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to

  8. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel [Albuquerque, NM; Ramsey, Marc [Albuquerque, NM; Schwarz, Jens [Albuquerque, NM

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  9. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror

    PubMed Central

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  10. Mesmerising mirror neurons.

    PubMed

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  11. [Nursing Experience of Using Mirror Visual Feedback for a Schizophrenia Patient With Visual Hallucinations].

    PubMed

    Lan, Shu-Ling; Chen, Yu-Chi; Chang, Hsiu-Ju

    2018-06-01

    The aim of this paper was to describe the nursing application of mirror visual feedback in a patient suffering from long-term visual hallucinations. The intervention period was from May 15th to October 19th, 2015. Using the five facets of psychiatric nursing assessment, several health problems were observed, including disturbed sensory perceptions (prominent visual hallucinations) and poor self-care (e.g. limited abilities to self-bathe and put on clothing). Furthermore, "caregiver role strain" due to the related intense care burden was noted. After building up a therapeutic interpersonal relationship, the technique of brain plasticity and mirror visual feedback were performed using multiple nursing care methods in order to help the patient suppress her visual hallucinations by enhancing a different visual stimulus. We also taught her how to cope with visual hallucinations in a proper manner. The frequency and content of visual hallucinations were recorded to evaluate the effects of management. The therapeutic plan was formulated together with the patient in order to boost her self-confidence, and a behavior contract was implemented in order to improve her personal hygiene. In addition, psychoeducation on disease-related topics was provided to the patient's family, and they were encouraged to attend relevant therapeutic activities. As a result, her family became less passive and negative and more engaged in and positive about her future. The crisis of "caregiver role strain" was successfully resolved. The current experience is hoped to serve as a model for enhancing communication and cooperation between family and staff in similar medical settings.

  12. Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikezoe, R., E-mail: ikezoe@prc.tsukuba.ac.jp; Ichimura, M.; Okada, T.

    2015-09-15

    A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in themore » magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.« less

  13. Imitation, empathy, and mirror neurons.

    PubMed

    Iacoboni, Marco

    2009-01-01

    There is a convergence between cognitive models of imitation, constructs derived from social psychology studies on mimicry and empathy, and recent empirical findings from the neurosciences. The ideomotor framework of human actions assumes a common representational format for action and perception that facilitates imitation. Furthermore, the associative sequence learning model of imitation proposes that experience-based Hebbian learning forms links between sensory processing of the actions of others and motor plans. Social psychology studies have demonstrated that imitation and mimicry are pervasive, automatic, and facilitate empathy. Neuroscience investigations have demonstrated physiological mechanisms of mirroring at single-cell and neural-system levels that support the cognitive and social psychology constructs. Why were these neural mechanisms selected, and what is their adaptive advantage? Neural mirroring solves the "problem of other minds" (how we can access and understand the minds of others) and makes intersubjectivity possible, thus facilitating social behavior.

  14. Mirror systems.

    PubMed

    Fogassi, Leonardo; Ferrari, Pier Francesco

    2011-01-01

    Mirror neurons are a class of visuomotor neurons, discovered in the monkey premotor cortex and in an anatomically connected area of the inferior parietal lobule, that activate both during action execution and action observation. They constitute a circuit dedicated to match actions made by others with the internal motor representations of the observer. It has been proposed that this matching system enables individuals to understand others' behavior and motor intentions. Here we will describe the main features of mirror neurons in monkeys. Then we will present evidence of the presence of a mirror system in humans and of its involvement in several social-cognitive functions, such as imitation, intention, and emotion understanding. This system may have several implications at a cognitive level and could be linked to specific social deficits in humans such as autism. Recent investigations addressed the issue of the plasticity of the mirror neuron system in both monkeys and humans, suggesting also their possible use in rehabilitation. WIREs Cogn Sci 2011 2 22-38 DOI: 10.1002/wcs.89 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Mirror, Mirror by the Stairs: The Impact of Mirror Exposure on Stair versus Elevator Use in College Students.

    PubMed

    Hodgin, Katie L; Graham, Dan J

    2016-01-01

    Previous research has indicated that self-awareness-inducing mirrors can successfully incite behaviors that align with one's personal values, such as helping others. Other research has found a large discrepancy between the high percentage of young adults who report valuing the healthfulness of physical activity (PA) and the low percentage who actually meet PA participation standards. However, few studies have examined how mirror exposure and both perceived and actual body size influence highly valued PA participation among college students. The present study assessed stair versus elevator use on a western college campus and hypothesized that mirror exposure would increase the more personally healthy transportation method of stair use. In accordance with previous research, it was also hypothesized that males and those with a lower body mass index (BMI) would be more likely to take the stairs, and that body size distorting mirrors would impact the stair-elevator decision. One hundred sixty-seven students (51% male) enrolled in an introductory psychology course were recruited to take a survey about their "transportation choices" at an indoor campus parking garage. Participants were individually exposed to either no mirror, a standard full-length mirror, or a full-length mirror manipulated to make the reflected body size appear either slightly thinner or slightly wider than normal before being asked to go to the fourth floor of the garage for a survey. Participants' choice of floor-climbing method (stairs or elevator) was recorded, and they were administered an Internet-based survey assessing demographic information, BMI, self-awareness, perceived body size, and other variables likely to be associated with stair use. Results from logistic regression analyses revealed that participants who were not exposed to a mirror [odds ratios (OR) = 0.37, 95% CI: 0.14-0.96], males (OR = 0.33, 95% CI: 0.13-0.85), those with lower BMI (OR = 0.84, 95% CI: 0.71-0.99), those

  16. Mirror, Mirror by the Stairs: The Impact of Mirror Exposure on Stair versus Elevator Use in College Students

    PubMed Central

    Hodgin, Katie L.; Graham, Dan J.

    2016-01-01

    Previous research has indicated that self-awareness-inducing mirrors can successfully incite behaviors that align with one’s personal values, such as helping others. Other research has found a large discrepancy between the high percentage of young adults who report valuing the healthfulness of physical activity (PA) and the low percentage who actually meet PA participation standards. However, few studies have examined how mirror exposure and both perceived and actual body size influence highly valued PA participation among college students. The present study assessed stair versus elevator use on a western college campus and hypothesized that mirror exposure would increase the more personally healthy transportation method of stair use. In accordance with previous research, it was also hypothesized that males and those with a lower body mass index (BMI) would be more likely to take the stairs, and that body size distorting mirrors would impact the stair–elevator decision. One hundred sixty-seven students (51% male) enrolled in an introductory psychology course were recruited to take a survey about their “transportation choices” at an indoor campus parking garage. Participants were individually exposed to either no mirror, a standard full-length mirror, or a full-length mirror manipulated to make the reflected body size appear either slightly thinner or slightly wider than normal before being asked to go to the fourth floor of the garage for a survey. Participants’ choice of floor-climbing method (stairs or elevator) was recorded, and they were administered an Internet-based survey assessing demographic information, BMI, self-awareness, perceived body size, and other variables likely to be associated with stair use. Results from logistic regression analyses revealed that participants who were not exposed to a mirror [odds ratios (OR) = 0.37, 95% CI: 0.14–0.96], males (OR = 0.33, 95% CI: 0.13–0.85), those with lower BMI (OR = 0.84, 95% CI: 0

  17. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Kimura, Daiju; Yano, Keisuke

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandemmore » type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.« less

  18. Mirror Image Proteins

    PubMed Central

    Zhao, Le; Lu, Wuyuan

    2017-01-01

    Proteins composed entirely of unnatural D-amino acids and the achiral amino acid glycine are mirror image forms of their native L-protein counterparts. Recent advances in chemical protein synthesis afford unique and facile synthetic access to domain-sized mirror image D-proteins, enabling protein research to be conducted through “the looking glass” and in a way previously unattainable. D-proteins can facilitate structure determination of their native L-forms that are difficult to crystallize (racemic X-ray crystallography); D-proteins can serve as the bait for library screening to ultimately yield pharmacologically superior D-peptide/D-protein therapeutics (mirror image phage display); D-proteins can also be used as a powerful mechanistic tool for probing molecular events in biology. This review examines recent progress in the application of mirror image proteins to structural biology, drug discovery, and immunology. PMID:25282524

  19. The "Bologna-München" Tandem--Experiencing Interculturality

    ERIC Educational Resources Information Center

    De Martino, Sandro

    2016-01-01

    This case study describes the "Bologna-München" Tandem, a cross-border collaboration which began in 2011. The aim of the collaboration is to give students studying Italian at the Ludwig- Maximilians-University in Munich and students studying German at the University of Bologna the opportunity to experience interculturality through…

  20. Modulations of mirroring activity by desire for social connection and relevance of movement

    PubMed Central

    Sharer, Elizabeth A.; Bargh, John A.; Pineda, Jaime A.

    2014-01-01

    Mirroring neurons fire both when an individual moves and observes another move in kind. This simulation of others’ movements is thought to effortlessly and ubiquitously support empathetic connection and social understanding. However, at times this could be maladaptive. How could a boxer mirror a losing opponent’s expressions of fatigue, feeling his weariness, precisely when strength is required? Clearly, the boxer must emotionally disconnect from his opponent and those expressions of fatigue must become irrelevant and not mirrored. But, movements that inform of his opponent’s intentions to deliver an incoming blow are quite relevant and still should require mirroring. We tested these dimensions of emotional connectedness and relevance of movement in an electroencephalography experiment, where participants’ desires to socially connect with a confederate were manipulated. Before manipulation, all participants mirrored the confederate’s purely kinematic (a hand opening and closing) and goal-directed (a hand opening and closing around a token that the participant desired) hand movements. After manipulation, unfairly treated subjects ceased to mirror the purely kinematic movements but continued to mirror goal-relevant movements. Those treated fairly continued to mirror all movements. The results suggest that social mirroring can be adaptive in order to meet the demands of a varied social environment. PMID:24194581

  1. Quality evaluation of tandem mass spectral libraries.

    PubMed

    Oberacher, Herbert; Weinmann, Wolfgang; Dresen, Sebastian

    2011-06-01

    Tandem mass spectral libraries are gaining more and more importance for the identification of unknowns in different fields of research, including metabolomics, forensics, toxicology, and environmental analysis. Particularly, the recent invention of reliable, robust, and transferable libraries has increased the general acceptance of these tools. Herein, we report on results obtained from thorough evaluation of the match reliabilities of two tandem mass spectral libraries: the MSforID library established by the Oberacher group in Innsbruck and the Weinmann library established by the Weinmann group in Freiburg. Three different experiments were performed: (1) Spectra of the libraries were searched against their corresponding library after excluding either this single compound-specific spectrum or all compound-specific spectra prior to searching; (2) the libraries were searched against each other using either library as reference set or sample set; (3) spectra acquired on different mass spectrometric instruments were matched to both libraries. Almost 13,000 tandem mass spectra were included in this study. The MSforID search algorithm was used for spectral matching. Statistical evaluation of the library search results revealed that principally both libraries enable the sensitive and specific identification of compounds. Due to higher mass accuracy of the QqTOF compared with the QTrap instrument, matches to the MSforID library were more reliable when comparing spectra with both libraries. Furthermore, only the MSforID library was shown to be efficiently transferable to different kinds of tandem mass spectrometers, including "tandem-in-time" instruments; this is due to the coverage of a large range of different collision energy settings-including the very low range-which is an outstanding characteristics of the MSforID library.

  2. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  3. [Mirror therapy in hemiplegic patient].

    PubMed

    Lisalde-Rodríguez, María Elena; Garcia-Fernández, José Antonio

    2016-01-01

    Mirror therapy is a relatively new intervention, every time more used and with easy access for the rehabilitation treatment of stroke patient. The patient moves the unaffected limb in front of a mirror watching the reflection of that move as if he was moving de affected limb. To analyze the effectiveness of mirror therapy in the sensorimotor function, hemineglect and activities of daily living of stroke patients. We defined a strategy of bibliography search in Medline, EMBASE, PEDro y Cochrane Central Register of Controlled Trials (CENTRAL) looking for randomised controlled trials (RCT) conducted with hemiplegic patients considering mirror therapy as the main rehabilitation intervention. Seven trials met the inclusion criteria with medium-high methodological quality. Most of them evaluate the mirror therapy effect on motor outcomes showing significant improvements. Three of this RCTs evaluate the effect of mirror therapy on the hemineglect with positive result. A combination of mirror therapy with conventional rehabilitation obtained significant improvements mainly in motor function but not that much on sensory function and functional performance. About the effect of mirror therapy on hemineglect, there are significant improvements but supported only with a few RCTs with small sample sizes producing promising but inconclusive results.

  4. Orthogonal tandem catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Tracy L.; Marks, Tobin J.

    2015-05-20

    Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, withmore » particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.« less

  5. Archetypal-imaging and mirror-gazing.

    PubMed

    Caputo, Giovanni B

    2014-03-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one's own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject's unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for "imaging of the unconscious". Future researches have been proposed.

  6. PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters

    DOE PAGES

    Yu, Zhengshan J.; Fisher, Kathryn C.; Wheelwright, Brian M.; ...

    2015-08-25

    As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flatplate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%—nearing the 29.4% detailed-balance efficiency limit— and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangementmore » of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. Here, we consider two case studies—a PV cell located at the focus of the PVMirror to form a four-terminal PV–PV tandem, and a thermal receiver located at the focus to form a PV–CSP (concentrating solar thermal power) tandem—and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV–PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.« less

  7. Why is your spouse so predictable? Connecting mirror neuron system and self-expansion model of love.

    PubMed

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2008-12-01

    The simulation theory assumes we understand actions and intentions of others through a direct matching process. This matching process activates a complex brain network involving the mirror neuron system (MNS), which is self-related and active when one does something or observes someone else acting. Because social psychology admits that mutual intention's understanding grows in close relationship as love grows, we hypothesize that mirror mechanisms take place in love relationships. The similarities between the mirror matching process and the mutual intention's understanding that occurs when two persons are in love suggest that exposure to love might affect functional and neural mechanisms, thus facilitating the understanding of the beloved's intentions. Congruent with our hypothesis, our preliminary results from 38 subjects strongly suggest a significant facilitation effect of love on understanding the intentions of the beloved (as opposed to control stimuli). Based on these phenomenological, and neurofunctional findings we suggest that the mirror mechanisms are involved in the facilitation effects of love for understanding intentions, and might further be extended to any types of love (e.g., passionate love, maternal love). Love experiences are important not only to the beloved himself, but also to any societal, cultural, and institutional patterns that relate to love. Yet, concerning its subjective character, love experiences are difficult to access. The modern procedures and techniques of socio-cognitive neuroscience make it possible to understand love and self-related experiences not only by the analysis of subjective self-reported questionnaires, but also by approaching the automatic (non-conscious) mirror experiences of love in healthy subjects, and neurological patients with a brain damage within the mirror neuron system. Although the psychology of love is now well admitted, the systematic study of the automatic facilitation effect of love through mirror

  8. Angular Alignment Testing of Laser Mirror Mounts Under Temperature Cycling

    NASA Technical Reports Server (NTRS)

    Bullock, K. T.; DeYoung, R. J.; Sandford, S. P.

    1997-01-01

    A number of commercial and custom-built laser mirror mounts were tested for angular alignment sensitivity during temperature cycling from room temperature (20 C) to 40 C. A Nd:YAG laser beam was reflected off a mirror that was held by the mount under test and was directed to a position-sensitive detector. Horizontal and vertical movement of the reflected beam was recorded, and the angular movement, as a function of temperature (coefficient of thermal tilt (CTT)) was calculated from these data. In addition, the amount of hysteresis in the movement after cycling from room temperature to 40 C and back was determined. All commercial mounts showed greater angular movement than the simpler National Aeronautics and Space Administration Lidar Atmospheric Sensing Experiment (NASA LASE) custom mirror mounts.

  9. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  10. Understanding the role of mirror neurons in action understanding will require more than a domain-general account.

    PubMed

    Martin, Alia; Santos, Laurie R

    2014-04-01

    Cook et al. propose that mirror neurons emerge developmentally through a domain-general associative mechanism. We argue that experience-sensitivity does not rule out an adaptive or genetic argument for mirror neuron function, and that current evidence suggests that mirror neurons are more specialized than the authors' account would predict. We propose that future work integrate behavioral and neurophysiological techniques used with primates to examine the proposed functions of mirror neurons in action understanding.

  11. Mirror me: Imitative responses in adults with autism.

    PubMed

    Schunke, Odette; Schöttle, Daniel; Vettorazzi, Eik; Brandt, Valerie; Kahl, Ursula; Bäumer, Tobias; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K; Brass, Marcel; Münchau, Alexander

    2016-02-01

    Dysfunctions of the human mirror neuron system have been postulated to underlie some deficits in autism spectrum disorders including poor imitative performance and impaired social skills. Using three reaction time experiments addressing mirror neuron system functions under simple and complex conditions, we examined 20 adult autism spectrum disorder participants and 20 healthy controls matched for age, gender and education. Participants performed simple finger-lifting movements in response to (1) biological finger and non-biological dot movement stimuli, (2) acoustic stimuli and (3) combined visual-acoustic stimuli with different contextual (compatible/incompatible) and temporal (simultaneous/asynchronous) relation. Mixed model analyses revealed slower reaction times in autism spectrum disorder. Both groups responded faster to biological compared to non-biological stimuli (Experiment 1) implying intact processing advantage for biological stimuli in autism spectrum disorder. In Experiment 3, both groups had similar 'interference effects' when stimuli were presented simultaneously. However, autism spectrum disorder participants had abnormally slow responses particularly when incompatible stimuli were presented consecutively. Our results suggest imitative control deficits rather than global imitative system impairments. © The Author(s) 2015.

  12. Cleaning of first mirrors in ITER by means of radio frequency discharges.

    PubMed

    Leipold, F; Reichle, R; Vorpahl, C; Mukhin, E E; Dmitriev, A M; Razdobarin, A G; Samsonov, D S; Marot, L; Moser, L; Steiner, R; Meyer, E

    2016-11-01

    First mirrors of optical diagnostics in ITER are subject to charge exchange fluxes of Be, W, and potentially other elements. This may degrade the optical performance significantly via erosion or deposition. In order to restore reflectivity, cleaning by applying radio frequency (RF) power to the mirror itself and thus creating a discharge in front of the mirror will be used. The plasma generated in front of the mirror surface sputters off deposition, restoring its reflectivity. Although the functionality of such a mirror cleaning technique is proven in laboratory experiments, the technical implementation in ITER revealed obstacles which needs to be overcome: Since the discharge as an RF load in general is not very well matched to the power generator and transmission line, power reflections will occur leading to a thermal load of the cable. Its implementation for ITER requires additional R&D. This includes the design of mirrors as RF electrodes, as well as feeders and matching networks inside the vacuum vessel. Mitigation solutions will be evaluated and discussed. Furthermore, technical obstacles (i.e., cooling water pipes for the mirrors) need to be solved. Since cooling water lines are usually on ground potential at the feed through of the vacuum vessel, a solution to decouple the ground potential from the mirror would be a major simplification. Such a solution will be presented.

  13. Archetypal-Imaging and Mirror-Gazing

    PubMed Central

    Caputo, Giovanni B.

    2013-01-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one’s own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject’s unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for “imaging of the unconscious”. Future researches have been proposed. PMID:25379264

  14. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  15. Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions

    NASA Technical Reports Server (NTRS)

    Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations

  16. Lightweight ZERODUR®: Validation of mirror performance and mirror modeling predictions

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA’s XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2m diameter, f/1.29 88% lightweighted SCHOTT lightweighted ZERODUR® mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR®. In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response (dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR® mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS), and summarize the outcome of NASA’s XRCF tests and model validations.

  17. The mirror-neuron system.

    PubMed

    Rizzolatti, Giacomo; Craighero, Laila

    2004-01-01

    A category of stimuli of great importance for primates, humans in particular, is that formed by actions done by other individuals. If we want to survive, we must understand the actions of others. Furthermore, without action understanding, social organization is impossible. In the case of humans, there is another faculty that depends on the observation of others' actions: imitation learning. Unlike most species, we are able to learn by imitation, and this faculty is at the basis of human culture. In this review we present data on a neurophysiological mechanism--the mirror-neuron mechanism--that appears to play a fundamental role in both action understanding and imitation. We describe first the functional properties of mirror neurons in monkeys. We review next the characteristics of the mirror-neuron system in humans. We stress, in particular, those properties specific to the human mirror-neuron system that might explain the human capacity to learn by imitation. We conclude by discussing the relationship between the mirror-neuron system and language.

  18. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  19. Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training.

    PubMed

    Selles, Ruud W; Michielsen, Marian E; Bussmann, Johannes B J; Stam, Henk J; Hurkmans, Henri L; Heijnen, Iris; de Groot, Danielle; Ribbers, Gerard M

    2014-09-01

    Although most mirror therapy studies have shown improved motor performance in stroke patients, the optimal mirror training protocol still remains unclear. To study the relative contribution of a mirror in training a reaching task and of unilateral and bimanual training with a mirror. A total of 93 stroke patients at least 6 months poststroke were instructed to perform a reaching task as fast and as fluently as possible. They performed 70 practice trials after being randomly allocated to 1 of 5 experimental groups: training with (1) the paretic arm with direct view (Paretic-No Mirror), (2) the nonparetic arm with direct view (Nonparetic-No Mirror), (3) the nonparetic arm with mirror reflection (Nonparetic Mirror), (4) both sides and with a nontransparent screen preventing visual control of paretic side (Bilateral-Screen), and (5) both sides with mirror reflection of the nonparetic arm (Bilateral-Mirror). As baseline and follow-up, patients performed 6 trials using only their paretic side. Primary outcome measure was the movement time. We found the largest intervention effect in the Paretic-No Mirror condition. However, the Nonparetic-Mirror condition was not significantly different from the Paretic-No Mirror condition, while the Unaffected-No Mirror condition had significantly less improvement than the Paretic-No Mirror condition. In addition, movement time improved significantly less in the bimanual conditions and there was no difference between both bimanual conditions or between both mirror conditions. The present study confirms that using a mirror reflection can facilitate motor learning. In this task, bimanual movement using mirror training was less effective than unilateral training. © The Author(s) 2014.

  20. Modulations of mirroring activity by desire for social connection and relevance of movement.

    PubMed

    Aragón, Oriana R; Sharer, Elizabeth A; Bargh, John A; Pineda, Jaime A

    2014-11-01

    Mirroring neurons fire both when an individual moves and observes another move in kind. This simulation of others' movements is thought to effortlessly and ubiquitously support empathetic connection and social understanding. However, at times this could be maladaptive. How could a boxer mirror a losing opponent's expressions of fatigue, feeling his weariness, precisely when strength is required? Clearly, the boxer must emotionally disconnect from his opponent and those expressions of fatigue must become irrelevant and not mirrored. But, movements that inform of his opponent's intentions to deliver an incoming blow are quite relevant and still should require mirroring. We tested these dimensions of emotional connectedness and relevance of movement in an electroencephalography experiment, where participants' desires to socially connect with a confederate were manipulated. Before manipulation, all participants mirrored the confederate's purely kinematic (a hand opening and closing) and goal-directed (a hand opening and closing around a token that the participant desired) hand movements. After manipulation, unfairly treated subjects ceased to mirror the purely kinematic movements but continued to mirror goal-relevant movements. Those treated fairly continued to mirror all movements. The results suggest that social mirroring can be adaptive in order to meet the demands of a varied social environment. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Compact neutron imaging system using axisymmetric mirrors

    DOEpatents

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  2. [Empathy and mirror neurons. A view on contemporary neuropsychological empathy research].

    PubMed

    Häusser, Leonard F

    2012-01-01

    Neurons firing both to specific actions performed by self and matching actions performed by others are classified as mirror neurons. Since its discovery in 1991, this phenomenon has been surveyed in the field of motor and sensorimotor function and incipiently in the field of language and emotions. The research group of Giacomo Rizzolatti assumes that mirror neurons form the biological basis of compassion and thereby of affective empathic experience. The research regarding mirror neurons is yet in early stages and further research is required to specify mirror neuron systems. In view of empathy it is the insula which is of central importance for the recognition of disgust. The discovery of mirror neurons allows a comprehension of empathy as an immediate and compassionate partaking of a response, enabling an understanding of the other persons feeling. At the same time, the resonating affect remains allocated to the other person, distinguishing this comprehensive process from a mere emotional contagion. At present, the phenomenon of mirror neurons is gaining clinical relevance in the field of autism spectrum disorders and apoplexia. One's own ability for empathy as well as promoting empathetic abilities of others is of central importance for the clinical praxis, in particular concerning the treatment of children and adolescents.

  3. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  4. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  5. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  6. Near-field flat focusing mirrors

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  7. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  8. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid

    PubMed Central

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot. PMID:26998923

  9. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    PubMed

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  10. Eliminating mirror responses by instructions.

    PubMed

    Bardi, Lara; Bundt, Carsten; Notebaert, Wim; Brass, Marcel

    2015-09-01

    The observation of an action leads to the activation of the corresponding motor plan in the observer. This phenomenon of motor resonance has an important role in social interaction, promoting imitation, learning and action understanding. However, mirror responses not always have a positive impact on our behavior. An automatic tendency to imitate others can introduce interference in action execution and non-imitative or opposite responses have an advantage in some contexts. Previous studies suggest that mirror tendencies can be suppressed after extensive practice or in complementary joint action situations revealing that mirror responses are more flexible than previously thought. The aim of the present study was to gain insight into the mechanisms that allow response flexibility of motor mirroring. Here we show that the mere instruction of a counter-imitative mapping changes mirror responses as indexed by motor evoked potentials (MEPs) enhancement induced by transcranial magnetic stimulation (TMS). Importantly, mirror activation was measured while participants were passively watching finger movements, without having the opportunity to execute the task. This result suggests that the implementation of task instructions activates stimulus-response association that can overwrite the mirror representations. Our outcome reveals one of the crucial mechanisms that might allow flexible adjustments of mirror responses in different contexts. The implications of this outcome are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  12. New fabrication method for an ellipsoidal neutron focusing mirror with a metal substrate.

    PubMed

    Guo, Jiang; Takeda, Shin; Morita, Shin-ya; Hino, Masahiro; Oda, Tatsuro; Kato, Jun-ichi; Yamagata, Yutaka; Furusaka, Michihiro

    2014-10-06

    We propose an ellipsoidal neutron focusing mirror using a metal substrate made with electroless nickel-phosphorus (NiP) plated material for the first time. Electroless NiP has great advantages for realizing an ellipsoidal neutron mirror because of its amorphous structure, good machinability and relatively large critical angle of total reflection for neutrons. We manufactured the mirror by combining ultrahigh precision cutting and fine polishing to generate high form accuracy and low surface roughness. The form accuracy of the mirror was estimated to be 5.3 μm P-V and 0.8 μm P-V for the minor-axis and major-axis direction respectively, while the surface roughness was reduced to 0.2 nm rms. The effect of form error on focusing spot size was evaluated by using a laser beam and the focusing performance of the mirror was verified by neutron experiments.

  13. Observational physics of mirror world

    NASA Technical Reports Server (NTRS)

    Khlopov, M. YA.; Beskin, G. M.; Bochkarev, N. E.; Pustilnik, L. A.; Pustilnik, S. A.

    1989-01-01

    The existence of the whole world of shadow particles, interacting with each other and having no mutual interactions with ordinary particles except gravity is a specific feature of modern superstring models, being considered as models of the theory of everything. The presence of shadow particles is the necessary condition in the superstring models, providing compensation of the asymmetry of left and right chirality states of ordinary particles. If compactification of additional dimensions retains the symmetry of left and right states, shadow world turns to be the mirror one, with particles and fields having properties strictly symmetrical to the ones of corresponding ordinary particles and fields. Owing to the strict symmetry of physical laws for ordinary and mirror particles, the analysis of cosmological evolution of mirror matter provides rather definite conclusions on possible effects of mirror particles in the universe. A general qualitative discussion of possible astronomical impact of mirror matter is given, in order to make as wide as possible astronomical observational searches for the effects of mirror world, being the unique way to test the existence of mirror partners of ordinary particles in the Nature.

  14. Mothers who are securely attached in pregnancy show more attuned infant mirroring 7 months postpartum

    USDA-ARS?s Scientific Manuscript database

    This study contrasted two forms of mother–infant mirroring: the mother's imitation of the infant's facial, gestural, or vocal behavior (i.e., "direct mirroring") and the mother's ostensive verbalization of the infant's internal state, marked as distinct from the infant's own experience (i.e., "inten...

  15. Tandem-Mirror Ion Source

    NASA Technical Reports Server (NTRS)

    Biddle, A.; Stone, N.; Reasoner, D.; Chisholm, W.; Reynolds, J.

    1986-01-01

    Improved ion source produces beam of ions at any kinetic energy from 1 to 1,000 eV, with little spread in energy or angle. Such ion beams useful in studies of surface properties of materials, surface etching, deposition, and development of plasma-diagnostic instrumentation. Tandemmirror ion source uses electrostatic and magnetic fields to keep electrons in ionization chamber and assure uniform output ion beam having low divergence in energy and angle.

  16. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1988-01-01

    A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.

  17. Achieving 15% Tandem Polymer Solar Cells

    DTIC Science & Technology

    2015-06-23

    solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency

  18. JWST Primary Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist

  19. Mirror-image-induced magnetic modes.

    PubMed

    Xifré-Pérez, Elisabet; Shi, Lei; Tuzer, Umut; Fenollosa, Roberto; Ramiro-Manzano, Fernando; Quidant, Romain; Meseguer, Francisco

    2013-01-22

    Reflection in a mirror changes the handedness of the real world, and right-handed objects turn left-handed and vice versa (M. Gardner, The Ambidextrous Universe, Penguin Books, 1964). Also, we learn from electromagnetism textbooks that a flat metallic mirror transforms an electric charge into a virtual opposite charge. Consequently, the mirror image of a magnet is another parallel virtual magnet as the mirror image changes both the charge sign and the curl handedness. Here we report the dramatic modification in the optical response of a silicon nanocavity induced by the interaction with its image through a flat metallic mirror. The system of real and virtual dipoles can be interpreted as an effective magnetic dipole responsible for a strong enhancement of the cavity scattering cross section.

  20. Shell Separation for Mirror Replication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.

  1. Cosmological Signatures of a Mirror Twin Higgs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Zackaria; Curtin, David; Geller, Michael

    We explore the cosmological signatures associated with the twin baryons, electrons, photons and neutrinos in the Mirror Twin Higgs framework. We consider a scenario in which the twin baryons constitute a subcomponent of dark matter, and the contribution of the twin photon and neutrinos to dark radiation is suppressed due to late asymmetric reheating, but remains large enough to be detected in future cosmic microwave background (CMB) experiments. We show that this framework can lead to distinctive signals in large scale structure and in the cosmic microwave background. Baryon acoustic oscillations in the mirror sector prior to recombination lead tomore » a suppression of structure on large scales, and leave a residual oscillatory pattern in the matter power spectrum. This pattern depends sensitively on the relative abundances and ionization energies of both twin hydrogen and helium, and is therefore characteristic of this class of models. Although both mirror photons and neutrinos constitute dark radiation in the early universe, their effects on the CMB are distinct. This is because prior to recombination the twin neutrinos free stream, while the twin photons are prevented from free streaming by scattering off twin electrons. In the Mirror Twin Higgs framework the relative contributions of these two species to the energy density in dark radiation is predicted, leading to testable effects in the CMB. These highly distinctive cosmological signatures may allow this class of models to be discovered, and distinguished from more general dark sectors.« less

  2. The neuroscience of observing consciousness & mirror neurons in therapeutic hypnosis.

    PubMed

    Rossi, Ernest L; Rossi, Kathryn L

    2006-04-01

    Neuroscience documents the activity of "mirror neurons" in the human brain as a mechanism whereby we experience empathy and recognize the intentions of others by observing their behavior and automatically matching their brain activity. This neural basis of empathy finds support in research on dysfunctions in the mirror systems of humans with autism and fMRI research on normal subjects designed to assess intentionality, emotions, and complex cognition. Such empathy research now appears to be consistent with the historical and research literature on hypnotic induction, rapport, and many of the classical phenomena of suggestion. A preliminary outline of how mirror neurons may function as a rapport zone mediating between observing consciousness, the gene expression/protein synthesis cycle, and brain plasticity in therapeutic hypnosis and psychosomatic medicine is proposed. Brain plasticity is generalized in the theory, research, and practice of utilizing mirror neurons as an explanatory framework in developing and training new skill sets for facilitating an activity-dependent approach to creative problem solving, mind-body healing, and rehabilitation with therapeutic hypnosis.

  3. Effects of thermal inhomogeneity on 4m class mirror substrates

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas

    2016-07-01

    The new ground based telescope generation is moving to a next stage of performance and resolution. Mirror substrate material properties tolerance and homogeneity are getting into focus. The coefficient of thermal expansion (CTE) homogeneity is even more important than the absolute CTE. The error in shape of a mirror, even one of ZERODUR, is affected by changes in temperature, and by gradients in temperature. Front to back gradients will change the radius of curvature R that in turn will change the focus. Some systems rely on passive athermalization and do not have means to focus. Similarly changes in soak temperature will result in surface changes to the extent there is a non-zero coefficient of thermal expansion. When there are in-homogeneities in CTE, the mirror will react accordingly. Results of numerical experiments are presented discussing the impact of CTE in-homogeneities on the optical performance of 4 m class mirror substrates. Latest improvements in 4 m class ZERODUR CTE homogeneity and the thermal expansion metrology are presented as well.

  4. LED structure with enhanced mirror reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer andmore » adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.« less

  5. Mirroring the self: testing neurophysiological correlates of disturbed self-experience in schizophrenia spectrum.

    PubMed

    Sestito, Mariateresa; Raballo, Andrea; Umiltà, Maria Alessandra; Leuci, Emanuela; Tonna, Matteo; Fortunati, Renata; De Paola, Giancarlo; Amore, Mario; Maggini, Carlo; Gallese, Vittorio

    2015-01-01

    Self-disorders (SDs) have been described as a core schizophrenia spectrum vulnerability phenotype, both in classic and contemporary psychopathological literature. However, such a core phenotype has not yet been investigated adopting a trans-domain approach that combines the phenomenological and the neurophysiological levels of analysis. The aim of this study is to investigate the relation between SDs and subtle, schizophrenia-specific impairments of emotional resonance that are supposed to reflect abnormalities in the mirror neurons mechanism. Specifically, we tested whether electromyographic response to emotional stimuli (i.e. a proxy for subtle changes in facial mimicry and related motor resonance mechanisms) would predict the occurrence of anomalous subjective experiences (i.e. SDs). Eighteen schizophrenia spectrum (SzSp) patients underwent a comprehensive psychopathological examination and were contextually tested with a multimodal paradigm, recording facial electromyographic activity of muscles in response to positive and negative emotional stimuli. Experiential anomalies were explored with the Bonn Scale for the Assessment of Basic Symptoms (BSABS) and then condensed into rational subscales mapping SzSp anomalous self-experiences. SzSp patients showed an imbalance in emotional motor resonance with a selective bias toward negative stimuli, as well as a multisensory integration impairment. Multiple regression analysis showed that electromyographic facial reactions in response to negative stimuli presented in auditory modality specifically and strongly correlated with SD subscore. The study confirms the potential of SDs as target phenotype for neurobiological research and encourages research into disturbed motor/emotional resonance as possible body-level correlate of disturbed subjective experiences in SzSp.

  6. Controlling X-ray deformable mirrors during inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Xue, Junpeng; Idir, Mourad

    2016-10-14

    The X-ray deformable mirror (XDM) is becoming widely used in the present synchrotron/free-electron laser facilities because of its flexibility in correcting wavefront errors or modification of the beam size at the sample location. Owing to coupling among the N actuators of an XDM, (N + 1) or (2N + 1) scans are required to learn the response of each actuator one by one. When the mirror has an important number of actuators (N) and the actuator response time including stabilization or the necessary metrology time is long, the learning process can be time consuming. In this paper, a fast andmore » accurate method is presented to drive an XDM to a target shape usually with only three or four measurements during inspection. The metrology data are used as feedback to calculate the curvature discrepancy between the current and the target shapes. Three different derivative estimation methods are introduced to calculate the curvature from measured data. The mirror shape is becoming close to the target through iterative compensations. Finally, the feasibility of this simple and effective approach is demonstrated by a series of experiments.« less

  7. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  8. Mirroring "meaningful" actions: sensorimotor learning modulates imitation of goal-directed actions.

    PubMed

    Catmur, Caroline; Heyes, Cecilia

    2017-06-19

    Imitation is important in the development of social and technological skills throughout the lifespan. Experiments investigating the acquisition and modulation of imitation (and of its proposed neural substrate, the mirror neuron system) have produced evidence that the capacity for imitation depends on associative learning in which connections are formed between sensory and motor representations of actions. However, evidence that the development of imitation depends on associative learning has been found only for non-goal-directed actions. One reason for the lack of research on goal-directed actions is that imitation of such actions is commonly confounded with the tendency to respond in a spatially compatible manner. However, since the most prominent account of mirror neuron function, and hence of imitation, suggests that these cells encode goal-directed actions, it is important to establish whether sensorimotor learning can also modulate imitation of goal-directed actions. Experiment 1 demonstrated that imitation of goal-directed grasping can be measured while controlling for spatial compatibility, and Experiment 2 showed that this imitation effect can be modulated by sensorimotor training. Together these data support the hypothesis that the capacity for behavioural imitation, and the properties of the mirror neuron system, are constructed in the course of development through associative learning.

  9. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicabilitymore » in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.« less

  10. Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo

    2012-03-01

    The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.

  11. Figures of Merit for Mirror Materials

    DTIC Science & Technology

    1980-07-10

    show higher temporal stability. Mirror figure changes with time have generally been small: - X/30 - X/40 for CER-VIT and silica mirrors .27 Zerodur and...9 III. MIRROR FAILURE CRITERIA ................. s .. .................. 13 A. Mechanical Loading Effects...41 / a3 I.. I • INTRODUCTION Large space mirrors were analyzed I with the objective of comparing the ability of materials to minimize static

  12. Metallic alternative to glass mirrors (active mirrors in aluminium) - A review

    NASA Astrophysics Data System (ADS)

    Rozelot, Jean P.; Leblanc, Jean-M.

    1991-09-01

    Present-day glass mirrors for telescopes, including the most recent results obtained with aluminum mirrors developed within the European EUREKA procedure (LAMA program) are reviewed. The major advantages of the aluminum-alloy solution, which can be extrapolated today for large size, are discussed. It is shown that aluminum-alloy meniscus blanks, polished on a thin nickel coating, are appropriate to manufacture mirrors of astronomical quality. With the technique of electron-beam welding, large sizes can be envisaged. The development of active optics makes it possible to easily compensate for real-time deformations. The good thermal diffusivity of aluminum alloys leads to a better and faster thermal equilibrium than all other glass structures.

  13. Spontaneous expression of mirror self-recognition in monkeys after learning precise visual-proprioceptive association for mirror images.

    PubMed

    Chang, Liangtang; Zhang, Shikun; Poo, Mu-Ming; Gong, Neng

    2017-03-21

    Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal.

  14. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  15. Overestimation of the Projected Size of Objects on the Surface of Mirrors and Windows

    ERIC Educational Resources Information Center

    Lawson, Rebecca; Bertamini, Marco; Liu, Dan

    2007-01-01

    Four experiments investigated judgments of the size of projections of objects on the glass surface of mirrors and windows. The authors tested different ways of explaining the task to overcome the difficulty that people had in understanding what the projection was, and they varied the distance of the observer and the object to the mirror or window…

  16. Absolute measurements of large mirrors

    NASA Astrophysics Data System (ADS)

    Su, Peng

    The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing. The Giant Magellan Telescope (GMT) has been designed with a 350 m 2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface. One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several

  17. Studies on dynamic behavior of rotating mirrors

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie

    2005-02-01

    A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.

  18. TANDEM: matching proteins with tandem mass spectra.

    PubMed

    Craig, Robertson; Beavis, Ronald C

    2004-06-12

    Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.

  19. Graded Mirror Self-Recognition by Clark's Nutcrackers.

    PubMed

    Clary, Dawson; Kelly, Debbie M

    2016-11-04

    The traditional 'mark test' has shown some large-brained species are capable of mirror self-recognition. During this test a mark is inconspicuously placed on an animal's body where it can only be seen with the aid of a mirror. If the animal increases the number of actions directed to the mark region when presented with a mirror, the animal is presumed to have recognized the mirror image as its reflection. However, the pass/fail nature of the mark test presupposes self-recognition exists in entirety or not at all. We developed a novel mirror-recognition task, to supplement the mark test, which revealed gradation in the self-recognition of Clark's nutcrackers, a large-brained corvid. To do so, nutcrackers cached food alone, observed by another nutcracker, or with a regular or blurry mirror. The nutcrackers suppressed caching with a regular mirror, a behavioural response to prevent cache theft by conspecifics, but did not suppress caching with a blurry mirror. Likewise, during the mark test, most nutcrackers made more self-directed actions to the mark with a blurry mirror than a regular mirror. Both results suggest self-recognition was more readily achieved with the blurry mirror and that self-recognition may be more broadly present among animals than currently thought.

  20. NASA superconducting magnetic mirror facility

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Obloy, S. J.; Nagy, L. A.; Brady, F. J.

    1973-01-01

    This report summarizes the design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coil is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3SN superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.

  1. Effect of Lamina Thickness of Prepreg on the Surface Accuracy of Carbon Fiber Composite Space Mirrors

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Tang, Zhanwen; Xie, Yongjie; Shi, Hanqiao; Zhang, Boming; Guo, Hongjun

    2018-02-01

    Composite space mirror can completely replicate the high-precision surface of mould by replication process, but the actual surface accuracy of the replication composite mirror always decreases. Lamina thickness of prepreg affects the layers and layup sequence of composite space mirror, and which would affect surface accuracy of space mirror. In our research, two groups of contrasting cases through finite element analyses (FEA) and comparative experiments were studied; the effect of different lamina thicknesses of prepreg and corresponding lay-up sequences was focused as well. We describe a special analysis model, validated process and result analysis. The simulated and measured surface figures both get the same conclusion. Reducing lamina thickness of prepreg used in replicating composite space mirror is propitious to optimal design of layup sequence for fabricating composite mirror, and could improve its surface accuracy.

  2. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  3. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.

    PubMed

    Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2014-07-03

    There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.

  4. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  5. Spontaneous expression of mirror self-recognition in monkeys after learning precise visual-proprioceptive association for mirror images

    PubMed Central

    Chang, Liangtang; Zhang, Shikun; Poo, Mu-ming; Gong, Neng

    2017-01-01

    Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal. PMID:28193875

  6. Mirror, Mirror, on the Wall.

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, M. Annette

    1998-01-01

    Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)

  7. Cavity-induced mirror-mirror entanglement in a single-atom Raman laser

    NASA Astrophysics Data System (ADS)

    Teklu, Berihu; Byrnes, Tim; Khan, Faisal Shah

    2018-02-01

    We address an experimental scheme to analyze the optical bistability and the entanglement of two movable mirrors coupled to a two-mode laser inside a doubly resonant cavity. With this aim we investigate the master equations of the atom-cavity subsystem in conjunction with the quantum Langevin equations that describe the interaction of the mirror cavity. The parametric amplification-type coupling induced by the two-photon coherence on the optical bistability of the intracavity mean photon numbers is found and investigated. Under this condition, the optical intensities exhibit bistability for all large values of cavity laser detuning. We also provide numerical evidence for the generation of strong entanglement between the movable mirrors and show that it is robust against environmental thermalization.

  8. Large active mirror in aluminium

    NASA Astrophysics Data System (ADS)

    Leblanc, Jean-M.; Rozelot, Jean-Pierre

    1991-11-01

    The Large Active Mirrors in Aluminum Project (LAMA) is intended as a metallic alternative to the conventional glass mirrors. This alternative is to bring about definite improvements in terms of lower cost, shorter manufacturing, and reduced brittleness. Combined in a system approach that integrates design, development, and manufacturing of both the aluminum meniscus and its active support, the LAMA project is a technologically consistent product for astronomical and laser telescopes. Large size mirrors can be delivered, up to 8 m diameter. Recent progress in active optics makes possible control, as well as real-time adjustment, of a metallic mirror's deformations, especially those induced by temperature variations and/or aging. It also enables correction of whatever low-frequency surface waves escaped polishing. Besides, the manufacturing process to produce the aluminum segments together with the electron welding technique ensure the material's homogeneity. Quality of the surface condition will result from optimized implementation of the specific aluminum machining and polishing techniques. This paper highlights the existing aluminum realizations compared to glass mirrors, and gives the main results obtained during a feasibility demonstration phase, based on 8 m mirror requirements.

  9. EAGLE: relay mirror technology development

    NASA Astrophysics Data System (ADS)

    Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.

    2002-06-01

    EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.

  10. Development of silicon carbide mirrors: the example of the Sofia secondary mirror

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Antoine, Pascal

    2017-11-01

    The 352 mm tip-tilt SOFIA Secondary Mirror has been developed by the ASTRIUM / BOOSTEC joint venture SiCSPACE, taking full benefit of the intrinsic properties of the BOOSTEC S-SiC sintered material, associated to qualified processes specifically developed for space borne mirrors by ASTRIUM SAS. Achieved performances include a low mass of 1.7 kg, a very high stiffness with a first resonant frequency higher than 2000 Hz and an optical surface accuracy corresponding to a maximum WFE of 50 nm rms. This mirror is part of the joint NASA-DLR project for a 2.5 m airborne Stratospheric Observatory For Infrared Astronomy (SOFIA).

  11. Reflective mirrors: perspective-taking in autoscopic phenomena.

    PubMed

    Brugger, Peter

    2002-08-01

    ''Autoscopic phenomena refer to different illusory reduplications of one's own body and self. This article proposes a phenomenological differentiation of autoscopic reduplication into three distinct classes, i.e., autoscopic hallucinations, heautoscopy, and out-of-body experiences (OBEs). Published cases are analysed with special emphasis on the subject's point of view from which the reduplication is observed. In an autoscopic hallucination the observer's perspective is clearly body-centred, and the visual image of one's own body appears as a mirror reversal. Heautoscopy (i.e., the encounter with an alter ego or doppelgänger), is defined as a reduplication not only of bodily appearance, but also of aspects of one's psychological self. The observer's perspective may alternate between egocentric and ''alter-ego-centred''. As a consequence of the projection of bodily feelings into the doppelgänger (implying a mental rotation of one's own body along the vertical axis), original and reduplicated bodies are not mirror images of one another. This also holds for OBEs, where one's self is not reduplicated but appears to be completely dissociated from the body and observing it from a location in extracorporeal space. It is argued that perspective-taking in a spatial sense may be meaningfully related to perspective-taking in a psychological sense. The mirror in the autoscopic hallucination is a ''cognitively nonreflective mirror'' (Jean Cocteau), both spatially and psychologically. The reflective abilities of the heautoscopic mirror are better developed, yet frequent shifts in the observer's spatial perspective render the nature of psychological interactions between self and alter ego highly unpredictable. The doppelgänger may serve a transitivistic (i.e., own suffering is transferred to the alter ego) or aggressive function when this behaviour is directed against a patient. The mirror in an OBE is always reflective: It allows the self to view both space and one

  12. Laser cleaning of ITER's diagnostic mirrors

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  13. Mirror image agnosia.

    PubMed

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-10-01

    Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles reflected self-images. A new observation involving failure

  14. Mirror Image Agnosia

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Material and Methods:: Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Results: Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Discussion: Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles

  15. Scanning mirror for infrared sensors

    NASA Technical Reports Server (NTRS)

    Anderson, R. H.; Bernstein, S. B.

    1972-01-01

    A high resolution, long life angle-encoded scanning mirror, built for application in an infrared attitude sensor, is described. The mirror uses a Moire' fringe type optical encoder and unique torsion bar suspension together with a magnetic drive to meet stringent operational and environmental requirements at a minimum weight and with minimum power consumption. Details of the specifications, design, and construction are presented with an analysis of the mirror suspension that allows accurate prediction of performance. The emphasis is on mechanical design considerations, and brief discussions are included on the encoder and magnetic drive to provide a complete view of the mirror system and its capabilities.

  16. [The ontogeny of the mirror neuron system].

    PubMed

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  17. Advanced Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project matures critical technologies required to enable ultra-stable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets.

  18. Detecting long tandem duplications in genomic sequences.

    PubMed

    Audemard, Eric; Schiex, Thomas; Faraut, Thomas

    2012-05-08

    Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,(a) we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  <  1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  19. Progress on SOFIA primary mirror

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tarreau, Michel

    2000-06-01

    REOSC, SAGEM Group, has a significant contribution to the SOFIA project with the design and fabrication of the 2.7-m primary mirror and its fixtures as well as the M3 mirror tower assembly. This paper will primarily report the progress made on the primary mirror design and the first important manufacturing step: its lightweighting by machining pockets from the rear side of the blank.

  20. [Mirror, mirror of the wall: mirror therapy in the treatment of phantom limbs and phantom limb pain].

    PubMed

    Casale, Roberto; Furnari, Anna; Lamberti, Raul Coelho; Kouloulas, Efthimios; Hagenberg, Annegret; Mallik, Maryam

    2015-01-01

    Phantom limb and phantom limb pain control are pivotal points in the sequence of intervention to bring the amputee to functional autonomy. The alterations of perception and sensation, the pain of the residual limb and the phantom limb are therefore aspects of amputation that should be taken into account in the "prise en charge" of these patients. Within the more advanced physical therapies to control phantom and phantom limb pain there is the use of mirrors (mirror therapy). This article willfocus on its use and on the possible side effects induced by the lack of patient selection and a conflict of body schema restoration through mirror therapy with concurrent prosthetic training and trauma acceptance. Advice on the need to select patients before treatment decisions, with regard to their psychological as well as clinical profile (including time since amputation and clinical setting), and the need to be aware of the possible adverse effects matching different and somehow conflicting therapeutic approaches, are put forward. Thus a coordinated sequence of diagnostic, prognostic and therapeutic procedures carried out by an interdisciplinary rehabilitation team that works globally on all patients' problems is fundamental in the management of amputees and phantom limb pain. Further studies and the development of a multidisciplinary network to study this and other applications of mirror therapy are needed.

  1. Cryogenic mirror analysis

    NASA Technical Reports Server (NTRS)

    Nagy, S.

    1988-01-01

    Due to extraordinary distances scanned by modern telescopes, optical surfaces in such telescopes must be manufactured to unimaginable standards of perfection of a few thousandths of a centimeter. The detection of imperfections of less than 1/20 of a wavelength of light, for application in the building of the mirror for the Space Infrared Telescope Facility, was undertaken. Because the mirror must be kept very cold while in space, another factor comes into effect: cryogenics. The process to test a specific morror under cryogenic conditions is described; including the follow-up analysis accomplished through computer work. To better illustrate the process and analysis, a Pyrex Hex-Core mirror is followed through the process from the laser interferometry in the lab, to computer analysis via a computer program called FRINGE. This analysis via FRINGE is detailed.

  2. Production of Near-Mirror Surface Quality by Precision Grinding

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Krantz, Timothy

    2003-01-01

    Mechanical components such as gears and bearings operate with the working surfaces in intimate contact with a mating part. The performance of such components will be influenced by the quality of the working surface. In general, a smoother surface will perform better than a rougher surface since the lubrication conditions are improved. For example, surfaces with a special near-mirror quality finish of low roughness performed better than ground surfaces when tested using a block-on-ring arrangement. Bearings with near-mirror quality have been tested and analyzed; lower running torques were measured and improved fatigue life was anticipated. Experiments have been done to evaluate the performance of gears with improved, low roughness surface finishing. The measured performance improvements include an increased scuffing (scoring) load capacity by a factor of 1.6, a 30-percent reduction of gear tooth running friction, and longer fatigue lives by a factor of about four. One can also anticipate that near-mirror quality surface finishing could improve the performance of other mechanical components such as mechanical seals and heavily loaded journal bearings. Given these demonstrated benefits, capable and economical methods for the production of mechanical components with near-mirror quality surfaces are desired. One could propose the production of near-mirror quality surfaces by several methods such as abrasive polishing, chemical assisted polishing, or grinding. Production of the surfaces by grinding offers the possibility to control the macro-geometry (form), waviness, and surface texture with one process. The present study was carried out to investigate the possibility of producing near-mirror quality surfaces by grinding. The present study makes use of a specially designed grinding machine spindle to improve the surface quality relative to the quality produced when using a spindle of conventional design.

  3. The effect of mirror therapy integrating functional electrical stimulation on the gait of stroke patients.

    PubMed

    Ji, Sang-Goo; Cha, Hyun-Gyu; Kim, Myoung-Kwon; Lee, Chang-Ryeol

    2014-04-01

    [Purpose] The aim of the present study was to examine whether mirror therapy in conjunction with FES in stroke patients can improve gait ability. [Subjects] This study was conducted with 30 subjects who were diagnosed with hemiparesis due to stroke. [Methods] Experimental group I contained 10 subjects who received mirror therapy in conjunction with functional electrical stimulation, experimental group II contained 10 subjects who received mirror therapy, and the control group contained 10 subjects who received a sham therapy. A gait analysis was performed using a three-dimensional motion capture system, which was a real-time tracking device that delivers data in an infrared mode via reflective markers using six cameras. [Results] The results showed a significant difference in gait velocity between groups after the experiment, and post hoc analysis revealed significant differences between experimental group I and the control group and between experimental group II and the control group, respectively. There were also significant differences in step length and stride length between the groups after the experiment, and post hoc analysis revealed significant differences between experimental group I and control group. [Conclusion] The present study showed that mirror therapy in conjunction with FES is more effective for improving gait ability than mirror therapy alone.

  4. Spherical mirror grazing incidence x-ray optics

    NASA Technical Reports Server (NTRS)

    Cash, Jr., Webster C. (Inventor)

    1997-01-01

    An optical system for x-rays combines at least two spherical or near spherical mirrors for each dimension in grazing incidence orientation to provide the functions of a lens in the x-ray region. To focus x-ray radiation in both the X and the Y dimensions, one of the mirrors focusses the X dimension, a second mirror focusses the Y direction, a third mirror corrects the X dimension by removing comatic aberration and a fourth mirror corrects the Y dimension. Spherical aberration may also be removed for an even better focus. The order of the mirrors is unimportant.

  5. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOEpatents

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  6. Manufacturing Large Membrane Mirrors at Low Cost

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.

  7. Mirror-Induced Behavior in the Magpie (Pica pica): Evidence of Self-Recognition

    PubMed Central

    Prior, Helmut; Schwarz, Ariane; Güntürkün, Onur

    2008-01-01

    Comparative studies suggest that at least some bird species have evolved mental skills similar to those found in humans and apes. This is indicated by feats such as tool use, episodic-like memory, and the ability to use one's own experience in predicting the behavior of conspecifics. It is, however, not yet clear whether these skills are accompanied by an understanding of the self. In apes, self-directed behavior in response to a mirror has been taken as evidence of self-recognition. We investigated mirror-induced behavior in the magpie, a songbird species from the crow family. As in apes, some individuals behaved in front of the mirror as if they were testing behavioral contingencies. When provided with a mark, magpies showed spontaneous mark-directed behavior. Our findings provide the first evidence of mirror self-recognition in a non-mammalian species. They suggest that essential components of human self-recognition have evolved independently in different vertebrate classes with a separate evolutionary history. PMID:18715117

  8. Stroboscopic Interferometer for Measuring Mirror Vibrations

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Robers, Ted

    2005-01-01

    Stroboscopic interferometry is a technique for measuring the modes of vibration of mirrors that are lightweight and, therefore, unavoidably flexible. The technique was conceived especially for modal characterization of lightweight focusing mirror segments to be deployed in outer space; however, the technique can be applied to lightweight mirrors designed for use on Earth as well as the modal investigation of other optical and mechanical structures. To determine the modal structure of vibration of a mirror, it is necessary to excite the mirror by applying a force that varies periodically with time at a controllable frequency. The excitation can utilize sinusoidal, square, triangular, or even asynchronous waveforms. Because vibrational modes occur at specific resonant frequencies, it is necessary to perform synchronous measurements and sweep the frequency to locate the significant resonant modes. For a given mode it is possible to step the phase of data acquisition in order to capture the modal behavior over a single cycle of the resonant frequency. In order to measure interferometrically the vibrational response of the mirror at a given frequency, an interferometer must be suitably aligned with the mirror and adjustably phase-locked with the excitation signal. As in conventional stroboscopic photography, the basic idea in stroboscopic interferometry is to capture an image of the shape of a moving object (in this case, the vibrating mirror) at a specified instant of time in the vibration cycle. Adjusting the phase difference over a full cycle causes the interference fringes to vary over the full range of motion for the mode at the excitation frequency. The interference-fringe pattern is recorded as a function of the phase difference, and, from the resulting data, the surface shape of the mirror for the given mode is extracted. In addition to the interferometer and the mirror to be tested, the equipment needed for stroboscopic interferometry includes an arbitrary

  9. Study of Lightweight Ni-Co Alloy Mirrors Obtained by Electroforming Techniques

    NASA Technical Reports Server (NTRS)

    Jones, Ruth; Muntele, Iulia; Muntele, Claudiu; Zimmerman, Robert; Ila, Daryush; Smith, W. Scott (Technical Monitor)

    2002-01-01

    One contribution in reducing the costs of optics in space can be provided by production of ultralight mirrors. The decrease in the weight of the primary mirror of a telescope is anticipated to lead to the possibility of increasing the size of the telescopes, therefore increasing the amount and distance from which information is received. An electroplating process of ultralight replica mirrors from nickel sulfamate solution will be described. Based on an experimental setup with cylindrical symmetry, flat mirrors with a diameter of 7 inches and thickness of 1.5 mm are made from a Ni-Co alloy. The composition of the resulting deposit is analyzed using Rutherford Backscattering Spectrometry (RBS) and Proton Induced X-ray Emission (PIXE). In order to resolve Ni and Co, 10 MeV nitrogen ions are used as projectiles in the RBS measurements. Solution parameters monitored during the deposition process using optical absorption and polarography will be correlated with the final concentration of Ni and Co in the deposit. Bath parameters like temperature, current density, agitation level and acidity are chosen at certain values and maintained constant from one sample to another throughout the deposition process. The purpose of the experiment is to obtain mirrors with near zero stress, and predetermined composition and hardness. This study is an intermediate step in obtaining through the same process, but with a larger scale setup, ultralight large aperture replica mirrors.

  10. Removing Silicon Monoxide From Nickel Mirrors

    NASA Technical Reports Server (NTRS)

    Zaniewski, John J.

    1987-01-01

    Combination of polishing tool and polishing mixture used to remove adherent fragments of silicon monoxide protective coatings from nickel/aluminum mirrors without altering shapes or harming polishes of mirror surfaces. Polishing technique developed to prepare stained mirrors for recoating to restore high reflectance.

  11. Deformable mirrors development program at ESO

    NASA Astrophysics Data System (ADS)

    Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus

    2016-07-01

    Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.

  12. Passivation coating for flexible substrate mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  13. [Mirror neurons].

    PubMed

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  14. Mirror representations innate versus determined by experience: a viewpoint from learning theory.

    PubMed

    Giese, Martin A

    2014-04-01

    From the viewpoint of pattern recognition and computational learning, mirror neurons form an interesting multimodal representation that links action perception and planning. While it seems unlikely that all details of such representations are specified by the genetic code, robust learning of such complex representations likely requires an appropriate interplay between plasticity, generalization, and anatomical constraints of the underlying neural architecture.

  15. The Mirror Neuron System: A Fresh View

    PubMed Central

    Casile, Antonino; Caggiano, Vittorio; Ferrari, Pier Francesco

    2013-01-01

    Mirror neurons are a class of visuomotor neurons in the monkey premotor and parietal cortices that discharge during the execution and observation of goal-directed motor acts. They are deemed to be at the basis of primates’ social abilities. In this review, the authors provide a fresh view about two still open questions about mirror neurons. The first question is their possible functional role. By reviewing recent neurophysiological data, the authors suggest that mirror neurons might represent a flexible system that encodes observed actions in terms of several behaviorally relevant features. The second question concerns the possible developmental mechanisms responsible for their initial emergence. To provide a possible answer to question, the authors review two different aspects of sensorimotor development: facial and hand movements, respectively. The authors suggest that possibly two different “mirror” systems might underlie the development of action understanding and imitative abilities in the two cases. More specifically, a possibly prewired system already present at birth but shaped by the social environment might underlie the early development of facial imitative abilities. On the contrary, an experience-dependent system might subserve perception-action couplings in the case of hand movements. The development of this latter system might be critically dependent on the observation of own movements. PMID:21467305

  16. Stitching interferometry for ellipsoidal x-ray mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi

    2016-05-15

    Ellipsoidal mirrors, which can efficiently produce a two-dimensional focusing beam with a single mirror, are superior x-ray focusing optics, especially when compared to elliptical-cylinder mirrors in the Kirkpatrick–Baez geometry. However, nano-focusing ellipsoidal mirrors are not commonly used for x-ray optics because achieving the accuracy required for the surface metrology of nano-focusing ellipsoidal mirrors is difficult due to their small radius of curvature along the short ellipsoidal axis. Here, we developed a surface metrology system for nano-focusing ellipsoidal mirrors using stitching interferometric techniques. The developed system simultaneously measures sub-aperture shapes with a microscopic interferometer and the tilt angles of the sub-aperturemore » shapes with a large Fizeau interferometer. After correcting the systematic errors included in the sub-aperture shapes, the entire mirror shape is calculated by stitching the sub-aperture shapes based on the obtained relative angles between partially overlapped sub-apertures. In this study, we developed correction methods for systematic errors in sub-aperture shapes that originated from off-axis aberrations produced in the optics of the microscopic interferometer. The systematic errors on an ellipsoidal mirror were estimated by measuring a series of tilted plane substrates and the ellipsoidal substrate. From measurements of an ellipsoidal mirror with a 3.6-mm radius of curvature at the mirror center, we obtained a measurement repeatability of 0.51 nm (root-mean-square) in an assessment area of 0.5 mm × 99.18 mm. This value satisfies the requirements for surface metrology of nano-focusing x-ray mirrors. Thus, the developed metrology system should be applicable for fabricating nano-focusing ellipsoidal mirrors.« less

  17. The mirror neuron system: new frontiers.

    PubMed

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into studying their location and properties in the human brain. Here we review these original findings and introduce the main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror system embedded into the mosaic of circuits that compose our brain? How does the mirror system contribute to communication, language and social interaction? Can the principle of mirror neurons be extended to emotions, sensations and thoughts? Papers using a wide range of methods, including single cell recordings, fMRI, TMS, EEG and psychophysics, collected in this special issue, start to give us some impressive answers.

  18. The magic of relay mirrors

    NASA Astrophysics Data System (ADS)

    Duff, Edward A.; Washburn, Donald C.

    2004-09-01

    Laser weapon systems would be significantly enhanced with the addition of high altitude or space-borne relay mirrors. Such mirrors, operating alone with a directed energy source, or many in a series fashion, can be shown to effectively move the laser source to the last, so-called fighting mirror. This "magically" reduces the range to target and offers to enhance the performance of directed energy systems like the Airborne Laser and even ground-based or ship-based lasers. Recent development of high altitude airships will be shown to provide stationary positions for such relay mirrors thereby enabling many new and important applications for laser weapons. The technical challenges to achieve this capability are discussed.

  19. Leaping from brain to mind: a critique of mirror neuron explanations of countertransference.

    PubMed

    Vivona, Jeanine M

    2009-06-01

    In the current vigorous debate over the value of neuroscience to psychoanalysis, the epistemological status of the links between the data of brain research and the constructs of interest to psychoanalysts has rarely been examined. An inspection of recent discussions of mirror neuron research, particularly regarding countertransference, reveals gaps between psychoanalytic processes and the available brain activation data, and allows the evaluation of evidence for three implicit assumptions frequently made to bridge these gaps: (1) there is a straightforward correspondence between observed brain activity and mental activity; (2) similarity of localized brain activity across individuals signifies a shared interpersonal experience; (3) an automatic brain mechanism enables direct interpersonal sharing of experiences in the absence of inference and language. Examination of mirror neuron research findings reveals that these assumptions are either untested or questionable. Moreover, within neuroscience there are competing interpretations of mirror neuron findings, with diverse implications for psychoanalysis. The present state of mirror neuron research may offer us new hypotheses or metaphors, but does not provide empirical validation of the proposed models. More generally, as we attempt to learn from research findings generated outside psychoanalysis, we must strive to think scientifically, by minding the difference between data and interpretation.

  20. Reducing the Surface Performance Requirements of a Primary Mirror by Adding a Deformable Mirror in its Optical Path

    DTIC Science & Technology

    2015-12-01

    carbon fiber reinforced polymer (CFRP) mirrors been proposed for use in future imaging satellites. Compared to traditional glass -based mirrors, CFRP...SUBJECT TERMS carbon fiber reinforced polymer mirror, adaptive optics, deformable mirror, surface figure error 15. NUMBER OF PAGES 79 16. PRICE CODE...Department of Mechanical and Aerospace Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT In recent years, carbon fiber reinforced

  1. Mirror neurons: functions, mechanisms and models.

    PubMed

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Plasma confinement apparatus using solenoidal and mirror coils

    DOEpatents

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  3. Poco Graphite Mirror Metrology Report

    NASA Technical Reports Server (NTRS)

    Kester, Thomas J.

    2005-01-01

    Recently a lightweight mirror technology was tested at Marshall Space Flight Center's Space Optic Manufacturing Technology Center (MSFC, SOMTC). The mirror is a Poco Graphite CVD Si clad SiC substrate. It was tested for cryogenic (cryo) survivability to 20deg Kelvin in SOMTC's X-ray Calibration and Cryogenic Test Facility. The surface figure of the mirror was measured before and after cry0 cycling. The test technique and results are discussed.

  4. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.

  5. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.

  6. Cosmology in Mirror Twin Higgs and neutrino masses

    NASA Astrophysics Data System (ADS)

    Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.; Harnik, Roni

    2017-07-01

    We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In these νMTH models, the right-handed neutrinos leave the thermal bath while still relativistic. As the universe expands, these particles eventually become nonrelativistic, and come to dominate the energy density of the universe before decaying. Decays to standard model states are preferred, with the result that the visible sector is left at a higher temperature than the twin sector. Consequently the contribution of the twin sector to the radiation density in the early universe is suppressed, allowing the current bounds on this scenario to be satisfied. However, the energy density in twin radiation remains large enough to be discovered in future cosmic microwave background experiments. In addition, the twin neutrinos are significantly heavier than their standard model counterparts, resulting in a sizable contribution to the overall mass density in neutrinos that can be detected in upcoming experiments designed to probe the large scale structure of the universe.

  7. Progress in Mirror-Based Fusion Neutron Source Development.

    PubMed

    Anikeev, A V; Bagryansky, P A; Beklemishev, A D; Ivanov, A A; Kolesnikov, E Yu; Korzhavina, M S; Korobeinikova, O A; Lizunov, A A; Maximov, V V; Murakhtin, S V; Pinzhenin, E I; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Tsidulko, Yu A; Yakovlev, D V; Yurov, D V

    2015-12-04

    The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.

  8. Characteristic investigation of Golay9 multiple mirror telescope with a spherical primary mirror

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Wu, Quanying; Zhu, Xifang; Xiang, Ruxi; Qian, Lin

    2017-10-01

    The sparse aperture provides a novel solution to the manufacturing difficulties of modern super large telescopes. Golay configurations are optimal in the sparse aperture family. Characteristics of the Golay9 multiple mirror telescope having a spherical primary mirror are investigated. The arrangement of the nine sub-mirrors is discussed after the planar Golay9 configuration is analyzed. The characteristics of the entrance pupil are derived by analyzing the sub-aperture shapes with different relative apertures and sub-mirror sizes. Formulas about the fill factor and the overlay factor are deduced. Their maximal values are presented based on the derived tangency condition. Formulas for the point spread function (PSF) and the modulation transfer function (MTF) of the Golay9 MMT are also deduced. Two Golay9 MMT have been developed by Zemax simulation. Their PSF, MTF, fill factors, and overlay factors prove that our theoretical results are consistent with the practical simulation ones.

  9. More Toda-like (0,2) mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Guo, Jirui; Sharpe, Eric; Wu, Ruoxu

    2017-08-01

    In this paper, we extend our previous work to construct (0 , 2) Toda-like mirrors to A/2-twisted theories on more general spaces, as part of a program of understanding (0,2) mirror symmetry. Specifically, we propose (0 , 2) mirrors to GLSMs on toric del Pezzo surfaces and Hirzebruch surfaces with deformations of the tangent bundle. We check the results by comparing correlation functions, global symmetries, as well as geometric blowdowns with the corresponding (0 , 2) Toda-like mirrors. We also briefly discuss Grassmannian manifolds.

  10. Individual Differences in Selective Attention among Prereaders: A Key to Mirror-Image Confusions.

    ERIC Educational Resources Information Center

    Casey, M. Beth

    1986-01-01

    Experiment 1 examined the position that mirror-image confusions reflect an inability among three- to five-year-olds to determine whether their performance level differences reflect differences among nonreaders already attending and those not yet attending to reading cues. Experiment 2 examined the Experiment 1 four- and five-year-olds, identified…

  11. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  12. Sensorimotor learning configures the human mirror system.

    PubMed

    Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia

    2007-09-04

    Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.

  13. Are horses capable of mirror self-recognition? A pilot study.

    PubMed

    Baragli, Paolo; Demuru, Elisa; Scopa, Chiara; Palagi, Elisabetta

    2017-01-01

    Mirror Self-Recognition (MSR) unveils complex cognitive, social and emotional skills and it has been found only in humans and few other species, such as great apes, dolphins, elephants and magpies. In this pilot study, we tested if horses show the capacity of MSR. Four subjects living socially under naturalistic conditions were selected for the experiment. We adopted the classical mark test, which consists in placing a coloured mark on an out-of-view body part, visible only through mirror inspection. If the animal considers the image as its own, it will use its reflection to detect the mark and will try to explore it. We enhanced the classical paradigm by introducing a double-check control. Only in the presence of the reflecting surface, animals performed tactile and olfactory exploration of the mirror and looked behind it. These behaviors suggest that subjects were trying to associate multiple sensory cues (visual, tactile and olfactory) to the image in the mirror. The lack of correspondence between the collected stimuli in front of the mirror and the response to the colored mark lead us to affirm that horses are able to perceive that the reflected image is incongruent when compared with the memorized information of a real horse. However, without replication of data, the self-directed behavior towards the colored marks showed by our horses cannot be sufficient per se to affirm that horses are capable of self-recognition.

  14. Are horses capable of mirror self-recognition? A pilot study

    PubMed Central

    Demuru, Elisa; Scopa, Chiara; Palagi, Elisabetta

    2017-01-01

    Mirror Self-Recognition (MSR) unveils complex cognitive, social and emotional skills and it has been found only in humans and few other species, such as great apes, dolphins, elephants and magpies. In this pilot study, we tested if horses show the capacity of MSR. Four subjects living socially under naturalistic conditions were selected for the experiment. We adopted the classical mark test, which consists in placing a coloured mark on an out-of-view body part, visible only through mirror inspection. If the animal considers the image as its own, it will use its reflection to detect the mark and will try to explore it. We enhanced the classical paradigm by introducing a double-check control. Only in the presence of the reflecting surface, animals performed tactile and olfactory exploration of the mirror and looked behind it. These behaviors suggest that subjects were trying to associate multiple sensory cues (visual, tactile and olfactory) to the image in the mirror. The lack of correspondence between the collected stimuli in front of the mirror and the response to the colored mark lead us to affirm that horses are able to perceive that the reflected image is incongruent when compared with the memorized information of a real horse. However, without replication of data, the self-directed behavior towards the colored marks showed by our horses cannot be sufficient per se to affirm that horses are capable of self-recognition. PMID:28510577

  15. Object detection and imaging with acoustic time reversal mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    1993-11-01

    Focusing an acoustic wave on an object of unknown shape through an inhomogeneous medium of any geometrical shape is a challenge in underground detection. Optimal detection and imaging of objects needs the development of such focusing techniques. The use of a time reversal mirror (TRM) represents an original solution to this problem. It realizes in real time a focusing process matched to the object shape, to the geometries of the acoustic interfaces and to the geometries of the mirror. It is a self adaptative technique which compensates for any geometrical distortions of the mirror structure as well as for diffraction and refraction effects through the interfaces. Two real time 64 and 128 channel prototypes have been built in our laboratory and TRM experiments demonstrating the TRM performance through inhomogeneous solid and liquid media are presented. Applications to medical therapy (kidney stone detection and destruction) and to nondestructive testing of metallurgical samples of different geometries are described. Extension of this study to underground detection and imaging will be discussed.

  16. A Research on the Primary Mirror Manipulator of Large Segmented-mirror Telescope

    NASA Astrophysics Data System (ADS)

    Zuo, H.

    2012-09-01

    Since Galileo firstly used the telescope to observe the sky 400 years ago, the aperture of the telescope has become larger and larger to observe the deeper universe, and the segmented-mirror telescope is becoming more and more popular with increasing aperture. In the early 21st century, a series of segmented-mirror telescopes have been constructed including the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) of China. LAMOST is a meridian reflecting Schmidt telescope, and the dimension of the primary mirror is about 6.7 m× 6 m, which is composed of 37 hexagonal sub-mirrors. However, a problem about the mirror installation appears with the increasing aperture. If there are hundreds of sub-mirrors in the telescope, it is a challenging job to mount and dismount them to the truss. This problem is discussed in this paper and a manipulator for the primary mirror of LAMOST is designed to perform the mount and dismount work. In chapter 1, all the segmented-mirror telescopes in the world are introduced and how the sub-mirrors of these telescopes are installed has been investigated. After comparing with the serial and the parallel robot, a serial robot manipulator proposal, which has several redundant degrees of freedom (DOFs), has been chosen from a series of design proposals. In chapter 2, the theoretical analysis has been carried out on the basis of the design proposal, which includes the forward kinematics and the inverse kinematics. Firstly the D-H coordinate is built according to the structure of the manipulator, so it is possible to obtain the end-effector position and orientation from the individual joint motion thanks to the forward kinematics. Because of the redundant DOFs of the manipulator, the inverse kinematics solution can be a very trick task, and the result may not be only, therefore a kind of simulation is carried out to get the numerical solution using ADAMS (Automatic Dynamic Analysis of Mechanical System). In the dynamics analysis the

  17. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  18. SIRTF primary mirror design, analysis, and testing

    NASA Technical Reports Server (NTRS)

    Sarver, George L., III; Maa, Scott; Chang, LI

    1990-01-01

    The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.

  19. Enhancement of Photon Number Reflected by the Relativistic Flying Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kando, M.; Pirozhkov, A. S.; Kawase, K.

    2009-12-04

    Laser light reflection by a relativistically moving electron density modulation (flying mirror) in a wake wave generated in a plasma by a high intensity laser pulse is investigated experimentally. A counterpropagating laser pulse is reflected and upshifted in frequency with a multiplication factor of 37-66, corresponding to the extreme ultraviolet wavelength. The demonstrated flying mirror reflectivity (from 3x10{sup -6} to 2x10{sup -5}, and from 1.3x10{sup -4} to 0.6x10{sup -3}, for the photon number and pulse energy, respectively) is close to the theoretical estimate for the parameters of the experiment.

  20. Composite structures for optical mirror applications

    NASA Astrophysics Data System (ADS)

    Brand, Richard A.; Marks, John E.

    1990-10-01

    The employment of composites in RF structures such as antennas, feedhorns, and waveguides is outlined, and focus is placed on the parameters of a composite mirror operating in the 3-5- and 8-12-micron areas. A large beam-steering composite mirror fabricated from ultrahigh-modulus graphite/epoxy is described, including its three subassemblies: the core subassembly and two facesheet subassemblies. Attention is given to an alternative approach in which a gel coat resin is applied to the glass surface and the mirror substrate is pressed to the tool to cover the mirror with the resin. Another method is to seal the composite from the effects of moisture expansion by applying a eutectic coating; voids and crystal-grain growth are the main sources of surface perturbation on such mirror surfaces.

  1. Performance in intercultural interactions at work: cross-cultural differences in response to behavioral mirroring.

    PubMed

    Sanchez-Burks, Jeffrey; Bartel, Caroline A; Blount, Sally

    2009-01-01

    This article examines how performance in intercultural workplace interactions can be compromised even in the absence of overt prejudice. The authors show that individuals respond differently to nonverbal behavioral mirroring cues exhibited in workplace interactions, depending on their cultural group membership. In a field study with experienced managers, U.S. Anglos and U.S. Latinos interacted with a confederate who, unbeknownst to the participant, engaged (or not) in behavioral mirroring. Results show that the level of the confederate's mirroring differentially affected Latinos' state anxiety, but not Anglos' state anxiety, as well as actual performance in the interaction. Two additional laboratory experiments provide further evidence of the interactive relationship of behavioral mirroring and cultural group membership on evaluations of workplace interactions. Implications for intercultural interactions and research are discussed. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  2. A comparison of performance of lightweight mirrors

    NASA Technical Reports Server (NTRS)

    Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.

    1990-01-01

    Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.

  3. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.

  4. Methods for reducing singly reflected rays on the Wolter-I focusing mirrors of the FOXSI rocket experiment

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, Juan Camilo; Elsner, Ronald; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Turin, Paul; Vievering, Juliana; Athiray, P. S.; Musset, Sophie; Krucker, Säm.

    2017-08-01

    In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload that uses seven sets of nested Wolter-I figured mirrors together with seven high-sensitivity semiconductor detectors to observe the Sun in hard X-rays through direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a background pattern of singly reflected rays (i.e., ghost rays) that can limit the sensitivity of the observation to faint, focused sources. Understanding and mitigating the impact of the singly reflected rays on the FOXSI optical modules will maximize the instruments' sensitivity to background-limited sources. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations and laboratory measurements, as well as the effectiveness of different physical strategies to reduce them.

  5. Auditory-vocal mirroring in songbirds.

    PubMed

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  6. Mounting and Alignment of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  7. Giant pandas failed to show mirror self-recognition.

    PubMed

    Ma, Xiaozan; Jin, Yuan; Luo, Bo; Zhang, Guiquan; Wei, Rongping; Liu, Dingzhen

    2015-05-01

    Mirror self-recognition (MSR), i.e., the ability to recognize oneself in a mirror, is considered a potential index of self-recognition and the foundation of individual development. A wealth of literature on MSR is available for social animals, such as chimpanzees, Asian elephants and dolphins, yet little is known about MSR in solitary mammalian species. We aimed to evaluate whether the giant panda can recognize itself in the mirror, and whether this capacity varies with age. Thirty-four captive giant pandas (F:M = 18:16; juveniles, sub-adults and adults) were subjected to four mirror tests: covered mirror tests, open mirror tests, water mark control tests, and mark tests. The results showed that, though adult, sub-adult and juvenile pandas exposed to mirrors spent similar amounts of time in social mirror-directed behaviors (χ(2) = 0.719, P = 0.698), none of them used the mirror to touch the mark on their head, a self-directed behavior suggesting MSR. Individuals of all age groups initially displayed attacking, threatening, foot scraping and backwards walking behaviors when exposed to their self-images in the mirror. Our data indicate that, regardless of age, the giant pandas did not recognize their self-image in the mirror, but instead considered the image to be a conspecific. Our results add to the available information on mirror self-recognition in large mammals, provide new information on a solitary species, and will be useful for enclosure design and captive animal management.

  8. Titanium Alloy Strong Back for IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Byron, Glenn P.; Kai-Wang, Chan

    2011-01-01

    A titanium-alloy mirror-holding fixture called a strong back allows the temporary and permanent bonding of a 50 degree D263 glass x-ray mirror (IXO here stands for International X-ray Observatory). The strong back is used to hold and position a mirror segment so that mounting tabs may be bonded to the mirror with ultra-low distortion of the optical surface. Ti-15%Mo alloy was the material of choice for the strong back and tabs because the coefficient of thermal expansion closely matches that of the D263 glass and the material is relatively easy to machine. This invention has the ability to transfer bonded mounting points from a temporary location on the strong back to a permanent location on the strong back with minimal distortion. Secondly, it converts a single mirror segment into a rigid body with an acceptable amount of distortion of the mirror, and then maneuvers that rigid body into optical alignment such that the mirror segment can be bonded into a housing simulator or mirror module. Key problems are that the mirrors are 0.4-mm thick and have a very low coefficient of thermal expansion (CTE). Because the mirrors are so thin, they are very flexible and are easily distorted. When permanently bonding the mirror, the goal is to achieve a less than 1-micron distortion. Temperature deviations in the lab, which have been measured to be around 1 C, have caused significant distortions in the mirror segment.

  9. Frictional `non-aging' of fault mirror surfaces?: Insight from friction experiments on Carrara marble

    NASA Astrophysics Data System (ADS)

    Park, Y.; Ree, J. H.; Hirose, T.

    2016-12-01

    Mirror-like fault surfaces (or fault mirror: FM) have recently been suggested as a precursor of unstable slip (thus indicative of seismic slip). Frictional aging of fault surfaces (increase in static friction during interseismic period) is a common phenomenon of fault surfaces, resulting from increase in contact area or in bond strength between asperities with time. Despite the importance of FM in earthquake faulting, the frictional-aging behavior of FM has never been studied. To understand the frictional-aging behavior of FM, slide-hold-slide friction experiments were done on carbonate FM and powdered gouge of former carbonate FM (PG hereafter) using low-to-high-velocity-rotary-shear apparatus, at a slip rate of 1 μm s-1 a normal stress of 1.5 MPa, room temperature and room humidity condition. The sheared PG specimens showed a logarithmic positive relationship between static friction and holding time, consistent with Dieterich-type healing behavior. In contrast, the sheared FM specimens showed little effect of holding time on static friction. The slip surface of FM specimens consists of densely-packed and sintered nano-particles while that of PG specimens is composed of loose nano-particles. It has been known that yield strength of a material increases dramatically with size-decreasing grains being nano-particles. Since FM is a layer of densely-packed and sintered nanoparticles, enhanced strength of FM may inhibit growth of real contact area of fault surfaces during hold time. Furthermore, sintered particles composing FM have less pore space than loose gouge layer, and thus there would be a less chance of strengthening by pore space reduction, inter-particle meniscus formation or water adsorption onto the particles surface in the FM layer. Our preliminary result suggests that carbonate FM's may impede the recovery of fault strength during interseismic period, resulting in less possibility of earthquake nucleation. Reduced frictional healing may be a common

  10. Solid, 3-mirror Fabry-Perot etalon.

    PubMed

    Stephen, Mark; Fahey, Molly; Miller, Ian

    2017-04-01

    We present modeling and performance of a solid, fused silica, 3-mirror Fabry-Perot-type etalon. 3-mirror etalons have been known for decades to have superior theoretical performance but for the first time we demonstrate an etalon with sufficient quality to realize the benefits of the more complex design. 3-mirror etalons have better passband shape and higher contrast ratio enabling significantly improved wavelength separation. We show the optical cavity design and construction of the new etalon and show >95% peak transmission, improved passband shape and 20 dB better out-of-band rejection than a similar 2-mirror etalon.

  11. Kodak AMSD Mirror Development Program

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Dahl, Roger; Barrett, David; Bottom, John; Russell, Kevin (Technical Monitor)

    2002-01-01

    The Advanced Mirror System Demonstration Program is developing minor technology for the next generation optical systems. Many of these systems will require extremely lightweight and stable optics due to the overall size of the primary mirror. These segmented, deployable systems require new technology that AMSD is developing. The on-going AMSD program is a critical enabler for Next Generation Space Telescope (NGST) which will start in 2002. The status of Kodak's AMSD mirror and future plans will be discussed with respect to the NGST program.

  12. Modeling of reference operating scenario of GOL-NB multiple-mirror trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Yurov, D. V.

    Currently, the GOL-NB multiple-mirror trap is being developed at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. The main scientific goal pursued by building GOL-NB is direct demonstration of suppression of longitudinal losses of particles and energy from the trap by using sections with a multiple-mirror magnetic field, which can be attached to the central gas-dynamic trap. Plasma heating in GOL-NB will be accomplished by neutral beam injection with a power of up to 1.5MW. The paper presents the first results of modeling the dynamics of the plasma parameters and fast ions under the reference operatingmore » scenario of the trap in which traditional short magnetic mirrors, rather than multiple-mirror sections, are attached to the central trap. In such a configuration, the plasma lifetime in the trap is expected to be minimal. The modeling was performed by using the DOL kinetic code. As a result, the initial conditions of the experiments are refined and the requirements to the system of maintaining the particle balance in the trap are determined.« less

  13. Background-reducing X-ray multilayer mirror

    DOEpatents

    Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.

    1992-01-01

    Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

  14. Short Tandem Repeat DNA Internet Database

    National Institute of Standards and Technology Data Gateway

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  15. First results of the wind evaluation breadboard for ELT primary mirror design

    NASA Astrophysics Data System (ADS)

    Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel

    2010-07-01

    The Wind Evaluation Breadboard (WEB) is a primary mirror and telescope simulator formed by seven aluminium segments, including position sensors, electromechanical support systems and support structures. WEB has been developed to evaluate technologies for primary mirror wavefront control and to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors. For this purpose WEB electro-mechanical set-up simulates the real operational constrains applied to large segmented mirrors. This paper describes the WEB assembly, integration and verification, the instrument characterisation and close loop control design, including the dynamical characterization of the instrument and the control architecture. The performance of the new technologies developed for position sensing, acting and controlling is evaluated. The integration of the instrument in the observatory and the results of the first experiments are summarised, with different wind conditions, elevation and azimuth angles of incidence. Conclusions are extracted with respect the wind rejection performance and the control strategy for an ELT. WEB has been designed and developed by IAC, ESO, ALTRAN and JUPASA, with the integration of subsystems of FOGALE and TNO.

  16. Mirror Charge Radii and the Neutron Equation of State

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex

    2017-09-01

    The differences in the charge radii of mirror nuclei are shown to be proportional to the derivative of the neutron equation of state and the symmetry energy at nuclear matter saturation density. This derivative is important for constraining the neutron equation of state for use in astrophysics. The charge radii of several neutron-rich nuclei are already measured to the accuracy of about 0.005 fm. Experiments at isotope-separator and radioactive-beam facilities are needed to measure the charge radii of the corresponding proton-rich mirror nuclei to a similar accuracy. It is also shown that neutron skins of nuclei with N =Z depend upon the value of the symmetry energy at a density of 0.10 nucleons /fm3 .

  17. Dual-use bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, M. S.; Laycock, L. C.; Bagshaw, J. M.; Rowe, D.

    2005-11-01

    Adaptive Optics (AO) is a critical underpinning technology for future optical countermeasures, laser delivery, target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. AO is also well established in ground based astronomy, and is finding applications in free space optical communications and ophthalmology. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS ATC is developing multi-element Deformable Bimorph Mirrors (DBMs) for such applications. A traditional bimorph deformable mirror uses a set of edge electrodes outside the active area in order to meet the required boundary conditions for the active aperture. This inflicts a significant penalty in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. We have devised a number of novel mounting arrangements that reduce dead space and thus provide a much improved trade-off between bandwidth and stroke. These schemes include a novel method for providing vertical displacement at the periphery of the aperture, a method for providing a continuous compliant support underneath the bimorph mirror, and a method for providing a three point support underneath the bimorph. In all three cases, there is no requirement for edge electrodes to provide the boundary conditions, resulting in devices of much higher bandwidth. The target is to broaden the use of these types of mirror beyond the current limits of either low order/low bandwidth, to address the high order, high bandwidth systems required by long range, horizontal path applications. This paper will discuss the different mirror designs, and present experimental results for the most recently assembled mirrors.

  18. Directly polished lightweight aluminum mirror

    NASA Astrophysics Data System (ADS)

    ter Horst, Rik; Tromp, Niels; de Haan, Menno; Navarro, Ramon; Venema, Lars; Pragt, Johan

    2017-11-01

    During the last ten years, Astron has been a major contractor for the design and manufacturing of astronomical instruments for Space- and Earth based observatories, such as VISIR, MIDI, SPIFFI, X-Shooter and MIRI. Driven by the need to reduce the weight of optically ultra-stiff structures, two promising techniques have been developed in the last years: ASTRON Extreme Lightweighting [1][2] for mechanical structures and an improved Polishing Technique for Aluminum Mirrors. Using one single material for both optical components and mechanical structure simplifies the design of a cryogenic instrument significantly, it is very beneficial during instrument test and verification, and makes the instrument insensitive to temperature changes. Aluminum has been the main material used for cryogenic optical instruments, and optical aluminum mirrors are generally diamond turned. The application of a polishable hard top coating like nickel removes excess stray light caused by the groove pattern, but limits the degree of lightweighting of the mirrors due to the bi-metal effect. By directly polishing the aluminum mirror surface, the recent developments at Astron allow for using a non-exotic material for light weighted yet accurate optical mirrors, with a lower surface roughness ( 1nm RMS), higher surface accuracy and reduced light scattering. This paper presents the techniques, obtained results and a global comparison with alternative lightweight mirror solutions. Recent discussions indicate possible extensions of the extreme light weight technology to alternative materials such as Zerodur or Silicon Carbide.

  19. Rollable Thin-Shell Nanolaminate Mirrors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Lih, Shyh-Shiuh; Barbee, Troy, Jr.

    2003-01-01

    A class of lightweight, deployable, thin-shell, curved mirrors with built-in precise-shape-control actuators is being developed for high-resolution scientific imaging. This technology incorporates a combination of advanced design concepts in actuation and membrane optics that, heretofore, have been considered as separate innovations. These mirrors are conceived to be stowed compactly in a launch shroud and transported aboard spacecraft, then deployed in outer space to required precise shapes at much larger dimensions (diameters of the order of meters or tens of meters). A typical shell rollable mirror structure would include: (1) a flexible single- or multiple-layer face sheet that would include an integrated reflective surface layer that would constitute the mirror; (2) structural supports in the form of stiffeners made of a shape-memory alloy (SMA); and (3) piezoelectric actuators. The actuators, together with an electronic control subsystem, would implement a concept of hierarchical distributed control, in which (1) the SMA actuators would be used for global shape control and would generate the large deformations needed for the deployment process and (2) the piezoelectric actuators would generate smaller deformations and would be used primarily to effect fine local control of the shape of the mirror.

  20. Auditory–vocal mirroring in songbirds

    PubMed Central

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory–vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory–vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory–vocal mirroring in the songbird's brain. PMID:24778375

  1. Engineers Clean Mirror with Carbon Dioxide Snow

    NASA Image and Video Library

    2015-01-22

    Just like drivers sometimes use snow to clean their car mirrors in winter, two Exelis Inc. engineers are practicing "snow cleaning'" on a test telescope mirror for the James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland. By shooting carbon dioxide snow at the surface, engineers are able to clean large telescope mirrors without scratching them. "The snow-like crystals (carbon dioxide snow) knock contaminate particulates and molecules off the mirror," said Lee Feinberg, NASA optical telescope element manager. This technique will only be used if the James Webb Space Telescope's mirror is contaminated during integration and testing. The Webb telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. With a mirror seven times as large as Hubble's and infrared capability, Webb will be capturing light from 13.5 billion light years away. To do this, its mirror must be kept super clean. "Small dust particles or molecules can impact the science that can be done with the Webb," said Feinberg. "So cleanliness especially on the mirrors is critical." Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Goddard/Chris Gunn

  2. Polarimetry with multiple mirror telescopes

    NASA Technical Reports Server (NTRS)

    West, S. C.

    1986-01-01

    The polarizations of multiple mirror telescopes are calculated using Mueller calculus. It is found that the Multiple Mirror Telescope (MMT) produces a constant depolarization that is a function of wavelength and independent of sky position. The efficiency and crosstalk are modeled and experimentally verified. The two- and four-mirror new generation telescopes are found to produce sinusoidal depolarization for which an accurate interpretation of the incident Stokes vector requires inverse matrix calculations. Finally, the depolarization of f/1 paraboloids is calculated and found to be less than 0.1 percent at 3000 A.

  3. Novel unimorph deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Verpoort, Sven; Rausch, Peter; Wittrock, Ulrich

    2017-11-01

    We have developed a new type of unimorph deformable mirror, designed to correct for low-order Zernike modes. The mirror has a clear optical aperture of 50 mm combined with large peak-to-valley Zernike amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated super-polished and coated glass substrates. The mirror's unique features suggest the use in several astronomical applications like the precompensation of atmospheric aberrations seen by laser beacons and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wavefront error imposed by the floppy structure of primary mirrors in future large space-based telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror.

  4. Light-weight spherical mirrors for Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Cisbani, E.; Colilli, S.; Crateri, R.; Cusanno, F.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Iodice, M.; Iommi, R.; Lucentini, M.; Mostarda, A.; Pierangeli, L.; Santavenere, F.; Urciuoli, G. M.; De Leo, R.; Lagamba, L.; Nappi, E.; Braem, A.; Vernin, P.

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  5. Optical properties of relativistic plasma mirrors

    PubMed Central

    Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, Ph.; Quéré, F.

    2014-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748

  6. A Stainless-Steel Mandrel for Slumping Glass X-ray Mirrors

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; O'Dell, Stephen L.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2009-01-01

    We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C.of glass mirror segments at Goddard Space Flight Center, in support of NASA's participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  7. A Stainless-Steel Mandrel for Slumping Glass X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Gubarev, Mikhail V.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2008-01-01

    We have fabricated a precision full -cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm-diameter primary (paraboloid) mirror of an 840-cm focal-lengthWolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C-of glass mirror segments at Goddard Space Flight Center, in support of NASA fs participation in the International X -ray Observatory (IXO). Precision turning of stainless ]steel mandrels may offer a lowcost alternative to conventional figuring of fused -silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  8. Nanolaminate Mirrors With "Piston" Figure-Control Actuators

    NASA Technical Reports Server (NTRS)

    Lowman, Andrew; Redding, David; Hickey, Gregory; Knight, Jennifer; Moynihan, Philip; Lih, Shyh0Shiuh; Barbee, Troy

    2003-01-01

    Efforts are under way to develop a special class of thin-shell curved mirrors for high-resolution imaging in visible and infrared light in a variety of terrestrial or extraterrestrial applications. These mirrors can have diameters of the order of a meter and include metallic film reflectors on nanolaminate substrates supported by multiple distributed piezoceramic gpiston h-type actuators for micron-level figure control. Whereas conventional glass mirrors of equivalent size and precision have areal mass densities between 50 and 150 kg/sq m, the nanolaminate mirrors, including not only the reflector/ shell portions but also the actuators and the backing structures needed to react the actuation forces, would have areal mass densities that may approach .5 kg/m2. Moreover, whereas fabrication of a conventional glass mirror of equivalent precision takes several years, the reflector/shell portion of a nanolaminate mirror can be fabricated in less than a week, and its actuation system can be fabricated in 1 to 2 months. The engineering of these mirrors involves a fusion of the technological heritage of multisegmented adaptive optics and deformable mirrors with more recent advances in metallic nanolaminates and in mathematical modeling of the deflections of thin, curved shells in response to displacements by multiple, distributed actuators. Because a nanolaminate shell is of the order of 10 times as strong as an otherwise identical shell made of a single, high-strength, non-nanolaminate metal suitable for mirror use, a nanolaminate mirror can be made very thin (typically between 100 and 150 m from the back of the nanolaminate substrate to the front reflecting surface). The thinness and strength of the nanolaminate are what make it possible to use distributed gpiston h-type actuators for surface figure control with minimal local concentrated distortion (called print-through in the art) at the actuation points.

  9. The neuronal correlates of mirror illusion in children with spastic hemiparesis: a study with functional magnetic resonance imaging.

    PubMed

    Weisstanner, Christian; Saxer, Stefanie; Wiest, Roland; Kaelin-Lang, Alain; Newman, Christopher J; Steinlin, Maja; Grunt, Sebastian

    2017-03-21

    To investigate the neuronal activation pattern underlying the effects of mirror illusion in children/adolescents with normal motor development and in children/adolescents with hemiparesis and preserved contralateral corticospinal organisation. The type of cortical reorganisation was classified according to results of transcranial magnetic stimulation. Only subjects with congenital lesions and physiological contralateral cortical reorganisation were included. Functional magnetic resonance imaging was performed to investigate neuronal activation patterns with and without a mirror box. Each test consisted of a unimanual and a bimanual motor task. Seven children/adolescents with congenital hemiparesis (10-20 years old, three boys and four girls) and seven healthy subjects (8-17 years old, four boys and three girls) participated in this study. In the bimanual experiment, children with hemiparesis showed a significant effect of the mirror illusion (p<0.001 at voxel level, family-wise error corrected at cluster level) in the dorsolateral prefrontal cortex and anterior cingulate cortex of the affected and unaffected hemispheres, respectively. No significant effects of the mirror illusion were observed in unimanual experiments and in healthy participants. Mirror illusion in children/adolescents with hemiparesis leads to activation of brain areas involved in visual conflict detection and cognitive control to resolve this conflict. This effect is observed only in bimanual training. We consider that for mirror therapy in children and adolescents with hemiparesis a bimanual approach is more suitable than a unimanual approach.

  10. Being "Secondary" is Important for a Webb Telescope Mirror

    NASA Image and Video Library

    2017-12-08

    NASA release July 19, 2011 Click here to learn about the James Webb Space Telescope The secondary mirror (shown here) was polished at the L3 Integrated Optical Systems - Tinsley in Richmond, Calif. to accuracies of less than one millionth of an inch. That accuracy is important for forming the sharpest images when the mirrors cool to -400°F (-240°C) in the cold of space. The Webb's secondary mirror was recently completed, following polishing and gold-coating. "Secondary" may not sound as important as "primary" but when it comes to the next-generation James Webb Space Telescope a secondary mirror plays a critical role in ensuring the telescope gathers information from the cosmos. The Webb's secondary mirror was recently completed, following polishing and gold-coating. There are four different types of mirrors that will fly on the James Webb Space Telescope, and all are made of a light metal called beryllium. It is very strong for its weight and holds its shape across a range of temperatures. There are primary mirror segments (18 total that combined make the large primary mirror providing a collecting area of 25 meters squared/269.1 square feet), the secondary mirror, tertiary mirror and the fine steering mirror. Unlike the primary mirror, which is molded into the shape of a hexagon, the secondary mirror is perfectly rounded. The mirror is also convex, so the reflective surface bulges toward a light source. It looks much like a curved mirror that you'll see on the wall near the exit of a parking garage that lets motorists see around a corner. This mirror is coated with a microscopic layer of gold to enable it to efficiently reflect infrared light (which is what the Webb telescope's cameras see). The quality of the secondary mirror surface is so good that the final convex surface at cold temperatures does not deviate from the design by more than a few millionths of a millimeter - or about one ten thousandth the diameter of a human hair. "As the only convex mirror on

  11. Polarization Phase-Compensating Coats for Metallic Mirrors

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham

    2006-01-01

    A method of compensating for or minimizing phase differences between orthogonal polarizations of light reflected from metallic mirrors at oblique incidence, as, for example, from weakly curved mirrors, is undergoing development. The method is intended to satisfy a need to maintain precise polarization phase relationships or minimum polarization differences needed for proper operation of telescopes and other scientific instruments that include single or multiple mirrors. The basic idea of the method is to optimally coat mirrors with thin engineered layers of materials that introduce phase differences that, as nearly precisely as possible, are opposite of the undesired phase differences arising in reflection with non-optimum coatings. Depending on the specific optical system, the method could involve any or all of the following elements: a) Optimization of a single coat on all the mirrors in the system. b) Optimization of a unique coat for each mirror such that the polarization phase effects of the coat on one mirror compensate, to an acceptably high degree over an acceptably wide wavelength range, for those of the coat on another mirror. c) Tapering the coat on each mirror. Optimization could involve the choice of a single dielectric coating material and its thickness, or design of a more complex coat consisting of multiple layers of different dielectric materials and possibly some metallic materials. Such designs and coatings are particularly significant and needed for obtaining very high quality of wavefront required in high-contrast imaging instruments such as the NASA Terrestrial Planet Finder Coronagraph.

  12. Do Mirror Glasses Have the Same Effect on Brain Activity as a Mirror Box? Evidence from a Functional Magnetic Resonance Imaging Study with Healthy Subjects

    PubMed Central

    Milde, Christopher; Rance, Mariela; Kirsch, Pinar; Trojan, Jörg; Fuchs, Xaver; Foell, Jens; Bekrater-Bodmann, Robin

    2015-01-01

    Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on

  13. History of mirrors dating back 8000 years.

    PubMed

    Enoch, Jay M

    2006-10-01

    The purpose of this study is to consider the ancient history and early development of mirrors, because mirrors played a key role in refraction and magnification for an extended period of time before the invention of spectacles, including broad use in Roman times. The earliest known manufactured mirrors (approximately 8000 years old) have been found in Anatolia (south central modern-day Turkey). These were made from obsidian (volcanic glass), had a convex surface and remarkably good optical quality. Mirrors from more recent periods have been found both in Egypt and Mesopotamia and still later in China and in the New World. In each of these areas, mirrors were in use by approximately 2000 BC or 4000 years ago.

  14. Mirror neurons and their clinical relevance.

    PubMed

    Rizzolatti, Giacomo; Fabbri-Destro, Maddalena; Cattaneo, Luigi

    2009-01-01

    One of the most exciting events in neurosciences over the past few years has been the discovery of a mechanism that unifies action perception and action execution. The essence of this 'mirror' mechanism is as follows: whenever individuals observe an action being done by someone else, a set of neurons that code for that action is activated in the observers' motor system. Since the observers are aware of the outcome of their motor acts, they also understand what the other individual is doing without the need for intermediate cognitive mediation. In this Review, after discussing the most pertinent data concerning the mirror mechanism, we examine the clinical relevance of this mechanism. We first discuss the relationship between mirror mechanism impairment and some core symptoms of autism. We then outline the theoretical principles of neurorehabilitation strategies based on the mirror mechanism. We conclude by examining the relationship between the mirror mechanism and some features of the environmental dependency syndromes.

  15. SOFIA primary mirror fabrication and testing

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tarreau, Michel; Plainchamp, Patrick

    2001-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint American-German project dedicated to performing IR astronomy on board a Boeing Aircraft, in near space condition. First flight of the Observatory is planned for 2003. The REOSC Products Unit of SAGEM SA (France) has been contracted by Kayser Threde (Germany) for the design and fabrication of the 2.7-meter diameter, F/1.19 parabolic lightweight SOFIA primary mirror as well as the M3 dichroic and folding mirror assembly. This paper will report the design, fabrication and test of the lightweight primary mirror. The mirror structure has been obtained by machining it out from a solid Zerodur blank. It is the world's largest of this type today. Axial and lateral mirror support system has been conceptually designed and engineered by SAGEM-REOSC engineers in relation with Kayser Threde team. The optical surface is an F/1.19 parabola polished to a high level of quality.

  16. A ferrofluidic deformable mirror for ophthalmology

    NASA Astrophysics Data System (ADS)

    Macpherson, J. B.; Thibault, S.; Borra, E. F.; Ritcey, A. M.; Carufel, N.; Asselin, D.; Jerominek, H.; Campbell, M. C. W.

    2005-09-01

    Optical aberrations reduce the imaging quality of the human eye. In addition to degrading vision, this limits our ability to illuminate small points of the retina for therapeutic, surgical or diagnostic purposes. When viewing the rear of the eye, aberrations cause structures in the fundus to appear blurred, limiting the resolution of ophthalmoscopes (diagnostic instruments used to image the eye). Adaptive optics, such as deformable mirrors may be used to compensate for aberrations, allowing the eye to work as a diffraction-limited optical element. Unfortunately, this type of correction has not been widely available for ophthalmic applications because of the expense and technical limitations of current deformable mirrors. We present preliminary design and characterisation of a deformable mirror suitable for ophthalmology. In this ferrofluidic mirror, wavefronts are reflected from a fluid whose surface shape is controlled by a magnetic field. Challenges in design are outlined, as are advantages over traditional deformable mirrors.

  17. Demonstrating Chirality: Using a Mirror with Physical Models To Show Non-superimposability of Chiral Molecules with Their Mirror Images.

    ERIC Educational Resources Information Center

    Collins, Michael J.

    2001-01-01

    Presents a remarkable demonstration on chiralty in molecules and the existence of enantiomers, also known as non-superimposable mirror images. Uses a mirror, a physical model of a molecule, and a bit of trickery involving the non-superimposable mirror image. (Author/NB)

  18. Three-point spherical mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  19. Three-point spherical mirror mount

    DOEpatents

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  20. Impedance Matched to Vacuum, Invisible Edge, Diffraction Suppressed Mirror

    NASA Technical Reports Server (NTRS)

    Hagopian, John G. (Inventor); Roman, Patrick A. (Inventor); Shiri, Sharham (Inventor); Wollack, Edward J. (Inventor)

    2015-01-01

    Diffraction suppressed mirrors having an invisible edge are disclosed for incident light at both targeted wavelengths and broadband incident light. The mirrors have a first having at least one discontiguous portion having a plurality of nanostructured apertures. The discontiguous mirror portion impedance matches a relatively high impedance portion of the mirror to a relatively low impedance portion of the mirror, thereby reducing the diffraction edge effect otherwise present in a conventional mirror.

  1. Compliant deformable mirror approach for wavefront improvement

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. Ernesto

    2016-04-01

    We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.

  2. Cryogenic mount for mirror and piezoelectric actuator for an optical cavity.

    PubMed

    Oliveira, A N; Moreira, L S; Sacramento, R L; Kosulic, L; Brasil, V B; Wolff, W; Cesar, C L

    2017-06-01

    We present the development of a mount that accommodates a mirror and a piezoelectric actuator with emphasis on physical needs for low temperature operation. The design uses a monolithic construction with flexure features that allow it to steadily hold the mirror and the piezoelectric actuator without glue and accommodate differential thermal contraction. The mount is small and lightweight, adding little heat capacity and inertia. It provides a pre-loading of the piezoelectric actuator as well as a good thermal connection to the mirror and a thermal short across the piezoelectric actuator. The performance of the assemblies has been tested by thermally cycling from room temperature down to 3 K more than a dozen times and over one hundred times to 77 K, without showing any derating. Such mounts are proposed for the cryogenic optical enhancement cavities of the ALPHA experiment at CERN for laser spectroscopy of antihydrogen and for hydrogen spectroscopy in our laboratory at UFRJ.

  3. Secrets of the Chinese magic mirror replica

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen; Yip, Din-yan

    2001-03-01

    We examine the structure of five Chinese magic mirror replicas using a special imaging technique developed by the authors. All mirrors are found to have a two-layered structure. The reflecting surface that gives rise to a projected magic pattern on the screen is hidden under a polished half-reflecting top layer. An alternative method of making the magic mirror using ancient technology has been proposed. Finally, we suggest a simple method of reconstructing a mirror replica in the laboratory.

  4. The spinning Kerr-black-hole-mirror bomb: A lower bound on the radius of the reflecting mirror

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-10-01

    The intriguing superradiant amplification phenomenon allows an orbiting scalar field to extract rotational energy from a spinning Kerr black hole. Interestingly, the energy extraction rate can grow exponentially in time if the black-hole-field system is placed inside a reflecting mirror which prevents the field from radiating its energy to infinity. This composed Kerr-black-hole-scalar-field-mirror system, first designed by Press and Teukolsky, has attracted the attention of physicists over the last four decades. Previous numerical studies of this spinning black-hole bomb have revealed the interesting fact that the superradiant instability shuts down if the reflecting mirror is placed too close to the black-hole horizon. In the present study we use analytical techniques to explore the superradiant instability regime of this composed Kerr-black-hole-linearized-scalar-field-mirror system. In particular, it is proved that the lower bound rm/r+ >1/2 (√{ 1 +8M/r- } - 1) provides a necessary condition for the development of the exponentially growing superradiant instabilities in this composed physical system, where rm is the radius of the confining mirror and r± are the horizon radii of the spinning Kerr black hole. We further show that, in the linearized regime, this analytically derived lower bound on the radius of the confining mirror agrees with direct numerical computations of the superradiant instability spectrum which characterizes the spinning black-hole-mirror bomb.

  5. Tandem Organic Light-Emitting Diodes.

    PubMed

    Fung, Man-Keung; Li, Yan-Qing; Liao, Liang-Sheng

    2016-12-01

    A tandem organic light-emitting diode (OLED) is an organic optoelectronic device that has two or more electroluminescence (EL) units connected electrically in series with unique intermediate connectors within the device. Researchers have studied this new OLED architecture with growing interest and have found that the current efficiency of a tandem OLED containing N EL units (N > 1) should be N times that of a conventional OLED containing only a single EL unit. Therefore, this new architecture is potentially useful for constructing high-efficiency, high-luminance, and long-lifetime OLED displays and organic solid-state lighting sources. In a tandem OLED, the intermediate connector plays a crucial role in determining the effectiveness of the stacked EL units. The interfaces in the connector control the inner charge generation and charge injection into the adjacent EL units. Meanwhile, the transparency and the thickness of the connector affect the light output of the device. Therefore, the intermediate connector should be made to meet both the electrical and optical requirements for achieving optimal performance. Here, recent advances in the research of the tandem OLEDs is discussed, with the main focus on material selection and interface studies in the intermediate connectors, as well as the optical design of the tandem OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Space Optic Manufacturing - X-ray Mirror

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. This image shows a lightweight replicated x-ray mirror with gold coatings applied.

  7. Light Weight Silicon Mirrors for Space Instrumentation

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T.; Hill, Peter C.; Hagopian, John G.; Strojay, Carl R.; Miller, Timothy

    2012-01-01

    Each mirror is a monolithic structure from a single crystal of silicon. The mirrors are light weighted after the optical surface is ground and polished. Mirrors made during the initial phase of this work were typically 1/50 lambda or better (RMS at 633 n m)

  8. Mirror neurons, the representation of word meaning, and the foot of the third left frontal convolution.

    PubMed

    de Zubicaray, Greig; Postle, Natasha; McMahon, Katie; Meredith, Matthew; Ashton, Roderick

    2010-01-01

    Previous neuroimaging research has attempted to demonstrate a preferential involvement of the human mirror neuron system (MNS) in the comprehension of effector-related action word (verb) meanings. These studies have assumed that Broca's area (or Brodmann's area 44) is the homologue of a monkey premotor area (F5) containing mouth and hand mirror neurons, and that action word meanings are shared with the mirror system due to a proposed link between speech and gestural communication. In an fMRI experiment, we investigated whether Broca's area shows mirror activity solely for effectors implicated in the MNS. Next, we examined the responses of empirically determined mirror areas during a language perception task comprising effector-specific action words, unrelated words and nonwords. We found overlapping activity for observation and execution of actions with all effectors studied, i.e., including the foot, despite there being no evidence of foot mirror neurons in the monkey or human brain. These "mirror" areas showed equivalent responses for action words, unrelated words and nonwords, with all of these stimuli showing increased responses relative to visual character strings. Our results support alternative explanations attributing mirror activity in Broca's area to covert verbalisation or hierarchical linearisation, and provide no evidence that the MNS makes a preferential contribution to comprehending action word meanings. 2008 Elsevier Inc. All rights reserved.

  9. Solar Collector Mirror for Brayton Power System

    NASA Image and Video Library

    1966-09-21

    NASA’s Lewis Research Center conducted extensive research programs in the 1960s and 1970s to develop systems that provide electrical power in space. One system, the Brayton cycle engine, converted solar thermal energy into electrical power. This system operated on a closed-loop Brayton thermodynamic cycle. The Brayton system relied on this large mirror to collect radiation from the sun. The mirror concentrated the Sun's rays on a heat storage receiver which warmed the Brayton system’s working fluid, a helium-xenon gas mixture. The heated fluid powered the system’s generator which produced power. In the mid-1960s Lewis researchers constructed this 30-foot diameter prototype of a parabolic solar mirror for the Brayton cycle system. The mirror had to be rigid, impervious to micrometeorite strikes, and lightweight. This mirror was comprised of twelve 1-inch thick magnesium plate sections that were coated with aluminum. The mirror could be compactly broken into its sections for launch.

  10. The Dizzying Depths of the Cylindrical Mirror

    NASA Astrophysics Data System (ADS)

    DeWeerd, Alan J.; Hill, S. Eric

    2005-02-01

    A typical introduction to geometrical optics treats plane and spherical mirrors. At first glance, it may be surprising that texts seldom mention the cylindrical mirror, except for the occasional reference to use in fun houses and to viewing anamorphic art.1,2 However, even a cursory treatment reveals its complexity. Holzberlein used an extended object to qualitatively illustrate that images are produced both before and behind a concave cylindrical mirror.3 He also speculated on how this extreme astigmatism results in an observer's dizziness. By considering a simple point object, we make a more detailed analysis of the cylindrical mirror and the dizziness it induces. First, we illustrate how rays from a point object reflect to form not one point image but two line images. Next, we describe how an observer perceives a likeness of the object. Finally, we suggest how confusing depth cues induce dizziness. Although we focus on the concave cylindrical mirror, the discussion is easy to generalize to the convex cylindrical mirror.

  11. Influence of Layup and Curing on the Surface Accuracy in the Manufacturing of Carbon Fiber Reinforced Polymer (CFRP) Composite Space Mirrors

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Zhang, Jianbao; Xie, Yongjie; Zhang, Boming; Sun, Baogang; Guo, Hongjun

    2017-12-01

    Carbon fiber reinforced polymer, CFRP, composite materials have been used to fabricate space mirror. Usually the composite space mirror can completely replicate the high-precision surface of mould by replication process, but the actual surface accuracy of replicated space mirror is always reduced, still needed further study. We emphatically studied the error caused by layup and curing on the surface accuracy of space mirror through comparative experiments and analyses, the layup and curing influence factors include curing temperature, cooling rate of curing, method of prepreg lay-up, and area weight of fiber. Focusing on the four factors, we analyzed the error influence rule and put forward corresponding control measures to improve the surface figure of space mirror. For comparative analysis, six CFRP composite mirrors were fabricated and surface profile of mirrors were measured. Four guiding control measures were described here. Curing process of composite space mirror is our next focus.

  12. Mirror neurons and imitation: a computationally guided review.

    PubMed

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael

    2006-04-01

    Neurophysiology reveals the properties of individual mirror neurons in the macaque while brain imaging reveals the presence of 'mirror systems' (not individual neurons) in the human. Current conceptual models attribute high level functions such as action understanding, imitation, and language to mirror neurons. However, only the first of these three functions is well-developed in monkeys. We thus distinguish current opinions (conceptual models) on mirror neuron function from more detailed computational models. We assess the strengths and weaknesses of current computational models in addressing the data and speculations on mirror neurons (macaque) and mirror systems (human). In particular, our mirror neuron system (MNS), mental state inference (MSI) and modular selection and identification for control (MOSAIC) models are analyzed in more detail. Conceptual models often overlook the computational requirements for posited functions, while too many computational models adopt the erroneous hypothesis that mirror neurons are interchangeable with imitation ability. Our meta-analysis underlines the gap between conceptual and computational models and points out the research effort required from both sides to reduce this gap.

  13. Cryogenic Test Results of Hextek Mirror

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Stahl, H. Philip; Eng, Ron; Hogue, William

    2004-01-01

    A 250 mm diameter lightweight borosilicate mirror has been interferometrically tested from room-temperature down to 30 K at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The minor blank was manufactured by Hextek Corporation using a high-temperature gas fusion process and was then polished at MSFC. It is a sandwich-type mirror consisting of a thin face-sheet (approx.1.5 mm thick), a core structure (20 mm thick, approx.43 mm diameter cells, & 0.5-1.2 mm thick walls), and a thin back-sheet (3 mm thick). The mirror has a 2500 mm spherical radius-of- curvature @/lo). The areal density is 14 kg/sq m. The mirror was tested in the 1 m x 2 m chamber using an Instantaneous Phase Interferometer (PI) from ADE Phase Shift Technologies. The mirror was tested twice. The first test measured the change in surface figure from ambient to 30 K and the repeatability of the change. An attempt was then made by QED Technologies to cryo-figure the mirror using magnetorheological finishing. The second test measured the effectiveness of the cryo- figuring. This paper will describe the test goals, the test instrumentation, and the test results for these cryogenic tests.

  14. High resolution imaging of a subsonic projectile using automated mirrors with large aperture

    NASA Astrophysics Data System (ADS)

    Tateno, Y.; Ishii, M.; Oku, H.

    2017-02-01

    Visual tracking of high-speed projectiles is required for studying the aerodynamics around the objects. One solution to this problem is a tracking method based on the so-called 1 ms Auto Pan-Tilt (1ms-APT) system that we proposed in previous work, which consists of rotational mirrors and a high-speed image processing system. However, the images obtained with that system did not have high enough resolution to realize detailed measurement of the projectiles because of the size of the mirrors. In this study, we propose a new system consisting of enlarged mirrors for tracking a high-speed projectiles so as to achieve higher-resolution imaging, and we confirmed the effectiveness of the system via an experiment in which a projectile flying at subsonic speed tracked.

  15. Mirror Neurons through the Lens of Epigenetics

    PubMed Central

    Ferrari, Pier F.; Tramacere, Antonella; Simpson, Elizabeth A.; Iriki, Atsushi

    2013-01-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this article, we argue that, in light of recent evidence, this is, at best, an incomplete and oversimplified view of mirror neurons, whose activity is actually quite variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although extant associative and genetic accounts fail to consider the complexity of genetic and non-genetic interactions, we propose a new Evo-Devo perspective, which predicts that environmental differences early in development, or through sensorimotor training, should produce variations in mirror neuron response patterns, tuning them to the social environment. PMID:23953747

  16. Optical fabrication of lightweighted 3D printed mirrors

    NASA Astrophysics Data System (ADS)

    Herzog, Harrison; Segal, Jacob; Smith, Jeremy; Bates, Richard; Calis, Jacob; De La Torre, Alyssa; Kim, Dae Wook; Mici, Joni; Mireles, Jorge; Stubbs, David M.; Wicker, Ryan

    2015-09-01

    Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.

  17. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

  18. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  19. Cortical mechanisms of mirror therapy after stroke.

    PubMed

    Rossiter, Holly E; Borrelli, Mimi R; Borchert, Robin J; Bradbury, David; Ward, Nick S

    2015-06-01

    Mirror therapy is a new form of stroke rehabilitation that uses the mirror reflection of the unaffected hand in place of the affected hand to augment movement training. The mechanism of mirror therapy is not known but is thought to involve changes in cerebral organization. We used magnetoencephalography (MEG) to measure changes in cortical activity during mirror training after stroke. In particular, we examined movement-related changes in the power of cortical oscillations in the beta (15-30 Hz) frequency range, known to be involved in movement. Ten stroke patients with upper limb paresis and 13 healthy controls were recorded using MEG while performing bimanual hand movements in 2 different conditions. In one, subjects looked directly at their affected hand (or dominant hand in controls), and in the other, they looked at a mirror reflection of their unaffected hand in place of their affected hand. The movement-related beta desynchronization was calculated in both primary motor cortices. Movement-related beta desynchronization was symmetrical during bilateral movement and unaltered by the mirror condition in controls. In the patients, movement-related beta desynchronization was generally smaller than in controls, but greater in contralesional compared to ipsilesional motor cortex. This initial asymmetry in movement-related beta desynchronization between hemispheres was made more symmetrical by the presence of the mirror. Mirror therapy could potentially aid stroke rehabilitation by normalizing an asymmetrical pattern of movement-related beta desynchronization in primary motor cortices during bilateral movement. © The Author(s) 2014.

  20. Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons.

    PubMed

    Bonaiuto, James; Arbib, Michael A

    2010-04-01

    A mirror system is active both when an animal executes a class of actions (self-actions) and when it sees another execute an action of that class. Much attention has been given to the possible roles of mirror systems in responding to the actions of others but there has been little attention paid to their role in self-actions. In the companion article (Bonaiuto et al. Biol Cybern 96:9-38, 2007) we presented MNS2, an extension of the Mirror Neuron System model of the monkey mirror system trained to recognize the external appearance of its own actions as a basis for recognizing the actions of other animals when they perform similar actions. Here we further extend the study of the mirror system by introducing the novel hypotheses that a mirror system may additionally help in monitoring the success of a self-action and may also be activated by recognition of one's own apparent actions as well as efference copy from one's intended actions. The framework for this computational demonstration is a model of action sequencing, called augmented competitive queuing, in which action choice is based on the desirability of executable actions. We show how this "what did I just do?" function of mirror neurons can contribute to the learning of both executability and desirability which in certain cases supports rapid reorganization of motor programs in the face of disruptions.

  1. Ion-assisted coating for large-scale Bimorph deformable mirror

    NASA Astrophysics Data System (ADS)

    Mikami, Takuya; Okamoto, Takayuki; Yoshida, Kunio; Jitsuno, Takahisa; Motokoshi, Shinji; Samarkin, Vadim V.; Kudryashov, Alexis V.; Kawanaka, Junji; Miyanaga, Noriaki

    2016-07-01

    We have fabricated a 410 x 468 mm size deformable mirror with 100 Bimorph piezoceramic actuators for the LFEX laser system at Osaka University. In the case of Bimorph-type deformable mirrors, the mirror surface had to be polished and coated after bonding the piezoceramic actuators to the rear side of the thin mirror substrate. This provides a good surface figure, but the coating temperature for the high-reflection mirror was strictly limited because of the thermal fragility of piezoceramic actuators. The mirror substrate with the actuators was polished, and an ion-assisted multilayer dielectric coating was produced at 60 degrees Celsius with our 80-inch coating chamber. The flatness of the mirror just after coating was 7 μm, and reduced by aging to 3.2 μm when the mirror was assembled. The surface figure of the assembled mirror with 20 piezostack bonded actuators is demonstrated and a laser-induced damage threshold tested with a witness sample is also reported.

  2. Space Mirror Memorial

    NASA Image and Video Library

    2007-01-27

    The Space Mirror Memorial, seen in profile, is reflected in the nearby lake at the KSC Visitor Complex. The memorial is the scene of a ceremony being held in remembrance of the astronauts lost in the Apollo 1 fire: Virgil "Gus" Grissom, Edward H. White II and Roger B. Chaffee. The mirror was designated as a national memorial by Congress and President George Bush in 1991 to honor fallen astronauts. Their names are emblazoned on the monument's 42-1/2-foot-high by 50-foot-wide black granite surface as if to be projected into the heavens.

  3. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  4. Looking through the mirror: optical microcavity-mirror image photonic interaction.

    PubMed

    Shi, Lei; Xifré-Pérez, E; García de Abajo, F J; Meseguer, F

    2012-05-07

    Although science fiction literature and art portray extraordinary stories of people interacting with their images behind a mirror, we know that they are not real and belong to the realm of fantasy. However, it is well known that charges or magnets near a good electrical conductor experience real attractive or repulsive forces, respectively, originating in the interaction with their images. Here, we show strong interaction between an optical microcavity and its image under external illumination. Specifically, we use silicon nanospheres whose high refractive index makes well-defined optical resonances feasible. The strong interaction produces attractive and repulsive forces depending on incident wavelength, cavity-metal separation and resonance mode symmetry. These intense repulsive photonic forces warrant a new kind of optical levitation that allows us to accurately manipulate small particles, with important consequences for microscopy, optical sensing and control of light by light at the nanoscale.

  5. Towards plasma cleaning of ITER first mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Eren, B.; Steiner, R.; Mathys, D.; Leipold, F.; Reichle, R.; Meyer, E.

    2015-06-01

    To avoid reflectivity losses in ITER's optical diagnostic systems, on-site cleaning of metallic first mirrors via plasma sputtering is foreseen to remove deposit build-ups migrating from the main wall. In this work, the influence of aluminium and tungsten deposits on the reflectivity of molybdenum mirrors as well as the possibility to clean them with plasma exposure is investigated. Porous ITER-like deposits are grown to mimic the edge conditions expected in ITER, and a severe degradation in the specular reflectivity is observed as these deposits build up on the mirror surface. In addition, dense oxide films are produced for comparisons with porous films. The composition, morphology and crystal structure of several films were characterized by means of scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction and secondary ion mass spectrometry. The cleaning of the deposits and the restoration of the mirrors' optical properties are possible either with a Kaufman source or radio frequency directly applied to the mirror (or radio frequency plasma generated directly around the mirror surface). Accelerating ions of an external plasma source through a direct current applied onto the mirror does not remove deposits composed of oxides. A possible implementation of plasma cleaning in ITER is addressed.

  6. 49 CFR 393.80 - Rear-vision mirrors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Rear-vision mirrors. 393.80 Section 393.80... NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.80 Rear-vision mirrors. (a) Every bus, truck, and truck tractor shall be equipped with two rear-vision mirrors, one at each side, firmly...

  7. 49 CFR 393.80 - Rear-vision mirrors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Rear-vision mirrors. 393.80 Section 393.80... NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.80 Rear-vision mirrors. (a) Every bus, truck, and truck tractor shall be equipped with two rear-vision mirrors, one at each side, firmly...

  8. Body ownership and attention in the mirror: insights from somatoparaphrenia and the rubber hand illusion.

    PubMed

    Jenkinson, Paul M; Haggard, Patrick; Ferreira, Nicola C; Fotopoulou, Aikaterini

    2013-07-01

    The brain receives and synthesises information about the body from different modalities, coordinates and perspectives, and affords us with a coherent and stable sense of body ownership. We studied this sense in a somatoparaphrenic patient and three control patients, all with unilateral right-hemisphere lesions. We experimentally manipulated the visual perspective (direct- versus mirror-view) and spatial attention (drawn to peripersonal space versus extrapersonal space) in an experiment involving recognising one's own hand. The somatoparaphrenic patient denied limb ownership in all direct view trials, but viewing the hand via a mirror significantly increased ownership. The extent of this increase depended on spatial attention; when attention was drawn to the extrapersonal space (near-the-mirror) the patient showed a near perfect recognition of her arm in the mirror, while when attention was drawn to peripersonal space (near-the-body) the patient recognised her arm in only half the mirror trials. In a supplementary experiment, we used the Rubber Hand Illusion to manipulate the same factors in healthy controls. Ownership of the rubber hand occurred in both direct and mirror view, but shifting attention between peripersonal and extrapersonal space had no effect on rubber-hand ownership. We conclude that the isolation of visual perspectives on the body and the division of attention between two different locations is not sufficient to affect body ownership in healthy individuals and right hemisphere controls. However, in somatoparaphrenia, where first-person body ownership and stimulus-driven attention are impaired by lesions to a right-hemisphere ventral attentional-network, the body can nevertheless be recognised as one's own if perceived in a third-person visual perspective and particularly if top-down, spatial attention is directed away from peripersonal space. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  10. Design of Off-Axis PIAACMC Mirrors

    NASA Technical Reports Server (NTRS)

    Pluzhnik, Eugene; Guyon, Olivier; Belikov, Ruslan; Kern, Brian; Bendek, Eduardo

    2015-01-01

    The Phase-Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and tip/tilt sensitivity of the coronagraph. As a result, unlike classic PIAA, the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA (Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets) telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.

  11. Mirror therapy: A potential intervention for pain management.

    PubMed

    Wittkopf, Priscilla G; Johnson, Mark I

    2017-11-01

    The consequences of chronic pain and associated disabilities to the patient and to the health care system are well known. Medication is often the first treatment of choice for chronic pain, although side effects and high costs restrict long-term use. Inexpensive, safe and easy to self-administer non-pharmacological therapies, such as mirror therapy, are recommended as adjuncts to pain treatment. The purpose of this review is to describe the principles of use of mirror therapy so it can be incorporated into a health care delivery. The physiological rationale of mirror therapy for the management of pain and the evidence of clinical efficacy based on recent systematic reviews are also discussed. Mirror therapy, whereby a mirror is placed in a position so that the patient can view a reflection of a body part, has been used to treat phantom limb pain, complex regional pain syndrome, neuropathy and low back pain. Research evidence suggests that a course of treatment (four weeks) of mirror therapy may reduce chronic pain. Contraindications and side effects are few. The mechanism of action of mirror therapy remains uncertain, with reintegration of motor and sensory systems, restored body image and control over fear-avoidance likely to influence outcome. The evidence for clinical efficacy of mirror therapy is encouraging, but not yet definitive. Nevertheless, mirror therapy is inexpensive, safe and easy for the patient to self-administer.

  12. Design and manufacture of 8.4 m primary mirror segments and supports for the GMT

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Angel, J. R. P.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Johns, M.; Kingsley, J. S.; Kot, L. B.; Lutz, R. D.; Miller, S. M.; Shectman, S. A.; Strittmatter, P. A.; Zhao, C.

    2006-06-01

    The design, manufacture and support of the primary mirror segments for the GMT build on the successful primary mirror systems of the MMT, Magellan and Large Binocular telescopes. The mirror segment and its support system are based on a proven design, and the experience gained in the existing telescopes has led to significant refinements that will provide even better performance in the GMT. The first 8.4 m segment has been cast at the Steward Observatory Mirror Lab, and optical processing is underway. Measurement of the off-axis surface is the greatest challenge in the manufacture of the segments. A set of tests that meets the requirements has been defined and the concepts have been developed in some detail. The most critical parts of the tests have been demonstrated in the measurement of a 1.7 m off-axis prototype. The principal optical test is a full-aperture, high-resolution null test in which a hybrid reflective-diffractive null corrector compensates for the 14 mm aspheric departure of the off-axis segment. The mirror support uses the same synthetic floatation principle as the MMT, Magellan, and LBT mirrors. Refinements for GMT include 3-axis actuators to accommodate the varying orientations of segments in the telescope.

  13. A mirror control mechanism for space telescope

    NASA Astrophysics Data System (ADS)

    Cadiergues, L.; Bourdit, C.; Trouchet, D.; Larcher, V.; Sugranes, P.; Leletty, R.; Barillot, F.

    2003-09-01

    The high resolution optical instruments require more and more stability on the relative position between their different mirrors. The use of a mirror control mechanism (MCM) allows to correct in flight the position of the mirror (in particular the focusing and the 2 tilts). The mechanism described hereafter is designed for a Cassegrain telescope secondary mirror. The selected concept is based on 3 vertical actuators which produce the focusing and tilts movements, and three horizontal actuators which produce the transverse movements. This architecture offers 5 degrees of freedom which guarantee the absence of rejection for any kind of correction. After the design phase, a demonstrator was manufactured and characterised by functional and mechanical tests. This mechanism is able to control any type of axisymmetric mirror within 5 degrees of freedom. The mass of the model presented is 3.5kg with overall dimensions ø280mm/H77mm (except electronics). This concept can be adapted to smaller versions of mirror requiring an active control, and in a more general way to equipments for which the pointing precision is a key requirement.

  14. Optical Performance Modeling of FUSE Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren

    2000-01-01

    We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence

  15. White-Light Phase-Conjugate Mirrors as Distortion Correctors

    NASA Technical Reports Server (NTRS)

    Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha

    2010-01-01

    White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary

  16. Deformable Mirror Materials Issue Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, R E

    2008-05-27

    It was a pleasure to speak with you and Dr. Olivier Guyon about your project to develop a coronagraph and in particular about materials science considerations in the development of the deformable mirror (DM) for the coronagraph. The coronagraph application will demand more of a DM than previous applications with regard to precision, and since the characterization and modeling tools are currently under development, you asked me to comment on materials issues that might impact the DM design and testing. I have not conducted research on this question, and my own research on modeling MEMS has not included DM systems.more » I am only in a position to discuss some general considerations that may help in developing a research plan for the DM system. As I understand it, the relevant points about the DM system are as follows. The DM surface needs to be positioned to less than 1 {angstrom} RMS of the desired shape, and be stable to 0.3 {angstrom} RMS for an hour. In the ultimate application in space the stability requirements may be greater. For example, the DM shape can be set using a bright star and then allow the coronagraph to be turned to a dim star to collect data for several hours, counting on the mirror shape to be stable. The DM is made of a polysilicon membrane coated with one or more metal layers for the reflective surface and actuated by 32x32 or 64x64 electrostatic actuators on the back side. The uncertainty in the position of any one actuator should be at the few-picometer level or less averaged over the 300-{micro}m region of the actuator. Currently, experiments are conducted that can characterize the surface shape to the 1 nm level, and it is anticipated that the experiments will be able to characterize the shape at the sub-Angstrom level but not in the immediate future. Regarding stability, under relatively large deformations (10's of nm), the DM mirror surface shows no hysteresis at the measurable nm level. Let me begin by saying that I am not aware of

  17. The Webb Telescope's Actuators: Curving Mirrors in Space

    NASA Image and Video Library

    2017-12-08

    NASA image release December 9, 2010 Caption: The James Webb Space Telescope's Engineering Design Unit (EDU) primary mirror segment, coated with gold by Quantum Coating Incorporated. The actuator is located behind the mirror. Credit: Photo by Drew Noel NASA's James Webb Space Telescope is a wonder of modern engineering. As the planned successor to the Hubble Space telescope, even the smallest of parts on this giant observatory will play a critical role in its performance. A new video takes viewers behind the Webb's mirrors to investigate "actuators," one component that will help Webb focus on some of the earliest objects in the universe. The video called "Got Your Back" is part of an on-going video series about the Webb telescope called "Behind the Webb." It was produced at the Space Telescope Science Institute (STScI) in Baltimore, Md. and takes viewers behind the scenes with scientists and engineers who are creating the Webb telescope's components. During the 3 minute and 12 second video, STScI host Mary Estacion interviewed people involved in the project at Ball Aerospace in Boulder, Colo. and showed the actuators in action. The Webb telescope will study every phase in the history of our universe, ranging from the first luminous glows after the big bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system. Measuring the light this distant light requires a primary mirror 6.5 meters (21 feet 4 inches) across – six times larger than the Hubble Space telescope’s mirror! Launching a mirror this large into space isn’t feasible. Instead, Webb engineers and scientists innovated a unique solution – building 18 mirrors that will act in unison as one large mirror. These mirrors are packaged together into three sections that fold up - much easier to fit inside a rocket. Each mirror is made from beryllium and weighs approximately 20 kilograms (46 pounds). Once in space, getting these mirrors to

  18. The eROSITA X-ray mirrors: technology and qualification aspects of the production of mandrels, shells and mirror modules

    NASA Astrophysics Data System (ADS)

    Arcangeli, L.; Borghi, G.; Bräuninger, H.; Citterio, O.; Ferrario, I.; Friedrich, P.; Grisoni, G.; Marioni, F.; Predehl, P.; Rossi, M.; Ritucci, A.; Valsecchi, G.; Vernani, D.

    2017-11-01

    The name "eROSITA" stands for extended Roentgen Survey with an Imaging Telescope Array. The general design of the eROSITA X-ray telescope is derived from that of ABRIXAS. A bundle of 7 mirror modules with short focal lengths make up a compact telescope which is ideal for survey observations. Similar designs had been proposed for the missions DUO and ROSITA but were not realized due to programmatic shortfall. Compared to those, however, the effective area in the soft X-ray band has now much increased by adding 27 additional outer mirror shells to the original 27 ones of each mirror module. The requirement on the on-axis resolution has also been confined, namely to 15 arc seconds HEW. For these reasons the prefix "extended" was added to the original name "ROSITA". The scientific motivation for this extension is founded in the ambitious goal to detect about 100,000 clusters of galaxies which trace the large scale structure of the Universe in space and time. The X-ray telescope of eROSITA will consist of 7 identical and co-aligned mirror modules, each with 54 nested Wolter-1 mirror shells. The mirror shells are glued onto a spider wheel which is screwed to the mirror interface structure making a rigid mechanical unit. The assembly of 7 modules forms a compact hexagonal configuration with 1300 mm diameter (see Fig. 1) and will be attached to the telescope structure which connects to the 7 separate CCD cameras in the focal planes. The co-alignment of the mirror module enables eROSITA to perform also pointed observations. The replication process described in chapter III allows the manufacturing in one single piece and at the same time of both the parabola and hyperbola parts of the Wolter 1 mirror.

  19. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  20. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  1. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  2. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  3. Latest experience in design of piezoelectric-driven fine-steering mirrors

    NASA Astrophysics Data System (ADS)

    Marth, Harry; Donat, Michael; Pohlhammer, Charles F.

    1992-01-01

    The European Space Organization (ESO) requested Physik Instrumente (PI) to develop a system to compensate for atmospherically induced image jitter in astronomical telescopes. The product, designated S-380 by PI, is a sophisticated adaptive optic system using closed loop piezoelectric actuators and momentum compensation to significantly improve telescope resolution during long integrations by correcting for image jitter in real time. Optimizing the design of this system involved solving several interdependent problems, including: (1) selection of the motion system, (2) arrangement of the pivot points and actuators, (3) momentum compensation, and (4) selection of the sensor system. This paper presents the trade-offs leading to final design of the S-380 system, some supporting technical analysis and ongoing efforts at PI to provide fast tilting platforms for larger mirrors.

  4. A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Peters, Brian; Kofman, Igor; Philips, Tiffany; Batson, Crystal; Cerisano, Jody; Fisher, Elizabeth; Mulavara, Ajitkumar; Feiveson, Alan; Reschke, Millard; hide

    2015-01-01

    Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.

  5. On the dynamics of a semitransparent moving mirror

    NASA Astrophysics Data System (ADS)

    Nicolaevici, Nistor

    2011-01-01

    Perfectly reflecting mirrors in the two-dimensional Minkowski space subjected to the reaction force due to the radiated quantum flux evoluate according to the Abraham-Lorentz-Dirac equation, which admits unphysical solutions. We investigate the non-relativistic equation of motion of a semitransparent mirror and show that the unphysical solutions are absent, provided that the energy which characterizes the reflectivity of the mirror is sufficiently small compared to the mirror's mass.

  6. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    Caption: One dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis

  7. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    A view of the one dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the

  8. Quantum channels from reflections on moving mirrors.

    PubMed

    Gianfelici, Giulio; Mancini, Stefano

    2017-11-16

    Light reflection on a mirror can be thought as a simple physical effect. However if this happens when the mirror moves a rich scenario opens up. Here we aim at analyzing it from a quantum communication perspective. In particular, we study the kind of quantum channel that arises from (Gaussian) light reflection upon an accelerating mirror. Two competing mechanisms emerge in such a context, namely photons production by the mirror's motion and interference between modes. As consequence we find out a quantum amplifier channel and quantum lossy channel respectively below and above a threshold frequency (that depends on parameters determining mirror's acceleration). Exactly at the threshold frequency the channel behaves like a purely classical additive channel, while it becomes purely erasure for large frequencies. In addition the time behavior of the channel is analyzed by employing wave packets expansion of the light field.

  9. Cooling options for high-average-power laser mirrors

    NASA Astrophysics Data System (ADS)

    Vojna, D.; Slezak, O.; Lucianetti, A.; Mocek, T.

    2015-01-01

    Thermally-induced deformations of steering mirrors reflecting 100 J/10 Hz laser pulses in vacuum have been analyzed. This deformation is caused by the thermal stress arisen due to parasitic absorption of 1 kW square-shaped flat-top laser beam in the dielectric multi-layer structure. Deformation depends on amount of absorbed power and geometry of the mirror as well as on the heat removal scheme. In our calculations, the following percentages of absorption of the incident power have been used: 1%, 0.5% and 0.1%. The absorbed power has been considered to be much higher than that expected in reality to assess the worst case scenario. Rectangular and circular mirrors made of zerodur (low thermal expansion glass) were considered for these simulations. The effect of coating layers on induced deformations has been neglected. Induced deformation of the mirror surface can significantly degrade the quality of the laser beam in the beam delivery system. Therefore, the proper design of the cooling scheme for the mirror in order to minimize the deformations is needed. Three possible cooling schemes of the mirror have been investigated. The first one takes advantage of a radiation cooling of the mirror and a copper heatsink fixed to the rear face of the mirror, the second scheme is based on additional heat conduction provided by flexible copper wires connected to the mirror holder, and the last scheme combines two above mentioned methods.

  10. Production of Ar{sup q+} ions with a tandem linear Paul trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higaki, H., E-mail: hhigaki@hiroshima-u.ac.jp; Nagayasu, K.; Iwai, T.

    A tandem linear Paul trap was used to create highly charged Argon ions by electron impact ionizations. By improving the operation scheme, the production of Ar{sup 4+} ions was confirmed. Possible improvements for the future experiments with laser cooled Ca{sup +} ions are suggested.

  11. An achromatic four-mirror compensator for spectral ellipsometers

    NASA Astrophysics Data System (ADS)

    Kovalev, V. I.; Rukovishnikov, A. I.; Kovalev, S. V.; Kovalev, V. V.; Rossukanyi, N. M.

    2017-07-01

    Measurement and calculation results are presented that confirm that design four-mirror compensators can be designed for the spectral range of 200-2000 nm that is widely used in modern spectral ellipsometers. Measurements and calculations according to standard ellipsometric programs have been carried out on a broadband LED spectral ellipsometer with switching of orthogonal polarization states. Mirrors with the structure of glass substrate/Al2O3 layer (20-30 nm thick)/Al layer (150 nm thick)/upper Al2O3 layer (with specified thickness d) have been prepared by vacuum-evaporation method. It is shown that the phase-shift spectra of a four-mirror compensator, two mirrors of which have a native oxide 5.5 nm thick and the two others of which have an oxide layer 36 nm thick, measured on the ellipsometer, are flattened in comparison with similar spectra of a compensator, all four mirrors of which have a native oxide, especially in the short-wavelength spectral region. The results of calculating the phase-shift spectra of the four-mirror compensator with six variable parameters (angles of incidence of radiation on the mirrors and thicknesses of oxide layers on four mirrors) are presented. High-quality achromatization in a wide spectral range can be achieved for certain sets of parameters.

  12. Electromagnetic deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Doelman, N.; Overtoom, T.; Nieuwkoop, E.; Russchenberg, T.; van Riel, M.; Wildschut, J.; Baeten, M.; Spruit, H.; Brinkers, S.; Human, J.

    2017-09-01

    To increase the collecting power and to improve the angular imaging resolution, space telescopes are evolving towards larger primary mirrors. The aerial density of the telescope mirrors needs to be kept low, however, to be compatible with the launch requirements. A light-weight (primary) mirror will introduce additional optical aberrations to the system. These may be caused by for instance manufacturing errors, gravity release and thermo-elastic effects. Active Optics (AO) is a key candidate technology to correct for the resultant wave front aberrations [1].

  13. Design and optimization of the CFRP mirror components

    NASA Astrophysics Data System (ADS)

    Wei, Lei; Zhang, Lei; Gong, Xiaoxue

    2017-09-01

    As carbon fiber reinforced polymer (CFRP) material has been developed and demonstrated as an effective material in lightweight telescope reflector manufacturing recently, the authors of this article have extended to apply this material on the lightweight space camera mirror design and fabrication. By CFRP composite laminate design and optimization using finite element method (FEM) analysis, a spherical mirror with φ316 mm diameter whose core cell reinforcement is an isogrid configuration is fabricated. Compared with traditional ways of applying ultra-low-expansion glass (ULE) on the CFRP mirror surface, the method of nickel electroplating on the surface effectively reduces the processing cost and difficulty of the CFRP mirror. Through the FEM analysis, the first order resonance frequency of the CFRP mirror components reaches up to 652.3 Hz. Under gravity affection coupling with +5°C temperature rising, the mirror surface shape root-mean-square values (RMS) at the optical axis horizontal state is 5.74 nm, which meets mechanical and optical requirements of the mirror components on space camera.

  14. Carbon Fiber Mirror for a CubeSat Telescope

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Jang, Jeong Gyun; Kim, Jihun; Nam, Uk Won

    2017-08-01

    Telescope mirrors made by carbon fibers have been increasingly used especially for space applications, and they may replace the traditional glass mirrors. Glass mirrors are easy to fabricate, but needed to be carefully handled as they are brittle. Other materials have also been considered for telescope mirrors, such as metals, plastics, and liquids even. However glass and glass ceramics are still commonly and dominantly used.Carbon fiber has mainly been used for mechanical supports like truss structure and telescope tubes, as it is stiff and light-weight. It can also be a good material for telescope mirrors, as it has additional merits of non-brittle and very low thermal expansion. Therefore, carbon fiber mirror would be suitable for space telescopes which should endure the harsh vibration conditions during launch.A light-weight telescope made by carbon fiber has been designed for a small satellite which would have much less weight than conventional ones. In this poster, mirror materials are reviewed, and a design of carbon fiber telescope is presented and discussed.

  15. Long-Lived Glass Mirrors For Outer Space

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Maag, Carl R.; Heggen, Philip M.

    1988-01-01

    Paper summarizes available knowledge about glass mirrors for use in outer space. Strengths and weaknesses of various types of first and second reflective surfaces identified. Second-surface glass mirrors used in outer space designed to different criteria more stringent for terrestrial mirrors. Protons, electrons, cosmic rays, meteorites, and orbiting space debris affect longevities of components. Contamination also factor in space.

  16. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    DTIC Science & Technology

    2008-09-01

    Silicon Carbide Technologies for Lightweighted Aerospace Mirrors Lawrence E. Matson (1) Ming Y. Chen (1) Brett deBlonk (2) Iwona A...glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs...for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive

  17. Adjusting Curvatures Of Large Mirrors And Lenses

    NASA Technical Reports Server (NTRS)

    Birnbaum, Morris M.

    1992-01-01

    Actuators apply stresses to generate distortions counteracting undesired distortions in technique for adjusting curvature of large focusing mirror or lens. Motor-and-gear assemblies under remote control vary squeeze of ring clamp and push or pull of hollow shaft to make fine adjustments in curvature of mirror. Applicable to large astronomical-telescope mirrors with diameters of 60 cm or more.

  18. Mirror neuron system: basic findings and clinical applications.

    PubMed

    Iacoboni, Marco; Mazziotta, John C

    2007-09-01

    In primates, ventral premotor and rostral inferior parietal neurons fire during the execution of hand and mouth actions. Some cells (called mirror neurons) also fire when hand and mouth actions are just observed. Mirror neurons provide a simple neural mechanism for understanding the actions of others. In humans, posterior inferior frontal and rostral inferior parietal areas have mirror properties. These human areas are relevant to imitative learning and social behavior. Indeed, the socially isolating condition of autism is associated with a deficit in mirror neuron areas. Strategies inspired by mirror neuron research recently have been used in the treatment of autism and in motor rehabilitation after stroke.

  19. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1988-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  20. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1984-07-20

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  1. Three-mirror anastigmat for cosmic microwave background observations.

    PubMed

    Padin, S

    2018-03-20

    An off-axis three-mirror anastigmat is proposed for future cosmic microwave background observations. The telescope has a 5 m diameter primary, giving 1.5 ' angular resolution at λ=2  mm, which is sufficient for measurements of gravitational lensing and for galaxy cluster surveys. The design includes several key features, not previously combined in a large telescope, that are important for sensitive measurements, especially on large angular scales: (1) high throughput (8° diameter diffraction-limited field of view at λ=1  mm, and 12×8° at λ=3  mm, so a single telescope could support all the detectors for an optimistic, future experiment); (2) low scattering (all the mirrors are small enough to be monolithic, so there are no segment gaps); (3) full boresight rotation, over the full elevation range, for measuring polarization errors; and (4) a comoving shield or baffle around the entire telescope to control pickup.

  2. Mirror therapy in children with hemiplegia: a pilot study.

    PubMed

    Gygax, Marine Jequier; Schneider, Patrick; Newman, Christopher John

    2011-05-01

    Mirror therapy, which provides the visual illusion of a functional paretic limb by using the mirror reflection of the non-paretic arm, is used in the rehabilitation of hemiparesis after stroke in adults. We tested the effectiveness and feasibility of mirror therapy in children with hemiplegia by performing a pilot crossover study in ten participants (aged 6-14 y; five males, five females; Manual Ability Classification System levels: one at level I, two at level II, four at level III, three at level IV) randomly assigned to 15 minutes of daily bimanual training with and without a mirror for 3 weeks. Assessments of maximal grasp and pinch strengths, and upper limb function measured by the Shriner's Hospital Upper Extremity Evaluation were performed at weeks 0 (baseline), 3, 6 (intervention), and 9 (wash-out). Testing of grasp strength behind the mirror improved performance by 15% (p=0.004). Training with the mirror significantly improved grasp strength (with mirror +20.4%, p=0.033; without +5.9%, p>0.1) and upper limb dynamic position (with mirror +4.6%, p=0.044; without +1.2%, p>0.1), while training without a mirror significantly improved pinch strength (with mirror +6.9%, p>0.1; without +21.9%, p=0.026). This preliminary study demonstrates the feasibility of mirror therapy in children with hemiplegia and that it may improve strength and dynamic function of the paretic arm. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  3. Characterization of a piezo bendable X-ray mirror.

    PubMed

    Vannoni, Maurizio; Freijo Martín, Idoia; Siewert, Frank; Signorato, Riccardo; Yang, Fan; Sinn, Harald

    2016-01-01

    A full-scale piezo bendable mirror built as a prototype for an offset mirror at the European XFEL is characterized. The piezo ceramic elements are glued onto the mirror substrate, side-face on with respect to the reflecting surface. Using a nanometre optical component measuring machine and a large-aperture Fizeau interferometer, the mirror profile and influence functions were characterized, and further analysis was made to investigate the junction effect, hysteresis, twisting and reproducibility.

  4. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  5. The TMS Motor Map Does Not Change Following a Single Session of Mirror Training Either with Or without Motor Imagery

    PubMed Central

    van de Ruit, Mark; Grey, Michael J.

    2017-01-01

    Both motor imagery and mirror training have been used in motor rehabilitation settings to promote skill learning and plasticity. As motor imagery and mirror training are suggested to be closely linked, it was hypothesized that mirror training augmented by motor imagery would increase corticospinal excitability (CSE) significantly compared to mirror training alone. Forty-four participants were split over two experimental groups. Each participant visited the laboratory once to receive either mirror training alone or mirror training augmented with layered stimulus response training (LSRT), a type of motor imagery training. Participants performed 16 min of mirror training, making repetitive grasping movements paced by a metronome. Transcranial magnetic stimulation (TMS) mapping was performed before and after the mirror training to test for changes in CSE of the untrained hand. Self-reports suggested that the imagery training was effective in helping the participant to perform the mirror training task as instructed. Nonetheless, neither training type resulted in a significant change of TMS map area, nor was there an interaction between the groups. The results from the study revealed no effect of a single session of 16 min of either mirror training or mirror training enhanced by imagery on TMS map area. Despite the negative result of the present experiment, this does not suggest that either motor imagery or mirror training might be ineffective as a rehabilitation therapy. Further study is required to allow disentangling the role of imagery and action observation in mirror training so that mirror training can be further tailored to the individual according to their abilities. PMID:29311869

  6. The TMS Motor Map Does Not Change Following a Single Session of Mirror Training Either with Or without Motor Imagery.

    PubMed

    van de Ruit, Mark; Grey, Michael J

    2017-01-01

    Both motor imagery and mirror training have been used in motor rehabilitation settings to promote skill learning and plasticity. As motor imagery and mirror training are suggested to be closely linked, it was hypothesized that mirror training augmented by motor imagery would increase corticospinal excitability (CSE) significantly compared to mirror training alone. Forty-four participants were split over two experimental groups. Each participant visited the laboratory once to receive either mirror training alone or mirror training augmented with layered stimulus response training (LSRT), a type of motor imagery training. Participants performed 16 min of mirror training, making repetitive grasping movements paced by a metronome. Transcranial magnetic stimulation (TMS) mapping was performed before and after the mirror training to test for changes in CSE of the untrained hand. Self-reports suggested that the imagery training was effective in helping the participant to perform the mirror training task as instructed. Nonetheless, neither training type resulted in a significant change of TMS map area, nor was there an interaction between the groups. The results from the study revealed no effect of a single session of 16 min of either mirror training or mirror training enhanced by imagery on TMS map area. Despite the negative result of the present experiment, this does not suggest that either motor imagery or mirror training might be ineffective as a rehabilitation therapy. Further study is required to allow disentangling the role of imagery and action observation in mirror training so that mirror training can be further tailored to the individual according to their abilities.

  7. Double arch mirror study. Part 1: Preliminary engineering report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    In the proposed design, the NASA AMES 20-in double arch mirror is supported by three clamp and flexure assemblies. The mirror clamp consists of a T-shaped Invar-36 member that goes into a similarly shaped socket in the back of the mirror. The mirror socket is made oversize and contacts the clamp only along the conical surface. The clamp is preloaded by a spring washer and pulls the mirror into contact with the flexure. The clamp is then inserted into the mirror socket through a cutout, is rotated 90 deg, and is then pinned in place. Loading conditions considered in socket design are discussed as well as stress in the socket and clamp. Flexure geometry and stress are examined as well as the effects of flexure error and of mirror cell error.

  8. Secondary mirror system for the European Solar Telescope (EST)

    NASA Astrophysics Data System (ADS)

    Cavaller, L.; Siegel, B.; Prieto, G.; Hernandez, E.; Casalta, J. M.; Mercader, J.; Barriga, J.

    2010-07-01

    The European Solar Telescope (EST) is a European collaborative project to build a 4m class solar telescope in the Canary Islands, which is now in its design study phase. The telescope will provide diffraction limited performance for several instruments observing simultaneously at the Coudé focus at different wavelengths. A multi-conjugated adaptive optics system composed of a tip-tilt mirror and several deformable mirrors will be integrated in the telescope optical path. The secondary mirror system is composed of the mirror itself (Ø800mm), the alignment drives and the cooling system needed to remove the solar heat load from the mirror. During the design study the feasibility to provide fast tip-tilt capabilities at the secondary mirror to work as the adaptive optics tip-tilt mirror is also being evaluated.

  9. Tulip-form variable-curvature mirrors: interferometry and field compensation

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.; Mazzanti, Silvio; Ferrari, Marc

    1998-07-01

    Active Optics methods are now capable to provide variable curvature mirrors (VCMs) having controlled sags in the focal range from f/(infinity) to f/2.5. Those development have been carried out by the authors for the optical path equalizer dedicated to each Mersenne focus of the VLTI. The basic principle is to use VCMs as cat's eye mirrors in each delay line in order to achieve field compensations at the recombined Mersenne focii. During the VLTI development phase, cycloid form VCMs controlled by air pressure have been performed with a 10(superscript -4) mirror sag resolution. The cycloid form has been selected for the VLTi delay lines. However, other analytical solutions from circular plates elasticity theory have been found. Two thickness distributions lead to tulip form VCMs controlled by a central force. One of them, using a lineic reaction at the edge is the object of this paper. Active optics design, construction features, test and experimental He-Ne interferograms obtained with 16mm boundary aperture and 10mm clear aperture are presented. The mean aspect-ratio of the tulip from VCM is d/t(subscript 0.5) approximately equals 60, providing a focal zoom range from f/(infinity) to f/2.5. The experiment is carried out form f/(infinity) to f/5.

  10. Mirroring of fast solar flare electrons on a downstream corotating interaction region

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Sommers, J.; Lin, R. P.; Pick, M.; Chaizy, P.; Murphy, N.; Smith, E. J.; Phillips, J. L.

    1995-01-01

    We discuss an example of confinement of fast solar electrons by a discrete solar wind-interplanetary magnetic field structure on February 22, 1991. The structure is about 190,000 km in width and is clearly defined by changes in the direction of the magnetic field at the Ulysses spacecraft. This structure carries electrons moving toward the Sun as well as away from the Sun. A loss cone in the angular distribution of the fast electrons shows that mirroring, presumably magnetic, takes place downstream from the spacecraft. Following passage of this narrow structure, the return flux vanishes for 21 min after which time the mirroring resumes and persists for several hours. We identify the enhanced magnetic field region lying downstream from the Ulysses spacecraft that is responsible for the mirroring to be a corotating stream interaction region. Backstreaming suprathermal electron measurements by the Los Alamos National Laboratory plasma experiment on the Ulysses spacecraft support this interpretation.

  11. Mirror neurons and the social nature of language: the neural exploitation hypothesis.

    PubMed

    Gallese, Vittorio

    2008-01-01

    This paper discusses the relevance of the discovery of mirror neurons in monkeys and of the mirror neuron system in humans to a neuroscientific account of primates' social cognition and its evolution. It is proposed that mirror neurons and the functional mechanism they underpin, embodied simulation, can ground within a unitary neurophysiological explanatory framework important aspects of human social cognition. In particular, the main focus is on language, here conceived according to a neurophenomenological perspective, grounding meaning on the social experience of action. A neurophysiological hypothesis--the "neural exploitation hypothesis"--is introduced to explain how key aspects of human social cognition are underpinned by brain mechanisms originally evolved for sensorimotor integration. It is proposed that these mechanisms were later on adapted as new neurofunctional architecture for thought and language, while retaining their original functions as well. By neural exploitation, social cognition and language can be linked to the experiential domain of action.

  12. Engineers Clean Mirror with Carbon Dioxide Snow

    NASA Image and Video Library

    2015-05-07

    Just like drivers sometimes use snow to clean their car mirrors in winter, two Exelis Inc. engineers are practicing "snow cleaning'" on a test telescope mirror for the James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland. By shooting carbon dioxide snow at the surface, engineers are able to clean large telescope mirrors without scratching them. "The snow-like crystals (carbon dioxide snow) knock contaminate particulates and molecules off the mirror," said Lee Feinberg, NASA optical telescope element manager. This technique will only be used if the James Webb Space Telescope's mirror is contaminated during integration and testing. The Webb telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. With a mirror seven times as large as Hubble's and infrared capability, Webb will be capturing light from 13.5 billion light years away. To do this, its mirror must be kept super clean. "Small dust particles or molecules can impact the science that can be done with the Webb," said Feinberg. "So cleanliness especially on the mirrors is critical." Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Goddard/Chris Gunn Text credit: Laura Betz, NASA's Goddard Space Flight Center, Greenbelt, Maryland NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Optomechanical design software for segmented mirrors

    NASA Astrophysics Data System (ADS)

    Marrero, Juan

    2016-08-01

    The software package presented in this paper, still under development, was born to help analyzing the influence of the many parameters involved in the design of a large segmented mirror telescope. In summary, it is a set of tools which were added to a common framework as they were needed. Great emphasis has been made on the graphical presentation, as scientific visualization nowadays cannot be conceived without the use of a helpful 3d environment, showing the analyzed system as close to reality as possible. Use of third party software packages is limited to ANSYS, which should be available in the system only if the FEM results are needed. Among the various functionalities of the software, the next ones are worth mentioning here: automatic 3d model construction of a segmented mirror from a set of parameters, geometric ray tracing, automatic 3d model construction of a telescope structure around the defined mirrors from a set of parameters, segmented mirror human access assessment, analysis of integration tolerances, assessment of segments collision, structural deformation under gravity and thermal variation, mirror support system analysis including warping harness mechanisms, etc.

  14. Broad Separation of Isomeric Lipids by High-Resolution Differential Ion Mobility Spectrometry with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bowman, Andrew P.; Abzalimov, Rinat R.; Shvartsburg, Alexandre A.

    2017-08-01

    Maturation of metabolomics has brought a deeper appreciation for the importance of isomeric identity of lipids to their biological role, mirroring that for proteoforms in proteomics. However, full characterization of the lipid isomerism has been thwarted by paucity of rapid and effective analytical tools. A novel approach is ion mobility spectrometry (IMS) and particularly differential or field asymmetric waveform IMS (FAIMS) at high electric fields, which is more orthogonal to mass spectrometry. Here we broadly explore the power of FAIMS to separate lipid isomers, and find a 75% success rate across the four major types of glycero- and phospho- lipids ( sn, chain length, double bond position, and cis/ trans). The resolved isomers were identified using standards, and (for the first two types) tandem mass spectrometry. These results demonstrate the general merit of incorporating high-resolution FAIMS into lipidomic analyses.

  15. Development of CFRP mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo

    2013-09-01

    CFRP (Caron fiber reinforced plastics) have superior properties of high specific elasticity and low thermal expansion for satellite telescope structures. However, difficulties to achieve required surface accuracy and to ensure stability in orbit have discouraged CFRP application as main mirrors. We have developed ultra-light weight and high precision CFRP mirrors of sandwich structures composed of CFRP skins and CFRP cores using a replica technique. Shape accuracy of the demonstrated mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) and surface roughness was 5 nm RMS as fabricated. Further optimization of fabrication process conditions to improve surface accuracy was studied using flat sandwich panels. Then surface accuracy of the flat CFRP sandwich panels of 150 mm square was improved to flatness of 0.2 μm RMS with surface roughness of 6 nm RMS. The surface accuracy vs. size of trial models indicated high possibility of fabrication of over 1m size mirrors with surface accuracy of 1μm. Feasibility of CFRP mirrors for low temperature applications was examined for JASMINE project as an example. Stability of surface accuracy of CFRP mirrors against temperature and moisture was discussed.

  16. Vocal coordination and vocal imitation: a role for mirror neurons?

    PubMed

    Newman, John D

    2014-04-01

    Some birds and mammals have vocal communication systems in which coordination between individuals is important. Examples would include duetting or antiphonal calling in some birds and mammals, rapid exchanges of the same vocalization, and vocal exchanges between paired individuals and other nearby pairs. Mirror neurons may play a role in such systems but become functional only after experience.

  17. An Optically Pumped Far-Infrared Folded Mirror-Less Cavity

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Wang, Dashuai; Zhang, Peng; Qu, Yanchen

    2017-12-01

    A compact and efficient mirror-less cavity is presented for an optically pumped 192-μm far-infrared laser. With a gold-coated mirror and 30°-inclined anti-reflection coated Ge plate serving as highly reflective mirrors, a folded mirror-less CH3F cavity is achieved. Maximum energy of 0.72 mJ is obtained with the pump energy of 600 mJ, which gives an energy increment of 75% in comparison with the previous 1.85-m mirror-less system. The beam divergence angle of the FIR radiation from this folded mirror-less cavity is measured to be 14.2 mrad.

  18. Alignment and focus of mirrored facets of a heliosat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B

    2013-11-12

    Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoreticalmore » image.« less

  19. Depth rotation and mirror-image reflection reduce affective preference as well as recognition memory for pictures of novel objects.

    PubMed

    Lawson, Rebecca

    2004-10-01

    In two experiments, the identification of novel 3-D objects was worse for depth-rotated and mirror-reflected views, compared with the study view in an implicit affective preference memory task, as well as in an explicit recognition memory task. In Experiment 1, recognition was worse and preference was lower when depth-rotated views of an object were paired with an unstudied object relative to trials when the study view of that object was shown. There was a similar trend for mirror-reflected views. In Experiment 2, the study view of an object was both recognized and preferred above chance when it was paired with either depth-rotated or mirror-reflected views of that object. These results suggest that view-sensitive representations of objects mediate performance in implicit, as well as explicit, memory tasks. The findings do not support the claim that separate episodic and structural description representations underlie performance in implicit and explicit memory tasks, respectively.

  20. Precision interferometric measurements of mirror birefringence in high-finesse optical resonators

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often nonuniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R =99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μ m , with precision limited by both quantum and technical noise sources. We report a splitting of δν=618 (1 ) Hz, significantly less than the intrinsic cavity line width of δcav≈3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δ n /n =6.38 (1 ) ×10-6 .

  1. Distributed microscopic actuation analysis of deformable plate membrane mirrors

    NASA Astrophysics Data System (ADS)

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2018-02-01

    To further reduce the areal density of optical mirrors used in space telescopes and other space-borne optical structures, the concept of flexible membrane deformable mirror has been proposed. Because of their high flexibility, poor stiffness and low damping properties, environmental excitations such as orbital maneuver, path changing, and non-uniform heating may induce unexpected vibrations and thus reduce working performance. Therefore, active vibration control is essential for these membrane mirrors. In this paper, two different mirror models, i.e., the plate membrane model and pure membrane model, are studied respectively. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as actuators. Dynamic equations of the mirror laminated with piezoelectric actuators are presented first. Then, the actuator induced modal control force is defined. When the actuator area shrinks to infinitesimal, the expressions of microscopic local modal control force and its two components are obtained to predict the spatial microscopic actuation behavior of the mirror. Different membrane pretension forces are also applied to reveal the tension effects on the actuation of the mirror. Analyses indicate that the spatial distribution of modal micro-control forces is exactly the same with the sensing signals distribution of the mirror, which provides crucial guidelines for optimal actuator placement of membrane deformable mirrors.

  2. Interpersonal motor resonance in autism spectrum disorder: evidence against a global "mirror system" deficit.

    PubMed

    Enticott, Peter G; Kennedy, Hayley A; Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2013-01-01

    The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.

  3. Matlab fractal techniques used to study the structural degradation caused by alpha radiation to laser mirrors

    NASA Astrophysics Data System (ADS)

    Ioan, M.-R.

    2018-01-01

    Almost all optical diagnostic systems associated with classical particle accelerators or with new state-of-the-art particle accelerators, such as those developed within the European Collaboration ELI-NP (Extreme Light Infrastructure-Nuclear Physics) (involving extreme power laser beams), contain in their infrastructure high quality laser mirrors, used for their reflectivity and/or their partial transmittance. These high quality mirrors facilitate the extraction and handling of optical signals. When optical mirrors are exposed to high energy ionizing radiation fields, their optical and structural properties will change over time and their functionality will be affected, meaning that they will provide imprecise information. In some experiments, being exposed to mixed laser and accelerated particle beams, the deterioration of laser mirrors is even more acute, since the destruction mechanisms of both types of beams are cumulated. The main task of the work described in this paper was to find a novel specific method to analyse and highlight such degradation processes. By using complex fractal techniques integrated in a MATLAB code, the effects induced by alpha radiation to laser mirrors were studied. The fractal analysis technique represents an alternative approach to the classical Euclidean one. It can be applied for the characterization of the defects occurred in mirrors structure due to their exposure to high energy alpha particle beams. The proposed method may be further integrated into mirrors manufacturing process, as a testing instrument, to obtain better quality mirrors (enhanced resistance to high energy ionizing beams) by using different types of reflective coating materials and different deposition techniques. Moreover, the effect of high energy alpha ionizing particles on the optical properties of the exposed laser mirrors was studied by using spectrophotometric techniques.

  4. Performance of lightweight large C/SiC mirror

    NASA Astrophysics Data System (ADS)

    Yui, Yukari Y.; Goto, Ken; Kaneda, Hidehiro; Katayama, Haruyoshi; Kotani, Masaki; Miyamoto, Masashi; Naitoh, Masataka; Nakagawa, Takao; Saruwatari, Hideki; Suganuma, Masahiro; Sugita, Hiroyuki; Tange, Yoshio; Utsunomiya, Shin; Yamamoto, Yasuji; Yamawaki, Toshihiko

    2017-11-01

    Very lightweight mirror will be required in the near future for both astronomical and earth science/observation missions. Silicon carbide is becoming one of the major materials applied especially to large and/or light space-borne optics, such as Herschel, GAIA, and SPICA. On the other hand, the technology of highly accurate optical measurement of large telescopes, especially in visible wavelength or cryogenic circumstances is also indispensable to realize such space-borne telescopes and hence the successful missions. We have manufactured a very lightweight Φ=800mm mirror made of carbon reinforced silicon carbide composite that can be used to evaluate the homogeneity of the mirror substrate and to master and establish the ground testing method and techniques by assembling it as the primary mirror into an optical system. All other parts of the optics model are also made of the same material as the primary mirror. The composite material was assumed to be homogeneous from the mechanical tests of samples cut out from the various areas of the 800mm mirror green-body and the cryogenic optical measurement of the mirror surface deformation of a 160mm sample mirror that is also made from the same green-body as the 800mm mirror. The circumstance and condition of the optical testing facility has been confirmed to be capable for the highly precise optical measurements of large optical systems of horizontal light axis configuration. Stitching measurement method and the algorithm for analysis of the measurement is also under study.

  5. Controlled Bending of a Thin Mirror to Regain Figure after Warping due to Edge-Cutting

    NASA Astrophysics Data System (ADS)

    Humphries, C. M.

    1990-03-01

    A thin circular Cer-Vit mirror, diameter 1.3 m, that had been polished flat was cut along 10 edges to form a 12-sided pseudo-elliptical plate. As a result of the edge-cutting, the mirror distorted and an experiment that investigated the effect of reverse stressing to counteract the distortion is described and analysed. The configuration adopted for stressing the mirror when installed as a driven coudé flat in the UK Infrared Telescope is also described. The reverse stressing results can be understood in terms of thin plate theory for pure bending and, in general, if the distortion is toroidal (including the case of a sphere) an orthogonal pair of bending moments can be chosen that will remove the undesired curvatures.

  6. Long Focal Length Large Mirror Fabrication System

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2003-01-01

    The goals of this ambitious program are (1) to develop systems to make large superpolished optical mirrors, (2) to develop low scatter polishing techniques using centrifugal elutriation, (3) to develop a means of measuring scatter at any point on the mirror, (4) to polish a Hindle sphere to measure the optical figure of a one meter diameter convex mandrel, and (5) to fabricate low scatter, large adaptive optic graphite filled, cyanate ester replica transfer mirrors using these mandrels. Deliverables are a 30 cm diameter superpolished composite AO mirror. We fabricated a 1/3rd meter superpolished zerodur flat mandrel and with the support of our major subcontractor, Composite Mirror Applications Inc (CMA) we have demonstrated a 30 cm lightweight cyanate ester mirror with an rms microroughness between 0.6 and 0.8 nm and 8 faceplate influence function of 5 cm. The influence function was chosen to be comparable to the atmospheric correlation coefficient r(sub 0) which is about 5 cm at sea level. There was no print-thru of the graphite fibers in the cyanate ester surface (the bane of many previous efforts to use cyanate ester mirrors). Our subcontractor has devised a means for developing a 30-50 nm thick layer of graphite free pure ester resin on the surface of the mirrors. This graphite fiber filled material has a thermal expansion coefficient in the 10(exp -8) centimeter per Kelvin range (the same range of expansion coefficient as Zerodur and ULE glasses) and does not take up water and swell, so it is a nearly ideal mirror material in these areas. Unfortunately for these 0.8mm thick faceplates, the number of plies is not enough to result in isometric coverage. Isolated figure irregularities can appear, making it necessary to go to thicker faceplates. The influence function will then only approximate the length of r(sub 0), at higher altitudes or longer wavelengths. The influence function goes as the cube of the thickness, so we are now making a faceplate optimized for

  7. Mirror Technology Development for The International X-Ray Observatory Mission

    NASA Technical Reports Server (NTRS)

    Zhang, Will

    2010-01-01

    Presentation slides include: International X-ray Observatory (IXO), Lightweight and High Resolution X-ray Optics is Needed; Modular Design of Mirror Assembly, IXO Mirror Technology Development Objectives, Focus of Technology Development, Slumping - Status, Mirror Fabrication Progress, Temporary Bonding - Status, Alignment - Status, Permanent Bonding - Status, Mirror Housing Simulator (MHS) - TRL-4, Mini-Module (TRL-5), Flight-Like Module (TRL-6), Mirror Technology Development Team, Outlook, and Small Technology Firms that Have Made Direct Contributions to IXO Mirror Technology Development.

  8. High energy collisions on tandem time-of-flight mass spectrometers†

    PubMed Central

    Cotter, Robert J.

    2013-01-01

    Long before the introduction of matrix-assisted laser desorption (MALDI), electrospray ionization (ESI), Orbitraps and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were nonetheless some clear advantages for sectors over their low collision energy counterparts. Time-of-flight mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective we recount our own journey to produce high performance time-of-flights and tandems, describing the basic theory, problems and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging and the characterization of microorganisms. PMID:23519928

  9. 49 CFR 571.111 - Standard No. 111; Rearview mirrors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mirror that reflect images, excluding the mirror rim or mounting brackets. Unit magnification mirror... image of an object is equal to the angular height and width of the object when viewed directly at the... WHILE BUS IS MOVING. IMAGES IN SUCH MIRRORS DO NOT ACCURATELY SHOW ANOTHER VEHICLE'S LOCATION.” S9.4(a...

  10. 49 CFR 571.111 - Standard No. 111; Rearview mirrors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mirror that reflect images, excluding the mirror rim or mounting brackets. Unit magnification mirror... image of an object is equal to the angular height and width of the object when viewed directly at the... WHILE BUS IS MOVING. IMAGES IN SUCH MIRRORS DO NOT ACCURATELY SHOW ANOTHER VEHICLE'S LOCATION.” S9.4(a...

  11. Visual perception during mirror-gazing at one's own face in patients with depression.

    PubMed

    Caputo, Giovanni B; Bortolomasi, Marco; Ferrucci, Roberta; Giacopuzzi, Mario; Priori, Alberto; Zago, Stefano

    2014-01-01

    In normal observers, gazing at one's own face in the mirror for a few minutes, at a low illumination level, produces the apparition of strange faces. Observers see distortions of their own faces, but they often see hallucinations like monsters, archetypical faces, faces of relatives and deceased, and animals. In this research, patients with depression were compared to healthy controls with respect to strange-face apparitions. The experiment was a 7-minute mirror-gazing test (MGT) under low illumination. When the MGT ended, the experimenter assessed patients and controls with a specifically designed questionnaire and interviewed them, asking them to describe strange-face apparitions. Apparitions of strange faces in the mirror were very reduced in depression patients compared to healthy controls. Depression patients compared to healthy controls showed shorter duration of apparitions; minor number of strange faces; lower self-evaluation rating of apparition strength; lower self-evaluation rating of provoked emotion. These decreases in depression may be produced by deficits of facial expression and facial recognition of emotions, which are involved in the relationship between the patient (or the patient's ego) and his face image (or the patient's bodily self) that is reflected in the mirror.

  12. Standing wave design and experimental validation of a tandem simulated moving bed process for insulin purification.

    PubMed

    Xie, Yi; Mun, Sungyong; Kim, Jinhyun; Wang, Nien-Hwa Linda

    2002-01-01

    A tandem simulated moving bed (SMB) process for insulin purification has been proposed and validated experimentally. The mixture to be separated consists of insulin, high molecular weight proteins, and zinc chloride. A systematic approach based on the standing wave design, rate model simulations, and experiments was used to develop this multicomponent separation process. The standing wave design was applied to specify the SMB operating conditions of a lab-scale unit with 10 columns. The design was validated with rate model simulations prior to experiments. The experimental results show 99.9% purity and 99% yield, which closely agree with the model predictions and the standing wave design targets. The agreement proves that the standing wave design can ensure high purity and high yield for the tandem SMB process. Compared to a conventional batch SEC process, the tandem SMB has 10% higher yield, 400% higher throughput, and 72% lower eluant consumption. In contrast, a design that ignores the effects of mass transfer and nonideal flow cannot meet the purity requirement and gives less than 96% yield.

  13. Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.

    PubMed

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation.

  14. Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    PubMed Central

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation. PMID:22163580

  15. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  16. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohydrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regime where microinstabilities could potentially be significant.

  17. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohdrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regine where microinstabilities could potentially be significant.

  18. James Webb Space Telescope's Golden Mirror Unveiled

    NASA Image and Video Library

    2017-12-08

    NASA engineers unveil the giant golden mirror of NASA's James Webb Space Telescope, and it's goldenly delicious! The 18 mirrors that make up the primary mirror were individually protected with a black covers when they were assembled on the telescope structure. Now, for the first time since the primary mirror was completed, the covers have been lifted. Standing tall and glimmering gold inside NASA's Goddard Space Flight Center's clean room in Greenbelt, Maryland, this mirror will be the largest yet sent into space. Currently, engineers are busy assembling and testing the other pieces of the telescope. Read more: go.nasa.gov/1TejHg4 Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  20. Successful Graded Mirror Therapy in a Patient with Chronic Deafferentation Pain in Whom Traditional Mirror Therapy was Ineffective: A Case Report.

    PubMed

    Mibu, Akira; Nishigami, Tomohiko; Tanaka, Katsuyoshi; Osumi, Michihiro; Tanabe, Akihito

    2016-04-01

    A 43-year-old man had deafferentation pain in his right upper extremity secondary to brachial plexus avulsion from a traffic accident 23 years previously. On our initial examination, he had severe tingling pain with numbness in the right fingers rated 10 on the numerical rating scale. The body perception of the affected third and fourth fingers was distorted in the flexed position. Although he performed traditional mirror therapy (TMT) for 4 weeks in the same methods as seen in previous studies, he could not obtain willed motor imagery and pain-alleviation effect. Therefore, we modified the task of TMT: Graded mirror therapy (GMT). GMT consisted of five stages: (1) observation of the mirror reflection of the unaffected side without imagining any movements of the affected side; (2) observation of the mirror reflection of the third and fourth fingers changing shape gradually adjusted from a flexed position to a extended position; (3) observation of the mirror reflection of passive movement; (4) motor imagery of affected fingers with observation of the mirror reflection (similar to TMT); (5) motor imagery of affected fingers without mirror. Each task was performed for 3 to 4 weeks. As a result, pain intensity during mirror therapy gradually decreased and finally disappeared. The body perception of the affected fingers also improved, and he could imagine the movement of the fingers with or without mirror. We suggested that GMT starting from the observation task without motor imagery may effectively decrease deafferentation pain compared to TMT. © 2016 World Institute of Pain.

  1. The Naples University 3 MV tandem accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campajola, L.; Brondi, A.

    2013-07-18

    The 3 MV tandem accelerator of the Naples University is used for research activities and applications in many fields. At the beginning of operation (1977) the main utilization was in the field of nuclear physics. Later, the realization of new beam lines allowed the development of applied activities as radiocarbon dating, ion beam analysis, biophysics, ion implantation etc. At present, the availability of different ion sources and many improvements on the accelerator allow to run experiments in a wide range of subjects. An overview of the characteristics and major activities of the laboratory is presented.

  2. James Webb Space Telescope optical simulation testbed IV: linear control alignment of the primary segmented mirror

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Soummer, Rémi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Levecq, Olivier; Mazoyer, Johan; N'Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2017-09-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, such as JWST. With the JWST Science and Operations Center co-located at STScI, JOST was developed to provide both a platform for staff training and to test alternate wavefront sensing and control strategies for independent validation or future improvements beyond the baseline operations. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the most recent experimental results for the segmented mirror alignment. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is tested on simulation and experimentally. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by misalignment of the secondary lens and the segmented mirror, are tested and validated both on simulations and experimentally. In this proceeding, we present the performance of the full active optic control loop in presence of perturbations on the segmented mirror, and we detail the quality of the alignment correction.

  3. Double arch mirror study. Part 3: Fabrication and test report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, glass mirror was developed for infrared, astronomical telescopes such as the Space Infrared Telescope Facility (SIRTF). A 50 cm, fused silica mirror which was previously fabricated was modified for use with a new mount configuration. This mount concept was developed. The modification of the mirror, the fabrication of the mirror mount, and the room temperature testing of the mounted mirror are reported. A design for a SIRTF class primary mirror is suggested.

  4. Reflections on mirror neurons and speech perception.

    PubMed

    Lotto, Andrew J; Hickok, Gregory S; Holt, Lori L

    2009-03-01

    The discovery of mirror neurons, a class of neurons that respond when a monkey performs an action and also when the monkey observes others producing the same action, has promoted a renaissance for the Motor Theory (MT) of speech perception. This is because mirror neurons seem to accomplish the same kind of one to one mapping between perception and action that MT theorizes to be the basis of human speech communication. However, this seeming correspondence is superficial, and there are theoretical and empirical reasons to temper enthusiasm about the explanatory role mirror neurons might have for speech perception. In fact, rather than providing support for MT, mirror neurons are actually inconsistent with the central tenets of MT.

  5. Reflections on mirror neurons and speech perception

    PubMed Central

    Lotto, Andrew J.; Hickok, Gregory S.; Holt, Lori L.

    2010-01-01

    The discovery of mirror neurons, a class of neurons that respond when a monkey performs an action and also when the monkey observes others producing the same action, has promoted a renaissance for the Motor Theory (MT) of speech perception. This is because mirror neurons seem to accomplish the same kind of one to one mapping between perception and action that MT theorizes to be the basis of human speech communication. However, this seeming correspondence is superficial, and there are theoretical and empirical reasons to temper enthusiasm about the explanatory role mirror neurons might have for speech perception. In fact, rather than providing support for MT, mirror neurons are actually inconsistent with the central tenets of MT. PMID:19223222

  6. SOFIA secondary mirror Hindle test analysis

    NASA Astrophysics Data System (ADS)

    Davis, Paul K.

    2003-02-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a NASA facility, nearing completion, consisting of an infrared telescope of 2.5 meter system aperture flying in a modified Boeing 747. Its Cassegrain secondary mirror has recently completed polishing. The SOFIA Project Office at Ames Research Center considered it important to perform an independent analysis of secondary mirror figure. The polishing was controlled by the standard test for a convex hyperboloid, the Hindle test, in a modified form with a meniscus lens partially reflecting on the concave face, rather than a fully reflecting mirror with a central hole. The spacing between this meniscus lens and the secondary mirror was controlled by three peripherally located spacing spheres. This necessitated special analysis to determine what the resulting curvature and conic constant of the mirror would be, if manufacturing imprecisions of the test set-up components were to be taken into account. This set-up was specially programmed, and the resulting hyperboloid calculated for the nominal case, and all extreme cases from the reported error limits on the manufacturing of the components. The results were then verified using the standard program CODE-V of Optical Research Associates. The conclusion is that the secondary mirror has a vertex radius of curvature of 954.05 mm +/- .1 mm (design value: 954.13), and a conic constant of -1.2965 +/- .001 (dimensionless, design value: -1.298). Such small divergences from design are to be expected, and these are within the refocusing ability of SOFIA, and would result in an acceptably small amount of spherical aberration in the image.

  7. Fabrication Methods for Adaptive Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio

    2013-01-01

    Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon

  8. Tandem Translation Classroom: A Case Study

    ERIC Educational Resources Information Center

    Kim, Dohun; Koh, Taejin

    2018-01-01

    The transition to student-centred learning, advances in teleconferencing tools, and active international student exchange programmes have stimulated tandem learning in many parts of the world. This pedagogical model is based on a mutual language exchange between tandem partners, where each student is a native speaker in the language the…

  9. Next Generation Space Telescope Ultra-Lightweight Mirror Program

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.

    1998-01-01

    The Next Generation Space Telescope is currently envisioned as a eight meter diameter cryogenic deployable telescope that will operate at the earth sun libration point L2. A number of different designs are being examined within NASA and under industry studies by Ball Aerospace, Lockheed-Martin and TRW. Although these designs differ in many respects, they all require significant advancements in the state-of-the-art with respect to large diameter, ultra-lightweight, mirrors. The purpose of this paper is to provide insight into the current status of the mirror development program NGST is a tremendously ambitious undertaking that sets the mark for new NASA missions. In order to achieve the weight, cost and performance requirements of NGST, the primary mirror must be made lighter, cheaper and better than anything that has ever been done. In order to accomplish this an aggressive technology program has been put in place. The scope of the program was determined by examining historically what has been accomplished; assessing recent technological advances in fabrication and testing; and evaluating the effect of these advances relative to enabling the manufacture of lightweight mirrors that meet NGST requirements. As it is currently envisioned, the primary mirror for NGST is on the order of eight meters in diameter, it is to be diffraction limited at a wave length of 2 microns and has an overall weight requirement of 15 kilograms per square meter. Two large scale demonstration projects are under way along with a number of smaller scale demonstrations on a variety of mirror materials and concepts. The University of Arizona (UA) mirror concept is based around a 2mm thick Borosilicate glass face sheet mounted to a composite backplane structure via actuators for mirror figure correction. The Composite Optics Inc.(COI) concept consists of a 3.2mm thick Zerodur face sheet bonded to a composite support structure which in turn is mounted to a composite backplane structure via

  10. Selecting mirror materials for high-performance optical systems

    NASA Astrophysics Data System (ADS)

    Parsonage, Thomas B.

    1990-11-01

    The properties of four candidate mirror materials--beryllium, silicon carbide, a silicon carbide/aluminum iretal-matrix carposite and aluminum--are corrpared. Because of its high specific stiffness and dirrensional stability under changing mschanical and thermal loads , beryllium is the best choice . Berjllium mirrors have been made irore cost-conpetitive by new processing technologies in which mirror blanks are isostatically pressed to near-net shape directly fran beiyllium pc1ers. Isostatic pressing also improves material properties and mskes it possible to develop mirror rraterials with superior properties.

  11. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2017-12-08

    A view of the one dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the

  12. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-07

    Caption: One dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis

  13. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  14. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  15. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    PubMed Central

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  16. Contagious behavior: an alternative approach to mirror-like phenomena.

    PubMed

    Provine, Robert R

    2014-04-01

    Contagious behaviors such as yawning and itching/scratching have mirror-like properties and clearly defined stimulus and motor parameters; they are also relatively easy to study and should be part of the debate about mirror neurons and the neurological mechanisms of social behavior. The broadly tuned, multimodal stimuli of contagious behavior challenge present accounts of mirror mechanisms that focus on specific, mirrored acts.

  17. Columbia Crew added to Astronaut Memorial Mirror

    NASA Image and Video Library

    2003-07-15

    Workers add to the Astronaut Memorial Mirror the names of the Columbia crew who died in the STS-107 accident. Dedicated May 9, 1991, the Astronaut Memorial honors U.S. astronauts who gave their lives for space exploration. The "Space Mirror," 42 1/2 feet high by 50 feet wide, illuminates the names of the fallen astronauts cut through the monument's black granite surface. The Memorial Mirror is accessible through the KSC Visitor Complex.

  18. High current proton beams production at Simple Mirror Ion Source 37.

    PubMed

    Skalyga, V; Izotov, I; Razin, S; Sidorov, A; Golubev, S; Kalvas, T; Koivisto, H; Tarvainen, O

    2014-02-01

    This paper presents the latest results of high current proton beam production at Simple Mirror Ion Source (SMIS) 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup, the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. Latest experiments at SMIS 37 were performed using a single-aperture two-electrode extraction system. Proton beams with currents up to 450 mA at high voltages below 45 kV were obtained. The maximum beam current density was measured to be 600 mA/cm(2). A possibility of further improvement through the development of an advanced extraction system is discussed.

  19. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2017-12-09

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  20. Transition Metal Switchable Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  1. Age-Specific Effects of Mirror-Muscle Activity on Cross-Limb Adaptations Under Mirror and Non-Mirror Visual Feedback Conditions.

    PubMed

    Reissig, Paola; Stöckel, Tino; Garry, Michael I; Summers, Jeffery J; Hinder, Mark R

    2015-01-01

    Cross-limb transfer (CLT) describes the observation of bilateral performance gains due to unilateral motor practice. Previous research has suggested that CLT may be reduced, or absent, in older adults, possibly due to age-related structural and functional brain changes. Based on research showing increases in CLT due to the provision of mirror visual feedback (MVF) during task execution in young adults, our study aimed to investigate whether MVF can facilitate CLT in older adults, who are known to be more reliant on visual feedback for accurate motor performance. Participants (N = 53) engaged in a short-term training regime (300 movements) involving a ballistic finger task using their dominant hand, while being provided with either visual feedback of their active limb, or a mirror reflection of their active limb (superimposed over the quiescent limb). Performance in both limbs was examined before, during and following the unilateral training. Furthermore, we measured corticospinal excitability (using TMS) at these time points, and assessed muscle activity bilaterally during the task via EMG; these parameters were used to investigate the mechanisms mediating and predicting CLT. Training resulted in significant bilateral performance gains that did not differ as a result of age or visual feedback (both p > 0.1). Training also elicited bilateral increases in corticospinal excitability (p < 0.05). For younger adults, CLT was significantly predicted by performance gains in the trained hand (β = 0.47), whereas for older adults it was significantly predicted by mirror activity in the untrained hand during training (β = 0.60). The present study suggests that older adults are capable of exhibiting CLT to a similar degree to younger adults. The prominent role of mirror activity in the untrained hand for CLT in older adults indicates that bilateral cortical activity during unilateral motor tasks is a compensatory mechanism. In this particular task, MVF did not facilitate the

  2. Design and Analysis of Mirror Modules for IXO and Beyond

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Powell, Cory; Saha, Timo T.; Zhang, William W.

    2011-01-01

    Advancements in X-ray astronomy demand thin, light, and closely packed thin optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The functionality requirements of such a mirror module are well understood. A baseline modular concept for the proposed International X-Ray Observatory (IXO) Flight Mirror Assembly (FMA) consisting of 14,000 glass mirror segments divided into 60 modules was developed and extensively analyzed. Through this development, our understanding of module loads, mirror stress, thermal performance, and gravity distortion have greatly progressed. The latest progress in each of these areas is discussed herein. Gravity distortion during horizontal X-ray testing and on-orbit thermal performance have proved especially difficult design challenges. In light of these challenges, fundamental trades in modular X-ray mirror design have been performed. Future directions in module X-ray mirror design are explored including the development of a 1.8 m diameter FMA utilizing smaller mirror modules. The effect of module size on mirror stress, module self-weight distortion, thermal control, and range of segment sizes required is explored with advantages demonstrated from smaller module size in most cases.

  3. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  4. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE PAGES

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    2016-09-26

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  5. Ion beam figuring of CVD silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  6. Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror

    NASA Technical Reports Server (NTRS)

    Moore, James D.; Carson, Johnathan W.

    2011-01-01

    A complete, self-contained fast-steering- mirror (FSM) mechanism is reported consisting of a housing, a mirror and mirror-mounting cell, three PZT (piezoelectric) actuators, and a counterbalance mass. Basically, it is a comparatively stiff, two-axis (tip-tilt), self-balanced FSM. The present invention requires only three (or three pairs for flight redundancy) actuators. If a PZT actuator degrades, the inherent balance remains, and compensation for degraded stroke is made by simply increasing the voltage to the PZT. Prior designs typically do not pivot at the mirror optical center, creating unacceptable beam shear.

  7. Replicate Wolter-I x-ray mirrors

    NASA Technical Reports Server (NTRS)

    Engelhaupt, D. E.; Rood, R.; Fawcett, S.; Griffith, C.; Khanijow, R.

    1994-01-01

    Cylindrical (hyperbolic - parabolic Wolter I) mirrors have been electroformed from nickel over an electroless nickel-phosphorous (NiP) plated aluminum mandrel in support of the NASA AXAF-S x-ray spectrometer program. The electroless nickel was diamond turned and polished to achieve a surface finish of 10 angstroms rms or better. Gold was then plated on the nickel alloy after an electrochemical passivation step. Next a heavy layer of pure nickel was plated one millimeter thick with controlled stress at zero using a commercial PID program to form the actual mirror. This shell was removed from the NiP alloy coated mandrel by cryogenic cooling and contraction of the aluminum to release the mirror. It is required that the gold not adhere well to the NiP but all other plated coatings must exhibit good adherence. Four mirrors were fabricated from two mandrels prepared by this method. The area of each part is 0.7 square meters (7.5 square feet).

  8. Numerical modeling of electroactive polymer mirrors for space applications

    NASA Technical Reports Server (NTRS)

    Bao, X.; Bar-Cohen, Y.; Chang, Z.; Sherrit, S.

    2003-01-01

    A controllable mirror made of single-layer EAP mirror is proposed in this paper. An analytical solution of required voltage distribution for forming a parabolic mirror from a planar film is presented.

  9. Fast force actuators for LSST primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Hileman, Edward; Warner, Michael; Wiecha, Oliver

    2010-07-01

    The very short slew times and resulting high inertial loads imposed upon the Large Synoptic Survey Telescope (LSST) create new challenges to the primary mirror support actuators. Traditionally large borosilicate mirrors are supported by pneumatic systems, which is also the case for the LSST. These force based actuators bear the weight of the mirror and provide active figure correction, but do not define the mirror position. A set of six locating actuators (hardpoints) arranged in a hexapod fashion serve to locate the mirror. The stringent dynamic requirements demand that the force actuators must be able to counteract in real time for dynamic forces on the hardpoints during slewing to prevent excessive hardpoint loads. The support actuators must also maintain the prescribed forces accurately during tracking to maintain acceptable mirror figure. To meet these requirements, candidate pneumatic cylinders incorporating force feedback control and high speed servo valves are being tested using custom instrumentation with automatic data recording. Comparative charts are produced showing details of friction, hysteresis cycles, operating bandwidth, and temperature dependency. Extremely low power actuator controllers are being developed to avoid heat dissipation in critical portions of the mirror and also to allow for increased control capabilities at the actuator level, thus improving safety, performance, and the flexibility of the support system.

  10. Adaptive optics ophthalmologic systems using dual deformable mirrors

    NASA Astrophysics Data System (ADS)

    Jones, S. M.; Olivier, S.; Chen, D.; Joeres, S.; Sadda, S.; Zawadzki, R. J.; Werner, J. S.; Miller, D. T.

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer / tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to 'focus' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  11. Micro-assembly of three-dimensional rotary MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Mills, James K.; Cleghorn, William L.

    2009-02-01

    We present a novel approach to construct three-dimensional rotary micro-mirrors, which are fundamental components to build 1×N or N×M optical switching systems. A rotary micro-mirror consists of two microparts: a rotary micro-motor and a micro-mirror. Both of the two microparts are fabricated with PolyMUMPs, a surface micromachining process. A sequential robotic microassembly process is developed to join the two microparts together to construct a threedimensional device. In order to achieve high positioning accuracy and a strong mechanical connection, the micro-mirror is joined to the micro-motor using an adhesive mechanical fastener. The mechanical fastener has self-alignment ability and provides a temporary joint between the two microparts. The adhesive bonding can create a strong permanent connection, which does not require extra supporting plates for the micro-mirror. A hybrid manipulation strategy, which includes pick-and-place and pushing-based manipulations, is utilized to manipulation the micro-mirror. The pick-andplace manipulation has the ability to globally position the micro-mirror in six degrees of freedom. The pushing-based manipulation can achieve high positioning accuracy. This microassembly approach has great flexibility and high accuracy; furthermore, it does not require extra supporting plates, which greatly simplifies the assembly process.

  12. Prototype Development of the GMT Fast Steering Mirror

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.

    2013-06-01

    A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.

  13. System Estimates Radius of Curvature of a Segmented Mirror

    NASA Technical Reports Server (NTRS)

    Rakoczy, John

    2008-01-01

    A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.

  14. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  15. Scopes for Schools: What do students know about light and mirrors?

    NASA Astrophysics Data System (ADS)

    Stassun, K.; Fabian, D.; Brissenden, G.; Lattis, J.

    2002-05-01

    The 'Scopes for Schools Project is an inquiry- and standards-based program that unites K-12 teachers, students, and professional astronomers to conduct outreach, curriculum development, and teacher professional development in astronomy. The main activities of S4S ('Scopes for Schools) are a teacher professional development workshop to increase teachers' astronomy content and pedagogical content knowledge, provide modeled curriculum activities, and the physical materials needed for doing astronomy in the classroom. We then build low-cost, high-quaility Dobsonian telescopes in the classroom with the students supplemented with fun, collaborative, inquiry-based astronomy activities. Finally, we help support the new teacher partners by assisting with star parties and astronomy club development. Previously, the curriculum development aspects of S4S have focused on post-telescope building activities, but in an attempt to provide a clear understanding of the optical properties of a telescope, we have developed an activity that explores how light interacts with a bare mirror. By grades 6-8, we have observed strongly held alternative conceptions about sight, the nature of light, and its interaction with reflective surfaces. We specifically and rigorously address this problem and the Benchmark ``Something can be "seen" when light waves emitted or reflected by it enter the eye-just as something can be "heard" when sound waves from it enter the ear.'' (Project 2061) with an activity that encourages students to manipulate a mirror and a light source to discover how images are formed. Students also gain experience with multiple variables in an experiment and the idea that it may not be possible to prevent outside factors from influencing the experiment. We discuss how this ``mirror activity'' relates to the cognitive development of students, the standards, and the greater S4S project. The 'Scopes for Schools Project has recieved funding from the Wisconsin Space Grant Consortium

  16. Horizontally progressive mirror for blind spot detection in automobiles.

    PubMed

    Lee, Hocheol; Kim, Dohyun; Yi, Sung

    2013-02-01

    The blind spot of automobiles has been a critical issue in driving safety performance. Side mirrors that use an aspheric shape to achieve a wider angle rather than conventional spherical or flat mirrors have been recently permitted from European Union safety regulations. However, these mirrors also cause difficulty in perceiving the speed and distance of an approaching vehicle in the aspheric mirror zones with their decreasing radii of curvature. We demonstrated new side mirrors showing a stable vehicle image by inserting a horizontally progressive zone between the two outer spherical zones used for the far and near views.

  17. Metrology of flat mirrors with a computer generated hologram

    NASA Astrophysics Data System (ADS)

    Pariani, Giorgio; Tresoldi, Daniela; Moschetti, Manuele; Riva, Marco; Bianco, Andrea; Zerbi, Filippo Maria

    2014-07-01

    We designed the interferometric test of a 300 mm flat mirror, based onto a spherical mirror and a dedicated CGH. The spherical beam of the interferometer is quasi collimated to the desired diameter by the spherical mirror, used slightly off-axis, and the CGH performs the residual wavefront correction. We performed tests on a 200 mm and 300 mm flat mirrors, and compared the results to the ones obtained by stitching, showing an accuracy well within the designed value. The possibility to calibrate the cavity by subtracting out the figure errors of the spherical mirror has also been evaluated.

  18. Simultaneous imaging/reflectivity measurements to assess diagnostic mirror cleaning.

    PubMed

    Skinner, C H; Gentile, C A; Doerner, R

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We describe a technique to assess the efficacy of mirror cleaning techniques and detect any damage to the mirror surface. The method combines microscopic imaging and reflectivity measurements in the red, green, and blue spectral regions and at selected wavelengths. The method has been applied to laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150-420 nm thick. It is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber.

  19. Mothers who are securely attached in pregnancy show more attuned infant mirroring at 7 months postpartum

    PubMed Central

    Kim, Sohye; Fonagy, Peter; Allen, Jon; Martinez, Sheila; Iyengar, Udita; Strathearn, Lane

    2014-01-01

    This study contrasted two forms of mother-infant mirroring: the mother's imitation of the infant's facial, gestural, or vocal behavior (i.e., “direct mirroring”) and the mother's ostensive verbalization of the infant's internal state, marked as distinct from the infant's experience (i.e., “intention mirroring”). Fifty mothers completed the Adult Attachment Interview during the third trimester of pregnancy. Mothers returned with their infants 7 months postpartum and completed a modified still-face procedure. While direct mirroring did not distinguish between secure and insecure/dismissing mothers, secure mothers were observed to engage in intention mirroring more than twice as frequently as did insecure/dismissing mothers. Infants of the two mother groups also demonstrated differences, with infants of secure mothers directing their attention toward their mothers at a higher frequency than did infants of insecure/dismissing mothers. The findings underscore marked and ostensive verbalization as a distinguishing feature of secure mothers’ well-attuned, affect-mirroring communication with their infants. PMID:25020112

  20. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, Jr., Charles Q.

    1981-01-01

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.